WorldWideScience

Sample records for evaporation

  1. Evaporators

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard

    1996-01-01

    Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients.......Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients....

  2. Evaporation From Lake Superior

    Science.gov (United States)

    Spence, C.; Blanken, P.; Hedstrom, N.; Leshkevich, G.; Fortin, V.; Charpentier, D.; Haywood, H.

    2009-05-01

    Evaporation is a critical component of the water balance of each of the Laurentian Great Lakes, and understanding the magnitude and physical controls of evaporative water losses are important for several reasons. Recently, low water levels in Lakes Superior and Michigan/Huron have had socioeconomic, ecological, and even meteorological impacts (e.g. water quality and quantity, transportation, invasive species, recreation, etc.). The recent low water levels may be due to increased evaporation, but this is not known as operational evaporation estimates are currently calculated as the residual of water or heat budgets. Perhaps surprisingly, almost nothing is known about evaporation dynamics from Lake Superior and few direct measurements of evaporation have been made from any of the Laurentian Great Lakes. This research is the first to attempt to directly measure evaporation from Lake Superior by deploying eddy covariance instrumentation. Results of evaporation rates, their patterns and controlling mechanisms will be presented. The direct measurements of evaporation are used with concurrent satellite and climate model data to extrapolate evaporation measurements across the entire lake. This knowledge could improve predictions of how climate change may impact the lake's water budget and subsequently how the water in the lake is managed.

  3. Evaporation and Antievaporation instabilities

    OpenAIRE

    Addazi, Andrea; Marciano, Antonino

    2017-01-01

    We review (anti)evaporation phenomena within the context of quantum gravity and extended theories of gravity. The (anti)evaporation effect is an instability of the black hole horizon discovered in many different scenarios: quantum dilaton-gravity, $f(R)$-gravity, $f(T)$-gravity, string inspired black holes and brane-world cosmology. Evaporating and antievaporating black holes seem to have completely different thermodynamical features compared to standard semiclassical black holes. The purpose...

  4. Measure Guideline: Evaporative Condensers

    Energy Technology Data Exchange (ETDEWEB)

    German, A [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2012-03-01

    This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.

  5. Mixed feed evaporator

    Science.gov (United States)

    Vakil, Himanshu B.; Kosky, Philip G.

    1982-01-01

    In the preparation of the gaseous reactant feed to undergo a chemical reaction requiring the presence of steam, the efficiency of overall power utilization is improved by premixing the gaseous reactant feed with water and then heating to evaporate the water in the presence of the gaseous reactant feed, the heating fluid utilized being at a temperature below the boiling point of water at the pressure in the volume where the evaporation occurs.

  6. Evaporation from microreservoirs†

    Science.gov (United States)

    Lynn, N. Scott; Henry, Charles S.

    2010-01-01

    As a result of very large surface area to volume ratios, evaporation is of significant importance when dealing with lab-on-a-chip devices that possess open air/liquid interfaces. For devices utilizing a reservoir as a fluid delivery method to a microfluidic network, excessive evaporation can quickly lead to reservoir dry out and overall device failure. Predicting the rates of evaporation from these reservoirs is difficult because the position of the air/liquid interface changes with time as the volume of liquid in the reservoir decreases. Here we present a two-step method to accurately predict the rates of evaporation of such an interface over time. First, a simple method is proposed to determine the shape of an air/liquid meniscus in a reservoir given a specific liquid volume. Second, computational fluid dynamics simulations are used to calculate the instantaneous rate of evaporation for that meniscus shape. It is shown that the rate of evaporation is strongly dependent on the overall geometry of the system, enhanced in expanding reservoirs while suppressed in contracting reservoirs, where the geometry can be easily controlled with simple experimental methods. Using no adjustable parameters, the model accurately predicts the position of the inner moving contact line as a function of time following meniscus rupture in poly(dimethylsiloxane) reservoirs, and predicts the overall time for the persistence of liquid in those reservoirs to within 0.5 minutes. The methods in this study can be used to design holding reservoirs for lab-on-a-chip devices that involve no external control of evaporation, such that evaporation rates can be adjusted as necessary by modification of the reservoir geometry. PMID:19495463

  7. Measure Guideline: Evaporative Condensers

    Energy Technology Data Exchange (ETDEWEB)

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  8. Forest evaporation models: Relationships between stand growth and evaporation

    CSIR Research Space (South Africa)

    Le Maitre, David C

    1997-06-01

    Full Text Available The relationships between forest stand structure, growth and evaporation were analysed to determine whether forest evaporation can be estimated from stand growth data. This approach permits rapid assessment of the potential impacts of afforestation...

  9. Stimulated Black Hole Evaporation

    CERN Document Server

    Spaans, Marco

    2016-01-01

    Black holes are extreme expressions of gravity. Their existence is predicted by Einstein's theory of general relativity and is supported by observations. Black holes obey quantum mechanics and evaporate spontaneously. Here it is shown that a mass rate $R_f\\sim 3\\times 10^{-8} (M_0/M)^{1/2}$ $M_0$ yr$^{-1}$ onto the horizon of a black hole with mass $M$ (in units of solar mass $M_0$) stimulates a black hole into rapid evaporation. Specifically, $\\sim 3 M_0$ black holes can emit a large fraction of their mass, and explode, in $M/R_f \\sim 3\\times 10^7 (M/M_0)^{3/2}$ yr. These stimulated black holes radiate a spectral line power $P \\sim 2\\times 10^{39} (M_0/M)^{1/2}$ erg s$^{-1}$, at a wavelength $\\lambda \\sim 3\\times 10^5 (M/M_0)$ cm. This prediction can be observationally verified.

  10. Water Membrane Evaporator

    Science.gov (United States)

    Ungar, Eugene K.; Almlie, Jay C.

    2010-01-01

    A water membrane evaporator (WME) has been conceived and tested as an alternative to the contamination-sensitive and corrosion-prone evaporators currently used for dissipating heat from space vehicles. The WME consists mainly of the following components: An outer stainless-steel screen that provides structural support for the components mentioned next; Inside and in contact with the stainless-steel screen, a hydrophobic membrane that is permeable to water vapor; Inside and in contact with the hydrophobic membrane, a hydrophilic membrane that transports the liquid feedwater to the inner surface of the hydrophobic membrane; Inside and in contact with the hydrophilic membrane, an annular array of tubes through which flows the spacecraft coolant carrying the heat to be dissipated; and An inner exclusion tube that limits the volume of feedwater in the WME. In operation, a pressurized feedwater reservoir is connected to the volume between the exclusion tube and the coolant tubes. Feedwater fills the volume, saturates the hydrophilic membrane, and is retained by the hydrophobic membrane. The outside of the WME is exposed to space vacuum. Heat from the spacecraft coolant is conducted through the tube walls and the water-saturated hydrophilic membrane to the liquid/vapor interface at the hydrophobic membrane, causing water to evaporate to space. Makeup water flows into the hydrophilic membrane through gaps between the coolant tubes.

  11. Evaporation and Antievaporation Instabilities

    Directory of Open Access Journals (Sweden)

    Andrea Addazi

    2017-10-01

    Full Text Available We review (antievaporation phenomena within the context of quantum gravity and extended theories of gravity. The (antievaporation effect is an instability of the black hole horizon discovered in many different scenarios: quantum dilaton-gravity, f ( R -gravity, f ( T -gravity, string-inspired black holes, and brane-world cosmology. Evaporating and antievaporating black holes seem to have completely different thermodynamical features compared to standard semiclassical black holes. The purpose of this review is to provide an introduction to conceptual and technical aspects of (antievaporation effects, while discussing problems that are still open.

  12. Indirect evaporative cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, M.J.; Chapman, H.L.; Pescod, D.

    1976-01-01

    Characteristics and applications of three indirect evaporative cooling systems are described. The rock bed regenerative unit is now in licensed production and some operational experience is available, while the plastic plate heat exchanger unit has been demonstrated to be effective. A third system, based on a rotary heat exchanger is included. Although less development has been done on it, several successful applications of the heat exchanger are operational. All systems provide comfort cooling in which building indoor temperature varies over the day at an operating cost less than 50% of that of a comparable refrigerated cooling system.

  13. Representative shuttle evaporative heat sink

    Science.gov (United States)

    Hixon, C. W.

    1978-01-01

    The design, fabrication, and testing of a representative shuttle evaporative heat sink (RSEHS) system which vaporizes an expendable fluid to provide cooling for the shuttle heat transport fluid loop is reported. The optimized RSEHS minimum weight design meets or exceeds the shuttle flash evaporator system requirements. A cold trap which cryo-pumps flash evaporator exhaust water from the CSD vacuum chamber test facility to prevent water contamination of the chamber pumping equipment is also described.

  14. modeling of evaporation modeling of evaporation losses in sewage ...

    African Journals Online (AJOL)

    eobe

    A model for evaporation losses in sewage sludge drying bed was derived from first principles. This model was developed based on the reasoning that the rate at which evaporation is taking place is directly proportional to the instantaneous quantity of water in the sludge. The aim of this work was to develop a model to.

  15. Evaporative cooling: Effective latent heat of evaporation in relation to evaporation distance from the skin

    NARCIS (Netherlands)

    Havenith, G.; Bröde, P.; Hartog, E.A. den; Kuklane, K.; Holmer, I.; Rossi, R.M.; Richards, M.; Farnworth, B.; Wang, X.

    2013-01-01

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has

  16. Lake Evaporation: a Model Study

    Science.gov (United States)

    Amayreh, Jumah Ahmad

    1995-01-01

    Reliable evaporation data are an essential requirement in any water and/or energy budget studies. This includes operation and management of both urban and agricultural water resources. Evaporation from large, open water surfaces such as lakes and reservoirs may influence many agricultural and irrigation decisions. In this study evaporation from Bear Lake in the states of Idaho and Utah was measured using advanced research instruments (Bowen Ratio and Eddy Correlation). Actual over-lake evaporation and weather data measurements were used to understand the mechanism of evaporation in the lake, determine lake-related parameters (such as roughness lengths, heat storage, net radiation, etc.), and examine and evaluate existing lake evaporation methods. This enabled the development of a modified and flexible model incorporating the tested methods for hourly and daily best estimates of lake evaporation using nearby simple land-based weather data and, if available, remotely sensed data. Average evaporation from Bear Lake was about 2 mm/day during the summer season (March-October) of this two-year (1993-1994) study. This value reflects the large amount of energy consumed in heating the water body of the lake. Moreover, evaporation from the lake was not directly related to solar radiation. This observation was clear during night time when the evaporation continued with almost the same rate as daytime evaporation. This explains the vital role of heat storage in the lake as the main driving energy for evaporation during night time and day time cloudy sky conditions. When comparing over-lake and nearby land-based weather parameters, land-based wind speed was the only weather parameter that had a significant difference of about 50% lower than over-lake measurements. Other weather parameters were quite similar. The study showed that evaporation from the lake can be accurately estimated using Penman-type equations if related parameters such as net radiation, heat storage, and

  17. Multileg Heat-Pipe Evaporator

    Science.gov (United States)

    Alario, J. P.; Haslett, R. A.

    1986-01-01

    Parallel pipes provide high heat flow from small heat exchanger. Six parallel heat pipes extract heat from overlying heat exchanger, forming evaporator. Vapor channel in pipe contains wick that extends into screen tube in liquid channel. Rods in each channel hold wick and screen tube in place. Evaporator compact rather than extended and more compatible with existing heat-exchanger geometries. Prototype six-pipe evaporator only 0.3 m wide and 0.71 m long. With ammonia as working fluid, transports heat to finned condenser at rate of 1,200 W.

  18. Intrinsic Evaporative Cooling by Hygroscopic Earth Materials

    National Research Council Canada - National Science Library

    Rempel, Alexandra; Rempel, Alan

    2016-01-01

    .... Diverse evaporative cooling strategies have resulted worldwide, including roof ponds and sprinklers, courtyard fountains, wind catchers with qanats, irrigated green roofs, and fan-assisted evaporative coolers...

  19. Lake Nasser evaporation reduction study

    Directory of Open Access Journals (Sweden)

    Hala M.I. Ebaid

    2010-10-01

    Full Text Available This study aims to evaluate the reduction of evaporation of Lake Nasser’s water caused by disconnecting (fully or partially some of its secondary channels (khors. This evaluation integrates remote sensing, Geographic Information System (GIS techniques, aerodynamic principles, and Landsat7 ETM+ images. Three main procedures were carried out in this study; the first derived the surface temperature from Landsat thermal band; the second derived evaporation depth and approximate evaporation volume for the entire lake, and quantified evaporation loss to the secondary channels’ level over one month (March by applied aerodynamic principles on surface temperature of the raster data; the third procedure applied GIS suitability analysis to determine which of these secondary channels (khors should be disconnected. The results showed evaporation depth ranging from 2.73 mm/day at the middle of the lake to 9.58 mm/day at the edge. The evaporated water-loss value throughout the entire lake was about 0.86 billion m3/month (March. The analysis suggests that it is possible to save an approximate total evaporation volume loss of 19.7 million m3/month (March, and thus 2.4 billion m3/year, by disconnecting two khors with approximate construction heights of 8 m and 15 m. In conclusion, remote sensing and GIS are useful for applications in remote locations where field-based information is not readily available and thus recommended for decision makers remotely planning in water conservation and management.

  20. Cooling clothing utilizing water evaporation

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Tominaga, Naoto; Melikov, Arsen Krikor

    2014-01-01

    We developed cooling clothing that utilizes water evaporation to cool the human body and has a mechanism to control the cooling intensity. Clean water was supplied to the outer surface of the T-shirt of the cooling clothing, and a small fan was used to enhance evaporation on this outer surface....... To prevent wet discomfort, the T-shirt was made of a polyester material having a water-repellent silicon coating on the inner surface. The chest, front upper arms, and nape of the neck were adopted as the cooling areas of the human body. We conducted human subject experiments in an office with air...... temperature ranging from 27.4 to 30.7 °C to establish a suitable water supply control method. A water supply control method that prevents water accumulation in the T-shirt and water dribbling was validated; this method is established based on the concept of the water evaporation capacity under the applied...

  1. Tubular sublimatory evaporator heat sink

    Science.gov (United States)

    Webbon, B. W. (Inventor)

    1977-01-01

    An evaporative refrigerator or cooler comprising a bundle of spaced, porous walled tubes closed at one of their ends and vented to a vacuum at the other end is disclosed. The tube bundle is surrounded by a water jacket having a hot water inlet distribution manifold and a cooled water outlet through a plenum chamber. Hot water is pumped into the jacket to circulate around the tubes, and when this water meets the vacuum existing inside the tubes, it evaporates thereby cooling the water in the jacket. If cooling proceeds to the point where water penetrating or surrounding all or part of the tubes freezes, operation continues with local sublimation of the ice on the tubes while the circulating water attempts to melt the ice. Both sublimation and evaporation may take place simultaneously in different regions of the device.

  2. Water Evaporation in Swimming Baths

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik

    This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which are repres......This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which...

  3. Energy storage in evaporated brine

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, R. Ian

    2010-09-15

    We propose storage of electrical energy in brine solutions by using the energy to enhance natural evaporation. Using properties of existing industrial evaporation technologies and estimates of power regeneration from brine by pressure retarded osmosis, efficiency near 100% is calculated. Modelling indicates that systems ranging from 50kW to 50MW output may be practical, with storage capacities of hours to days. The method appears to have potential to be economically competitive with other technologies over a wide range of capacity. It may present a large new application area that could aid the development of salinity-based power generation technology.

  4. modeling of evaporation modeling of evaporation losses in sewage

    African Journals Online (AJOL)

    eobe

    advance treatment. This shall be the task of sludge drying process, understood as thermal drying process in which thermal energy is delivered to the sludge in order to evaporate water [5].The exchange of mass and heat between dried sludge and air (material and. Nigerian Journal of Technology (NIJOTECH). Vol. 34 No.

  5. The sustainability of LNG evaporation

    NARCIS (Netherlands)

    Stougie, L.; Van der Kooi, H.J.

    2011-01-01

    Numerous LNG (Liquefied Natural Gas) import terminals are under construction to fulfil the growing demand for energy carriers. After storage in tanks, the LNG needs to be heated and evaporated, also called ‘regasified’, to the natural gas needed in households and industry. Several options exist for

  6. Quantifying Evaporation in a Permeable Pavement System

    Science.gov (United States)

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  7. Modelling refrigerant distribution in microchannel evaporators

    DEFF Research Database (Denmark)

    Brix, Wiebke; Kærn, Martin Ryhl; Elmegaard, Brian

    2009-01-01

    The effects of refrigerant maldistribution in parallel evaporator channels on the heat exchanger performance are investigated numerically. For this purpose a 1D steady state model of refrigerant R134a evaporating in a microchannel tube is built and validated against other evaporator models. A stu...... out of the evaporator is kept constant. It is shown that the cooling capacity of the evaporator is reduced significantly, both in the case of unevenly distributed inlet quality and for the case of non-uniform airflow on the outside of the channels.......The effects of refrigerant maldistribution in parallel evaporator channels on the heat exchanger performance are investigated numerically. For this purpose a 1D steady state model of refrigerant R134a evaporating in a microchannel tube is built and validated against other evaporator models. A study...

  8. Evaporation from a sphagnum moss surface

    Science.gov (United States)

    D.S. Nichols; J.M. Brown

    1980-01-01

    Peat cores, 45 cm in diameter, were collected from a sphagnum bog in northern Minnesota, and used to measure the effects of different temperatures and water levels on evaporation from a sphagnum moss surface in a growth chamber. Under all conditions, evaporation from the moss surface was greater than that from a free-water surface. Evaporation from the moss increased...

  9. Iodine retention during evaporative volume reduction

    Science.gov (United States)

    Godbee, H.W.; Cathers, G.I.; Blanco, R.E.

    1975-11-18

    An improved method for retaining radioactive iodine in aqueous waste solutions during volume reduction is disclosed. The method applies to evaporative volume reduction processes whereby the decontaminated (evaporated) water can be returned safely to the environment. The method generally comprises isotopically diluting the waste solution with a nonradioactive iodide and maintaining the solution at a high pH during evaporation.

  10. Does evaporation paradox exist in China?

    Directory of Open Access Journals (Sweden)

    Z. T. Cong

    2009-03-01

    Full Text Available One expected consequence of global warming is the increase in evaporation. However, lots of observations show that the rate of evaporation from open pans of water has been steadily decreasing all over the world in the past 50 years. The contrast between expectation and observation is called "evaporation paradox". Based on data from 317 weather stations in China from 1956 to 2005, the trends of pan evaporation and air temperature were obtained and evaporation paradox was analyzed. The conclusions include: (1 From 1956 to 2005, pan evaporation paradox existed in China as a whole while pan evaporation kept decreasing and air temperature became warmer and warmer, but it does not apply to Northeast and Southeast China; (2 From 1956 to 1985, pan evaporation paradox existed narrowly as a whole with unobvious climate warming trend, but it does not apply to Northeast China; (3 From 1986 to 2005, in the past 20 years, pan evaporation paradox did not exist for the whole period while pan evaporation kept increasing, although it existed in South China. Furthermore, the trend of other weather factors including sunshine duration, windspeed, humidity and vapor pressure deficit, and their relations with pan evaporation are discussed. As a result, it can be concluded that pan evaporation decreasing is caused by the decreasing in radiation and wind speed before 1985 and pan evaporation increasing is caused by the decreasing in vapor pressure deficit due to strong warming after 1986. With the Budyko curve, it can be concluded that the actual evaporation decreased in the former 30 years and increased in the latter 20 year for the whole China.

  11. Evaporative oxidation treatability test report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.

  12. Hydrodynamic Instabilities Produced by Evaporation

    Science.gov (United States)

    Romo-Cruz, Julio Cesar Ruben; Hernandez-Zapata, Sergio; Ruiz-Chavarria, Gerardo

    2012-11-01

    When a liquid layer (alcohol in the present work) is in an environment where its relative humidity is less than 100 percent evaporation appears. When RH is above a certain threshold the liquid is at rest. If RH decreases below this threshold the flow becomes unstable, and hydrodynamic cells develop. The aim of this work is to understand the formation of those cells and its main features. Firstly, we investigate how the cell size depends on the layer width. We also study how temperature depends on the vertical coordinate when the cells are present. An inverse temperature gradient is found, that is, the bottom of liquid layer is colder than the free surface. This shows that the intuitive idea that the cells are due to a direct temperature gradient, following a Marangoni-like process, does not work. We propose the hypothesis that the evaporation produce a pressure gradient that is responsible of the cell development. On the other hand, using a Schlieren technique we study the topography of the free surface when cells are present. Finally the alcohol vapor layer adjacent to the liquid surface is explored using scattering experiments, giving some insight on the plausibility of the hypothesis described previously. Authors acknowledge support by DGAPA-UNAM under project IN116312 ``Vorticidad y ondas no lineales en fluidos.''

  13. New models for droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S.

    2013-02-01

    A brief summary of new models for droplet heating and evaporation, developed mainly at the Sir Harry Ricardo Laboratory of the University of Brighton during 2011-2012, is presented. These are hydrodynamic models for mono-component droplet heating and evaporation, taking into account the effects of the moving boundary due to evaporation, hydrodynamic models of multi-component droplet heating and evaporation, taking and not taking into account the effects of the moving boundary, new kinetic models of mono-component droplet heating and evaporation, and a model for mono-component droplet evaporation, based on molecular dynamics simulation. The results, predicted by the new models are compared with experimental data and the prehctions of the previously developed models where possible. © 2013 Asian Network for Scientific Information.

  14. Role of evaporation in gravitational collapse

    CERN Document Server

    Baccetti, Valentina; Terno, Daniel R

    2016-01-01

    We study collapse of evaporating thin dust shells using two families of metrics to describe the {exterior geometry: the outgoing Vaidya metric and the retarded Schwarzschild metric. Both allow incorporation of Page's evaporation law (the latter in terms of the time at infinity), resulting in a modified equation} of motion for the shell. In these scenarios we find in each case that the collapse is accelerated due to evaporation, but the Schwarzschild radius is not crossed. Instead the shell is always at a certain sub-Planckian distance from this would-be horizon that depends only on the mass and evaporation rate.

  15. Entropy Budget for Hawking Evaporation

    Directory of Open Access Journals (Sweden)

    Ana Alonso-Serrano

    2017-07-01

    Full Text Available Blackbody radiation, emitted from a furnace and described by a Planck spectrum, contains (on average an entropy of 3 . 9 ± 2 . 5 bits per photon. Since normal physical burning is a unitary process, this amount of entropy is compensated by the same amount of “hidden information” in correlations between the photons. The importance of this result lies in the posterior extension of this argument to the Hawking radiation from black holes, demonstrating that the assumption of unitarity leads to a perfectly reasonable entropy/information budget for the evaporation process. In order to carry out this calculation, we adopt a variant of the “average subsystem” approach, but consider a tripartite pure system that includes the influence of the rest of the universe, and which allows “young” black holes to still have a non-zero entropy; which we identify with the standard Bekenstein entropy.

  16. Intrinsic Evaporative Cooling by Hygroscopic Earth Materials

    Directory of Open Access Journals (Sweden)

    Alexandra R. Rempel

    2016-08-01

    Full Text Available The phase change of water from liquid to vapor is one of the most energy-intensive physical processes in nature, giving it immense potential for cooling. Diverse evaporative cooling strategies have resulted worldwide, including roof ponds and sprinklers, courtyard fountains, wind catchers with qanats, irrigated green roofs, and fan-assisted evaporative coolers. These methods all require water in bulk liquid form. The evaporation of moisture that has been sorbed from the atmosphere by hygroscopic materials is equally energy-intensive, however, yet has not been examined for its cooling potential. In arid and semi-arid climates, hygroscopic earth buildings occur widely and are known to maintain comfortable indoor temperatures, but evaporation of moisture from their walls and roofs has been regarded as unimportant since water scarcity limits irrigation and rainfall; instead, their cool interiors are attributed to well-established mass effects in delaying the transmission of sensible gains. Here, we investigate the cooling accomplished by daily cycles of moisture sorption and evaporation which, requiring only ambient humidity, we designate as “intrinsic” evaporative cooling. Connecting recent soil science to heat and moisture transport studies in building materials, we use soils, adobe, cob, unfired earth bricks, rammed earth, and limestone to reveal the effects of numerous parameters (temperature and relative humidity, material orientation, thickness, moisture retention properties, vapor diffusion resistance, and liquid transport properties on the magnitude of intrinsic evaporative cooling and the stabilization of indoor relative humidity. We further synthesize these effects into concrete design guidance. Together, these results show that earth buildings in diverse climates have significant potential to cool themselves evaporatively through sorption of moisture from humid night air and evaporation during the following day’s heat. This finding

  17. Mass transfer relations for transpiration evaporation experiments

    NARCIS (Netherlands)

    Limpt, J.A.C. van; Beerkens, R.G.C.; Lankhorst, A.M.; Habraken, A.

    2005-01-01

    Transpiration evaporation experiments are often used to study evaporation kinetics from liquids or melts. The mass transport of volatile species in a transpiration experiment depends among others on the flow conditions of the carrier gas in the tube and on the geometrical configuration. For a

  18. Odors from evaporation of acidified pig urine

    NARCIS (Netherlands)

    Willers, H.C.; Hobbs, P.J.; Ogink, N.W.M.

    2004-01-01

    In the Dutch Hercules project feces and urine from pigs are collected separately underneath the slatted floor in a pig house and treated in two processes. Feces are composted and urine is concentrated by water evaporation in a packed bed. Exhaust air from the pig house is used for the evaporation in

  19. Spheroid droplets evaporation of water solutions

    OpenAIRE

    Misyura S. Y.; Morozov V.S.

    2017-01-01

    Droplet film boiling on a horizontal heating surface was studied experimentally. The heat transfer coefficient of droplet water solution in the spheroidal state decreases with a rise of wall overheating and spheroid diameter. Evaporation of small spheroid (diameter d 20 mm). At the evaporation of large spheroids a spheroid shape changes in time that significantly affect coefficients of generalizing curves that use dimensionless numbers.

  20. Evaporation experiments and modelling for glass melts

    NARCIS (Netherlands)

    Limpt, J.A.C. van; Beerkens, R.G.C.

    2007-01-01

    A laboratory test facility has been developed to measure evaporation rates of different volatile components from commercial and model glass compositions. In the set-up the furnace atmosphere, temperature level, gas velocity and batch composition are controlled. Evaporation rates have been measured

  1. Evaporation from partially covered water surfaces

    Science.gov (United States)

    Assouline, S.; Narkis, K.; Or, D.

    2010-10-01

    Evaporative losses from large water bodies may exceed 20% of water used in irrigated agriculture, with losses from reservoirs estimated at 50% of storage capacity. Prominent among proposed methods to curtail these evaporative losses are various forms of partial covers placed over water surfaces. Studies show that evaporation through perforated covers and from partially covered water surfaces exhibit nonlinear behavior, where rates of water loss are not proportional to uncovered surface fraction and are significantly affected by opening size and relative spacing. We studied evaporation from small water bodies under various perforated covers, extending the so-called diameter law to opening sizes in the range of 10-5 to 10-1 m. Contradicting claims concerning effects of openings and their arrangement on performance of evaporation barriers are analyzed on per opening and on per area mass losses. Our results help reconcile some classical findings invoking detailed pore-scale diffusion and simple temperature-based energetic behaviors. For fixed relative spacing, area-averaged evaporative flux density remains nearly constant across several orders of magnitude variations in opening size. For the scale of the experimental setup, we predict relative evaporation reduction efficiency for various configurations of perforated evaporation barriers.

  2. An evaporation based digital microflow meter

    NARCIS (Netherlands)

    Nie, C; Frijns, A J H; Mandamparambil, R; Zevenbergen, M A G; den Toonder, J M J

    2015-01-01

    In this work, we present a digital microflow meter operating in the range 30-250 nl min-1 for water. The principle is based on determining the evaporation rate of the liquid via reading the number of wetted pore array structures in a microfluidic system, through which continuous evaporation takes

  3. Advanced evaporator technology progress report FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

  4. Modelling refrigerant distribution in minichannel evaporators

    DEFF Research Database (Denmark)

    Brix, Wiebke

    distribution and on the cooling capacity of the evaporator. A one dimensional, steady state model of a minichannel evaporator is used for the study. An evaporator consisting of two multiport minichannels in parallel is used as a test case and two different refrigerants, R134a and R744 (CO2), are applied...... in the numerical experiments using the test case evaporator. The results show that the reduction in cooling capacity due to non-uniform airflow and non-uniform liquid and vapour distribution is generally larger when using R134a than when using CO2 as refrigerant. Comparing the capacity reductions with reductions......This thesis is concerned with numerical modelling of flow distribution in a minichannel evaporator for air-conditioning. The study investigates the impact of non-uniform airflow and non-uniform distribution of the liquid and vapour phases in the inlet manifold on the refrigerant mass flow...

  5. Multi-leg heat pipe evaporator

    Science.gov (United States)

    Alario, J. P.; Haslett, R. A.

    1986-04-01

    A multileg heat pipe evaporator facilitates the use and application of a monogroove heat pipe by providing an evaporation section which is compact in area and structurally more compatible with certain heat exchangers or heat input apparatus. The evaporation section of a monogroove heat pipe is formed by a series of parallel legs having a liquid and a vapor channel and a communicating capillary slot therebetween. The liquid and vapor channels and interconnecting capillary slots of the evaporating section are connected to the condensing section of the heat pipe by a manifold connecting liquid and vapor channels of the parallel evaporation section legs with the corresponding liquid and vapor channels of the condensing section.

  6. Contribution of impervious surfaces to urban evaporation

    Science.gov (United States)

    Ramamurthy, P.; Bou-Zeid, E.

    2014-04-01

    Observational data and the Princeton urban canopy model, with its detailed representation of urban heterogeneity and hydrological processes, are combined to study evaporation and turbulent water vapor transport over urban areas. The analyses focus on periods before and after precipitation events, at two sites in the Northeastern United States. Our results indicate that while evaporation from concrete pavements, building rooftops, and asphalt surfaces is discontinuous and intermittent, overall these surfaces accounted for nearly 18% of total latent heat fluxes (LE) during a relatively wet 10 day period. More importantly, these evaporative fluxes have a significant impact on the urban surface energy balance, particularly during the 48 h following a rain event when impervious evaporation is the highest. Thus, their accurate representation in urban models is critical. Impervious evaporation after rainfall is also shown to correlate the sources of heat and water at the earth surface, resulting in a conditional scalar transport similarity over urban terrain following rain events.

  7. Performance of falling film plate evaporators in reconstructed multiple-effect evaporation station in sugar factory

    Directory of Open Access Journals (Sweden)

    Zavargo Zoltan Z.

    2006-01-01

    Full Text Available General trend of free trade in regional level as well as in the direction of European Union has motivated sugar factories located in Serbia to invest into technologies that are more efficient in order to make their products more competitive at the markets in Europe. The aim of this work was to evaluate effects of falling film plate evaporators on the energy consumption of evaporation plant, as well as to validate performance of this type of evaporators. It was found that this type of evaporator decreased energy requirements and in the same time evaporation process was more effective due to high values of heat transfer coefficients. .

  8. 242-A evaporator safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    CAMPBELL, T.A.

    1999-05-17

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  9. Towards a rational definition of potential evaporation

    Directory of Open Access Journals (Sweden)

    J.-P. Lhommel

    1997-01-01

    Full Text Available The concept of potential evaporation is defined on the basis of the following criteria: (i it must establish an upper limit to the evaporation process in a given environment (the term 'environment' including meteorological and surface conditions, and (ii this upper limit must be readily calculated from measured input data. It is shown that this upper limit is perfectly defined and is given by the Penman equation, applied with the corresponding meteorological data (incoming radiation and air characteristics measured at a reference height and the appropriate surface characteristics (albedo, roughness length, soil heat flux. Since each surface has its own potential evaporation, a function of its own surface characteristics, it is useful to define a reference potential evaporation as a short green grass completely shading the ground. Although the potential evaporation from a given surface is readily calculated from the Penman equation, its physical significance or interpretation is not so straightforward, because it represents only an idealized situation, not a real one. Potential evaporation is the evaporation from this surface, when saturated and extensive enough to obviate any effect of local advection, under the same meteorological conditions. Due to the feedback effects of evaporation on air characteristics, it does not represent the 'real' evaporation (i.e. the evaporation which could be physically observed in the real world from such an extensive saturated surface in these given meteorological conditions (if this saturated surface were substituted for an unsaturated one previously existing. From a rigorous standpoint, this calculated potential evaporation is not physically observable. Nevertheless, an approximate representation can be given by the evaporation from a limited saturated area, the dimension of which depends on the height of measurement of the air characteristics used as input in the Penman equation. If they are taken at a height

  10. On the evaporation of ammonium sulfate solution

    Energy Technology Data Exchange (ETDEWEB)

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-07-16

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  11. Upgrading existing evaporators to reduce energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This manual is intended to assist the evaporator engineer who will be performing the technical and economic analyses to determine the most suitable evaporator upgrading technique for his particular plant. Information is included on potentials for upgrading evaporators; correctable operating factors; heat recovery and other improvements in energy use with minor capital investments; upgrading through major capital investments; guidelines for formulating an upgrading program; and new technologies encompassing advanced designs, use of solar and low-grade heat sources, and heat transfer enhancement. A 36 item bibliography is included. (LCL)

  12. Enhanced Evaporation and Condensation in Tubes

    Science.gov (United States)

    Honda, Hiroshi

    A state-of-the-art review of enhanced evaporation and condensation in horizontal microfin tubes and micro-channels that are used for air-conditioning and refrigeration applications is presented. The review covers the effects of flow pattern and geometrical parameters of the tubes on the heat transfer performance. Attention is paid to the effect of surface tension which leads to enhanced evaporation and condensation in the microfin tubes and micro-channels. A review of prior efforts to develop empirical correlations of the heat transfer coefficient and theoretical models for evaporation and condensation in the horizontal microfin tubes and micro-channels is also presented.

  13. Denton E-beam Evaporator #1

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: E-Beam Evap 1This is a dual e-beam/thermal evaporator for the deposition of metal and dielectric thin films. Materials available are: Ag, Al,...

  14. Denton E-beam Evaporator #2

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: E-Beam Evap 2This is an electron gun evaporator for the deposition of metals and dielectrics thin films. Materials available are: Ag, Al, Au,...

  15. Evaporation analysis for Tank SX-104

    Energy Technology Data Exchange (ETDEWEB)

    Barrington, C.A.

    1994-10-01

    Decreases in historical interstitial liquid level measurements in tank SX-104 were compared to predictions of a numerical model based upon diffusion of water through a porous crust. The analysis showed that observed level decreases could be explained by evaporation.

  16. Lattice-Boltzmann simulations of droplet evaporation

    KAUST Repository

    Ledesma-Aguilar, Rodrigo

    2014-09-04

    © the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is

  17. Spacesuit Evaporator-Absorber-Radiator (SEAR) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project builds from the work of the first year of effort that successfully integrated the Spacesuit  Water Membrane Evaporator (SWME), developed by the...

  18. Climatic Controls on Evaporation in Hawaii.

    Science.gov (United States)

    Nullet, Dennis Mcclain

    The primary aims of this dissertation were to identify and explain variation in potential evaporation at different elevations and different exposures on tropical high islands, to provide reference data for modeling evaporation, and to suggest how an evaporation model appropriate for tropical high islands might be developed. The most important contribution of this study was to quantify the importance of advection in controlling the evaporation rate on tropical high islands. Sensible heat advection from the surrounding ocean moderates the evaporation rate at windward coastal sites. This effect ranged, on average, from 0.85 mm/day enhancement in November to 0.71 mm/day suppression in June. Heat advection from land sources increased the evaporation rate by as much as 2.8 mm/day in central Maui. Large-scale subsidence over the Hawaiian Islands region accounts for an additional source of advection, enhancing evaporation above approximately above 1200 m on the mountain. Preliminary results indicate that this effect increases with elevation in conjunction with the night evaporation rate. Cloud patterns over the mountain slopes and optical air mass determine the solar radiation receipt (the primary source of energy for evaporation) pattern which ranged from 85% to 51% of clear-day radiation in summer and 80% to 63% in winter. Insolation declined with elevation over the study site, except above 1200 meters in winter where it increased with elevation. Results of the study indicate that common methods for estimating potential evaporation need to be modified to account for the effect of advection. Temperature and vapor pressure on the mountain can be estimated using rawinsonde data. Net radiation can be mapped from global radiation estimated from modeled clear-day radiation reduced according to a cloudiness index. Ocean advection can he accounted for at the lower elevations by simply adding a monthly modifier based on results presented in the study. Land advection can be

  19. Evaluating Evaporation with Satellite Thermal Data.

    Science.gov (United States)

    1987-11-01

    and Executive S~ury: se attachd Water surface tmiera e can be obtaind fron satellite Ueml remote senir. landsat and other satellite s emitted thermal...values with the lake’s surface temp ~eratuire by performing a linear regression to get an equation, or model, that defines the evaporation for a given...infrared radiation on a regular basis over uxfd of the earth’s surface . Evaporation is acccmplished by the net txansport of mas from the water surface

  20. High-Capacity Heat-Pipe Evaporator

    Science.gov (United States)

    Oren, J. A.; Duschatko, R. J.; Voss, F. E.; Sauer, L. W.

    1989-01-01

    Heat pipe with cylindrical heat-input surface has higher contact thermal conductance than one with usual flat surface. Cylindrical heat absorber promotes nearly uniform flow of heat into pipe at all places around periphery of pipe, helps eliminate hotspots on heat source. Lugs in aluminum pipe carry heat from outer surface to liquid oozing from capillaries of wick. Liquid absorbs heat, evaporates, and passes out of evaporator through interlug passages.

  1. Evaporation Heat Transfer of Ammonia and Pressure Drop of Warm Water for Plate Type Evaporator

    Science.gov (United States)

    Kushibe, Mitsuteru; Lkegami, Yasuyuki; Monde, Masanori; Uehara, Haruo

    The performance test of three types of plate type evaporators for spring thermal energy conversion and ocean thermal energy conversion carried out. Ammonia is utilized as working fluid and warm water is utilized as heat source. An empirical correlation is proposed in order to predict the mean evaporation heat transfer coefficient of ammonia and heat transfer coefficient of warm water for plate type evaporators. The mean heat transfer coefficient and friction factor of warm water were compared with other researches.

  2. Sheet Membrane Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  3. Lysozyme pattern formation in evaporating droplets

    Science.gov (United States)

    Gorr, Heather Meloy

    Liquid droplets containing suspended particles deposited on a solid, flat surface generally form ring-like structures due to the redistribution of solute during evaporation (the "coffee ring effect"). The forms of the deposited patterns depend on complex interactions between solute(s), solvent, and substrate in a rapidly changing, far from equilibrium system. Solute self-organization during evaporation of colloidal sessile droplets has attracted the attention of researchers over the past few decades due to a variety of technological applications. Recently, pattern formation during evaporation of various biofluids has been studied due to potential applications in medical screening and diagnosis. Due to the complexity of 'real' biological fluids and other multicomponent systems, a comprehensive understanding of pattern formation during droplet evaporation of these fluids is lacking. In this PhD dissertation, the morphology of the patterns remaining after evaporation of droplets of a simplified model biological fluid (aqueous lysozyme solutions + NaCl) are examined by atomic force microscopy (AFM) and optical microscopy. Lysozyme is a globular protein found in high concentration, for example, in human tears and saliva. The drop diameters, D, studied range from the micro- to the macro- scale (1 microm -- 2 mm). In this work, the effect of evaporation conditions, solution chemistry, and heat transfer within the droplet on pattern formation is examined. In micro-scale deposits of aqueous lysozyme solutions (1 microm < D < 50 microm), the protein motion and the resulting dried residue morphology are highly influenced by the decreased evaporation time of the drop. The effect of electrolytes on pattern formation is also investigated by adding varying concentrations NaCl to the lysozyme solutions. Finally, a novel pattern recognition program is described and implemented which classifies deposit images by their solution chemistries. The results presented in this Ph

  4. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    NARCIS (Netherlands)

    Tan, Huanshu; Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, Johannes G.M.; Zhang, Xuehua; Zhang, Xuehua; Lohse, Detlef

    2016-01-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even

  5. Evaporation Heat Transfer of Ammonia/Water Mixtures for Plate Type Evaporator

    Science.gov (United States)

    Kushibe, Mitsuteru; Ikegami, Yasuyuki; Monde, Masanori

    The performance test of plate type evaporators was carried out. Ammonia/Water mixtures were utilized as working fluid and warm water was utilized as heat source. Five kinds of ammonia mass fraction are tested. The overall heat transfer coefficient of ammonia/water mixtures was lower than the pure ammonia in the same experimental condition. In the convection dominant region, the mean evaporation heat transfer of ammonia/water mixtures was almost the same as ammonia by considering thermophysical properties. In the region where nucleate boiling contributes to the heat transfer, the mean evaporation heat transfer coefficient was influenced of mass fraction. An empirical correlation was proposed in order to predict the mean evaporation heat transfer coefficient of ammonia/water mixtures for plate type evaporators.

  6. An evaporation based digital microflow meter

    Science.gov (United States)

    Nie, C.; Frijns, A. J. H.; Mandamparambil, R.; Zevenbergen, M. A. G.; den Toonder, J. M. J.

    2015-11-01

    In this work, we present a digital microflow meter operating in the range 30-250 nl min-1 for water. The principle is based on determining the evaporation rate of the liquid via reading the number of wetted pore array structures in a microfluidic system, through which continuous evaporation takes place. A proof-of-principle device of the digital flow meter was designed, fabricated, and tested. The device was built on foil-based technology. In the proof-of-principle experiments, good agreement was found between set flow rates and the evaporation rates estimated from reading the number of wetted pore structures. The measurement range of the digital flow meter can be tuned and extended in a straightforward manner by changing the pore structure of the device.

  7. Black hole evaporation in conformal gravity

    Science.gov (United States)

    Bambi, Cosimo; Modesto, Leonardo; Porey, Shiladitya; Rachwał, Lesław

    2017-09-01

    We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.

  8. Comparative study of two different evaporative systems: an indirect evaporative cooler and a semi-indirect ceramic evaporative cooler

    Energy Technology Data Exchange (ETDEWEB)

    Rey Martinez, F.J.; Velasco Gomez, E.; Herrero Martin, R.; Martinez Gutierrez, J.; Varela Diez, F. [University of Valladolid (Spain). Thermal Engineering Group

    2004-07-01

    In the current work, two different types of evaporative systems are shown. A returning air recovery system is used. The indirect systems have two independent airflows, the primary airstream is used to refrigerate and the secondary flow is in direct contact with water in order to improve heat and mass transfer. The first equipment (the indirect evaporative refrigerator) works like a flat interchanger made of aluminium and there is only heat transfer in the primary airflow. The second equipment (the semi-indirect evaporative refrigerator) is made of solid porous ceramic pipes, which separate the two airstreams, thus allowing that, in the primary airflow (apart from the heat transfer), there is also a mass transfer. It should also be mentioned that this system is free of legionella, because the pipes perform the role of a filter material, making it impossible for the bacterium to enter premises. This system has been named a semi-indirect evaporative system due to the permeability of the porous pipes, which allow a higher or lower water diffusion and therefore a mass transfer depending on the specific humidity of the primary airstream. (author)

  9. Sequence crystallization during isotherm evaporation of southern ...

    African Journals Online (AJOL)

    Sequence crystallization during isotherm evaporation of southern Algeria chott Baghdad natural brine. M Zatout, M Hacini, A.H. Hamzaoui, A M'nif. Abstract. Southern Algerian's natural brine sampled from chott Baghdad may be a source of mineral salts with a high economic value. These salts are recoverable by simple ...

  10. Control of evaporating complex fluids through electrowetting

    NARCIS (Netherlands)

    Mampallil Augustine, Dileep; Eral, Burak; van den Ende, Henricus T.M.; Mugele, Friedrich Gunther

    2012-01-01

    Evaporating drops of complex fluids such as colloidal suspensions and macromolecular solutions typically leave behind ring-shaped solid residues commonly known as coffee stains. Electrowetting-driven microfluidic flows allow for controlling this process. We present coffee stain suppression for

  11. Evaporative Lithography in Open Microfluidic Channel Networks

    KAUST Repository

    Lone, Saifullah

    2017-02-24

    We demonstrate a direct capillary-driven method based on wetting and evaporation of various suspensions to fabricate regular two-dimensional wires in an open microfluidic channel through continuous deposition of micro- or nanoparticles under evaporative lithography, akin to the coffee-ring effect. The suspension is gently placed in a loading reservoir connected to the main open microchannel groove on a PDMS substrate. Hydrophilic conditions ensure rapid spreading of the suspension from the loading reservoir to fill the entire channel length. Evaporation during the spreading and after the channel is full increases the particle concentration toward the end of the channel. This evaporation-induced convective transport brings particles from the loading reservoir toward the channel end where this flow deposits a continuous multilayered particle structure. The particle deposition front propagates backward over the entire channel length. The final dry deposit of the particles is thereby much thicker than the initial volume fraction of the suspension. The deposition depth is characterized using a 3D imaging profiler, whereas the deposition topography is revealed using a scanning electron microscope. The patterning technology described here is robust and passive and hence operates without an external field. This work may well become a launching pad to construct low-cost and large-scale thin optoelectronic films with variable thicknesses and interspacing distances.

  12. Intrinsic Angular Investigations on Metal Evaporated Tapes

    NARCIS (Netherlands)

    Samwel, E.O.; Samwel, E.O.; Bijl, D.B.; Lodder, J.C.; Popma, T.J.A.

    1996-01-01

    Demagnetisation compensated torque- and angle-dependent remanence measurements are presented on commercial and experimental metal evaporated tapes. The latter have been prepared in our laboratory on a mini-roll coater system. From these results the easy axes have been determined.

  13. Transhorizon Radiowave Propagation due to Evaporation Ducting ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 1. Transhorizon Radiowave Propagation due to Evaporation Ducting - The Effect of Tropospheric Weather Conditions on VHF and UHF Radio Paths Over the Sea. Salil David Gunashekar D R Siddle E M Warrington. General Article Volume 11 ...

  14. Spontaneous evaporation of the acetone drop

    Science.gov (United States)

    Dunin, S. Z.; Nagornov, O. V.

    2017-12-01

    The exact solution of the problem on evaporation of the acetone sessile drop at solid substrate is derived. The solution allows us to analyze the temperature field behavior at various thermodynamic parameters. The Marangoni forces are calculated in explicit form. The solution can be used to check numerical approaches for similar problems.

  15. Evaporative Lithography in Open Microfluidic Channel Networks.

    Science.gov (United States)

    Lone, Saifullah; Zhang, Jia Ming; Vakarelski, Ivan U; Li, Er Qiang; Thoroddsen, Sigurdur T

    2017-03-21

    We demonstrate a direct capillary-driven method based on wetting and evaporation of various suspensions to fabricate regular two-dimensional wires in an open microfluidic channel through continuous deposition of micro- or nanoparticles under evaporative lithography, akin to the coffee-ring effect. The suspension is gently placed in a loading reservoir connected to the main open microchannel groove on a PDMS substrate. Hydrophilic conditions ensure rapid spreading of the suspension from the loading reservoir to fill the entire channel length. Evaporation during the spreading and after the channel is full increases the particle concentration toward the end of the channel. This evaporation-induced convective transport brings particles from the loading reservoir toward the channel end where this flow deposits a continuous multilayered particle structure. The particle deposition front propagates backward over the entire channel length. The final dry deposit of the particles is thereby much thicker than the initial volume fraction of the suspension. The deposition depth is characterized using a 3D imaging profiler, whereas the deposition topography is revealed using a scanning electron microscope. The patterning technology described here is robust and passive and hence operates without an external field. This work may well become a launching pad to construct low-cost and large-scale thin optoelectronic films with variable thicknesses and interspacing distances.

  16. optimal evaporating and condensing temperatures of organic

    African Journals Online (AJOL)

    user

    2017-01-01

    Jan 1, 2017 ... However, the study further showed that the evaporating temperature (ET) and condensing temperature (CT) affect the thermal performance and net power output of the cycles. Dai et al.[20]conducted parametric optimisation of ORC with exergy efficiency. He et al. [21] considered the optimisation of a simple.

  17. Experiments on Evaporative Emissions in Ventilated Rooms

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    In many new buildings the indoor air quality is affected by emissions of volatile organic compounds (VOCs) from building materials. The emission process may be controlled either by diffusion inside the material or evaporation from the surface but it always involves mass transfer across the boundary...

  18. Evaporation Controlled Emission in Ventilated Rooms

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    -scale ventilated room when the emission is fully or partly evaporation controlled. The objective of the present research work has been to investigate the change of emission rates from small-scale experiments to full-scale ventilated rooms and to investigate the influence of the local air velocity field near...

  19. Evaluating the hydrological consistency of evaporation products

    KAUST Repository

    Lopez Valencia, Oliver Miguel

    2017-01-18

    Advances in space-based observations have provided the capacity to develop regional- to global-scale estimates of evaporation, offering insights into this key component of the hydrological cycle. However, the evaluation of large-scale evaporation retrievals is not a straightforward task. While a number of studies have intercompared a range of these evaporation products by examining the variance amongst them, or by comparison of pixel-scale retrievals against ground-based observations, there is a need to explore more appropriate techniques to comprehensively evaluate remote-sensing-based estimates. One possible approach is to establish the level of product agreement between related hydrological components: for instance, how well do evaporation patterns and response match with precipitation or water storage changes? To assess the suitability of this "consistency"-based approach for evaluating evaporation products, we focused our investigation on four globally distributed basins in arid and semi-arid environments, comprising the Colorado River basin, Niger River basin, Aral Sea basin, and Lake Eyre basin. In an effort to assess retrieval quality, three satellite-based global evaporation products based on different methodologies and input data, including CSIRO-PML, the MODIS Global Evapotranspiration product (MOD16), and Global Land Evaporation: the Amsterdam Methodology (GLEAM), were evaluated against rainfall data from the Global Precipitation Climatology Project (GPCP) along with Gravity Recovery and Climate Experiment (GRACE) water storage anomalies. To ensure a fair comparison, we evaluated consistency using a degree correlation approach after transforming both evaporation and precipitation data into spherical harmonics. Overall we found no persistent hydrological consistency in these dryland environments. Indeed, the degree correlation showed oscillating values between periods of low and high water storage changes, with a phase difference of about 2–3 months

  20. Evaporation characteristics of ETBE-blended gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Katsuhiro, E-mail: okamoto@nrips.go.jp [National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882 (Japan); Hiramatsu, Muneyuki [Yamanashi Prefectural Police H.Q., 312-4 Kubonakajima, Isawa-cho, Usui, Yamanashi 406-0036 (Japan); Hino, Tomonori; Otake, Takuma [Metropolitan Police Department, 2-1-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8929 (Japan); Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi [National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882 (Japan)

    2015-04-28

    Highlights: • We chose 8-component hydrocarbon mixture as a model gasoline, and defined the molar mass of gasoline. • We proposed an evaporation model assuming a 2-component mixture of gasoline and ETBE. • We predicted the change in the vapor pressure of ETBE-blended gasoline by evaporation. • The vapor pressures were measured and compared as a means of verifying the model. • We presented the method for predicting flash points of the ETBE-blended gasoline. - Abstract: To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were

  1. The evaporative function of cockroach hygroreceptors.

    Directory of Open Access Journals (Sweden)

    Harald Tichy

    Full Text Available Insect hygroreceptors associate as antagonistic pairs of a moist cell and a dry cell together with a cold cell in small cuticular sensilla on the antennae. The mechanisms by which the atmospheric humidity stimulates the hygroreceptive cells remain elusive. Three models for humidity transduction have been proposed in which hygroreceptors operate either as mechanical hygrometers, evaporation detectors or psychrometers. Mechanical hygrometers are assumed to respond to the relative humidity, evaporation detectors to the saturation deficit and psychrometers to the temperature depression (the difference between wet-bulb and dry-bulb temperatures. The models refer to different ways of expressing humidity. This also means, however, that at different temperatures these different types of hygroreceptors indicate very different humidity conditions. The present study tested the adequacy of the three models on the cockroach's moist and dry cells by determining whether the specific predictions about the temperature-dependence of the humidity responses are indeed observed. While in previous studies stimulation consisted of rapid step-like humidity changes, here we changed humidity slowly and continuously up and down in a sinusoidal fashion. The low rates of change made it possible to measure instantaneous humidity values based on UV-absorption and to assign these values to the hygroreceptive sensillum. The moist cell fitted neither the mechanical hygrometer nor the evaporation detector model: the temperature dependence of its humidity responses could not be attributed to relative humidity or to saturation deficit, respectively. The psychrometer model, however, was verified by the close relationships of the moist cell's response with the wet-bulb temperature and the dry cell's response with the dry-bulb temperature. Thus, the hygroreceptors respond to evaporation and the resulting cooling due to the wetness or dryness of the air. The drier the ambient air

  2. Tank 26F-2F Evaporator Study

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K.

    2012-12-19

    Tank 26F supernate sample was sent by Savannah River Remediation to Savannah River National Laboratory for evaporation test to help understand the underlying cause of the recent gravity drain line (GDL) pluggage during operation of the 2F Evaporator system. The supernate sample was characterized prior to the evaporation test. The evaporation test involved boiling the supernate in an open beaker until the density of the concentrate (evaporation product) was between 1.4 to 1.5 g/mL. It was followed by filtering and washing of the precipitated solids with deionized water. The concentrate supernate (or concentrate filtrate), the damp unwashed precipitated solids, and the wash filtrates were characterized. All the precipitated solids dissolved during water washing. A semi-quantitative X-ray diffraction (XRD) analysis on the unwashed precipitated solids revealed their composition. All the compounds with the exception of silica (silicon oxide) are known to be readily soluble in water. Hence, their dissolution during water washing is not unexpected. Even though silica is a sparingly water-soluble compound, its dissolution is also not surprising. This stems from its small fraction in the solids as a whole and also its relative freshness. Assuming similar supernate characteristics, flushing the GDL with water (preferably warm) should facilitate dissolution and removal of future pluggage events as long as build up/aging of the sparingly soluble constituent (silica) is limited. On the other hand, since the amount of silica formed is relatively small, it is quite possible dissolution of the more soluble larger fraction will cause disintegration or fragmentation of the sparingly soluble smaller fraction (that may be embedded in the larger soluble solid mass) and allow its removal via suspension in the flushing water.

  3. THE USE OF POROUS CERAMICS FOR EVAPORATIVE AND EVAPORATIVE – VAPOR –COMPRESSION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Cheban D.N.

    2013-04-01

    Full Text Available The use of natural evaporative cooling is one of technical solutions of problem of energy efficiency in air conditioning systems. The use of evaporative cooling in the first combined cooling stage allows reducing the load on the condenser of the cooling machine due to reducing of the condensing temperature. This combination allows the use of this type of system in any climatic conditions, including regions with small water resources. Multi-porous ceramic structure is used in evaporative air coolers and water coolers in this case. The objective of this paper is to show advantages of the using of porous ceramic as a working attachment, and to show advantages of the proposed scheme of compression-evaporation systems in comparison with standard vapor compression systems. Experimental research proved the fact, that in the film mode cooling efficiency of air flow is between EA=0,6÷0,7 and is slightly dependent of water flow. For countries with hot and dry climate where reserves of water are limited, it is recommended to use cyclical regime with EA≈0,65 value, or to use channel regime with a value of EA≈0,55. This leads to considerable energy savings. It has been determined, that combined air conditioning system is completely closed on the consumption of water at the parameters of the outside air equal to tA =32ºC and XA>13g/kg (in system with direct evaporative cooling machine, and tA=32ºC and XA>12g/kg (in system with indirect evaporative cooling machine. With these parameters, the cost of water in evaporative cooling stage can be fully compensated by condensate from the evaporator chiller.

  4. Studies on evaporation from the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, Lakshmana G.R.; VeenaDevi, Y.; Reddy, Gopala K.; Prasad, A.L.N.

    Evaporation from the surface of the North Indian Ocean is estimated following the aerodynamic approach The influence of the southwest monsoon and the northeast monsoon is significant giving rise to maximum evaporation from the sea surface due...

  5. An Investigation of Graduate Scientists' Understandings of Evaporation and Boiling.

    Science.gov (United States)

    Goodwin, Alan; Orlik, Yuri

    2000-01-01

    Uses a video presentation of six situations relating to the evaporation and boiling of liquids and the escape of dissolved gases from solution and investigates graduate scientists' understanding of the concepts of boiling and evaporation. (Author/YDS)

  6. Evaporation from the shallow Lake Massaciuccoli (Tuscany, Italy) studied using stable isotopes and evaporation pan data

    Science.gov (United States)

    Baneschi, I.; Gonfiantini, R.; Guidi, M.

    2009-04-01

    Oxygen and hydrogen isotope variations monitored in Lake Massaciuccoli (7 km2, 2 m deep, seasonally variable water level) during summer 2008, were compared with those observed in a Class A evaporation pan (diameter 120.6 cm, depth 25.4 cm) placed on the lake eastern shore. Air temperature, pressure, relative humidity, wind speed and direction, solar radiation, water temperature in the lake and the pan were also measured. The pluviometer indicated that no precipitation occurred during the study period. The pan was initially filled with groundwater up to the level of 19.2 cm (219 L), depleted in heavy isotopes with respect to tha lake water. Sodium chloride was added up to the concentration of 1 g×L-1, which is assumed do not affect significantly the evaporation rate till the water volume is reduced to less than 10 %. The Cl- concentration was used to provide an estimation of the evaporated water fraction, in addition to the micrometer measuring the water level variations. The pan water was sampled every 2-3 days and Cl- and stable isotopes determined. The set of stable isotope and evaporation data enabled us to compute the parameters governing the evaporation process and the isotopic exchanges with the atmospheric moisture, according to the procedure proposed by Gonfiantini (1986). The values were applied to test three working hypotheses of water balance of Lake Massaciuccoli: (i) surface inflow and outflow of liquid water are negligible and only evaporation is important; (ii) the inflow is negligible and outflow and evaporation are both significant; (iii) the three terms of balance are all important but the losses by evaporation and outflow exceed inflow (as the lake water level was decreasing). Water exchanges with groundwater are considered negligible. The best agreement between lake and pan data was obtained with the second hypothesis, for which the fraction of water removed by evaporation was estimated to be about 40 % ot he total water losses. This residual

  7. 7 CFR 58.913 - Evaporators and vacuum pans.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans. ...

  8. Modeling of Evaporation Losses in Sewage Sludge Drying Bed ...

    African Journals Online (AJOL)

    Modeling of Evaporation Losses in Sewage Sludge Drying Bed. JI Obianyo, JC Agunwamba. Abstract. A model for evaporation losses in sewage sludge drying bed was derived from first principles. This model was developed based on the reasoning that the rate at which evaporation is taking place is directly proportional to ...

  9. Method of freshening salt water in a saline evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Khalikov, T.T.

    1982-01-01

    A method is described for freshening salt water in a saline evaporator by heating the water, blowing the evaporation surface with air and condensation of the distillate. In order to reduce heat losses in the air freshener before blowing, the evaporation surfaces are preliminarily heated.

  10. EVAPORATIVE COOLING - CONCEPTUAL DESIGN FOR ATLAS SCT

    CERN Document Server

    Niinikoski, T O

    1998-01-01

    The conceptual design of an evaporative two-phase flow cooling system for the ATLAS SCT detector is described, using perfluorinated propane (C3F8) as a coolant. Comparison with perfluorinated butane (C4F10) is made, although the detailed design is presented only for C3F8. The two-phase pressure drop and heat transfer coefficient are calculated in order to determine the dimensions of the cooling pipes and module contacts for the Barrel SCT. The region in which the flow is homogeneous is determined. The cooling cycle, pipework, compressor, heat exchangers and other main elements of the system are calculated in order to be able to discuss the system control, safety and reliability. Evaporative cooling appears to be substantially better than the binary ice system from the point of view of safety, reliability, detector thickness, heat transfer coefficient, cost and simplicity.

  11. Thermodynamic Modeling of Savannah River Evaporators

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.F.

    2001-08-02

    A thermodynamic model based on the code SOLGASMIX is developed to calculate phase equilibrium in evaporators and related tank wastes at the Savannah River Site (SRS). This model uses the Pitzer method to calculate activity coefficients, and many of the required Pitzer parameters have been determined in the course of this work. Principal chemical species in standard SRS simulant solutions are included, and the temperature range for most parameters has been extended above 100 C. The SOLGASMIX model and calculations using the code Geochemists Workbench are compared to actual solubility data including silicate, aluminate, and aluminosilicate solutions. In addition, SOLGASMIX model calculations are also compared to transient solubility data involving SRS simulant solutions. These comparisons indicate that the SOLGASMIX predictions closely match reliable data over the range of temperature and solution composition expected in the SRS evaporator and related tanks. Predictions using the Geochemists Workbench may be unreliable, due primarily to the use of an inaccurate activity coefficient model.

  12. Black hole evaporation rates without spacetime.

    Science.gov (United States)

    Braunstein, Samuel L; Patra, Manas K

    2011-08-12

    Verlinde recently suggested that gravity, inertia, and even spacetime may be emergent properties of an underlying thermodynamic theory. This vision was motivated in part by Jacobson's 1995 surprise result that the Einstein equations of gravity follow from the thermodynamic properties of event horizons. Taking a first tentative step in such a program, we derive the evaporation rate (or radiation spectrum) from black hole event horizons in a spacetime-free manner. Our result relies on a Hilbert space description of black hole evaporation, symmetries therein which follow from the inherent high dimensionality of black holes, global conservation of the no-hair quantities, and the existence of Penrose processes. Our analysis is not wedded to standard general relativity and so should apply to extended gravity theories where we find that the black hole area must be replaced by some other property in any generalized area theorem.

  13. Strong evaporation of a polyatomic gas

    Science.gov (United States)

    Cercignani, C.

    The problems arising in connection with the study of the structure of a jet evaporating into a vacuum are investigated. A kinetic theory description is given of the vapor motion into a vacuum for arbitrarily strong evaporation rates at an interphase boundary of circular shape. The solution of the problem is studied in three separate regions, in each of which the dependence of the solution on the space variables and the mean freepath is different. The theory that steady supersonic flows are impossible in a one-dimensional flow (Cercigani, 1980; Authur and Cercignani, 1980) is discussed. Finally, the analysis of the region near the wall is extended to a polyatomic gas, using the trimodal ansatz for the molecular distribution function of a monatomic gas. The main results of the analysis performed by Ytrehus for a monatomic gas (1975, 1977) are confirmed. New results concerning the discrepancy between internal and translational temperatures near the surface are presented.

  14. New insights into saline water evaporation from porous media: Complex interaction between evaporation rates, precipitation, and surface temperature

    Science.gov (United States)

    Shokri-Kuehni, Salomé M. S.; Vetter, Thomas; Webb, Colin; Shokri, Nima

    2017-06-01

    Understanding salt transport and deposition patterns during evaporation from porous media is important in many engineering and hydrological processes such as soil salinization, ecosystem functioning, and land-atmosphere interaction. As evaporation proceeds, salt concentration increases until it exceeds solubility limits, locally, and crystals precipitate. The interplay between transport processes, crystallization, and evaporation influences where crystallization occurs. During early stages, the precipitated salt creates an evolving porous structure affecting the evaporation kinetics. We conducted a comprehensive series of experiments to investigate how the salt concentration and precipitation influence evaporation dynamics. Our results illustrate the contribution of the evolving salt crust to the evaporative mass losses. High-resolution thermal imaging enabled us to investigate the complex temperature dynamics at the surface of precipitated salt, providing further confirmation of salt crust contribution to the evaporation. We identify different phases of saline water evaporation from porous media with the corresponding dominant mechanisms in each phase and extend the physical understanding of such processes.

  15. Modeling and simulation of direct contact evaporators

    OpenAIRE

    Campos F.B.; Lage P. L. C.

    2001-01-01

    A dynamic model of a direct contact evaporator was developed and coupled to a recently developed superheated bubble model. The latter model takes into account heat and mass transfer during the bubble formation and ascension stages and is able to predict gas holdup in nonisothermal systems. The results of the coupled model, which does not have any adjustable parameter, were compared with experimental data. The transient behavior of the liquid-phase temperature and the vaporization rate under q...

  16. An evaporation model of multicomponent solution drops

    Science.gov (United States)

    Sartori, Silvana; Liñán, Amable; Lasheras, Juan C.

    2010-11-01

    Solutions of polymers are widely used in the pharmaceutical industry as tablets coatings. These allow controlling the rate at which the drug is delivered, taste or appearance. The coating is performed by spraying and drying the tablets at moderate temperatures. The wetting of the coating solution on the pill's surface depends on the droplet Webber and Re numbers, angle of impact and on the rheological properties of the droplet. We present a model for the evaporation of multicomponent solutions droplets in a hot air environment with temperatures substantially lower than the boiling temperature of the solvent. As the liquid vaporizes from the surface the fluid in the drop increases in concentration, until reaching its saturation point. After saturation, precipitation occurs uniformly within the drop. As the surface regresses, a compacting front formed by the precipitate at its maximum packing density advances into the drop, while the solute continues precipitating uniformly. This porous shell grows fast due to the double effect of surface regression and precipitation. The evaporation rate is determined by the rates at which heat is transported to the droplet surface and at which liquid vapor diffuses away from it. When the drop is fully compacted, the evaporation is drastically reduced.

  17. An evaporation model of colloidal suspension droplets

    Science.gov (United States)

    Sartori, Silvana; Li\\ Nán, Amable; Lasheras, Juan C.

    2009-11-01

    Colloidal suspensions of polymers in water or other solvents are widely used in the pharmaceutical industry to coat tablets with different agents. These allow controlling the rate at which the drug is delivered, taste or physical appearance. The coating is performed by simultaneously spraying and drying the tablets with the colloidal suspension at moderately high temperatures. The spreading of the coating on the pills surface depends on the droplet Webber and Reynolds numbers, angle of impact, but more importantly on the rheological properties of the drop. We present a model for the evaporation of a colloidal suspension droplet in a hot air environment with temperatures substantially lower than the boiling temperature of the carrier fluid. As the liquid vaporizes from the surface, a compacting front advances into the droplet faster than the liquid surface regresses, forming a shell of a porous medium where the particles reach their maximum packing density. While the surface regresses, the evaporation rate is determined by both the rate at which heat is transported to the droplet surface and the rate at which liquid vapor is diffused away from it. This regime continues until the compacting front reaches the center of the droplet, at which point the evaporation rate is drastically reduced.

  18. Quantifying Evaporation in a Permeable Pavement System ...

    Science.gov (United States)

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. The U.S. Environmental Protection Agency (USEPA) constructed a 0.4-ha parking lot in Edison, NJ, that incorporated three different permeable pavement types in the parking lanes – permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). An impermeable liner installed 0.4 m below the driving surface in four 11.6-m by 4.74-m sections per each pavement type captures all infiltrating water and routes it to collection tanks that can contain events up to 38 mm. Each section has a design impervious area to permeable pavement area ratio of 0.66:1. Pressure transducers installed in the underdrain collection tanks measured water level for 24 months. Level was converted to volume using depth-to-volume ratios for individual collection tanks. Using a water balance approach, the measured infiltrate volume was compared to rainfall volume on an event-basis to determine the rainfall retained in the pavement strata and underlying aggregate. Evaporation since the previous event created additional storage in the pavement and aggregate layers. Events were divided into three groups based on antecedent dry period (ADP) and three, four-month categories of potential e

  19. SCC of stainless steel under evaporative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, H.; Arnvig, P.E.; Wasielewska, W.; Wegrelius, L.; Wolfe, C. [Avesta Sheffield AB, Avesta (Sweden)

    1998-12-31

    Three different test methods have been used to assess the susceptibility of different stainless steel grades to SCC under evaporative and immersed conditions. The methods employed were the drop evaporation test, the wick test and a high temperature, high pressure test simulating a feedwater heater tubing application in power plants. The alloys investigated were commercially produced austenitic and duplex stainless steels varying in chemical composition, plus one copper-nickel alloy. The resistance of austenitic stainless steels towards SCC increased by increasing the content of Ni, Mo and Cr, thus the super austenitic 654SMO{reg_sign} (uns32654) did not show any cracking in any of the three tests. The super austenitic 254SMO{reg_sign} (UNS31254) revealed only slight SCC in the simulated feed water heater tubing application while the equivalent N08367 revealed severe pitting and cracking. The drop evaporation test exhibited the most severe test conditions characterized by thermally induced fatigue effects, sensibility to onset of corrosion and severe acidic conditions generated under deposits on the test specimen. Some factors in stress corrosion cracking tests such as thermal fatigue, diffusion, heat transfer and stress condition, are discussed with regard to their influence on the test results.

  20. Spin coating of an evaporating polymer solution

    KAUST Repository

    Münch, Andreas

    2011-01-01

    We consider a mathematical model of spin coating of a single polymer blended in a solvent. The model describes the one-dimensional development of a thin layer of the mixture as the layer thins due to flow created by a balance of viscous forces and centrifugal forces and evaporation of the solvent. In the model both the diffusivity of the solvent in the polymer and the viscosity of the mixture are very rapidly varying functions of the solvent mass fraction. Guided by numerical solutions an asymptotic analysis reveals a number of different possible behaviours of the thinning layer dependent on the nondimensional parameters describing the system. The main practical interest is in controlling the appearance and development of a "skin" on the polymer where the solvent concentration reduces rapidly on the outer surface leaving the bulk of the layer still with high concentrations of solvent. In practice, a fast and uniform drying of the film is required. The critical parameters controlling this behaviour are found to be the ratio of the diffusion to advection time scales ε, the ratio of the evaporation to advection time scales δ and the ratio of the diffusivity of the pure polymer and the initial mixture exp(-1/γ). In particular, our analysis shows that for very small evaporation with δ

  1. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    Science.gov (United States)

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef

    2016-11-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called "Ouzo effect." Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.

  2. Evaporation Kinetics of Polyol Droplets: Determination of Evaporation Coefficients and Diffusion Constants

    Science.gov (United States)

    Su, Yong-Yang; Marsh, Aleksandra; Haddrell, Allen E.; Li, Zhi-Ming; Reid, Jonathan P.

    2017-11-01

    In order to quantify the kinetics of mass transfer between the gas and condensed phases in aerosol, physicochemical properties of the gas and condensed phases and kinetic parameters (mass/thermal accommodation coefficients) are crucial for estimating mass fluxes over a wide size range from the free molecule to continuum regimes. In this study, we report measurements of the evaporation kinetics of droplets of 1-butanol, ethylene glycol (EG), diethylene glycol (DEG), and glycerol under well-controlled conditions (gas flow rates and temperature) using the previously developed cylindrical electrode electrodynamic balance technique. Measurements are compared with a model that captures the heat and mass transfer occurring at the evaporating droplet surface. The aim of these measurements is to clarify the discrepancy in the reported values of mass accommodation coefficient (αM, equals to evaporation coefficient based on microscopic reversibility) for 1-butanol, EG, and DEG and improve the accuracy of the value of the diffusion coefficient for glycerol in gaseous nitrogen. The uncertainties in the thermophysical and experimental parameters are carefully assessed, the literature values of the vapor pressures of these components are evaluated, and the plausible ranges of the evaporation coefficients for 1-butanol, EG, and DEG as well as uncertainty in diffusion coefficient for glycerol are reported. Results show that αM should be greater than 0.4, 0.2, and 0.4 for EG, DEG, and 1-butanol, respectively. The refined values are helpful for accurate prediction of the evaporation/condensation rates.

  3. Hollow-Fiber Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  4. Evaporation characteristics of ETBE-blended gasoline.

    Science.gov (United States)

    Okamoto, Katsuhiro; Hiramatsu, Muneyuki; Hino, Tomonori; Otake, Takuma; Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi

    2015-04-28

    To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were developed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Predicting Potential Evaporation in Topographically Complex Terrain

    Science.gov (United States)

    Koohafkan, M.; Thompson, S. E.; Hamilton, M. P.

    2012-12-01

    Predicting and understanding the water cycle in topographically complex terrain poses challenges for upscaling point-scale measurements of water and energy balance and for downscaling observations made from remote sensing or predictions made via global circulation models. This study evaluates hydrologic and climate data drawn from a spatially-distributed wireless sensor network at the Blue Oak Ranch Reserve near San Jose, California to investigate the influence of topographic variation, landscape position, and local ecology (vegetation) on one core component of the water balance: potential evaporation. High-resolution observations of solar radiation, ambient temperature, wind speed, and relative humidity are combined with canopy maps generated from LiDAR flyovers to develop spatially-distributed predictions of potential evaporation. These data are compared to estimates of EP based on inverse modeling of surface soil moisture data. Preliminary results suggest that the spatial structure of microclimate at Blue Oak Ranch Reserve is dominated by variations around the elevation gradient, with strong nocturnal inversions hypothesized to reflect the influence of the coastal marine layer. Estimates of EP based on the Penman-Monteith equation suggest that EP could vary by up to a factor of 5 across the site, with differences in vapor pressure deficit and canopy height largely responsible for this variability. The results suggest that a) large differences in the timing and magnitude of water stress could arise in topographically complex terrain due to localized differences in energy balance, and b) both localized and regional effects need to be accounted for when downscaling climate data over topographically complex sites. 2) Color map showing preliminary estimates of annual EP incorporating canopy information (spatially-distributed values of aerodynamic resistance and LAI) drawn from LiDAR imagery. The effect of the resistance on the dynamics is striking in its ability to

  6. Light particle evaporation from dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, V.P.; Sidorenko, B. [Institute for Nuclear Research, Kiev (Ukraine); Centelles, M.; Vinas, X. [Departament d`Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Barcelona (Spain)

    1997-01-01

    For the statistical particle-evaporation model to be applicable to particle emission from dynamical time-evolving systems, the system should closely follow the quasistatic path, which represents a sequence of conditional equilibrium shapes. We show that quasifission paths predicted by the one-body dissipation dynamics satisfy this requirement all the way from the contact point to the scission point, excluding short time intervals spent near the contact point (when neck fills in) and during separation (when waist develops). (author) 17 refs, 2 figs

  7. Evaporation dynamics from wetted porous surfaces affected by internal drainage

    Science.gov (United States)

    Lehmann, Peter; Fuchs, Josefa; Dehaspe, Joni; Breitenstein, Daniel; Wunderli, Hans; Or, Dani

    2017-04-01

    Land surface evaporation dynamics following periodic rainfall events is complicated by liquid phase redistribution and concurrent internal drainage. The maintenance of constant and high evaporation rates (stage 1 evaporation) is predicated on water supply to the surface via continuous capillary pathways up to a characteristic depth defined by porous media properties. The objective is to extend the description to realistic conditions where evaporation and internal drainage occur concurrently. Column experiments have shown that evaporative losses were drastically reduced when drainage takes place. For initially high water content (and hydraulic conductivity) drainage dominates and shortens opportunity for stage 1 evaporation. A range of intermediate results emerges in which transition to stage 2 evaporation depends on initial conditions and soil properties. We derived a new definition of evaporative characteristic length that links soil hydraulic properties and initial conditions with predicted evaporative losses from wetted land surface. Experiments and theoretical considerations confirm the existence of an optimal water content defining conditions for maximal evaporative losses during stage 1.

  8. Theoretical and computational analyses of LNG evaporator

    Science.gov (United States)

    Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong

    2017-04-01

    Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.

  9. Influence of Oil on Refrigerant Evaporator Performance

    Science.gov (United States)

    Jong-Soo, Kim; Nagata, Katsuya; Katsuta, Masafumi; Tomosugi, Hiroyuki; Kikuchi, Kouichiro; Horichi, Toshiaki

    To explore the quantitative effect of the lubrication oil on the thermal and hydraulic evaporator performance, the detailed structure of two-phase refrigerant (R11) and lubrication oil (Suniso 5GS) flow has been investigated. Experiment has been performed using a transparent tube 20mm in inner diameter and 2600mm in total length as main test section, which was heated by surrounding hot water bath. This water bath also functioned as the visual observation section of the transition of two-phase flow pattern. Oil mass concentration was controlled initially, and circulated into the system. The void fraction at the main test section was measured by direct volume measurement using so-called "Quick Closing Valve" method. Since the effect of oil on the transition of two-phase flow pattern is emphasized at the low flow rate, operation was made at relatively low mass velocity, 50 and 100 kg/m2·s, five different oil concentrations were taken. Throughout the experiment, the evaporation pressure was kept at 105 kPa. In general, when contamination of the lubrication oil happened, the void fraction was decreasing due to the change of viscosity and surface tension and the occurence of the foaming. To correlate the void fraction as function of quality, Zivi's expression was modified to include the effect of oil concentration. The agreement between the data and this proposed correlation was favorable. Finally, to take into account the effect of lubrication oil, the new flow pattern diagram was proposed.

  10. Analytical solution for soil water redistribution during evaporation process.

    Science.gov (United States)

    Teng, Jidong; Yasufuku, Noriyuki; Liu, Qiang; Liu, Shiyu

    2013-01-01

    Simulating the dynamics of soil water content and modeling soil water evaporation are critical for many environmental and agricultural strategies. The present study aims to develop an analytical solution to simulate soil water redistribution during the evaporation process. This analytical solution was derived utilizing an exponential function to describe the relation of hydraulic conductivity and water content on pressure head. The solution was obtained based on the initial condition of saturation and an exponential function to model the change of surface water content. Also, the evaporation experiments were conducted under a climate control apparatus to validate the theoretical development. Comparisons between the proposed analytical solution and experimental result are presented from the aspects of soil water redistribution, evaporative rate and cumulative evaporation. Their good agreement indicates that this analytical solution provides a reliable way to investigate the interaction of evaporation and soil water profile.

  11. Dynamic Models of Vacuum-Evaporator Plants for Dairy Industry

    Directory of Open Access Journals (Sweden)

    G. M. Airapetiants

    2009-01-01

    Full Text Available The paper studies problems of linearized dynamic models intended for synthesis of automatic temperature control systems and vacuum depth in vacuum evaporators. А single-casing vacuum evaporator plant is considered as an object of automatic control. Disturbance input channels are discerned and transfer functions permitting to determine laws of temperature and vacuum regulation and optimum parameters for setting automatic regulators used for various operational modes of vacuum-evaporator plants are obtained on the basis of the executed analysis.

  12. Two phase flow instabilities in horizontal straight tube evaporator

    OpenAIRE

    2010-01-01

    Abstract It is essential to ensure the stability of a refrigeration system if the oscillation in evaporation process is the primary cause for the whole system instability. This paper is concerned with an experimental investigation of two phase flow instabilities in a horizontal straight tube evaporator of a refrigeration system. The relationship between pressure drop and mass flow with constant heat flux and evaporation pressure is measured and determined. It is found that there is...

  13. CFD analysis of tube-fin 'no-frost' evaporators

    OpenAIRE

    Barbosa, Jr,Jader R; Hermes,Christian J. L; Melo,Cláudio

    2010-01-01

    The purpose of this paper is to assess some aspects of the design of evaporators for household refrigeration appliances using Computational Fluid Dynamics (CFD). The evaporators under study are tube-fin 'no-frost' heat exchangers with forced convection on the air-side and a staggered tube configuration. The calculation methodology was verified against experimental data for the heat transfer rate, thermal conductance and pressure drop obtained for two evaporators with different geometries. The...

  14. Distribution of Evaporating CO2 in Parallel Microchannels

    DEFF Research Database (Denmark)

    Brix, Wiebke; Elmegaard, Brian

    2008-01-01

    The impact on the heat exchanger performance due to maldistribution of evaporating CO2 in parallel channels is investigated numerically. A 1D steady state simulation model of a microchannel evaporator is built using correlations from the literature to calculate frictional pressure drop and heat...... to results obtained using R134a as refrigerant, and it is found that the performance of the evaporator using CO2 is less affected by the maldistribution than the evaporator using R134a as refrigerant. For both cases studied, the impact of the maldistribution was very small for CO2....

  15. Method for improving accuracy in full evaporation headspace analysis.

    Science.gov (United States)

    Xie, Wei-Qi; Chai, Xin-Sheng

    2017-05-01

    We report a new headspace analytical method in which multiple headspace extraction is incorporated with the full evaporation technique. The pressure uncertainty caused by the solid content change in the samples has a great impact to the measurement accuracy in the conventional full evaporation headspace analysis. The results (using ethanol solution as the model sample) showed that the present technique is effective to minimize such a problem. The proposed full evaporation multiple headspace extraction analysis technique is also automated and practical, and which could greatly broaden the applications of the full-evaporation-based headspace analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  17. Cracks formation during blood drop evaporation

    Science.gov (United States)

    Sobac, Benjamin; Brutin, David; Université de Provence Team

    2011-03-01

    We firstly presented the pattern formation occurring when drops of whole blood desiccate in a recent publication. The phenomena presented evidence to involve lots of physical field such as surface chemistry, haematolology, fluid mechanics, heat transfer, colloids science... All these mechanisms are acting together and produce an axisymetric and reproducible pattern. Dried cellular components are segregated and deposited by a capillary flow. During the evaporation, the system is slowly drying and cracks when stresses are too important leading to the final pattern observed. In this presentation, we will present the mechanisms involved in the formation of crack patterns. The phenomenon presented here with red blood cells as the main colloids involved is very similar to the drying of drop of nanoparticules. We will explain the common point and the differences encountered.

  18. Polonium evaporation from dilute liquid metal solutions

    CERN Document Server

    Rizzi, Matthias; Eichler, Robert; Türler, Andreas; Mendonça, Tania Melo; Stora, Thierry; Gonzalez Prieto, Borja; Aerts, Alexander; Schumann, Dorothea

    2014-01-01

    The evaporation behavior of polonium as one of the most hazardous radionuclides produced in spallation based neutron sources with liquid lead-bismuth targets has been quantified in this study. The normalized apparent vapor pressure, i.e. the Henry constant of polonium over liquid lead-bismuth eutectic was determined in the temperature range relevant for operation of such targets, i.e. 164-500 degrees C. For comparison and better fundamental understanding, the Henry constant of polonium over pure liquid bismuth was determined in a temperature range of 300-500 degrees C. The Henry constants of polonium in this temperature range were found to be orders of magnitude higher than expected from earlier studies at higher temperatures. Possible mechanisms responsible for this unexpected behavior are discussed.

  19. Sessile droplet evaporation on superheated superhydrophobic surfaces

    CERN Document Server

    Hays, Robb C; Maynes, Daniel; Webb, Brent W

    2013-01-01

    This fluid dynamics video depicts the evaporation of sessile water droplets placed on heated superhydrophobic (SH) surfaces of varying cavity fraction, F_c, and surface temperature, T_s, above the saturation temperature, T_sat. Images were captured at 10,000 FPS and are played back at 30 FPS in this video. Teflon-coated silicon surfaces of F_c = 0, 0.5, 0.8, and 0.95 were used for these experiments. T_s ranging from 110{\\deg}C to 210{\\deg}C were studied. The video clips show how the boiling behavior of sessile droplets is altered with changes in surface microstructure. Quantitative results from heat transfer rate experiments conducted by the authors are briefly discussed near the end of the video.

  20. Modeling and simulation of direct contact evaporators

    Directory of Open Access Journals (Sweden)

    Campos F.B.

    2001-01-01

    Full Text Available A dynamic model of a direct contact evaporator was developed and coupled to a recently developed superheated bubble model. The latter model takes into account heat and mass transfer during the bubble formation and ascension stages and is able to predict gas holdup in nonisothermal systems. The results of the coupled model, which does not have any adjustable parameter, were compared with experimental data. The transient behavior of the liquid-phase temperature and the vaporization rate under quasi-steady-state conditions were in very good agreement with experimental data. The transient behavior of liquid height was only reasonably simulated. In order to explain this partial disagreement, some possible causes were analyzed.

  1. Vacuum drying plant for evaporator concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Benavides, E. [ENSA, Madrid (Spain)

    2001-07-01

    Volume reduction systems applied to evaporator concentrates in PWR and BWR save a significant amount of drums. The concentration to dry product is a technique that reaches the maximum volume reduction, compared to conventional techniques (cementation, polymerisation). Four Spanish N.P.P. (3 PWR and 1 BWR) have selected ENSA's process by means of fixed ''in drum vacuum drying system''. A 130-litre steel drum is used for drying without any additional requirement except vacuum resistance. This steel drum is introduced into a standard 200-litre drum. Five centimeters concrete shielding cylinder exists between both drums. Final package is classified as 19 GO according to ENRESA's acceptance code (dry waste with 5 cm concrete between 130-l and 200-l drum). The generation of cemented waste in five N.P.P. versus dried waste will be reduced 83%. This reduction will save a considerable amount in disposal costs. (authors)

  2. Capture of cenospheres by evaporating drops

    Science.gov (United States)

    Leong, K. H.; Ochs, Harry T.; Beard, K. V.

    The capture efficiency of evaporating cloud drops between 60 and 100 μm radius has been measured for 2 μm radius lithium carbonate hollow particles (cenospheres). Since the effective particle density is low compared to a 2-μm solid particle the cenospheres have reduced sedimentation speeds and a negligible inertial capture efficiency. The particles are sufficiently large ( Kn = 0.03) so that the phoretic theory in the slip regime ( Kn < 0.1) should apply. The measured capture efficiencies are significantly above the theoretical computations. There is some evidence to suggest that thermophoresis may be underestimated in the computations. This assessment is contigent on attributing the discrepancy between theory and experiment to the theoretical description of phoresis or its application to our experiment.

  3. Evaporation of urea at atmospheric pressure.

    Science.gov (United States)

    Bernhard, Andreas M; Czekaj, Izabela; Elsener, Martin; Wokaun, Alexander; Kröcher, Oliver

    2011-03-31

    Aqueous urea solution is widely used as reducing agent in the selective catalytic reduction of NO(x) (SCR). Because reports of urea vapor at atmospheric pressure are rare, gaseous urea is usually neglected in computational models used for designing SCR systems. In this study, urea evaporation was investigated under flow reactor conditions, and a Fourier transform infrared (FTIR) spectrum of gaseous urea was recorded at atmospheric pressure for the first time. The spectrum was compared to literature data under vacuum conditions and with theoretical spectra of monomolecular and dimeric urea in the gas phase calculated with the density functional theory (DFT) method. Comparison of the spectra indicates that urea vapor is in the monomolecular form at atmospheric pressure. The measured vapor pressure of urea agrees with the thermodynamic data obtained under vacuum reported in the literature. Our results indicate that considering gaseous urea will improve the computational modeling of urea SCR systems.

  4. Numerical study of the evaporation process and parameter estimation analysis of an evaporation experiment

    Directory of Open Access Journals (Sweden)

    K. Schneider-Zapp

    2010-05-01

    Full Text Available Evaporation is an important process in soil-atmosphere interaction. The determination of hydraulic properties is one of the crucial parts in the simulation of water transport in porous media. Schneider et al. (2006 developed a new evaporation method to improve the estimation of hydraulic properties in the dry range. In this study we used numerical simulations of the experiment to study the physical dynamics in more detail, to optimise the boundary conditions and to choose the optimal combination of measurements. The physical analysis exposed, in accordance to experimental findings in the literature, two different evaporation regimes: (i a soil-atmosphere boundary layer dominated regime (regime I close to saturation and (ii a hydraulically dominated regime (regime II. During this second regime a drying front (interface between unsaturated and dry zone with very steep gradients forms which penetrates deeper into the soil as time passes. The sensitivity analysis showed that the result is especially sensitive at the transition between the two regimes. By changing the boundary conditions it is possible to force the system to switch between the two regimes, e.g. from II back to I. Based on this findings a multistep experiment was developed. The response surfaces for all parameter combinations are flat and have a unique, localised minimum. Best parameter estimates are obtained if the evaporation flux and a potential measurement in 2 cm depth are used as target variables. Parameter estimation from simulated experiments with realistic measurement errors with a two-stage Monte-Carlo Levenberg-Marquardt procedure and manual rejection of obvious misfits lead to acceptable results for three different soil textures.

  5. Increasing the Efficiency of Maple Sap Evaporators with Heat Exchangers

    Science.gov (United States)

    Lawrence D. Garrett; Howard Duchacek; Mariafranca Morselli; Frederick M. Laing; Neil K. Huyler; James W. Marvin

    1977-01-01

    A study of the engineering and economic effects of heat exchangers in conventional maple syrup evaporators indicated that: (1) Efficiency was increased by 15 to 17 percent with heat exchangers; (2) Syrup produced in evaporators with heat exchangers was similar to syrup produced in conventional systems in flavor and in chemical and physical composition; and (3) Heat...

  6. Impacts of Salinity on Soil Hydraulic Properties and Evaporation Fluxes

    Science.gov (United States)

    Fierro, V.; Cristi Matte, F.; Suarez, F. I.; Munoz, J. F.

    2014-12-01

    Saline soils are common in arid zones, where evaporation from shallow groundwater is generally the main component of the water balance. Thus, to correctly manage water resources in these zones, it is important to quantify the evaporation fluxes. Evaporation from saline soils is a complex process that couples the movement of salts, heat, liquid water and water vapor, and strongly depends on the soil water content. Precipitation/dissolution reactions can change the soil structure and alter flow paths, modifying evaporation fluxes. We utilized the HYDRUS-1D model to investigate the effects of salinity on soil hydraulic properties and evaporation fluxes. HYDRUS-1D simulates the transport of liquid water, water vapor, and heat, and can incorporate precipitation/dissolution reactions of the major ions. To run the model, we determined the water retention curve for a soil with different salinities; and we used meteorological forcing from an experimental site from the Atacama Desert. It was found that higher sodium adsorption ratios in the soil increase the soil water retention capacity. Also, it was found that evaporation fluxes increase salts concentration near the soil surface, changing the soil's water retention capacity in that zone. Finally, movement of salts causes differences in evaporation fluxes. It is thus necessary to incorporate salt precipitation/dissolution reactions and its effects on the water retention curve to correctly simulate evaporation in saline soils

  7. Modeling Coupled Evaporation and Seepage in Ventilated Cavities

    Energy Technology Data Exchange (ETDEWEB)

    T. Ghezzehei; R. Trautz; S. Finsterle; P. Cook; C. Ahlers

    2004-07-01

    Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small.

  8. 7 CFR 58.937 - Physical requirements for evaporated milk.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Physical requirements for evaporated milk. 58.937... requirements for evaporated milk. (a) Flavor. The product shall possess a sweet, pleasing and desirable flavor... objectionable tastes and odors. (b) Body and texture. The product shall be of uniform consistency and appearance...

  9. Potential for natural evaporation as a reliable renewable energy resource.

    Science.gov (United States)

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; Sahin, Ozgur

    2017-09-26

    About 50% of the solar energy absorbed at the Earth's surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water's large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.

  10. Studies on tin oxide films prepared by electron beam evaporation ...

    Indian Academy of Sciences (India)

    Transparent conducting tin oxide thin films have been prepared by electron beam evaporation and spray pyrolysis methods. Structural, optical and electrical properties were studied under different preparation conditions like substrate temperature, solution flow rate and rate of deposition. Resistivity of undoped evaporated ...

  11. Water storage and evaporation as constituents of rainfall interception

    NARCIS (Netherlands)

    Klaassen, W; Bosveld, F; de Water, E

    1998-01-01

    Intercepted rainfall may be evaporated during or after the rain event. Intercepted rain is generally determined as the difference between rainfall measurements outside and inside the forest. Such measurements are often used to discriminate between water storage and evaporation during rain as well.

  12. Droplet Evaporator For High-Capacity Heat Transfer

    Science.gov (United States)

    Valenzuela, Javier A.

    1993-01-01

    Proposed heat-exchange scheme boosts heat transfer per unit area. Key component is generator that fires uniform size droplets of subcooled liquid at hot plate. On impact, droplets spread out and evaporate almost instantly, removing heat from plate. In practice, many generator nozzles arrayed over evaporator plate.

  13. 40 CFR 86.1243-96 - Calculations; evaporative emissions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Calculations; evaporative emissions... Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1243-96 Calculations; evaporative... equations can be used in integral form. (i) Methanol emissions: ER06OC93.133 Where, (A) MCH 3 OH=methanol...

  14. 40 CFR 86.143-96 - Calculations; evaporative emissions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Calculations; evaporative emissions... Complete Heavy-Duty Vehicles; Test Procedures § 86.143-96 Calculations; evaporative emissions. (a) The... can be used in integral form. (i) Methanol emissions: MCH 3 OH=ρCH 3 OH Vmix× (CCH 3 OH, rl−CCH 3 OH...

  15. Nonlinear Superheat and Evaporation Temperature Control of a Refrigeration Plant

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Thybo, Claus; Larsen, Lars F. S.

    2006-01-01

    This paper proposes novel control of the superheat of the evaporator in a refrigeration system. A new model of the evaporator is developed and based on this model the superheat is transferred to a referred variable. It is shown that control of this variable leads to a linear system independent...

  16. A phylogenetic approach to total evaporative water loss in mammals.

    Science.gov (United States)

    Van Sant, Matthew J; Oufiero, Christopher E; Muñoz-Garcia, Agustí; Hammond, Kimberly A; Williams, Joseph B

    2012-01-01

    Maintaining appropriate water balance is a constant challenge for terrestrial mammals, and this problem can be exacerbated in desiccating environments. It has been proposed that natural selection has provided desert-dwelling mammals physiological mechanisms to reduce rates of total evaporative water loss. In this study, we evaluated the relationship between total evaporative water loss and body mass in mammals by using a recent phylogenetic hypothesis. We compared total evaporative water loss in 80 species of arid-zone mammals to that in 56 species that inhabit mesic regions, ranging in size from 4 g to 3,500 kg, to test the hypothesis that mammals from arid environments have lower rates of total evaporative water loss than mammals from mesic environments once phylogeny is taken into account. We found that arid species had lower rates of total evaporative water loss than mesic species when using a dichotomous variable to describe habitat (arid or mesic). We also found that total evaporative water loss was negatively correlated with the average maximum and minimum environmental temperature as well as the maximum vapor pressure deficit of the environment. Annual precipitation and the variable Q (a measure of habitat aridity) were positively correlated with total evaporative water loss. These results support the hypothesis that desert-dwelling mammals have lower rates of total evaporative water loss than mesic species after controlling for body mass and evolutionary relatedness regardless of whether categorical or continuous variables are used to describe habitat.

  17. Evaporation Dynamics of Moss and Bare Soil in Boreal Forests

    Science.gov (United States)

    Dempster, S.; Young, J. M.; Barron, C. G.; Bolton, W. R.

    2013-12-01

    Evaporation dynamics of mosses is a critical process in boreal and arctic systems and represents a key uncertainty in hydrology and climate models. At this point, moss evaporation is not well quantified at the plot or landscape scale. Relative to bare soil or litter evaporation, moss evaporation can be challenging to predict because the water flux is not isolated to the moss surface. Evaporation can originate from nearly 10 cm below the surface. Some mosses can wick moisture from even deeper than 10 cm, which subsequently evaporates. The goal of this study was to use field measurements to quantify the moss evaporation dynamics in a coniferous forest relative to bare ground or litter evaporation dynamics in a deciduous forest in Interior Alaska. Measurements were made in two ecosystem types within the boreal forest of Interior Alaska: a deciduous forest devoid of moss and a coniferous forest with a thick moss layer. A small clear chamber was attached to a LiCor 840 infrared gas analyzer in a closed loop system with a low flow rate. Water fluxes were measured for ~ 90 seconds on each plot in dry and wet soil and moss conditions. Additional measurements included: soil temperature, soil moisture, air temperature, barometric pressure, dew point, relative humidity, and wind speed. Thermal infrared images were also captured in congruence with water flux measurements to determine skin temperature. We found that the moss evaporation rate was over 100% greater than the soil evaporation rate (0.057 g/min vs. 0.024 g/min), and evaporation rates in both systems were most strongly driven by relative humidity and surface temperature. Surface temperature was lower at the birch site than the black spruce site because trees shade the surface beneath the birch. High fluxes associated with high water content were sustained for a longer period of time over the mosses compared to the bare soil. The thermal IR data showed that skin temperature lagged the evaporation flux, such that the

  18. Computational Fluid Dynamics Analysis of an Evaporative Cooling System

    Directory of Open Access Journals (Sweden)

    Kapilan N.

    2016-11-01

    Full Text Available The use of chlorofluorocarbon based refrigerants in the air-conditioning system increases the global warming and causes the climate change. The climate change is expected to present a number of challenges for the built environment and an evaporative cooling system is one of the simplest and environmentally friendly cooling system. The evaporative cooling system is most widely used in summer and in rural and urban areas of India for human comfort. In evaporative cooling system, the addition of water into air reduces the temperature of the air as the energy needed to evaporate the water is taken from the air. Computational fluid dynamics is a numerical analysis and was used to analyse the evaporative cooling system. The CFD results are matches with the experimental results.

  19. Simulations of dynamic resistive evaporation in a vacuum

    Science.gov (United States)

    Kazanskiy, N. L.; Kolpakov, V. A.; Krichevskiy, S. V.; Podlipnov, V. V.

    2017-10-01

    The model of dynamic resistive evaporation in vacuum has been considered, and the model takes into account the structural peculiarities of the corresponding evaporator. In the model, the dependences to determine the time of material heating up to evaporation temperature as well as dynamic characteristics of the evaporation have been obtained. It has been shown that the obtained characteristics are nonharmonic and periodically repeated. The adequacy of the developed model to the physical model has been corroborated. It has been found that the discrepancy between the experimental and calculated time characteristics of shutter movement is not higher than 5%. The recommendations for using the suggested model to fabricate of thin films of multicomponent materials via thermal evaporation have been considered.

  20. Complex Effects of Salinity on Water Evaporation From Porous Media.

    Science.gov (United States)

    Shokri-Kuehni, S. M. S.; Webb, C.; Shokri, N.

    2016-12-01

    Saline water evaporation from porous media is influenced by transport properties of porous media, properties of the evaporating solution and external conditions. In this work, we investigated the effects of salt concentration on the drying behaviour of a porous medium and its surface temperature. Our key focus was about how the precipitated salt forming at the surface of drying porous media influences the evaporation rate. To do so, a series of evaporation experiments were conducted using columns packed with sand particles saturated with NaCl solutions of varying concentrations. The columns were placed on digital balances to record the evaporation dynamics and were exposed to metal halide lamps to boost the evaporation. A FLIR thermal camera was fixed above the sand columns to record the surface temperature. Additional experiments were conducted using sand packs saturated with salty water in the presence of water table at well-defined depths using Mariotte flasks. We could delineate the effects of salt concentration and crust formation on the general dynamics of the evaporation process (at different salt concentrations). Microscopic analysis of precipitated salt at the surface revealed the complex dynamics of salt evolution at the surface and its consequences on the evaporation behaviour. Our results suggest that the presence of porous salt at the surface causes top-supplied creeping of the solution feeding the growth of subsequent precipitation. This causes appearance and disappearance of cold-spots at the surface of porous media brought about by crust formation and preferential water evaporation visualized by the thermal images. This study extends the fundamental understanding of the evaporation of saline water from porous media.

  1. Evaporative Gasoline Emissions and Asthma Symptoms

    Science.gov (United States)

    Gordian, Mary Ellen; Stewart, Alistair W; Morris, Stephen S

    2010-01-01

    Attached garages are known to be associated with indoor air volatile organic compounds (VOCs). This study looked at indoor exposure to VOCs presumably from evaporative emissions of gasoline. Alaskan gasoline contains 5% benzene making benzene a marker for gasoline exposure. A survey of randomly chosen houses with attached garages was done in Anchorage Alaska to determine the exposure and assess respiratory health. Householders were asked to complete a health survey for each person and a household survey. They monitored indoor air in their primary living space for benzene, toluene, ethylbenzene and xylenes for one week using passive organic vapor monitoring badges. Benzene levels in homes ranged from undetectable to 58 parts per billion. The median benzene level in 509 homes tested was 2.96 ppb. Elevated benzene levels in the home were strongly associated with small engines and gasoline stored in the garage. High concentrations of benzene in gasoline increase indoor air levels of benzene in residences with attached garages exposing people to benzene at levels above ATSDR’s minimal risk level. Residents reported more severe symptoms of asthma in the homes with high gasoline exposure (16%) where benzene levels exceeded the 9 ppb. PMID:20948946

  2. Influence of Oil on Refrigerant Evaporator Performance

    Science.gov (United States)

    Kim, Jong-Soo; Nagata, Karsuya; Katsuta, Masafumi; Tomosugi, Hiroyuki; Kikuchi, Kouichiro; Horichi, Toshiaki

    In vapor compression refrigeration system using oil-lubricated compressors, some amount of oil is always circulated through the system. Oil circulation can have a significant influence on the evaporator performance of automotive air conditioner which is especially required to cool quickly the car interior after a period standing in the sun. An experimental investigation was carried out an electrically heated horizontal tube to measure local heat transfer coefficients for various flow rates and heat fluxes during forced convection boiling of pure refrigerant R12 and refrigerant-oil mixtures (0-11% oil concentration by weight) and the results were compared with oil free performance. Local heat transfer coefficients increased at the region of low vapor quality by the addition of oil. On the other hand, because the oil-rich liquid film was formed on the heat transfer surface, heat transfer coefficients gradually decreased as the vapor quality became higher. Average heat transfer coefficient reached a maximum at about 4% oil concentration and this trend agreed well with the results of Green and Furse. Previous correlations, using the properties of the refrigerant-oil mixture, could not predict satisfactorily the local heat transfer coefficients data. New correlation modified by oil concentration factor was developed for predicting the corresponding heat transfer coefficient for refrigerant-oil mixture convection boiling. The maximum percent deviation between predicted and measured heat transfer coefficient was within ±30%.

  3. Energy consumption during Refractance Window evaporation of selected berry juices

    Energy Technology Data Exchange (ETDEWEB)

    Nindo, C.I.; Tang, J. [Washington State University, Pullman, WA (United States). Dept. of Biological Systems Engineering; Powers, J.R. [Washington State University, Pullman, WA (United States). Dept. of Food Science and Human Nutrition; Bolland, K. [MCD Technologies, Tacoma, WA (United States)

    2004-07-01

    The Refractance Window evaporator represents a novel concept in the design of evaporation systems for small food processing plants. In this system thermal energy from circulating hot water is transmitted through a plastic sheet to evaporate water from a liquid product flowing concurrently on the top surface of the plastic. The objectives of this study were to investigate the heat transfer characteristics of this evaporator, determine its energy consumption, and capacity at different tilt angles and product flow rates. The system performance was evaluated with tap water, raspberry juice, and blueberry juice and puree as feed. With a direct steam injection heating method, the steam economy ranged from 0.64 to 0.84, while the overall heat transfer coefficient (U) was 666 W m{sup -2} {sup o}C{sup -1}. Under this condition, the highest evaporation capacity was 27.1 kg h{sup -1} m{sup -2} for blueberry juice and 31.8 kg h{sup -1} m{sup -2} for blueberry puree. The energy consumption was 2492-2719 kJ kg{sup -1} of water evaporated. Installation of a shell and tube heat exchanger with better temperature control minimized incidences of boiling and frequent discharge of condensate. The steam economy, highest evaporation rate and overall heat transfer coefficient increased to 0.99, 36.0 kg h{sup -1} m{sup -2} and 733 W m{sup -2} {sup o}C{sup -1}, respectively. [Author].

  4. Research on the evaporation of gasoline on beach sand

    Energy Technology Data Exchange (ETDEWEB)

    Berqueiro, J.R.; Dominguez, F.; Pons, J.M

    Gasoline evaporation is an importent factor in spill behavour. When a gasoline spill occurs on beach sand, part of the gasoline is spread over the sand surface while the rest is being absorbed. The spread and absorption rate depend on, amoung other things, the permeability of the sand which in turn also depends on it's water content. It is important to study the effects of gasoline evaporation on sand beaches in order to determine when risk of explosion is low, so that cleaning of the polluted beach surface can be carried out without danger. The effects of the evaporation of 90 and 97 octane (normal and super) gasoline on beach sand have been studied using the tray evaporation technique as described in the literature. The size of the sand particles have been included along with temperature and air speed as variables in the evaporation process. The effects of gasoline on the retention capacity of three distinct types of sand particles, as well as the effects of water in the sand, have been studied for normal and super gasolines. The following conclusions can be drawn: sand retention capacity is inversely proportional to sand particle size; when sand is moistened, its gasoline retention capacity increases proportionally with the decreasing particle size; with the same sand fractions and air speed conditions; the evaporation rate increases with increasing air speeds; with the same sand fractions and air speed conditions the evaporation rate increases with temperature; given the same temperature and air conditions, a gasoline spill on coarse sand evaporates faster than one on medium sand; and given the same temperatures and air speed conditions, the evaporation rate of normal gasoline spreading over any of the three types of sand is always higher than super gasoline due to the higher volatility of the 90 octane gasoline. 10 refs., 1 fig., 3 tabs.

  5. Evaluating the reliability of point estimates of wetland reference evaporation

    Directory of Open Access Journals (Sweden)

    H. Gavin

    2003-01-01

    Full Text Available The Penman-Monteith formulation of evaporation has been criticised for its reliance upon point estimates so that areal estimates of wetland evaporation based upon single weather stations may be misleading. Typically, wetlands comprise a complex mosaic of land cover types from each of which evaporative rates may differ. The need to account for wetland patches when monitoring hydrological fluxes has been noted. This paper presents work carried out over a wet grassland in Southern England. The significance of fetch on actual evaporation was examined using the approach adopted by Gash (1986 based upon surface roughness to estimate the fraction of evaporation sensed from a specified distance upwind of the monitoring station. This theoretical analysis (assuming near-neutral conditions reveals that the fraction of evaporation contributed by the surrounding area increases steadily to a value of 77% at a distance of 224 m and thereafter declines rapidly. Thus, point climate observations may not reflect surface conditions at greater distances. This result was tested through the deployment of four weather stations on the wetland. The resultant data suggested that homogeneous conditions prevailed so that the central weather station provided reliable areal estimates of reference evaporation during the observation period March–April 1999. This may be a result of not accounting for high wind speeds and roughness found in wetlands that lead to widespread atmospheric mixing. It should be noted this analysis was based upon data collected during the period March-April when wind direction was constant (westerly and the land surface was moist. There could be more variation at other times of the year that would lead to greater heterogeneity in actual evaporation. Keywords: evaporation, Penman-Monteith, automatic weather station, fetch, wetland

  6. Maldistribution in airewater heat pump evaporators. Part 1: Effects on evaporator, heat pump and system level

    DEFF Research Database (Denmark)

    Mader, Gunda; Palm, Björn; Elmegaard, Brian

    2015-01-01

    This paper presents an approach to quantify the effect of evaporator maldistribution onoperating costs of air-water heat pumps. In the proposed simulation model maldistributionis induced by two parameters describing refrigerant phase and air flow distribution.Annual operating costs are calculated...... based on heat pump performance at distinct operatingconditions. Results show that percentage increase of operating costs is similar for thethree considered climate zones, even though the effect of maldistribution on heat pumpperformance varies with operating conditions. Differences in terms of absolute...

  7. Do Lipids Retard the Evaporation of the Tear Fluid?

    DEFF Research Database (Denmark)

    Rantamaki, A. H.; Javanainen, M.; Vattulainen, I.

    2012-01-01

    PURPOSE. We examined in vitro the potential evaporation-retarding effect of the tear film lipid layer (TFLL). The artificial TFLL compositions used here were based on the present knowledge of TFLL composition. METHODS. A custom-built system was developed to measure evaporation rates at 35 degrees C....... Lipids were applied to an air-water interface, and the evaporation rate through the lipid layer was defined as water loss from the interface. A thick layer of olive oil and a monolayer of long-chain alcohol were used as controls. The artificial TFLLs were composed of 1 to 4 lipid species: polar...

  8. Modelling of boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2002-01-01

    Dynamic models for simulating boiler performance have been developed. Models for the flue gas side and for the evaporator circuit have been developed for the purpose of determining material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate...... the circulation in the evaporator circuit. The models have been developed as Differential-Algebraic-Equations (DAE) and MATLAB has been applied for the integration of the models. In general MATLAB has proved to be very stable for the relatively stiff equation systems. Experimental verification is planned...... at a full scale plant equipped with instrumentation to verify heat transfer and circulation in the evaporator circuit....

  9. Impact, absorption and evaporation of raindrops on building facades

    DEFF Research Database (Denmark)

    Abuku, Masaru; Janssen, Hans; Poesen, Jean

    2009-01-01

    . Finally, the experimental and numerical data were used in a more precise three-dimensional simulation of impact, absorption and evaporation of random and discrete wind-driven raindrops. This was compared With the common one-dimensional simulation of absorption and evaporation at the facade considering......In this paper, the impact, absorption and evaporation of raindrops oil building facades is investigated by experimental and numerical means. Laboratory experiments were carried Out to study the impact of water drops with different diameters, impact speeds and impact angles oil a porous building...

  10. Water Evaporation and Conformational Changes from Partially Solvated Ubiquitin

    Directory of Open Access Journals (Sweden)

    Saravana Prakash Thirumuruganandham

    2010-01-01

    Full Text Available Using molecular dynamics simulation, we study the evaporation of water molecules off partially solvated ubiquitin. The evaporation and cooling rates are determined for a molecule at the initial temperature of 300 K. The cooling rate is found to be around 3 K/ns, and decreases with water temperature in the course of the evaporation. The conformation changes are monitored by studying a variety of intermediate partially solvated ubiquitin structures. We find that ubiquitin shrinks with decreasing hydration shell and exposes more of its hydrophilic surface area to the surrounding.

  11. The Evaporative Cooling System for the ATLAS Inner Detector

    CERN Document Server

    Aitree, D; Anderssen, E C; Akhnazarov, V; Apsimon, R J; Barclay, P; Batchelor, L E; Bates, R L; Battistin, M; Bendotti, J; Berry, S; Bitadze, A; Bizzel, J P; Bonneau, P; Bosteels, Michel; Butterworth, J M; Butterworth, S; Carter, A A; Carter, J R; Catinaccio, A; Corbaz, F; Danielsson, H O; Danilevich, E; Dixon, N; Dixon, S D; Doherty, F; Dorholt, O; Doubrava, M; Egorov, I; Egorov, K; Einsweiler, K; Falou, A C; Feraudet, P; Ferrari, P; Fowler, K; Fraser, J T; French, R S; Galuska, M; Gannaway, F; Gariano, G; Gibson, M D; Gilchriese, M G D; Giugni, D; Godlewski, J; Gousakov, I; Górski, B; Hallewell, G D; Hartman, N; Hawkings, R J; Haywood, S J; Hessey, N P; Infante, S; Jackson, J N; Jones, T J; Kaplon, J; Katunin, S; Lindsay, S; Luisa, L; Massol, N; McEwan, F; McMahon, S J; Menot, C; Mistry, J; Morris, J; Muskett, D M; Nagai, K; Nichols, A; Nicholson, R; Nickerson, R B; Nielsen, S L; Nordahl, P E; Olcese, M; Parodi, M; Pérez-Gómez, F; Pernegger, H; Perrin, E; Rossi, L P; Rovani, A; Ruscino, E; Sandaker, H; Smith, A; Sopko, V; Stapnes, S; Stodulski, M; Tarrant, J; Thadome, J; Tovey, D; Turala, M; Tyndel, M; Vacek, V; van der Kraaij, E; Viehhauser, G H A; Vigeolas, E; Wells, P S; Wenig, S; Werneke, P

    2008-01-01

    This paper describes the evaporative system used to cool the silicon detector structures of the inner detector sub-detectors of the ATLAS experiment at the CERN Large Hadron Collider. The motivation for an evaporative system, its design and construction are discussed. In detail the particular requirements of the ATLAS inner detector, technical choices and the qualification and manufacture of final components are addressed. Finally results of initial operational tests are reported. Although the entire system described, the paper focuses on the on-detector aspects. Details of the evaporative cooling plant will be discussed elsewhere.

  12. Probing loop quantum gravity with evaporating black holes.

    Science.gov (United States)

    Barrau, A; Cailleteau, T; Cao, X; Diaz-Polo, J; Grain, J

    2011-12-16

    This Letter aims at showing that the observation of evaporating black holes should allow the usual Hawking behavior to be distinguished from loop quantum gravity (LQG) expectations. We present a full Monte Carlo simulation of the evaporation in LQG and statistical tests that discriminate between competing models. We conclude that contrarily to what was commonly thought, the discreteness of the area in LQG leads to characteristic features that qualify evaporating black holes as objects that could reveal quantum gravity footprints. © 2011 American Physical Society

  13. Teleporting entanglement during black hole evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Brustein, Ram [Department of Physics, Ben-Gurion University,Beer-Sheva 84105 (Israel); Medved, A.J.M. [Department of Physics & Electronics, Rhodes University,Grahamstown 6140 (South Africa); National Institute for Theoretical Physics (NITheP),Western Cape 7602 (South Africa)

    2016-10-06

    The unitary evaporation of a black hole (BH) in an initially pure state must lead to the eventual purification of the emitted radiation. It follows that the late radiation has to be entangled with the early radiation and, as a consequence, the entanglement among the Hawking pair partners has to decrease continuously from maximal to vanishing during the BH’s life span. Starting from the basic premise that both the horizon radius and the center of mass of a finite-mass BH are fluctuating quantum mechanically, we show how this process is realized. First, it is shown that the horizon fluctuations induce a small amount of variance in the total linear momentum of each created pair. This is in contrast to the case of an infinitely massive BH, for which the total momentum of the produced pair vanishes exactly on account of momentum conservation. This variance leads to a random recoil of the BH during each emission and, as a result, the center of mass of the BH undergoes a quantum random walk. Consequently, the uncertainty in its momentum grows as the square root of the number of emissions. We then show that this uncertainty controls the amount of deviation from maximal entanglement of the produced pairs and that this deviation is determined by the ratio of the cumulative number of emitted particles to the initial BH entropy. Thus, the interplay between the horizon and center-of-mass fluctuations provides a mechanism for teleporting entanglement from the pair partners to the BH and the emitted radiation.

  14. The Evaporation Valley in the Kepler Planets

    Science.gov (United States)

    Owen, James E.; Wu, Yanqin

    2017-09-01

    A new piece of evidence supporting the photoevaporation-driven evolution model for low-mass, close-in exoplanets was recently presented by the California-Kepler Survey. The radius distribution of the Kepler planets is shown to be bimodal, with a “valley” separating two peaks at 1.3 and 2.6 R ⊕. Such an “evaporation valley” had been predicted by numerical models previously. Here, we develop a minimal model to demonstrate that this valley results from the following fact: the timescale for envelope erosion is the longest for those planets with hydrogen/helium-rich envelopes that, while only a few percent in weight, double its radius. The timescale falls for envelopes lighter than this because the planet’s radius remains largely constant for tenuous envelopes. The timescale also drops for heavier envelopes because the planet swells up faster than the addition of envelope mass. Photoevaporation therefore herds planets into either bare cores (˜1.3 R ⊕), or those with double the core’s radius (˜2.6 R ⊕). This process mostly occurs during the first 100 Myr when the stars’ high-energy fluxes are high and nearly constant. The observed radius distribution further requires the Kepler planets to be clustered around 3 M ⊕ in mass, born with H/He envelopes more than a few percent in mass, and that their cores are similar to the Earth in composition. Such envelopes must have been accreted before the dispersal of the gas disks, while the core composition indicates formation inside the ice line. Lastly, the photoevaporation model fails to account for bare planets beyond ˜30-60 days; if these planets are abundant, they may point to a significant second channel for planet formation, resembling the solar system terrestrial planets.

  15. Climate Prediction Center (CPC) U.S. Pan Evaporation Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observational reports of daily pan evaporation (1200 UTC to 1200 UTC) are made by members of the NWS Cooperative Network (COOP) or supplemental networks of NOAA's...

  16. Humidification - Fogging and other evaporative cooling in greenhouses

    NARCIS (Netherlands)

    Nederhoff, E.M.; Weel, van P.A.

    2011-01-01

    Fogging, misting, roof sprinklers, pad-and-fan and other techniques based on water evaporation are effective tools for improving the growing conditions in a greenhouse when humidity is low. They should be used wisely though.

  17. Compensation of airflow maldistribution in fin-and-tube evaporators

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Tiedemann, Thomas

    2012-01-01

    Compensation of airflow maldistribution in fin-and tube evaporators for residential air-conditioning is investigated with regards to circuitry design and control of individual channel superheats. In particularly, the interlaced and the face split circuitry designs are compared numerically using...... a linear velocity profile and a CFD predicted velocity profile obtained from Kærn (2011d) in dry and wet conditions. The circuitry models are validated experimentally in wet conditions, and for this purpose a test case interlaced evaporator (17.58 kW) was reconstructed in order to become a face split...... evaporator by modifying its U-bend connections. Furthermore, a 14% and 28% blockage of the face split evaporator is studied experimentally with control of individual channel superheats. It is shown that the face split circuitry with compensation gives the best performance in both dry and wet conditions...

  18. A method for the measurement of physiologic evaporative water loss.

    Science.gov (United States)

    1963-10-01

    The precise measurement of evaporative water loss is essential to an accurate evaluation of this avenue of heat loss in acute and chronic exposures to heat. In psychological studies, the quantitative measurement of palmar sweating plays an equally im...

  19. Quantum dynamics of charge state in silicon field evaporation

    Directory of Open Access Journals (Sweden)

    Elena P. Silaeva

    2016-08-01

    Full Text Available The charge state of an ion field-evaporating from a silicon-atom cluster is analyzed using time-dependent density functional theory coupled to molecular dynamics. The final charge state of the ion is shown to increase gradually with increasing external electrostatic field in agreement with the average charge state of silicon ions detected experimentally. When field evaporation is triggered by laser-induced electronic excitations the charge state also increases with increasing intensity of the laser pulse. At the evaporation threshold, the charge state of the evaporating ion does not depend on the electrostatic field due to the strong contribution of laser excitations to the ionization process both at low and high laser energies. A neutral silicon atom escaping the cluster due to its high initial kinetic energy is shown to be eventually ionized by external electrostatic field.

  20. Quantum dynamics of charge state in silicon field evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Silaeva, Elena P.; Uchida, Kazuki; Watanabe, Kazuyuki, E-mail: kazuyuki@rs.kagu.tus.ac.jp [Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan)

    2016-08-15

    The charge state of an ion field-evaporating from a silicon-atom cluster is analyzed using time-dependent density functional theory coupled to molecular dynamics. The final charge state of the ion is shown to increase gradually with increasing external electrostatic field in agreement with the average charge state of silicon ions detected experimentally. When field evaporation is triggered by laser-induced electronic excitations the charge state also increases with increasing intensity of the laser pulse. At the evaporation threshold, the charge state of the evaporating ion does not depend on the electrostatic field due to the strong contribution of laser excitations to the ionization process both at low and high laser energies. A neutral silicon atom escaping the cluster due to its high initial kinetic energy is shown to be eventually ionized by external electrostatic field.

  1. Modelling distribution of evaporating CO2 in parallel minichannels

    DEFF Research Database (Denmark)

    Brix, Wiebke; Kærn, Martin Ryhl; Elmegaard, Brian

    2010-01-01

    The effects of airflow non-uniformity and uneven inlet qualities on the performance of a minichannel evaporator with parallel channels, using CO2 as refrigerant, are investigated numerically. For this purpose a one-dimensional discretised steady-state model was developed, applying well-known empi......The effects of airflow non-uniformity and uneven inlet qualities on the performance of a minichannel evaporator with parallel channels, using CO2 as refrigerant, are investigated numerically. For this purpose a one-dimensional discretised steady-state model was developed, applying well...... to maldistribution of the refrigerant and considerable capacity reduction of the evaporator. Uneven inlet ualities to the different channels show only minor effects on the refrigerant distribution and evaporator capacity as long as the channels are vertically oriented with CO2 flowing upwards. For horizontal...

  2. Evaporated layers of cuprous sulfides: technology and methods of characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rezig, B.; Duchemin, S.; Guastavino, F.

    1979-09-01

    It is shown how the composition of the Cu/sub x/S films can be optimized by only monitoring the resistance of the layers during evaporation. This presumed composition x is confirmed by different methods of characterization.

  3. Developments in Zedivap evaporators; Zedivap jatkokehitys - EKY 01

    Energy Technology Data Exchange (ETDEWEB)

    Jaakkola, H. [Ahlstrom Machinery Oy, Helsinki (Finland). Heat Engineering

    1998-12-31

    Pulp and paper industry is looking forward to find economical ways to minimize their fresh water consumption and to reduce their impact in environment. One way to achieve the target is to replace fresh water by producing pure water from effluent. Zedivap technology has been developed to evaporate effluents and have been operated in full scale for few years. In this project Zedivap-technology was developed further to minimize fouling of heat transfer surfaces, to improve evaporator availability and to increase the knowledge of wastewater properties. To reach an uniform evaporator body construction to utilise different sources of energy, like electricity, high pressure steam or low temperature waste heat, the heat transfer surfaces will in most cases be of lamella type made of metallic sheets improving remarkably the availability compared to original design with plastic heating surfaces. As a result also the cleaning demands for a wastewater evaporator has reduced remarkably by replacing liquid distributor tray by spray nozzles. (orig.)

  4. Removal of Sulfate Ion From AN-107 by Evaporation

    Energy Technology Data Exchange (ETDEWEB)

    GJ Lumetta; GS Klinger; DE Kurath; RL Sell; LP Darnell; LR Greenwood; CZ Soderquist; MJ Steele; MW Urie; JJ Wagner

    2000-08-02

    Hanford low-activity waste solutions contain sulfate, which can cause accelerated corrosion of the vitrification melter and unacceptable operating conditions. A method is needed to selectively separate sulfate from the waste. An experiment was conducted to evaluate evaporation for removing sulfate ion from Tank AN-107 low-activity waste. Two evaporation steps were performed. In the first step, the volume was reduced by 55% while in the second step, the liquid volume was reduced another 22%. Analysis of the solids precipitated during these evaporations revealed that large amounts of sodium nitrate and nitrite co-precipitated with sodium sulfate. Many other waste components precipitated as well. It can be concluded that sulfate removal by precipitation is not selective, and thus, evaporation is not a viable option for removing sulfate from the AN-107 liquid.

  5. The Evaporation of Liquid Droplets in Highly Turbulent Gas Streams

    National Research Council Canada - National Science Library

    Gould, Richard

    1998-01-01

    Single acetone and heptane droplets were suspended from a hypodermic needle in turbulent airflow, and the Nusselt number was obtained from direct measurements of the droplet diameter and evaporation rate...

  6. Thermodynamic performance testing of the orbiter flash evaporator system

    Science.gov (United States)

    Jaax, J. R.; Melgares, M. A.; Frahm, J. P.

    1980-01-01

    System level testing of the space shuttle orbiter's development flash evaporator system (FES) was performed in a thermal vacuum chamber capable of simulating ambient ascent, orbital, and entry temperature and pressure profiles. The test article included the evaporator assembly, high load and topping exhaust duct and nozzle assemblies, and feedwater supply assembly. Steady state and transient heat load, water pressure/temperature and ambient pressure/temperature profiles were imposed by especially designed supporting test hardware. Testing in 1978 verified evaporator and duct heater thermal design, determined FES performance boundaries, and assessed topping evaporator plume characteristics. Testing in 1979 combined the FES with the other systems in the orbiter active thermal control subsystem (ATCS). The FES met or exceeded all nominal and contingency performance requirements during operation with the integrated ATCS. During both tests stability problems were encountered during steady state operations which resulted in subsequent design changes to the water spray nozzle and valve plate assemblies.

  7. Massive antigravity field and incomplete black hole evaporation

    Science.gov (United States)

    Massa, Corrado

    2008-04-01

    If gravity is a mixture of the ordinary attractive force carried by the massless graviton, and of a repulsive force carried by a particle with nonzero mass, an evaporating black hole might leave a stable remnant.

  8. Building micro-soccer-balls with evaporating colloidal fakir drops

    Science.gov (United States)

    Gelderblom, Hanneke; Marín, Álvaro G.; Susarrey-Arce, Arturo; van Housselt, Arie; Lefferts, Leon; Gardeniers, Han; Lohse, Detlef; Snoeijer, Jacco H.

    2013-11-01

    Drop evaporation can be used to self-assemble particles into three-dimensional microstructures on a scale where direct manipulation is impossible. We present a unique method to create highly-ordered colloidal microstructures in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion drops from a special type of superhydrophobic microstructured surface, on which the drop remains in Cassie-Baxter state during the entire evaporative process. The remainders of the drop consist of a massive spherical cluster of the microspheres, with diameters ranging from a few tens up to several hundreds of microns. We present scaling arguments to show how the final particle packing fraction of these balls depends on the drop evaporation dynamics, particle size, and number of particles in the system.

  9. Superhydrophobic coated apparatus for liquid purification by evaporative condensation

    Science.gov (United States)

    Simpson, John T; McNeany, Steve R; Dinsmore, Thomas V; Hunter, Scott R; Ivanov, Ilia N

    2014-03-11

    Disclosed are examples of apparatuses for evaporative purification of a contaminated liquid. In each example, there is a first vessel for storing the contaminated fluid. The first vessel includes a surface coated with a layer of superhydrophobic material and the surface is at least partially in contact with the contaminated liquid. The contaminants do not adhere to the surface as the purified liquid evaporates, thus simplifying maintenance of the apparatus.

  10. Historical pan evaporation changes in Qiantang River Basin, China

    Science.gov (United States)

    Xu, Y. P.; Pan, S.; Fu, G.

    2015-12-01

    Pan evaporation has been decreasing in many regions of the world in the past decades. Analysis of the changes in pan evaporation helps to understand the variation of vapor in the hydrological cycle and the impact of climate change. This study aims to investigate the spatial and temporal trends in pan evaporation and analyze the causes of its variation in Qiantang River Basin, East China. A self-organizing map neural network is first applied to classify the 40 hydrological stations. Based on the clustering results, a trend-free pre-whitening Mann-Kendall test is used to investigate the historical trends based on more than 50 years of observations. Finally, global sensitivity analysis is conducted for evaluating the relationship between evaporation and five climate variables and for investigating the causes of changes. It is found that the hydrological stations can be classified into six sub-areas and the evaporation trends vary substantially at different sub-areas. Generally, there is a decreasing trend in a majority of months and the most significant decreases occur in summer. The results of sensitivity analysis reveal that pan evaporation is more sensitive to solar radiation, followed by minimum air temperature, wind speed, relative humidity and maximum air temperature. The contribution of interaction effects between different climate variables to the variation of pan evaporation cannot be ignored in some specific stations. Overall, the change is mainly due to the decrease of solar radiation. This study provides an in-depth understanding of the causes of pan evaporation variation and valuable information for sustainable water and crop management in this region.

  11. Heavy metal evaporation kinetics in thermal waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Ch.; Stucki, S.; Schuler, A.J. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    To investigate the evaporation kinetics of heavy metals, experiments were performed by conventional thermogravimetry and a new method using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The new method allows online measurements in time intervals that are typically below one minute. The evaporation of Cd, Cu, Pb, and Zn from synthetic mixtures and filter ashes from municipal solid waste incineration (MSWI) was of major interest. (author) 2 figs., 4 refs.

  12. BSW process of the slowly evaporating charged black hole

    OpenAIRE

    Wang, Liancheng; He, Feng; Fu, Xiangyun

    2015-01-01

    In this paper, we study the BSW process of the slowly evaporating charged black hole. It can be found that the BSW process will also arise near black hole horizon when the evaporation of charged black hole is very slow. But now the background black hole does not have to be an extremal black hole, and it will be approximately an extremal black hole unless it is nearly a huge stationary black hole.

  13. Evaporative behavior of carbon with MPD Arc Jet

    Energy Technology Data Exchange (ETDEWEB)

    Sukegawa, Toshio; Madarame, Haruki; Okamoto, Koji [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    Using the Magneto-Plasma-Dynamic Arc Jet (MPD Arc Jet) device, the plasma-material interaction during simulated plasma disruption was experimentally investigated. To clarify the effects of the evaporation, the isotropic graphite was used as a target. The thermal conductivity of the isotropic graphite was much higher than that of the pyrolytic graphite, resulting in smaller evaporation. The light intensity distribution during the simulated disruption for the isotropic graphite was quite different from that for the pyrolytic graphite. (author)

  14. Evaporative Cooling Availability in Water Based Sensible Cooling Systems

    OpenAIRE

    Costelloe, Ben; Finn, Donal

    2001-01-01

    Recent developments have prompted a review of evaporative cooling technology as an effective means of cooling modern deep plan buildings. Prominent among these developments is the success of high temperature sensible cooling systems, such as chilled ceilings, which require a supply of cooling water at 14 to 18°C. Crucial to the success of evaporative cooling technology, as a significant means of cooling in modern applications, is the ability to generate cooling water, in an indirect circuit, ...

  15. PERSPECTIVES OF USING OF EVAPORATIVE COOLING IN REFRIGERATION ENGINEERING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2013-08-01

    Full Text Available The concept of creation of multi-stage evaporative coolers of gases and liquids based on multi-channel monoblock polymer structures was developed. The indirect types of coolers in normal and regenerative options are used as the basic elements in them. Natural limit of the cooling in such systems is the dew point of outside air, which significantly enhances the possibilities of the evaporative cooling technology in general, and allows us to solve a number of problems of the refrigeration and air conditioning equipment with a significant reduction of energy consumption for the process. Particular attention is paid to the problem of water vapor recondensation in the transition to multi-stage evaporative coolers. The theory of joint heat and mass transfer in indirect evaporative cooling was examined. The principle of design of individual monoblocks, as well as multi-stage blocks, was developed and recommendations to the design of a new generation of evaporative coolers were made. Preliminary analysis of the possibilities of the evaporative coolers applying to the solution of problems of air conditioning was made.

  16. Effect of evaporator temperature on vapor compression refrigeration system

    Directory of Open Access Journals (Sweden)

    Abdullah A.A.A. Al-Rashed

    2011-12-01

    Full Text Available This paper presents a comparable evaluation of R600a (isobutane, R290 (propane, R134a, R22, for R410A, and R32 an optimized finned-tube evaporator, and analyzes the evaporator effect on the system coefficient of performance (COP. Results concerning the response of a refrigeration system simulation software to an increase in the amount of oil flowing with the refrigerant are presented. It is shown that there is optima of the apparent overheat value, for which either the exchanged heat or the refrigeration coefficient of performance (COP is maximized: consequently, it is not possible to optimize both the refrigeration COP and the evaporator effect. The obtained evaporator optimization results were incorporated in a conventional analysis of the vapor compression system. For a theoretical cycle analysis without accounting for evaporator effects, the COP spread for the studied refrigerants was as high as 11.7%. For cycle simulations including evaporator effects, the COP of R290 was better than that of R22 by up to 3.5%, while the remaining refrigerants performed approximately within a 2% COP band of the R22 baseline for the two condensing temperatures considered.

  17. NUMERICAL SIMULATION OF MASS TRANSFER IN CENTRIFUGAL EVAPORATOR

    Directory of Open Access Journals (Sweden)

    E. N. Kalinin

    2017-01-01

    Full Text Available Subject of Research. The paper deals with the problem of an adequate mathematical model of mass transfer process occurring during evaporation and concentration of spent process solution in a centrifugal evaporator with variable geometric parameters. The model provides a science-based forecast of the process parameters. Methods. Definition of the film flow parameters on a rotating conical surface of the centrifugal evaporator rotor is carried out on the basis of the solution of Navier-Stokes equations. Solution of the system of differential equations describing the mass transfer process in the studied dynamic system is performed by numerical methods. With this aim in view, we realized semi-implicit finite difference scheme for the SIMPLE pressure. Main Results. We have developed an algorithm and performed numerical solution of differential equations describing the mass transfer process occurring during concentration of the working solution in the centrifugal type evaporator. On the basis of the obtained numerical solution we have created a computer model of the given process. With the aid of the model we have defined basic hydrodynamic and operating parameters of the evaporator, as well as dependencies between them. Practical Relevance. Developed computer model of the mass transfer process enables to define the parameters of the solution moving along the conical surface of the centrifugal evaporator rotor: speed, pressure and the thickness of the flowing-down film. The results can be applied in real industrial process management and during personnel training.

  18. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. (Pacific Northwest Lab., Richland, WA (United States)); Cuenca, R.H. (Oregon State Univ., Corvallis, OR (United States))

    1990-01-01

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program's SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  19. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. [Pacific Northwest Lab., Richland, WA (United States); Cuenca, R.H. [Oregon State Univ., Corvallis, OR (United States)

    1990-12-31

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program`s SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  20. Tear film evaporation--effect of age and gender.

    Science.gov (United States)

    Guillon, Michel; Maïssa, Cécile

    2010-08-01

    Dry eye is more prevalent in older patients and among them more marked in women than men. The increase in dry eye with aging is traditionally thought to be associated with a decrease in tear production enhanced by hormonal changes. Clinical evidence of an abnormal lipid production system in older patients, in particular women is established. It is therefore postulated that the greater prevalence of dry eye problems in an older population has an evaporative component. Tear film evaporation was measured with the Oregon Health Sciences University Evaporimeter at 30% and 40% humidity. 160 subjects less than 45 years old and 57 subjects aged 45 years or more formed the study population. The results revealed a significant effect of age (p women; and (iii) the synergic effect of age and gender was very marked: the rate of evaporation of older women was 34-80% higher than that of older men and 36-69% than younger women. Aging of the tear film includes a significant evaporative component characterised by higher tear film evaporation for the over 45 compared to younger people. Further, in the over 45 years of age, a significantly greater tear film evaporation was recorded in women than men. The findings have significant implications for the management of presbyopic dry eye sufferers. 2010 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  1. Film evaporation MEMS thruster array for micropropulsion

    Science.gov (United States)

    Cofer, Anthony G.

    Current small sat propulsion systems require a substantial mass fraction of the vehicle involving tradeoffs between useful payload mass and maneuverability. This is also an issue with available attitude control systems which are either quickly saturated reaction wheels or movable high drag surfaces with long response times. What is needed is a low mass low power self-contained propulsion unit that can be easily installed and modeled. The proposed Film-Evaporation MEMS Tunable Array (FEMTA), exploits the small scale surface tension effect in conjunction with temperature dependent vapor pressure to realize a thermal valving system. The local vapor pressure is increased by resistive film heating until it exceeds meniscus strength in the nozzle inducing vacuum boiling which provides a stagnation pressure equal to vapor pressure at that point which is used for propulsion. The heat of vaporization is drawn from the bulk fluid and is replaced by either an integrated heater or waste heat from the vehicle. Proof of concept was initially achieved with a macroscale device made possible by using ethylene glycol, which has a low vapor pressure and high surface tension, as the working fluid. Both the thermal valving effect and cooling feature were demonstrated though at reduced performance than would be expected for water. Three generations of prototype FEMTA devices have been fabricated at Birck Nanotechnology Center on 200 and 500 micrometer thick silicon wafers. Preliminary testing on first generation models had tenuously demonstrated behavior consistent with the macroscale tests but there was not enough data for solid confirmation. Some reliability issues had arisen with the integrated heaters which were only partially alleviated in the second generation of FEMTAs. This led to a third generation and two changes in heater material until a chemically resilient material was found. The third generation of microthrusters were tested on the microNewton thrust stand at Purdue

  2. Evaporation variability under climate warming in five reanalyses and its association with pan evaporation over China

    Science.gov (United States)

    Su, Tao; Feng, Taichen; Feng, Guolin

    2015-08-01

    With the motivation to identify actual evapotranspiration (AE) variability under climate warming over China, an assessment is made from five sets of reanalysis data sets [National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR), NCEP-Department of Energy (NCEP-DOE), Modern-Era Retrospective Analysis for Research and Applications (MERRA), Interim Reanalysis, and Japanese 55-year Reanalysis (JRA-55)]. Based on comparison with AE estimates calculated using the Budyko equation, all five reanalysis data sets reasonably reproduce the spatial patterns of AE over China, with a clearly southeast-northwest gradient. Overall, JRA-55 (NCEP-DOE) gives the lowest (highest) reanalysis evaporation (RE) values. From 1979 to 2013, dominant modes of RE among five reanalyses are extracted using multivariate empirical orthogonal function analysis. Accordingly, the interdecadal variation of RE is likely driven by the change of temperature, and the interannual variation is constrained by the water supply conditions. Under climate warming, RE increase in the Northwest China, Yangtze-Huaihe river basin, and South China, while they decrease in Qinghai-Tibet Plateau, and northern and Northeast China. Moreover, the relationship between RE and pan evaporation (PE) are comprehensively evaluated in space-time. Negative correlations are generally confirmed in nonhumid environments, while positive correlations exist in the humid regions. Our analysis supports the interpretation that the relationship between PE and AE was complementary with water control and proportional with energy control. In view of data availability, important differences in spatial variability and the amount of RE can be found in Northwest China, the Qinghai-Tibet Plateau, and the Yangtze River Basin. Generally speaking, NCEP-NCAR and MERRA have substantial problems on describing the long-term change of RE; however, there are some inaccuracies in the JRA-55 estimates when focusing on

  3. Smoothed particle hydrodynamics method for evaporating multiphase flows.

    Science.gov (United States)

    Yang, Xiufeng; Kong, Song-Charng

    2017-09-01

    The smoothed particle hydrodynamics (SPH) method has been increasingly used for simulating fluid flows; however, its ability to simulate evaporating flow requires significant improvements. This paper proposes an SPH method for evaporating multiphase flows. The present SPH method can simulate the heat and mass transfers across the liquid-gas interfaces. The conservation equations of mass, momentum, and energy were reformulated based on SPH, then were used to govern the fluid flow and heat transfer in both the liquid and gas phases. The continuity equation of the vapor species was employed to simulate the vapor mass fraction in the gas phase. The vapor mass fraction at the interface was predicted by the Clausius-Clapeyron correlation. An evaporation rate was derived to predict the mass transfer from the liquid phase to the gas phase at the interface. Because of the mass transfer across the liquid-gas interface, the mass of an SPH particle was allowed to change. Alternative particle splitting and merging techniques were developed to avoid large mass difference between SPH particles of the same phase. The proposed method was tested by simulating three problems, including the Stefan problem, evaporation of a static drop, and evaporation of a drop impacting a hot surface. For the Stefan problem, the SPH results of the evaporation rate at the interface agreed well with the analytical solution. For drop evaporation, the SPH result was compared with the result predicted by a level-set method from the literature. In the case of drop impact on a hot surface, the evolution of the shape of the drop, temperature, and vapor mass fraction were predicted.

  4. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Richard Doin; Lamb, Kenneth Mitchel; Matejka, Leon Anthony; Nenni, Joseph A

    2002-02-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5.

  5. Smoothed particle hydrodynamics method for evaporating multiphase flows

    Science.gov (United States)

    Yang, Xiufeng; Kong, Song-Charng

    2017-09-01

    The smoothed particle hydrodynamics (SPH) method has been increasingly used for simulating fluid flows; however, its ability to simulate evaporating flow requires significant improvements. This paper proposes an SPH method for evaporating multiphase flows. The present SPH method can simulate the heat and mass transfers across the liquid-gas interfaces. The conservation equations of mass, momentum, and energy were reformulated based on SPH, then were used to govern the fluid flow and heat transfer in both the liquid and gas phases. The continuity equation of the vapor species was employed to simulate the vapor mass fraction in the gas phase. The vapor mass fraction at the interface was predicted by the Clausius-Clapeyron correlation. An evaporation rate was derived to predict the mass transfer from the liquid phase to the gas phase at the interface. Because of the mass transfer across the liquid-gas interface, the mass of an SPH particle was allowed to change. Alternative particle splitting and merging techniques were developed to avoid large mass difference between SPH particles of the same phase. The proposed method was tested by simulating three problems, including the Stefan problem, evaporation of a static drop, and evaporation of a drop impacting a hot surface. For the Stefan problem, the SPH results of the evaporation rate at the interface agreed well with the analytical solution. For drop evaporation, the SPH result was compared with the result predicted by a level-set method from the literature. In the case of drop impact on a hot surface, the evolution of the shape of the drop, temperature, and vapor mass fraction were predicted.

  6. Quantifying Evaporation and Evaluating Runoff Estimation Methods in a Permeable Pavement System - abstract

    Science.gov (United States)

    Studies on quantifying evaporation in permeable pavement systems are limited to few laboratory studies that used a scale to weigh evaporative losses and a field application with a tunnel-evaporation gauge. A primary objective of this research was to quantify evaporation for a la...

  7. Modelling hourly rates of evaporation from small lakes

    Directory of Open Access Journals (Sweden)

    R. J. Granger

    2011-01-01

    Full Text Available The paper presents the results of a field study of open water evaporation carried out on three small lakes in Western and Northern Canada. In this case small lakes are defined as those for which the temperature above the water surface is governed by the upwind land surface conditions; that is, a continuous boundary layer exists over the lake, and large-scale atmospheric effects such as entrainment do not come into play. Lake evaporation was measured directly using eddy covariance equipment; profiles of wind speed, air temperature and humidity were also obtained over the water surfaces. Observations were made as well over the upwind land surface.

    The major factors controlling open water evaporation were examined. The study showed that for time periods shorter than daily, the open water evaporation bears no relationship to the net radiation; the wind speed is the most significant factor governing the evaporation rates, followed by the land-water temperature contrast and the land-water vapour pressure contrast. The effect of the stability on the wind field was demonstrated; relationships were developed relating the land-water wind speed contrast to the land-water temperature contrast. The open water period can be separated into two distinct evaporative regimes: the warming period in the Spring, when the land is warmer than the water, the turbulent fluxes over water are suppressed; and the cooling period, when the water is warmer than the land, the turbulent fluxes over water are enhanced.

    Relationships were developed between the hourly rates of lake evaporation and the following significant variables and parameters (wind speed, land-lake temperature and humidity contrasts, and the downwind distance from shore. The result is a relatively simple versatile model for estimating the hourly lake evaporation rates. The model was tested using two independent data sets. Results show that the modelled evaporation follows the observed values

  8. Mesoscale Modeling of Marangoni Convection in Evaporating Colloidal Droplets

    Science.gov (United States)

    Zhao, Mingfei; Yong, Xin

    2017-11-01

    In this work, we develop a three-dimensional free-energy-based multiphase lattice Boltzmann-Brownian dynamics model with thermal effects for elucidating particle dynamics in evaporating nanoparticle-laden droplets in the presence of Marangoni convection. The introduction of thermal effects enables the development of the 3D internal flow structures due to concomitant inhomogeneous evaporation at the droplet surface and thermal conduction inside the droplet. In particular, the model is capable of capturing thermal Marangoni flow along the surface of droplets and its interplay with the internal flow. We calculate the temperature field separately and consider the thermal effect as a forcing term in the lattice Boltzmann model. We first model non-evaporating droplets loaded with nanoparticles and the effects of temperature field on the flow structure. By implementing evaporation, we probe the self-assembly of nanoparticles inside the droplets or at the liquid-vapor interface. We analyze the microstructure of nanoparticle assemblies through radial distribution functions and structure factors. Our findings provide critical insights into the dynamics of nanoparticle self-assembly in evaporating fluid mass with Marangoni convection. This work was supported by the National Science Foundation under Grant No. CMMI-1538090.

  9. Effect of superhydrophobic surface morphology on evaporative deposition patterns

    Science.gov (United States)

    Dicuangco, Mercy; Dash, Susmita; Weibel, Justin A.; Garimella, Suresh V.

    2014-05-01

    Prediction and active control of the spatial distribution of particulate deposits obtained from sessile droplet evaporation are vital in printing, nanostructure assembly, biotechnology, and other applications that require localized deposits. This Letter presents surface wettability-based localization of evaporation-driven particulate deposition and the effect of superhydrophobic surface morphology on the distribution of deposits. Sessile water droplets containing suspended latex particles are evaporated on non-wetting textured surfaces with varying microstructure geometry at ambient conditions. The droplets are visualized throughout the evaporation process to track the temporal evolution of contact radius and apparent contact angle. The resulting particle deposits on the substrates are quantitatively characterized. The experimental results show that superhydrophobic surfaces suppress contact-line deposition during droplet evaporation, thereby providing an effective means of localizing the deposition of suspended particles. A correlation between deposit size and surface morphology, explained in terms of the interface pressure balance at the transition between wetting states, reveals an optimum surface morphology for minimizing the deposit coverage area.

  10. Evaporation of particle-laden droplets on a superhydrophobic surface

    Science.gov (United States)

    Bigdeli, Masoud; Tsai, Peichun Amy

    2016-11-01

    We experimentally investigated the evaporation dynamics of water droplets suspended with minute particles of varying concentrations on a superhydrophobic surface. The contact angle, diameter, and height of the droplets decreased during the evaporation process. For pure water, the droplet went through a wetting transition from a partial wetting (Cassie-Baxter), with a large contact angle (>140°), to completely wetting (Wenzel) state, with a small contact angle. Unlike pure water, the nanofluid droplets maintain high contact angles (>100°) during evaporation. We found that the contact line was pinned, and an increase (10 %) in the weight fraction of nanoparticles led to a remarkable 40 % decrease in the total drying time. The nanofluid droplets left donut-shaped drying patterns. In these final drying structures, a shrinkage of the droplet height and base diameter was observed for nanofluids with lower concentrations. The results show that droplet evaporation rate and deposit pattern depend on the concentration of nanoparticles, implying the crucial influences of water evaporation and particle migration dynamics and time-scales.

  11. Evaporation as the transport mechanism of metals in arid regions

    KAUST Repository

    Lima, Ana T.

    2014-09-01

    Soils of arid regions are exposed to drought and drastic temperature oscillations throughout the year. Transport mechanisms in these soils are therefore very different from the ones in temperate regions, where rain dictates the fate of most elements in soils. Due to the low rainfall and high evaporation rates in arid regions, groundwater quality is not threatened and all soil contamination issues tend to be overlooked. But if soil contamination happens, where do contaminants go? This study tests the hypothesis of upward metal movement in soils when evaporation is the main transport mechanism. Laboratory evaporation tests were carried out with heavy metal spiked Saudi soil, using circulation of air as the driving force (Fig. 1). Main results show that loamy soil retains heavy metals quite well while evaporation drives heavy metals to the surface of a sandy soil. Evaporation transports heavy metals upward in sandy soils of arid regions, making them accumulate at the soil surface. Sand being the dominating type of soil in arid regions, soils can then be a potential source of contaminated aerosols and atmospheric pollution - a transboundary problem. Some other repercussions for this problem are foreseen, such as the public ingestion or inhalation of dust. © 2014 Elsevier Ltd.

  12. Leader completes installation of process water evaporation system

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-11-01

    The installation of a patent-pending evaporation system at a facility in northeast British Columbia was discussed. The system captures excess waste exhaust heat from natural gas-fired compressor engines and is used to evaporate process water. The disposal of process water is a major cost in the production of natural gas and is usually hauled and disposed at water disposal wells located off-site. The cost to truck and dispose of the water at the facility was estimated at between $30 to $40 per cubic metre. The evaporation system can evaporate 4 to 8 cubic metres of process water every 24 hours and has an estimated useful life of 20 years. The evaporator relies on heat that would otherwise be expelled directly into the atmosphere, and the systems are expected to provide substantial savings. A wide-ranging manufacturing and marketing strategy was expected to commence by the end of 2005. With rising energy prices, operators of facilities are seeking more efficient ways of managing energy needs. The system was created by Leader Energy Services Ltd., a company that provides essential field services for oil and gas well stimulation in Alberta.

  13. Tracking Gas Phase Composition in Oil evaporation and Oxidation Experiments

    Science.gov (United States)

    Amador-Muñoz, O.; Zhang, H.; Misztal, P. K.; Worton, D.; Drozd, G.; Goldstein, A. H.

    2015-12-01

    Primary Organic Aerosol (POA) is emitted directly by anthropogenic or natural sources, whereas Secondary Organic Aerosol (SOA) is formed in the atmosphere through chemical reactions that result from conversion of more volatile species into lower volatility oxidized products and their subsequent condensation to the particulate phase. We studied SOA formation from evaporation of Macondo crude oil (MC 252) using a wind tunnel coupled to a flow tube oxidation reactor. Ozone, UV lights, and water vapor were used to make OH radicals. Organic compounds in the gas phase, both those evaporated from the wind tunnel and those formed in the flow tube oxidation experiments, were monitored using proton-transfer-reaction mass spectrometry (PTR-qMS and PTR-TOF-MS). We observed approximately 400 different species. Compounds with less than C10 were mostly evaporated in the first 5 hours when maximum SOA formation was also obtained. Hydrocarbons with carbon number (11-14) were still present in the oil after 12 h of continuous evaporation at wind speed of 2 m s-1. We will show the implications of these results for the production of SOA related to the range of evaporated chemical size and reactivity.

  14. A study on particle deposition of an evaporating colloidal droplet

    Energy Technology Data Exchange (ETDEWEB)

    Wee, Sang Kwon; Lee, Jung Yong [Samsung Advanced Institute of Technology, Yongin (Korea, Republic of)

    2006-07-15

    The presented study aims to investigate the colloidal droplet deposition caused by evaporation of the liquid. In the numerical analysis, the evaporation is carried out by using different evaporation function intended to obtain different shape of solute deposition. In the experiment, the colloidal droplets of different solvents are placed on a glass plate and the surface profiles are measured after drying the solvents of the droplets to investigate the effect of the solvent evaporation on the final deposition profile. Comparing the surface profiles obtained under different conditions, the optimum drying conditions of colloidal droplets are determined to obtain uniform surface profiles. The numerical results showed that ring-shaped deposition of solute was formed at the edge of the droplet due to the coffee stain effect and the height of the ring was reduced at the lower evaporation rate. The experiments showed that the boiling point of a solvent was critical to the surface uniformity of the deposition profile and the mixture of solvents with different boiling points influenced the uniformity as well.

  15. Mathematical modeling of wiped-film evaporators. [MAIN codes

    Energy Technology Data Exchange (ETDEWEB)

    Sommerfeld, J.T.

    1976-05-01

    A mathematical model and associated computer program were developed to simulate the steady-state operation of wiped-film evaporators for the concentration of typical waste solutions produced at the Savannah River Plant. In this model, which treats either a horizontal or a vertical wiped-film evaporator as a plug-flow device with no backmixing, three fundamental phenomena are described: sensible heating of the waste solution, vaporization of water, and crystallization of solids from solution. Physical property data were coded into the computer program, which performs the calculations of this model. Physical properties of typical waste solutions and of the heating steam, generally as analytical functions of temperature, were obtained from published data or derived by regression analysis of tabulated or graphical data. Preliminary results from tests of the Savannah River Laboratory semiworks wiped-film evaporators were used to select a correlation for the inside film heat transfer coefficient. This model should be a useful aid in the specification, operation, and control of the full-scale wiped-film evaporators proposed for application under plant conditions. In particular, it should be of value in the development and analysis of feed-forward control schemes for the plant units. Also, this model can be readily adapted, with only minor changes, to simulate the operation of wiped-film evaporators for other conceivable applications, such as the concentration of acid wastes.

  16. Negative pressure characteristics of an evaporating meniscus at nanoscale

    Directory of Open Access Journals (Sweden)

    Maroo Shalabh

    2011-01-01

    Full Text Available Abstract This study aims at understanding the characteristics of negative liquid pressures at the nanoscale using molecular dynamics simulation. A nano-meniscus is formed by placing liquid argon on a platinum wall between two nano-channels filled with the same liquid. Evaporation is simulated in the meniscus by increasing the temperature of the platinum wall for two different cases. Non-evaporating films are obtained at the center of the meniscus. The liquid film in the non-evaporating and adjacent regions is found to be under high absolute negative pressures. Cavitation cannot occur in these regions as the capillary height is smaller than the critical cavitation radius. Factors which determine the critical film thickness for rupture are discussed. Thus, high negative liquid pressures can be stable at the nanoscale, and utilized to create passive pumping devices as well as significantly enhance heat transfer rates.

  17. The evaporation of gender policies in the patriarchal cooking pot.

    Science.gov (United States)

    Longwe, S H

    1997-05-01

    The author argues that gender-oriented policies tend to evaporate within the bureaucracy of the typical international development agency. An agency is described as a "patriarchal cooking pot" upon which the lid normally remains closed. The pot is filled with patriarchal bias, implicit in the agency's values, ideology, development theory, organizational systems, and procedures. Policies for women's advancement are thrown into the pot into which there is considerable input, but no output. Officially, the policy exists, but the pot does not. However, over time the gender policies will likely evaporate in the pot because they threaten the internal patriarchal tradition of the agency, and because such policies would upset the close, brotherly relationship with recipient governments of developing countries. This article attempts to shed light upon the process of policy evaporation.

  18. Seedless Growth of Bismuth Nanowire Array via Vacuum Thermal Evaporation

    Science.gov (United States)

    Liu, Mingzhao; Nam, Chang-Yong; Zhang, Lihua

    2015-01-01

    Here a seedless and template-free technique is demonstrated to scalably grow bismuth nanowires, through thermal evaporation in high vacuum at RT. Conventionally reserved for the fabrication of metal thin films, thermal evaporation deposits bismuth into an array of vertical single crystalline nanowires over a flat thin film of vanadium held at RT, which is freshly deposited by magnetron sputtering or thermal evaporation. By controlling the temperature of the growth substrate the length and width of the nanowires can be tuned over a wide range. Responsible for this novel technique is a previously unknown nanowire growth mechanism that roots in the mild porosity of the vanadium thin film. Infiltrated into the vanadium pores, the bismuth domains (~ 1 nm) carry excessive surface energy that suppresses their melting point and continuously expels them out of the vanadium matrix to form nanowires. This discovery demonstrates the feasibility of scalable vapor phase synthesis of high purity nanomaterials without using any catalysts. PMID:26709727

  19. Modeling Tear Film Evaporation and Breakup with Duplex Films

    Science.gov (United States)

    Stapf, Michael; Braun, Richard; Begley, Carolyn; Driscoll, Tobin; King-Smith, Peter Ewen

    2015-11-01

    Tear film thinning, hyperosmolarity, and breakup can irritate and damage the ocular surface. Recent research hypothesizes deficiencies in the lipid layer may cause locally increased evaporation, inducing conditions for breakup. We consider a model for team film evolution incorporating two mobile fluid layers, the aqueous and lipid layers. In addition, we include the effects of salt concentration, osmosis, evaporation as modified by the lipid layer, and the polar portion of the lipid layer. Numerically solving the resulting model, we explore the conditions for tear film breakup and analyze the response of the system to changes in our parameters. Our studies indicate sufficiently fast peak values or sufficiently wide areas of evaporation promote TBU, as does diffusion of solutes. In addition, the Marangoni effect representing polar lipids dominates viscous dissipation from the non-polar lipid layer in the model. This work was supported in part by NSF grant 1412085 and NIH grant 1R01EY021794.

  20. Seedless Growth of Bismuth Nanowire Array via Vacuum Thermal Evaporation.

    Science.gov (United States)

    Liu, Mingzhao; Nam, Chang-Yong; Zhang, Lihua

    2015-12-21

    Here a seedless and template-free technique is demonstrated to scalably grow bismuth nanowires, through thermal evaporation in high vacuum at RT. Conventionally reserved for the fabrication of metal thin films, thermal evaporation deposits bismuth into an array of vertical single crystalline nanowires over a flat thin film of vanadium held at RT, which is freshly deposited by magnetron sputtering or thermal evaporation. By controlling the temperature of the growth substrate the length and width of the nanowires can be tuned over a wide range. Responsible for this novel technique is a previously unknown nanowire growth mechanism that roots in the mild porosity of the vanadium thin film. Infiltrated into the vanadium pores, the bismuth domains (~ 1 nm) carry excessive surface energy that suppresses their melting point and continuously expels them out of the vanadium matrix to form nanowires. This discovery demonstrates the feasibility of scalable vapor phase synthesis of high purity nanomaterials without using any catalysts.

  1. Changes in the Composition of Aromatherapeutic Citrus Oils during Evaporation

    Directory of Open Access Journals (Sweden)

    George W. Francis

    2015-01-01

    Full Text Available The composition of some commercial Citrus oils, lemon, sweet orange, and tangerine, designated for aromatherapy, was examined before and after partial evaporation in a stream of nitrogen. The intact oils contained the expected mixtures of mono- and sesquiterpenes, with hydrocarbons dominating and lesser amounts of oxygenated analogues making up the remainder. Gas chromatography-mass spectrometry was used to follow alterations in the relative amounts of the various components present as evaporation proceeded. Changes were marked, and in particular more volatile components present in the intact oils rapidly disappeared. Thus the balance of content was shifted away from monoterpene hydrocarbons towards the analogous alcohols and carbonyl compounds. The results of this differential evaporation are discussed and possible consequences for aromatherapy use are noted. The case of lemon oil was especially interesting as the relative amount of citral, a known sensitizer, remaining as time elapsed represented an increasing percentage of the total oil.

  2. A multi-component evaporation model for beam melting processes

    Science.gov (United States)

    Klassen, Alexander; Forster, Vera E.; Körner, Carolin

    2017-02-01

    In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.

  3. Modelling of heating and evaporation of n-Heptane droplets

    DEFF Research Database (Denmark)

    Yin, Chungen

    2015-01-01

    and azimuthal directions, respectively, on each of which the flow, heat and mass transfer are numerically solved using the finite volume method. During the transient heating and evaporation process, the interaction between the moving droplets and free-stream flow are properly considered. Droplet dynamics......-oil droplets are two key tasks. This paper presents an effort towards a generic model that is beneficial to both the tasks. A computer code for droplet heating and evaporation is developed in a generic 3D model framework. The droplets are discretized into a number of control volumes along the radial, polar...... and size are also updated accordingly. The model is validated by analytical solutions to simplified cases and also by experimental data on heating and evaporation of n-Heptane droplets available in literature. Finally, the routines to extend the validated model for the two tasks of the project...

  4. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2003-01-01

    for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the ue gas side, a model for the evaporator circuit and a model for the drum....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the ue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level uctuations in the drum. The dynamic model has been...... transfer, circulation in the evaporator circuit and water level uctuations in the drum....

  5. Modelling of Boiler Heating Surfaces and Evaporator Circuits

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2002-01-01

    Dynamic models for simulating boiler performance have been developed. Models for the ue gas side and for the evaporator circuit have been developed for the purpose of determining material temperatures and heat transfer from the ue gas side to the water-/steam side in order to simulate...... the circulation in the evaporator circuit. The models have been developed as Differential-Algebraic-Equation systems (DAE) and MATLAB has been applied for the integration of the models. In general MATLAB has proved to be very stable for these relatively stiff equation systems. Experimental verication is planned...... at a full scale plant equipped with instrumentation to verify heat transfer and circulation in the evaporator circuit....

  6. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the flue gas side, a model for the evaporator circuit and a model for the drum....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been...... transfer, circulation in the evaporator circuit and water level fluctuations in the drum....

  7. Surfactant-driven flow transitions in evaporating droplets

    CERN Document Server

    Marin, Alvaro; Rossi, Massimiliano; Kähler, Christian J

    2015-01-01

    An evaporating droplet is a dynamic system in which flow is spontaneously generated to minimize the surface energy, dragging particles to the borders and ultimately resulting in the so-called "coffee-stain effect". The situation becomes more complex at the droplet's surface, where surface tension gradients of different nature can compete with each other yielding different scenarios. With careful experiments and with the aid of 3D particle tracking techniques, we are able to show that different types of surfactants turn the droplet's surface either rigid or elastic, which alters the evaporating fluid flow, either enhancing the classical coffee-stain effect or leading to a total flow inversion. Our measurements lead to unprecedented and detailed measurements of the surface tension difference along an evaporating droplet's surface with good temporal and spatial resolution.

  8. Controllable evaporation of cesium from a dispenser oven.

    Science.gov (United States)

    Fantz, U; Friedl, R; Fröschle, M

    2012-12-01

    This instrument allows controlled evaporation of the alkali metal cesium over a wide range of evaporation rates. The oven has three unique features. The first is an alkali metal reservoir that uses a dispenser as a cesium source. The heating current of the dispenser controls the evaporation rate allowing generation of an adjustable and stable flow of pure cesium. The second is a blocking valve, which is fully metallic as is the body of the oven. This construction both reduces contamination of the dispenser and enables the oven to be operated up to 300 °C, with only small temperature variations (dispenser oven can be easily transferred to the other alkali-metals.

  9. Heat Transfer Performance for Evaporator of Absorption Refrigerating Machine

    Science.gov (United States)

    Kunugi, Yoshifumi; Usui, Sanpei; Ouchi, Tomihisa; Fukuda, Tamio

    An experiment was conducted to check the heat transfer performance of evaporators with grooved tubes for absorption refrigerating machines. Heat transfer rate of evaporators were 35kW and 70kW. The range of the flow rate of the sprayed refrigerant per unit length Γ was 1 to 50kg/hm, and the outside diameters of the tubes, D0 were 16 and 19.6 mm. About 80 to 100 % increase of heat transfer rate over a plane surfaced tube is obtained by using grooved tube. The heat transfer coefficients for evaporation are correlated by the equation αE0=(Γ/D0)1/2. The substantial surface area, which is about three times larger than that of plane surfaced tube, is used in the above correlation.

  10. Technologies of Selective Energy Supply at Evaporation of Food Solutes

    Directory of Open Access Journals (Sweden)

    Burdo O.G.

    2017-04-01

    Full Text Available The aim of the research is to create innovative evaporating equipment that can produce concentrates with a high content of solids, with a low level of thermal effects on raw materials. The significance of the solution of technological problems of the key process of food technologies - concentration of liquid solutions (juices, extracts, etc. is shown. Problems and scientific contradictions are formulated and the hypothesis on using of electromagnetic energy sources for direct energy transfer to solution’s moisture has been offered. The prospects of such an energy effect are proved by the energy management methods. The schemes of fuel energy conversion for the conventional thermal concentration technology and the innovative plant based on the electromagnetic energy generators are presented. By means of the similarity theory the obtained model is transformed to the criterial one depicted kinetic of evaporation process at the electromagnetic field action. The dimensionless capacity of the plant is expressed by the dependence between the Energetic effect number and relative moisture content. The scheme of automated experimental system for study of the evaporation process in the microwave field is shown. The experimental results of juice evaporation are presented. It has been demonstrated that the technologies of selective energy supply represent an effective tool for improvement of juice concentration evaporative plants. The main result of the research is design of the evaporator that allows reaching juice concentrates with °brix 95 at the temperature as low as 35 °С, i.e. 2…3 times superior than traditional technologies.

  11. Assessment of the Multi-Fluid Evaporator Technology

    Science.gov (United States)

    Quinn, Gregory; O'Connor, Edward

    2008-01-01

    Hamilton Sundstrand has developed a scalable evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It was designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used as a heat sink from Earth sea level conditions to the vacuum of space. The current shuttle configuration utilizes an ammonia boiler and water based flash evaporator system to achieve cooling at all altitudes. This system combines both functions into a single compact package with improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. A full-scale system uses multiple core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A single-core MFE engineering development unit (EDU) was built in 2006, followed by a full scale, four-core prototype in 2007. The EDU underwent extensive thermal testing while the prototype was being built. Lessons learned from the EDU were incorporated into the prototype and proven out in check-out testing. The EDU and prototype testing proved out the MFE's ability to passively control back-pressure, avoid unwanted icing, tolerate icing if it should occur, provide a three-to-one turn down ratio in heat load and scale up efficiently. Some issues with these first designs of the MFE have limited its ability to reject heat without liquid evaporant carry-over. However, they are due to the implementation of the design rather than the fundamentals of the technology. This paper discusses the background, development and present state of the Multi-Fluid Evaporator technology and concludes with efforts underway to advance the state-of-the-art.

  12. Trends in evaporation loss over the UK: 1962 to 2013

    Science.gov (United States)

    Blyth, Eleanor; Robinson, Emma; Martinez de la Torre, Alberto

    2017-04-01

    Many models of hydrology assume that an increase in air temperature will result in an increase in evaporation. However, there are some processes involved in transpiration (evaporation through the vegetation) that make the relationship more complicated: in a bid to conserve water, vegetation will reduce their stomata in response to drier soils and warmer drier air which leads to lower transpiration rates despite higher evaporative demands. In addition, the vegetation responds to increases in atmospheric carbon dioxide by closing their stomata, and this further reduces the transpiration. The JULES (Joint UK Land Environment Simulator) model, used widely in the UK to study the impacts of climate change on the environment, includes many of the processes that are likely to affect changes in water loss and its impact on large scale hydrology. A new assessment of the UK wide water balance for the last 52 years (1961 to 2013) at a 1km grid-scale has been made using this model in a system called CHESS (Climate Hydrology and Ecology research Support System). Some data is available to check the overall water balance. For instance, river flow data can be used at an annual time scale to capture the water balance, while evaporation data from flux towers can be used at some locations around the UK for the few years that it is available to evaluate the seasonal variations of evaporation. Both of these methods provide imperfect but useful evidence. Here we present the results of the modelling exercise and the evaluation: long term increasing evaporation loss trends are clearly present in the model output and these are discussed with respect to the different drivers of change.

  13. Silicon Isotopic Fractionation of CAI-like Vacuum Evaporation Residues

    Energy Technology Data Exchange (ETDEWEB)

    Knight, K; Kita, N; Mendybaev, R; Richter, F; Davis, A; Valley, J

    2009-06-18

    Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquids (Richter et al., 2002, 2007a). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, {alpha}{sub Si}, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that {alpha}{sub Si} = 0.98985 {+-} 0.00044 (2{sigma}) for {sup 29}Si/{sup 28}Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 C. This value is different from what has been reported for evaporation of liquid Mg{sub 2}SiO{sub 4} (Davis et al., 1990) and of a melt with CI chondritic proportions of the major elements (Wang et al., 2001). There appears to be some compositional control on {alpha}{sub Si}, whereas no compositional effects have been reported for {alpha}{sub Mg}. We use the values of {alpha}Si and {alpha}Mg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose

  14. Technical potential of evaporative cooling in Danish and European condition

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Andersen, Christian Hede; Heiselberg, Per Kvols

    2015-01-01

    Evaporative cooling is a very interesting high temperature cooling solution that has potential to save energy comparing to refrigerant cooling systems and at the same time provide more cooling reliability than mechanical or natural ventilation system without cooling. Technical cooling potential...... of 5 different evaporative systems integrated in the ventilation system is investigated in this article. Annual analysis is conducted based on hourly weather data for 15 cities located in Denmark and 123 European cities. Investigated systems are direct, indirect, combinations of direct and indirect...

  15. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    DEFF Research Database (Denmark)

    Bilde, Merete; Zardini, Alessandro Alessio; Hong, Juan

    volatile organic molecules. Saturation vapor pressure and the associated temperature dependence (dH) are key parameters for improving predictive atmospheric models. In this work we combine experiments and thermodynamic modeling to investigate these parameters for a series of polyols, so-called sugar...... are allowed to evaporate in a laminar flow reactor, and changes in particle size as function of evaporation time are determined using a scanning mobility particle sizer system. In this work saturation vapor pressures of sugar alcohols at several temperatures have been inferred from such measurements using...

  16. Evaporation/Antievaporation and energy conditions in alternative gravity

    Science.gov (United States)

    Addazi, Andrea

    2018-02-01

    We discuss the evaporation and antievaporation instabilities of Nariai solution in extended theories of gravity. These phenomena were explicitly shown in several different extensions of General Relativity, suggesting that a universal cause is behind them. We show that evaporation and antievaporation are originated from deformations of energy conditions on the Nariai horizon. Energy conditions get new contributions from the extra propagating degrees of freedom, which can provide extra focalizing or antifocalizing terms in the Raychaudhuri equation. We show the two explicit cases of f(R)-gravity and Gauss-Bonnet gravity.

  17. Evaporation method of recording media onto cylindrical information carriers

    Science.gov (United States)

    Tarnai, Andriy; Bogdanova, Olessya V.; Kyrylenko, Valeriy; Durkot, Myron; Petrov, Viacheslav V.; Kryuchin, Andrey A.

    1997-02-01

    At present there exist many methods of preparing film structures on an inner surface of cylindrical elements by vacuum technology. They are designed for evaporation of metallic, oxide and other surface layers mainly and cannot practically be used for the formation of optical layers using multi-component, strong dissociative materials. Therefore we have developed the flash evaporation method using fiber as a film-forming material. This method allows us to obtain defect-free, x-ray amorphous, uniform over the thickness recording layers from multi-component strong dissociative materials.

  18. Performance Tests of Shell and Plate Type Evaporator for OTEC

    Science.gov (United States)

    Nakaoka, Tsutomu; Uehara, Haruo

    Performance tests on a shell and plate type evaporator (total surface area = 21.95m2, length = 1450mm, width = 235mm, plate number = 100) for ocean thermal energy conversion (OTEC) plants. Freon 22 (R22) and ammonia (NH3) are used as working fluid. The empirical correlations are proporsed in order to predict the boiling heat transfer when using R22 and NH3 and water side heat transfer coefficients for a shell and plate type evaporator. The water side pressure drop is about 3 m at the warm water velocity of 0.7 m/s. The water side friction factor is obtained.

  19. Numerical simulation of water evaporation inside vertical circular tubes

    Science.gov (United States)

    Ocłoń, Paweł; Nowak, Marzena; Majewski, Karol

    2013-10-01

    In this paper the results of simplified numerical analysis of water evaporation in vertical circular tubes are presented. The heat transfer in fluid domain (water or wet steam) and solid domain (tube wall) is analyzed. For the fluid domain the temperature field is calculated solving energy equation using the Control Volume Method and for the solid domain using the Finite Element Method. The heat transfer between fluid and solid domains is conjugated using the value of heat transfer coefficient from evaporating liquid to the tube wall. It is determined using the analytical Steiner-Taborek correlation. The pressure changes in fluid are computed using Friedel model.

  20. A generalized complementary relationship between actual and potential evaporation defined by a reference surface temperature

    Science.gov (United States)

    Aminzadeh, Milad; Roderick, Michael L.; Or, Dani

    2016-01-01

    The definition of potential evaporation remains widely debated despite its centrality for hydrologic and climatic models. We employed an analytical pore-scale representation of evaporation from terrestrial surfaces to define potential evaporation using a hypothetical steady state reference temperature that is common to both air and evaporating surface. The feedback between drying land surfaces and overlaying air properties, central in the Bouchet (1963) complementary relationship, is implicitly incorporated in the hypothetical steady state where the sensible heat flux vanishes and the available energy is consumed by evaporation. Evaporation rates predicted based on the steady state reference temperature hypothesis were in good agreement with class A pan evaporation measurements suggesting that evaporation from pans occurs with negligible sensible heat flux. The model facilitates a new generalization of the asymmetric complementary relationship with the asymmetry parameter b analytically predicted for a wide range of meteorological conditions with initial tests yielding good agreement between measured and predicted actual evaporation.

  1. Measuring evaporation from soil surfaces for environmental and ...

    African Journals Online (AJOL)

    There are many reasons for the need to assess rates and quantities of evaporation or evapotranspiration from natural soil surfaces, the surfaces of deposits of mine or industrial waste, or soil-covered waste surfaces. These include assessing water balances for nearsurface soil strata, landfills, tailings dams and waste dumps ...

  2. Condensation and evaporation transitions in deep capillary grooves.

    Science.gov (United States)

    Malijevský, Alexandr; Parry, Andrew O

    2014-09-03

    We study the order of capillary condensation and evaporation transitions of a simple fluid adsorbed in a deep capillary groove using a fundamental measure density functional theory (DFT). The walls of the capillary interact with the fluid particles via long-ranged, dispersion, forces while the fluid-fluid interaction is modelled as a truncated Lennard-Jones-like potential. We find that below the wetting temperature Tw condensation is first-order and evaporation is continuous with the metastability of the condensation being well described by the complementary Kelvin equation. In contrast above Tw both phase transitions are continuous and their critical singularities are determined. In addition we show that for the evaporation transition above Tw there is an elegant mapping, or covariance, with the complete wetting transition occurring at a planar wall. Our numerical DFT studies are complemented by analytical slab model calculations which explain how the asymmetry between condensation and evaporation arises out of the combination of long-ranged forces and substrate geometry.

  3. Comparison of diurnal dynamics in evaporation rate between bare ...

    Indian Academy of Sciences (India)

    between bare soil and moss-crusted soil are expected to be predicted by soil water content. 1. ... face for evaporation due to their high water reten- tion (West 1990 ..... demand (Allen et al. 1998). While, when soil water content was in a lower level (Day 3–6), the evap- oration rate was evidently reduced. We considered.

  4. Total evaporation estimates from a Renosterveld and dryland wheat ...

    African Journals Online (AJOL)

    2010-07-09

    Jul 9, 2010 ... solar radiation. Net irradiance, soil heat flux, rainfall, temperature, humidity, wind speed and direction, solar radia- tion, temperature gradient .... Average Kc. (c). Figure 3. Total evaporation from a Renosterveld surface for selected window periods, representative of different seasons, over the period from ...

  5. Mathematical Model for Direct Evaporative Space Cooling Systems ...

    African Journals Online (AJOL)

    This paper deals with the development of a simple mathematical model for experimental validation of the performance of a small evaporative cooling system in a tropical climate. It also presents the coefficient of convective heat transfer of wide range of temperatures based on existing model. Extensive experiments have ...

  6. Si-to-Si wafer bonding using evaporated glass

    DEFF Research Database (Denmark)

    Reus, Roger De; Lindahl, M.

    1997-01-01

    Anodic bonding of Si to Si four inch wafers using evaporated glass was performed in air at temperatures ranging from 300°C to 450°C. Although annealing of Si/glass structures around 340°C for 15 minutes eliminates stress, the bonded wafer pairs exhibit compressive stress. Pull testing revealed...

  7. An Evaporative Cooling Model for Teaching Applied Psychrometrics

    Science.gov (United States)

    Johnson, Donald M.

    2004-01-01

    Evaporative cooling systems are commonly used in controlled environment plant and animal production. These cooling systems operate based on well defined psychrometric principles. However, students often experience considerable difficulty in learning these principles when they are taught in an abstract, verbal manner. This article describes an…

  8. Obliquely co-evaporated thin films for magnetic recording

    NARCIS (Netherlands)

    van Kranenburg, H.

    1992-01-01

    A systematic research is carried out on obliquely ( co- ) evaporated media for magnetic recording applications. The investigated materials concern Co-alloys, being Co-Cr, Co-Ag and Co- Ta. The re1ations between deposition parameters, morphology , texture and rnagnetic behaviour were swdied. The

  9. Oven Evaporates Isopropyl Alcohol Without Risk Of Explosion

    Science.gov (United States)

    Morgan, Gene E.; Hoult, William S.

    1996-01-01

    Ordinary convection oven with capacity of 1 ft.(sup3) modified for use in drying objects washed in isopropyl alcohol. Nitrogen-purge equipment and safety interlocks added to prevent explosive ignition of flammable solvent evaporating from object to be dried.

  10. Studies on tin oxide films prepared by electron beam evaporation ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Transparent conducting tin oxide thin films have been prepared by electron beam evaporation and spray pyrolysis methods. Structural, optical and electrical properties were studied under different pre- paration conditions like substrate temperature, solution flow rate and rate of deposition. Resistivity of un-.

  11. Evaporation of biomass fast pyrolysis oil: evaluation of char formation

    NARCIS (Netherlands)

    Balegedde Ramachandran, P.; van Rossum, G.; van Swaaij, Willibrordus Petrus Maria; Kersten, Sascha R.A.

    2009-01-01

    Evaporation experiments of biomass fast pyrolysis oil and its aqueous fractions at low (TGA-10°C/min, Glass tube-100°C/min) and high (atomization ~10 6°C/min) heating rates are performed. Slow heating of pyrolysis oil produced ~28% char (on carbon basis), whereas atomization of oil droplets (~117µm)

  12. Process Control Plan for 242A Evaporator Campaign

    Energy Technology Data Exchange (ETDEWEB)

    LE, E.Q.

    2000-04-06

    The wastes in tanks 107-AP and 108-AP are designated as feed for 242-A Evaporator Campaign 2000-1, which is currently scheduled for the week of April 17, 2000. Waste in tanks 107-AP and 108-AP is predominantly comprised of saltwell liquor from 200 West Tank Farms.

  13. Identification and predictive control of a multistage evaporator

    NARCIS (Netherlands)

    Atuonwu, J.C.; Cao, Y.; Rangaiah, G.P.; Tadé, M.O.

    2010-01-01

    A recurrent neural network-based nonlinear model predictive control (NMPC) scheme in parallel with PI control loops is developed for a simulation model of an industrial-scale five-stage evaporator. Input–output data from system identification experiments are used in training the network using the

  14. Evaporation over the Arabian Sea during two contrasting monsoons

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sadhuram, Y.

    monsoon rainfall. It is noticed that in general, the sea surface temperatures are higher in 1983 throughout the monsoon season than in 1979 in the Arabian Sea excepting western region. The mean rates of evaporation on a seasonal scale are found to be equal...

  15. Global root zone storage capacity from satellite-based evaporation

    Science.gov (United States)

    Wang-Erlandsson, Lan; Bastiaanssen, Wim G. M.; Gao, Hongkai; Jägermeyr, Jonas; Senay, Gabriel B.; van Dijk, Albert I. J. M.; Guerschman, Juan P.; Keys, Patrick W.; Gordon, Line J.; Savenije, Hubert H. G.

    2016-04-01

    This study presents an "Earth observation-based" method for estimating root zone storage capacity - a critical, yet uncertain parameter in hydrological and land surface modelling. By assuming that vegetation optimises its root zone storage capacity to bridge critical dry periods, we were able to use state-of-the-art satellite-based evaporation data computed with independent energy balance equations to derive gridded root zone storage capacity at global scale. This approach does not require soil or vegetation information, is model independent, and is in principle scale independent. In contrast to a traditional look-up table approach, our method captures the variability in root zone storage capacity within land cover types, including in rainforests where direct measurements of root depths otherwise are scarce. Implementing the estimated root zone storage capacity in the global hydrological model STEAM (Simple Terrestrial Evaporation to Atmosphere Model) improved evaporation simulation overall, and in particular during the least evaporating months in sub-humid to humid regions with moderate to high seasonality. Our results suggest that several forest types are able to create a large storage to buffer for severe droughts (with a very long return period), in contrast to, for example, savannahs and woody savannahs (medium length return period), as well as grasslands, shrublands, and croplands (very short return period). The presented method to estimate root zone storage capacity eliminates the need for poor resolution soil and rooting depth data that form a limitation for achieving progress in the global land surface modelling community.

  16. Total evaporation estimates from a Renosterveld and dryland wheat ...

    African Journals Online (AJOL)

    Accurate quantification of the water balance, in particular evapotranspiration, is fundamental in managing water resources, especially in semi-arid areas. The objective of this study was to compare evaporation from endemic vegetation – Renosterveld – and a dryland wheat/fallow cropping system. The study was carried out ...

  17. Evaporation of iodine-containing off-gas scrubber solution

    Science.gov (United States)

    Partridge, J.A.; Bosuego, G.P.

    1980-07-14

    Mercuric nitrate-nitric acid scrub solutions containing radioiodine may be reduced in volume without excessive loss of volatile iodine. The use of concentrated nitric acid during an evaporation process oxidizes the mercury-iodide complex to a less volatile mercuric iodate precipitate.

  18. The evaporation of the charged and uncharged water drops ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    assumed to be the temperature of adiabatic satura- tion. Their analysis also suffered from inaccuracies in determining the values of water vapour diffu- sivity and terminal ..... its evaporation. This heat-mass transfer process causes a temperature difference between the drop and its environment. The time required for a venti-.

  19. Modeling and computational simulation of the osmotic evaporation process

    Directory of Open Access Journals (Sweden)

    Freddy Forero Longas

    2016-09-01

    Conclusions: It was found that for the conditions studied the Knudsen diffusion model is most suitable to describe the transfer of water vapor through the hydrophobic membrane. Simulations developed adequately describe the process of osmotic evaporation, becoming a tool for faster economic development of this technology.

  20. Using Of Learning Vector Quantization Network for Pan Evaporation Estimation

    Directory of Open Access Journals (Sweden)

    Kamil7 A. Abdulmohsen

    2013-05-01

    Full Text Available A modern technique is presented to study the evaporation process which is considered as an important component of the hydrological cycle. The Pan Evaporation depth is estimated depending upon four metrological factors viz. (temperature, relative humidity, sunshine, and wind speed. Unsupervised Artificial Neural Network has been proposed to accomplish the study goal, specifically, a type called Linear Vector Quantitization, (LVQ.  A step by step method is used to cope with difficulties that usually associated with computation procedures inherent in these kind of networks. Such systematic approach may close the gap between the hesitation of the user to make use of the capabilities of these type of neural networks and the relative complexity involving the computations procedures. The results reveal the possibility of using LVQ for of Pan Evaporation depth estimation where a good agreement has been noticed between the outputs of the proposed network and the observed values of the Pan Evaporation depth with a correlation coefficient of 0.986. 

  1. LET dependence of bubbles evaporation pulses in superheated emulsion detectors

    Science.gov (United States)

    Di Fulvio, Angela; Huang, Jean; Staib, Lawrence; d'Errico, Francesco

    2015-06-01

    Superheated emulsion detectors are suspensions of metastable liquid droplets in a compliant inert medium. Upon interaction with ionizing radiation, the droplets evaporate, generating visible bubbles. Bubble expansion associated with the boiling of the droplets is accompanied by pressure pulses in both the sonic and ultrasonic frequency range. In this work, we analyzed the signal generated by bubble evaporation in the frequency and time domain. We used octafluoropropane (R-218) based emulsions, sensitive to both photons and neutrons. The frequency content of the detected pulses appears to extend well into the hundreds of kHz, beyond the range used in commercial devices to count bubbles as they are formed (typically 1-10 kHz). Kilohertz components characterize the early part of the waveforms, potentially containing information about the energetics of the explosive bubble initial growth phase. The power spectral density of the acoustic signal produced by neutron-induced evaporation shows a characteristic frequency pattern in the 200-400 kHz range, which is not observed when bubbles evaporate upon gamma ray-induced irradiation. For practical applications, detection of ultrasonic pulses associated with the boiling of the superheated drops can be exploited as a fast readout method, negligibly affected by mechanical ambient noise.

  2. The evaporation of the charged and uncharged water drops ...

    Indian Academy of Sciences (India)

    A laboratory experiment has been performed to study the effect of ventilation on the rate of evaporation of the millimeter sized charged and uncharged water drops suspended in a vertical wind tunnel. The linear relationship, = 0.907 + 0.282 , observed between the mean ventilation coefficient, , and a ...

  3. A Risk Assessment Methodology for Toxic Chemicals Evaporation ...

    African Journals Online (AJOL)

    This study presents a method for determining the mass transfer coefficient for the toxic chemicals evaporation from circular pools formed due to the failure of plant integrity or escape from valves. The approach used in this present research work is to develop a correlation by a robust optimization technique known as Genetic ...

  4. Measurement of grassland evaporation using a surface-layer ...

    African Journals Online (AJOL)

    Procedures for checking SLS data integrity in real-time are highlighted as are the post-data collection rejection procedures. From the H estimates, using SLS and measurements of soil heat flux and net irradiance, evaporation rates were calculated as a residual of the shortened energy balance equation and compared with ...

  5. Multicomponent Droplet Evaporation on Chemical Micro-Patterned Surfaces.

    Science.gov (United States)

    He, Minghao; Liao, Dong; Qiu, Huihe

    2017-02-03

    The evaporation and dynamics of a multicomponent droplet on a heated chemical patterned surface were presented. Comparing to the evaporation process of a multicomponent droplet on a homogenous surface, it is found that the chemical patterned surface can not only enhance evaporation by elongating the contact line, but also change the evaporation process from three regimes for the homogenous surface including constant contact line (CCL) regime, constant contact angle (CCA) regime and mix mode (MM) to two regimes, i.e. constant contact line (CCL) and moving contact line (MCL) regimes. The mechanism of contact line stepwise movement in MCL regimes in the microscopic range is investigated in detail. In addition, an improved local force model on the contact line was employed for analyzing the critical receding contact angles on homogenous and patterned surfaces. The analysis results agree well for both surfaces, and confirm that the transition from CCL to MCL regimes indicated droplet composition changes from multicomponent to monocomponent, providing an important metric to predict and control the dynamic behavior and composition of a multicomponent droplet using a patterned surface.

  6. Experimental study of air evaporative cooling process using microporous membranes

    Directory of Open Access Journals (Sweden)

    Englart Sebastian

    2017-01-01

    Full Text Available This article describes the potential use of microporous membranes in evaporative cooling applications for air conditioning. The structure of membrane contractor and the measuring device are described. On the basis of the results of the measurements air cooling effectiveness coefficient has been determined.

  7. Structural characterization of vacuum evaporated ZnSe thin films

    Indian Academy of Sciences (India)

    3.2 Average internal stress and microstrain. Thornton and Hoffmann (1989) revealed that all vacuum evaporated films are in a state of stress. The total stress is composed of a thermal stress and an intrinsic stress. The thermal stress is due to the difference in the thermal ex- pansion coefficients of the film and substrate ...

  8. Actual evaporation estimation from infrared measurement of soil surface temperature

    Directory of Open Access Journals (Sweden)

    Davide Pognant

    2013-09-01

    Full Text Available Within the hydrological cycle, actual evaporation represents the second most important process in terms of volumes of water transported, second only to the precipitation phenomena. Several methods for the estimation of the Ea were proposed by researchers in scientific literature, but the estimation of the Ea from potential evapotranspiration often requires the knowledge of hard-to-find parameters (e.g.: vegetation morphology, vegetation cover, interception of rainfall by the canopy, evaporation from the canopy surface and uptake of water by plant roots and many existing database are characterized by missing or incomplete information that leads to a rough estimation of the actual evaporation amount. Starting from the above considerations, the aim of this study is to develop and validate a method for the estimation of the Ea based on two steps: i the potential evaporation estimation by using the meteorological data (i.e. Penman-Monteith; ii application of a correction factor based on the infrared soil surface temperature measurements. The dataset used in this study were collected during two measurement campaigns conducted both in a plain testing site (Grugliasco, Italy, and in a mountain South-East facing slope (Cogne, Italy. During those periods, hourly measurement of air temperature, wind speed, infrared surface temperature, soil heat flux, and soil water content were collected. Results from the dataset collected in the two testing sites show a good agreement between the proposed method and reference methods used for the Ea estimation.

  9. Thermoregulation and evaporative water loss in growing African ...

    African Journals Online (AJOL)

    Kalahari Gemsbok National Park, Private Bag X5890, Upington, 8800 Republic of South AfricaWith an increase in mass, weaned giant rat pups Cricetomys gambianus, showed a corresponding decline in mass specific metabolism, conductance and evaporative water loss. The decline in metabolism correlates better with ...

  10. A microfluidic device based on an evaporation-driven micropump.

    Science.gov (United States)

    Nie, Chuan; Frijns, Arjan J H; Mandamparambil, Rajesh; den Toonder, Jaap M J

    2015-04-01

    In this paper we introduce a microfluidic device ultimately to be applied as a wearable sweat sensor. We show proof-of-principle of the microfluidic functions of the device, namely fluid collection and continuous fluid flow pumping. A filter-paper based layer, that eventually will form the interface between the device and the skin, is used to collect the fluid (e.g., sweat) and enter this into the microfluidic device. A controllable evaporation driven pump is used to drive a continuous fluid flow through a microfluidic channel and over a sensing area. The key element of the pump is a micro-porous membrane mounted at the channel outlet, such that a pore array with a regular hexagonal arrangement is realized through which the fluid evaporates, which drives the flow within the channel. The system is completely fabricated on flexible polyethylene terephthalate (PET) foils, which can be the backbone material for flexible electronics applications, such that it is compatible with volume production approaches like Roll-to-Roll technology. The evaporation rate can be controlled by varying the outlet geometry and the temperature. The generated flows are analyzed experimentally using Particle Tracking Velocimetry (PTV). Typical results show that with 1 to 61 pores (diameter = 250 μm, pitch = 500 μm) flow rates of 7.3 × 10(-3) to 1.2 × 10(-1) μL/min are achieved. When the surface temperature is increased by 9.4°C, the flow rate is increased by 130 %. The results are theoretically analyzed using an evaporation model that includes an evaporation correction factor. The theoretical and experimental results are in good agreement.

  11. Water sources, mixing and evaporation in the Akyatan lagoon, Turkey

    Science.gov (United States)

    Lécuyer, C.; Bodergat, A.-M.; Martineau, F.; Fourel, F.; Gürbüz, K.; Nazik, A.

    2012-12-01

    Akyatan lagoon, located southeast of Turkey along the Mediterranean coast, is a choked and hypersaline lagoon, and hosts a large and specific biodiversity including endangered sea turtles and migrating birds. Physicochemical properties of this lagoon were investigated by measuring temperature, salinity, and hydrogen and oxygen isotope ratios of its waters at a seasonal scale during years 2006 and 2007. Winter and spring seasons were dominated by mixing processes between freshwaters and Mediterranean seawater. The majority of spring season waters are formed by evapoconcentration of brackish water at moderate temperatures of 22 ± 2 °C. During summer, hypersaline waters result from evaporation of seawater and brackish waters formed during spring. Evaporation over the Akyatan lagoon reaches up to 76 wt% based on salinity measurements and operated with a dry (relative humidity of 0.15-0.20) and hot (44 ± 6 °C) air. These residual waters were characterized by the maximal seasonal isotopic enrichment in both deuterium and 18O relative to VSMOW. During autumn, most lagoonal waters became hypersaline and were formed by evaporation of waters that had isotopic compositions and salinities close to that of seawater. These autumnal hypersaline waters result from an air humidity close to 0.45 and an atmospheric temperature of evaporation of 35 ± 5 °C, which are responsible for up to 71 wt% of evaporation, with restricted isotopic enrichments relative to VSMOW. During the warm seasons, the combination of air humidity, wind velocity and temperature were responsible for a large kinetic component in the total isotopic fractionation between water liquid and water vapour.

  12. Gold Wire-networks: Particle Array Guided Evaporation Lithograpy

    KAUST Repository

    Lone, Saifullah

    2015-06-29

    We exploited the combination of dry deposition of monolayer of 2D (two dimensional) templates, lift-up transfer of 2D template onto flat surfaces and evaporation lithography [1] to fabricate gold micro- and submicron size wire networks. The approach relies upon the defect free dry deposition of 2D monolayer of latex particles [2] on patterned silicon template and flat PDMS-substrate to create square centered and honey-comb wire networks respectively. The process is followed by lift-up transfer of 2D latex crystal on glass substrate. Subsequently, a small amount of AuNP-suspension is doped on top of the transferred crystal; the suspension is allowed to spread instantaneously and dried at low temperature. The liquid evaporates uniformly to the direction perpendicular to glass substrate. During evaporation, AuNPs are de-wetted along with the movement of liquid to self-assemble in-between the inter-particle spaces and therefore, giving rise to liquid-bridge networks which upon delayed evaporation, transforms into wire networks. The approach is used to fabricate both micro- and submicron wire-networks by simply changing the template dimensions. One of the prime motives behind this study is to down-scale the existing particle array template-based evaporation lithography process to fabricate connected gold wire networks at both micro- and submicron scale. Secondly, the idea of combining the patterned silicon wafer with lifted latex particle template creates an opportunity to clean and res-use the patterned wafer more often and thereby, saving fabrication time and resources. Finally, we illustrated the validity of this approach by creating an easy and high-speed approach to develop gold wire networks on a flexible substrate with a thin deposited adhesive. These advances will not only serve as a platform to scale up the production, but also demonstrated that the fabrication method can produce metallic wire networks of different scale and onto a variety of substrates.

  13. Testing of the Multi-Fluid Evaporator Engineering Development Unit

    Science.gov (United States)

    Quinn, Gregory; O'Connor, Ed; Riga, Ken; Anderson, Molly; Westheimer, David

    2007-01-01

    Hamilton Sundstrand is under contract with the NASA Johnson Space Center to develop a scalable, evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It is being designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. The current Shuttle configuration utilizes an ammonia boiler and flash evaporator system to achieve cooling at all altitudes. The MFE system combines both functions into a single compact package with significant weight reduction and improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. The full scale MFE prototype will be constructed with four core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A sub-scale MFE engineering development unit (EDU) has been built, and is identical to one of the four sections of a full scale prototype. The EDU has completed testing at Hamilton Sundstrand. The overall test objective was to determine the thermal performance of the EDU. The first set of tests simulated how each of the four sections of the prototype would perform by varying the chamber pressure, evaporant flow rate, coolant flow rate and coolant temperature. A second set of tests was conducted with an outlet steam header in place to verify that the outlet steam orifices prevent freeze-up in the core while also allowing the desired thermal turn-down ratio. This paper discusses the EDU tests and results.

  14. Mapping energetics of atom probe evaporation events through first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, Joaquín, E-mail: jperaltac@gmail.com [Department of Materials Science and Engineering and Institute for Combinatorial Discovery, Iowa State University, 2220 Hoover Hall, Iowa State University, Ames, IA 50011-2230 (United States); Broderick, Scott R., E-mail: sbroderick@iastate.edu [Department of Materials Science and Engineering and Institute for Combinatorial Discovery, Iowa State University, 2220 Hoover Hall, Iowa State University, Ames, IA 50011-2230 (United States); Rajan, Krishna, E-mail: krajan@iastate.edu [Department of Materials Science and Engineering and Institute for Combinatorial Discovery, Iowa State University, 2220 Hoover Hall, Iowa State University, Ames, IA 50011-2230 (United States)

    2013-09-15

    The purpose of this work is to use atomistic modeling to determine accurate inputs into the atom probe tomography (APT) reconstruction process. One of these inputs is evaporation field; however, a challenge occurs because single ions and dimers have different evaporation fields. We have calculated the evaporation field of Al and Sc ions and Al–Al and Al–Sc dimers from an L1{sub 2}-Al{sub 3}Sc surface using ab initio calculations and with a high electric field applied to the surface. The evaporation field is defined as the electric field at which the energy barrier size is calculated as zero, corresponding to the minimum field that atoms from the surface can break their bonds and evaporate from the surface. The evaporation field of the surface atoms are ranked from least to greatest as: Al–Al dimer, Al ion, Sc ion, and Al–Sc dimer. The first principles results were compared with experimental data in the form of an ion evaporation map, which maps multi-ion evaporations. From the ion evaporation map of L1{sub 2}-Al{sub 3}Sc, we extract relative evaporation fields and identify that an Al–Al dimer has a lower evaporation field than an Al–Sc dimer. Additionally, comparatively an Al–Al surface dimer is more likely to evaporate as a dimer, while an Al–Sc surface dimer is more likely to evaporate as single ions. These conclusions from the experiment agree with the ab initio calculations, validating the use of this approach for modeling APT energetics. - Highlights: ► Calculated evaporation field of monomer and dimer atom probe evaporations. ► Determined relative evaporation fields using ion evaporation maps. ► Compared the experimental and calculated results and found that they agreed.

  15. A kinetic model of droplet heating and evaporation: Effects of inelastic collisions and a non-unity evaporation coefficient

    KAUST Repository

    Sazhin, Sergei S.

    2013-01-01

    The previously developed kinetic model for droplet heating and evaporation into a high pressure air is generalised to take into account the combined effects of inelastic collisions between molecules in the kinetic region, a non-unity evaporation coefficient and temperature gradient inside droplets. It is pointed out that for the parameters typical for Diesel engine-like conditions, the heat flux in the kinetic region is a linear function of the vapour temperature at the outer boundary of this region, but practically does not depend on vapour density at this boundary for all models, including and not including the effects of inelastic collisions, and including and not including the effects of a non-unity evaporation coefficient. For any given temperature at the outer boundary of the kinetic region the values of the heat flux are shown to decrease with increasing numbers of internal degrees of freedom of the molecules. The rate of this decrease is strong for small numbers of these degrees of freedom but negligible when the number of these degrees exceeds 20. This allows us to restrict the analysis to the first 20 arbitrarily chosen degrees of freedom of n-dodecane molecules when considering the effects of inelastic collisions. The mass flux at this boundary decreases almost linearly with increasing vapour density at the same location for all above-mentioned models. For any given vapour density at the outer boundary of the kinetic region the values of the mass flux are smaller for the model, taking into account the contribution of internal degrees of freedom, than for the model ignoring these degrees of freedom. It is shown that the effects of inelastic collisions lead to stronger increase in the predicted droplet evaporation time in Diesel engine-like conditions relative to the hydrodynamic model, compared with the similar increase predicted by the kinetic model considering only elastic collisions. The effects of a non-unity evaporation coefficient are shown to be

  16. Bubble-assisted film evaporation correlation for saline water at sub-atmospheric pressures in horizontal-tube evaporator

    KAUST Repository

    Shahzad, Muhammad Wakil

    2013-01-01

    In falling film evaporators, the overall heat transfer coefficient is controlled by film thickness, velocity, liquid properties and the temperature differential across the film layer. This article presents the heat transfer behavior for evaporative film boiling on horizontal tubes, but working at low pressures of 0.93-3.60 kPa (corresponding solution saturation temperatures of 279-300 K) as well as seawater salinity of 15,000 to 90,000 mg/l or ppm. Owing to a dearth of literature on film-boiling at these conditions, the article is motivated by the importance of evaporative film boiling in the desalination processes such as the multi-effect distillation (MED) or multi-stage flashing (MSF): It is observed that in addition to the above-mentioned parameters, evaporative heat transfer of seawater is affected by the emergence of micro-bubbles within the thin film layer, particularly when the liquid saturation temperatures drop below 298 K (3.1 kPa). Such micro bubbles are generated near to the tube wall surfaces and they enhanced the heat transfer by two or more folds when compared with the predictions of conventional evaporative film boiling. The appearance of micro-bubbles is attributed to the rapid increase in the specific volume of vapor, i.e., dv/dT, at low saturation temperature conditions. A new correlation is thus proposed in this article and it shows good agreement to the measured data with an experimental uncertainty of 8% and regression RMSE of 3.5%. © 2012 Elsevier Ltd. All rights reserved.

  17. Diagnosis of regional evaporation by remote sensing to support irrigation performance assessment

    NARCIS (Netherlands)

    Bastiaanssen, W.G.M.; Wal, van der T.; Visser, T.N.M.

    1996-01-01

    Performance assessment indicators, being functions of evaporation, are useful tools to evaluate the actual functioning of an irrigation system. The spatial variability of evaporation in large irrigation schemes makes its determination with conventional point measurements almost impossible. A new

  18. Quantification of simultaneous solvent evaporation and chemical curing in thermoset coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2010-01-01

    The mechanisms of simultaneous solvent evaporation and film formation in high-solids thermoset coatings are considered. The relevant phenomena, chemical reactions, solvent diffusion and evaporation, gelation, vitrification, network mobility restrictions, and crosslinking, are quantified and a mat...

  19. Effect of the thermal evaporation rate of Al cathodes on organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Young; Suh, Min Chul, E-mail: mcsuh@khu.ac.kr

    2014-10-15

    Graphical abstract: - Highlights: • The TOF-SIMS analysis to investigate cathode diffusion during evaporation process. • Performance change of OLEDs prepared with different evaporation rate of Al cathode. • Change of electron transport behavior during thermal evaporation process. - Abstract: The relationship between the thermal evaporation rate of Al cathodes and the device performance of organic light-emitting diodes (OLEDs) was investigated to clarify the source of leakage current. Time-of-flight secondary ion mass spectrometry was applied to identify the diffusion of Li and Al fragments into the underlying organic layer during the thermal evaporation process. We prepared various OLEDs by varying the evaporation rates of the Al cathode to investigate different device performance. Interestingly, the leakage current level decreased when the evaporation rate reached ∼25 Å/s. In contrast, the best efficiency and operational lifetime was obtained when the evaporation rate was 5 Å/s.

  20. Falling Film Evaporation On A Thermal Spray Metal Coated Vertical Corrugated Plate Conduits

    OpenAIRE

    Ebenezar, Jerin Robins; Mani, Annamalai

    2016-01-01

    In falling film evaporation process the heat is transferred from the condensing fluid to the liquid flowing over it. Falling film types of evaporators are widely used in refrigeration, desalination, petroleum refining, chemical industries, etc. Compared to flooded type evaporators, falling film evaporators need less amount of refrigerant and will give higher heat transfer rates even at lower heat fluxes. Tube geometry and tube size have an important role on the performance of the falling film...

  1. Estimation of land-surface evaporation at four forest sites across Japan with the new nonlinear complementary method

    DEFF Research Database (Denmark)

    Ai, Zhipin; Wang, Qinxue; Yang, Yonghui

    2017-01-01

    Evaporation from land surfaces is a critical component of the Earth water cycle and of water management strategies. The complementary method originally proposed by Bouchet, which describes a linear relation between actual evaporation (E), potential evaporation (Epo) and apparent potential...

  2. Effects of biochar addition on evaporation in the five typical Loess Plateau soils

    Science.gov (United States)

    Soil evaporation is the main route of soil moisture loss and often exceeds precipitation in the arid and semi-arid regions of the Loess Plateau. This study was conducted to determine whether biochar addition could reduce soil evaporation in drylands. We measured the evaporative loss in five typical ...

  3. Magnitude and variability of land evaporation and its components at the global scale

    NARCIS (Netherlands)

    Miralles, D.G.; de Jeu, R.A.M.; Gash, J.H.C.; Holmes, T.R.H.; Dolman, A.J.

    2011-01-01

    A process-based methodology is applied to estimate land-surface evaporation from multi-satellite information. GLEAM (Global Land-surface Evaporation: the Amsterdam Methodology) combines a wide range of remotely-sensed observations to derive daily actual evaporation and its different components. Soil

  4. Evaporation Kinetics of Laboratory Generated Secondary Organic Aerosols at Elevated Relative Humidity

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jacqueline M.; Imre, D.; Beranek, Josef; Shrivastava, ManishKumar B.; Zelenyuk, Alla

    2015-01-06

    Secondary organic aerosols (SOA) dominate atmospheric organic aerosols that affect climate, air quality, and health. Recent studies indicate that, contrary to previously held assumptions, at low relative humidity (RH) these particles are semi-solid and evaporate orders of magnitude slower than expected. Elevated relative humidity has the potential to affect significantly formation, properties, and atmospheric evolution of SOA particles. Here we present a study of the effect of RH on the room-temperature evaporation kinetics of SOA particles formed by ozonolysis of α-pinene and limonene. Experiments were carried out on SOA particles generated, evaporated, and aged at 0%, 50% and 90% RH. We find that in all cases evaporation begins with a relatively fast phase, during which 30% to 70% of the particle mass evaporates in 2 hours, followed by a much slower evaporation rate. Evaporation kinetics at 0% and 50% RH are nearly the same, while at 90% RH a slightly larger fraction evaporates. In all cases, aging the particles prior to inducing evaporation reduces the evaporative losses, with aging at elevated RH leading to more significant effect. In all cases, SOA evaporation is nearly size-independent, providing direct evidence that oligomers play a crucial role in determining the evaporation kinetics.

  5. ANALYSIS OF POSSIBILITIES OF EVAPORATIVE COOLING IN AUTONOMOUS AND COMBINED SYSTEMS

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2009-08-01

    Full Text Available It is described possibility of the use of the evaporative cooling as in autonomous version of execution, so in combined systems, for example, as the component of desiccant–evaporative coolers, where preliminary dehumidification of the air assures high efficiency of subsequent evaporative cooling and the depth of the cooling.

  6. Simple model for daily evaporation from fallow tilled soil under spring conditions in a temperate climate.

    NARCIS (Netherlands)

    Boesten, J.J.T.I.; Stroosnijder, L.

    1986-01-01

    A simple parametric model is presented to estimate daily evaporation from fallow tilled soil under spring conditions in a temperate climate. In this model, cumulative actual evaporation during a drying cycle is directly proportional to the square root of cumulative potential evaporation. The model

  7. Novel evaporation experiment to determine soil hydraulic properties

    Directory of Open Access Journals (Sweden)

    K. Schneider

    2006-01-01

    Full Text Available A novel experimental approach to determine soil hydraulic material properties for the dry and very dry range is presented. Evaporation from the surface of a soil column is controlled by a constant flux of preconditioned air and the resulting vapour flux is measured by infrared absorption spectroscopy. The data are inverted under the assumptions that (i the simultaneous movement of water in the liquid and vapour is represented by Richards' equation with an effective hydraulic conductivity and that (ii the coupling between the soil and the well-mixed atmosphere can be modelled by a boundary layer with a constant transfer resistance. The optimised model fits the data exceptionally well. Remaining deviations during the initial phase of an experiment are thought to be well-understood and are attributed to the onset of the heat flow through the column which compensates the latent heat of evaporation.

  8. Experimental and theoretical investigations of falling film evaporation

    Science.gov (United States)

    Pehlivan, Hüseyin; Özdemir, Mustafa

    2012-06-01

    In this study, a mathematical model was developed for falling film evaporation in vacuum using heat transfer relations. An experimental device was designed. experimental set-up which was used was equipped with a triangular weir distribution device and it had the ability to record data up to 3 m. Experiments were performed in a single-effect process with sucrose-water solution varying from 3 to 20% concentration rate of sucrose and we used a vertical tube evaporator with the dimensions of laboratory scale. The model that was developed considers convection, shear stress, viscosity and conjugate heat transfer while most of the previous works ignored these factors. The main factors influencing the heat transfer mechanism performance of the unit were investigated and analyzed. We concluded that the experimental studies are verified by the developed model. Furthermore, it was also concluded that, the heat transfer is affected by the mass flow rate, sucrose concentration rate in solution, film thickness and pressure.

  9. Evaporation of a binary liquid film by forced convection

    Directory of Open Access Journals (Sweden)

    Nasr Abdelaziz

    2011-01-01

    Full Text Available This paper deals with a numerical analysis of the evaporation of a thin binary liquid film by forced convection inside a channel constituted by two parallel plates. The first plate is externally insulated and wetted by a thin water ethylene glycol film while the second is dry and isothermal. The liquid mixture consists of water (the more volatile component and ethylene glycol while the gas mixture has three components: dry air, water vapour and ethylene-glycol vapour. The set of non linear and coupled equations expressing the conservation of mass, momentum, energy and species in the liquid and gas mixtures is solved numerically using a finite difference method. Results concerns with the effects of inlet ambience conditions and the inlet liquid concentration of ethylene glycol on the distribution of the temperature, concentrations profiles and the axial variation of the evaporation rate of species i.

  10. Dynamic Wet Etching of Silicon through Isopropanol Alcohol Evaporation

    Directory of Open Access Journals (Sweden)

    Tiago S. Monteiro

    2015-10-01

    Full Text Available In this paper, Isopropanol (IPA availability during the anisotropic etching of silicon in Potassium Hydroxide (KOH solutions was investigated. Squares of 8 to 40 µm were patterned to (100 oriented silicon wafers through DWL (Direct Writing Laser photolithography. The wet etching process was performed inside an open HDPE (High Density Polyethylene flask with ultrasonic agitation. IPA volume and evaporation was studied in a dynamic etching process, and subsequent influence on the silicon etching was inspected. For the tested conditions, evaporation rates for water vapor and IPA were determined as approximately 0.0417 mL/min and 0.175 mL/min, respectively. Results demonstrate that IPA availability, and not concentration, plays an important role in the definition of the final structure. Transversal SEM (Scanning Electron Microscopy analysis demonstrates a correlation between microloading effects (as a consequence of structure spacing and the angle formed towards the (100 plane.

  11. Dark Matter Detection Using Helium Evaporation and Field Ionization

    Science.gov (United States)

    Maris, Humphrey J.; Seidel, George M.; Stein, Derek

    2017-11-01

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1 MeV /c2 .

  12. How water droplets evaporate on a superhydrophobic substrate

    CERN Document Server

    Gelderblom, Hanneke; Nair, Hrudya; van Houselt, Arie; Lefferts, Leon; Snoeijer, Jacco H; Lohse, Detlef

    2010-01-01

    Evaporation of water droplets on a superhydrophobic substrate, on which the contact line is pinned, is investigated. While previous studies mainly focused on droplets with contact angles smaller than $90^\\circ$, here we analyze almost the full range of possible contact angles (10$^\\circ$-150$^\\circ$). The greater contact angles and pinned contact lines can be achieved by the use of superhydrophobic Carbon Nanofiber substrates. The time-evolutions of the contact angle and the droplet mass are examined. The experimental data is in good quantitative agreement with the model presented by Popov (Physical Review E 71, 2005), demonstrating that the evaporation process is quasi-static, diffusion-driven, and that thermal effects play no role. Furthermore, we show that the experimental data for the evolution of both the contact angle and the droplet mass can be collapsed onto one respective universal curve for all droplet sizes and initial contact angles.

  13. Numerical simulations of sessile droplet evaporating on heated substrate

    Science.gov (United States)

    Chen, Xue; Chen, Paul G.; Ouazzani, Jalil; Liu, Qiusheng

    2017-04-01

    Motivated by the space project EFILE, a 2D axisymmetric numerical model in the framework of ALE method is developed to investigate the coupled physical mechanism during the evaporation of a pinned drop that partially wets on a heated substrate. The model accounts for mass transport in surrounding air, Marangoni convection inside the drop and heat conduction in the substrate as well as moving interface. Numerical results predict simple scaling laws for the evaporation rate which scales linearly with drop radius but follows a power-law with substrate temperature. It is highlighted that thermal effect of the substrate has a great impact on the temperature profile at the drop surface, which leads to a multicellular thermocapillary flow pattern. In particular, the structure of the multicellular flow behavior induced within a heated drop is mainly controlled by a geometric parameter (aspect ratio). A relationship between the number of thermal cells and the aspect ratio is proposed.

  14. Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor

    Science.gov (United States)

    Golliher, Eric L.; Gotti, Daniel J.; Rymut, Joseph Edward; Nguyen, Brian K; Owens, Jay C.; Pace, Gregory S.; Fisher, John W.; Hong, Andrew E.

    2013-01-01

    This paper will discuss the status of microgravity analysis and testing for the development of a Heat Melt Compactor (HMC). Since fluids behave completely differently in microgravity, the evaporation process for the HMC is expected to be different than in 1-g. A thermal model is developed to support the design and operation of the HMC. Also, low-gravity aircraft flight data is described to assess the point at which water may be squeezed out of the HMC during microgravity operation. For optimum heat transfer operation of the HMC, the compaction process should stop prior to any water exiting the HMC, but nevertheless seek to compact as much as possible to cause high heat transfer and therefore shorter evaporation times.

  15. Microporous Cokes Formed in Zeolite Catalysts Enable Efficient Solar Evaporation

    KAUST Repository

    Wang, Jianjian

    2017-03-13

    Cokes are inevitably generated during zeolite-catalyzed reactions as deleterious side products that deactivate the catalyst. In this study, we in-situ converted cokes into carbons within the confined microporous zeolite structures and evaluated their performances as absorbing materials for solar-driven water evaporation. With a properly chosen zeolite, the cokederived carbons possessed ordered interconnected pores and tunable compositions. We found that the porous structure and the oxygen content in as-prepared carbons had important influences on their energy conversion efficiencies. Among various investigated carbon materials, the carbon derived from the methanol-to-olefins reaction over zeolite Beta gave the highest conversion efficiency of 72% under simulated sunlight with equivalent solar intensity of 2 suns. This study not only demonstrates the great potential of traditionally useless cokes for solar thermal applications but also provides new insights into the design of carbon-based absorbing materials for efficient solar evaporation.

  16. On the Evaporation of Black Holes in String Theory

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V

    1992-01-01

    We show that, in string theory, the quantum evaporation and decay of black holes in two-dimensional target space is related to imaginary parts in higher-genus string amplitudes. These arise from the regularisation of modular infinities due to the sum over world-sheet configurations, that are known to express the instabilities of massive string states in general, and are not thermal in character. The absence of such imaginary parts in the matrix model limit confirms that the latter constitutes the final stage of the evaporation process, at least in perturbation theory. Our arguments appear to be quite generic, related only to the summation over world-sheet surfaces, and hence should also apply to higher-dimensional target spaces.

  17. Dark Matter Detection Using Helium Evaporation and Field Ionization.

    Science.gov (United States)

    Maris, Humphrey J; Seidel, George M; Stein, Derek

    2017-11-03

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1  MeV/c^{2}.

  18. Study of heat and mass transfer in evaporative coolers

    Science.gov (United States)

    Perez-Blanco, H.; Bird, W. A.

    1982-06-01

    Evaporative coolers are generally considered efficient and economical devices for rejecting waste heat. In these coolers, a hot fluid circulates inside tubes, rejecting heat to a mixture of air and water. Water is sprayed on the tubes and flows downward while air circulates upward; thus, latent and sensible heat is transferred from the water to the air. Commercially available coolers are of the horizonal tube type; a vertical tube evaporative cooler is studied because it is possible to enhance condensing heat transfer coefficients by using vertical fluted tubes. A mathematical model describing the performance of a single tube is formulated which can predict performance for varied inlet conditions, thereby eliminating the need for extensive testing. The validity of the model rests on the accuracy of the controlling heat and mass transfer coefficients used, so these coefficients are measured experimentally in a single tube cooler and found to agree with existing empirical correlations.

  19. Modelling of spray evaporation and penetration for alternative fuels

    OpenAIRE

    Azami, M. H.; Savill, Mark A.

    2016-01-01

    The focus of this work is on the modelling of evaporation and spray penetration for alternative fuels. The extension model approach is presented and validated for alternative fuels, namely, Kerosene (KE), Ethanol (ETH), Methanol (MTH), Microalgae biofuel (MA), Jatropha biofuel (JA), and Camelina biofuel (CA). The results for atomization and spray penetration are shown in a time variant condition. Comparisons have been made to visualize the transient behaviour of these fuels. The vapour pressu...

  20. Stability characteristics of solutocapillary Marangoni motion in evaporating thin films

    Science.gov (United States)

    Serpetsi, Stefania K.; Yiantsios, Stergios G.

    2012-12-01

    The characteristics of solutocapillary Marangoni instability in evaporating thin films are analyzed by linear stability analysis and direct numerical simulations. As predicted by de Gennes [Eur. Phys. J. E 6, 421 (2001), 10.1007/s10189-001-8055-3] when the surface tension increases with increasing concentration of a non-volatile solute the Marangoni stresses can sustain motion in the film and lead to the development of cellular patterns with small interfacial deformation, similar to the well-known hexagons of the thermally driven Marangoni motion. The critical Marangoni number is found to be proportional to the inverse square root of a dimensionless evaporation rate. There exists an additional mode of instability analogous to the deformational mode of thermocapillary instability. This mode is due to the coordinated action of capillary pressure and Marangoni stresses and is manifested as a long-wave oscillatory behavior leading to fast leveling of film thickness disturbances and subsequent reversal, as explained by Overdiep [Prog. Org. Coat. 14, 159 (1986), 10.1016/0033-0655(86)80010-3]. This type of instability appears over a range of wavenumbers determined by the evaporation parameter and the capillary number and is likely to be observed at relatively small Marangoni numbers because otherwise it is overwhelmed by the cellular mode. Systems where the surface tension decreases with increasing solute concentration are not immune to instabilities either but there exists a long-wave deformational mode leading to monotonic growth of thickness disturbances. The above characteristics of evaporating film behavior are supported by experimental observations in the literature, where thin films of dried polymer solutions are found to have short-wave patterns and small roughness or long-wave patterns and significant roughness, depending on whether surface tension of the solvents increases or decreases by the polymer solutes.

  1. Refrigerant Distribution Effects on the Performance of Microchannel Evaporators

    OpenAIRE

    Bowers, Chad D.; Mai, Helena; Elbel, Stefan; Hrnjak, Predrag S.

    2012-01-01

    The performance of air to refrigerant heat exchangers can be affected greatly by both refrigerant and air flow distribution. Maldistribution of either fluid stream can lead to reduced heat transfer effectiveness of the heat exchanger and thus lower system efficiency and capacity. Microchannel evaporators are especially susceptible to refrigerant maldistribution as they typically have many parallel channels fed by a common header or manifold. This paper outlines general trends in refrigerant f...

  2. Evaporation and Combustion Characteristics of Biomass Vacuum Pyrolysis Oils

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Perez, M. [University of Georgia, Biological and Agricultural Engineering Department, Driftmier Engineering Center, Athens, GA, 30602 (United States); Chaala, A. [Chemical Engineering Department, Universite Laval, Quebec (Canada); Lappas, P.; Hughes, P.; Dell, L. [Energy Research Laboratories, CANMET, Ottawa, ON (Canada); Kretschmer, D. [Mechanical Engineering Department, Universite Laval, Quebec, ON (Canada); Roy, C. [Pyrovac International, Quebec, ON (Canada)

    2006-05-15

    The evaporation behaviour at high heating rates of vacuum pyrolysis oils obtained from Softwood Bark Residue (SWBR) and from Hardwood Rich in Fibres (HWRF) was studied photographically at the CANMET laminar Entrained Flow Reactor (EFR). For low heating rates, the evaporation and combustion characteristics for each bio-oil were studied by observing the mass loss in pure nitrogen and in air using thermogravimetry. The bio-oil combustion process starts with the evaporation of light compounds followed by the pyrolysis of heavy fractions yielding charcoal. In the final step, the oxygen reacts with charcoal to yield ash. Tests in the EFR were performed using initial droplet diameters between 58 and 62 {mu}m. These diameters fall within the range of sizes observed in SWBR bio-oil sprays. The droplets were generated in a piezo-electric droplet generator and injected into a quartz tube reactor placed inside the furnace. Two furnace wall temperatures (700C and 800C) were used during EFR experiments. For evaporation studies, the EFR was operated in an inert environment (using Ar) while for combustion studies various Ar-O2 mixtures were used (O2 concentration between 20 and 50 vol. %). The photographic results showed that the formation of bubbles inside bio-oil droplets was influenced by heat transfer rates. For the experimental conditions used, no micro-explosions were observed. The solid residues obtained at the furnace exit were collected and analysed by Scanning Electron Microscopy. Two different morphologies of residual particles were observed depending on the frequency of droplet generation: (a) compact and mechanically resistant spheres obtained at low electrical pulse frequencies (less than 500 Hz) with typical diameters of 20-30 {mu}m and (b) fragile 'glass like' cenospheres with thin walls and diameter between 60 and 90 {mu}m obtained at higher droplet generation frequencies (more than 500 Hz)

  3. Evaporation of a binary liquid film by forced convection

    OpenAIRE

    Nasr Abdelaziz; Debbissi Chokri; Nasrallah Ben Sassi

    2011-01-01

    This paper deals with a numerical analysis of the evaporation of a thin binary liquid film by forced convection inside a channel constituted by two parallel plates. The first plate is externally insulated and wetted by a thin water ethylene glycol film while the second is dry and isothermal. The liquid mixture consists of water (the more volatile component) and ethylene glycol while the gas mixture has three components: dry air, water vapour and ethylene-glycol vapour. The set of non li...

  4. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  5. Mini-Membrane Evaporator for Contingency Spacesuit Cooling

    Science.gov (United States)

    Makinen, Janice V.; Bue, Grant C.; Campbell, Colin; Petty, Brian; Craft, Jesse; Lynch, William; Wilkes, Robert; Vogel, Matthew

    2015-01-01

    The next-generation Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is integrating a number of new technologies to improve reliability and functionality. One of these improvements is the development of the Auxiliary Cooling Loop (ACL) for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feedwater assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the full-sized AEMU PLSS cooling device, the Spacesuit Water Membrane Evaporator (SWME), but Mini-ME occupies only approximately 25% of the volume of SWME, thereby providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology, which relies upon a Secondary Oxygen Vessel; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a reduction in SOV size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The first iteration of Mini-ME was developed and tested in-house. Mini-ME is currently packaged in AEMU PLSS 2.0, where it is being tested in environments and situations that are representative of potential future Extravehicular Activities (EVA's). The second iteration of Mini-ME, known as Mini-ME2, is currently being developed to offer more heat rejection capability. The development of this contingency evaporative cooling system will contribute to a more robust and comprehensive AEMU PLSS.

  6. Consumption of Evaporated Milk of Household Level in Central Java

    OpenAIRE

    Widiyanti, Rahayu; Mastuti, Sri

    2002-01-01

    The objective of the research was identity factors affecting consumption of evaporated milk at household level in Central Java. Data obtained were the primary data of SUSENAS for Central Java in the years of 1993, 1996 and 1999, which were collected by BPS. Sampling method occupied was statified proportional random sampling. Out of 20.600 household populations, 600 units were taken as samples. Sencoric data of SUSENAS were analyzed by using Tobit model, estimating method of maximum likelihood...

  7. Evaporation induced traversability of the Einstein--Rosen wormhole

    OpenAIRE

    Krasnikov, S.

    2005-01-01

    Suppose, the Universe comes into existence (as classical spacetime) already with an empty spherically symmetric macroscopic wormhole present in it. Classically the wormhole would evolve into a part of the Schwarzschild space and thus would not allow any signal to traverse it. I consider semiclassical corrections to that picture and build a model of an evaporating wormhole. The model is based on the assumption that the vacuum polarization and its backreaction on the geometry of the wormhole ar...

  8. Morphology Control in co-evaporated bulk heterojunction solar cells

    OpenAIRE

    Kovacik, Peter; Assender, Hazel E.; Watt, Andrew A. R.

    2013-01-01

    Bulk heterojunction solar cells made by vacuum co-evaporation of polythiophene (PTh) and fullerene (C60) are reported and the blend morphology control through donor-acceptor composition and post-situ annealing demonstrated. Co-deposited heterojunctions are shown to generate about 60% higher photocurrents than their thickness-optimized PTh/C60 planar heterojunction counterparts. Furthermore, by annealing the devices post-situ the power conversion efficiency is improved by as much as 80%. UV-vi...

  9. Caecilians exhibit cutaneous respiration and high evaporative water ...

    African Journals Online (AJOL)

    Caecilians exhibit cutaneous respiration and high evaporative water loss. W.K. Steele, G.N. Louw. Abstract. Scolecomorphus kirki het 'n gemiddelde rustende VO2 van 0,052 ± 0,009 ml O2 g-1 h by 20% rh en 20°C. Die gemiddelde RK was 1,06 en 54,5% van die totale CO2-produksie het deur die vel verlore gegaan.

  10. EXPERIMENTAL APPROACH TO ASSESS EVAPORATIVE COOLING UNDER FORCED AIR FLOW

    Directory of Open Access Journals (Sweden)

    L. G. G. Rodrigues

    Full Text Available Abstract Air blast is one of the most employed industrial chilling methods. It can be enhanced, i.e., increasing heat transfer and reducing cooling time, by superficial evaporative phenomena. This work reports a methodology, including experimental setup and mathematical modelling, to quantify the air chilling enhancement by wetting the surface of the object to be chilled. A spherical metal model was covered by a cotton tissue (wet or dry and placed into a cold chamber. The effective heat transfer coefficient was determined at different temperature, air velocity, and relative humidity from time-temperature profiles into the sphere. Under the same air conditions, the effective coefficient between sphere and air was increased three-fold by moistening the cotton tissue on the sphere surface. Furthermore, comparing a dry and wet surface showed that evaporative cooling resulted in much shorter chilling times. The proposed approach was able to assess evaporative heat transfer by measuring only the time-temperature profile, and is suitable for industrial applications.

  11. Experimental characterization of gasoline sprays under highly evaporating conditions

    Science.gov (United States)

    Khan, Muhammad Mahabat; Sheikh, Nadeem Ahmed; Khalid, Azfar; Lughmani, Waqas Akbar

    2017-12-01

    An experimental investigation of multistream gasoline sprays under highly evaporating conditions is carried out in this paper. Temperature increase of fuel and low engine pressure could lead to flash boiling. The spray shape is normally modified significantly under flash boiling conditions. The spray plumes expansion along with reduction in the axial momentum causes the jets to merge and creates a low-pressure area below the injector's nozzle. These effects initiate the collapse of spray cone and lead to the formation of a single jet plume or a big cluster like structure. The collapsing sprays reduces exposed surface and therefore they last longer and subsequently penetrate more. Spray plume momentum increase, jet plume reduction and spray target widening could delay or prevent the closure condition and limit the penetration (delayed formation of the cluster promotes evaporation). These spray characteristics are investigated experimentally using shadowgraphy, for five and six hole injectors, under various boundary conditions. Six hole injectors produce more collapsing sprays in comparison to five hole injector due to enhanced jet to jet interactions. The spray collapse tendency reduces with increase in injection pressure due high axial momentum of spray plumes. The spray evaporation rates of five hole injector are observed to be higher than six hole injectors. Larger spray cone angles of the six hole injectors promote less penetrating and less collapsing sprays.

  12. ANALYSIS AND MODELING OF SOLAR EVAPORATOR-COLLECTOR

    Directory of Open Access Journals (Sweden)

    Zakaria Mohd. Amin

    2015-11-01

    Full Text Available Solar energy is considered a sustainable resource that poses little to no harmful effects on the environment. The performance of a solar system depends to a great extent on the collector used for the conversion of solar radiant energy to thermal energy. A solar evaporator-collector (SEC is basically an unglazed flat plate collector where refrigerants, such as R134a is used as the working fluid. As the operating temperature of the SEC is very low, it utilizes both solar irradiation and ambient energy leading to a much higher efficiency than the conventional collectors. This capability of SECs to utilize ambient energy also enables the system to operate at night. This type of collector can be locally made and is relatively much cheaper than the conventional collector.   At the National University of Singapore, the evaporator-collector was integrated to a heat pump and the performance was investigated for several thermal applications: (i water heating, (ii drying and (iii desalination. A 2-dimensional transient mathematical model of this system was developed and validated by experimental data. The present study provides a comprehensive study of performance. KEYWORDS: heat pump; evaporator-collector.

  13. Design of evaporator of spacelab refrigerator/freezer

    Science.gov (United States)

    Hye, A.

    1985-01-01

    An Evaporator has been designed for NASA-Johnson Space Center Life Sciences to conduct experiments in Spacelab mission SLS-1 using different samples such as blood, urine, human tissues etc. Two units will fly - one as a Refrigerator (4 C) and the other as a Freezer (-22 C). The evaporator tube is dip brazed on a grooved flat plate. Aluminum heat sink is dip brazed on the other side of the plate. Freon R5O2 is pumped through the tube and air is circulated over the finned surface to transfer heat. As freon 5O2 is considered toxic, the whole freon tube is covered with an evaporator cover to contain any freon leakage to avoid exposure to crew members. This containment is under vacuum and this pressure is monitored along with the freon pressure to determine freon leakage so that necessary steps can be taken to stop contamination of the spacelab air. An stress analysis has been done and it is found to have adequate safety margin to meet the requirements of NASA safety and reliability standards.

  14. Coalescence, evaporation and particle deposition of consecutively printed colloidal drops

    Science.gov (United States)

    Chhasatia, Viral; Yang, Xin; Shah, Jaymeen; Sun, Ying

    2012-11-01

    In applications such as inkjet printing and spray deposition, colloid drops are often used as building blocks for line and pattern printing where their interactions play important roles in determining the deposition morphology and properties. In this study, the particle deposition dynamics of two consecutively printed evaporating colloidal drops is examined using a fluorescence microscope and a synchronized side-view camera. The results show that the relaxation time of the water-air interface of the merged drop is shorter than that of a single drop impacting on a dry surface. It is also found that both morphology and particle distribution uniformity of the deposit change significantly with varying jetting delay and spatial spacing between two drops. As the drop spacing increases while keeping jetting delay constant, the circularity of the coalesced drop reduces. For the regime where the time scale for drop evaporation is comparable with the relaxation time scale for two drops to completely coalesce, the capillary flow induced by the local curvature variation of the air-water interface redistributes particles inside a merged drop, causing suppression of the coffee-ring effect for the case of a high jetting frequency while resulting in a region of particle accumulation in the middle of the merged drop at a low jetting frequency. By tuning the interplay of wetting, evaporation, capillary relaxation, and particle assembly, the deposition morphology of consecutively printed colloidal drops can be controlled.

  15. A Multiple-Scale Analysis of Evaporation Induced Marangoni Convection

    KAUST Repository

    Hennessy, Matthew G.

    2013-04-23

    This paper considers the stability of thin liquid layers of binary mixtures of a volatile (solvent) species and a nonvolatile (polymer) species. Evaporation leads to a depletion of the solvent near the liquid surface. If surface tension increases for lower solvent concentrations, sufficiently strong compositional gradients can lead to Bénard-Marangoni-type convection that is similar to the kind which is observed in films that are heated from below. The onset of the instability is investigated by a linear stability analysis. Due to evaporation, the base state is time dependent, thus leading to a nonautonomous linearized system which impedes the use of normal modes. However, the time scale for the solvent loss due to evaporation is typically long compared to the diffusive time scale, so a systematic multiple scales expansion can be sought for a finite-dimensional approximation of the linearized problem. This is determined to leading and to next order. The corrections indicate that the validity of the expansion does not depend on the magnitude of the individual eigenvalues of the linear operator, but it requires these eigenvalues to be well separated. The approximations are applied to analyze experiments by Bassou and Rharbi with polystyrene/toluene mixtures [Langmuir, 25 (2009), pp. 624-632]. © 2013 Society for Industrial and Applied Mathematics.

  16. Preparation of Candesartan and Atorvastatin Nanoparticles by Solvent Evaporation

    Directory of Open Access Journals (Sweden)

    Josef Jampilek

    2012-11-01

    Full Text Available The solubility, absorption and distribution of a drug are involved in the basic aspects of oral bioavailability Solubility is an essential characteristic and influences the efficiency of the drug. Over the last ten years, the number of poorly soluble drugs has steadily increased. One of the progressive ways for increasing oral bioavaibility is the technique of nanoparticle preparation, which allows many drugs to thus reach the intended site of action. Candesartan cilexetil and atorvastatin, belonging to class II of the biopharmaceutical classification system, were chosen as model active pharmaceutical ingredients in this study. Forty samples were prepared either by antisolvent precipitation/solvent evaporation method or by the emulsion/solvent evaporation technique with various commonly used surface-active excipients as nanoparticle stabilizers. All samples were analyzed by means of dynamic light scattering. The particle size of the determined 36 nanoparticle samples was to 574 nm, whereas 32 samples contained nanoparticles of less than 200 nm. Relationships between solvents and excipients used and their amount are discussed. Based on the results the investigated solvent evaporation methods can be used as an effective and an affordable technique for the preparation of nanoparticles.

  17. Determination of the Evaporation Coefficient of D2O

    Energy Technology Data Exchange (ETDEWEB)

    Drisdell, Walter S.; Cappa, Christopher D.; Smith, Jared D.; Saykally, Richard J.; Cohen, Ronald C.

    2008-03-26

    The evaporation rate of D{sub 2}O has been determined by Raman thermometry of a droplet train (12-15 {micro}m diameter) injected into vacuum ({approx}10{sup -5} torr). The cooling rate measured as a function of time in vacuum was fit to a model that accounts for temperature gradients between the surface and the core of the droplets, yielding an evaporation coefficient ({gamma}{sub e}) of 0.57 {+-} 0.06. This is nearly identical to that found for H{sub 2}O (0.62 {+-} 0.09) using the same experimental method and model, and indicates the existence of a kinetic barrier to evaporation. The application of a recently developed transition state theory (TST) model suggests that the kinetic barrier is due to librational and hindered translational motions at the liquid surface, and that the lack of an isotope effect is due to competing energetic and entropic factors. The implications of these results for cloud and aerosol particles in the atmosphere are discussed.

  18. Interfacial phenomena in droplet evaporation and nanoparticle-cell systems

    Science.gov (United States)

    Fang, Xiaohua

    2005-11-01

    The factors affecting droplet evaporation are discussed. It is found that the droplet morphology at a specific temperature is controlled by the physical properties of the liquid itself, such as the molecular weight, density, diffusion coefficient in air, and heat of vaporization. Two processes are included in droplet evaporation: (1) diffusion of liquid molecules into the air (diffusion part) and (2) flow of the liquid molecules from inside the droplet to the free outer shell liquid layer within the liquid-vapor interface (energy part). The diffusion part remains steady during drying and was not sensitive to the variation of temperature. The energy part, however, was an active factor and determined the differences in drop evaporation behaviors. A model is developed to measure the solubility parameters of the solvents via droplet evaporation. Droplets were deposited on Octadecyltrichlorosilane (OTS) covered silicon surfaces and the contact angle and overall drop morphology are observed using a KSV contact angle goniometer as a function of time. OTS is considered a non-absorbing surface for the solvents examined and does not affect the accuracy of the measured results. This method allows determination of the attraction forces between solvent molecules in the condensed phases. The solubility parameter values of droplets containing pure water, methanol, ethanol and butanol are measured. The test results are independent of the droplet size. The evaporation kinetics of droplets containing DNA is studied. Simultaneously, the DNA re-distribution and adsorption kinetics are measured by confocal microscopy. The DNA droplets are stained with ethidium bromide solution and deposited on OTS covered silicon surfaces. The results showed that the drying behavior depended on the DNA concentration. During drying, DNA relocation inside of the drop affects the internal forces of the liquid. A ring is formed at the air/solid/liquid interface. The absorbed amount of DNA was obtained by

  19. The effects of evaporating essential oils on indoor air quality

    Science.gov (United States)

    Su, Huey-Jen; Chao, Chung-Jen; Chang, Ho-Yuan; Wu, Pei-Chih

    Essential oils, predominantly comprised of a group of aromatic chemicals, have attracted increasing attention as they are introduced into indoor environments through various forms of consumer products via different venues. Our study aimed to characterize the profiles and concentrations of emitted volatile organic compounds (VOCs) when evaporating essential oils indoors. Three popular essential oils in the market, lavender, eucalyptus, and tea tree, based on a nation-wide questionnaire survey, were tested. Specific aromatic compounds of interest were sampled during evaporating the essential oils, and analyzed by GC-MS. Indoor carbon monoxide (CO), carbon dioxide (CO 2), total volatile organic compounds (TVOCs), and particulate matters (PM 10) were measured by real-time, continuous monitors, and duplicate samples for airborne fungi and bacteria were collected in different periods of the evaporation. Indoor CO (average concentration 1.48 vs. 0.47 ppm at test vs. background), CO 2 (543.21 vs. 435.47 ppm), and TVOCs (0.74 vs. 0.48 ppm) levels have increased significantly after evaporating essential oils, but not the PM 10 (2.45 vs. 2.42 ppm). The anti-microbial activity on airborne microbes, an effect claimed by the use of many essential oils, could only be found at the first 30-60 min after the evaporation began as the highest levels of volatile components in these essential oils appeared to emit into the air, especially in the case of tea tree oil. High emissions of linalool (0.092-0.787 mg m -3), eucalyptol (0.007-0.856 mg m -3), D-limonene (0.004-0.153 mg m -3), ρ-cymene (0.019-0.141 mg m -3), and terpinene-4-ol-1 (0.029-0.978 mg m -3), all from the family of terpenes, were observed, and warranted for further examination for their health implications, especially for their potential contribution to the increasing indoor levels of secondary pollutants such as formaldehyde and secondary organic aerosols (SOAs) in the presence of ozone.

  20. Investigation of water and saline solution drops evaporation on a solid substrate

    Directory of Open Access Journals (Sweden)

    Orlova Evgenija G.

    2014-01-01

    Full Text Available Experimental investigation water and saline solution drops evaporation on a solid substrate made of anodized aluminum is presented in the paper. Parameters characterizing drop profile have been obtained (contact angle, contact diameter, height. The specific evaporation rate has been calculated from obtained values. It was found that water and saline solution drops with concentration up to 9.1% evaporate in the pinning mode. However, with increasing the salt concentration in the solution up to 16.7% spreading mode was observed. Two stages of drop evaporation depending on change of the evaporation rate have been separated.

  1. Comparison of fin-and-tube interlaced and face split evaporators with flow maldistribution and compensation

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Larsen, Lars Finn Sloth

    2013-01-01

    Flow maldistribution in fin-and tube evaporators for residential air-conditioning is investigated by numerical simulation. In particular, the interlaced and the face split evaporator are compared in flow maldistribution conditions. The considered sources of maldistribution are the liquid....../vapor distribution and the airflow distribution. Furthermore, compensation of flow maldistribution by control of individual channel superheat is studied for each evaporator type. It is shown that the interlaced evaporator is better at flow maldistribution than the face split evaporator. However, if individual...... channel superheats are controlled, the face split evaporator achieves the best performance, i.e. an increase of 7% in overall UA-value and 1.6–2.4% in COP compared to the interlaced evaporator without compensation....

  2. Evaluation of three energy balance-based evaporation models for estimating monthly evaporation for five lakes using derived heat storage changes from a hysteresis model

    NARCIS (Netherlands)

    Duan, Z.; Bastiaanssen, W.G.M.

    2017-01-01

    The heat storage changes (Qt) can be a significant component of the energy balance in lakes, and it is important to account for Qt for reasonable estimation of evaporation at monthly and finer timescales if the energy balance-based evaporation models are used. However, Qt has been often neglected in

  3. Forward osmosis applied to evaporative cooling make-up water

    Energy Technology Data Exchange (ETDEWEB)

    Nicoll, Peter; Thompson, Neil; Gray, Victoria [Modern Water plc, Guildford (United Kingdom)

    2012-11-15

    Modern Water is in the process of developing a number of forward osmosis based technologies, ranging from desalination to power generation. This paper outlines the progress made to date on the development and commercial deployment of a forward osmosis based process for the production of evaporative cooling tower make-up water from impaired water sources, including seawater. Evaporative cooling requires significant amounts of good quality water to replace the water lost by evaporation, drift and blowdown. This water can be provided by conventional desalination processes or by the use of tertiary treated sewage effluent. The conventional processes are well documented and understood in terms of operation and power consumption. A new process has been successfully developed and demonstrated that provides make-up water directly, using a core platform 'forward osmosis' technology. This new technology shows significant promise in allowing various raw water sources, such as seawater, to be used directly in the forward osmosis step, thus releasing the use of scarce and valuable high grade water for other more important uses. The paper presents theoretical and operational results for the process, where it is shown that the process can produce make-up water at a fraction of the operational expenditure when compared to conventional processes, in particular regarding power consumption, which in some cases may be as low as 15 % compared to competing processes. Chemical additives to the cooling water (osmotic agent) are retained within the process, thus reducing their overall consumption. Furthermore the chemistry of the cooling water does not support the growth of Legionella pneumophila. Corrosion results are also reported. (orig.)

  4. Influence of the wall on the droplet evaporation

    Directory of Open Access Journals (Sweden)

    Misyura S. Y.

    2015-01-01

    Full Text Available Evaporative influence of the wall material and its thickness has been investigated in the present study. The wall influence for heat exchangers is particularly important in the boiling transition regime and in the event of the Leidenfrost temperature. The experimental points significantly diverge in the transition area of the boiling crisis. This fact can be explained by a different residence time of droplet on the wall surface. The discrepancy between the experimental data also takes place at the Leidenfrost temperature. The lower the thermal diffusivity of the wall material (high thermal inertia, the more the wall is cooled under a droplet.

  5. Simplified numerical study of evaporation processes inside vertical tubes

    Science.gov (United States)

    Ocłoń, Paweł; Nowak, Marzena; Łopata, Stanisław

    2014-04-01

    The paper presents a simplified numerical model of evaporation processes inside vertical tubes. In this model only the temperature fields in the fluid domain (the liquid or two-phase mixture) and solid domain (a tube wall) are determined. Therefore its performance and efficiency is high. The analytical formulas, which allow calculating the pressure drop and the distribution of heat transfer coefficient along the tube length, are used in this model. The energy equation for the fluid domain is solved with the Control Volume Method and for the solid domain with the Finite Element Method in order to determine the temperature field for the fluid and solid domains.

  6. Heat conduction problem of an evaporating liquid wedge

    Directory of Open Access Journals (Sweden)

    Tomas Barta

    2015-02-01

    Full Text Available We consider the stationary heat transfer near the contact line of an evaporating liquid wedge surrounded by the atmosphere of its pure vapor. In a simplified setting, the problem reduces to the Laplace equation in a half circle, subject to a non-homogeneous and singular boundary condition. By classical tools (conformal mapping, Green's function, we reformulate the problem as an integral equation for the unknown Neumann boundary condition in the setting of appropriate fractional Sobolev and weighted space. The unique solvability is then obtained by means of the Fredholm theorem.

  7. Numerical Investigation of a Moisture Evaporation Model in Building Materials

    CERN Document Server

    Amirkhanov, I V; Pavlish, M; Puzynina, T P; Puzynin, I V; Sarhadov, I

    2005-01-01

    The properties of a model of moisture evaporation in a porous building material of a rectangular form proposed in [1] are investigated. Algorithms of solving a nonlinear diffusion equation with initial and boundary conditions simulating the dynamic distribution of moisture concentration, calculation of coefficients of a polynomial describing transport of moisture with usage of experimental measurement of moisture concentration in a sample are developed and investigated. Research on the properties of the model is carried out depending on the degree of the polynomial, a set of its coefficients, and the quantity of the used experimental data.

  8. Morphological deformation during evaporation induced assembly of mixed colloidal suspension

    Science.gov (United States)

    Sen, D.; Melo, J. S.; Bahadur, J.; Mazumder, S.; Bhattacharya, S.; D'Souza, S. F.

    2010-12-01

    Sphere to deformed doughnut type transformation of colloidal droplets during evaporation induced assembly of colloidal silica and E. coli was observed. Distortion modulations get amplified with increase in volume fraction of anisotropic soft colloidal component. Reduction in elastic constants of formed shell, at the boundary of a drying droplet, and the anisotropic nature of bacterial component facilitate the deformation process. The charge modification of E. coli surface by Poly cationic Polytheleneimine ceases the morphological transformation and results spherical assembled grains. Hierarchical structures of these assembled colloidal grains have been probed using electron microscopy and small- angle neutron scattering techniques.

  9. A novel evaporation detection system using an impedance sensing chip.

    Science.gov (United States)

    Lin, Yung-Sheng; Chen, Cheng-You

    2014-11-21

    This paper presents a novel real-time impedance sensing chip for the evaporation detection of small volume solutions. Time sharing detection is performed for multiple sample measurements by a relay switching technique. In contrast to a conventional weight loss approach, the advantage of this proposed impedance sensing system is that it not only merely requires as little as 0.5 mL of test samples, but also provides high sensitivity and fast detection. More importantly, this proposed impedance sensing chip has advantages of a small chip size and easy decomposition for cleaning and reuse.

  10. Transient heating and evaporation of moving fuel droplets

    DEFF Research Database (Denmark)

    Yin, Chungen

    2014-01-01

    In combustion devices involving direct injection of low-volatility liquid fuel (e.g., bio-oils from pyrolysis process) into the combustor, transient heating and vaporization is an important controlling factor in ignition and combustion of the fuel vapor/air mixture. As a result, quite many...... by experimental results available in literature. The model not only reliably produces all the details that help to achieve an in-depth understanding of the underlying physical processes and to derive simplified models for liquid fuel droplet heating and evaporation, but also can be readily reformulated for solid...... fuel heating and conversion....

  11. A study of the current group evaporation/combustion theories

    Science.gov (United States)

    Shen, Hayley H.

    1990-01-01

    Liquid fuel combustion can be greatly enhanced by disintegrating the liquid fuel into droplets, an effect achieved by various configurations. A number of experiments carried out in the seventies showed that combustion of droplet arrays and sprays do not form individual flames. Moreover, the rate of burning in spray combustion greatly deviates from that of the single combustion rate. Such observations naturally challenge its applicability to spray combustion. A number of mathematical models were developed to evaluate 'group combustion' and the related 'group evaporation' phenomena. This study investigates the similarity and difference of these models and their applicability to spray combustion. Future work that should be carried out in this area is indicated.

  12. Quantum radiation from an evaporating nonsingular black hole

    Science.gov (United States)

    Frolov, Valeri P.; Zelnikov, Andrei

    2017-06-01

    In this paper we study quantum radiation from an evaporating spherically symmetric nonsingular black hole. We used a modified Hayward metric for a description of a nonsingular black hole interior. We assume that the mass parameter of this metric depends on the advanced time, and choose this dependence so that it properly reproduces both black hole formation and its subsequent evaporation. We consider a quantum massless scalar field propagating in this geometry and use two-dimensional approximation for the calculation of the quantum average of the stress-energy tensor in the initial vacuum state. For the calculation of this quantity it is sufficient to find a map between the Killing times u+ and u- at the future and past null infinities, established by the propagation of the radial null rays. In this formalism the quantum energy flux at the future null infinity can be expressed in terms of the function u+(u-) and its derivatives up to the third order. We developed a special formalism, which allows one to reduce the problem of the calculation of the quantum energy flux and other observables to a solution of a simple set of ordinary differential equations. We used this approach to study quantum effects in two cases: (i) with the trivial, α =1 , and (ii) the nontrivial, α ≠1 , redshift function. We demonstrated that in both cases there exists an outburst of the quantum energy radiation from the inner domain of the black hole, close to the inner part of its apparent horizon. For α =1 this outburst is exponentially large. Its appearance is a direct consequence of the so-called mass inflation effect. We also demonstrated that this severe problem can be solved by a proper choice of the redshift function. However, even in this case the emitted energy can be much larger than the initial mass of the evaporating black hole. This means that for a construction of a self-consistent model of a nonsingular evaporating black hole the backreaction effects are highly important.

  13. Atmospheric evaporative demand observations, estimates and driving factors in Spain (1961-2011)

    KAUST Repository

    Azorin-Molina, Cesar

    2015-04-01

    We analyzed the spatio-temporal evolution of evaporation observations from Piché atmometers (1961-2011; 56 stations) and Pan evaporimeters (1984-2011; 21 stations) across Spain, and compared both measurements with evaporation estimates obtained by four physical models: i.e., Food and Agricultural Organization-56 Penman-Monteith, Food and Agricultural Organization-Pan, PenPan and Penman, based on climate data. In this study we observed a positive and statistically significant correlation between Piché and Pan evaporation measurements during the common period (1984-2011; 19 stations), mainly in summer. When evaporation observations and estimates were compared, we detected positive and statistically significant correlations with the four methods, except for winter. Among the four physical models, the FAO-Pan showed the best fitting to both Piché and Pan evaporation measurements; the PenPan model overestimated evaporation rates; and the FAO-Penman-Monteith and Penman methods underestimated evaporation observations. We also observed a better spatial agreement between Pan evaporation and estimates than that obtained by Piché measurements. Annual and seasonal trends of evaporation estimates show a statistically significant increase for 1961-2011, which do not agree with long-term Piché evaporation trends; e.g. a discontinuity was found around the 1980s. Radiative and aerodynamic driving factors suggest that this discontinuity, and the observed evaporation trends across Spain could be associated with the abrupt increase in air temperature observed during last few decades (i.e., global warming). Further investigations using available Piché evaporation observations for other regions are needed to better understand physical components influencing long-term trends of evaporation.

  14. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing

  15. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Bloisi, Francesco, E-mail: bloisi@na.infn.it [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy); Calabria, Raffaela; Califano, Valeria [Istituto Motori – CNR, Naples (Italy); Depero, Laura E. [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Federici, Stefania [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Massoli, Patrizio [Istituto Motori – CNR, Naples (Italy); Vicari, Luciano R.M. [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy)

    2015-05-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  16. Long Duration Testing of a Spacesuit Water Membrane Evaporator Prototype

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice; Cox, Marlon; Watts, Carly; Campbell, Colin; Vogel, Matthew; Colunga, Aaron; Conger, Bruce

    2012-01-01

    The Spacesuit Water Membrane Evaporator (SWME) is a heat-rejection device that is being developed to perform thermal control for advanced spacesuits. Cooling is achieved by circulating water from the liquid cooling garment (LCG) through hollow fibers (HoFi s), which are small hydrophobic tubes. Liquid water remains within the hydrophobic tubes, but water vapor is exhausted to space, thereby removing heat. A SWME test article was tested over the course of a year, for a total of 600 cumulative hours. In order to evaluate SWME tolerance to contamination due to constituents caused by distillation processes, these constituents were allowed to accumulate in the water as evaporation occurred. A test article was tested over the course of a year for a total of 600 cumulative hours. The heat rejection performance of the SWME degraded significantly--below 700 W, attributable to the accumulation of rust in the circulating loop and biofilm growth. Bubble elimination capability, a feature that was previously proven with SWME, was compromised during the test, most likely due to loss of hydrophobic properties of the hollow fibers. The utilization of water for heat rejection was shown not to be dependent on test article, life cycle, heat rejection rate, or freezing of the membranes.

  17. Device for purging evaporated fuel captured by a charcoal canister

    Energy Technology Data Exchange (ETDEWEB)

    Uranishi, K.; Itou, T.

    1987-10-20

    A device is described for purging evaporated fuel captured by a charcoal canister from a fuel supply system of an internal combustion engine having an intake path and carburetor located in the intake path. The device consists of: a purge path connecting the charcoal canister for capturing evaporated fuel to the engine intake path downstream of the carburetor; an ON-OFF valve provided in the purge path; a fixed throttle arranged in the purge path in parallel with the ON-OFF valve; means for operating the ON-OFF valve to be open at engine loads higher than a predetermined engine load and to be closed at engine loads lower than the predetermined engine load; a solenoid valve provided in the purge path in series with the parallel arrangement of the ON-OFF valve and the throttle; and a means for actuating the solenoid to be closed at low engine speeds and low engine temperatures and to be open at all other engine operating conditions.

  18. Study on water evaporation rate from indoor swimming pools

    Directory of Open Access Journals (Sweden)

    Rzeźnik Ilona

    2017-01-01

    Full Text Available The air relative humidity in closed spaces of indoor swimming pools influences significantly on users thermal comfort and the stability of the building structure, so its preservation on suitable level is very important. For this purpose, buildings are equipped with HVAC systems which provide adequate level of humidity. The selection of devices and their technical parameters is made using the mathematical models of water evaporation rate in the unoccupied and occupied indoor swimming pool. In the literature, there are many papers describing this phenomena but the results differ from each other. The aim of the study was the experimental verification of published models of evaporation rate in the pool. The tests carried out on a laboratory scale, using model of indoor swimming pool, measuring 99cm/68cm/22cm. The model was equipped with water spray installation with six nozzles to simulate conditions during the use of the swimming pool. The measurements were made for conditions of sports pools (water temperature 24°C and recreational swimming pool (water temperature 34°C. According to the recommendations the air temperature was about 2°C higher than water temperature, and the relative humidity ranged from 40% to 55%. Models Shah and Biasin & Krumm were characterized by the best fit to the results of measurements on a laboratory scale.

  19. Study on water evaporation rate from indoor swimming pools

    Science.gov (United States)

    Rzeźnik, Ilona

    2017-11-01

    The air relative humidity in closed spaces of indoor swimming pools influences significantly on users thermal comfort and the stability of the building structure, so its preservation on suitable level is very important. For this purpose, buildings are equipped with HVAC systems which provide adequate level of humidity. The selection of devices and their technical parameters is made using the mathematical models of water evaporation rate in the unoccupied and occupied indoor swimming pool. In the literature, there are many papers describing this phenomena but the results differ from each other. The aim of the study was the experimental verification of published models of evaporation rate in the pool. The tests carried out on a laboratory scale, using model of indoor swimming pool, measuring 99cm/68cm/22cm. The model was equipped with water spray installation with six nozzles to simulate conditions during the use of the swimming pool. The measurements were made for conditions of sports pools (water temperature 24°C) and recreational swimming pool (water temperature 34°C). According to the recommendations the air temperature was about 2°C higher than water temperature, and the relative humidity ranged from 40% to 55%. Models Shah and Biasin & Krumm were characterized by the best fit to the results of measurements on a laboratory scale.

  20. Artificial Intelligence Techniques for Predicting and Mapping Daily Pan Evaporation

    Science.gov (United States)

    Arunkumar, R.; Jothiprakash, V.; Sharma, Kirty

    2017-08-01

    In this study, Artificial Intelligence techniques such as Artificial Neural Network (ANN), Model Tree (MT) and Genetic Programming (GP) are used to develop daily pan evaporation time-series (TS) prediction and cause-effect (CE) mapping models. Ten years of observed daily meteorological data such as maximum temperature, minimum temperature, relative humidity, sunshine hours, dew point temperature and pan evaporation are used for developing the models. For each technique, several models are developed by changing the number of inputs and other model parameters. The performance of each model is evaluated using standard statistical measures such as Mean Square Error, Mean Absolute Error, Normalized Mean Square Error and correlation coefficient (R). The results showed that daily TS-GP (4) model predicted better with a correlation coefficient of 0.959 than other TS models. Among various CE models, CE-ANN (6-10-1) resulted better than MT and GP models with a correlation coefficient of 0.881. Because of the complex non-linear inter-relationship among various meteorological variables, CE mapping models could not achieve the performance of TS models. From this study, it was found that GP performs better for recognizing single pattern (time series modelling), whereas ANN is better for modelling multiple patterns (cause-effect modelling) in the data.

  1. Clustering of particles and pathogens within evaporating drops

    Science.gov (United States)

    Park, Jaebum; Kim, Ho-Young

    2017-11-01

    The evaporation of sessile suspension drops leads to accumulation of the particles around the pinned contact line, which is widely termed the coffee ring effect. However, the evaporation behavior of a liquid drop containing a small number of particles with the size comparable to the host drop is unclear yet. Thus, here we investigate the motion and spatial distribution of large particles within a sessile drop. The spherical particles cluster only when their initial distance is below a critical value, which is a function of the diameter and wettability of particle as well as the surface tension and size of the host drop. We rationalize such a critical distance for self-assembly based on the balance of the capillary force and the frictional resistance to sliding and rolling of the particles on a solid substrate. We further discuss the physical significance of this drop-mediated ``Cheerios effect'' in connection with the fate of pathogens residing in drops as a result of sneezing and coughing.

  2. Influence of magnetic field on evaporation of a ferrofluid droplet

    Science.gov (United States)

    Jadav, Mudra; Patel, R. J.; Mehta, R. V.

    2017-10-01

    This paper reports the influence of the static magnetic field on the evaporation of a ferrofluid droplet placed on a plane glass substrate. A water based ferrofluid drop is allowed to dry under ambient conditions. Like all other fluids, this fluid also exhibits well-known coffee ring patterns under zero field conditions. This pattern is shown to be modulated by applying the static magnetic field. When the field is applied in a direction perpendicular to the plane of the substrate, the thickness of the ring decreases with an increase in the field, and under a critical value of the field, the coffee-ring effect is suppressed. For the parallel field configuration, linear chains parallel to the plane of the substrate are observed. The effect of the field on the evaporation rate and temporal variation of the contact angle is also studied. The results are analyzed in light of available models. These findings may be useful in applications like ink-jet printing, lithography, and painting and display devices involving ferrofluids.

  3. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  4. Advection-dominated Inflow/Outflows from Evaporating Accretion Disks.

    Science.gov (United States)

    Turolla; Dullemond

    2000-03-01

    In this Letter we investigate the properties of advection-dominated accretion flows (ADAFs) fed by the evaporation of a Shakura-Sunyaev accretion disk (SSD). In our picture, the ADAF fills the central cavity evacuated by the SSD and extends beyond the transition radius into a coronal region. We find that, because of global angular momentum conservation, a significant fraction of the hot gas flows away from the black hole, forming a transsonic wind, unless the injection rate depends only weakly on radius (if r2sigma&d2;~r-xi, xiradius is less, similar100 Schwarzschild radii, so matter falling into the hole is gravitationally bound. The ratio of inflowing to outflowing mass is approximately 1/2, so in these solutions the accretion rate is of the same order as in standard ADAFs and much larger than in advection-dominated inflow/outflow models. The possible relevance of evaporation-fed solutions to accretion flows in black hole X-ray binaries is briefly discussed.

  5. Efficient Direct Evaporative Cooling in an Atom Chip Magnetic Trap

    CERN Document Server

    Farkas, Daniel M; Du, Shengwang; Anderson, Dana

    2013-01-01

    We demonstrate direct evaporative cooling of $^{87}$Rb atoms confined in a dimple trap produced by an atom chip. By changing the two chip currents and two external bias fields, we show theoretically that the trap depth can be lowered in a controlled way with no change in the trap frequencies or the value of the field at the trap center. Experimentally, we maximized the decrease in trap depth by allowing some loosening of the trap. In total, we reduced the trap depth by a factor of 20. The geometric mean of the trap frequencies was reduced by less than a factor of 6. The measured phase space density in the final two stages increased by more than two orders of magnitude, and we estimate an increase of four orders of magnitude over the entire sequence. A subsequent rf evaporative sweep of only a few megahertz produced Bose-Einstein condensates. We also produce condensates in which raising the trap bottom pushes hotter atoms into an rf "knife" operating at a fixed frequency of 5\\,MHz.

  6. Evaporation induced nanoparticle - binder interaction in electrode film formation.

    Science.gov (United States)

    Liu, Zhixiao; Wood, David L; Mukherjee, Partha P

    2017-04-12

    Processing induced nanoparticle agglomeration and binder distribution affect the electrode microstructure formation and corresponding electrochemical performance in lithium-ion batteries. In the present study, stochastic dynamics computations based on a morphologically detailed mesoscale model are performed to illustrate the microstructural variability of electrode films affected by the evaporation condition (drying temperature) and the binder length (molecular weight). Micropores are observed at the surface of the electrode film when dried at a lower temperature. The pore formation depth tends to increase as the binder length increases. The solvent chemical potential also affects the surface topography of the electrode film. The solvent with higher volatility (more negative chemical potential) tends to produce more micropores. A lower drying temperature is beneficial for improving the electronic conductivity of the porous electrode film due to the better distribution of the conductive additive nanoparticles on and around the active particles, thereby facilitating the electron transport network formation. Agglomeration between active material nanoparticles can also be mitigated at a lower drying temperature. Additionally, better adhesion of the porous electrode film can be achieved due to preferential localization of the binder on the substrate at relatively low-temperature evaporation.

  7. On the interface instability during rapid evaporation in microgravity

    Energy Technology Data Exchange (ETDEWEB)

    Juric, D. [Los Alamos National Lab., NM (United States). Theoretical Div.

    1997-05-01

    The rapid evaporation of a superheated liquid (vapor explosion) under microgravity conditions is studied by direct numerical simulation. The time-dependent Navier-Stokes and energy equations coupled to the interface dynamics are solved using a two-dimensional finite-difference/front-tracking method. Large interface deformations, topology change, latent heat, surface tension and unequal material properties between the liquid and vapor phases are included in the simulations. A comparison of numerical results to the exact solution of a one-dimensional test problem shows excellent agreement. For the two-dimensional rapid evaporation problem, the vapor volume growth rate and unstable interface dynamics are studied for increasing levels of initial liquid superheat. As the superheat is increased the liquid-vapor interface experiences increasingly unstable energetic growth. These results indicate that heat transfer plays a very important role in the instability mechanism leading to vapor explosions. It is suggested that the Mullins-Sekerka instability could play a role in the instability initiation mechanism.

  8. Artificial Intelligence Techniques for Predicting and Mapping Daily Pan Evaporation

    Science.gov (United States)

    Arunkumar, R.; Jothiprakash, V.; Sharma, Kirty

    2017-09-01

    In this study, Artificial Intelligence techniques such as Artificial Neural Network (ANN), Model Tree (MT) and Genetic Programming (GP) are used to develop daily pan evaporation time-series (TS) prediction and cause-effect (CE) mapping models. Ten years of observed daily meteorological data such as maximum temperature, minimum temperature, relative humidity, sunshine hours, dew point temperature and pan evaporation are used for developing the models. For each technique, several models are developed by changing the number of inputs and other model parameters. The performance of each model is evaluated using standard statistical measures such as Mean Square Error, Mean Absolute Error, Normalized Mean Square Error and correlation coefficient (R). The results showed that daily TS-GP (4) model predicted better with a correlation coefficient of 0.959 than other TS models. Among various CE models, CE-ANN (6-10-1) resulted better than MT and GP models with a correlation coefficient of 0.881. Because of the complex non-linear inter-relationship among various meteorological variables, CE mapping models could not achieve the performance of TS models. From this study, it was found that GP performs better for recognizing single pattern (time series modelling), whereas ANN is better for modelling multiple patterns (cause-effect modelling) in the data.

  9. Magnetic studies in evaporated Ni/Pd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Chafai, K. [Laboratoire de Physique des Materiaux, Micro-electronique, Automatique et Thermique (LPMMAT), Faculte des Sciences Ain Chock, Universite Hassan II, B.P. 5366 Maarif, Casablanca (Morocco); Salhi, H. [Laboratoire de Physique des Materiaux, Micro-electronique, Automatique et Thermique (LPMMAT), Faculte des Sciences Ain Chock, Universite Hassan II, B.P. 5366 Maarif, Casablanca (Morocco); Laboratoire de Mecanique, Productique et Genie industriel (LMPG), Ecole superieure de technologie, Universite Hassan II, B.P. 5366 Maarif, Casablanca (Morocco); Lassri, H., E-mail: lassrih@hotmail.co [Laboratoire de Physique des Materiaux, Micro-electronique, Automatique et Thermique (LPMMAT), Faculte des Sciences Ain Chock, Universite Hassan II, B.P. 5366 Maarif, Casablanca (Morocco); Yamkane, Z.; Lassri, M. [Laboratoire de Physique des Materiaux, Micro-electronique, Automatique et Thermique (LPMMAT), Faculte des Sciences Ain Chock, Universite Hassan II, B.P. 5366 Maarif, Casablanca (Morocco); Abid, M. [Laboratoire de Physique Fondamentale et Appliquee (LPFA), Faculte des Sciences Ain Chock, Universite Hassan II, B.P. 5366 Maarif, Casablanca (Morocco); Hlil, E.K. [Institut Neel, CNRS-Universite J. Fourier, BP 166, 38042 Grenoble (France); Krishnan, R. [Laboratoire de Magnetisme et d' Optique, URA 1531, 45 Avenue des Etats Unis, 78035 Versailles Cedex (France)

    2011-03-15

    The magnetic properties of Ni/Pd multilayers, prepared by sequential evaporation in ultrahigh vacuum, have been studied. The Ni thickness dependence of the magnetization and magnetic anisotropy is discussed. The temperature dependence of the spontaneous magnetization is well described by a T{sup 3/2} law in all multilayers. A spin-wave theory has been used to explain the temperature dependence of the spontaneous magnetization, and the approximate values for the exchange interactions for various Ni layer thicknesses have been obtained. - Research highlights: The magnetic properties of Ni/Pd multilayers, prepared by sequential evaporation in ultrahigh vacuum, have been studied. The temperature dependence of the spontaneous magnetization is well described by a T{sup 3/2} law in Ni/Pd multilayers. The spin-wave constant B was observed to depend on t{sub Ni} nonmonotonically. A spin-wave theory has been used to explain the temperature dependence of the spontaneous magnetization. The approximate values for the exchange interactions for various Ni layer thicknesses have been obtained.

  10. "Osiris"(HD209458b), an Evaporating Planet

    Science.gov (United States)

    Vidal-Madjar, A.; Lecavelier des Etangs, A.

    2004-12-01

    Three transits of the planet orbiting the solar type star HD 209458 were observed in the far UV at the wavelength of the HI Lyα line. The planet size at this wavelength is equal to 4.3 RJup, i.e. larger than the planet Roche radius (3.6 RJup). Absorbing hydrogen atoms were found to be blueshifted by up to --130 km.s-1, exceeding the planet escape velocity. This implies that hydrogen atoms are escaping this ``hot Jupiter'' planet. An escape flux of ⪆1010 g.s-1 is needed to explain the observations. Taking into account the tidal forces and the temperature rise expected in the upper atmosphere, theoretical evaluations are in good agreement with the observed rate. Lifetime of planets closer to their star could be shorter than stellar lifetimes suggesting that this evaporating phenomenon may explain the lack of planets with very short orbital distance. This evaporating planet could be represented by the Egyptian god ``Osiris'' cut into pieces and having lost one of them. This would give us a much easier way to name that planet and replace the unpleasant ``HD209458b'' name used so far.

  11. Convective instability of sludge storage under evaporation and solar radiation

    Science.gov (United States)

    Tsiberkin, Kirill; Tatyana, Lyubimova

    2014-05-01

    The sludge storages are an important part of production cycle at salt manufacturing, water supply, etc. A quality of water in the storage depends on mixing of pure water and settled sediment. One of the leading factors is thermal convection. There are two main mechanisms of the layer instability exist. First, it is instability of water due to evaporation from the free surface [1]. It cools the water from upside, increases the particles concentration and leads to the instability in the near-surface layer. Second, the sediment absorbs a solar radiation and heats the liquid from below making it unstable in the near-bottom area. We assume the initial state is the mechanical equilibrium. The water and sediment particles are motionless, the sediment forms a uniform sludge layer of thickness z0, there are no evaporation and heating by solar energy, and the temperature has a linear profile is determined by fixed upper and bottom temperatures of the layer. Taking into account the evaporation and solar radiation absorption, we obtain a non-stationary solution for the temperature using Fourier series method. The local temperature gradients increases rapidly with time, and local Rayleigh number can be estimated by thermal conduction length Lt: Raloc(z,t) = gβ(δT(z,t)/δz)L4t-/νΞ , Lt ~ √Ξt, (1) where g is gravity acceleration, β, ν and Ξ are thermal volume expansion coefficient, kinematic viscosity and thermal conductivity of the liquid, respectively. Raloc* reaches the critical value at finite time t* and water motion begins. The maximal power of solar radiation in visible band equals 230 Wt/m2 at the latitude of "Uralkalii" salt manufacturer (Berezniki, Perm Region, Russian Federation). We neglect IR and UV radiation because of its huge absorption by water [2]. The evaporation speed is found using results for shallow water reservoir [3] and meteorological data for Berezniki [4]. We get the t*~ 6 · 102 s (10 min) for the layer of 1 m depth and t*~ 2 · 103 s (40

  12. Thermal and hydraulic performance of compact brazed plate heat exchangers operating as evaporators in domestic heat pumps

    OpenAIRE

    Claesson, Joachim

    2005-01-01

    This thesis investigates the performance of compact brazed plate heat exchangers (CBE) operating as evaporator in heat pump applications. The thesis, and the performances investigated, has been divided into three main sections; One zone evaporator performance; Two zone evaporator performance; and finally Local performance. The 'One zone evaporator performance' section considers the evaporator as one "black box". It was found that "approaching terminal temperatures" were obtained as low overal...

  13. A theoretical study of the spheroidal droplet evaporation in forced convection

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie, E-mail: leejay1986@163.com; Zhang, Jian

    2014-11-07

    In many applications, the shape of a droplet may be assumed to be an oblate spheroid. A theoretical study is conducted on the evaporation of an oblate spheroidal droplet under forced convection conditions. Closed-form analytical expressions of the mass evaporation rate for an oblate spheroid are derived, in the regime of controlled mass-transfer and heat-transfer, respectively. The variation of droplet size during the evaporation process is presented in the regime of shrinking dynamic model. Comparing with the droplets having the same surface area, an increase in the aspect ratio enhances the mass evaporation rate and prolongs the burnout time. - Highlights: • Fully algebraic solutions for the spheroidal droplet evaporation rate is obtained. • We examine the effect of aspect ratio on the droplet evaporation. • We propose a calculation method of Nusselt number for spheroidal droplet.

  14. Effect of Concentration on Evaporation Rate for Lithium Bromide Aqueous Solution in a Falling Film Heater

    Science.gov (United States)

    Matsuda, Akira; Ide, Tetsuo

    Experiments on evaporation for lithium bromide aqueous solution (0-55 wt% LiBr) were made in Summary a externally heated wetted-wall column under reduced pressures. The evaporation rates of 5 and 8 wt% LiBr-water solutions were similar to those of water. The evaporation rates, however, owered with further increase of the concentration of LiBr, and at low feed rates the evaporation rates lowered with decrease of the feed rate because the temperature of the falling film rose. On the other hand, at high feed rates the evaporation rates lowered with increase of feed rates because the heat transfer coefficients of the falling film decreased. Therefore, a maximum evaporation rate existed and it was supposed that there is the optimum feed rate. The experimental data agreed with the values that were calculated numerically based on the unidirectional model that lithium bromide didn't move through falling film.

  15. Numerical study of evaporators in power plants for improved dynamic fl exibility

    DEFF Research Database (Denmark)

    Johansen, Axel Vodder Ohrt

    The main objective of this Ph.D. thesis is to describe and analyse the most recent knowledge about operational flexibility in steam power plant evaporators, based on mathematical / numerical methods. The thesis addresses a mathematical study of steam power plant evaporators and involves the reader...... will be introduced to basic concepts in the power sector, including lifetime terms, such as corrosion, creep and fatigue, related to the evaporator tubes, which are responsible for the transfer of energy from the boiler to the water / steam circuit of a power plant. New evaporator technologies are briefly described......, followed by a simulation of a steam power plant evaporator of Skærbækværket (SKV3), which is one of DONG Energy’s ten central CHP plants, built in 1998 and located in Skærbæk at the mouth of Kolding Fjord in Denmark. Here different heating profiles of the evaporator are investigated, as well...

  16. Experimental Investigation of Heat Transfer Coefficient in Vertical Tube Rising Film Evaporator

    OpenAIRE

    Syed Naveed Ul Hasan; Sultan Ali

    2011-01-01

    This paper reports the experimental evaluation of the heat transfer coefficient (U) in a VRF (Vertical Tube Rising Film Evaporator). The aim is to describe the variation of U against different process parameters. Experiments were carried out for laminar flow conditions. The experimental unit is a floor standing tubular framework for a rising film evaporation system. There are many parameters affecting heat transfer coefficient in evaporators, but it was not possible to consider all of them, s...

  17. Evaporators for mobile waste heat recovery systems; Verdampfer zur Abwaermenutzung im Fahrzeug

    Energy Technology Data Exchange (ETDEWEB)

    Ambros, Peter; Fezer, Axel; Necker, Harald [Thesys GmbH, Kirchentellinsfurt (Germany); Orso,Jochen [Thesys GmbH, Kirchentellinsfurt (Germany); Hochschule Reutlingen (Germany)

    2011-01-15

    Thesys develops evaporators for waste heat recovery systems for mobile and stationary applications. These evaporators utilize the enthalpy availability of hot exhaust gas both in the cooled exhaust gas recirculation duct as well as in the main exhaust gas for example in the muffler. At present there are three different designs for evaporators under development. Prototype measurements have already partially proved their function and performance. (orig.)

  18. Evaluation of evaporation-measuring equipments for estimating evapotranspiration within a greenhouse

    OpenAIRE

    Blanco,Flávio F.; Folegatti,Marcos V.

    2004-01-01

    With the objective of evaluating the performance of simple evaporation measuring equipments in estimating the evapotranspiration in greenhouse, an experiment was conducted in Piracicaba, SP, during a tomato-growing season. Daily water evaporation rate from Piche atmometer, modified atmometer and a reduced evaporation pan installed inside the greenhouse and a Class A pan installed outside were compared to the evapotranspiration rates calculated with Penman-Monteith equation. Results showed tha...

  19. Evaporated copper sulphide layers for all-vacuum evaporated Cu sub x S/CdS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aperathitis, E.; Bryant, F.J.; Scott, C.G. (Dept. of Physics, Univ. of Hull (UK))

    1990-01-01

    Copper sulphide layers have been prepared by vacuum evaporation from a single Cu{sub x}S source, as an alternative to the chemiplating technique for fabricating the upper Cu{sub x}S layer in Cu{sub x}S/CdS solar cells. Deposition rates of less that 150 A/min have been shown to produce Cu{sub x}S layers with chalcocite being the major phase. Higher deposition rates increase the copper content of the layer which dominates its optoelectrical properties. Layers free from excess copper have a chalcocite-related phase transition between 75 and 80degC, room temperature resistivity between 10{sup -2} and 10{sup -3} {Omega} cm and evidence of direct and indirect band gaps of 2.25 and 1.25 eV, respectively. With well controlled evaporation conditions the layers deposited on hot CdS thin film substrates are found to have highly reproducible characteristics, and are well suited for use as the absorber for the Cu{sub x}S/CdS solar cell. Open-circuit voltages up to 0.58 V have been produced in cells with efficiencies in excess of 7%. (orig.).

  20. Thermodynamic Modeling of the SRS Evaporators: Part II. The 3H System

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.M.

    2001-10-02

    Accumulations of two solid phases have formed scale deposits in the Savannah River Site 2H Evaporator system since late 1996. The aluminosilicate scale deposits caused the evaporator pot to become inoperable in October 1999. Accumulations of the diuranate phase have caused criticality concerns in the SRS 2H Evaporator. In order to ensure that similar deposits are not and will not form in the SRS 3H Evaporator, thermodynamically derived activity diagrams specific to the feeds processed from Tanks 30 and 32 are evaluated in this report.

  1. Wind effects on leaf transpiration challenge the concept of "potential evaporation"

    Science.gov (United States)

    Schymanski, S. J.; Or, D.

    2015-06-01

    Transpiration is commonly conceptualised as a fraction of some potential rate, driven by so-called "atmospheric evaporative demand". Therefore, atmospheric evaporative demand or "potential evaporation" is generally used alongside with precipitation and soil moisture to characterise the environmental conditions that affect plant water use. Consequently, an increase in potential evaporation (e.g. due to climate change) is believed to cause increased transpiration and/or vegetation water stress. In the present study, we investigated the question whether potential evaporation constitutes a meaningful reference for transpiration and compared sensitivity of potential evaporation and leaf transpiration to atmospheric forcing. A physically-based leaf energy balance model was used, considering the dependence of feedbacks between leaf temperature and exchange rates of radiative, sensible and latent heat on stomatal resistance. Based on modelling results and supporting experimental evidence, we conclude that stomatal resistance cannot be parameterised as a factor relating transpiration to potential evaporation, as the ratio between transpiration and potential evaporation not only varies with stomatal resistance, but also with wind speed, air temperature, irradiance and relative humidity. Furthermore, the effect of wind speed in particular implies increase in potential evaporation, which is commonly interpreted as increased "water stress", but at the same time can reduce leaf transpiration, implying a decrease in water demand at leaf scale.

  2. Thermal management optimization of a thermoelectric-integrated methanol evaporator using a compact CFD modeling approach

    DEFF Research Database (Denmark)

    Xin, Gao; Chen, Min; Snyder, G. Jeffrey

    2013-01-01

    To better manage the magnitude and the direction of the heat flux in an exchanger-based methanol evaporator of a fuel cell system, thermoelectric (TE) modules can be deployed as TE heat flux regulators (TERs). The performance of the TE-integrated evaporator is strongly influenced by its heat...... exchange structure. The structure transfers the fuel cell exhaust heat to the evaporation chamber to evaporate the methanol, where TE modules are installed in between to facilitate the heat regulation. In this work, firstly, a numerical study is conducted to determine the working currents and working modes...

  3. Fuel Evaporation in an Atmospheric Premixed Burner: Sensitivity Analysis and Spray Vaporization

    Directory of Open Access Journals (Sweden)

    Dávid Csemány

    2017-12-01

    Full Text Available Calculation of evaporation requires accurate thermophysical properties of the liquid. Such data are well-known for conventional fossil fuels. In contrast, e.g., thermal conductivity or dynamic viscosity of the fuel vapor are rarely available for modern liquid fuels. To overcome this problem, molecular models can be used. Currently, the measurement-based properties of n-heptane and diesel oil are compared with estimated values, using the state-of-the-art molecular models to derive the temperature-dependent material properties. Then their effect on droplet evaporation was evaluated. The critical parameters were liquid density, latent heat of vaporization, boiling temperature, and vapor thermal conductivity where the estimation affected the evaporation time notably. Besides a general sensitivity analysis, evaporation modeling in a practical burner ended up with similar results. By calculating droplet motion, the evaporation number, the evaporation-to-residence time ratio can be derived. An empirical cumulative distribution function is used for the spray of the analyzed burner to evaluate evaporation in the mixing tube. Evaporation number did not exceed 0.4, meaning a full evaporation prior to reaching the burner lip in all cases. As droplet inertia depends upon its size, the residence time has a minimum value due to the phenomenon of overshooting.

  4. Experimental comparison of the dynamic evaporator response using homogeneous and slip flow modeling

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Larsen, Lars Finn Sloth

    2011-01-01

    The dynamic response from an evaporator is important for control of refrigeration and air-conditioning systems. Essentially, the prediction of refrigerant charge inside the evaporator is crucial for the dynamic behavior. The prediction of refrigerant charge follows from suitable void fraction...... correlations from the literature. A chosen set of void fraction correlations (slip flow) and the assumption of homogeneous flow will be investigated in this paper and compared to experiments on a simple coaxial type evaporator. The numerical model of the evaporator is a dynamic distributed mixture model, where...

  5. The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures.

    Science.gov (United States)

    Gerson, Alexander R; Smith, Eric Krabbe; Smit, Ben; McKechnie, Andrew E; Wolf, Blair O

    2014-01-01

    Environmental temperatures that exceed body temperature (Tb) force endothermic animals to rely solely on evaporative cooling to dissipate heat. However, evaporative heat dissipation can be drastically reduced by environmental humidity, imposing a thermoregulatory challenge. The goal of this study was to investigate the effects of humidity on the thermoregulation of desert birds and to compare the sensitivity of cutaneous and respiratory evaporation to reduced vapor density gradients. Rates of evaporative water loss, metabolic rate, and Tb were measured in birds exposed to humidities ranging from ∼2 to 30 g H2O m(-3) (0%-100% relative humidity at 30°C) at air temperatures between 44° and 56°C. In sociable weavers, a species that dissipates heat primarily through panting, rates of evaporative water loss were inhibited by as much as 36% by high humidity at 48°C, and these birds showed a high degree of hyperthermia. At lower temperatures (40°-44°C), evaporative water loss was largely unaffected by humidity in this species. In Namaqua doves, which primarily use cutaneous evaporation, increasing humidity reduced rates of evaporative water loss, but overall rates of water loss were lower than those observed in sociable weavers. Our data suggest that cutaneous evaporation is more efficient than panting, requiring less water to maintain Tb at a given temperature, but panting appears less sensitive to humidity over the air temperature range investigated here.

  6. Dynamics of Evaporation Front Propagation in Freon R21 With Addition of Nanoparticles

    Directory of Open Access Journals (Sweden)

    Moiseev Mikhail

    2016-01-01

    Full Text Available The paper presents the results of an experimental study on propagation dynamics of the self-sustained evaporation front in a large volume of Freon-R21 with the addition of SiO2 nanoparticles. The experimental data on propagation velocity and structure of evaporation fronts were obtained; the spectral analysis of fluctuations of the evaporation front interface was carried out. The characteristic frequencies and amplitudes of interface fluctuations were determined depending on the velocity of evaporation front propagation. It was shown that the addition of nano-sized particles significantly affects the front velocity and character of interface fluctuations.

  7. INVESTIGATIONS ON LOW TEMPERATURE FLASH EVAPORATION DESALINATION FOR SMALL-SCALE APPLICATIONS

    OpenAIRE

    G. Jims John Wessley; P. Koshy Mathews

    2013-01-01

    This paper presents the experimental study of a flash evaporation based desalination system that can cater to the small-scale fresh water needs of coastal and arid areas. The proposed small-scalesystem consists of an evaporator, water-cooled condenser and a vacuum pump to produce the required vacuum in the evaporator. The effect of inlet brine water temperature at various flow rate and evaporator pressure on the fresh water yield is evaluated. A maximum fresh water yield of 4 l/h is obtained ...

  8. The energy balance within a bubble column evaporator

    Science.gov (United States)

    Fan, Chao; Shahid, Muhammad; Pashley, Richard M.

    2017-11-01

    Bubble column evaporator (BCE) systems have been studied and developed for many applications, such as thermal desalination, sterilization, evaporative cooling and controlled precipitation. The heat supplied from warm/hot dry bubbles is to vaporize the water in various salt solutions until the solution temperature reaches steady state, which was derived into the energy balance of the BCE. The energy balance and utilization involved in each BCE process form the fundamental theory of these applications. More importantly, it opened a new field for the thermodynamics study in the form of heat and vapor transfer in the bubbles. In this paper, the originally derived energy balance was reviewed on the basis of its physics in the BCE process and compared with new proposed energy balance equations in terms of obtained the enthalpy of vaporization (ΔH vap) values of salt solutions from BCE experiments. Based on the analysis of derivation and ΔH vap values comparison, it is demonstrated that the original balance equation has high accuracy and precision, within 2% over 19-55 °C using improved systems. Also, the experimental and theoretical techniques used for determining ΔH vap values of salt solutions were reviewed for the operation conditions and their accuracies compared to the literature data. The BCE method, as one of the most simple and accurate techniques, offers a novel way to determine ΔH vap values of salt solutions based on its energy balance equation, which had error less than 3%. The thermal energy required to heat the inlet gas, the energy used for water evaporation in the BCE and the energy conserved from water vapor condensation were estimated in an overall energy balance analysis. The good agreement observed between input and potential vapor condensation energy illustrates the efficiency of the BCE system. Typical energy consumption levels for thermal desalination for producing pure water using the BCE process was also analyzed for different inlet air

  9. Soil tension mediates isotope fractionation during soil water evaporation

    Science.gov (United States)

    Gaj, Marcel; McDonnell, Jeffrey

    2017-04-01

    Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have

  10. Analysis of Evaporation and Condensation Processes in Complex Convective Flows.

    Science.gov (United States)

    Xu, Xun

    There are two parts in this dissertation. Part I, a numerical model was developed to analyze the flow and cloud formation processes in a concurrent-flow cloud chamber that recently has been designed by a group of researchers at Lawrence Berkeley Laboratory to examine the nucleation properties of smoke particles. This numerical model solves for the flow pattern and the distributions of temperature, water vapor, and liquid water droplets in the test chamber. Detailed information regarding these fields is difficult to obtain either by observation or by measurement during the experiment. The computational scheme uses a two-equation turbulence model (k-varepsilon model), which has been modified to include the effects of buoyancy and droplet condensation. The turbulent transport of momentum, heat, species, and droplets are simultaneously determined. The model also incorporates a treatment of the droplet growth and sedimentation mechanisms during the cloud formation process. Streamlines, isothermals, and constant contours of the concentrations have been obtained for a matrix of running conditions. Results from this numerical model indicate that the wall of the cylindrical chamber (oriented vertically) has a very strong influence on the flow field and on the temperature distribution inside the chamber. In Part II of this thesis, an analytical model is presented which can be used to predict the heat transfer characteristics of film evaporation on a microgroove surface. The model assumes that the liquid flow along a 'V' shaped groove channel is driven primarily by the capillary pressure difference due to the receding of the meniscus toward the apex of the groove, and the flow up the groove side wall is driven by the disjoining pressure difference. It also assumes that conduction across the thin liquid film is the dominant mechanism of heat transfer. A correlation between the Nusselt number and a non-dimensional parameter, Psi, is developed from this model which relates the

  11. Analysis of evaporative water loss in the Skylab astronauts

    Science.gov (United States)

    Leonard, J. I.

    1977-01-01

    Daily evaporative water losses (EWL) during the three Skylab missions were measured using the indirect mass and water balance techniques. A mean inflight EWL of 860 ml/day-m 2 was obtained for nine men who averaged one hour of daily exercise. Although it was expected the EWL would increase in the hypobaric environment of Skylab (1/3 atmosphere), an average decrease from preflight sea level conditions of 11 percent was measured. The results suggest that weightlessness may have been a factor in modifying EWL primarily by decreasing sweat losses during exercise and possibly by reducing insensible skin losses as well. The weightless environment apparently promotes the formation of a sweat film on the skin surface both directly, by reducing heat and mass convective flow and sweat drippage, and perhaps indirectly by inducing measurable biochemical changes resulting in high initial sweating rates. It is proposed that these high levels of skin wettedness favor sweat suppression by a previously described mechanism.

  12. Silicon-to-silicon wafer bonding using evaporated glass

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Lindahl, M.

    1998-01-01

    Anodic bending of silicon to silicon 4-in. wafers using an electron-beam evaporated glass (Schott 8329) was performed successfully in air at temperatures ranging from 200 degrees C to 450 degrees C. The composition of the deposited glass is enriched in sodium as compared to the target material...... of silicon/glass structures in air around 340 degrees C for 15 min leads to stress-free structures. Bonded wafer pairs, however, show no reduction in stress and always exhibit compressive stress. The bond yield is larger than 95% for bonding temperatures around 350 degrees C and is above 80% for bonding...... from 25 N/mm(2) to 0 N/mm(2) at 200 degrees C. A weak dependence on feature size was observed. For bonding temperatures higher than 300 degrees C fracture occurs randomly in the bulk of the silicon, whereas for bonding temperatures lower than 300 degrees C fracture always occurs at the bonding...

  13. A technique based on droplet evaporation to recognize alcoholic drinks

    Science.gov (United States)

    González-Gutiérrez, Jorge; Pérez-Isidoro, Rosendo; Ruiz-Suárez, J. C.

    2017-07-01

    Chromatography is, at present, the most used technique to determine the purity of alcoholic drinks. This involves a careful separation of the components of the liquid elements. However, since this technique requires sophisticated instrumentation, there are alternative techniques such as conductivity measurements and UV-Vis and infrared spectrometries. We report here a method based on salt-induced crystallization patterns formed during the evaporation of alcoholic drops. We found that droplets of different samples form different structures upon drying, which we characterize by their radial density profiles. We prove that using the dried deposit of a spirit as a control sample, our method allows us to differentiate between pure and adulterated drinks. As a proof of concept, we study tequila.

  14. Modelling of a cross flow evaporator for CSP application

    DEFF Research Database (Denmark)

    Sørensen, Kim; Franco, Alessandro; Pelagotti, Leonardo

    2016-01-01

    for a coil type steam generator specifically designed for solar applications, this paper analyzes the use of several heat transfer, void fraction and pressure drop correlations for the modelling the operation of such a type of steam generator. The paper after a brief review of the literature about...... the available correlations for the definition of two-phase flow heat transfer, void fraction and pressure drop in connection with the operation of steam generators, focuses attention on a comparison of the results obtained using several different models resulting by different combination of correlations....... The influence on the analysis of the performance of the evaporator, their impact on significant design variables and the effective lifetime of critical components in different operating conditions, simulating the daily start-up procedures of the steam generator is evaluated. The importance of a good calibration...

  15. Evaporation of polydispersed droplets in a highly turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Cochet, M.; Bazile, Rudy; Ferret, B.; Cazin, S. [INPT, UPS, IMFT (Institut de Mecanique des Fluides de Toulouse), Universite de Toulouse (France)

    2009-09-15

    A model experiment for the study of evaporating turbulent two-phase flows is presented here. The study focuses on a situation where pre-atomized and dispersed droplets vaporize and mix in a heated turbulent flow. The test bench consists in a channel flow with characteristics of homogeneous and isotropic turbulence where fluctuations levels reach very high values (25% in the established zone). An ultrasonic atomizer allows the injection of a mist of small droplets of acetone in the carrier flow. The large range diameters ensure that every kind of droplet behavior with regards to turbulence is possible. Instantaneous concentration fields of the vaporized phase are extracted from fluorescent images (PLIF) of the two phase flow. The evolution of the mixing of the acetone vapor is analyzed for two different liquid mass loadings. Despite the high turbulence levels, concentration fluctuations remain significant, indicating that air and acetone vapor are not fully mixed far from the injector. (orig.)

  16. Synaptic Bistability Due to Nucleation and Evaporation of Receptor Clusters

    KAUST Repository

    Burlakov, V. M.

    2012-01-10

    We introduce a bistability mechanism for long-term synaptic plasticity based on switching between two metastable states that contain significantly different numbers of synaptic receptors. One state is characterized by a two-dimensional gas of mobile interacting receptors and is stabilized against clustering by a high nucleation barrier. The other state contains a receptor gas in equilibrium with a large cluster of immobile receptors, which is stabilized by the turnover rate of receptors into and out of the synapse. Transitions between the two states can be initiated by either an increase (potentiation) or a decrease (depotentiation) of the net receptor flux into the synapse. This changes the saturation level of the receptor gas and triggers nucleation or evaporation of receptor clusters. © 2012 American Physical Society.

  17. Optoelectrical and structural properties of evaporated indium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Naseem, S. (Centre for Solid State Physics, Univ. of the Punjab, Lahore (Pakistan)); Iqbal, M. (Centre for Solid State Physics, Univ. of the Punjab, Lahore (Pakistan)); Hussain, K. (Centre for Solid State Physics, Univ. of the Punjab, Lahore (Pakistan))

    1993-11-01

    Indium oxide thin films have been prepared by evaporating indium metal in the presence of oxygen atmosphere. The oxygen partial pressure was kept at a fixed value, of 1 mTorr, previously found to be optimum for the present investigations. The substrate temperature was varied from room temperature to 300 C. Once an optimum substrate temperature of 250 C was established, more films were prepared at this temperature and these films were then given a post-deposition heat treatment in nitrogen and oxygen atmospheres. The resultant films were characterized for their optical, electrical and structural properties. The results show that films with a resistivity as low as 3.38x10[sup -4] [Omega] cm, and with a transmittance as high as 91% can be achieved by controlling the preparation conditions. (orig.)

  18. Dryout Quality for Refrigerants Flowing in Horizontal Evaporator Tubes

    Science.gov (United States)

    Mori, Hideo; Kakimoto, Yasushi; Ohishi, Katsumi

    The present paper reports an investigation of the dryout quality for refrigerants flowing in horizontal evaporator tubes. Experiments were made for the flow of boiling HFC-134a and HCFC-22 inside smooth tubes and a spirally grooved (micro-fin) tube. At given conditions, dryout proceeded over a certain quality range. Therefore two dryout qualities were defined; dryout inception quality at which the circumferentially averaged (axially local) heat transfer coefficient began to decrease rapidly, and dryout completion quality at which the decrease in the heat transfer coefficient ended. Based on the experimental data, the characteristics of both dryout qualities were clarified, and thereby the dryout qualities were classified into three characteristic regimes for the smooth tube and two regimes for the micro-fin tube. A dimensionless correlation of each dryout quality, which can reproduce the measurement successfully, was developed for the respective tubes.

  19. Diffusion and Evaporation-Controlled Emission in Ventilated Rooms

    DEFF Research Database (Denmark)

    Topp, Claus

    and sources. This work provides an investigation based on fundamental fluid dynamics and mass transfer theory to obtain a general understanding of the mechanisms involved in the emission from building materials in ventilated rooms. In addition, a generally applicable model for prediction of surface emission...... change rate, local air velocity and local turbulence intensity as the mass transfer coefficient increases in proportion to these parameters. The experimental results moreover exhibit the behaviour of a diffusion-controlled emission process at the end of the experiments. A simplified version of the model...... proposed was applied to investigate the influence of source diffusion coefficient and air velocity on the concentration distribution. The findings show that the mass transfer coefficient increases in proportion to the velocity when the emission is controlled by evaporation from the surface. As to diffusion-controlled...

  20. Evaporation from Lake Mead, Nevada and Arizona, March 2010 through February 2012

    Science.gov (United States)

    Moreo, Michael T.; Swancar, Amy

    2013-01-01

    Evaporation from Lake Mead was measured using the eddy-covariance method for the 2-year period starting March 2010 and ending February 2012. When corrected for energy imbalances, annual eddy-covariance evaporation was 2,074 and 1,881 millimeters (81.65 and 74.07 inches), within the range of previous estimates. There was a 9-percent decrease in the evaporation rate and a 10-percent increase in the lake surface area during the second year of the study compared to the first. These offsetting factors resulted in a nearly identical 720 million cubic meters (584,000 acre feet) evaporation volume for both years. Monthly evaporation rates were best correlated with wind speed, vapor pressure difference, and atmospheric stability. Differences between individual monthly evaporation and mean monthly evaporation were as much as 20 percent. Net radiation provided most of the energy available for evaporative processes; however, advected heat from the Colorado River was an important energy source during the second year of the study. Peak evaporation lagged peak net radiation by 2 months because a larger proportion of the net radiation that reaches the lake goes to heating up the water column during the spring and summer months. As most of this stored energy is released, higher evaporation rates are sustained during fall months even though net radiation declines. The release of stored heat also fueled nighttime evaporation, which accounted for 37 percent of total evaporation. The annual energy-balance ratio was 0.90 on average and varied only 0.01 between the 2 years, thus implying that 90 percent of estimated available energy was accounted for by turbulent energy measured using the eddy-covariance method. More than 90 percent of the turbulent-flux source area represented the open-water surface, and 94 percent of 30-minute turbulent-flux measurements originated from wind directions where the fetch ranged from 2,000 to 16,000 meters. Evaporation uncertainties were estimated to be 5

  1. 1998 interim 242-A Evaporator tank system integrity assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.E.

    1998-07-02

    This Integrity Assessment Report (IAR) is prepared by Fluor Daniel Northwest (FDNW) under contract to Lockheed-Martin Hanford Company (LMHC) for Waste Management Hanford (WMH), the 242-A Evaporator (facility) operations contractor for Fluor Daniel Hanford, and the US Department of Energy, the system owner. The contract specifies that FDNW perform an interim (5 year) integrity assessment of the facility and prepare a written IAR in accordance with Washington Administrative Code (WAC) 173-303-640. The WAC 173-303 defines a treatment, storage, or disposal (TSD) facility tank system as the ``dangerous waste storage or treatment tank and its ancillary equipment and containment.`` This integrity assessment evaluates the two tank systems at the facility: the evaporator vessel, C-A-1 (also called the vapor-liquid separator), and the condensate collection tank, TK-C-100. This IAR evaluates the 242-A facility tank systems up to, but not including, the last valve or flanged connection inside the facility perimeter. The initial integrity assessment performed on the facility evaluated certain subsystems not directly in contact with dangerous waste, such as the steam condensate and used raw water subsystems, to provide technical information. These subsystems were not evaluated in this IAR. The last major upgrade to the facility was project B-534. The facility modifications, as a result of project B-534, were evaluated in the 1993 facility interim integrity assessment. Since that time, the following upgrades have occurred in the facility: installation of a process condensate recycle system, and installation of a package steam boiler to provide steam for the facility. The package boiler is not within the scope of the facility TSD.

  2. Modelling and performance of heat pipes with long evaporator sections

    Science.gov (United States)

    Wits, Wessel W.; te Riele, Gert Jan

    2017-11-01

    This paper presents a planar cooling strategy for advanced electronic applications using heat pipe technology. The principle idea is to use an array of relatively long heat pipes, whereby heat is disposed to a long section of the pipes. The proposed design uses 1 m long heat pipes and top cooling through a fan-based heat sink. Successful heat pipe operation and experimental performances are determined for seven heating configurations, considering active bottom, middle and top sections, and four orientation angles (0°, 30°, 60° and 90°). For all heating sections active, the heat pipe oriented vertically in an evaporator-down mode and a power input of 150 W, the overall thermal resistance was 0.014 K/W at a thermal gradient of 2.1 K and an average operating temperature of 50.7 °C. Vertical operation showed best results, as can be expected; horizontally the heat pipe could not be tested up to the power limit and dry-out occurred between 20 and 80 W depending on the heating configuration. Heating configurations without the bottom section active demonstrated a dynamic start-up effect, caused by heat conduction towards the liquid pool and thereafter batch-wise introducing the working fluid into the two-phase cycle. By analysing the heat pipe limitations for the intended operating conditions, a suitable heat pipe geometry was chosen. To predict the thermal performance a thermal model using a resistance network was created. The model compares well with the measurement data, especially for higher input powers. Finally, the thermal model is used for the design of a 1 kW planar system-level electronics cooling infrastructure featuring six 1 m heat pipes in parallel having a long ( 75%) evaporator section.

  3. Solar Irradiance and Pan Evaporation Estimation from Meteorological Satellite Data

    Directory of Open Access Journals (Sweden)

    Ming-Ren Syu

    2016-04-01

    Full Text Available Knowledge about spatial and temporal variations in surface global solar radiation (GSR and evaporative water loss from the ground are important issues to many researches and applications. In this study empirical relationships suitable for Taiwan were established for GSR retrieval from geostationary satellite images using the Heliosat method for the period from 2011 - 2013. The derived GSR data has been used to generate consecutive maps of 10-day averaged pan evaporation (Epan as the basis to produce regional ET estimation using a strategy that does not require remote sensed land surface temperatures (LST. The retrieved daily GSR and the derived 10-day averaged Epan were validated against pyranometer and class-A pan measurements at selected Central Weather Bureau (CWB stations spread across various climatic regions in Taiwan. Compared with the CWB observed data the overall relative mean bias deviations (MBD% and root mean square differences (RMSD% in daily solar irradiance retrieval were about 5 and 15%, respectively. Seasonally, the largest MBD% and RMSD% of retrieved daily solar irradiance occur in spring (9.5 and 21.3% on average, while the least MBD% (-0.3% on average and RMSD% (9.7% on average occur in autumn and winter, respectively. For 10-day averaged Epan estimation, the mean MBD% and RMSD% for stations located in the coastal plain areas were 0.1 and 16.9%, respectively. However, in mountainous areas the mean MBD% and RMSD% increased to 30.2 and 34.5%, respectively. This overestimation was due mainly to the large differences in surrounding micro-environments between the mountainous and plain areas.

  4. Super-Maxwellian helium evaporation from pure and salty water

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Christine; Kann, Zachary R.; Faust, Jennifer A.; Skinner, J. L., E-mail: skinner@chem.wisc.edu, E-mail: nathanson@chem.wisc.edu; Nathanson, Gilbert M., E-mail: skinner@chem.wisc.edu, E-mail: nathanson@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706 (United States)

    2016-01-28

    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4–8.5 molal LiCl and LiBr at 232–252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the density profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He–water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He–water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.

  5. Evaporation of low-volatility components in polymeric dental resins.

    Science.gov (United States)

    Forman, Darren L; McLeod, Robert R; Shah, Parag K; Stansbury, Jeffery W

    2015-09-01

    This study provides measurement of the volatility of selected photoinitiators and monomers used in dental adhesive resins. A detailed determination of the spatial and temporal character of camphorquinone (CQ) volatilization with respect to air flow conditions as well as media viscosity is assessed to gauge the effect of evaporative loss on the photopolymerization process and the photopolymers formed. Vapor pressures of materials are measured by thermogravimetric analysis. A quantitative model assuming one-dimensional Fickian diffusion with surface evaporation is presented and compared with measured photoinitiator volatilization from viscous and non-viscous resin samples, obtained by spectrophotometry and confocal microscopy. Model resins are prepared and subject to airthinning followed by photocuring, monitored in real-time by Fourier transform infrared spectrometry. Vapor pressure measurements of the individual components of the adhesive resin span nearly four orders of magnitude, with the photoinitiator CQ near the middle (0.6Pa) and the monomer HEMA at the upper end (10Pa). We see depth-averaged CQ loss from non-viscous open films, while depthresolved measurements of viscous droplets show strong surface-localized CQ depletion. Good agreement is observed between measurements and the model. Finally, air-thinning of samples prepared with more-volatile photoinitiator and monomer is shown to cause longer induction times, slower early-stage polymerization rates and lower late-stage degree of conversion. Widely used compounds with vapor pressures as low as 0.6Pa (0.001Torr) undergo significant volatilization from samples ventilated under conditions generally representative to clinically used air-thinning procedures, with the potential to adversely affect the photopolymerization of both viscous and non-viscous resins. The inverse relationship between air-thinning and adhesive bond strength, observed elsewhere, may be partially caused by this same effect. Copyright

  6. Addressing Water Consumption of Evaporative Coolers with Greywater

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, Rashmi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    Evaporative coolers (ECs) provide significant gains in energy efficiency compared to vapor compression air conditioners, but simultaneously have significant onsite water demand. This can be a major barrier to deployment in areas of the world with hot and arid climates. To address this concern, this study determined where in the world evaporative cooling is suitable, the water consumption of ECs in these cities, and the potential that greywater can be used reduce the consumption of potable water in ECs. ECs covered 69percent of the cities where room air conditioners are may be deployed, based on comfort conditions alone. The average water consumption due to ECs was found to be 400 L/household/day in the United States and Australia, with the potential for greywater to provide 50percent this amount. In the rest of the world, the average water consumption was 250 L/household/day, with the potential for greywater to supply 80percent of this amount. Home size was the main factor that contributed to this difference. In the Mediterranean, the Middle East, Northern India, and the Midwestern and Southwestern United States alkalinity levels are high and water used for bleeding will likely contribute significantly to EC water consumption. Although technically feasible, upfront costs for household GW systems are currently high. In both developed and developing parts of the world, however, a direct EC and GW system is cost competitive with conventional vapor compression air conditioners. Moreover, in regions of the world that face problems of water scarcity the benefits can substantially outweigh the costs.

  7. Localised boundary air layer and clothing evaporative resistances for individual body segments.

    Science.gov (United States)

    Wang, Faming; del Ferraro, Simona; Lin, Li-Yen; Sotto Mayor, Tiago; Molinaro, Vincenzo; Ribeiro, Miguel; Gao, Chuansi; Kuklane, Kalev; Holmér, Ingvar

    2012-01-01

    Evaporative resistance is an important parameter to characterise clothing thermal comfort. However, previous work has focused mainly on either total static or dynamic evaporative resistance. There is a lack of investigation of localised clothing evaporative resistance. The objective of this study was to study localised evaporative resistance using sweating thermal manikins. The individual and interaction effects of air and body movements on localised resultant evaporative resistance were examined in a strict protocol. The boundary air layer's localised evaporative resistance was investigated on nude sweating manikins at three different air velocity levels (0.18, 0.48 and 0.78 m/s) and three different walking speeds (0, 0.96 and 1.17 m/s). Similarly, localised clothing evaporative resistance was measured on sweating manikins at three different air velocities (0.13, 0.48 and 0.70 m/s) and three walking speeds (0, 0.96 and 1.17 m/s). Results showed that the wind speed has distinct effects on local body segments. In contrast, walking speed brought much more effect on the limbs, such as thigh and forearm, than on body torso, such as back and waist. In addition, the combined effect of body and air movement on localised evaporative resistance demonstrated that the walking effect has more influence on the extremities than on the torso. Therefore, localised evaporative resistance values should be provided when reporting test results in order to clearly describe clothing local moisture transfer characteristics. Localised boundary air layer and clothing evaporative resistances are essential data for clothing design and assessment of thermal comfort. A comprehensive understanding of the effects of air and body movement on localised evaporative resistance is also necessary by both textile and apparel researchers and industry.

  8. Generation of multicomponent polymer blend microparticles using droplet evaporation technique and modeling evaporation of binary droplet containing nonvolatile solute

    Science.gov (United States)

    Rajagopalan, Venkat Narayan

    Recently, considerable attention has been focused on the generation of nano- and micrometer scale multicomponent polymer particles with specifically tailored mechanical, electrical and optical properties. As only a few polymer-polymer pairs are miscible, the set of multicomponent polymer systems achievable by conventional methods, such as melt blending, is severely limited in property ranges. Therefore, researchers have been evaluating synthesis methods that can arbitrarily blend immiscible solvent pairs, thus expanding the range of properties that are practical. The generation of blended microparticles by evaporating a co-solvent from aerosol droplets containing two dissolved immiscible polymers in solution seems likely to exhibit a high degree of phase uniformity. A second important advantage of this technique is the formation of nano- and microscale particulates with very low impurities, which are not attainable through conventional solution techniques. When the timescale of solvent evaporation is lower than that of polymer diffusion and self-organization, phase separation is inhibited within the atto- to femto-liter volume of the droplet, and homogeneous blends of immiscible polymers can be produced. We have studied multicomponent polymer particles generated from highly monodisperse micrordroplets that were produced using a Vibrating Orifice Aerosol Generator (VOAG). The particles are characterized for both external and internal morphology along with homogeneity of the blends. Ultra-thin slices of polymer particles were characterized by a Scanning Electron Microscope (SEM), and the degree of uniformity was examined using an Electron Dispersive X-ray Analysis (EDAX). To further establish the homogeneity of the polymer blend microparticles, differential scanning calorimeter was used to measure the glass transition temperature of the microparticles obtained. These results have its significance in the field of particulate encapsulation. Also, better control of the

  9. Stick-Jump (SJ) Evaporation of Strongly Pinned Nanoliter Volume Sessile Water Droplets on Quick Drying, Micropatterned Surfaces.

    Science.gov (United States)

    Debuisson, Damien; Merlen, Alain; Senez, Vincent; Arscott, Steve

    2016-03-22

    We present an experimental study of stick-jump (SJ) evaporation of strongly pinned nanoliter volume sessile water droplets drying on micropatterned surfaces. The evaporation is studied on surfaces composed of photolithographically micropatterned negative photoresist (SU-8). The micropatterning of the SU-8 enables circular, smooth, trough-like features to be formed which causes a very strong pinning of the three phase (liquid-vapor-solid) contact line of an evaporating droplet. This is ideal for studying SJ evaporation as it contains sequential constant contact radius (CCR) evaporation phases during droplet evaporation. The evaporation was studied in nonconfined conditions, and forced convection was not used. Micropatterned concentric circles were defined having an initial radius of 1000 μm decreasing by a spacing ranging from 500 to 50 μm. The droplet evaporates, successively pinning and depinning from circle to circle. For each pinning radius, the droplet contact angle and volume are observed to decrease quasi-linearly with time. The experimental average evaporation rates were found to decrease with decreasing pining radii. In contrast, the experimental average evaporation flux is found to increase with decreasing droplet radii. The data also demonstrate the influence of the initial contact angle on evaporation rate and flux. The data indicate that the total evaporation time of a droplet depends on the specific micropattern spacing and that the total evaporation time on micropatterned surfaces is always less than on flat, homogeneous surfaces. Although the surface patterning is observed to have little effect on the average droplet flux-indicating that the underlying evaporation physics is not significantly changed by the patterning-the total evaporation time is considerably modified by patterning, up to a factor or almost 2 compared to evaporation on a flat, homogeneous surface. The closely spaced concentric circle pinning maintains a large droplet radius and

  10. Dynamics of soil water evaporation during soil drying: laboratory experiment and numerical analysis.

    Science.gov (United States)

    Han, Jiangbo; Zhou, Zhifang

    2013-01-01

    Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3.

  11. Determination of crop and soil evaporation coefficients for estimating evapotranspiration in a paddy field

    NARCIS (Netherlands)

    Yan, H.; Zhang, C.; Oue, Hiroki; Peng, Guang Jie; Darko, Ransford Opoku

    2017-01-01

    Accurate estimation of evapotranspiration is important in efficient water management for improving water use efficiency. In order to obtain evapotranspiration and evaporation beneath the canopy using the Food and Agriculture Organization (FAO) method, pan evaporation was used instead of reference

  12. Experimental study on the relationship between average isotopic fractionation factor and evaporation rate

    Directory of Open Access Journals (Sweden)

    Tao WANG

    2010-12-01

    Full Text Available Isotopic fractionation is the foundation of tracing water cycle using hydrogen and oxygen isotopes. Isotopic fractionation factors in evaporation from free water body are mainly affected by temperature and relative humidity, and greatly vary with these atmospheric factors in a day. Evaporation rate can properly reveal the effects of atmospheric factors. Therefore, there should be a certain function relationship existing in isotopic fractionation factors and evaporation rate. An average isotopic fractionation factor was defined to describe isotopic differences between vapor and liquid phases in evaporation with time interval of hours or days. The relationship of average isotopic fractionation factor and evaporation based on isotopic mass balance was investigated through an evaporation pan experiment with no inflow. The experimental results showed that the isotopic compositions of residual water became more enrichment with time; the average isotopic fractionation factor was affected by air temperature, relative humidity and other atmospheric factors, and had a good functional relation with evaporation rate. The values of average isotopic fractionation factor could be easily calculated with the known of evaporation rate, the initial volume of water in pan and isotopic compositions of residual water.

  13. Organic emission calculations for the 242-A evaporator vessel vent system

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, M.R.

    1996-06-20

    This document contains historical calculations originally published in the 242-A Evaporator Dangerous Waste Permit Application, DOE/RL-90-42, Rev 0. They are being released as a supporting document, along with brief explanatory information, to be used as a reference in Rev 1 of the permit application and in other supporting documents, such as the 242-A Evaporator Data Quality Objectives.

  14. Encapsulation of azithromycin into polymeric microspheres by reduced pressure-solvent evaporation method

    DEFF Research Database (Denmark)

    Li, Xiujuan; Chang, Si; Du, Guangsheng

    2012-01-01

    Azithromycin loaded microspheres with blends of poly-l-lactide and ploy-D,L-lactide-co-glycolide as matrices were prepared by the atmosphere-solvent evaporation (ASE) and reduced pressure-solvent evaporation (RSE) method. Both the X-ray diffraction spectra and DSC thermographs demonstrated...

  15. Using Historical Precipitation, Temperature, and Runoff Observations to Evaluate Evaporation Formulations in Land Surface Models

    Science.gov (United States)

    Koster, Randal D.; Mahanama, P. P.

    2012-01-01

    Key to translating soil moisture memory into subseasonal precipitation and air temperature forecast skill is a realistic treatment of evaporation in the forecast system used - in particular, a realistic treatment of how evaporation responds to variations in soil moisture. The inherent soil moisture-evaporation relationships used in today's land surface models (LSMs), however, arguably reflect little more than guesswork given the lack of evaporation and soil moisture data at the spatial scales represented by regional and global models. Here we present a new approach for evaluating this critical aspect of LSMs. Seasonally averaged precipitation is used as a proxy for seasonally-averaged soil moisture, and seasonally-averaged air temperature is used as a proxy for seasonally-averaged evaporation (e.g., more evaporative cooling leads to cooler temperatures) the relationship between historical precipitation and temperature measurements accordingly mimics in certain important ways nature's relationship between soil moisture and evaporation. Additional information on the relationship is gleaned from joint analysis of precipitation and streamflow measurements. An experimental framework that utilizes these ideas to guide the development of an improved soil moisture-evaporation relationship is described and demonstrated.

  16. Low-Volatility Compound Evaporation from the Deepwater Horizon Oil Spill

    Science.gov (United States)

    Koss, A.; De Gouw, J. A.; Warneke, C.

    2011-12-01

    The Deepwater Horizon (DWH) oil spill in April-August 2010 provided an unusual opportunity to study secondary organic aerosol (SOA) formation on a large scale. Chemicals with differing volatility, evaporating at different rates, were spatially separated and released to the atmosphere at different locations. The resulting distribution of vapor and aerosol phase organic compounds were measured during research flights of the NOAA WP-3D aircraft over the Gulf in June 2010 (de Gouw et al., 2011). Known volatile SOA precursors (C8 to C11 hydrocarbons) were measured in a thin plume downwind of DWH. SOA was measured in a much wider plume, indicating contributions from less volatile compounds evaporating further from the source. Estimates of semi- and intermediate- volatile compound evaporation rates from the oil spill have been improved using a component-wise first-order kinetics model in which the evaporation rate of a compound is proportional to both its vapor pressure and mole fraction. The model was validated through proton-transfer-reaction ion-trap mass spectrometer measurements of evaporating South Louisiana crude oil and calibration mixtures of aromatic compounds. These new evaporation rate estimates highlight several concepts important to a revised interpretation of the June 2010 aerosol measurements. The rates of evaporation (and thus atmospheric concentrations) of low-volatility compounds did not necessarily reflect surface distribution. Low volatility compounds reached peak evaporation rates at appreciable distances from the source, and the area from which significant amounts of chemical were emitted was larger than previously thought.

  17. Fan and Pad Evaporative Cooling System for Greenhouses: Evaluation of a Numerical and Analytical Model

    NARCIS (Netherlands)

    Sapounas, A.; Nikita-Martzopoulou, Ch.; Bartzanas, T.; Kittas, C.

    2008-01-01

    An experimental greenhouse equipped with fan and pad evaporative cooling is analysed using two different models. The first one consists of a numerical simulation approach applying a commercial CFD code. The main aspects of evaporative cooling systems, in terms of heat and mass transfer and both the

  18. Is the evaporation water loss of Knot Calidris canutus higher in tropical than in temperate climates?

    NARCIS (Netherlands)

    Verboven, N.; Piersma, T.

    1995-01-01

    To test whether Knot Calidris canutus wintering in the tropics suffer higher rates of water loss through evaporation than do Knot wintering at temperate latitudes, we tried to develop a physically realistic model to predict evaporative heat loss from air temperature, wind and humidity. In separate

  19. Physical organogels: mechanism and kinetics of evaporation of the solvents entrapped within network scaffolding

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, Nov [Ian Wark Research Institute, ARC Special Research Centre, University of South Australia, Mawson Lakes, SA 5095 (Australia); Dutta, Naba K. [Ian Wark Research Institute, ARC Special Research Centre, University of South Australia, Mawson Lakes, SA 5095 (Australia)]. E-mail: Naba.Dutta@unisa.edu.au

    2005-03-01

    A series of hydrocarbon gels (based on leaded petrol and decalin) using physically crosslinked networks have been prepared using Al-salt of fatty acid as the physical gelling agent. The effects of gel network scaffolding on the mechanism and kinetics of evaporation of the solvents from the gels were investigated using conventional, isothermal and modulated thermogravimetric analysis. It has been clearly observed that the evaporation of solvent from gels followed a complex evaporation pattern compared to the pure solvent. It appears that with increase in network scaffolding the maximum rate of evaporation of the solvent decreases and its distribution become broader. The activation energy of evaporation for these solvents was found not to be dramatically dependent on the concentration of the gelator and tightness of the network scaffolding. Amongst different methods employed, isothermal measurements provided reliable information about the mechanism of evaporation. Modulated thermogravimetric analysis proved to be an efficient method to achieve kinetic parameters of evaporation from a single dynamic experiment. Scanning electron microscopy was used to probe for both dry gelator and gel network after evaporation of the solvents for evaluation of their surface morphology.

  20. Effects of climate variability on evaporation in Dongping Lake, China, during 2003–2010

    NARCIS (Netherlands)

    Rong, Y.; Su, H.; Zhang, R.; Duan, Z.

    2013-01-01

    Based on two long-term, hourly (10:30–11:30 and 13:10–14:10) meteorological over-lake observations and data from Shenxian meteorological station, nearby Dongping Lake, the Penman-Monteith equation and reference evaporation ratio algorithm were used to calculate lake evaporation in Dongping Lake,

  1. Expressions for the Evaporation and Condensation Coefficients in the Hertz-Knudsen Relation.

    Science.gov (United States)

    Persad, Aaron H; Ward, Charles A

    2016-07-27

    Although the Hertz-Knudsen (HK) relation is often used to correlate evaporation data, the relation contains two empirical parameters (the evaporation and condensation coefficients) that have inexplicably been found to span 3 orders of magnitude. Explicit expressions for these coefficients have yet to be determined. This review will examine sources of error in the HK relation that have led to the coefficients' scatter. Through an examination of theoretical, experimental, and molecular dynamics simulation studies of evaporation, this review will show that the HK relation is incomplete, since it is missing an important physical concept: the coupling between the vapor and liquid phases during evaporation. The review also examines a modified HK relation, obtained from the quantum-mechanically based statistical rate theory (SRT) expression for the evaporation flux and applying a limit to it in which the thermal energy is dominant. Explicit expressions for the evaporation and condensation coefficients are defined in this limit, with the surprising result that the coefficients are not bounded by unity. An examination is made with 127 reported evaporation experiments of water and of ethanol, leading to a new physical interpretation of the coefficients. The review concludes by showing how seemingly small simplifications, such as assuming thermal equilibrium across the liquid-vapor interface during evaporation, can lead to the erroneous predictions from the HK relation that have been reported in the literature.

  2. The WACMOS-ET project - Part 2: Evaluation of global terrestrial evaporation data sets

    NARCIS (Netherlands)

    Gonzalez Miralles, D.; Jiménez, C.; Jung, M.; Michel, D.; Ershadi, A.; McCabe, M.F.; Hirschi, M.; Martens, B.; Dolman, A.J.; Fisher, J.B.; Mu, Q.; Seneviratne, S.I.; Wood, E.F.; Fernández-Prieto, D.

    2016-01-01

    The WAter Cycle Multi-mission Observation Strategy - EvapoTranspiration (WACMOS-ET) project aims to advance the development of land evaporation estimates on global and regional scales. Its main objective is the derivation, validation, and intercomparison of a group of existing evaporation retrieval

  3. Numerical study of heat and mass transfer of ammonia-water in falling film evaporator

    Science.gov (United States)

    Bu, Xianbiao; Ma, Weibin; Huang, Yuanfeng

    2012-05-01

    To investigate the performance of the heat and mass transfer of ammonia water during the process of falling film evaporation in vertical tube evaporator, a mathematical model of evaporation process was developed and solved based on stream function. Then an experimental study of falling film evaporation was carried out in order to validate the mathematical model. A series of parameters, such as velocity, film thickness and concentration, etc., were obtained from the mathematical model. The calculated results show that the average velocity and the film thickness change sharp at the entrance region when x 100 mm. The film thickness depends largely on the flow rate of solution. It is observed that the heating power and mass flow of solution significantly affect the concentration difference between the inlet and outlet of evaporation tube. The calculated results reveal that the tube length has a significant impact on the amounts of ammonia vapor evaporated. It is suggested that the roll-worked enhanced tube should be used in order to decrease the concentration gradient in the film thickness direction and enhance the heat and mass transfer rate. Furthermore, the experimental and calculated results indicate that the inlet solution concentration has a great influence on the heat exchange capacity, the amounts of ammonia vapor evaporated and the evaporation pressure.

  4. Global land-surface evaporation estimated from satellite-based observations

    NARCIS (Netherlands)

    Miralles, D.G.; Holmes, T.R.H.; de Jeu, R.A.M.; Gash, J.H.C.; Meesters, A.G.C.A.; Dolman, A.J.

    2011-01-01

    This paper outlines a new strategy to derive evaporation from satellite observations. The approach uses a variety of satellite-sensor products to estimate daily evaporation at a global scale and 0.25 degree spatial resolution. Central to this methodology is the use of the Priestley and Taylor (PT)

  5. Global land-surface evaporation estimated from satellite-based observations

    NARCIS (Netherlands)

    Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.C.; Dolman, A.J.; Meesters, A.G.C.A.

    2010-01-01

    This paper outlines a new strategy to derive evaporation from satellite observations. The approach uses a variety of satellite-sensor products to estimate daily evaporation at a global scale and 0.25 degree spatial resolution. Central to this methodology is the use of the Priestley and Taylor (PT)

  6. Dynamic Response of a 50 kW Organic Rankine Cycle System in Association with Evaporators

    Directory of Open Access Journals (Sweden)

    Yuh-Ren Lee

    2014-04-01

    Full Text Available The influences of various evaporators on the system responses of a 50 kW ORC system using R-245fa are investigated in this study. First the effect of the supplied hot water flowrate into the evaporator is examined and the exit superheat on the system performance between plate and shell-and-tube evaporator is also reported. Test results show that the effect of hot water flowrate on the evaporator imposes a negligible effect on the transient response of the ORC system. These results prevail even for a 3.5-fold increase of the hot water flowrate and the system shows barely any change subject to this drastic hot water flowrate change. The effect of exit superheat on the ORC system depends on the type of the evaporator. For the plate evaporator, an exit superheat less than 10 °C may cause ORC system instability due to considerable liquid entrainment. To maintain a stable operation, the corresponding Jakob number of the plate heat evaporator must be above 0.07. On the other hand, by employing a shell and tube heat evaporator connected to the ORC system, no unstable oscillation of the ORC system is observed for exit superheats ranging from 0 to 17 °C.

  7. Measurements of clothing evaporative resistance using a sweating thermal manikin: an overview

    Science.gov (United States)

    WANG, Faming

    2017-01-01

    Evaporative resistance has been widely used to describe the evaporative heat transfer property of clothing. It is also a critical variable in heat stress models for predicting human physiological responses in various environmental conditions. At present, sweating thermal manikins provide a fast and cost-effective way to determine clothing evaporative resistance. Unfortunately, the measurement repeatability and reproducibility of evaporative resistance are rather low due to the complicated moisture transfer processes through clothing. This review article presents a systematical overview on major influential factors affecting the measurement precision of clothing evaporative resistance measurements. It also illustrates the state-of-the-art knowledge on the development of test protocol to measure clothing evaporative resistance by means of a sweating manikin. Some feasible and robust test procedures for measurement of clothing evaporative resistance using a sweating manikin are described. Recommendations on how to improve the measurement accuracy of clothing evaporative resistance are addressed and expected future trends on development of advanced sweating thermal manikins are finally presented. PMID:28566566

  8. Evaporation residue excitation function from complete fusion of F-19 with W-184

    NARCIS (Netherlands)

    Nath, S.; Rao, P. V. Madhusudhana; Pal, Santanu; Gehlot, J.; Prasad, E.; Mohanto, Gayatri; Kalkal, Sunil; Sadhukhan, Jhilam; Shidling, P. D.; Golda, K. S.; Jhingan, A.; Madhavan, N.; Muralithar, S.; Sinha, A. K.

    2010-01-01

    Evaporation residue cross sections for F-19 + W-184 have been measured at beam energies in the range of 90-130 MeV using the Heavy Ion Reaction Analyzer at the Inter University Accelerator Centre. A new approach, based on Monte Carlo calculations, has been adopted for estimating evaporation residue

  9. Observation of the hot GDR in neutron-deficient thorium evaporation residues

    NARCIS (Netherlands)

    Seitz, JP; Back, BB; Carpenter, MP; Dioszegi, [No Value; Eisenman, K; Heckman, P; Hofman, DJ; Kelly, MP; Khoo, TL; Mitsuoka, S; Nanal, [No Value; Pennington, T; Siemssen, RH; Thoennessen, M; Varner, RL

    2005-01-01

    The giant dipole resonance built on excited states was observed in very fissile nuclei in coincidence with evaporation residues. The reaction Ca-48 + Yb-176 populated evaporation residues of mass A = 213-220 with a cross section of similar to 200 mu b at 259 MeV. The extracted giant dipole resonance

  10. Nucleation and evaporation of domains due to electric field at room ...

    Indian Academy of Sciences (India)

    A study of nucleation and evaporation of 90° and 180° domains by external direct current (dc) electric field at room temperature in barium titanate single crystals has been carried out using reflecting microscope. It was observed that both the 90° and 180° domains were nucleated at some sites, while evaporated at some ...

  11. Solvent exchange module for LC-NMR hyphenation using machine vision-controlled droplet evaporation

    NARCIS (Netherlands)

    Schoonen, J.W.; Vulto, P.; Roo, de N.; Duynhoven, van J.P.M.; Linden, van der H.; Hankemeier, T.

    2013-01-01

    We report the use of pendant droplet evaporation for exchange of eluents for 1H nuclear magnetic resonance (1H NMR) purposes. Analytes are fed and retained in 500 nL droplets, which are concentrated by evaporation and subsequently redissolved in deuterated solvent. Droplet size is monitored by

  12. Analysis of Evaporative On-Board Diagnostic (OBD) Readiness and DTCs Using I/M Data

    Science.gov (United States)

    Gasoline vehicles are equipped with evaporative emissions control systems that control vapor from the fuel storage system while a vehicle is sitting or driving. When these systems or the vehicle’s gasoline delivery system malfunction, excessive evaporative emissions can be emitte...

  13. Numerical Simulations of Evaporating Sprays in High Pressure and Temperature Operating Conditions (Engine Combustion Network [ECN])

    Science.gov (United States)

    2014-05-01

    distortion and drag, droplet interactions in terms of collision and coalescence , turbulent dispersion, and evaporation. The two phases are coupled...its surroundings promotes liquid atomization into fine droplets as a result of aerodynamic instabilities and surface tension forces. The continuation...of the process leads to further breakup, droplet - droplet interactions, droplet -wall interactions, and evaporation. If critical conditions are

  14. Modelling the evaporation of boron species. Part 1: Alkali-free borosilicate glass melts

    NARCIS (Netherlands)

    Limpt, J.A.C. van; Beerkens, R.G.C.; Cook, S.; O'Connor, R.; Simon, J.

    2011-01-01

    A laboratory test facility has been used to measure the boron evaporation rates from borosilicate glass melts. The impact of furnace atmosphere composition and glass melt composition on the temperature dependent boron evaporation rates has been investigated experimentally. In Part 1 of this paper

  15. Soil-water evaporation dynamics determined with measurement of sensible heat transfer

    Science.gov (United States)

    Soil-water evaporation is important in both the hydrologic cycle and the surface energy balance. Yet, routine measurements are unable to capture rapidly shifting near-surface soil heat and water processes involved in evaporation. Recent improvements for fine-scale measurement of soil thermal propert...

  16. A New Eulerian Model for Turbulent Evaporating Sprays in Recirculating Flows

    NARCIS (Netherlands)

    Wittig, S.; Hallmann, M.; Scheurlen, M.; Schmehl, R.

    1993-01-01

    A new Eulerian model for the computation of turbulent evaporating sprays in recirculating flows is derived. It comprises droplet heating and evaporation processes by solving separate transport equations for the droplet's temperature and diameter. Full coupling of the droplet and the gaseous phase is

  17. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation and Condensation at a Liquid Vapor Interface

    Science.gov (United States)

    Stewart, Mark E.

    2017-01-01

    Evaporation and condensation at a liquidvapor interface is important for long-term, in-space cryogenic propellant storage. Yet the current understanding of interfacial physics does not predict behavior or evaporation condensation rates. The proposed paper will present a physical model, based on the 1-D Heat equation and Schrages equation which demonstrates thin thermal layers at the fluidvapor interface.

  18. Variability in evaporation across the Canadian Prairie region during drought and non-drought periods

    Science.gov (United States)

    Armstrong, R. N.; Pomeroy, J. W.; Martz, L. W.

    2015-02-01

    Knowledge of changes in spatial and temporal distributions of actual evaporation would be useful for land surface parameterizations in the Prairie region of Canada. Yet challenges persist for examining the variability of evaporation from land surfaces and vegetation over such a large region. This is due in part to the existence of numerous methods of varying complexity for obtaining estimates of evaporation and a general lack of sufficient measurements to drive detailed models. Integrated approaches may be applied for distributing evaporation over vast regions using energy and mass balance methods that integrate remote sensing imagery and surface reference data. Whilst informative, previous studies have not considered the variability of actual evaporation under drought and above normal moisture conditions. Continuous physically-based simulations were conducted for a 46 year period using the Cold Regions Hydrological Model (CRHM) platform. The Penman-Monteith model was applied in this platform to calculate estimates of actual evaporation at point locations which had sufficient hourly measurements. Variations in the statistical properties and mapped distributions derived from point-scale modelling via CRHM were instructional for understanding how evaporation varied spatially and temporally for a baseline normal period (1971-2000) and the years 1999-2005 which included both drought and above normal moisture conditions. The modelling approach was applied successfully for examining the historical variability of evaporation and can be applied to constrain land surface parameterization schemes; validate more empirical predictive model outputs; inform operational agrometeorological and hydrological applications in the Canadian Prairies.

  19. Evaporation, sensible heat and canopy conductance of fallow savannah and patterned woodland in the Sahel

    NARCIS (Netherlands)

    Kabat, P.; Dolman, A.J.; Elbers, J.A.

    1997-01-01

    The behaviour of evaporation, sensible heat and canopy conductance of fallow savannah and patterned woodland in the Sahel is studied for the HAPEX-Sahel Intensive Observation Period. Both fallow savannah and patterned woodland reach evaporation rates of 4–5 mm day−1 during the rainy part of the IOP

  20. Evaporation from rain-wetted forest in relation to canopy wetness, canopy cover, and net radiation

    NARCIS (Netherlands)

    Klaassen, W.

    2001-01-01

    Evaporation from wet canopies is commonly calculated using E-PM, the Penman-Monteith equation with zero surface resistance. However, several observations show a lower evaporation from rain-wetted forest. Possible causes for the difference between E-PM and experiments are evaluated to provide rules

  1. Pattern Formation by Staphylococcus epidermidis via Droplet Evaporation on Micropillars Arrays at a Surface

    NARCIS (Netherlands)

    Susarrey Arce, A.; Gomez Marin, Alvaro; Massey, A.; Oknianska, A.; Diaz-Fernandez, Y.; Hernandez Sanchez, J.F.; Griffiths, E.; Gardeniers, Johannes G.E.; Snoeijer, Jacobus Hendrikus; Lohse, Detlef; Raval, R.

    2016-01-01

    We evaluate the effect of epoxy surface structuring on the evaporation of water droplets containing Staphylococcus epidermidis (S. epidermidis). During evaporation, droplets with S. epidermidis cells yield to complex wetting patterns such as the zipping-wetting1−3 and the coffee-stain effects.

  2. Numerical modelling and experimental study of liquid evaporation during gel formation

    Science.gov (United States)

    Pokusaev, B. G.; Khramtsov, D. P.

    2017-11-01

    Gels are promising materials in biotechnology and medicine as a medium for storing cells for bioprinting applications. Gel is a two-phase system consisting of solid medium and liquid phase. Understanding of a gel structure evolution and gel aging during liquid evaporation is a crucial step in developing new additive bioprinting technologies. A numerical and experimental study of liquid evaporation was performed. In experimental study an evaporation process of an agarose gel layer located on Petri dish was observed and mass difference was detected using electronic scales. Numerical model was based on a smoothed particle hydrodynamics method. Gel in a model was represented as a solid-liquid system and liquid evaporation was modelled due to capillary forces and heat transfer. Comparison of experimental data and numerical results demonstrated that model can adequately represent evaporation process in agarose gel.

  3. Evaporation of lead and lithium from molten Pb-17Li - transport of aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Feuerstein, H.; Graebner, H.; Oschinski, J.; Horn, S.; Bender, S. (Kernforschungszentrum Karlsruhe GmbH (Germany))

    1991-12-01

    Evaporation of Pb and Li from molten Pb-17Li was investigated between 350 and 800deg C in vacuum, argon and helium covergas. Results were also obtained from other experimental facilities. Similarities were found to observations from sodium cooled reactors. The results show that Pb and Li evaporate independent on each other. The two elements show different behavior along the transport pathway. Deposits of the evaporated metals contained between 0.2 and 98 at% Li. As in the reactor RAPSODIE for sodium, evaporation rates for lithium were smaller in helium than in argon, however evaporation rates of lead were the same in both gases. No aerosol problems will exist with normal blanket operation. Under experimental conditions, aerosol concentrations were in the range of 10{sup -9} to 10{sup -6} g/m{sup 3}. Aerosols can easily be trapped with sintered metal filters. (orig.).

  4. Evaporation mechanisms of MgO in laser assisted atom probe tomography

    KAUST Repository

    Mazumder, Baishakhi

    2011-05-01

    In this paper the field evaporation properties of bulk MgO and sandwiched MgO layers in Fe are compared using laser assisted Atom Probe Tomography. The comparison of flight time spectra gives an estimate of the evaporation times as a function of the wavelength and the laser energy. It is shown that the evaporation takes place in two steps on two different time scales in MgO. It is also shown that as long as the MgO layer is buried in Fe, the evaporation is dominated by the photon absorption in Fe layer at the tip apex. Eventually the evaporation process of MgO is discussed based on the difference between the bulk materials and the multilayer samples. © 2010 Elsevier B.V.

  5. Enhancement of Water Evaporation on Solid Surfaces with Nanoscale Hydrophobic-Hydrophilic Patterns.

    Science.gov (United States)

    Wan, Rongzheng; Wang, Chunlei; Lei, Xiaoling; Zhou, Guoquan; Fang, Haiping

    2015-11-06

    Using molecular dynamics simulations, we show that the evaporation of nanoscale water on hydrophobic-hydrophilic patterned surfaces is unexpectedly faster than that on any surfaces with uniform wettability. The key to this phenomenon is that, on the patterned surface, the evaporation rate from the hydrophilic region only slightly decreases due to the correspondingly increased water thickness; meanwhile, a considerable number of water molecules evaporate from the hydrophobic region despite the lack of water film. Most of the evaporated water from the hydrophobic region originates from the hydrophilic region by diffusing across the contact lines. Further analysis shows that the evaporation rate from the hydrophobic region is approximately proportional to the total length of the contact lines.

  6. Effect of Surface Excess Energy Transport on the Rupture of an Evaporating Film

    Science.gov (United States)

    Luo, Yan; Zhou, Jianqiu; Yang, Xia; Liu, Rong

    2017-12-01

    In most of existing works on the instabilities of an evaporating film, the energy boundary condition only takes into account contributions of the evaporation latent heat and the heat conduction in the liquid. We use a new generalized energy boundary condition at the evaporating liquid-vapor interface, in which the contribution of the transport of the Gibbs excess energy is included. We have derived the long-wave equations in which the thickness of film and the interfacial temperature are coupled to describe the dynamics of an evaporating thin film. The results of our computation show that the transport of the Gibbs excess internal energy delay the rupture of thin films due to van de Waals force, evaporating effect and vapor recoil.

  7. Thermal management of metallic surfaces: evaporation of sessile water droplets on polished and patterned stainless steel

    Science.gov (United States)

    Czerwiec, T.; Tsareva, S.; Andrieux, A.; Bortolini, G. A.; Bolzan, P. H.; Castanet, G.; Gradeck, M.; Marcos, G.

    2017-10-01

    This communication focus on the evaporation of sessile water droplets on different states of austenitic stainless steel surfaces: mirror polished, mirror polished and aged and patterned by sputtering. The evolution of the contact angle and of the droplet diameter is presented as a function of time at room temperature. For all the surface states, a constant diameter regime (CCR) is observed. An important aging effect on the contact angle is measured on polished surfaces due to atmospheric contamination. The experimental observations are compared to a quasi-static evaporation model assuming spherical caps. The evolution of the droplet volume as a function of time is almost linear with the evaporation time for all the observed surfaces. This is in accordance with the model prediction for the CCR mode for small initial contact angles. In our experiments, the evaporation time is found to be linearly dependent on the initial contact angle. This dependence is not correctly described by the evaporation model

  8. AIR HUMIDITY AND EVAPORATION CONDITIONS IN POLAND IN RELATION TO ATMOSPHERIC CIRCULATION PATTERNS

    Directory of Open Access Journals (Sweden)

    A. WYPYCH

    2013-03-01

    Full Text Available The issue describing the amount of water vapour in the atmosphere and its backgrounds seems to be very important because of water vapour role among meteorological processes which are taking place within the atmosphere. The principal aim of this study is to examine the atmospheric circulation conditionings of evaporation and air humidity differentiation in Poland. Research was based on data for the period 1981-2010. The temporal and spatial differentiation of evaporation and air humidity in relation to atmospheric circulation patterns were examined by analysis of evaporation, evapotranspiration as well as specific humidity and saturation deficit values. The circulation factor was determined by a local atmospheric circulation calendar by Niedzwiedz. The results showed that atmospheric circulation is an important factor for humidity and evaporation conditions with the most significant: water vapour content and air mass temperature. Both air humidity and evaporation report temporal and spatial differentiation modified by particular synoptic situations. It is proved mainly by the extremes.

  9. The effect of evaporator operating parameters on the flow patterns inside horizontal pipes

    Science.gov (United States)

    Tong, Lige; Li, Haiyan; Wang, Li; Sun, Xinxing; Xie, Yunfei

    2011-08-01

    A general and simple model for simulating the steady state behaviors of air-to-refrigerant fin-and-tube evaporator is introduced with the focus on the detailed flow patterns inside the tubes. In order to simulate the heat transfer between air and the working fluid, the evaporator is divided into a number of control volumes. Empirical correlations from literature were also adopted to estimate the void fraction, the internal and external heat transfer coefficients, and the pressure drops. Simulations were performed to study the effects of varying inlet air temperature, refrigerant mass flow rate and evaporation pressure on the flow patterns inside the horizontal pipe of the evaporator. The simulation results indicate that the proposed model can be used to predict flow patterns well. The predicted results of the model agree well with experimental results, the difference is within ±3% for the cooling capacity, and is within ±0.2% for refrigerant evaporation temperature.

  10. Regional and local controls on evaporation from a small reservoir in northern Ghana

    Science.gov (United States)

    Liebe, J. R.; van de Giesen, N.; Andreini, M.; Walter, M. T.; Steenhuis, T. S.

    2009-12-01

    In many semi-arid regions of the world, small reservoirs are an important form of water supply for the rural population. Among practitioners and scientists it is often a common perception that water storage in small reservoirs is particularly inefficient in semi-arid environments due to large evaporation losses. Even though evaporation losses from reservoirs have been studied extensively in the 1960’s and thereafter, the availability of modern micro-meteorological weather stations gives us insight into regional and local controls on reservoir evaporation. The presented research studied regional and local controls on evaporation from a small reservoir in northern Ghana. Regional evaporation controls were analyzed in terms of characteristics of prevailing atmospheric circulation patterns (wind direction, relative humidity/saturation deficit, and wind speed). The local controls were analyzed with a set of micro-meteorological weather stations set up around a reservoir and in its center, which allows to measure moisture pickup over the reservoir under different pre-conditions of air saturation. In the study area, prevailing wind directions and the associated meteorological characteristics have significant impact on reservoir evaporation. While under the frequent, moist SW winds there is little evaporation from the reservoir, dry SE winds lead to pronounced evaporation losses. The moisture pickup is therein not uniform over the water body, but clearly concentrated on the upwind edge of the reservoir. In addition, reservoir evaporation was determined with the reservoirs energy budget and Penman ET. Compared to land based Penman ET, excessive evaporation loss from the water body was not apparent.

  11. Experimental study on the double-evaporator thermosiphon for cooling HTS (high temperature superconductor) system

    Science.gov (United States)

    Lee, Junghyun; Ko, Junseok; Kim, Youngkwon; Jeong, Sangkwon; Sung, Taehyun; Han, Younghee; Lee, Jeong-Phil; Jung, Seyong

    2009-08-01

    A cryogenic thermosiphons is an efficient heat transfer device between a cryocooler and a thermal load that is to be cooled. This paper presents an idea of thermosiphon which contains two vertically-separated evaporators. This unique configuration of the thermosiphon is suitable for the purpose of cooling simultaneously two superconducting bearings of the HTS (high temperature superconducting) flywheel system at the same temperature. A so-called double-evaporator thermosiphon was designed, fabricated and tested using nitrogen as the working fluid under sub-atmospheric pressure condition. The interior thermal condition of the double-evaporator thermosiphon was examined in detail during its cool-down process according to the internal thermal states. The double-evaporator thermosiphon has operated successfully at steady-state operation under sub-atmospheric pressure. At the heat flow of 10.6 W, the total temperature difference of the thermosiphon was only 1.59 K and the temperature difference between the evaporators was 0.64 K. The temperature difference of two evaporators is attributed to the conductive thermal resistance of the adiabatic section between the evaporators. The method to reduce this temperature difference has been investigated and presented in this paper. The proper area selection of condenser, evaporator 1, and evaporator 2 was studied by using thermal resistance model to optimize the performance of a thermosiphon. The superior heat transfer characteristic of the double-evaporator thermosiphon without involving any cryogenic pump can be a great potential advantage for cooling HTS bulk modules that are separated vertically.

  12. Magnitude and variability of land evaporation and its components at the global scale

    Directory of Open Access Journals (Sweden)

    D. G. Miralles

    2011-03-01

    Full Text Available A process-based methodology is applied to estimate land-surface evaporation from multi-satellite information. GLEAM (Global Land-surface Evaporation: the Amsterdam Methodology combines a wide range of remotely-sensed observations to derive daily actual evaporation and its different components. Soil water stress conditions are defined from a root-zone profile of soil moisture and used to estimate transpiration based on a Priestley and Taylor equation. The methodology also derives evaporationfrom bare soil and snow sublimation. Tall vegetation rainfall interception is independently estimated by means of the Gash analytical model. Here, GLEAM is applied daily, at global scale and a quarter degree resolution. Triple collocation is used to calculate the error structure of the evaporation estimates and test the relative merits of two different precipitation inputs. The spatial distribution of evaporation – and its different components – is analysed to understand the relative importance of each component over different ecosystems. Annual land evaporation is estimated as 67.9 × 103 km3, 80% corresponding to transpiration, 11% to interception loss, 7% to bare soil evaporation and 2% snow sublimation. Results show that rainfall interception plays an important role in the partition of precipitation into evaporation and water available for runoff at a continental scale. This study gives insights into the relative importance of precipitation and net radiation in driving evaporation, and how the seasonal influence of these controls varies over different regions. Precipitation is recognised as an important factor driving evaporation, not only in areas that have limited soil water availability, but also in areas of high rainfall interception and low available energy.

  13. Heat Transfer and Convective Structure of Evaporating Films under Pressure-Modulated Conditions

    Science.gov (United States)

    Gonzalez, Juan Carlos

    This work examines the fluid mechanical and heat transfer characteristics of evaporating films under cyclical superheat conditions. This research was motivated by the need to further understand the instability drivers in films undergoing unsteady and cyclical evaporation. The superheat was controlled modulating the system pressure. An isolated test cell allowed the films to evaporate into their own vapor without non-condensable present. A non-intrusive thickness measurement technique was used to yield dynamic heat flux measurements. A double pass schlieren system was employed to capture convective structures. System temperature and pressure measurements completed the diagnostics. The primary conclusions are briefly summarized as follows: • The evolution of thermal profile within evaporating films has a strong impact on the development of convective structure and heat transfer. In some cases convective structure appears within the film under pressure-modulated conditions even when the evaporation intervals are sufficiently short that conduction is expected to be the only heat transfer mode within the film. • Convective structure appears to persist in many cases even after evaporation is stopped. • Stopping the evaporation for short time intervals appears to have a negligible effect on the temperature profile in the film based on the subsequent evaporation behavior. • Complex, multi-wavelength convective structure behavior can be induced through cyclical superheating of the films. • A modest gain in short-term heat flux is achievable under some pressure-modulated conditions. • Surface instabilities of quasi-steady evaporating films do not lead to an increase in the evaporation rate. • Reduced gravity tests were seriously compromised by unsteady g-levels and g-jitter.

  14. Evaluation of evaporation coefficient for micro-droplets exposed to low pressure: A semi-analytical approach

    Science.gov (United States)

    Chakraborty, Prodyut R.; Hiremath, Kirankumar R.; Sharma, Manvendra

    2017-02-01

    Evaporation rate of water is strongly influenced by energy barrier due to molecular collision and heat transfer limitations. The evaporation coefficient, defined as the ratio of experimentally measured evaporation rate to that maximum possible theoretical limit, varies over a conflicting three orders of magnitude. In the present work, a semi-analytical transient heat diffusion model of droplet evaporation is developed considering the effect of change in droplet size due to evaporation from its surface, when the droplet is injected into vacuum. Negligible effect of droplet size reduction due to evaporation on cooling rate is found to be true. However, the evaporation coefficient is found to approach theoretical limit of unity, when the droplet radius is less than that of mean free path of vapor molecules on droplet surface contrary to the reported theoretical predictions. Evaporation coefficient was found to reduce rapidly when the droplet under consideration has a radius larger than the mean free path of evaporating molecules, confirming the molecular collision barrier to evaporation rate. The trend of change in evaporation coefficient with increasing droplet size predicted by the proposed model will facilitate obtaining functional relation of evaporation coefficient with droplet size, and can be used for benchmarking the interaction between multiple droplets during evaporation in vacuum.

  15. Evaluation of evaporation coefficient for micro-droplets exposed to low pressure: A semi-analytical approach

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Prodyut R., E-mail: pchakraborty@iitj.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, 342011 (India); Hiremath, Kirankumar R., E-mail: k.r.hiremath@iitj.ac.in [Department of Mathematics, Indian Institute of Technology Jodhpur, 342011 (India); Sharma, Manvendra, E-mail: PG201283003@iitj.ac.in [Defence Laboratory Jodhpur, Defence Research & Development Organisation, 342011 (India)

    2017-02-05

    Evaporation rate of water is strongly influenced by energy barrier due to molecular collision and heat transfer limitations. The evaporation coefficient, defined as the ratio of experimentally measured evaporation rate to that maximum possible theoretical limit, varies over a conflicting three orders of magnitude. In the present work, a semi-analytical transient heat diffusion model of droplet evaporation is developed considering the effect of change in droplet size due to evaporation from its surface, when the droplet is injected into vacuum. Negligible effect of droplet size reduction due to evaporation on cooling rate is found to be true. However, the evaporation coefficient is found to approach theoretical limit of unity, when the droplet radius is less than that of mean free path of vapor molecules on droplet surface contrary to the reported theoretical predictions. Evaporation coefficient was found to reduce rapidly when the droplet under consideration has a radius larger than the mean free path of evaporating molecules, confirming the molecular collision barrier to evaporation rate. The trend of change in evaporation coefficient with increasing droplet size predicted by the proposed model will facilitate obtaining functional relation of evaporation coefficient with droplet size, and can be used for benchmarking the interaction between multiple droplets during evaporation in vacuum.

  16. The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets

    KAUST Repository

    Miralles, D. G.

    2015-10-19

    The WAter Cycle Multi-mission Observation Strategy – EvapoTranspiration (WACMOS-ET) project aims to advance the development of land evaporation estimates on global and regional scales. Its main objective is the derivation, validation, and intercomparison of a group of existing evaporation retrieval algorithms driven by a common forcing data set. Three commonly used process-based evaporation methodologies are evaluated: the Penman–Monteith algorithm behind the official Moderate Resolution Imaging Spectroradiometer (MODIS) evaporation product (PM-MOD), the Global Land Evaporation Amsterdam Model (GLEAM), and the Priestley–Taylor Jet Propulsion Laboratory model (PT-JPL). The resulting global spatiotemporal variability of evaporation, the closure of regional water budgets, and the discrete estimation of land evaporation components or sources (i.e. transpiration, interception loss, and direct soil evaporation) are investigated using river discharge data, independent global evaporation data sets and results from previous studies. In a companion article (Part 1), Michel et al. (2016) inspect the performance of these three models at local scales using measurements from eddy-covariance towers and include in the assessment the Surface Energy Balance System (SEBS) model. In agreement with Part 1, our results indicate that the Priestley and Taylor products (PT-JPL and GLEAM) perform best overall for most ecosystems and climate regimes. While all three evaporation products adequately represent the expected average geographical patterns and seasonality, there is a tendency in PM-MOD to underestimate the flux in the tropics and subtropics. Overall, results from GLEAM and PT-JPL appear more realistic when compared to surface water balances from 837 globally distributed catchments and to separate evaporation estimates from ERAInterim and the model tree ensemble (MTE). Nonetheless, all products show large dissimilarities during conditions of water stress and drought and

  17. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis

    Science.gov (United States)

    McMahon, T. A.; Peel, M. C.; Lowe, L.; Srikanthan, R.; McVicar, T. R.

    2013-04-01

    This guide to estimating daily and monthly actual, potential, reference crop and pan evaporation covers topics that are of interest to researchers, consulting hydrologists and practicing engineers. Topics include estimating actual evaporation from deep lakes and from farm dams and for catchment water balance studies, estimating potential evaporation as input to rainfall-runoff models, and reference crop evapotranspiration for small irrigation areas, and for irrigation within large irrigation districts. Inspiration for this guide arose in response to the authors' experiences in reviewing research papers and consulting reports where estimation of the actual evaporation component in catchment and water balance studies was often inadequately handled. Practical guides using consistent terminology that cover both theory and practice are not readily available. Here we provide such a guide, which is divided into three parts. The first part provides background theory and an outline of the conceptual models of potential evaporation of Penman, Penman-Monteith and Priestley-Taylor, as well as discussions of reference crop evapotranspiration and Class-A pan evaporation. The last two sub-sections in this first part include techniques to estimate actual evaporation from (i) open-surface water and (ii) landscapes and catchments (Morton and the advection-aridity models). The second part addresses topics confronting a practicing hydrologist, e.g. estimating actual evaporation for deep lakes, shallow lakes and farm dams, lakes covered with vegetation, catchments, irrigation areas and bare soil. The third part addresses six related issues: (i) automatic (hard wired) calculation of evaporation estimates in commercial weather stations, (ii) evaporation estimates without wind data, (iii) at-site meteorological data, (iv) dealing with evaporation in a climate change environment, (v) 24 h versus day-light hour estimation of meteorological variables, and (vi) uncertainty in evaporation

  18. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis

    Directory of Open Access Journals (Sweden)

    T. A. McMahon

    2013-04-01

    Full Text Available This guide to estimating daily and monthly actual, potential, reference crop and pan evaporation covers topics that are of interest to researchers, consulting hydrologists and practicing engineers. Topics include estimating actual evaporation from deep lakes and from farm dams and for catchment water balance studies, estimating potential evaporation as input to rainfall-runoff models, and reference crop evapotranspiration for small irrigation areas, and for irrigation within large irrigation districts. Inspiration for this guide arose in response to the authors' experiences in reviewing research papers and consulting reports where estimation of the actual evaporation component in catchment and water balance studies was often inadequately handled. Practical guides using consistent terminology that cover both theory and practice are not readily available. Here we provide such a guide, which is divided into three parts. The first part provides background theory and an outline of the conceptual models of potential evaporation of Penman, Penman–Monteith and Priestley–Taylor, as well as discussions of reference crop evapotranspiration and Class-A pan evaporation. The last two sub-sections in this first part include techniques to estimate actual evaporation from (i open-surface water and (ii landscapes and catchments (Morton and the advection-aridity models. The second part addresses topics confronting a practicing hydrologist, e.g. estimating actual evaporation for deep lakes, shallow lakes and farm dams, lakes covered with vegetation, catchments, irrigation areas and bare soil. The third part addresses six related issues: (i automatic (hard wired calculation of evaporation estimates in commercial weather stations, (ii evaporation estimates without wind data, (iii at-site meteorological data, (iv dealing with evaporation in a climate change environment, (v 24 h versus day-light hour estimation of meteorological variables, and (vi uncertainty in

  19. Evaporation of methyl- and dimethyl-substituted malonic, succinic, glutaric and adipic acid particles at ambient temperatures

    DEFF Research Database (Denmark)

    Mønster, Jacob Garbrecht; Rosenørn, Thomas; Svenningsson, Birgitta

    2004-01-01

    Evaporation; organic aerosols; vapor pressure; dicarboxylic acid; maonic acid; succinic acid; glutaric acid; adipic acid......Evaporation; organic aerosols; vapor pressure; dicarboxylic acid; maonic acid; succinic acid; glutaric acid; adipic acid...

  20. Corrosion of metal particle and metal evaporated tapes

    Science.gov (United States)

    Speliotis, Dennis E.

    1991-01-01

    Very high coercivity metal particle (MP) and metal evaporated (ME) tapes are being used in 8mm video and digital audio tape applications, and more recently in digital data recording applications. In view of the inherent susceptibility of such media to environmental corrosion, a number of recent studies have addressed their long term stability and archivability. These studies have used an accelerated corrosion test based either on elevated temperature-humidity or polluting gas atmospheres known as Battelle tests. A comparison of the Battelle test results performed at different laboratories reveals a large variation from one location to another, presumably due to incorrect replication of the Battelle condition. Furthermore, when the Battelle tests are performed on enclosed cartridges, it is quite possible that diffusion limits the penetration of the extremely low concentration polluting gaseous species to the inner layers of the tapes during the short time of the accelerated test, whereas in real life these diffusion limitations may not apply. To avoid this uncertainty, the corrosion behavior of commercial 8mm MP and ME tapes when cassettes without their external plastic cases were exposed to 50 deg C and 80 percent RH for 7.5 weeks is investigated.

  1. Vaporization response of evaporating drops with finite thermal conductivity

    Science.gov (United States)

    Agosta, V. D.; Hammer, S. S.

    1975-01-01

    A numerical computing procedure was developed for calculating vaporization histories of evaporating drops in a combustor in which travelling transverse oscillations occurred. The liquid drop was assumed to have a finite thermal conductivity. The system of equations was solved by using a finite difference method programmed for solution on a high speed digital computer. Oscillations in the ratio of vaporization of an array of repetitivity injected drops in the combustor were obtained from summation of individual drop histories. A nonlinear in-phase frequency response factor for the entire vaporization process to oscillations in pressure was evaluated. A nonlinear out-of-phase response factor, in-phase and out-of-phase harmonic response factors, and a Princeton type 'n' and 'tau' were determined. The resulting data was correlated and is presented in graphical format. Qualitative agreement with the open literature is obtained in the behavior of the in-phase response factor. Quantitatively the results of the present finite conductivity spray analysis do not correlate with the results of a single drop model.

  2. Stratification during evaporative assembly of multicomponent nanoparticle films.

    Science.gov (United States)

    Liu, Xiao; Liu, Weiping; Carr, Amanda J; Santiago Vazquez, Dayalis; Nykypanchuk, Dmytro; Majewski, Pawel W; Routh, Alexander F; Bhatia, Surita R

    2018-04-01

    Multicomponent coatings with layers comprising different functionalities are of interest for a variety of applications, including electronic devices, energy storage, and biomaterials. Rather than creating such a film using multiple deposition steps, we explore a single-step method to create such films by varying the particle Peclet numbers, Pe. Our hypothesis, based on recent theoretical descriptions of the stratification process, is that by varying particle size and evaporation rate such that Pe of large and small particles are above and below unity, we can create stratified films of polymeric and inorganic particles. We present AFM on the surface composition of films comprising poly(styrene) nanoparticles (diameter 25-90 nm) and silica nanoparticles (diameter 8-14 nm). Previous studies on films containing both inorganic and polymeric particles correspond to large Pe values (e.g., 120-460), while we utilize Pe ∼ 0.3-4, enabling us to test theories that have been developed for different regimes of Pe. We demonstrate evidence of stratification and effect of the Pe ratio, although our results agree only qualitatively with theory. Our results also provide validation of recent theoretical descriptions of the film drying process that predict different regimes for large-on-top and small-on-top stratification. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Vortices generation in the reactive flow on the evaporative surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cha Ryeom; Lee, Chang Jin [Konkuk University, Seoul (Korea, Republic of)

    2015-02-15

    Vortices generation and flow dynamics are investigated by a numerical calculation with LES methodology on the evaporative surface including chemical reactions. For simplicity, fuel is radially injected from the surface in order to decouple pyrolysis of solid fuel from the governing equation and consideration of heat transfer balance. Nevertheless its simple treatment of chemical reactions and fuel pyrolysis, numerical results captured very fundamental understandings in terms of averaged temperature, velocity profile, and mixture fraction distribution. Results showed that a well-defined turbulent velocity profile at the inlet becomes twisted and highly wrinkled in the downstream reaching the maximum velocity at far above the surface, where the flame is located. And the thickness of boundary layer increases in the downstream due to the enhanced interaction of axial flow and mass injection from the surface. Also, chemical reaction appears highly active and partially concentrated along the plane where flow condition is in stoichiometric. In particular, flame front locates at the surface where mixture fraction Z equals to 0.07. Flame front severely wrinkles in the downstream by the interaction with turbulences in the flow. Partial reactions on the flame front contribute to produce hot spots periodically in the downstream attaining the max temperature at the center of each spot. This may take the role of additional unsteady heat generations and pressure perturbations in the downstream. Future study will focus on the evolution of hot spots and pressure perturbations in the post chamber of lab scale hybrid rocket motors.

  4. Groundwater monitoring plan for the 183-H Solar Evaporation Basins

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.

    1997-05-01

    Groundwater monitoring at the 183-H Solar Evaporation Basins is regulated under Washington Administrative Code 173-303-645. Proposed in this plan is the first phase of a final-status, corrective action monitoring program for the site. The monitoring network consists of four existing wells: 199-H4-3, 199-H4-7, 199-H4-12A, and 199-H4-12C. Well 199-H4-12C is completed at the base of the unconfined aquifer; the other wells are screened at the water table. Wells 199-H4-7 and 199-H4-12A are groundwater extraction wells used in a pump-and-treat system. Groundwater samples will be collected from each well annually. Samples will be analyzed for the following: (1) constituents of concern (i.e., chromium, nitrate, technetium-99, and uranium) and fluoride; (2) additional constituents to aid data interpretation (e.g., alkalinity, anions, and metals); and (3) field parameters routinely acquired at the wellhead (e.g., pH, specific conductance, temperature, and turbidity). The objective of monitoring during operation of the pump-and-treat system is to determine whether concentrations of the contaminants of concern are decreasing.

  5. Antibacterial polymeric coatings grown by matrix assisted pulsed laser evaporation

    Science.gov (United States)

    Paun, Irina Alexandra; Moldovan, Antoniu; Luculescu, Catalin Romeo; Dinescu, Maria

    2013-03-01

    We report on a simple and environmental friendly method to produce composite biocompatible antibacterial coatings consisting of silver nanoparticles (AgNPs, size 40 nm) combined with polymer blends (polyethylene glycol/poly(lactide-co-glycolide), PEG/PLGA blends). The PEG/PLGA&AgNPs coatings were produced by Matrix Assisted Pulsed Laser Evaporation, using a Nd:YAG laser with λ=266 nm. The AgNPs were deposited either on top of a PEG/PLGA layer (i.e., bilayered coating), or simultaneously with the polymers (i.e., blended coating). In both cases, chemical analysis indicated that the polymers preserved their integrity, with no evidence of chemical interaction with the AgNPs. Morphological investigations evidenced homogenous distribution of individual AgNPs on the surface of the coatings, with no signs of aggregation. The size of the AgNPs was ˜40 nm, consistent with size of the as-received ones. The presence of AgNPs in the coatings was confirmed by the absorption band at ˜420 nm and their stability was checked by monitoring this absorption versus time. After exposure to air, the AgNPs from the bilayered coating showed signs of oxidation. In the blended coating, the oxidation of the AgNPs was prevented by the neighboring polymer molecules. Finally, preliminary investigations confirmed the bacterial killing activity of the coatings against Escherichia coli.

  6. Evaporative cooling for Holstein dairy cows under grazing conditions

    Science.gov (United States)

    Valtorta, Silvia E.; Gallardo, Miriam R.

    . Twenty-four grazing Holstein cows in mid and late lactation were randomly assigned to two treatment groups: control and cooled. The trial was performed at the Experimental Dairy Unit, Rafaela Agricultural Experimental Station (INTA), Argentina. The objective was to evaluate the effects of sprinkler and fan cooling before milkings on milk production and composition. The effects of the cooling system on rectal temperature and respiration rate were also evaluated. Cooled cows showed higher milk production (1.04 l cow-1 day-1). The concentration and yield of milk fat and protein increased in response to cooling treatment. The cooling system also reduced rectal temperature and respiration rate. No effects were observed on body condition. It was concluded that evaporative cooling, which is efficient for housed animals, is also appropriate to improve yields and animal well-being under grazing systems. These results are impressive since the cooling system was utilized only before milkings, in a system where environmental control is very difficult to achieve. This trial was performed during a mild summer. The results would probably be magnified during hotter weather.

  7. Isokinetic TWC Evaporator Probe: Calculations and Systemic Uncertainty Analysis

    Science.gov (United States)

    Davison, Craig R.; Strapp, John W.; Lilie, Lyle E.; Ratvasky, Thomas P.; Dumont, Christopher

    2016-01-01

    A new Isokinetic Total Water Content Evaporator (IKP2) was downsized from a prototype instrument, specifically to make airborne measurements of hydrometeor total water content (TWC) in deep tropical convective clouds to assess the new ice crystal Appendix D icing envelope. The probe underwent numerous laboratory and wind tunnel investigations to ensure reliable operation under the difficult high altitude/speed/TWC conditions under which other TWC instruments have been known to either fail, or have unknown performance characteristics and the results are presented in a companion paper (Ref. 1). This paper presents the equations used to determine the total water content (TWC) of the sampled atmosphere from the values measured by the IKP2 or necessary ancillary data from other instruments. The uncertainty in the final TWC is determined by propagating the uncertainty in the measured values through the calculations to the final result. Two techniques were used and the results compared. The first is a typical analytical method of propagating uncertainty and the second performs a Monte Carlo simulation. The results are very similar with differences that are insignificant for practical purposes. The uncertainty is between 2 and 3 percent at most practical operating conditions. The capture efficiency of the IKP2 was also examined based on a computational fluid dynamic simulation of the original IKP and scaled down to the IKP2. Particles above 24 micrometers were found to have a capture efficiency greater than 99 percent at all operating conditions.

  8. Spherical magnetic nanoparticles fabricated by laser target evaporation

    Science.gov (United States)

    Safronov, A. P.; Beketov, I. V.; Komogortsev, S. V.; Kurlyandskaya, G. V.; Medvedev, A. I.; Leiman, D. V.; Larrañaga, A.; Bhagat, S. M.

    2013-05-01

    Magnetic nanoparticles of iron oxide (MNPs) were prepared by the laser target evaporation technique (LTE). The main focus was on the fabrication of de-aggregated spherical maghemite MNPs with a narrow size distribution and enhanced effective magnetization. X-ray diffraction, transmission electron microscopy, magnetization and microwave absorption measurements were comparatively analyzed. The shape of the MNPs (mean diameter of 9 nm) was very close to being spherical. The lattice constant of the crystalline phase was substantially smaller than that of stoichiometric magnetite but larger than the lattice constant of maghemite. High value of Ms up to 300 K was established. The 300 K ferromagnetic resonance signal is a single line located at a field expected from spherical magnetic particles with negligible magnetic anisotropy. The maximum obtained concentration of water based ferrofluid was as high as 10g/l of magnetic material. In order to understand the temperature and field dependence of MNPs magnetization, we invoke the core-shell model. The nanoparticles is said to have a ferrimagnetic core (roughly 70 percent of the caliper size) while the shell consists of surface layers in which the spins are frozen having no long range magnetic order. The core-shell interactions were estimated in frame of random anisotropy model. The obtained assembly of de-aggregated nanoparticles is an example of magnetic nanofluid stable under ambient conditions even without an electrostatic stabilizer.

  9. Spacesuit Water Membrane Evaporator Integration with the ISS Extravehicular Mobility

    Science.gov (United States)

    Margiott, Victoria; Boyle, Robert

    2014-01-01

    NASA has developed a Solid Water Membrane Evaporation (SWME) to provide cooling for the next generation spacesuit. One approach to increasing the TRL of the system is to incorporate this hardware with the existing EMU. Several integration issues were addressed to support a potential demonstration of the SWME with the existing EMU. Systems analysis was performed to assess the capability of the SWME to maintain crewmember cooling and comfort as a replacement for sublimation. The materials of the SWME were reviewed to address compatibility with the EMU. Conceptual system placement and integration with the EMU via an EVA umbilical system to ensure crew mobility and Airlock egress were performed. A concept of operation for EVA use was identified that is compatible with the existing system. This concept is extensible as a means to provide cooling for the existing EMU. The cooling system of one of the EMUs on orbit has degraded, with the root cause undetermined. Should there be a common cause resident on ISS, this integration could provide a means to recover cooling capability for EMUs on orbit.

  10. Non-Evaporable Getter Thin Film Coatings for Vacuum Applications

    CERN Document Server

    Prodromides, A E

    2002-01-01

    Getters are solid materials capable of chemisorbing gas molecules on their surface: getters are chemical pumps. They are widely used for a variety of applications such as in particle accelerators, vacuum tubes, field-emission display (FED), inert gas purification systems, H2 plasma purification, hydrogen species recycling as in the Tokamak Fusion Test Reactor. Among the different Non-Evaporable Getter (NEG) materials tested, the TiZrV alloys have the lowest activation temperature. For this reason, the TiZrV coatings were the object of this work. In particular, the aim of this investigation was to understand how to optimise three important properties of TiZrV coatings: to achieve the lowest possible activation temperature (Ta), and to obtain the highest pumping speed and surface pumping capacity. This objective is important in the context of the Large Hadron Collider (LHC) accelerator, since, before this work, the understanding and the knowledge of the TiZrV coatings properties were insufficient to adopt it fo...

  11. Constituents of volatile organic compounds of evaporating essential oil

    Science.gov (United States)

    Chiu, Hua-Hsien; Chiang, Hsiu-Mei; Lo, Cho-Ching; Chen, Ching-Yen; Chiang, Hung-Lung

    2009-12-01

    Essential oils containing aromatic compounds can affect air quality when used indoors. Five typical and popular essential oils—rose, lemon, rosemary, tea tree and lavender—were investigated in terms of composition, thermal characteristics, volatile organic compound (VOC) constituents, and emission factors. The activation energy was 6.3-8.6 kcal mol -1, the reaction order was in the range of 0.6-0.8, and the frequency factor was 0.01-0.24 min -1. Toluene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, n-undecane, p-diethylbenzene and m-diethylbenzene were the predominant VOCs of evaporating gas of essential oils at 40 °C. In addition, n-undecane, p-diethylbenzene, 1,2,4-trimethylbenzene, m-diethylbenzene, and 1,2,3-trimethylbenzene revealed high emission factors during the thermogravimetric (TG) analysis procedures. The sequence of the emission factors of 52 VOCs (137-173 mg g -1) was rose ≈ rosemary > tea tree ≈ lemon ≈ lavender. The VOC group fraction of the emission factor of aromatics was 62-78%, paraffins were 21-37% and olefins were less than 1.5% during the TG process. Some unhealthy VOCs such as benzene and toluene were measured at low temperature; they reveal the potential effect on indoor air quality and human health.

  12. Hands and feet: physiological insulators, radiators and evaporators.

    Science.gov (United States)

    Taylor, Nigel A S; Machado-Moreira, Christiano A; van den Heuvel, Anne M J; Caldwell, Joanne N

    2014-10-01

    The purpose of this review is to describe the unique anatomical and physiological features of the hands and feet that support heat conservation and dissipation, and in so doing, highlight the importance of these appendages in human thermoregulation. For instance, the surface area to mass ratio of each hand is 4-5 times greater than that of the body, whilst for each foot, it is ~3 times larger. This characteristic is supported by vascular responses that permit a theoretical maximal mass flow of thermal energy of 6.0 W (136 W m(2)) to each hand for a 1 °C thermal gradient. For each foot, this is 8.5 W (119 W m(2)). In an air temperature of 27 °C, the hands and feet of resting individuals can each dissipate 150-220 W m(2) (male-female) of heat through radiation and convection. During hypothermia, the extremities are physiologically isolated, restricting heat flow to feet to behave as excellent radiators, insulators and evaporators.

  13. Thermohydrodynamics of an evaporating droplet studied using a multiphase lattice Boltzmann method.

    Science.gov (United States)

    Zarghami, Ahad; Van den Akker, Harry E A

    2017-04-01

    In this paper, the thermohydrodynamics of an evaporating droplet is investigated by using a single-component pseudopotential lattice Boltzmann model. The phase change is applied to the model by adding source terms to the thermal lattice Boltzmann equation in such a way that the macroscopic energy equation of multiphase flows is recovered. In order to gain an exhaustive understanding of the complex hydrodynamics during evaporation, a single droplet is selected as a case study. At first, some tests for a stationary (non-)evaporating droplet are carried out to validate the method. Then the model is used to study the thermohydrodynamics of a falling evaporating droplet. The results show that the model is capable of reproducing the flow dynamics and transport phenomena of a stationary evaporating droplet quite well. Of course, a moving droplet evaporates faster than a stationary one due to the convective transport. Our study shows that our single-component model for simulating a moving evaporating droplet is limited to low Reynolds numbers.

  14. ACID EVAPORATION OF ULTIMA GOLD TM AB LIQUID SCINTILLATION COCKTAIL RESIDUE

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E.; Fondeur, F.; Crump, S.

    2011-12-21

    Prior analyses of samples from the F/H Lab solutions showed the presence of diisopropylnapthalene (DIN), a major component of Ultima Gold{trademark} AB liquid scintillation cocktail (LSC). These solutions are processed through H-Canyon Tank 10.5 and ultimately through the 17.8E evaporator. Similar solutions originated in SRNL streams sent to the same H Canyon tanks. This study examined whether the presence of these organics poses a process-significant hazard for the evaporator. Evaporation and calorimetry testing of surrogate samples containing 2000 ppm of Ultima Gold{trademark} AB LSC in 8 M nitric acid have been completed. These experiments showed that although reactions between nitric acid and the organic components do occur, they do not appear to pose a significant hazard for runaway reactions or generation of energetic compounds in canyon evaporators. The amount of off-gas generated was relatively modest and appeared to be well within the venting capacity of the H-Canyon evaporators. A significant fraction of the organic components likely survives the evaporation process primarily as non-volatile components that are not expected to represent any new process concerns during downstream operations such as neutralization. Laboratory Waste solutions containing minor amounts of DIN can be safely received, stored, transferred, and processed through the canyon waste evaporator.

  15. Sampling gaseous compounds from essential oils evaporation by solid phase microextraction devices

    Science.gov (United States)

    Cheng, Wen-Hsi; Lai, Chin-Hsing

    2014-12-01

    Needle trap samplers (NTS) are packed with 80-100 mesh divinylbenzene (DVB) particles to extract indoor volatile organic compounds (VOCs). This study compared extraction efficiency between an NTS and a commercially available 100 μm polydimethylsiloxane-solid phase microextration (PDMS-SPME) fiber sampler used to sample gaseous products in heated tea tree essential oil in different evaporation modes, which were evaporated respectively by free convection inside a glass evaporation dish at 27 °C, by evaporation diffuser at 60 °C, and by thermal ceramic wicks at 100 °C. The experimental results indicated that the NTS performed better than the SPME fiber samplers and that the NTS primarily adsorbed 5.7 ng ethylbenzene, 5.8 ng m/p-xylenes, 11.1 ng 1,2,3-trimethylbenzene, 12.4 ng 1,2,4-trimethylbenzene and 9.99 ng 1,4-diethylbenzene when thermal ceramic wicks were used to evaporate the tea tree essential oil during a 1-hr evaporation period. The experiment also indicated that the temperature used to heat the essential oils should be as low as possible to minimize irritant VOC by-products. If the evaporation temperature does not exceed 100 °C, the concentrations of main by-products trimethylbenzene and diethylbenzene are much lower than the threshold limit values recommended by the National Institute for Occupational Safety and Health (NIOSH).

  16. Spatiotemporal infrared measurement of interface temperatures during water droplet evaporation on a nonwetting substrate

    Science.gov (United States)

    Chandramohan, Aditya; Weibel, Justin A.; Garimella, Suresh V.

    2017-01-01

    High-fidelity experimental characterization of sessile droplet evaporation is required to understand the interdependent physical mechanisms that drive the evaporation. In particular, cooling of the interface due to release of the latent heat of evaporation, which is not accounted for in simplified vapor-diffusion-based models of droplet evaporation, may significantly suppress the evaporation rate on nonwetting substrates, which support tall droplet shapes. This suppression is counteracted by convective mass transfer from the droplet to the air. While prior numerical modeling studies have identified the importance of these mechanisms, there is no direct experimental evidence of their influence on the interfacial temperature distribution. Infrared thermography is used here to simultaneously measure the droplet volume, contact angle, and spatially resolved interface temperatures for water droplets on a nonwetting substrate. The technique is calibrated and validated to quantify the temperature measurement accuracy; a correction is employed to account for reflections from the surroundings when imaging the evaporating droplets. Spatiotemporally resolved interface temperature data, obtained via infrared thermography measurements, allow for an improved prediction of the evaporation rate and can be utilized to monitor temperature-controlled processes in droplets for various lab-on-a-chip applications.

  17. Characteristics of a micro-fin evaporator: Theoretical analysis and experimental verification

    Directory of Open Access Journals (Sweden)

    Zheng Hui-Fan

    2013-01-01

    Full Text Available A theoretical analysis and experimental verification on the characteristics of a micro-fin evaporator using R290 and R717 as refrigerants were carried out. The heat capacity and heat transfer coefficient of the micro-fin evaporator were investigated under different water mass flow rate, different refrigerant mass flow rate, and different inner tube diameter of micro-fin evaporator. The simulation results of the heat transfer coefficient are fairly in good agreement with the experimental data. The results show that heat capacity and the heat transfer coefficient of the micro-fin evaporator increase with increasing logarithmic mean temperature difference, the water mass flow rate and the refrigerant mass flow rate. Heat capacity of the micro-fin evaporator for diameter 9.52 mm is higher than that of diameter 7.00 mm with using R290 as refrigerant. Heat capacity of the micro-fin evaporator with using R717 as refrigerant is higher than that of R290 as refrigerant. The results of this study can provide useful guidelines for optimal design and operation of micro-fin evaporator in its present or future applications.

  18. Evaporation estimates from the Dead Sea and their implications on its water balance

    Science.gov (United States)

    Oroud, Ibrahim M.

    2011-12-01

    The Dead Sea (DS) is a terminal hypersaline water body situated in the deepest part of the Jordan Valley. There is a growing interest in linking the DS to the open seas due to severe water shortages in the area and the serious geological and environmental hazards to its vicinity caused by the rapid level drop of the DS. A key issue in linking the DS with the open seas would be an accurate determination of evaporation rates. There exist large uncertainties of evaporation estimates from the DS due to the complex feedback mechanisms between meteorological forcings and thermophysical properties of hypersaline solutions. Numerous methods have been used to estimate current and historical (pre-1960) evaporation rates, with estimates differing by ˜100%. Evaporation from the DS is usually deduced indirectly using energy, water balance, or pan methods with uncertainty in many parameters. Accumulated errors resulting from these uncertainties are usually pooled into the estimates of evaporation rates. In this paper, a physically based method with minimum empirical parameters is used to evaluate historical and current evaporation estimates from the DS. The more likely figures for historical and current evaporation rates from the DS were 1,500-1,600 and 1,200-1,250 mm per annum, respectively. Results obtained are congruent with field observations and with more elaborate procedures.

  19. Thermal modeling of flow in the San Diego Aqueduct, California, and its relation to evaporation

    Science.gov (United States)

    Jobson, Harvey E.

    1980-01-01

    The thermal balance of the 26-kilometer long concrete-lined San Diego Aqueduct, a canal in southern California, was studied to determine the coefficients in a Dalton type evaporation formula. Meteorologic and hydraulic variables, as well as water temperature, were monitored continuously for a 1-year period. A thermal model was calibrated by use of data obtained during a 28-day period to determine the coefficients which best described the thermal balance of the canal. The coefficients applicable to the San Diego Aqueduct are similar to those commonly obtained from lake evaporation studies except that a greater evaporation at low windspeeds is indicated. The model was verified by use of data obtained during 113 days which did not include the calibration data. These data verified that the derived wind function realistically represents the canal evaporation. An annual evaporation of 2.08 meters was computed which is about 91 percent of the amount of water evaporated annually from nearby class A evaporation pans. (Kosco-USGS)

  20. Mass evaporation rate of globular clusters in a strong tidal field

    Science.gov (United States)

    Madrid, Juan P.; Leigh, Nathan W. C.; Hurley, Jarrod R.; Giersz, Mirek

    2017-09-01

    The mass evaporation rate of globular clusters evolving in a strong Galactic tidal field is derived through the analysis of large, multimass N-body simulations. For comparison, we also study the same evaporation rates using mocca Monte Carlo models for globular cluster evolution. Our results show that the mass evaporation rate is a dynamical value, that is, far from a constant single number found in earlier analytical work and commonly used in the literature. Moreover, the evaporation rate derived with these simulations is higher than values previously published. These models also show that the value of the mass evaporation rate depends on the strength of the tidal field. We give an analytical estimate of the mass evaporation rate as a function of time and galactocentric distance ξ(RGC, t). Upon extrapolating this formula to smaller RGC values, our results provide tentative evidence for a very high ξ value at small RGC. Our results suggest that the corresponding mass-loss in the inner Galactic potential could be high and it should be accounted for when star clusters pass within it. This has direct relevance to nuclear cluster formation/growth via the infall of globular clusters through dynamical friction. As an illustrative example, we estimate how the evaporation rate increases for an ˜105 M⊙ globular cluster that decays through dynamical friction into the Galactic Centre. We discuss the findings of this work in relation to the formation of nuclear star clusters by inspiralling globular clusters.

  1. Thermohydrodynamics of an evaporating droplet studied using a multiphase lattice Boltzmann method

    Science.gov (United States)

    Zarghami, Ahad; Van den Akker, Harry E. A.

    2017-04-01

    In this paper, the thermohydrodynamics of an evaporating droplet is investigated by using a single-component pseudopotential lattice Boltzmann model. The phase change is applied to the model by adding source terms to the thermal lattice Boltzmann equation in such a way that the macroscopic energy equation of multiphase flows is recovered. In order to gain an exhaustive understanding of the complex hydrodynamics during evaporation, a single droplet is selected as a case study. At first, some tests for a stationary (non-)evaporating droplet are carried out to validate the method. Then the model is used to study the thermohydrodynamics of a falling evaporating droplet. The results show that the model is capable of reproducing the flow dynamics and transport phenomena of a stationary evaporating droplet quite well. Of course, a moving droplet evaporates faster than a stationary one due to the convective transport. Our study shows that our single-component model for simulating a moving evaporating droplet is limited to low Reynolds numbers.

  2. Concentrated Brine Treatment using New Energy in Coal Mine Evaporation Ponds

    Science.gov (United States)

    Li, Ting; Li, Jingfeng

    2017-12-01

    Recently, more and more coal mine water is being advanced treated and reused in China. The concentrated brine that results from advanced treatment methods can only be evaporated in an evaporation pond. Because of limited treatment capabilities and winter freezing, evaporation ponds often overflow, causing environment contamination. In this paper, based on analysis of brine water quality and economic-technical feasibility, we present a suitable treatment method for brine in evaporation ponds as electrodialysis using solar energy. In addition, we propose a new system to treat brine in coal mine evaporation ponds, which is powered by solar and wind. The operating efficiency of this treatment system proposed in this paper can meet the concentrated brine treatment demands in most coal mines in western mining areas of China and it places the photovoltaic power generation plates on the surface of the evaporation pond on a fixed floating island, which reduces any risk associated with land acquisition. This system can enhance brine treatment efficiency, requires a reduced evaporation pond area, increases the utilization of coal mine water, and minimizes the risk of environment contamination.

  3. Performance investigation of advanced adsorption desalination cycle with condenser-evaporator heat recovery scheme

    KAUST Repository

    Thu, Kyaw

    2013-01-01

    Energy or heat recovery schemes are keys for the performance improvement of any heat-activated cycles such as the absorption and adsorption cycles. We present two innovative heat recovery schemes between the condensing and evaporating units of an adsorption desalination (AD) cycle. By recovering the latent heat of condenser and dumping it into the evaporative process of the evaporator, it elevates the evaporating temperature and hence the adsorption pressure seen by the adsorbent. From isotherms, this has an effect of increasing the vapour uptake. In the proposed configurations, one approach is simply to have a run-about water circuit between the condenser and the evaporator and a pump is used to achieve the water circulation. This run-around circuit is a practical method for retrofitting purposes. The second method is targeted towards a new AD cycle where an encapsulated condenser-evaporator unit is employed. The heat transfer between the condensing and evaporative vapour is almost immediate and the processes occur in a fully integrated vessel, thereby minimizing the heat transfer resistances of heat exchangers. © 2013 Desalination Publications.

  4. Evaporation heat transfer of carbon dioxide at low temperature inside a horizontal smooth tube

    Science.gov (United States)

    Yoon, Jung-In; Son, Chang-Hyo; Jung, Suk-Ho; Jeon, Min-Ju; Yang, Dong-Il

    2017-05-01

    In this paper, the evaporation heat transfer coefficient of carbon dioxide at low temperature of -30 to -20 °C in a horizontal smooth tube was investigated experimentally. The test devices consist of mass flowmeter, pre-heater, magnetic gear pump, test section (evaporator), condenser and liquid receiver. Test section is made of cooper tube. Inner and outer diameter of the test section is 8 and 9.52 mm, respectively. The experiment is conducted at mass fluxes from 100 to 300 kg/m2 s, saturation temperature from -30 to -20 °C. The main results are summarized as follows: In case that the mass flux of carbon dioxide is 100 kg/m2 s, the evaporation heat transfer coefficient is almost constant regardless of vapor quality. In case of 200 and 300 kg/m2 s, the evaporation heat transfer coefficient increases steadily with increasing vapor quality. For the same mass flux, the evaporation heat transfer coefficient increases as the evaporation temperature of the refrigerant decreases. In comparison of heat transfer correlations with the experimental result, the evaporation heat transfer correlations do not predict them exactly. Therefore, more accurate heat transfer correlation than the previous one is required.

  5. Experimental Investigation Evaporation of Liquid Mixture Droplets during Depressurization into Air Stream

    Science.gov (United States)

    Liu, L.; Bi, Q. C.; Terekhov, Victor I.; Shishkin, Nikolay E.

    2010-03-01

    The objective of this study is to develop experimental method to study the evaporation process of liquid mixture droplets during depressurization and into air stream. During the experiment, a droplet was suspended on a thermocouple; an infrared thermal imager was used to measure the droplet surface temperature transition. Saltwater droplets were used to investigate the evaporation process during depressurization, and volatile liquid mixtures of ethanol, methanol and acetone in water were applied to experimentally research the evaporation into air stream. According to the results, the composition and concentration has a complex influence on the evaporation rate and the temperature transition. With an increase in the share of more volatile component, the evaporation rate increases. While, a higher salt concentration in water results in a lower evaporation rate. The shape variation of saltwater droplet also depends on the mass concentration in solution, whether it is higher or lower than the eutectic point (22.4%). The results provide important insight into the complex heat and mass transfer of liquid mixture during evaporation.

  6. UJI UNJUK KERJA EVAPORATOR TIPE FALLING FILM EFEK TUNGGAL UNTUK PEMEKATAN GELATIN IKAN

    Directory of Open Access Journals (Sweden)

    Harianto Harianto

    2009-06-01

    Full Text Available Pengujian unjuk kerja telah dilakukan pada prototipe evaporator tipe lapisan tipis jatuh (falling film efek tunggal untuk memekatkan larutan gelatin yang dibuat dari kulit ikan tuna. Bahan pengujian adalah larutan gelatin sebanyak 180 liter dengan padatan total awal 3,5% kamudian dipekatkan dalam evaporator dengan laju air masuk 84 liter/jam. Evaporator ini dioperasikan pada tekanan vakum sekitar 2,5 cmHg pada suhu penguapan bahan 55ºC dari sumber panas uap (steam boiler dengan tekanan 2,5-4,0 kg/cm². Rata-rata suhu bahan yang masuk ke evaporator adalah 32ºC. Larutan yang telah melalui permukaan evaporasi dikembalikan lagi ke tangki umpan dan dievaporasikan lagi secara berulang-ulang (sirkulasi sampai larutan menjadi kental yang tampak seperti madu. Akhir evaporasi manghasilkan volume produk sebanyak 30 liter dengan padatan total 9,1% yang diselesaikan dalam waktu 5 jam. Dengan demikian kapasitas evaporator ini adalah 30 liter air teruapkan per jam dan tingkat ekonomi uap adalah 0,78 liter air teruapkan dari bahan per kg uap pemanas yang digunakan. Luas permukaan evaporasi dari evaporator ini adalah 1,67 m², dengan menggunakan persamaan pindah panas dan neraca entalpi didapatkan koefisien pindah panas keseluruhan sebesar 668 W/m² ºC. Konsumsi bahan bakar dari evaporator ini adalah 3,58 liter/jam atau 0,12 liter minyak tanah per liter air teruapkan sehingga efisiensi energi bahan bakar evaporator ini sebesar 60%. Konsumsi energi listrik pada pengujian ini 34,7 kWh, dengan demikian efisiensi energi keseluruhan dari evaporator ini action 50%.

  7. Evaluation of multiple satellite evaporation products in two dryland regions using GRACE

    KAUST Repository

    Lopez, Oliver

    2015-12-01

    Remote sensing has become a valuable tool for monitoring the water cycle variables in areas that lack the availability of ground-based measurements. Integrating multiple remote sensing-based estimates of evaporation, precipitation, and the terrestrial water storage changes with local measurements of streamflow into a consistent estimate of the regional water budget is a challenge, due to the scale mismatch among the retrieved variables. Evapotranspiration, including soil evaporation, interception losses and canopy transpiration, has received special focus in a number of recent studies that aim to provide global or regional estimates of evaporation at regular time intervals using a variety of remote sensing input. In arid and semi-arid regions, modeling of evaporation is particularly challenging due to the relatively high role of the soil evaporation component in these regions and the variable nature of rainfall events that drive the evaporation process. In this study, we explore the hydrological consistency of remote sensing products in terms of water budget closure and the correlation among spatial patterns of precipitation (P), evaporation (E) and terrestrial water storage, using P-E as a surrogate of water storage changes, with special attention to the evaporation component. The analysis is undertaken within two dryland regions that have presented recent significant changes in climatology (Murray-Darling Basin in Australia) and water storage (the Saq aquifer in northern Saudi Arabia). Water storage changes were derived from the Gravity Recovery and Climate Experiment (GRACE) spherical harmonic (SH) coefficients. Six remote sensing-based evaporation estimates were subtracted from the Global Precipitation Climatology Project (GPCP)-based precipitation estimates and were compared with GRACE-derived water storage changes. Our results suggest that it is not possible to close the water balance by using satellite data alone, even when adopting a spherical harmonic

  8. Evaporation suppression from water reservoirs using floating covers: Lab scale observations and model predictions

    Science.gov (United States)

    Or, D.; Lehmann, P.; Aminzadeh, M.; Sommer, M.; Wey, H.; Wunderli, H.; Breitenstein, D.

    2016-12-01

    The competition over dwindling fresh water resources is expected to intensify with projected increase in human population in arid regions, expansion of irrigated land and changes in climate and drought patterns. The volume of water stored in reservoirs would also increase to mitigate seasonal shortages due to rainfall variability and to meet irrigation water needs. By some estimates up to half of the stored water is lost to evaporation thereby exacerbating the water scarcity problem. Recently, there is an upsurge in the use of self-assembling floating covers to suppress evaporation, yet the design, and implementation remain largely empirical. Studies have shown that evaporation suppression is highly nonlinear, as also known from a century of research on gas exchange from plant leaves (that often evaporate as free water surfaces through stomata that are only 1% of leaf area). We report a systematic evaluation of different cover types and external drivers (radiation, wind, wind+radiation) on evaporation suppression and energy balance of a 1.4 m2 basin placed in a wind-tunnel. Surprisingly, evaporation suppression by black and white floating covers (balls and plates) were similar despite significantly different energy balance regimes over the cover surfaces. Moreover, the evaporation suppression efficiency was a simple function of the uncovered area (square root of the uncovered fraction) with linear relations with the covered area in some cases. The thermally decoupled floating covers offer an efficient solution to the evaporation suppression with limited influence of the surface energy balance (water temperature for black and white covers was similar and remained nearly constant). The results will be linked with a predictive evaporation-energy balance model and issues of spatial scales and long exposure times will be studied.

  9. HESS Opinions "a perspective on isotope versus non-isotope approaches to determine the contribution of transpiration to total evaporation"

    NARCIS (Netherlands)

    Sutanto, S. J.; Van Den Hurk, B.; Dirmeyer, P. A.; Seneviratne, S. I.; Röckmann, T.; Trenberth, K. E.; Blyth, E. M.; Wenninger, J.; Hoffmann, G.

    2014-01-01

    Current techniques to disentangle the evaporative fluxes from the continental surface into a contribution evaporated from soils and canopy, or transpired by plants, are under debate. Many isotope-based studies show that transpiration contributes generally more than 70% to the total evaporation,

  10. How are particle production, nucleon emission and target fragment evaporation processes interrelated in hadron-nucleus collisions?

    Science.gov (United States)

    Strugalski, Z.

    1985-01-01

    Relations between particle production, nucleon emission, and fragment evaporation processes were searched for in hadron-nucleus collisions. It was stated that: (1) the nucleon emission and target fragment evaporation proceed independently of the particle production process; and (2) relation between multiplicities of the emitted protons and of the evaporated charged fragments is expressed by simple formula.

  11. Effect of refrigerant mal-distribution in fin-and-tube evaporators on system performance

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Larsen, Lars Finn Sloth

    2009-01-01

    the condenser is a dynamic moving boundary model. The evaporator model is a dynamic distributed one-dimensional homogeneous equilibrium model, in order to capture the distribution phenomena. Fin-and-tube heat exchangers usually have a complex circuitry, however the evaporator will be simplified to be two...... straight tubes. The refrigerant mal-distribution is then induced to the evaporator by varying the vapor quality at the inlet to each feeder tube, the pressure drop through each feeder tube and the air-flow across each tube. Finally it is shown that air-flow mal-distribution can be compensated...

  12. Evaporation residues at E ∗≈400 MeV

    Science.gov (United States)

    Beiersdorf, S.; Esterlund, R. A.; Knaack, M.; Westmeier, W.; Patzelt, P.; Heßberger, F. P.; Ninov, V.; Lüttgen, A.

    1992-07-01

    For the reaction 11.4 MeV/u 86Kr+ 104Ru, which leads to the compound nucleus 190Hg ∗ at an excitation energy of 396 MeV, we have measured a total evaporation-residue yield of 25±3 mb. As a pure Bohr-Wheeler fission-evaporation calculation for this system predicts σER < 1 × 10 -4 mb, we postulate that the highly-excited compound nuclei here decay initially by particle emission only, due to dynamic hindrance of the fission process, thereby enhancing the evaporation-residue yield for this system by over five orders of magnitude.

  13. Experimental investigation of picoliter liquid drops evaporation on a heated solid surface

    Science.gov (United States)

    Kirichenko, D. P.; Zaitsev, D. V.; Kabov, O. A.

    2017-11-01

    This paper presents a study of the evaporation of sessile picoliter liquid drops on a heated solid surface. It has been shown that during evaporation diameter of the drop is almost constant (the contact line is pinned) and starts to decrease only at the final moment of drop life. It has been shown that the specific evaporation rate of a droplet (droplet weight loss per unit time per unit droplet surface area) is not constant over time: it gradually grows with time up to a maximum, but at the final stage, when the height of the drop becomes on the order of 1 μm, it decreases rapidly.

  14. Comparison of evaporation at two central Florida lakes, April 2005–November 2007

    Science.gov (United States)

    Swancar, Amy

    2015-09-25

    Evaporation from April 2005 through October 2007 at two central Florida lakes, one close to the Gulf of Mexico and one in the center of the peninsula, was 4.043 and 4.111 meters (m), respectively; evaporation for 2006 was 1.534 and 1.538 m, respectively. Although annual evaporation rates at the two lakes were similar, there were monthly differences between the two lakes because of changes in stored heat; the shallower Lake Calm (mean depth 3 m) stored less heat and exchanged heat more rapidly than the deeper Lake Starr (mean depth 5 m).

  15. Static, Mixed-Array Total Evaporation for Improved Quantitation of Plutonium Minor Isotopes in Small Samples

    Science.gov (United States)

    Stanley, F. E.; Byerly, Benjamin L.; Thomas, Mariam R.; Spencer, Khalil J.

    2016-06-01

    Actinide isotope measurements are a critical signature capability in the modern nuclear forensics "toolbox", especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (limited quantities of sample. Herein, we investigate the application of static, mixed array total evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Results are presented for small sample (~20 ng) applications involving a well-known plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods.

  16. Reduced Volume Prototype Spacesuit Water Membrane Evaporator; A Next-Generation Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2013-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the reduced volume prototype (RVP) spacesuit water membrane evaporator (SWME). The RVP SWME is the third generation of hollow fiber SWME hardware. Like its predecessors, RVP SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and a more flight-like backpressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.

  17. Electromodulation of photoluminescence in vacuum-evaporated films of bathocuproine

    Energy Technology Data Exchange (ETDEWEB)

    Misnik, Maciej; Falkowski, Karol [Department of Electronic Phenomena, Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk (Poland); Mroz, Wojciech [Department of Electronic Phenomena, Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk (Poland); Istituto per lo Studio delle Macromolecole (ISMAC), Consiglio Nazionale delle Ricerche (CNR), Via Bassini 15, 20133 Milano (Italy); OPTOTEC S.p.A., Via G. Zenale 44, 20024 Garbagnate Milanese (Italy); Stampor, Waldemar, E-mail: waldek@mif.pg.gda.pl [Department of Electronic Phenomena, Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk (Poland)

    2013-01-02

    Highlights: Black-Right-Pointing-Pointer We report on optical properties of thin films of bathocuproine (BCP). Black-Right-Pointing-Pointer We apply electromodulation of photoluminescence (EML) spectroscopy. Black-Right-Pointing-Pointer The green photoluminescence band is attributed to the formation of dimers. Black-Right-Pointing-Pointer The EML quenching effect for dimers is due to exciton dissociation. Black-Right-Pointing-Pointer The EML results are explained in terms of the Onsager theory. -- Abstract: Electric field-modulated photoluminescence (EML) was measured in vacuum-evaporated films of bathocuproine (BCP), electron-transporting material commonly used in organic light-emitting diodes (OLEDs). The external electric field of 10{sup 6} V/cm strength decreases long-wavelength photoluminescence (PL) up to 10% but the same effect on short-wavelength PL is above one order of magnitude smaller. The distinctive difference between the EML characteristics for the short-wavelength (mono-molecular) and long-wavelength (associative species) emission of BCP films is a result of the different nature of relevant emissive states. Absorption, PL, EML and atomic force microscopy (AFM) measurements can be consistently explained assuming existence of dimer species in solid BCP with their population increasing during aging process of the films. Besides ground state absorption dimer states are assumed to be populated indirectly from molecular (Frenkel type) excitons diffusing to defected domains of the films where dissociate through an intermediate stage of geminate (e-h) pairs. The EML data are analyzed applying various models of (e-h) pair dissociation based on Poole-Frenkel, Braun, Onsager and Sano-Tachiya-Noolandi-Hong (STNH) theories. The Onsager theory explains satisfactorily the observed EML quenching effect for dimer-type PL. The Stark effect on fluorescence quantum yield should be possibly invoked to explain the EML characteristics of monomolecular emission of BCP.

  18. Modelling the evaporation of nanoparticle suspensions from heterogeneous surfaces

    Science.gov (United States)

    Chalmers, C.; Smith, R.; Archer, A. J.

    2017-07-01

    We present a Monte Carlo (MC) grid-based model for the drying of drops of a nanoparticle suspension upon a heterogeneous surface. The model consists of a generalised lattice-gas in which the interaction parameters in the Hamiltonian can be varied to model different properties of the materials involved. We show how to correctly choose the interactions, to minimise the effects of the underlying grid so that hemispherical droplets form. We also include the effects of surface roughness to examine the effects of contact-line pinning on the dynamics. When there is a ‘lid’ above the system, which prevents evaporation, equilibrium drops form on the surface, which we use to determine the contact angle and how it varies as the parameters of the model are changed. This enables us to relate the interaction parameters to the materials used in applications. The model has also been applied to drying on heterogeneous surfaces, in particular to the case where the suspension is deposited on a surface consisting of a pair of hydrophilic conducting metal surfaces that are either side of a band of hydrophobic insulating polymer. This situation occurs when using inkjet printing to manufacture electrical connections between the metallic parts of the surface. The process is not always without problems, since the liquid can dewet from the hydrophobic part of the surface, breaking the bridge before the drying process is complete. The MC model reproduces the observed dewetting, allowing the parameters to be varied so that the conditions for the best connection can be established. We show that if the hydrophobic portion of the surface is located at a step below the height of the neighbouring metal, the chance of dewetting of the liquid during the drying process is significantly reduced.

  19. Heterogeneous evaporation across a turbulent internal boundary layer

    Science.gov (United States)

    Shahraeeni, Ebrahim; Vanderborght, Jan; Vereecken, Harry

    2014-05-01

    In local evaporation from sufficiently uniform and large surfaces, horizontal advection close to the changes in surface condition is not significant. Under natural condition, this assumption is often invalid and horizontal inhomogeneity is important. When partially saturated air flows from a uniform dry land surface over a wet surface, all lower boundary conditions of transport equations change abruptly. Also surface humidity and roughness are likely to be different from their upwind values. Due to these changes, the velocity profile and turbulence structure of the airflow must readjust. The vertical profiles are no longer in equilibrium and the horizontal gradients do not equal to zero. When there is more than one of these changes in the domain of interest, the interaction between different patches with a contrast in roughness, temperature or surface water content is also important. Rigorous experimental and numerical analysis of turbulent transfer of mass and momentum in the so-called internal boundary layer (the region affected by such step changes in surface condition) is the aim of this work. A combination of numerical simulations using in-house codes and commercial softwares and experimental measurements in the environmental wind tunnel is performed. We are specifically interested in correct depiction of roughness, in a more accurate representation of the turbulent velocity profile and in a better description of turbulent diffusion close to the interface. A series of simplifying assumptions in the classical representation of this problem are investigated and a sensitivity analysis is performed to identify the contribution of neglected terms. We are also interested in the parameterization of the heat and mass exchange processes for the case with different wet patches in a background of dry soil, which is of interest in several field scale applications.

  20. Estimating sphagnum peat hydraulic properties from laboratory evaporation experiments

    Science.gov (United States)

    Weber, Tobias K. D.; Durner, Wolfgang

    2013-04-01

    In ombrotrophic peatlands, the equilibrium between the production and decay of organic matter is principally controlled by the moisture state and its oxic/anoxic conditions in the vadose zone. In order to predict a peatland's fate, it is necessary to describe the hydraulic processes with models correctly. However, no suitable systematic and mechanistic model exists to date. This knowledge gap is attributed to the complexity of peatland ecosystem processes. The reasons for this probably include spatial and temporal heterogeneities, swelling and shrinkage phenomena, hydrophobicity and difficulties in representative sampling. For a valid description of the non-linear processes involved, peat soil hydraulic properties play an intricate part. Their determination requires taking the characteristics mentioned into considered. Our research aims to quantify these characteristics and, eventually, to establish a model in order to numerically simulate the water fluxes in the unsaturated zone. We started with laboratory measurements with which we determined peat soil hydraulic properties. Our study is based on an ombrotrophic peatland site in the Harz Mountains (Germany). Samples were taken over the entire unsaturated part of a Histosol profile. Before the laboratory experiments, samples were frozen, cut to shape and subsequently fully saturated in a vacuum. We used the same sample specimen for the saturated hydraulic conductivity and the simplified evaporation method. Results show that the hydraulic properties rapidly change in the upper-most layers with a step-like change over a small distance, close to the permanently saturated zone. We also show that the swelling and shrinkage is considerable, which means that traditional concepts based on the rigidity of the porous media are not applicable. Furthermore, the results indicate that the frequently used van Genuchten model cannot describe our data very well.

  1. Annual statistical downscaling of precipitation and evaporation and monthly disaggregation

    Science.gov (United States)

    Sachindra, D. A.; Perera, B. J. C.

    2018-01-01

    Development of downscaling models for each calendar month using the data of predictors specifically selected for each calendar month may assists in better capturing the time-varying nature of the predictor-predictand relationships. Such approach will not allow the explicit modelling of the persistence of the predictand (e.g. lag-1 correlation). However, downscaling at an annual time step and subsequent disaggregation to monthly values can explicitly consider the modelling of the persistence of the predictand. This study investigated the potential of annual downscaling of a predictand and subsequent disaggregation of annual values to monthly values, in comparison to the potential of downscaling models separately developed for each calendar month. In the case study, annual and monthly downscaling models were developed for precipitation and evaporation at two stations located in Victoria, Australia. The output of the annual downscaling models was then disaggregated into monthly values using four different methods based on the method of fragments. It was found that the annual to monthly disaggregation methods and monthly downscaling models are able to reproduce the average of monthly observations with relatively higher accuracy in comparison to their ability in reproducing standard deviation, skewness and lag-1 serial correlation. Downscaling models separately developed for each calendar month were able to show relatively smaller root mean square errors for their time series indicating better overall agreement with observations in comparison to their counterpart annual to monthly disaggregation methods. Furthermore, it was found that not only the bias in the output of an annual downscaling model but also the presence of annual totals in the records of observations of a predictand that are very similar in magnitude, but having significantly different sets of fragments, can largely contribute to the poor performance of an annual to monthly disaggregation method.

  2. Star-Formation in Free-Floating Evaporating Gaseous Globules

    Science.gov (United States)

    Sahai, Raghvendra

    2017-08-01

    We propose to study the stellar embryos in select members of a newly recognized class of Free-floating Evaporating Gaseous Globules (frEGGS) embedded in HII regions and having head-tail shapes. We discovered two of these in the Cygnus massive star-forming region (MSFR) with HST, including one of the most prominent members of this class (IRAS20324). Subsequent archival searches of Spitzer imaging of MSFRs has allowed us to build a statistical sample of frEGGs. Our molecular-line observations show the presence of dense molecular cores with total gas masses of (0.5-few) Msun in these objects, and our radio continuum images and Halpha images (from the IPHAS survey) reveal bright photo-ionized peripheries around these objects. We hypothesize that frEGGs are density concentrations originating in giant molecular clouds, that, when subject to the sculpting and compression by strong winds and UV radiation from massive stars, become active star-forming cores. For the 4 frEGGs with HST or near-IR AO images showing young stars and bipolar cavities produced by their jets or collimated outflows, the symmetry axis points roughly toward the external ionizing star or star cluster - exciting new evidence for our overpressure-induced star formation hypothesis. We propose to test this hypothesis by imaging 24 frEGGs in two nearby MSFRs that represent different radiation-dominated environments. Using ACS imaging with filters F606W, F814W, & F658N (Ha+[NII]), we will search for jets and outflow-excavated cavities, investigate the stellar nurseries inside frEGGs, and determine whether the globules are generally forming multiple star systems or small clusters, as in IRAS20324.

  3. Macrovoid Defect Growth during Evaporative Casting of Polymeric Membranes

    Science.gov (United States)

    Greenberg, A. R.; Khare, V. P.; Zartman, J.; Krantz, W. B.; Todd, P.

    2003-01-01

    Macrovoid (MV) formation is a significant problem in evaporatively cast polymeric membranes. MVs are large, elongated or teardrop-shaped pores (10-50 micron) that can impair membrane structural integrity. Although MVs have been extensively studied, there is no general agreement on the mechanisms governing MV growth. Recently, our research group has formulated the solutocapillary convection (SC) hypothesis, which contends that MV growth involves three principal forces: a Marangoni force generated by surface tension gradients within the MV interface, a viscous drag force, and a gravitationally induced body force. Two sets of complementary experiments were conducted to test the SC hypothesis. Ground-based videomicroscopy flow-visualization (VMFV) was utilized to measure the flow velocities at the MV-casting solution interface and deep within the casting solution. The measurements were performed with casting solutions containing 10 wt% cellulose acetate (CA), 30 wt% H2O, 60 wt% acetone, and 200- ppm TiO2 particles for flow visualization, and the surface tension was controlled by surfactant addition. Qualitatively, the experiments indicated that MV growth occurs in three distinct phases: (1) a very rapid initial growth period, (2) a much slower growth phase, and (3) absorption of selected MVs into the expanding demixed region. The presence of tracer particles inside the MVs suggests the presence of a convective flow, which transfers the particles from the bulk solution to the MV interior. Although the VMFV experiments did not establish any surfactant effect on the interfacial velocities, a statistically significant effect on the MV number density was observed. In the second set of experiments, membranes were cast aboard a KC-135 aircraft under 0-g and 2-g conditions. Despite careful attention to the design and fabrication of the membrane casting apparatus (MCA), several problems were encountered, the most significant of which was the contamination of the casting

  4. Numerical Investigation of AdBlue Droplet Evaporation and Thermal Decomposition in the Context of NOx-SCR Using a Multi-Component Evaporation Model

    Directory of Open Access Journals (Sweden)

    Kaushal Nishad

    2018-01-01

    Full Text Available To cope with the progressive tightening of the emission regulations, gasoline and diesel engines will continuously require highly improved exhaust after-treatment systems. In the case of diesel engines, the selective catalytic reduction (SCR appears as one of the widely adopted technologies to reduce NOx (nitrogen oxides emissions. Thereby, with the help of available heat from exhaust gas, the injected urea–water solution (UWS turns inside the exhaust port immediately into gaseous ammonia (NH3 by evaporation of mixture and thermal decomposition of urea. The reaction and conversion efficiency mostly depend upon the evaporation and subsequent mixing of the NH3 into the exhaust gas, which in turn depends upon the engine loading conditions. Up to now, the aggregation of urea after evaporation of water and during the thermal decomposition of urea is not clearly understood. Hence, various scenarios for the urea depletion in the gaseous phase that can be envisaged have to be appraised under SCR operating conditions relying on an appropriate evaporation description. The objective of the present paper is therefore fourfold. First, a reliable multi-component evaporation model that includes a proper binary diffusion coefficient is developed for the first time in the Euler–Lagrangian CFD (computational fluid dynamics framework to account properly for the distinct evaporation regimes of adBlue droplets under various operating conditions. Second, this model is extended for thermal decomposition of urea in the gaseous phase, where, depending on how the heat of thermal decomposition of urea is provided, different scenarios are considered. Third, since the evaporation model at and around the droplet surface is based on a gas film approach, how the material properties are evaluated in the film influences the process results is reported, also for the first time. Finally, the impact of various ambient temperatures on the adBlue droplet depletion characteristics

  5. Effect of evaporation and condensation on a thermoacoustic engine: A Lagrangian simulation approach.

    Science.gov (United States)

    Yasui, Kyuichi; Izu, Noriya

    2017-06-01

    Acoustic oscillations of a fluid (a mixture of gas and vapor) parcel in a wet stack of a thermoacoustic engine are numerically simulated with a Lagrangian approach taking into account Rott equations and the effect of non-equilibrium evaporation and condensation of water vapor at the stack surface. In a traveling-wave engine, the volume oscillation amplitude of a fluid parcel always increases by evaporation and condensation. As a result, pV work done by a fluid parcel is enhanced, which means enhancement of acoustic energy in a thermoacoustic engine. On the other hand, in a standing-wave engine, the volume oscillation amplitude sometimes decreases by evaporation and condensation, and pV work is suppressed. Presence of a tiny traveling-wave component, however, results in the enhancement of pV work by evaporation and condensation.

  6. Detailed finite element method modeling of evaporating multi-component droplets

    Energy Technology Data Exchange (ETDEWEB)

    Diddens, Christian, E-mail: C.Diddens@tue.nl

    2017-07-01

    The evaporation of sessile multi-component droplets is modeled with an axisymmetic finite element method. The model comprises the coupled processes of mixture evaporation, multi-component flow with composition-dependent fluid properties and thermal effects. Based on representative examples of water–glycerol and water–ethanol droplets, regular and chaotic examples of solutal Marangoni flows are discussed. Furthermore, the relevance of the substrate thickness for the evaporative cooling of volatile binary mixture droplets is pointed out. It is shown how the evaporation of the more volatile component can drastically decrease the interface temperature, so that ambient vapor of the less volatile component condenses on the droplet. Finally, results of this model are compared with corresponding results of a lubrication theory model, showing that the application of lubrication theory can cause considerable errors even for moderate contact angles of 40°. - Graphical abstract:.

  7. EVAPORATIVE WATER AND AIR COOLERS FOR SOLAR COOLING SYSTEMS. ANALYSIS AND PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    A. Doroshenko

    2016-11-01

    Full Text Available The concept of evaporative coolers of gases and fluids on the basis of monoblock multichannel polymeric structures is presented. Different schemes of indirect evaporative coolers, in which the natural cooling limit is the dew point of the ambient air  are discussed. In such systems the cooling temperature is lower than the wet bulb temperature of the ambient air. Special attention is paid to the recondensation of water vapor for deep evaporative cooling. It is shown that for the solution of the recondensation problem it is necessary to vary the ratio of the contacting air and water flows, particularly in each stage of the multistage system. Recommendations for the deep cooling process implementation in the evaporative coolers of gases and liquids are given.

  8. The contribution of reduction in evaporative cooling to higher surface air temperatures during drought

    National Research Council Canada - National Science Library

    Yin, Dongqin; Roderick, Michael L; Leech, Guy; Sun, Fubao; Huang, Yuefei

    2014-01-01

    .... The second states that the decline in precipitation ( P ) during drought reduces the available water thereby decreasing E , and in turn the consequent reduction in evaporative cooling causes higher...

  9. Modeling the evaporation of a pre-lens tear film on a contact lens

    Science.gov (United States)

    Anderson, Daniel; Talbott, Kevin; Xu, Amber; Seshaiyer, Padmanabhan

    2011-11-01

    We develop a model for evaporation of a post-blink pre-lens tear film in the presence of a porous contact lens. The tear film is modeled as a Newtonian fluid and the flow in the contact lens is assumed to obey Darcy's law. The evaporation model treats the contact lens as a wetting surface. Evaporative mass flux thins the pre-lens film down to a nonzero steady thickness at which point evaporation continues by drawing fluid up through the contact lens. Both one and two-dimensional models are explored. The post-lens film (between the contact lens and the corneal surface) is not included explicitly in the model but is assumed to act as a reservoir that supplies fluid drawn up through the contact lens. Supported by NSF CSUMS and REU programs.

  10. Metabolic rate and evaporative water loss of Mexican Spotted and Great Horned Owls

    Science.gov (United States)

    Joseph L. Ganey; Russell P. Balda; Rudy M. King

    1993-01-01

    We measured rates of oxygen consumption and evaporative water loss (EWL) of Mexican Spotted (Strix occidentalis lucida) and Great Horned (Bubo virginianus) owls in Arizona. Basal metabolic rate averaged 0.84 ccO2. g-1. h-1...

  11. Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator

    National Research Council Canada - National Science Library

    Tomasz Muszyński; Sławomir Marcin Kozieł

    2016-01-01

    Two-dimensional numerical investigations of the fluid flow and heat transfer have been carried out for the laminar flow of the louvered fin-plate heat exchanger, designed to work as an air-source heat pump evaporator...

  12. 30 CFR 35.22 - Test to determine effect of evaporation on flammability.

    Science.gov (United States)

    2010-07-01

    ... shall be to determine the effect of evaporation on the reduction of fire resistance of a hydraulic fluid... a horizontal plane, 25 ±2 cycles per minute. A pipe cleaner shall be attached to the device so that...

  13. Analysis of flow maldistribution in fin-and-tube evaporators for residential air-conditioning systems

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl

    profile across the A-coil evaporator was predicted by means of CFD simulation software STAR-CD 3.26 (2005) and applied in the numerical model. The main reason for the better face split evaporator performance at uniform conditions or when compensating, is that the superheated "weak" zones with low UA...... for distributing mass flow to each evaporator channels. It should be kept as low as possible. Furthermore, it is better to use a partial secondary flow into the remaining channels while distributing the main flow to each individual channel. The discontinuous liquid injection simulations showed spurious......This thesis is concerned with the effects of flow maldistribution in fin-and-tube A-coil evaporators for residential air-conditioning and compensation potentials with regards to system performance. The goal is to create a better understanding of flow maldistribution and the involved physical...

  14. Smart Control Scheme Planned for an Evaporator Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Reza Yazdanpanah

    2017-09-01

    Full Text Available In this paper, Particle Swarm Optimization (PSO is utilized to optimize the coefficients of a level controller and 2×2 decentralized PI controller and a lead compensator for a forced circulation evaporator. The mathematical model of the evaporator system is approximated at the operating point for PSO algorithm to adjust the evaporator control system parameters for minimizing the summation of desired characteristics, such as overshoot, rise time, settling time, steady state error and the performance index such as integral of time-weighted absolute error (ITAE. The forced circulation evaporator is modelled in SIMULINK and PSO algorithm is implemented in MATLAB. Compared with Genetic Algorithm (GA, the simulation results verify the superiority of PSO over GA.

  15. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, Evaporation Minus Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Evaporation Minus Precipitation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  16. Modelling of droplet heating and evaporation: recent results and unsolved problems

    Energy Technology Data Exchange (ETDEWEB)

    Sazhin, S S; Elwardany, A; Gusev, I G; Heikal, M R [Sir Harry Ricardo Laboratories, School of Computing, Engineering and Mathematics, University of Brighton, Brighton, BN2 4GJ UK (United Kingdom); Shishkova, I N, E-mail: S.Sazhin@brighton.ac.uk [Low Temperature Department, Moscow Power Engineering Institute, Moscow 111250 (Russian Federation)

    2011-01-01

    The most recent results referring to the hydrodynamic and kinetic modelling of droplet heating and evaporation are briefly summarised. Two new solutions to the heat conduction equation, taking into account the effect of the moving boundary during transient heating of an evaporating droplet, are discussed. The first solution is the explicit analytical solution to this equation, while the second one reduces the solution of the differential transient heat conduction equation to the solution of the Volterra integral equation of the second kind. It has been pointed out that the new approach predicts lower droplet surface temperatures and slower evaporation rates compared with the traditional approach. A simplified model for multi-component droplet heating and evaporation, based on the analytical solution of the species diffusion equation inside droplets, is reviewed. A new algorithm, based on simple approximations of the kinetic results for droplet radii and temperatures, suitable for engineering applications, is discussed.

  17. Modelling the Evaporation Rate in an Impingement Jet Dryer with Multiple Nozzles

    National Research Council Canada - National Science Library

    Anna-Lena Ljung; L. Robin Andersson; Anders G. Andersson; T. Staffan Lundström; Mats Eriksson

    2017-01-01

    ... an impingement jet dryer with a total of 9 pairs of nozzles that dries sheets of metal. Different methods to model the evaporation rate are studied, as well as the influence of recirculating the outlet air...

  18. Overall solution for water circulation based on evaporation; Kiertovesien kaesittelyn kokonaisratkaisu perustuen haihdutustekniikkaan - KLT 01

    Energy Technology Data Exchange (ETDEWEB)

    Fagernaes, L.; Mckeough, P.; Buchert, J. [VTT Energy, Espoo (Finland)

    1998-12-31

    The aim of the project is to investigate and evaluate treatment methods for concentrates from the evaporation of circulation waters. The most feasible process, from both a technical and economical viewpoint, will be identified from a group of alternative concepts. Experimental research will focus on further evaporation of concentrates of TMP filtrates. Laboratory, PDU and pilot equipment will be employed in the work. The main tasks will be to study further evaporation of concentrates and to improve evaporation with the aid of different pre- and intermediate treatments, like enzyme treatment. Process evaluation will focus on a separate final treatment of the high-solids concentrate of the TMP filtrate. Treatment concepts will be developed and a techno-economic assessment of the processes will be carried out. (orig.)

  19. Evolution of Post-accretion-induced Collapse Binaries: The Effect of Evaporation

    Science.gov (United States)

    Liu, Wei-Min; Li, Xiang-Dong

    2017-12-01

    Accretion-induced collapse (AIC) is widely accepted to be one of the formation channels for millisecond pulsars (MSPs). Since the MSPs have high spin-down luminosities, they can immediately start to evaporate their companion stars after birth. In this paper, we present a detailed investigation on the evolution of the post-AIC binaries, taking into account the effect of evaporation both before and during the Roche-lobe overflow process. We discuss the possible influence of the input parameters including the evaporation efficiency, the initial spin period, and the initial surface magnetic field of the newborn neutron star. We compare the calculated results with the traditional low-mass X-ray binary evolution and suggest that they may reproduce at least part of the observed redbacks and black widows in the companion mass–orbital period plane depending on the mechanisms of angular momentum loss associated with evaporation.

  20. Advanced Air Evaporation System with Reusable Wicks for Water Recovery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A microgravity-compatible Advanced Air Evaporation System (AAES) is proposed for recovering nearly 100% of water from highly contaminated wastewater without concern...

  1. Effects of particle shape on growth dynamics at edges of evaporating drops of colloidal suspensions.

    Science.gov (United States)

    Yunker, Peter J; Lohr, Matthew A; Still, Tim; Borodin, Alexei; Durian, D J; Yodh, A G

    2013-01-18

    We study the influence of particle shape on growth processes at the edges of evaporating drops. Aqueous suspensions of colloidal particles evaporate on glass slides, and convective flows during evaporation carry particles from drop center to drop edge, where they accumulate. The resulting particle deposits grow inhomogeneously from the edge in two dimensions, and the deposition front, or growth line, varies spatiotemporally. Measurements of the fluctuations of the deposition front during evaporation enable us to identify distinct growth processes that depend strongly on particle shape. Sphere deposition exhibits a classic Poisson-like growth process; deposition of slightly anisotropic particles, however, belongs to the Kardar-Parisi-Zhang universality class, and deposition of highly anisotropic ellipsoids appears to belong to a third universality class, characterized by Kardar-Parisi-Zhang fluctuations in the presence of quenched disorder.

  2. Development of a model for spray evaporation based on droplet analysis

    KAUST Repository

    Chen, Q.

    2016-08-20

    Extreme flash evaporation occurs when superheated liquid is sprayed into a low pressure zone. This method has high potential to improve the performance of thermally-driven desalination plants. To enable a more in-depth understanding on flash evaporation of a superheated feed water spray, a theoretical model has been developed with key considerations given to droplet motion and droplet size distribution. The model has been validated against 14 experimental data sets from literature sources to within 12% discrepancy. This model is capable of accurately predicting the water productivity and thermal efficiency of existing spray evaporator under specific operating conditions. Employing this model, the effect of several design parameters on system performance was investigated. Key results revealed that smaller droplet enabled faster evaporation process while higher initial droplet velocity promoted water productivity. Thermal utilization marginally changes with the degree of superheat, which renders a quick design calculation of the brine temperature without the need for iterations. © 2016 Elsevier B.V.

  3. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, Evaporation Minus Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Evaporation Minus Precipitation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  4. Mean Monthly Evaporation Atlas for the Contiguous 48 United States (1956-1970)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — TR-33: Maps are presented showing the areal distribution in the contiguous 48 states of evaporation (1) observed from Class A pans from from May through October, (2)...

  5. Enhancing radiolytic stability upon concentration of tritium-labeled pharmaceuticals utilizing centrifugal evaporation.

    Science.gov (United States)

    Marques, Rosemary; Helmy, Roy; Waterhouse, David

    2015-05-30

    Tritium radiopharmaceuticals are often used in drug development because of their desirable specific activity. The inherent instability of these radioactive tracers often leads to a requirement to purify prior to use. Purification methodologies such as preparative chromatography and solid/liquid extractions often utilize water as a solvent, which is not suitable for long-term storage and necessitates removal. Rotary evaporation has traditionally been utilized for the removal of this unwanted solvent, however, this method has been shown to lead to decomposition of the tritium species in some cases. Centrifugal evaporation is a milder concentration method which has been demonstrated to effectively remove solvents. In this study, we show that centrifugal evaporation leads to effective concentration of tritium samples without the decomposition typically observed by rotary evaporation. Copyright © 2015 John Wiley & Sons, Ltd.

  6. TAO/TRITON, RAMA, and PIRATA Buoys, 5-Day, Evaporation Minus Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has 5-day Evaporation Minus Precipitation data from the TAO/TRITON (Pacific Ocean, http://www.pmel.noaa.gov/tao/), RAMA (Indian Ocean,...

  7. Evaporation for Lithium Bromide Aqueous Solution in a Falling Film Heater under Reduced Pressures

    Science.gov (United States)

    Matsuda, Akira; Ide, Tetsuo; Yukino, Keiji

    Experiments on evaporation for water and lithium bromide (LiBr) aqueous solution were made in a externally heated wetted-wall column under reduced pressures. For water, evaporation rate increased slightly as feed rate decreased. The heat transfer coefficients of falling film agreed with those for filmwise condensation. For LiBr solution, evaporation rate decreased and outlet temperature of LiBr solution increased as feed rate decreased. The equations of continuity, diffusion and energy which assume that only water moves to the surface and LiBr doesn't move through falling film of LiBr solution were solved numerically. Calculated values of evaporation rate and outlet temperature of solution agreed with experimental results. The results of this work were compared with pool boiling data reported previously, and it was shown that falling film heater is superior to pool boiling heater concerning heat transfer.

  8. Edge-to-Stem Variability in Wet-Canopy Evaporation From an Urban Tree Row

    Science.gov (United States)

    Van Stan, John T.; Norman, Zachary; Meghoo, Adrian; Friesen, Jan; Hildebrandt, Anke; Côté, Jean-François; Underwood, S. Jeffrey; Maldonado, Gustavo

    2017-07-01

    Evaporation from wet-canopy (E_C ) and stem (E_S ) surfaces during rainfall represents a significant portion of municipal-to-global scale hydrologic cycles. For urban ecosystems, E_C and E_S dynamics play valuable roles in stormwater management. Despite this, canopy-interception loss studies typically ignore crown-scale variability in E_C and assume (with few indirect data) that E_S is generally {accounted for 8-13% (inter-quartile range) of total wet-crown evaporation (E_S+E_C scaled to surface area). E_S contributions to total wet-crown evaporation maximized at 33%, showing a general underestimate (by 2-17 times) of this quantity in the literature. Moreover, results suggest wet-crown evaporation from urban tree rows can be adequately estimated by simply assuming saturated tree surfaces behave as wet bulbs, avoiding problematic assumptions associated with other physically-based methods.

  9. Evaporation pond studies in California's Tulare Basin, 1991-98: Draft final report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Selenium hazards to fish and wildlife associated with the disposal of agricultural drainage water in evaporation ponds was prominently brought to the attention of...

  10. The impact of annealing and evaporation of ? crystals on their surface composition

    Science.gov (United States)

    Lushkin, A. Ye; Nazarenko, V. B.; Pilipchak, K. N.; Shnyukov, V. F.; Naumovets, A. G.

    1999-01-01

    Auger electron spectroscopy and mass spectrometry have been used to investigate the elemental composition of single-crystalline 0022-3727/32/1/003/img9 surfaces subjected to annealing and evaporation in vacuum and to analyse the evaporation products. We found three distinct temperature regimes, within which the surface composition of 0022-3727/32/1/003/img9 undergoes different changes: outgassing (T = 300-650 K); surface segregation of Li and O (T = 650-1150 K); and evaporation of Li, 0022-3727/32/1/003/img11 and LiO (0022-3727/32/1/003/img12 K). The evaporation of Nb becomes noticeable only at temperatures close to the Curie temperature (1483 K).

  11. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    Science.gov (United States)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  12. Thermal CFD study and improvement of table top fridge evaporator by virtual prototyping

    Directory of Open Access Journals (Sweden)

    Georgi Todorov

    2017-09-01

    Full Text Available The present paper aims to assess and to improve existing design of evaporators for household table top refrigeration appliances using Computational Fluid Dynamics (CFD. This category of refrigerators are compact and cheap solutions for domestic appliance. The requirement for low cost solution does not cancel necessity of high effectivity, usually referred as “energy class”. The evaporator is important component of refrigerator heat transport system and to its efficiency. Existing design of evaporator is improved in two directions – as shape of the serpentine and as cross section – constrained by overall cost limit. Two groups of thermal CFD analyses are performed over various design variants. Used virtual prototypes enable to view in detail heat transfer process and to reach an better solution in means of overall price/performance. This study shows the effect of serpentine geometry on evaporator performance as well as demonstrates the benefits of virtual prototyping when targeting optimization and improvement.

  13. Bead Evaporator for Complete Water and Salt Recovery from Brine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A microgravity-compatible Brine Evaporation and Mineralization System (BEMS) is proposed for 100% water recovery from highly contaminated wastewater as well as water...

  14. Heat transfer from the evaporator outlet to the charge of thermostatic expansion valves

    DEFF Research Database (Denmark)

    Langmaack, Lasse Nicolai; Knudsen, Hans-Jørgen Høgaard

    2006-01-01

    The bulb of a thermostatic expansion valve (TXV) is basically a temperature-pressure converter. It senses the temperature at the outlet of the evaporator, and the substance in the bulb (charge) generates the corresponding saturation pressure inside the bulb. The bulb is mounted on the evaporator...... outlet with a special mounting strap. The heat transfer is quite complex because it takes place both directly through the contact points between bulb and pipe and indirectly through the mounting strap The TXV has to react to temperature changes at the evaporator outlet. Therefore, the dynamic behavior...... of the valve (and thereby the whole refrigeration system) depends greatly on the heat transfer between the evaporator outlet tube and the charge in the bulb. In this paper a model for the overall heat transfer between the pipe and the charge is presented. Geometrical data and material properties have been kept...

  15. Durable Silver Mirror Coating Via Ion Assisted, Electron Beam Evaporation For Large Aperture Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the Phase I research, Surface Optics Corporation (SOC) demonstrated a durable silver mirror coating based an ion assisted, thermal evaporation process. The recipe...

  16. Estimation of evaporation rates over the Arabian Sea from Satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, M.V.; RameshBabu, V.; Rao, L.V.G.; Sastry, J.S.

    Utilizing both the SAMIR brightness temperatures of Bhaskara 2 and GOSSTCOMP charts of NOAA satellite series, the evaporation rates over the Arabian Sea for June 1982 are estimated through the bulk aerodynamic method. The spatial distribution...

  17. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K.

    2012-05-10

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have

  18. In-line high-rate evaporation of aluminum for the metallization of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mader, Christoph Paul

    2012-07-11

    This work focuses on the in-line high-rate evaporation of aluminum for contacting rear sides of silicon solar cells. The substrate temperature during the deposition process, the wafer bow after deposition, and the electrical properties of evaporated contacts are investigated. Furthermore, this work demonstrates for the first time the formation of aluminum-doped silicon regions by the in-line high-rate evaporation of aluminum without any further temperature treatment. The temperature of silicon wafers during in-line high-rate evaporation of aluminum is investigated in this work. The temperatures are found to depend on the wafer thickness W, the aluminum layer thickness d, and on the wafer emissivity {epsilon}. Two-dimensional finite-element simulations reproduce the measured peak temperatures with an accuracy of 97%. This work also investigates the wafer bow after in-line high-rate evaporation and shows that the elastic theory overestimates the wafer bow of planar Si wafers. The lower bow is explained with plastic deformation in the Al layer. Due to the plastic deformation only the first 79 K in temperature decrease result in a bow formation. Furthermore the electrical properties of evaporated point contacts are examined in this work. Parameterizations for the measured saturation currents of contacted p-type Si wafers and of contacted boron-diffused p{sup +}-type layers are presented. The contact resistivity of the deposited Al layers to silicon for various deposition processes and silicon surface concentrations are presented and the activation energy of the contact formation is determined. The measured saturation current densities and contact resistivities of the evaporated contacts are used in one-dimensional numerical Simulations and the impact on energy conversion efficiency of replacing a screen-printed rear side by an evaporated rear side is presented. For the first time the formation of aluminum-doped p{sup +}-type (Al-p{sup +}) silicon regions by the in

  19. The Evaporation of Liquid Micro-Drops on the Heated Substrate

    Directory of Open Access Journals (Sweden)

    Semenov Andrey

    2017-01-01

    Full Text Available Evaporation of a heated sessile water micro-drop was studied experimentally at the substrate temperature and surrounding atmosphere from 30 to 50 °C. The studies were performed on the float glass substrate with aluminum nanocoating of optical quality. The research has shown that the specific rate of evaporation (mass loss per unit of the drop surface area increases with the decrease in droplet volume and at the last stage several times exceeds the initial value.

  20. Interactions of bluff-body obstacles with turbulent airflows affecting evaporative fluxes from porous surfaces

    Science.gov (United States)

    Haghighi, Erfan; Or, Dani

    2015-11-01

    Bluff-body obstacles interacting with turbulent airflows are common in many natural and engineering applications (from desert pavement and shrubs over natural surfaces to cylindrical elements in compact heat exchangers). Even with obstacles of simple geometry, their interactions within turbulent airflows result in a complex and unsteady flow field that affects surface drag partitioning and transport of scalars from adjacent evaporating surfaces. Observations of spatio-temporal thermal patterns on evaporating porous surfaces adjacent to bluff-body obstacles depict well-defined and persistent zonation of evaporation rates that were used to construct a simple mechanistic model for surface-turbulence interactions. Results from evaporative drying of sand surfaces with isolated cylindrical elements (bluff bodies) subjected to constant turbulent airflows were in good agreement with model predictions for localized exchange rates. Experimental and theoretical results show persistent enhancement of evaporative fluxes from bluff-rough surfaces relative to smooth flat surfaces under similar conditions. The enhancement is attributed to formation of vortices that induce a thinner boundary layer over part of the interacting surface footprint. For a practical range of air velocities (0.5-4.0 m/s), low-aspect ratio cylindrical bluff elements placed on evaporating sand surfaces enhanced evaporative mass losses (relative to a flat surface) by up to 300% for high density of elements and high wind velocity, similar to observations reported in the literature. Concepts from drag partitioning were used to generalize the model and upscale predictions to evaporation from surfaces with multiple obstacles for potential applications to natural bluff-rough surfaces.