WorldWideScience

Sample records for evaporation residue products

  1. Evaporation of pyrolysis oil: Product distribution and residue char analysis

    NARCIS (Netherlands)

    van Rossum, G.; Matas Güell, B.; Balegedde Ramachandran, P.; Seshan, Kulathuiyer; Lefferts, Leonardus; van Swaaij, Willibrordus Petrus Maria; Kersten, Sascha R.A.

    2010-01-01

    The evaporation of pyrolysis oil was studied at varying heating rates (∼1–106°C/min) with surrounding temperatures up to 850°C. A total product distribution (gas, vapor, and char) was measured using two atomizers with different droplet sizes. It was shown that with very high heating rates

  2. Soil water evaporation and crop residues

    Science.gov (United States)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  3. Energy dependence of fusion evaporation-residue cross sections in the 28Si+12C reaction

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Mateja, J.F.; Beck, C.; Atencio, S.E.; Dennis, L.C.; Frawley, A.D.; Henderson, D.J.; Janssens, R.V.F.; Kemper, K.W.; Kovar, D.G.; Maguire, C.F.; Padalino, S.J.; Prosser, F.W.; Stephans, G.S.F.; Tiede, M.A.; Wilkins, B.D.; Zingarelli, R.A.

    1993-01-01

    Fusion evaporation-residue cross sections for the 28 Si+ 12 C reaction have been measured in the energy range 18≤E c.m. ≤136 MeV using time-of-flight techniques. Velocity distributions of mass-identified reaction products were used to identify evaporation residues and to determine the complete-fusion cross sections at high energies. The data are in agreement with previously established systematics which indicate an entrance-channel mass-asymmetry dependence of the incomplete-fusion evaporation-residue process. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with earlier measurements and the predictions of existing models

  4. Silicon Isotopic Fractionation of CAI-like Vacuum Evaporation Residues

    Energy Technology Data Exchange (ETDEWEB)

    Knight, K; Kita, N; Mendybaev, R; Richter, F; Davis, A; Valley, J

    2009-06-18

    Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquids (Richter et al., 2002, 2007a). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, {alpha}{sub Si}, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that {alpha}{sub Si} = 0.98985 {+-} 0.00044 (2{sigma}) for {sup 29}Si/{sup 28}Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 C. This value is different from what has been reported for evaporation of liquid Mg{sub 2}SiO{sub 4} (Davis et al., 1990) and of a melt with CI chondritic proportions of the major elements (Wang et al., 2001). There appears to be some compositional control on {alpha}{sub Si}, whereas no compositional effects have been reported for {alpha}{sub Mg}. We use the values of {alpha}Si and {alpha}Mg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose

  5. Study of the production of residual evaporation nuclei issued from the spallation reaction of uranium-238 by 1 GeV protons; Etude de la production de noyaux residuels d'evaporation issus de la reaction de spallation de l'uranium-238 par des protons a 1 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Taieb, J

    2000-10-01

    The spallation reaction by high energy protons is one of the envisaged nuclear reactions for production of exotic nuclei. We have measured the production of more than 300 different evaporation residues issued by the spallation reaction of Uranium-238 by 1 GeV protons. We used the reverse kinematics technique in order to produce the relativistic nuclei and therefore to be able to detect those nuclides within a very short time, shorter in most cases than the radioactive disintegration period. The achieved nuclear charge and mass resolution are excellent. They allow a good accuracy on the values of the measured cross-sections (10 to 15%). We have observed for the first time the nuclide Actinium-235 obtained consequently to the loss of 3 protons by the projectile. The measured isotopic distribution are strongly influenced by the mechanism of fission which leads to a strong reduction of the production of the heavy neutron deficient isotopes. We have compared our results to some other measurements achieved with radio-chemical methods at a similar energy. We observed a systematic disagreement of about 40%. Some comparison with the available systematics show that those are presently not able to reproduce the data with a reasonable precision. We could also measure the recoil momentum distribution for each studied isotopes. We show that Goldhaber's model agrees very well with the experiment in case. of 'cold' channels where the evaporation of particles never occurs. On the other hand, when the produced pre-fragment is excited the data show that Goldhaber's model does not reproduce.the data showing the limitation of such an approach. We finally tried to reproduce the measurement of evaporation residue cross-section thanks to the coupling of intra-nuclear cascade and statistical evaporation codes. The influence of the fission process is rather important is the system p+U; we therefore had to account for the dynamical aspect of the fission. We also showed

  6. Evaporation

    International Nuclear Information System (INIS)

    Delaney, B.T.; Turner, R.J.

    1989-01-01

    Evaporation has long been used as a unit operation in the manufacture of various products in the chemical-process industries. In addition, it is currently being used for the treatment of hazardous wastes such as radioactive liquids and sludges, metal-plating wastes, and other organic and inorganic wastes. Design choice is dependent on the liquid to be evaporated. The three most common types of evaporation equipment are the rising-film, falling-film, and forced-circulation evaporators. The first two rely on boiling heat transfer and the latter relies on flash vaporization. Heat exchangers, flash tanks, and ejectors are common auxiliary equipment items incorporated with evaporator bodies to complete an evaporator system. Properties of the liquid to be evaporated are critical in final selection of an appropriate evaporator system. Since operating costs are a significant factor in overall cost, heat-transfer characteristics and energy requirements are important considerations. Properties of liquids which are critical to the determination of final design include: heat capacity, heat of vaporization, density, thermal conductivity, boiling point rise, and heat-transfer coefficient. Evaporation is an expensive technology, both in terms of capital costs and operating costs. Additionally, mechanical evaporation produces a condensate and a bottoms stream, one or both of which may require further processing or disposal. 3 figs

  7. Evaluating the hydrological consistency of evaporation products

    KAUST Repository

    Lopez Valencia, Oliver Miguel

    2017-01-18

    Advances in space-based observations have provided the capacity to develop regional- to global-scale estimates of evaporation, offering insights into this key component of the hydrological cycle. However, the evaluation of large-scale evaporation retrievals is not a straightforward task. While a number of studies have intercompared a range of these evaporation products by examining the variance amongst them, or by comparison of pixel-scale retrievals against ground-based observations, there is a need to explore more appropriate techniques to comprehensively evaluate remote-sensing-based estimates. One possible approach is to establish the level of product agreement between related hydrological components: for instance, how well do evaporation patterns and response match with precipitation or water storage changes? To assess the suitability of this "consistency"-based approach for evaluating evaporation products, we focused our investigation on four globally distributed basins in arid and semi-arid environments, comprising the Colorado River basin, Niger River basin, Aral Sea basin, and Lake Eyre basin. In an effort to assess retrieval quality, three satellite-based global evaporation products based on different methodologies and input data, including CSIRO-PML, the MODIS Global Evapotranspiration product (MOD16), and Global Land Evaporation: the Amsterdam Methodology (GLEAM), were evaluated against rainfall data from the Global Precipitation Climatology Project (GPCP) along with Gravity Recovery and Climate Experiment (GRACE) water storage anomalies. To ensure a fair comparison, we evaluated consistency using a degree correlation approach after transforming both evaporation and precipitation data into spherical harmonics. Overall we found no persistent hydrological consistency in these dryland environments. Indeed, the degree correlation showed oscillating values between periods of low and high water storage changes, with a phase difference of about 2–3 months

  8. The evaporation of crude oil and petroleum products

    International Nuclear Information System (INIS)

    Fingas, M. F.

    1996-01-01

    The physics of oil and petroleum evaporation was studied by means of an experimental apparatus. The evaporation was determined by weight loss and recorded on a computer. Examination of the data showed that most oil and petroleum products (those with seven to ten components) evaporate at a logarithmic rate with respect to time, while other petroleum products (those with fewer chemical components) evaporate at a rate which is square root with respect to time. Evaporation of oil and petroleum was not strictly boundary-layer regulated because the typical oil evaporation rate rates do not exceed that of molecular diffusion and thus turbulent diffusion does not increase the evaporation rates. Overall, boundary layer regulation can be ignored in the prediction of oil and petroleum evaporation. The simple equation relating only the logarithm of time (or the square root of time in the case of narrow-cut products) and temperature are sufficient to accurately describe oil evaporation. refs., figs

  9. Evaporation residue corss sections for {sup 32}S + {sup 184}W

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Blumenthal, D.J.; Davids, C.N. [and others

    1995-08-01

    We recently measured evaporation residue cross sections for the {sup 32}S + {sup 184}W system over a range of beam energies using the Argonne Fragment Mass Analyzer (FMA). Absolute cross sections were obtained on the basis of the recent determination of the transmission probability through the FMA of heavy, slow-moving reaction products. The measurements were carried out using {sup 32}S-beams from the ATLAS superconducting linac at Argonne. Beam energies of 165, 174, 185, 195, 205, 215, 225, 236, 246, and 257 MeV were used. The sliding-seal target chamber is used to allow for measurements at finite angles.

  10. Energy dependence of fusion evaporation-residue cross sections in the 28Si+28Si reaction

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Bauer, J.S.; Gosdin, C.H.; Trotter, R.S.; Kovar, D.G.; Beck, C.; Henderson, D.J.; Janssens, R.V.F.; Wilkins, B.D.; Rosner, G.; Chowdhury, P.; Ikezoe, H.; Kuhn, W.; Kolata, J.J.; Hinnefeld, J.D.; Maguire, C.F.; Mateja, J.F.; Prosser, F.W.; Stephans, G.S.F.

    1990-01-01

    Velocity distributions of mass-identified evaporation residues produced in the 28 Si+ 28 Si reaction have been measured at bombarding energies of 174, 215, 240, 309, 397, and 452 MeV using time-of-flight techniques. These distributions were used to identify evaporation residues and to separate the complete-fusion and incomplete-fusion components. Angular distributions and total cross sections were extracted at all six bombarding energies. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with lower energy data and the predictions of existing models

  11. Observation of the hot GDR in neutron-deficient thorium evaporation residues

    International Nuclear Information System (INIS)

    Seitz, J.P.; Back, B.B.; Carpenter, M.P.; Dioszegi, I.; Eisenman, K.; Heckman, P.; Hofman, D.J.; Kelly, M.P.; Khoo, T.L.; Mitsuoka, S.; Nanal, V.; Pennington, T.; Siemssen, R.H.; Thoennessen, M.; Varner, R.L.

    2005-01-01

    The giant dipole resonance built on excited states was observed in very fissile nuclei in coincidence with evaporation residues. The reaction 48 Ca+ 176 Yb populated evaporation residues of mass A=213-220 with a cross section of ∼200 μb at 259 MeV. The extracted giant dipole resonance parameters are in agreement with theoretical predictions for this mass region

  12. Evaporators

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard

    1996-01-01

    Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients.......Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients....

  13. Formation, separation and detection of evaporation residues produced in complete fusion reactions

    CERN Document Server

    Sagaidak, R N

    2015-01-01

    Some aspects of formation, separation and detection of evaporation residues (ERs) produced in complete fusion reactions induced by accelerated heavy ions are considered. These reactions allow to obtain heavy neutron-deficient nuclei and to study their properties. The statistical model analysis of the production cross sections for these nuclei obtained in a wide range of their neutron numbers allows to trace the changes in their macroscopic properties such as fission barriers. The fusion probability of massive projectile and target nuclei is of interest. Empirical estimates of this value allow to verify the predictions of theoretical models for the optimal ways of synthesis of unknown nuclei. Some peculiarities in the separation and detection of ERs in experiments are briefly considered by the example of the Ra ERs produced in the 12 C+Pb reactions. The reliable cross sections for ERs produced in very asymmetric projectile-target combination, such as 12 C+Pb, are important for the em...

  14. Carbaryl residues in maize products

    International Nuclear Information System (INIS)

    Zayed, S.M.A.D.; Mansour, S.A.; Mostafa, I.Y.; Hassan, A.

    1976-01-01

    The 14 C-labelled insecticide carbaryl was synthesized from [1- 14 C]-1-naphthol at a specific activity of 3.18mCig -1 . Maize plants were treated with the labelled insecticide under simulated conditions of agricultural practice. Mature plants were harvested and studied for distribution of total residues in untreated grains as popularly roasted and consumed, and in the corn oil and corn germ products. Total residues found under these conditions in the respective products were 0.2, 0.1, 0.45 and 0.16ppm. (author)

  15. Spin distribution of evaporation residues formed in complete and incomplete fusion in 16O+154Sm system

    Directory of Open Access Journals (Sweden)

    D. Singh

    2017-11-01

    Full Text Available Spin distributions for several evaporation residues populated in the 16O+154Sm system have been measured at projectile energy ≈ 6.2 MeV/A by using the charged particle–γ-coincidence technique. The measured spin distributions of the evaporation residues populated through incomplete fusion associated with ‘fast’ α and 2α-emission channels are found to be entirely different from fusion–evaporation channels. It is observed that the mean input angular momentum for the evaporation residues formed in incomplete fusion channel is relatively higher than that observed for evaporation residues in complete fusion channels. The feeding intensity profile of evaporation residues populated through complete fusion and incomplete fusion have also been studied. The incomplete fusion channels are found to have narrow range feeding only for high spin states, while complete fusion channels are strongly fed over a broad spin range and widely populated. Comparison of present results with earlier data suggests that the mean input angular momentum values are relatively smaller for spherical target than that of deformed target using the same projectile and incident energy highlighting the role of target deformation in incomplete fusion dynamics.

  16. Disposal of residues shown for the example of crystallisate formed through evaporation in a seepage water purification plant

    International Nuclear Information System (INIS)

    Tiefel, H.

    1994-01-01

    Amendments to the Federal Water Act, the Federal Waste Water Charges Act, and the Ordinance On the Origin of Waste Waters have created a new legal basis for the purification of seepage waters from landfills. Meanwhile there are a whole number of techniques, among them evaporation and stripping, that deserve the label state of the art in seepage water purification. However, the problem of disposing the residues arising in these purification processes is still largely consolved. Until now the contaminated residues, such as sewage sludge or deposits, have been landfilled or incinerated. Evaporation of sewage waters also leaves residues, notably water-soluble crystallisate. The present paper examines alternatives for the disposal of residues from evaporation as means of counteracting the current tendency to shift the problem from wastewater to solid wastes management. (orig./EF) [de

  17. Evaporation of decamethylcyclopentasiloxane (D5) from selected cosmetic products: Implications for consumer exposure modeling.

    Science.gov (United States)

    Dudzina, Tatsiana; Garcia Hidalgo, Elena; von Goetz, Natalie; Bogdal, Christian; Hungerbuehler, Konrad

    2015-11-01

    Consumer exposure to leave-on cosmetics and personal care products (C&PCPs) ingredients of low or moderate volatility is often assumed to occur primarily via dermal absorption. In reality they may volatilize from skin and represent a significant source for inhalation exposure. Often, evaporation rates of pure substances from inert surfaces are used as a surrogate for evaporation from more complex product matrices. Also the influence of partitioning to skin is neglected and the resulting inaccuracies are not known. In this paper we describe a novel approach for measuring chemical evaporation rates from C&PCPs under realistic consumer exposure conditions. Series of experiments were carried out in a custom-made ventilated chamber fitted with a vapor trap to study the disposition of a volatile cosmetic ingredient, decamethylcyclopentasiloxane (D5), after its topical application on either aluminum foil or porcine skin in vitro. Single doses were applied neat and in commercial deodorant and face cream formulations at normal room (23°C) and skin temperature (32°C). The condition-specific evaporation rates were determined as the chemical mass loss per unit surface area at different time intervals over 1-1.25h post-dose. Product weight loss was monitored gravimetrically and the residual D5 concentrations were analyzed with GC/FID. The release of D5 from exposed surfaces of aluminum occurred very fast with mean rates of 0.029 mg cm(-2)min(-1) and 0.060 mg cm(-2)min(-1) at 23°C and 32°C, respectively. Statistical analysis of experimental data confirmed a significant effect of cosmetic formulations on the evaporation of D5 with the largest effect (2-fold decrease of the evaporation rate) observed for the neat face cream pair at 32°C. The developed approach explicitly considers the initial penetration and evaporation of a substance from the Stratum Corneum and has the potential for application in dermal exposure modeling, product emission tests and the formulation of C

  18. Power from wastewater and residual products

    DEFF Research Database (Denmark)

    Krogh-Jeppesen, K.

    2007-01-01

    Microbial fuel cells utilise wastewater and residual products from the pretreatment of straw to generate power. Denmark could lead the way......Microbial fuel cells utilise wastewater and residual products from the pretreatment of straw to generate power. Denmark could lead the way...

  19. Calculation of the spallation product distribution in the evaporation process

    International Nuclear Information System (INIS)

    Nishida, T.; Kanno, I.; Nakahara, Y.; Takada, H.

    1989-01-01

    Some investigations are performed for the calculational model of nuclear spallation reaction in the evaporation process. A new version of a spallation reaction simulation code NUCLEUS has been developed by incorporating the newly revised Uno and Yamada's mass formula and extending the counting region of produced nuclei. The differences between the new and original mass formulas are shown in the comparisons of mass excess values. The distributions of spallation products of a uranium target nucleus bombarded by energy (0.38 - 2.9 GeV) protons have been calculated with the new and original versions of NUCLEUS. In the fission component Uno and Yamada's mass formula reproduces the measured data obtained from thin foil experiments significantly better, especially in the neutron excess side, than the combination of the Cameron's mass formula and the mass table compiled by Wapstra, et al., in the original version of NUCLEUS. Discussions are also made on how the mass-yield distribution of products varies dependent on the level density parameter α characterizing the particle evaporation. (author)

  20. Calculation of the spallation product distribution in the evaporation process

    International Nuclear Information System (INIS)

    Nishida, T.; Kanno, I.; Nakahara, Y.; Takada, H.

    1989-01-01

    Some investigations are performed for the calculational model of nuclear spallation reaction in the evaporation process. A new version of a spallation reaction simulation code NUCLEUS has been developed by incorporating the newly revised Uno ampersand Yamada's mass formula and extending the counting region of produced nuclei. The differences between the new and original mass formulas are shown in the comparisons of mass excess values. The distributions of spallation products of a uranium target nucleus bombarded by energy (0.38 - 2.9 GeV) protons have been calculated with the new and original versions of NUCLEUS. In the fission component Uno ampersand Yamada's mass formula reproduces the measured data obtained from thin foil experiments significantly better, especially in the neutron excess side, than the combination of the Cameron's mass formula and the mass table compiled by Wapstra, et al., in the original version of NUCLEUS. Discussions are also made on how the mass-yield distribution of products varies dependent on the level density parameter a characterizing the particle evaporation. 16 refs., 7 figs., 1 tab

  1. Fusion evaporation-residue cross sections for 28Si+40Ca at E(28Si)=309, 397, and 452 MeV

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Bauer, J.S.; Crum, J.F.; Gosdin, C.H.; Trotter, R.S.; Kovar, D.G.; Beck, C.; Henderson, D.J.; Janssens, R.V.F.; Wilkins, B.D.; Maguire, C.F.; Mateja, J.F.; Prosser, F.W.; Stephans, G.S.F.

    1992-01-01

    Velocity distributions of mass-identified evaporation residues produced in the 28 Si+ 40 Ca reaction have been measured at bombarding energies of 309, 397, and 452 MeV using time-of-flight techniques. These distributions were used to identify evaporation residues and to separate the complete-fusion and incomplete-fusion components. Angular distributions and upper limits for the total evaporation-residue and complete-fusion evaporation-residue cross sections were extracted at all three bombarding energies. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with earlier measurements and the predictions of existing models. The ratios of the complete-fusion evaporation-residue cross section to the total evaporation-residue cross section, along with those measured for the 28 Si+ 12 C and 28 Si+ 28 Si systems at the same energies, support the entrance-channel mass-asymmetry dependence of the incomplete-fusion evaporation-residue process reported earlier

  2. Evaporation residue cross sections for the {sup 100}Mo + {sup 116}Cd reaction -- energy dissipation in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Blumenthal, D.J.; Davids, C.N. [and others

    1995-08-01

    In this experiment we tried to measure the evaporation residue cross section over a wide range of beam energies for the {sup 100}Mo + {sup 116}Cd reaction using the FMA. However, because of longer-than-estimated runs needed at each beam energy, and the difficulty of bending evaporation residues at the higher energies in the FMA, data were taken only at beam energies of E{sub beam} = 460, 490, and 521 MeV, which correspond to excitation energies of E{sub exc} = 62, 78, and 95 MeV, respectively. By comparing to results for the {sup 32}S + {sup 184}W reactions measured recently, we expect to demonstrate a strong entrance channel effect related to the hindrance of complete fusion in near-symmetric heavy systems (a fusion hindrance factor of the order 7-10 is expected on the basis of the Extra-Push Model). The data are being analyzed.

  3. Fate of leptophos residues in milk products

    International Nuclear Information System (INIS)

    Zayed, S.M.A.D.; Mohammed, S.I.

    1981-01-01

    The fate of leptophos residues in various milk products was studied using 14 C-phenyl labelled leptophos. Milk products were prepared from milk fortified with the radioactive insecticide by methods simulating those used in industry. The highest leptophos level was found in butter and the lowest in skim milk and whey. Analysis of the radioactive residues in all products showed the presence of leptophos alone. A trace of the oxon could be detected in whey. The results obtained in this investigation indicated that processing of milk did not affect the nature of leptophos to any appreciable extent. (author)

  4. Biogas from alcohol production residues

    Energy Technology Data Exchange (ETDEWEB)

    Skirstymonskii, A.I.; Koshel, M.I.; Demchinskaya, A.A.

    1982-01-01

    Biogas was produced by fermentation of the yeast-molasses mash (from alcohol production) which contained 6% dry matter. About 16 cu.m biogas was obtained from 1 cu.m mash. The biogas consisted of CH/sub 4/, 55-57, CO/sub 2/ 33-36, H/sub 2/ 1.1-1.5, N/sub 2/ 5.1-7.5, and O/sub 2/ 1.1-1.6% plus traces of H/sub 2/S. Optimum conditions and apparatus are given for CH/sub 4/ fermentation of the yeast-molasses mash.

  5. ACID EVAPORATION OF ULTIMA GOLD TM AB LIQUID SCINTILLATION COCKTAIL RESIDUE

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E.; Fondeur, F.; Crump, S.

    2011-12-21

    Prior analyses of samples from the F/H Lab solutions showed the presence of diisopropylnapthalene (DIN), a major component of Ultima Gold{trademark} AB liquid scintillation cocktail (LSC). These solutions are processed through H-Canyon Tank 10.5 and ultimately through the 17.8E evaporator. Similar solutions originated in SRNL streams sent to the same H Canyon tanks. This study examined whether the presence of these organics poses a process-significant hazard for the evaporator. Evaporation and calorimetry testing of surrogate samples containing 2000 ppm of Ultima Gold{trademark} AB LSC in 8 M nitric acid have been completed. These experiments showed that although reactions between nitric acid and the organic components do occur, they do not appear to pose a significant hazard for runaway reactions or generation of energetic compounds in canyon evaporators. The amount of off-gas generated was relatively modest and appeared to be well within the venting capacity of the H-Canyon evaporators. A significant fraction of the organic components likely survives the evaporation process primarily as non-volatile components that are not expected to represent any new process concerns during downstream operations such as neutralization. Laboratory Waste solutions containing minor amounts of DIN can be safely received, stored, transferred, and processed through the canyon waste evaporator.

  6. Production of Energetic Nanomaterials by Spray Flash Evaporation

    OpenAIRE

    Martin Klaumünzer; Jakob Hübner; Denis Spitzer

    2016-01-01

    Within this paper, latest results on processing of energetic nanomaterials by means of the Spray Flash Evaporation technique are presented. This technology constitutes a highly effective and continuous way to prepare fascinating materials on the nano- and micro-scale. Within the process, a solution is set under high pressure and sprayed into an evacuated atomization chamber. Subsequent ultrafast evaporation of the solvent leads to an aerosol stream, which is separated by cyclones or filters. ...

  7. Evaporation Rate Study and NDMA Formation from UDMH/NO2 Reaction Products

    Science.gov (United States)

    Buchanan, Vanessa D.; Dee, Louis A.; Baker, David L.

    2003-01-01

    Laboratory samples of uns-dimethylhydrazine (UDMH) fuel/oxidizer (nitrogen dioxide) non-combustion reaction products (UFORP) were prepared using a unique permeation tube technology. Also, a synthetic UFORP was prepared from UDMH, N-nitrosodimethylamine (NDMA), dimethylammonium nitrate, sodium nitrite and purified water. The evaporation rate of UFORP and synthetic UFORP was determined under space vacuum (approx 10(exp -3) Torr) at -40 ?C and 0 ?C. The material remaining was analyzed and showed that the UFORP weight and NDMA concentration decreased over time; however, NDMA had not completely evaporated. Over 85% of the weight was removed by subjecting the UFORP to 10(-3) Torr for 7 hours at -40 ?C and 4 hours at 0 ?C. A mixture of dimethylammonium nitrate and sodium nitrite formed NDMA at a rapid rate in a moist air environment. A sample of UFORP residue was analyzed for formation of NDMA under various conditions. It was found that NDMA was not formed unless nitrite was added.

  8. Formulation of morning product using food residues

    Directory of Open Access Journals (Sweden)

    Maria do Rosário de Fátima Padilha

    2017-09-01

    Full Text Available In Brazil, there is resistance of the population to the use of stalks, leaves, peels and seeds of vegetables and fruits, leading to trash important parts of the food in good physiological conditions and with the presence of potential nutrients. In this research, a morning product was elaborated using green and dry coconut residue, jerimum and melon seed, crystallized sicilian lemon peel, cashew nut, common rapadura sweet and ginger. The bacteriological tests proved the hygienic-sanitary quality of the product, therefore suitable for consumption, that is, according to RDC 12/2001. It was also observed that the dehydration of all the residues reached the legal levels and accepted by ANVISA that limits in 25% the water content in the dehydrated foods. As for the centesimal composition, it was observed that the elaborated product with residues and other ingredients had a good content of macro nutrients. A use of the type of waste as a new food proposal constitutes an alternative to avoid and reduce: the serious environmental problem caused by the large residual volume generated, and the inadequate places in which they are stored or deposited, aggravating the scenario of food-borne pollutants.

  9. Calculation of the evaporation residue cross sections for the synthesis of the superheavy element Z=119 via the 50Ti+249Bk hot fusion reaction

    Science.gov (United States)

    Liu, Zu-Hua; Bao, Jing-Dong

    2011-09-01

    The evaporation residue (ER) cross sections for 3n and 4n evaporation channels in the 50Ti + 249Bk reaction leading the formation of 296119 and 295119 isotopes are evaluated by means of a modified fusion-by-diffusion model. In the model, the dynamic evolution from dinucleus to mononucleus is taken into account with the two-dimensional coupled Langenvin equations. The calculated maximum ER cross sections in 3n and 4n evaporation channels of the 50Ti + 249Bk reaction are 0.17 and 0.57 pb, respectively. The cross section of 0.57 pb is close to the present experimental limit for the registration of the evaporation residual nuclei. Therefore, superheavy element 119 may be the most hopeful new element with Z>118 to be synthesized under somehow improved experimental conditions in the near future.

  10. Alcohol production from agricultural and forestry residues

    Energy Technology Data Exchange (ETDEWEB)

    Opilla, R.; Dale, L.; Surles, T.

    1980-05-01

    A variety of carbohydrate sources can be used as raw material for the production of ethanol. Section 1 is a review of technologies available for the production of ethanol from whole corn. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. Section 2 is a review of the use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. Section 3 deals with the environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  11. Alcohol production from agricultural and forestry residues

    Energy Technology Data Exchange (ETDEWEB)

    Dale, L; Opilla, R; Surles, T

    1980-09-01

    Technologies available for the production of ethanol from whole corn are reviewed. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. The use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - is reviewed as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. The environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass are covered. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  12. Evaporation residue cross sections for the {sup 64}Ni + {sup 144,154}Sm reaction -- Energy dissipation in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Blumenthal, D.J.; Davids, C.N. [and others

    1995-08-01

    The fission hindrance of hot nuclei was deduced recently from an enhanced emission of GDR {gamma} rays, neutrons and charged particles prior to scission of heavy nuclei. In the most recent experiments addressing this topic, namely new measurements of the pre-scission {gamma} rays and evaporation residues from the {sup 32}S + {sup 184}W reaction, a rather sharp transition from negligible to full one-body dissipation occurs over the excitation energy region E{sub exc} = 60-100 MeV. However, the cross section does not appear to level out or start to decline again at the upper end of the energy range as expected in this interpretation. It is therefore clearly desirable to extend the excitation energy range to look for such an effect in order to either corroborate or refute this interpretation.

  13. Evaluation of multiple satellite evaporation products in two dryland regions using GRACE

    KAUST Repository

    Lopez, Oliver

    2015-12-01

    Remote sensing has become a valuable tool for monitoring the water cycle variables in areas that lack the availability of ground-based measurements. Integrating multiple remote sensing-based estimates of evaporation, precipitation, and the terrestrial water storage changes with local measurements of streamflow into a consistent estimate of the regional water budget is a challenge, due to the scale mismatch among the retrieved variables. Evapotranspiration, including soil evaporation, interception losses and canopy transpiration, has received special focus in a number of recent studies that aim to provide global or regional estimates of evaporation at regular time intervals using a variety of remote sensing input. In arid and semi-arid regions, modeling of evaporation is particularly challenging due to the relatively high role of the soil evaporation component in these regions and the variable nature of rainfall events that drive the evaporation process. In this study, we explore the hydrological consistency of remote sensing products in terms of water budget closure and the correlation among spatial patterns of precipitation (P), evaporation (E) and terrestrial water storage, using P-E as a surrogate of water storage changes, with special attention to the evaporation component. The analysis is undertaken within two dryland regions that have presented recent significant changes in climatology (Murray-Darling Basin in Australia) and water storage (the Saq aquifer in northern Saudi Arabia). Water storage changes were derived from the Gravity Recovery and Climate Experiment (GRACE) spherical harmonic (SH) coefficients. Six remote sensing-based evaporation estimates were subtracted from the Global Precipitation Climatology Project (GPCP)-based precipitation estimates and were compared with GRACE-derived water storage changes. Our results suggest that it is not possible to close the water balance by using satellite data alone, even when adopting a spherical harmonic

  14. Enhancing biogas production from recalcitrant lignocellulosic residue

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis

    Lignocellulosic substrates are abundant in agricultural areas around the world and lately, are utilized for biogas production in full-scale anaerobic digesters. However, the anaerobic digestion (AD) of these substrates is associated with specific difficulties due to their recalcitrant nature which...... solution for augmented biomass solubilization without causing inhibition to the mandatory anaerobic methanogenic community. Based on the initial microbial analysis, the bioaugmentation with the typically abundant in AD systems C. thermocellum was examined in biogas reactors fed with wheat straw...... be periodically applied in biogas reactors in order to extract the residual methane from the amassing materials and avoid potential accumulation. Additionally, the facultative anaerobic Melioribacter roseus was inoculated in a replicate CSTR following different bioaugmentation strategies, either strictly...

  15. Computer-Aided Modelling of Short-Path Evaporation for Chemical Product Purification, Analysis and Design

    DEFF Research Database (Denmark)

    Sales-Cruz, Alfonso Mauricio; Gani, Rafiqul

    2006-01-01

    An important stage in the design process for many chemical products is its manufacture where, for a class of chemical products that may be thermally unstable (such as, drugs, insecticides, flavours /fragrances, and so on), the purification step plays a major role. Short-path evaporation is a safe...... method, suitable for separation and purification of thermally unstable materials whose design and analysis can be efficiently performed through reliable model-based techniques. This paper presents a generalized model for short-path evaporation and highlights its development, implementation and solution...... glycerol, mono-, di- and triglycerides, and (b) the recovery of a pharmaceutical product from a six-component mixture. Validation of the short-path evaporation model is highlighted through the comparison of experimental data from an industrial pilot plant with the simulated results from the model. Also...

  16. Bioethanol production from rice straw residues

    Directory of Open Access Journals (Sweden)

    Elsayed B. Belal

    2013-01-01

    Full Text Available A rice straw -cellulose utilizing mold was isolated from rotted rice straw residues. The efficient rice straw degrading microorganism was identified as Trichoderma reesei. The results showed that different carbon sources in liquid culture such as rice straw, carboxymethyl cellulose, filter paper, sugar cane bagasse, cotton stalk and banana stalk induced T. reesei cellulase production whereas glucose or Potato Dextrose repressed the synthesis of cellulase. T. reesei cellulase was produced by the solid state culture on rice straw medium. The optimal pH and temperature for T. reesei cellulase production were 6 and 25 ºC, respectively. Rice straw exhibited different susceptibilities towards cellulase to their conversion to reducing sugars. The present study showed also that, the general trend of rice straw bioconversion with cellulase was more than the general trend by T. reesei. This enzyme effectively led to enzymatic conversion of acid, alkali and ultrasonic pretreated cellulose from rice straw into glucose, followed by fermentation into ethanol. The combined method of acid pretreatment with ultrasound and subsequent enzyme treatment resulted the highest conversion of lignocellulose in rice straw to sugar and consequently, highest ethanol concentration after 7 days fermentation with S. cerevisae yeast. The ethanol yield in this study was about 10 and 11 g.L-1.

  17. Carbaryl residues in cottonseed products in the Philippines

    International Nuclear Information System (INIS)

    Pablo, F.E.

    1981-01-01

    Residues of carbaryl in cottonseed products were determined by spectrophotometry. Carbaryl residues in oil and cake were 0.83 and 0.04 mg/kg respectively. Parallel experiments with 14 C-carbaryl gave comparable results. 14 C-carbaryl residues in oil and cake were 0.42 and 0.15 mg/kg respectively. (author)

  18. Ethanol production from crop residues and soil organic carbon

    NARCIS (Netherlands)

    Reijnders, L.

    2008-01-01

    In decision making about the use of residues from annual crops for ethanol production, alternative applications of these residues should be considered. Especially important is the use of such residues for stabilizing and increasing levels of soil organic carbon. Such alternative use leads to a

  19. Evaluating the hydrological consistency of evaporation products using satellite-based gravity and rainfall data

    Science.gov (United States)

    López, Oliver; Houborg, Rasmus; McCabe, Matthew Francis

    2017-01-01

    Advances in space-based observations have provided the capacity to develop regional- to global-scale estimates of evaporation, offering insights into this key component of the hydrological cycle. However, the evaluation of large-scale evaporation retrievals is not a straightforward task. While a number of studies have intercompared a range of these evaporation products by examining the variance amongst them, or by comparison of pixel-scale retrievals against ground-based observations, there is a need to explore more appropriate techniques to comprehensively evaluate remote-sensing-based estimates. One possible approach is to establish the level of product agreement between related hydrological components: for instance, how well do evaporation patterns and response match with precipitation or water storage changes? To assess the suitability of this consistency-based approach for evaluating evaporation products, we focused our investigation on four globally distributed basins in arid and semi-arid environments, comprising the Colorado River basin, Niger River basin, Aral Sea basin, and Lake Eyre basin. In an effort to assess retrieval quality, three satellite-based global evaporation products based on different methodologies and input data, including CSIRO-PML, the MODIS Global Evapotranspiration product (MOD16), and Global Land Evaporation: the Amsterdam Methodology (GLEAM), were evaluated against rainfall data from the Global Precipitation Climatology Project (GPCP) along with Gravity Recovery and Climate Experiment (GRACE) water storage anomalies. To ensure a fair comparison, we evaluated consistency using a degree correlation approach after transforming both evaporation and precipitation data into spherical harmonics. Overall we found no persistent hydrological consistency in these dryland environments. Indeed, the degree correlation showed oscillating values between periods of low and high water storage changes, with a phase difference of about 2-3 months

  20. Investigation of fission properties and evaporation residue measurement in the reactions using 238U target nucleus

    Directory of Open Access Journals (Sweden)

    Saro S.

    2011-10-01

    Full Text Available Fragment mass distributions for fission after full momentum transfer were measured in the reactions of 30Si,34,36 S,31P,40Ar + 238U at bombarding energies around the Coulomb barrier. Mass distributions change significantly as a function of incident beam energy. The asymmetric fission probability increases at sub-barrier energy. The phenomenon is interpreted as an enhanced quasifission probability owing to orientation effects on fusion and/or quasifission. The evaporation residue (ER cross sections were measured in the reactions of 30Si + 238U and 34S + 238U to obtain information on fusion. In the latter reaction, significant suppression of fusion was implied. This suggests that fission events different from compound nucleus are included in the masssymmetric fragments. The results are supported by a model calculation based on a dynamical calculation using Langevin equation, in which the mass distribution for fusion-fission and quasifission fragments are separately determined.

  1. Biodrying of animal slaughterhouse residues and heat production

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Y. [Centre de recherche industrielle, Quebec City, PQ (Canada)

    2010-07-01

    Animal carcasses from slaughterhouses are usually composted on farms, but the composting process is not optimized and a large volumes of carbonaceous residues are needed. This type of composting takes place over a period of 6 to 9 months in a nonaerated static pile. Quebec's industrial research centre (CRIQ) developed an organic biodrying process (BIOSECO) adapted to large-scale operations in order to optimize the treatment of slaughterhouse residues. Biodrying is a form of composting, in which the thermophilic phase is optimized, making it possible to evaporate large amounts of water. Biodrying is done inside a building and reduces the amount of carbonaceous residues considerably. The process is optimized by the sequence in which the slaughterhouse residues are added, the choice of input and the aeration flow. Slaughterhouse residues can be treated non-stop throughout the entire year. Since the odours are nearly completed limited to the building, the biodrying can be done near the slaughterhouse. A large amount of heat was produced by the process during the pilot project. It was concluded that the BIOSECO biodrying process is suitable for treating slaughterhouse residues in an effective and economic manner, and has the added advantage of producing heat that could be used for various purposes.

  2. Vacuum evaporation treatment of digestate: full exploitation of cogeneration heat to process the whole digestate production.

    Science.gov (United States)

    Guercini, S; Castelli, G; Rumor, C

    2014-01-01

    Vacuum evaporation represents an interesting and innovative solution for managing animal waste surpluses in areas with high livestock density. To reduce operational costs, a key factor is the availability of an inexpensive source of heat, such as that coming from an anaerobic digestion (AD) plant. The aim of this study was to test vacuum evaporation for the treatment of cattle slurry digestate focusing on heat exploitation. Tests were performed with a pilot plant fed with the digestate from a full-scale AD plant. The results were used to evaluate if and how cogeneration heat can support both the AD plant and the subsequent evaporation of the whole daily digestate production in a full-scale plant. The concentrate obtained (12% total solids) represents 40-50% of the influent. The heat requirement is 0.44 kWh/kg condensate. Heat power availability exceeding the needs of the digestor ranges from 325 (in winter) to 585 kW (in summer) versus the 382 kW required for processing the whole digestate production. To by-pass fluctuations, we propose to use the heat coming from the cogenerator directly in the evaporator, tempering the digestor with the latent heat of distillation vapor.

  3. Estimation of evaporative losses during storage of crude oil and petroleum products

    Directory of Open Access Journals (Sweden)

    Mihajlović Marina A.

    2013-01-01

    Full Text Available Storage of crude oil and petroleum products inevitably leads to evaporative losses. Those losses are important for the industrial plants mass balances, as well as for the environmental protection. In this paper, estimation of evaporative losses was performed using software program TANKS 409d which was developed by the Agency for Environmental Protection of the United States - US EPA. Emissions were estimated for the following types of storage tanks: fixed conical roof tank, fixed dome roof tank, external floating roof tank, internal floating roof tank and domed external floating roof tank. Obtained results show quantities of evaporated losses per tone of stored liquid. Crude oil fixed roof storage tank losses are cca 0.5 kg per tone of crude oil. For floating roof, crude oil losses are 0.001 kg/t. Fuel oil (diesel fuel and heating oil have the smallest evaporation losses, which are in order of magnitude 10-3 kg/tone. Liquids with higher Reid Vapour Pressure have very high evaporative losses for tanks with fixed roof, up to 2.07 kg/tone. In case of external floating roof tank, losses are 0.32 kg/tone. The smallest losses are for internal floating roof tank and domed external floating roof tank: 0.072 and 0.044, respectively. Finally, it can be concluded that the liquid with low volatility of low BTEX amount can be stored in tanks with fixed roof. In this case, the prevailing economic aspect, because the total amount of evaporative loss does not significantly affect the environment. On the other hand, storage of volatile derivatives with high levels of BTEX is not justified from the economic point of view or from the standpoint of the environment protection.

  4. Residual thermal stresses in injection moulded products

    NARCIS (Netherlands)

    Zoetelief, W.F.; Douven, L.F.A.; Ingen Housz, A.J.; Ingen housz, A.J.

    1996-01-01

    Nonisothermal flow of a polymer melt in a cold mold cavity introduces stresses that are partly frozen-in during solidification. Flow-induced stresses cause anisotropy of mechanical, thermal, and optical properties, while the residual thermal stresses induce warpage and stress-cracking. In this

  5. FATE OF ENDOSULFAN AND DELTAMETHRIN RESIDUES DURING TOMATO PASTE PRODUCTION

    Directory of Open Access Journals (Sweden)

    CIGDEM UYSAL-PALA

    2006-12-01

    Full Text Available In this study, the effects of tomato paste processing steps on pesticides with active ingredient endosulfan and deltamethrin were investigated in Biga/Canakkale. Residue data were obtained by analyzing samples taken during harvesting, taken after washing and chopping, taken after pulping (pulp and pomace and taken from the tomato paste with GC-ECD. In the process of making tomato paste, washing decreased endosulfan and deltamethrin, 30.62% and 47.58%, respectively. Pre-heating, pulping, evaporation and half-pasteurization increased deltamethrin 2.33% while decreasing endosulfan 66.5% after washing. The whole process decreased endosulfan and deltamethrin, 76.8% and 46.3%, respectively. The residues were mostly collected in pomace.

  6. Production of extracellular amylase from agricultural residues by a ...

    African Journals Online (AJOL)

    The production of extracellular amylases by solid state fermentation (SSF) was investigated employing our laboratory isolate Aspergillus sp.MK07. Various agricultural residual substrates like wheat bran, rice bran and green gram husk were studied for enzyme production. Highest enzyme production was obtained with ...

  7. The effects of a polyacrylamide-derived water treatment residue on the hydraulic conductivity, water retention and evaporation of four contrasting South African soils and implications for land disposal.

    Science.gov (United States)

    Moodley, M; Hughes, J C

    2006-01-01

    Water treatment residue (WTR), a by-product from the production of potable water, was traditionally disposed of to landfill but there is growing interest in applying this waste to land as an alternative disposal option. Because WTR consists mainly of flocculated fine silt and clay, there is concern that should the residue decompose back to its original constituents, there is an adverse risk for soil water storage and transmission properties of soil. In a laboratory study, four different soil types were amended with a polyacrylamide WTR at rates ranging from 0 to 1280 Mg ha(-1). The treatments were evaluated for changes in water retention, hydraulic conductivity and evaporation. The results showed that WTR decreased bulk density and evaporation and actually increased hydraulic conductivity and water retention, mainly because of the sustained performance of the polymer in binding the silt and clay into gravel-sized aggregates. Such changes were, however, only significant at the 1280 Mg ha(-1) application rate. Therefore, very large amounts of WTR would have to be applied in order to markedly change these inherent physical properties of the soils. In view of this finding, the land treatment of WTR appears possible.

  8. Radiotracer studies of pesticide residues in stored products

    International Nuclear Information System (INIS)

    1987-01-01

    The current programme was initiated in 1983 and was designed to assist scientists of developing Member States to make safe and effective use of radiotracer techniques for studying pesticide residue problems in stored products. This report represents an appraisal of a group of studies with particular emphasis given to terminal residues at the time of human consumption. A separate abstract was prepared for each of the 12 papers

  9. Production, composition, and application of coffee and its industrial residues

    OpenAIRE

    Mussatto, Solange I.; Machado, Ercília M. S.; Martins, Silvia; Teixeira, J. A.

    2012-01-01

    Coffee is one of the most consumed beverages in the world and is the second largest traded commodity after petroleum. Due to the great demand of this product, large amounts of residues are generated in the coffee industry, which are toxic and represent serious environmental problems. Coffee silverskin and spent coffee grounds are the main coffee industry residues, obtained during the beans roasting, and the process to prepare “instant coffee”, respectively. Recently, some attempts have been m...

  10. Study of problems raised by the production of electronic preamplifier by thin layer evaporation

    International Nuclear Information System (INIS)

    Lesaint, Jean

    1962-01-01

    This research thesis reports the study of the different methods of manufacturing electronic assemblies by deposition of various thin layers in order to reduce dimensions and weight of such assemblies. Thin layers have been prepared by vacuum evaporation. During this preparation, the author identified the problems raised by this miniaturisation technique. The most important ones have been solved and it was then possible to produce by this method charge preamplifiers aimed at the detection of nuclear particles. The author envisages the production of capacitors with such a technique based on thin layers [fr

  11. The Effect of Heat Supply on Diesel Evaporation as the First Step of Hydrogen Production

    International Nuclear Information System (INIS)

    Sarioglan A; Olgun H; Baranak M; Ersoz A; Atakul H; Ozdogan S

    2006-01-01

    Evaporation of diesel fuel is an important stage in the diesel reforming processes. Thermal decomposition of the heavy feedstock that occurs primarily in the high temperature domain of the evaporation process leads to carbonous material formation and may plug the evaporator. The diesel evaporator design is one of the key parameters to minimize carbon formation. The operating conditions must be optimized as well. In this study, the evaporation heat was supplied by two different ways. In the first evaporation system, the evaporation heat of the diesel fuel was supplied by an electrical furnace. In the second system, diesel was evaporated in a tube-and-tube heat exchanger via indirect heat supplied by hot nitrogen gas. The latter case was chosen to simulate the utilization of fuel reforming off-gases. Results indicate that evaporation by the hot gases results in much lower thermal decomposition of the diesel fuel compared to the utilization of the electrical energy. (authors)

  12. Recycling crop residues for use in recirculating hydroponic crop production

    Science.gov (United States)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  13. Essays of leaching in cemented products containing simulated waste from evaporator concentrated of PWR reactor

    International Nuclear Information System (INIS)

    Haucz, Maria Judite A.; Calabria, Jaqueline A. Almeida; Tello, Cledola Cassia O.; Candido, Francisco Donizete; Seles, Sandro Rogerio Novaes

    2011-01-01

    This paper evaluated the results from leaching resistance essays of cemented products, prepared from three distinct formulations, containing simulated waste of concentrated from the PWR reactor evaporator. The leaching rate is a parameter of qualification of solidified products containing radioactive waste and is determined in accordance with regulation ISO 6961. This procedure evaluates the capacity of transfer organic and inorganic substances presents in the waste through dissolution in the extractor medium. For the case of radioactive waste it is reached the more retention of contaminants in the cemented product, i.e.the lesser value of lixiviation rate. Therefore, this work evaluated among the proposed formulation that one which attend the criterion established in the regulation CNEN-NN-6.09

  14. Biogas Production from Energy Crops and Agriculture Residues

    DEFF Research Database (Denmark)

    Wang, Guangtao

    In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according...... to their suitability for biogas production. Moreover, pretreatment of these biomasses by using wet explosion method was studied and the effect of the wet explosion process was evaluated based on the increase of (a) sugar release and (b) methane potential when comparing the pretreated biomass and raw biomass. Ensiling...

  15. Fuel gas production from animal and agricultural residues and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D. L; Wentworth, R. L

    1978-05-30

    Progress was reported by all contractors. Topics presented include: solid waste to methane gas; pipeline fuel gas from an environmental cattle feed lot; heat treatment of organics for increasing anaerobic biodegradability; promoting faster anaerobic digestion; permselective membrane control of algae and wood digesters for increased production and chemicals recovery; anaerobic fermentation of agricultural residues; pilot plant demonstration of an anaerobic, fixed-film bioreactor for wastewater treatment; enhancement of methane production in the anaerobic diegestion of sewage; evaluation of agitation concepts for biogasification of sewage sludge; operation of a 50,000 gallon anaerobic digester; biological conversion of biomass to methane; dirt feedlot residue experiments; anaerobic fermentation of livestock and crop residues; current research on methanogenesis in Europe; and summary of EPA programs in digestion technology. (DC)

  16. Identification of the Species of Origin for Meat Products by Rapid Evaporative Ionization Mass Spectrometry.

    Science.gov (United States)

    Balog, Julia; Perenyi, Dora; Guallar-Hoyas, Cristina; Egri, Attila; Pringle, Steven D; Stead, Sara; Chevallier, Olivier P; Elliott, Chris T; Takats, Zoltan

    2016-06-15

    Increasingly abundant food fraud cases have brought food authenticity and safety into major focus. This study presents a fast and effective way to identify meat products using rapid evaporative ionization mass spectrometry (REIMS). The experimental setup was demonstrated to be able to record a mass spectrometric profile of meat specimens in a time frame of origin, breed, and species with 100% accuracy at species and 97% accuracy at breed level. Detection of the presence of meat originating from a different species (horse, cattle, and venison) has also been demonstrated with high accuracy using mixed patties with a 5% detection limit. REIMS technology was found to be a promising tool in food safety applications providing a reliable and simple method for the rapid characterization of food products.

  17. Cellulosic ethanol production from agricultural residues in Nigeria

    International Nuclear Information System (INIS)

    Iye, Edward; Bilsborrow, Paul

    2013-01-01

    Nigeria′s Biofuels Policy introduced in 2007 mandates a 10% blend (E10) of bioethanol with gasoline. This study investigates the potential for the development of a cellulosic ethanol industry based on the availability of agricultural residues and models the number of commercial processing facilities that could be sited in the six Geo-political zones. The potential for cellulosic ethanol production from agricultural residues in Nigeria is 7556 km 3 per annum exceeding the mandate of 10% renewable fuel required and providing the potential for 12 large- and 11 medium-scale processing facilities based on the use of a single feedstock. Cassava and yam peelings provided in excess of 80% of the process residues available with enough feedstock to supply 10 large-scale facilities with a fairly even distribution across the zones. Sorghum straw, millet straw and maize stalks represented 75% of the potential resource available from field residues with the potential to supply 2 large- and 7 medium-scale processing facilities, all of which would be located in the north of the country. When a multi-feedstock approach is used, this provides the potential for either 29 large- or 58 medium-scale facilities based on outputs of 250 and 125 km 3 per annum respectively. - Highlights: • Nigeria′s Biofuels Policy mandates a 10% blend of bioethanol with gasoline. • Total bioethanol production from agricultural residues was 7556 km 3 per annum. • Process residues offer the greatest potential accounting for 62% of production. • Nigeria has the potential for 12 large- and 11 medium scale commercial. • The use of mixed feedstocks significantly increases the potential for production

  18. Pesticides Residue in Milk and Milk Products: Mini Review

    Directory of Open Access Journals (Sweden)

    Shazia Akhtar

    2017-06-01

    Full Text Available Livestock is an important sub-sector of agriculture that plays a key role in economy of a country by contributing to GDP (Gross Domestic Product and in total export. Pakistan is the 5th largest milk producer in the world with a total milk production of about 46.44 billion liters per anum. Almost 68% milk is produced by buffalo and 27% by cow. Pesticides used in agriculture sector may transfer to animal bodies through feed and fodder. A pesticide found in water is another source of residues in milk through drinking water. External control of parasites on animal body, insect control in cattle yard and sheds are direct sources of pesticides exposure for dairy animals. Due to its nutritional and supplementary value, milk is being consumed by people of different age groups therefore, issue of pesticide residues attain the immediate attention of researcher. Pesticide residues levels in raw dairy milk are discussed here in few selected developing and developed countries. It is concluded that human health is associated with exposure to organo phosphorus (OPPs, organo chlorine (OCPs, pyrethroids and carbamate (CB pesticides via milk or milk products and this issue deserve more attention. Different classes of pesticides OPPs, OCPs, pyrethroids and CBs etc. were reported in raw dairy milk in different countries and also in Pakistan. The results of this review demonstrate the need to establish pesticide residue monitoring programs for milk analysis for human consumption to improve food safety and decrease exposure risks to consumers.

  19. 14C-Profenofos Residues in Milk and Milk Products

    International Nuclear Information System (INIS)

    Fakhr, I.M.I.; Afifi, L.M.; Fouzy, A.S.M.; Hegazi, B.

    1999-01-01

    Treatment of lactating goats with only one dose of 14 C-ethoxy profenofos (17.9 mg/Kg) in gelatin capsules and then feeding normally, resulted in the presence of 0.5% of the radioactive insecticide residues in the milk collected through the fourteen successive days. The highest activity level was depicted at the first day and almost disappeared after two weeks. After processing, the analysis of milk products revealed difference in radioactive residue level according to the nature of the product and increased in the order: whey< skim < yoghurt < pasteurized milk < cheese< cream. TLC analysis of milk and milk products revealed the absence of the parent compound and the presence of 4 major metabolites, which were identified by co-chromatography with authentic compounds

  20. Monitoring residue in animals and primary products of animal origin

    Directory of Open Access Journals (Sweden)

    Janković Saša

    2008-01-01

    Full Text Available The objective of control and systematic monitoring of residue is to secure, by the examination of a corresponding number of samples, the efficient monitoring of the residue level in tissues and organs of animals, as well as in primary products of animal origin. This creates possibilities for the timely taking of measures toward the securing of food hygiene of animal origin and the protection of public health. Residue can be a consequence of the inadequate use of medicines in veterinary medicine and pesticides in agriculture and veterinary medicine, as well as the polluting of the environment with toxic elements, dioxins, polychlorinated biphenyls, and others. Residue is being monitored in Serbia since 1972, and in 2004, national monitoring was brought to the level of EU countries through significant investments by the Ministry of Agriculture, Forestry and Water Management. This is also evident in the EU directives which permit exports of all kinds of meat and primary products of animal origin, covered by the Residue Monitoring Program. The program of systematic examinations of residue has been coordinated with the requirements of the European Union, both according to the type of examined substance, as well as according to the number of samples and the applied analytical techniques. In addition to the development of methods and the including of new harmful substances into the monitoring programme, it is also necessary to coordinate the national regulations that define the maximum permitted quantities of certain medicines and contaminants with the EU regulations, in order to protect the health of consumers as efficiently as possible, and for the country to take equal part in international trade.

  1. Residual biomass resources for energy production. Extended abstract

    International Nuclear Information System (INIS)

    Prevot, G.

    2010-06-01

    This report covers the whole problematic of energy production from biomass residues in France except the production of biofuels. It is made of two parts. The first one gives an overview of the availability of residual biomass resources, The concept of residue (or waste) is placed in its economic and regulatory context (the major part of the resource cannot be considered as waste without any further potential use). The conditions of availability of the resource for each market segment are identified. The second part describes the conditions for the use of 5 different conversion options of these residues into energy. The logistics constraints for the procurement of the fuel and the intermediate operations to prepare it are briefly summarised. The objective was the identification of key issues in all relevant aspects, without giving too much emphasis to one of them at the expense of another one in order to avoid duplicating the frequent cases of facilities that do not meet environmental and economic targets because the designers of the system have not paid enough attention to a parameter of the system. (author)

  2. Microbiological Production of Surfactant from Agricultural Residuals for IOR Application

    Energy Technology Data Exchange (ETDEWEB)

    Bala, Greg Alan; Bruhn, Debby Fox; Fox, Sandra Lynn; Noah, Karl Scott; Thompson, David Neal

    2002-04-01

    Utilization of surfactants for improved oil recovery (IOR) is an accepted technique with high potential. However, technology application is frequently limited by cost. Biosurfactants (surface-active molecules produced by microorganisms) are not widely utilized in the petroleum industry due to high production costs associated with use of expensive substrates and inefficient product recovery methods. The economics of biosurfactant production could be significantly impacted through use of media optimization and application of inexpensive carbon substrates such as agricultural process residuals. Utilization of biosurfactants produced from agricultural residuals may 1) result in an economic advantage for surfactant production and technology application, and 2) convert a substantial agricultural waste stream to a value-added product for IOR. A biosurfactant with high potential for use is surfactin, a lipopeptide biosurfactant, produced by Bacillus subtilis. Reported here is the production and potential IOR utilization of surfactin produced by Bacillus subtilis (American Type Culture Collection (ATCC) 21332) from starch-based media. Production of surfactants from microbiological growth media based on simple sugars, chemically pure starch medium, simulated liquid and solid potato-process effluent media, a commercially prepared potato starch in mineral salts, and process effluent from a potato processor is discussed. Additionally, the effect of chemical and physical pretreatments on starchy feedstocks is discussed.

  3. Angular momentum distribution for the formation of evaporation residues in fusion of 19F with 184W near the Coulomb barrier

    International Nuclear Information System (INIS)

    Nath, S.; Gehlot, J.; Prasad, E.; Sadhukhan, Jhilam; Shidling, P.D.; Madhavan, N.; Muralithar, S.; Golda, K.S.; Jhingan, A.; Varughese, T.; Rao, P.V. Madhusudhana; Sinha, A.K.; Pal, Santanu

    2011-01-01

    We present γ-ray multiplicity distributions for the formation of evaporation residues in the fusion reaction 19 F + 184 W → 203 83 Bi 120 at beam energies in the range of 90-110 MeV. The measurements were carried out using a 14 element BGO detector array and the Heavy Ion Reaction Analyzer at the Inter University Accelerator Centre. The data have been unfolded to obtain angular momentum distributions with inputs from the statistical model calculation. Comparison with another neighboring system, viz. 19 F + 175 Lu → 194 80 Hg 114 with nearly similar entrance-channel mass asymmetry, hints at the depletion of higher angular momenta after crossing of the Z=82 shell in the compound nucleus.

  4. Production of ferrous sulfate from residue from the iron mining

    International Nuclear Information System (INIS)

    Cardoso, K.A; Riella, H.G.; Abreu, E.F.; Carvalho, E.F. Urano de; Durazzo, M.

    2012-01-01

    This paper was developed from a residue obtained by processing iron ore exploited by the mining company Samarco S/A. The residue was characterized and the analyses showed that it contains about 70% of the mineral hematite (Fe 2 O 3 ) and also that some economically important products could be produced. One is the ferrous sulfate that can be used in pharmaceuticals and also that can be used in the treatment of iron deficiency anemia. The iron, in addition to is importance for the industrial production of steel and parts in general, also has great biological importance in all living beings. In order to produce ferrous sulfate from the byproduct in question, it was developed a obtaining route using metallic iron as hematite reductor and sulfuric acid to form the salt. (author)

  5. Pretreaments of Chinese Agricultural residues to increase biogas production

    OpenAIRE

    Wang, Yu

    2010-01-01

    Development of biological conversion of lignocellulosic biomass to biogas is one approach to utilize straw comprehensively. However, high lignin contents of lignocellulosic materials results in low degradation. The main aim of this study was to investigate the appropriate pre-treatment to increase biogas production from Chinese agricultural residues. In this study, Chinese corn stalk, rice plant and wheat straw were evaluated as substrates by applying three different pre-treatments. The inves...

  6. Excitation functions for some evaporation residues identified in the interaction of 20Ne and 93Nb at moderate excitation energies

    International Nuclear Information System (INIS)

    Agarwal, Avinash; Rizvi, I.A.; Gupta, Meenal; Ahamad, Tauseef; Ghugre, S.S.; Sinha, A.K.; Chaubey, A.K.

    2008-01-01

    With the motivation of studying the complete and incomplete fusion reactions, excitation functions for the reactions 93 Nb(Ne, p2n) 110 Sn, 93 Nb(Ne, 2pn) 110 In, 93 Nb(Ne, 2p2n) 109 In, 93 Nb(Ne, αn) 108 In, 93 Nb(Neα2n) 107 In and 93 Nb(Ne, α p n) 107 Cd have been measured at the incident energy ranging from 91.4 MeV - 145 MeV. The well established activation technique followed by off line high purity gamma- ray spectroscopy was employed. The measured excitation functions were compared with the statistical model calculations by using the codes ALICE-91 and Pace-4. The effect of variation of different parameters including level density parameter involved in these codes has also been studied. Excellent agreement was found between theoretical and experimental values in some of the fusion evaporation reaction channels. However, significant enhancement of cross-section observed in α-emission channels may be due to incomplete fusion process. (author)

  7. Biogas production from energy crops and agriculture residues

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.

    2010-12-15

    In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according to their suitability for biogas production. Moreover, pretreatment of these biomasses by using wet explosion method was studied and the effect of the wet explosion process was evaluated based on the increase of (a) sugar release and (b) methane potential when comparing the pretreated biomass and raw biomass. Ensiling of perennial crops was tested as a storage method and pretreatment method for enhancement of the biodegradability of the crops. The efficiency of the silage process was evaluated based on (a) the amount of biomass loss during storage and (b) the effect of the silage on methane potential. Co-digestion of raw and wet explosion pretreated energy crops and agriculture residues with swine manure at various volatile solids (VS) ratio between crop and manure was carried out by batch tests and continuous experiments. The efficiency of the co-digestion experiment was evaluated based on (a) the methane potential in term of ml CH4 produced per g of VS-added and (b) the amount of methane produced per m3 of reactor volume. (Author)

  8. Feed or bioenergy production from agri-industrial residues?

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, Lorie; Astrup, Thomas Fruergaard

    consequences on the food/feed market, or on the carbon balance of the soil. The first are commonly called indirect land-use changes (iLUC), as they cause an increase in the international demand of a food/feed product, finally inducing an expansion of cropland into other ecosystems. Failing to account...... for these consequences may lead to misrepresent the actual environmental impacts. This study quantified, by use of consequential life cycle assessment (cLCA), the environmental impacts associated with a number of bioenergy scenarios involving selected agri-industrial residues. Three relevant conversion pathways were...

  9. 9 CFR 318.16 - Pesticide chemicals and other residues in products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Pesticide chemicals and other residues... PREPARATION OF PRODUCTS General § 318.16 Pesticide chemicals and other residues in products. (a) Nonmeat ingredients. Residues of pesticide chemicals, food additives and color additives or other substances in or on...

  10. Increase in the amount of evaporator concentrate from nuclear power plants in cemented products

    International Nuclear Information System (INIS)

    Costa, Bruna S.; Tello, Clédola C.O.

    2017-01-01

    Nuclear power plants, research centers and other nuclear facilities are sources of radioactive liquid waste generation. These wastes can come from cooling of the primary reactor system, cleaning spent pool of fuel, washing contaminated clothing, among others. One of the most used methods for the treatment of these aqueous flows is the evaporation, which generates the concentrate of the evaporator, waste classified as low and medium level of radiation. Norms determine that radioactive waste must be minimized, and that to be accepted in repositories, they must be solidified. The work sought to reduce the volume of the evaporated concentrate waste and its subsequent solidification in cement. In order to carry out the tests, the evaporator concentrate (CE) simulation solution was prepared and then dried in an oven. Subsequently, cementation of the dry material was made using cement, fluidizer, NaOH and water. After a curing time of 28 days, the compressive strength tests were made for all specimens obtained, and for the samples that obtained resistance above that required by the norm, which is 10MPa, the percentages of reject incorporated and volume reduction. The results showed that, by drying the evaporator concentrate, it was possible to reduce the volume of the waste generated by up to 27% in relation to the waste without drying, which shows that drying is an effective way to increase the incorporation of the evaporator concentrate in packaged waste

  11. Fuel gas production from animal residue. Dynatech report No. 1551

    Energy Technology Data Exchange (ETDEWEB)

    Ashare, E.; Wise, D.L.; Wentworth, R.L.

    1977-01-14

    A comprehensive mathematical model description of anaerobic digestion of animal residues was developed, taking into account material and energy balances, kinetics, and economics of the process. The model has the flexibility to be applicable to residues from any size or type of animal husbandry operation. A computer program was written for this model and includes a routine for optimization to minimum unit gas cost, with the optimization variables being digester temperature, retention time, and influent volatile solids concentration. The computer program was used to determine the optimum base-line process conditions and economics for fuel gas production via anaerobic digestion of residues from a 10,000 head environmental beef feedlot. This feedlot at the conditions for minimum unit gas cost will produce 300 MCF/day of methane at a cost of $5.17/MCF (CH/sub 4/), with a total capital requirement of $1,165,000, a total capital investment of $694,000, and an annual average net operating cost of $370,000. The major contributions to this unit gas cost are due to labor (37 percent), raw manure (11 percent), power for gas compression (10 percent), and digester cost (13 percent). A conceptual design of an anaerobic digestion process for the baseline conditions is presented. A sensitivity analysis of the unit gas cost to changes in the major contributions to unit gas cost was performed, and the results of this analysis indicate areas in the anaerobic digestion system design where reasonable improvements could be expected so as to produce gas at an economically feasible cost. This sensitivity analysis includes the effects on unit gas cost of feedlot size and type, digester type, digester operating conditions, and economic input data.

  12. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    Science.gov (United States)

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs.

  13. Assessing cellulose nanofiber production from olive tree pruning residue.

    Science.gov (United States)

    Fillat, Úrsula; Wicklein, Bernd; Martín-Sampedro, Raquel; Ibarra, David; Ruiz-Hitzky, Eduardo; Valencia, Concepción; Sarrión, Andrés; Castro, Eulogio; Eugenio, María Eugenia

    2018-01-01

    Pruning operation in olive trees generates a large amount of biomass that is normally burned causing severe environmental concern. Therefore, the transformation of this agricultural residue into value-added products is imperative but still remains as a technological challenge. In this study, olive tree pruning (OTP) residue is evaluated for the first time to produce cellulose nanofibers (CNF). The OTP bleached pulp was treated by TEMPO-mediated oxidation and subsequent defibrillation in a microfluidizer. The resulting CNF was characterized and compared to CNF obtained from a commercial bleached eucalyptus kraft pulp using the same chemi-mechanical procedure. CNF from OTP showed higher carboxylate content but lower fibrillation yield and optical transmittance as compared to eucalyptus CNF. Finally, the visco-elastic gel obtained from OTP was stronger than that produced from eucalyptus. Therefore, the properties of CNF from OTP made this nanomaterial suitable for several applications. CNF from OTP showed higher carboxylate content as compared to eucalyptus CNF (1038 vs. 778μmol/g) but lower fibrillation yield (48% vs. 96%) and optical transmittance. Finally, the visco-elastic gel obtained from OTP was stronger than that produced from eucalyptus. Therefore, the properties of CNF from OTP made this nanomaterial suitable for several applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Using MOD16 products for analyzing evapotranspiration and evaporation on the surface of lakes. Case studies in Romania

    Science.gov (United States)

    Stan, Florentina; Madelin, Malika; Zaharia, Liliana

    2017-04-01

    Evapotranspiration and evaporation are some of the most complex atmospheric processes and major components of the water balance. The knowledge of these processes at several spatial and temporal scales has great practical importance in the field of water resources management and agriculture. However, the direct measurement of these parameters is generally a problem, because it requires accuracy and instruments (lysimeters and pans) difficult to install; therefore many equations based on physical processes or vegetation stages have been proposed by different scientists (Thornthwaite, Penman, etc.). The use of remote sensing is a good alternative to estimate the evapotranspiration, by taking advantage of the new generation of Earth Observation Satellites. In recent years, a remote sensing product from the MODerate Resolution Imaging Spectrometer - MOD16 has been developed. The MOD16 algorithm (Mu et al. 2007) combines on the one hand remote sensing data on land cover, albedo, leaf area index and in the other hand radiation, air temperature and vapor pressure deficit data, in order to estimate real evapotranspiration (ET) and potential evapotranspiration (PET), at 1 km2 resolution. Until now the MOD16 products were not used in the Romanian studies, so the product accuracy is unknown. The main objective of this study is to correlate the MOD16 ET and PET products with the evaporation (E) data measured at the surface of some lakes (Căldăruşani, Soleşti, Cinciş), located in different climate and landform conditions in Romania, in order to establish the relationships between those parameters, that could allow estimate indirectly the evaporation, based on the MODIS products. We correlated the daily recorded pan evaporation data with the MOD16 products, by taking into account R2 coefficients. Eight-day cumulative evaporation data from the considered pans was calculated to coincide with the eight-day MOD16 products over 2010 - 2012. A secondary purpose of the paper is to

  15. Annatto Polymeric Microparticles: Natural Product Encapsulation by the Emulsion-Solvent Evaporation Method

    Science.gov (United States)

    Teixeira, Zaine; Duran, Nelson; Guterres, Silvia S.

    2008-01-01

    In this experiment, the extract from annatto seeds was encapsulated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) particles by the emulsion-solvent evaporation method. The particles were washed and centrifuged to remove excess stabilizer and then freeze-dried. The main compound of annatto seeds, bixin, has antioxidant properties as well…

  16. Production of active lysozyme films by matrix assisted pulsed laser evaporation at 355 nm

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, P.

    2007-01-01

    Thin lysozyme films have been produced in a dry environment by MAPLE (matrix assisted pulsed laser evaporation) from a water ice matrix irradiated by laser light at 355 nm above the absorption threshold of the protein. A significant part of the lysozyme molecules are transferred to the film without...

  17. The effect of crop residue layers on evapotranspiration, growth and ...

    African Journals Online (AJOL)

    A layer of harvest residues from the previous crop can reduce wasteful evaporation from the soil surface and thereby increase the efficiency of use of limited water resources for agricultural production. The practice of harvesting sugarcane green and leaving crop residues in the field, as opposed to burning the residue, has ...

  18. Anthelmintic residues in goat and sheep dairy products

    Directory of Open Access Journals (Sweden)

    Jedziniak Piotr

    2015-12-01

    Full Text Available A multiresidue method (LC-MS/MS for determination of wide range of anthelmintics was developed. The method covered benzimidazoles: albendazole (and metabolites, cambendazole, fenbendazol (and metabolites, flubendazole (and metabolites, mebendazole (and metabolites, oxibendazole, thiabendazole (and metabolites, triclabendazole (and metabolites; macrocyclic lactones: abamectin, doramectin, emamectin, eprinomectin, ivermectin, moxidectin; salicylanilides: closantel, ioxynil, nitroxynil, oxyclosamide, niclosamide, rafoxanid and others: clorsulon, derquantel, imidocarb, monepantel (and metabolites, morantel, praziquantel, and pyrantel. The method was used to examine the potential presence of anthelmintics in goat and sheep milk and dairy products from the Polish market. A total of 120 samples of milk, yoghurt, cottage cheese, cream cheese, and curd were analysed. None of the samples were found positive above CCα (1-10 μg/kg except for one cottage cheese in which traces of albendazole sulfone were detected (5.2 ug/kg and confirmed. The results of the study showed negligible anthelmintic residues in the goat and sheep milk and dairy products and confirm their good quality.

  19. Experimental and theoretical study of the yields of residual product nuclei produced in thin targets irradiated by 100-2600 MeV protons

    CERN Document Server

    Titarenko, Y E; Karpikhin, E I

    2003-01-01

    The objective of the project is measurements and computer simulations of independent and cumulative yields of residual product nuclei in thin targets relevant as target materials and structure materials for hybrid accelerator-driven systems coupled to high-energy proton accelerators. The yields of residual product nuclei are of great importance when estimating such basic radiation-technology characteristics of hybrid facility targets as the total target activity, target 'poisoning', buildup of long-lived nuclides that, in turn, are to be transmuted, product nuclide (Po) alpha-activity, content of low-pressure evaporated nuclides (Hg), content of chemically-active nuclides that spoil drastically the corrosion resistance of the facility structure materials, etc. In view of the above, radioactive product nuclide yields from targets and structure materials were determined by an experiment using the ITEP U-10 proton accelerator in 51 irradiation runs for different thin targets: sup 1 sup 8 sup 2 sup , sup 1 sup 8 ...

  20. Application of industrial wood residues for combined heat and power production

    International Nuclear Information System (INIS)

    Majchrzycka, A.

    2015-01-01

    The paper discusses combined production of heat and power (CHP) from industrial wood residues. The system will be powered by wood residues generated during manufacturing process of wooden floor panels. Based on power and heat demands of the plant and wood residues potential, the CHP system was selected. Preliminary analysis of biomass conversion in CHP system and environmental impact was performed.

  1. Residual animal fat and fish for biodiesel production. Potentials in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Otto; Weinbach, Jan-Erik [Western Norway Research Institute (WNRI), P. Box 163, 6851 Sogndal (Norway)

    2010-08-15

    The potential for biodiesel production based on utilization of residual animal fat and fish in Norway is estimated. This is based on a study of the amounts of residual fat that is possible to recover from grease traps in Bergen. Additional data from Trondheim and Oslo facilitated up-scaling to estimating national potential for utilizing this residue stream for biodiesel production. This is supplemented with data on residues from slaughterhouses and poultry, as well as the fishing industry. The results indicate that Norway has the potential for producing large amounts of biodiesel from these residue sources. (author)

  2. Risk and maximum residue limits: a study of hops production

    Science.gov (United States)

    This paper examines how maximum residue limits (MRLs) affect the optimal choice by growers of chemical applications to control pests and diseases. In practice, growers who export balance both yield risk and pesticide residue uncertainty when making chemical application decisions. To address these is...

  3. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight

    KAUST Repository

    Wang, Peng

    2018-04-05

    Solar driven water evaporation and distillation is an ancient technology, but has been rejuvenated by nano-enabled photothermal materials in the past 4 years. The nano-enabled state-of-the-art photothermal materials are able to harvest a full solar spectrum and convert it to heat with extremely high efficiency. Moreover, photothermal structures with heat loss management have evolved in parallel. These together have led to the steadily and significantly improved energy efficiency of solar evaporation and distillation in the past 4 years. Some unprecedented clean water production rates have been reported in small-scale and fully solar-driven devices. This frontier presents a timely and systematic review of the impressive developments in photothermal nanomaterial discovery, selection, optimization, and photothermal structural designs along with their applications especially in clean water production. The current challenges and future perspectives are provided. This article helps inspire more research efforts from environmental nano communities to push forward practical solar-driven clean water production.

  4. Production of bioethanol and associated by-products from potato starch residue stream by Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, Mohamed [King Khalid University, Faculty of Science, Biological Science Department, P.O. Box 10255, Abha 61321 (Saudi Arabia); Darwish, Soumia M.I. [Department of Food Science and Technology, Faculty of Agriculture, Assiut University (Egypt)

    2010-07-15

    Potato starch residue stream produced during chips manufacturing was used as an economical source for biomass and bioethanol production by Saccharomyces cerevisiae. Results demonstrated that 1% H{sub 2}SO{sub 4} at 100 C for 1 h was enough to hydrolyze all starch contained in the residue stream. Two strains of S. cerevisiae (y-1646 and commercial one) were able to utilize and ferment the acid-treated residue stream under both aerobic and semi-anaerobic conditions. The maximum yield of ethanol (5.52 g L{sup -1}) was achieved at 35 C by S. cerevisiae y-1646 after 36 h when ZnCl{sub 2} (0.4 g L{sup -1}) was added. Addition of NH{sub 4}NO{sub 3} as a source of nitrogen did not significantly affect either growth or ethanol production by S. cerevisiae y-1646. Some secondary by-products including alcohol derivatives and medical active compound were found to be associated with the ethanol production process. (author)

  5. Rapid ion-pair liquid chromatographic method for the determination of fenbendazole marker residue in fermented dairy products.

    Science.gov (United States)

    Vousdouka, Venetia I; Papapanagiotou, Elias P; Angelidis, Apostolos S; Fletouris, Dimitrios J

    2017-04-15

    A simple, rapid and sensitive liquid chromatographic method that allows for the quantitative determination of fenbendazole residues in fermented dairy products is described. Samples were extracted with a mixture of acetonitrile-phosphoric acid and the extracts were defatted with hexane to be further partitioned into ethyl acetate. The organic layer was evaporated to dryness and the residue was reconstituted in mobile phase. Separation of fenbendazole and its sulphoxide, sulphone, and p-hydroxylated metabolites was carried out isocratically with a mobile phase containing both positively and negatively charged pairing ions. Overall recoveries ranged from 79.8 to 88.8%, while precision data, based on within and between days variations, suggested an overall relative standard deviation of 6.3-11.0%. The detection and quantification limits were lower than 9 and 21μg/kg, respectively. The method has been successfully applied to quantitate fenbendazole residues in Feta cheese and yoghurt made from spiked and incurred ovine milk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Measurement of final container residual moisture in freeze-dried biological products.

    Science.gov (United States)

    May, J C; Wheeler, R M; Etz, N; Del Grosso, A

    1992-01-01

    The Center for Biologics Evaluation and Research has changed its regulations pertaining to residual moisture in freeze-dried biological products as published in Title 21 of the Code of Federal Regulations for Food and Drugs. The new regulation requires that each lot of dried product be tested for residual moisture and meet and not exceed established limits as specified by an approved method on file in the product license application. The gravimetric or loss-on-drying method is no longer listed as the required method; the 1.0% moisture limit is no longer specifically stated in the regulation. These revisions were made to bring the regulation into line with changes in residual moisture testing methods and the results obtained when new testing methods were applied to the determination of residual moisture. This is illustrated with data for Measles Virus Vaccine Live and Haemophilus b Polysaccharide Vaccine using final container residual moisture test results obtained by the gravimetric, coulometric Karl Fischer, thermogravimetric and thermogravimetric/mass spectrometric methods. Guidelines for the determination of residual moisture in dried biological products have been issued to describe residual moisture test methods and procedures used to set product residual moisture limits. For most products levels of residual moisture should be low, usually from less than 1.0% to 3.0%, so that the viability, immunologic potency and therefore the stability of the product is not compromised over time.

  7. Confirmation of sulfamethazine, sulfathiazole, and sulfadimethoxine residues in condensed milk and soft-cheese products by liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Clark, Susan B; Turnipseed, Sherri B; Madson, Mark R; Hurlbut, Jeffrey A; Kuck, Laura R; Sofos, John N

    2005-01-01

    A liquid chromatography/tandem mass spectrometry method (LC/MS/MS) is described for the simultaneous detection of 3 sulfonamide drug residues at 1.25 ppb in condensed milk and soft-cheese products. The 3 sulfonamide drugs of interest are sulfathiazole (STZ), sulfamethazine (SMZ), and sulfadimethoxine (SDM). The method includes extraction of the product with phosphate buffer, centrifugation of the diluted product, and application of a portion of the extract onto a polymeric solid-phase extraction cartridge. The cartridge is washed with water, and the sulfonamides are eluted with methanol. After evaporation, the residue is dissolved in 0.1% formic acid solution, and the solution is filtered before analysis by LC/MS/MS. The LC/MS/MS program involved a series of time-scheduled selected-reaction monitoring transitions. The transitions of MH+ to the common product ions at m/z 156, 108, and 92 were monitored for each residue. In addition, SMZ and SDM had a fourth significant and unique product ion transition that could be measured. Validation was performed with control and fortified-control condensed bovine milk with 2.5, 5, and 10 ppb sulfonamides. This method was applied to imported flavored and unflavored condensed milk and cream cheese bars. The presence of STZ and SMZ residues was confirmed in 3 out of 6 products.

  8. Challenges around automotive shredder residue production and disposal.

    Science.gov (United States)

    Khodier, Ala; Williams, Karl; Dallison, Neil

    2018-03-01

    The challenge for the automotive industry is how to ensure they adopt the circular economy when it comes to the disposal of end-of-life vehicles (ELV). According to the European Commission the UK achieved a total reuse and recovery rate of 88%. This is short of the revised ELV directive target of 95% materials recovery, which requires a minimum of 85% of materials to be recycled or reused. A significant component of the recycling process is the production of automotive shredder residue (ASR). This is currently landfilled across Europe. The additional 10% could be met by processing ASR through either waste-to-energy facilities or Post shredder technology (PST) to recover materials. The UK auto and recycling sectors claimed there would need to be a massive investment by their members in both new capacity and new technology for PST to recover additional recycle materials. It has been shown that 50% of the ASR contains valuable recoverable materials which could be used to meet the Directive target. It is expected in the next 5years that technological innovation in car design will change the composition from easily recoverable metal to difficult polymers. This change in composition will impact on the current drive to integrate the European Circular Economy Package. A positive factor is that main driver for using ASR is coming from the metals recycling industry itself. They are looking to develop the infrastructure for energy generation from ASR and subsequent material recovery. This is driven by the economics of the process rather than meeting the Directive targets. The study undertaken has identified potential pathways and barriers for commercial thermal treatment of ASR. The results of ASR characterisation were used to assess commercial plants from around the world. Whilst there were many claiming that processing of ASR was possible none have so far shown both the technological capability and economic justification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. On the role of the residual stress state in product manufacturing

    NARCIS (Netherlands)

    Zijlstra, G.; Groen, M.; Post, J.; Ocelik, V.; de Hosson, J.Th.M.

    2016-01-01

    This paper concentrates on the effect of the residual stress state during product manufacturing of AISI 420 steel on the final shape of the product. The work includes Finite Element (FE) calculations of the distribution of the residual stresses after metal forming and a heat treatment. The evolution

  10. Partial sums of lagged cross-products of AR residuals and a test for white noise

    NARCIS (Netherlands)

    de Gooijer, J.G.

    2008-01-01

    Partial sums of lagged cross-products of AR residuals are defined. By studying the sample paths of these statistics, changes in residual dependence can be detected that might be missed by statistics using only the total sum of cross-products. Also, a test statistic for white noise is proposed. It is

  11. Water economy in rodents: evaporative water loss and metabolic water production

    Directory of Open Access Journals (Sweden)

    Arturo Cortés

    2000-06-01

    Full Text Available Studies on water balance in desert-dwelling granivorous rodents use evaporative water loss (EWL and metabolic water production (MWP to evaluate the efficiency of water regulation, expressed by the model Ta @ MWP = EWL, defined by an ambient temperature (Ta value at (@ which MWP/EWL = 1. Here we evaluate and apply this model (1 - r² determining water regulation efficiency, based on the energetic cost (MR to maintain water balance (WB, that is MR-WB. To test the model, EWL was measured and MWP estimated in nine species of rodents from different localities of northern and north-central Chile (II and IV Regions: Octodon degus (Od and O. lunatus (Olu (Octodontidae, Abrothrix olivaceus (Ao, A. longipilis (Al, A. andinus (Ad, Phyllotis darwini (Pd, P. rupestris (Pr, P. magister (Pm, Oligoryzomys longicaudatus (Ol (Muridae and Chinchilla lanigera (Cl (Chinchillidae. Literature information on rodents from xeric and mesic habitats was also analyzed. Results indicate that: 1 Cl has the lowest EWL (0.58 mg H2O/g h, followed by Od Para evaluar la eficiencia en la regulación hídrica de roedores granívoros desertícolas se usa la pérdida de agua por evaporación (EWL y la producción de agua metabólica (MWP, estando esta expresada por el modelo Ta @ MWP = EWL, que representa el valor de una temperatura ambiente (Ta al cual (@ MWP/EWL = 1. En este trabajo se evalua este modelo (1- r² y se estima la eficiencia en la regulación de agua basados en el costo energético (MR de mantención del balance hídrico (WB, es decir MR-WB. Se midió EWL y se estimó MWP en las siguientes nueve especies de roedores de diferente localidades del norte y centro de Chile (Regiones II y IV: Octodon degus (Od y O. lunatus (Olu (Octodontidae, Abrothrix olivaceus (Ao, A. longipilis (Al, A. andinus (Ad, Phyllotis darwini (Pd, P. rupestris (Pr, P. magister (Pm, Oligoryzomys longicaudatus (Ol (Muridae and Chinchilla lanigera (Cl (Chinchillidae. Se analizó además información de

  12. An integrated assessment of the potential of agricultural and forestry residues for energy production in China

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ji [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081 China; Zhang, Aiping [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081 China; Lam, Shu Kee [Crop and Soil Sciences Section, Faculty of Veterinary and Agricultural Sciences, the University of Melbourne, Melbourne Vic. 3010 Australia; Zhang, Xuesong [Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park MD 20740 USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing MI 48824 USA; Thomson, Allison M. [Field to Market, The Alliance for Sustainable Agriculture, 777 N Capitol St. NE Suite 803 Washington DC 20002 USA; Lin, Erda [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081 China; Jiang, Kejun [Energy Research Institute (ERI), Beijing 100038 China; Clarke, Leon E. [Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park MD 20740 USA; Edmonds, James A. [Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park MD 20740 USA; Kyle, Page G. [Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park MD 20740 USA; Yu, Sha [Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park MD 20740 USA; Zhou, Yuyu [Department of Geological & Atmospheric Sciences, Iowa State University, Ames IA 50011 USA; Zhou, Sheng [Institutes of Energy, Environment and Economy, Tsinghua University, Beijing 100084 China

    2016-01-05

    Biomass has been widely recognized as an important energy source with high potential to reduce greenhouse gas emissions while minimizing environmental pollution. In this study, we employ the Global Change Assessment Model to estimate the potential of agricultural and forestry residue biomass for energy production in China. Potential availability of residue biomass as an energy source was analyzed for the 21st century under different climate policy scenarios. Currently, the amount of total annual residue biomass, averaged over 2003-2007, is around 15519PJ in China, consisting of 10818PJ from agriculture residues (70%) and 4701PJ forestry residues (30%). We estimate that 12693PJ of the total biomass is available for energy production, with 66% derived from agricultural residue and 34% from forestry residue. Most of the available residue is from south central China (3347PJ), east China (2862PJ) and south-west China (2229PJ), which combined exceeds 66% of the total national biomass. Under the reference scenario without carbon tax, the potential availability of residue biomass for energy production is projected to be 3380PJ by 2050 and 4108PJ by 2095, respectively. When carbon tax is imposed, biomass availability increases substantially. For the CCS 450ppm scenario, availability of biomass increases to 9002PJ (2050) and 11524PJ (2095), respectively. For the 450ppm scenario without CCS, 9183 (2050) and 11150PJ (2095) residue biomass, respectively, is projected to be available. Moreover, the implementation of CCS will have a little impact on the supply of residue biomass after 2035. Our results suggest that residue biomass has the potential to be an important component in China's sustainable energy production portfolio. As a low carbon emission energy source, climate change policies that involve carbon tariff and CCS technology promote the use of residue biomass for energy production in a low carbon-constrained world.

  13. Production of Bioethanol from Agricultural Wastes Using Residual Thermal Energy of a Cogeneration Plant in the Distillation Phase

    Directory of Open Access Journals (Sweden)

    Raffaela Cutzu

    2017-05-01

    Full Text Available Alcoholic fermentations were performed, adapting the technology to exploit the residual thermal energy (hot water at 83–85 °C of a cogeneration plant and to valorize agricultural wastes. Substrates were apple, kiwifruit, and peaches wastes; and corn threshing residue (CTR. Saccharomyces bayanus was chosen as starter yeast. The fruits, fresh or blanched, were mashed; CTR was gelatinized and liquefied by adding Liquozyme® SC DS (Novozymes, Dittingen, Switzerland; saccharification simultaneous to fermentation was carried out using the enzyme Spirizyme® Ultra (Novozymes, Dittingen, Switzerland. Lab-scale static fermentations were carried out at 28 °C and 35 °C, using raw fruits, blanched fruits and CTR, monitoring the ethanol production. The highest ethanol production was reached with CTR (10.22% (v/v and among fruits with apple (8.71% (v/v. Distillations at low temperatures and under vacuum, to exploit warm water from a cogeneration plant, were tested. Vacuum simple batch distillation by rotary evaporation at lab scale at 80 °C (heating bath and 200 mbar or 400 mbar allowed to recover 93.35% (v/v and 89.59% (v/v of ethanol, respectively. These results support a fermentation process coupled to a cogeneration plant, fed with apple wastes and with CTR when apple wastes are not available, where hot water from cogeneration plant is used in blanching and distillation phases. The scale up in a pilot plant was also carried out.

  14. OPTIMASI DENGAN ALGORITMA RSM-CCD PADA EVAPORATOR VAKUM WATERJET DENGAN PENGENDALI SUHU FUZZY PADA PEMBUATAN PERMEN SUSU (RSM-CCD Algorithm for Optimizing Waterjet Vacuum Evaporator Using Fuzzy Temperature Control in The Milk Candy Production

    Directory of Open Access Journals (Sweden)

    Yusuf Hendrawan

    2016-10-01

    Full Text Available Milk candy is a product which has to be produced under a high temperature to achieve the caramelization process. The use of vacuum system during a food processing is one of the alternatives to engineer the value of a material’s boiling point. The temperature control system and the mixing speed in machine that produce the milk candy were expected to be able to prevent the formation of off-flavour in the final product. A smart control system based on fuzzy logic was applied in the temperature control within the double jacket vacuum evaporator machine that needs stable temperature in the cooking process. The objective of this research is developing vacuum evaporator for milk candy production using fuzzy temperature control. The result in machine and system planning showed that the process of milk candy production was going on well. The parameter optimization of water content and ash content purposed to acquire the temperature point parameter and mixing speed in milk candy production. The optimization method was response surface methodology (RSM, by using the model of central composite design (CCD. The optimization resulted 90.18oC for the temperature parameter and 512 RPM for the mixing speed, with the prediction about 4.69% of water content and 1.57% of ash content. Keywords: Optimization, vacuum evaporator, fuzzy, milk candy, response surface methodology ABSTRAK Permen susu merupakan salah satu produk yang diolah dengan suhu tinggi untuk mencapai proses karamelisasi. Pengolahan pangan dengan sistem vakum merupakan salah satu alternatif untuk merekayasa nilai titik didih suatu bahan. Sistem pengendalian suhu serta kecepatan pengadukan pada mesin produksi permen susu diharapkan dapat mencegah terbentuknya partikel hitam (off-flavour pada produk akhir. Sistem kontrol cerdas logika fuzzy diaplikasikan dalam pengendalian suhu pada mesin evaporator vakum double jacket yang membutuhkan tingkat stabilitas suhu pemasakan permen susu. Tujuan dari

  15. Using the residue of spirit production and bio-ethanol for protein production by yeasts.

    Science.gov (United States)

    Silva, Cristina F; Arcuri, Silvio L; Campos, Cássia R; Vilela, Danielle M; Alves, José G L F; Schwan, Rosane F

    2011-01-01

    The residue (vinasse) formed during the distillation of bio-ethanol and cachaça, a traditional rum-type spirit produced from sugar-cane in Brazil, is highly harmful if discharged into the environment due to high values of COD and BOD. One possibility for minimizing the impact of vinasse in soils and waters is to use the residue in the production of microbial biomass for use as an animal feed supplement that will provide high levels on nitrogen (>9% d.m.) and low content of nucleic (≤ 10% d.m.) This paper reports the production and quality of biomass produced from fermentation of Saccharomyces cerevisiae and Candida parapsilosis in culture media under 12 different culture conditions and the respective effects of each variable (glucose, yeast extract, peptone, potassium phosphate, vinasse, pH and temperature). Of the S. cerevisiae isolates tested, two (VR1 and PE2) originating from fuel alcohol-producing plants were identified as offering the best potential for the industrial production of single cell protein from vinasse due to highest biomass productivity. Our results showed a potential viable and economic use of vinasse. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Effects of hyacinth residues on chemical properties and productivity ...

    African Journals Online (AJOL)

    Water hyacinth (Eichhornia crassipes) is an aquatic weed that has blocked many navigable water-ways in the tropics. ... amendments more than S2 and showed that maize performance during the first cropping was better on S1 than S2, whereas during the residual cropping the crop performed equally well on both soils.

  17. Evaporation residue cross sections and average neutron multiplicities in the /sup 64/Ni+/sup 92/Zr and /sup 12/C+/sup 144/Sm reactions leading to /sup 156/Er

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, R.V.F.; Holzmann, R.; Henning, W.; Khoo, T.L.; Lesko, K.T.; Stephans, G.S.F.; Radford, D.C.; Van den Berg, A.M.; Kuehn, W.; Ronningen, R.M.

    1986-11-27

    Evaporation residue cross sections and neutron multiplicity distributions have been measured for the /sup 12/C+/sup 144/Sm and /sup 64/Ni+/sup 92/Zr reactions leading to the same compound nucleous /sup 156/Er. Statistical model calculations can account for the data in the /sup 12/C-induced reaction. In contrast, the inhibition of neutron emission with respect to statistical model predictions seen in /sup 64/Ni+/sup 92/Zr cannot be explained even with the inclusion of the broad angular momentum distributions required to describe the fusion cross section data.

  18. Soil fertility and soil loss constraints on crop residue removal for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Flaim, S.

    1979-07-01

    A summary of the methodologies used to estimate the soil fertility and soil loss constraints on crop residue removal for energy production is presented. Estimates of excess residue are developed for wheat in north-central Oklahoma and for corn and soybeans in central Iowa. These sample farming situations are analyzed in other research in the Analysis Division of the Solar Energy Research Institute.

  19. Productivity and cost analysis of a mobile pyrolysis system deployed to convert mill residues into biochar

    Science.gov (United States)

    Woodam Chung; Dongyeob Kim; Nathaniel Anderson

    2012-01-01

    Forest and mill residues are a promising source of biomass feedstock for the production of bioenergy, biofuels and bioproducts. However, high costs of transportation and handling of feedstock often make utilization of forest residues, such as logging slash, financially unviable. As a result, these materials are often considered waste and left on site to decompose or...

  20. Production rates and costs of cable yarding wood residue from clearcut units

    Science.gov (United States)

    Chris B. LeDoux

    1984-01-01

    Wood residue is a little used source of fiber, chips, and fuel because harvest costs are largely unknown. This study calculates incremental production rates and costs for yarding and loading logging residue in clearcut old-growth Douglas-fir/western hemlock forests. Harvest operations were observed for two timber sales in western Oregon. Three different cable yarding...

  1. Determination of the shapes and sizes of the regions in which in hadron-nucleus collisions reactions leading to the nucleon emission, particle production, and fragment evaporation occur

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1985-01-01

    Shapes and sizes of the regions in target-nuclei in which reactions leading to the nucleon emission, particle production and fragment evaporation occur are determined. The region of nucleon emission is of cylindrical shape, with the diameter as large as two nucleon diameters, centered on the incident hadron course. The reactions leading to the particle production happen predominantly along the incident hadron course in nuclear matter. The fragment evaporation goes from the surface layer of the part of the target-nucleus damaged in nucleon emission process

  2. Production of apple-based baby food: changes in pesticide residues.

    Science.gov (United States)

    Kovacova, Jana; Kocourek, Vladimir; Kohoutkova, Jana; Lansky, Miroslav; Hajslova, Jana

    2014-01-01

    Apples represent the main component of most fruit-based baby food products. Since not only fruit from organic farming, but also conventionally grown fruit is used for baby food production, the occurrence of pesticide residues in the final product is of high concern. To learn more about the fate of these hazardous compounds during processing of contaminated raw material, apples containing altogether 21 pesticide residues were used for preparation of a baby food purée both in the household and at industrial scale (in the baby food production facility). Within both studies, pesticide residues were determined in raw apples as well as in final products. Intermediate product and by-product were also analysed during the industrial process. Determination of residues was performed by a sensitive multi-detection analytical method based on liquid or gas chromatography coupled with mass spectrometry. The household procedure involved mainly the cooking of unpeeled apples, and the decrease of residues was not extensive enough for most of the studied pesticides; only residues of captan, dithianon and thiram dropped significantly (processing factors less than 0.04). On the other hand, changes in pesticide levels were substantial for all tested pesticides during apple processing in the industrial baby food production facility. The most important operation affecting the reduction of residues was removal of the by-products after pulping (rest of the peel, stem, pips etc.), while subsequent sterilisation has an insignificant effect. Also in this case, captan, dithianon and thiram were identified as pesticides with the most evident decrease of residues.

  3. Hydroponic Crop Production using Recycled Nutrients from Inedible Crop Residues

    Science.gov (United States)

    Garland, Jay L.; Mackowiak, Cheryl L.; Sager, John C.

    1993-01-01

    The coupling of plant growth and waste recycling systems is an important step toward the development of bioregenerative life support systems. This research examined the effectiveness of two alternative methods for recycling nutrients from the inedible fraction (residue) of candidate crops in a bioregenerative system as follows: (1) extraction in water, or leaching, and (2) combustion at 550 C, with subsequent reconstitution of the ash in acid. The effectiveness of the different methods was evaluated by (1) comparing the percent recovery of nutrients, and (2) measuring short- and long-term plant growth in hydroponic solutions, based on recycled nutrients.

  4. Characteristics flakes product with dry residue of wild oregano

    OpenAIRE

    Košutić, Milenko; Filipović, Jelena; Stamenković, Zoran

    2016-01-01

    Cereals constitute the staple food of the human race. In accordance with the modern nutritionist opinions, cereal products, flakes and snack products are the most common foods in the daily diet, such as ready to eat breakfast cereal, flakes and snacks. Extrusion technology makes it possibile to apply different sources of ingredients for the enrichment of cereal-based flakes or snacks products. Substances with strong antioxidant properties such as wild oregano have a positive impact on human h...

  5. Anaerobic digestion of microalgae residues resulting from the biodiesel production process

    International Nuclear Information System (INIS)

    Ehimen, E.A.; Sun, Z.F.; Carrington, C.G.; Birch, E.J.; Eaton-Rye, J.J.

    2011-01-01

    The recovery of methane from post transesterified microalgae residues has the potential to improve the renewability of the 'microalgae biomass to biodiesel' conversion process as well as reduce its cost and environmental impact. This paper deals with the anaerobic digestion of microalgae biomass residues (post transesterification) using semi-continuously fed reactors. The influence of substrate loading concentrations and hydraulic retention times on the specific methane yield of the anaerobically digested microalgae residues was investigated. The co-digestion of the microalgae residues with glycerol as well as the influence of temperature was also examined. It was found that the hydraulic retention period was the most significant variable affecting methane production from the residues, with periods (>5 days) corresponding to higher energy recovery. The methane yield was also improved by a reduction in the substrate loading rates, with an optimum substrate carbon to nitrogen ratio of 12.44 seen to be required for the digestion process.

  6. 75 FR 75482 - Draft Guidance for Industry on Residual Solvents in Animal Drug Products; Questions and Answers...

    Science.gov (United States)

    2010-12-03

    ... guidance for industry 211 entitled ``Residual Solvents in Animal Drug Products; Questions and Answers... availability of a draft guidance for industry 211 entitled ``Residual Solvents in Animal ] Drug Products... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry on Residual Solvents in Animal...

  7. Biogas production and digestate utilisation from agricultural residues

    NARCIS (Netherlands)

    Corre, W.J.; Conijn, J.G.

    2016-01-01

    The HYSOL project aims at hybridisation of concentrated solar power with a gas turbine in order to guarantee a stable and reliable electricity supply, based on renewable energy. The production of fully renewable electricity in a Hybrid Concentrated Solar Power (HCSP) plant includes the use of

  8. Utilization of spent agro-residues from mushroom cultivation for biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Bisaria, R.; Vasudevan, P. (Indian Inst. of Tech., New Delhi (India). Centre for Rural Development and Appropriate Technology); Bisaria, V.S. (Indian Inst. of Tech., New Delhi (India). Biochemical Engineering Research Centre)

    1990-08-01

    Various spent agro-residues obtained after cultivation of the edible mushroom Pleurotus sajor-caju were used in anaerobic digestors for production of biogas. The changes that take place in the residues during bioconversion were quantified in terms of composition of cellulose, hemicellulose, lignin, carbon and nitrogen. These 'mycostraws' resulted in increased biogas production over the untreated ones, which varied from 21.5% in the case of spent bagasse to 38.8% in the case of spent paddy straw. The increased biogas generation by the spent residues seems to be due to the increased susceptibility to digestion and more favourable C/N ratio of the residues. (orig.).

  9. Characterization of residual biomass from the Arequipa region for the production of biofuels

    Directory of Open Access Journals (Sweden)

    María Laura Stronguiló Leturia

    2015-12-01

    Full Text Available The aim of this work is to select residual biomass from the Arequipa Region for the production of biofuels (biodiesel, bioethanol and biogas. In each case, the initial point is a matrix based on products with residual biomass available in the region, from the agricultural and livestock sectors, information that was obtained from the regional Management of Agriculture web site. Specific factors of the resudue that will be used as raw material for each biofuel production would be considered for the selection process. For the production of biodiesel it is necessary to start from the oil extracted from oilseeds. Regarding obtaining bioethanol, it requires that the residual biomass has high percent of cellulose. With regard to the generation of biogas, we will use animal droppings. Finally, the raw materials selected are: squash and avocado seeds for biodiesel, rice chaff and deseeded corncob for bioethanol and cow and sheep droppings for biogas

  10. Radiotracer studies of pesticide residues in edible oil seeds and related products

    International Nuclear Information System (INIS)

    1979-01-01

    Ten papers were presented in which chemical pollution due to insecticides was examined in edible oil seeds and their products. They include hexachlorocyclohexane residues in groundnut; carbaryl in groundnut; maize and cotton seed products, and in lactating goats; propoxur in cocoa beans; and leptophos residues in cotton seed and its products and in lactating goats. Eight of these papers constitute separate INIS entries. Egypt, Ghana, India, Korea, Lebanon, Pakistan, the Philippines, Poland, and the Sudan participated under the coordinated research programme. The progress of the programme is reviewed, and problems and priorities for future development of the programme are identified. A number of recommendations are addressed to the Joint FAO/IAEA Secretariat

  11. Review on Sources and Handling Method of Pesticide Residues in Animal Products

    Directory of Open Access Journals (Sweden)

    Indraningsih

    2006-06-01

    Full Text Available Field studies and literature search showed that some pesticide residues either organochlorines (OC or organophosphates (OP were detected in animal products (meat and milk . Pesticide residues in meat collected from West Java were detected at the level of 0 .8 ppb lindane and 62 ppb diazinon . While in meat from Lampung was detected at the level of 7 ppb lindane . 2 .7 heptachlor, 0 .8 endosulfan and 0 .5 ppb aldrin . Furthermore, pesticide residues were also detected in the milk collected from West, Central and East Java . The levels of lindane were 2,3 ; 15,9 ; 0,2 ppb ; heptachlor 8 ; 0 .4 and 0,05 ppb; diazinon 8 ; 0 and 1,8 ppb; CPM 0,4 ; 0,8 and 0 ppb ; endosulfan 0,1 ; 0,04 and 0,05 ppb for West, Central and East Java, respectively . The source of pesticide contamination in animal products is generally originated from feed materials, fodders . contaminated soils and water around the farm areas . Minimalization approach of pesticide residues in animal products could be conducted integratedly, such as through chemical process, biodegradation using microorganisms . Organic farming system is recognised as an alternative that may be applied to minimise contamination on agricultural land, eventually reducing pesticide residues in the agricultural products . Feeding with organic agricultural by-products with low pesticide residues appears to reduce pesticide residues in animal products . In order to eliminate pesticide contamination in soil, it has to be conducted progressively by implementing sustainable organic farming .

  12. A Well-Mixed Computational Model for Estimating Room Air Levels of Selected Constituents from E-Vapor Product Use

    Directory of Open Access Journals (Sweden)

    Ali A. Rostami

    2016-08-01

    Full Text Available Concerns have been raised in the literature for the potential of secondhand exposure from e-vapor product (EVP use. It would be difficult to experimentally determine the impact of various factors on secondhand exposure including, but not limited to, room characteristics (indoor space size, ventilation rate, device specifications (aerosol mass delivery, e-liquid composition, and use behavior (number of users and usage frequency. Therefore, a well-mixed computational model was developed to estimate the indoor levels of constituents from EVPs under a variety of conditions. The model is based on physical and thermodynamic interactions between aerosol, vapor, and air, similar to indoor air models referred to by the Environmental Protection Agency. The model results agree well with measured indoor air levels of nicotine from two sources: smoking machine-generated aerosol and aerosol exhaled from EVP use. Sensitivity analysis indicated that increasing air exchange rate reduces room air level of constituents, as more material is carried away. The effect of the amount of aerosol released into the space due to variability in exhalation was also evaluated. The model can estimate the room air level of constituents as a function of time, which may be used to assess the level of non-user exposure over time.

  13. A Universal Ts-VI Triangle Method for the Continuous Retrieval of Evaporative Fraction From MODIS Products

    Science.gov (United States)

    Zhu, Wenbin; Jia, Shaofeng; Lv, Aifeng

    2017-10-01

    The triangle method based on the spatial relationship between remotely sensed land surface temperature (Ts) and vegetation index (VI) has been widely used for the estimates of evaporative fraction (EF). In the present study, a universal triangle method was proposed by transforming the Ts-VI feature space from a regional scale to a pixel scale. The retrieval of EF is only related to the boundary conditions at pixel scale, regardless of the Ts-VI configuration over the spatial domain. The boundary conditions of each pixel are composed of the theoretical dry edge determined by the surface energy balance principle and the wet edge determined by the average air temperature of open water. The universal triangle method was validated using the EF observations collected by the Energy Balance Bowen Ratio systems in the Southern Great Plains of the United States of America (USA). Two parameterization schemes of EF were used to demonstrate their applicability with Terra Moderate Resolution Imaging Spectroradiometer (MODIS) products over the whole year 2004. The results of this study show that the accuracy produced by both of these two parameterization schemes is comparable to that produced by the traditional triangle method, although the universal triangle method seems specifically suited to the parameterization scheme proposed in our previous research. The independence of the universal triangle method from the Ts-VI feature space makes it possible to conduct a continuous monitoring of evapotranspiration and soil moisture. That is just the ability the traditional triangle method does not possess.

  14. Hepatocytes Contribute to Residual Glucose Production in a Mouse Model for Glycogen Storage Disease Type Ia

    NARCIS (Netherlands)

    Hijmans, Brenda S.; Boss, Andreas; van Dijk, Theo H.; Soty, Maud; Wolters, Henk; Mutel, Elodie; Groen, Albert K.; Derks, Terry G. J.; Mithieux, Gilles; Heerschap, Arend; Reijngoud, Dirk-Jan; Rajas, Fabienne; Oosterveer, Maaike H.

    2017-01-01

    It is a long-standing enigma how glycogen storage disease (GSD) type I patients retain a limited capacity for endogenous glucose production despite the loss of glucose-6-phosphatase activity. Insight into the source of residual endogenous glucose production is of clinical importance given the risk

  15. Spore production in Paecilomyces lilacinus (Thom.) samson strains on agro-industrial residues

    OpenAIRE

    Robl, Diogo; Sung, Letizia B.; Novakovich, Jo?o Henrique; Marangoni, Paulo R.D.; Zawadneak, Maria Aparecida C.; Dalzoto, Patricia R.; Gabardo, Juarez; Pimentel, Ida Chapaval

    2009-01-01

    Paecilomyces lilacinus has potential for pests control. We aimed to analyze mycelial growth and spore production in P. lilacinus strains in several agro-industrial residues and commercial media. This study suggests alternative nutrient sources for fungi production and that the biotechnological potential of agro-industrial refuses could be employed in byproducts development.

  16. Benchmark calculations on residue production within the EURISOL DS project; Part I: thin targets

    CERN Document Server

    David, J.C; Boudard, A; Doré, D; Leray, S; Rapp, B; Ridikas, D; Thiollière, N

    Report on benchmark calculations on residue production in thin targets. Calculations were performed using MCNPX 2.5.0 coupled to a selection of reaction models. The results were compared to nuclide production cross-sections measured in GSI in inverse kinematics

  17. Economic values of production and functional traits, including residual feed intake, in Finnish milk production.

    Science.gov (United States)

    Hietala, P; Wolfová, M; Wolf, J; Kantanen, J; Juga, J

    2014-02-01

    Improving the feed efficiency of dairy cattle has a substantial effect on the economic efficiency and on the reduction of harmful environmental effects of dairy production through lower feeding costs and emissions from dairy farming. To assess the economic importance of feed efficiency in the breeding goal for dairy cattle, the economic values for the current breeding goal traits and the additional feed efficiency traits for Finnish Ayrshire cattle under production circumstances in 2011 were determined. The derivation of economic values was based on a bioeconomic model in which the profit of the production system was calculated, using the generated steady state herd structure. Considering beef production from dairy farms, 2 marketing strategies for surplus calves were investigated: (A) surplus calves were sold at a young age and (B) surplus calves were fattened on dairy farms. Both marketing strategies were unprofitable when subsidies were not included in the revenues. When subsidies were taken into account, a positive profitability was observed in both marketing strategies. The marginal economic values for residual feed intake (RFI) of breeding heifers and cows were -25.5 and -55.8 €/kg of dry matter per day per cow and year, respectively. The marginal economic value for RFI of animals in fattening was -29.5 €/kg of dry matter per day per cow and year. To compare the economic importance among traits, the standardized economic weight of each trait was calculated as the product of the marginal economic value and the genetic standard deviation; the standardized economic weight expressed as a percentage of the sum of all standardized economic weights was called relative economic weight. When not accounting for subsidies, the highest relative economic weight was found for 305-d milk yield (34% in strategy A and 29% in strategy B), which was followed by protein percentage (13% in strategy A and 11% in strategy B). The third most important traits were calving

  18. Safety and nutritional evaluation of biogas residue left after the production of biogas from wastewater

    Directory of Open Access Journals (Sweden)

    Baoguo Bian

    2015-07-01

    Full Text Available We investigated the safety and nutritional value of biogas residue left after the production of biogas from wastewater. In Exp. 1, ninety- six female mice were selected for acute oral toxicity testing and randomly allocated to 4 treatment groups, which received distilled water (control or the biogas residue solution at 1 g/mL, 5 g/mL, or 15 g/mL. Activity levels and serum biochemical parameters were measured after 24 hours. In Exp. 2, eighty mice were divided into 2 treatment groups for subacute and sub-chronic toxicity testing, which received either a control group diet or the biogas residue diet (20% biogas residue. In Exp. 3, to test the nutritional value of the biogas residue, four pigs were fed either a low-casein corn starch-based diet or a semi-purified diet with biogas residue as the only source of protein, and the apparent and true digestibility of crude protein and amino acids, apparent metabolic energy, and digestible energy were measured. Group differences in serum parameters and mouse weight gain were not significant 24 hours after biogas residue solution gavage, and the viscera appeared normal. At day 30 of the observation period, changes in serum biochemical parameters were not significant, but the mean spleen index of mice treated with biogas residue was greater (P<0.05 than that of the control group. In this study, biogas residue had no significant adverse effects on the body and it was safe as a feed supplement at a 20% replacement level. The current observations showed that the biogas residue might be considered as a protein feed source for pigs.

  19. Effects of an evaporative cooling system on plasma cortisol, IGF-I, and milk production in dairy cows in a tropical environment

    Science.gov (United States)

    Titto, Cristiane Gonçalves; Negrão, João Alberto; Titto, Evaldo Antonio Lencioni; Canaes, Taissa de Souza; Titto, Rafael Martins; Pereira, Alfredo Manuel Franco

    2013-03-01

    Access to an evaporative cooling system can increase production in dairy cows because of improved thermal comfort. This study aimed to evaluate the impact of ambient temperature on thermoregulation, plasma cortisol, insulin-like growth factor 1 (IGF-I), and productive status, and to determine the efficiency of an evaporative cooling system on physiological responses under different weather patterns. A total of 28 Holstein cows were divided into two groups, one with and the other without access to a cooling system with fans and mist in the free stall. The parameters were analyzed during morning (0700 hours) and afternoon milking (1430 hours) under five different weather patterns throughout the year (fall, winter, spring, dry summer, and rainy summer). Rectal temperature (RT), body surface temperature (BS), base of tail temperature (TT), and respiratory frequency (RF) were lower in the morning ( P milk production during spring and summer ( P < 0.01).

  20. Charged particle emission from 194Hg compound nuclei: Energy and spin dependence of fission-evaporation competition

    International Nuclear Information System (INIS)

    Rajagopalan, M.; Logan, D.; Ball, J.W.; Kaplan, M.; Delagrange, H.; Rivet, M.F.; Alexander, J.M.; Vaz, L.C.; Zisman, M.S.

    1982-01-01

    Twelve reactions have been studied that produce the compound system 194 Hg* at excitation energies of 57--195 MeV and with l/sub crit/ values of 25--142h. Beams of 12 C, 19 F, 20 Ne, and 40 Ar ions in conjunction with appropriate targets have been used to measure cross sections for evaporative H/He, fission, and evaporation residues. These results confirm that most 1 H and 4 He is evaporated prior to fission or instead of fission and very little if any from the fission fragments. The probability of H/He evaporation increases dramatically with excitation energy. The evaporation residue cross sections (sigma/sub ER//πlambda-dash-bar 2 ) indicate fission survival for entrance channel l up to 27--39h. Fission survival becomes stronger and corresponding fission competition becomes weaker for excitation > or =100 MeV; a connection with charged particle emission is suggested. The dimensionless cross section for evaporation residue (sigma/sub ER//πlambda-dash-bar 2 ) depends on both the entrance channel and on energy, indicating that nonequilibrium mechanisms must play an important role, even for l< or approx. =40. Heretofore evaporation residue production has been usually thought to arise from lower partial waves while direct reactions have been thought to dominate only for the higher partial waves

  1. Cost effective production of pullulan from agri-industrial residues using response surface methodology.

    Science.gov (United States)

    Mehta, Ananya; Prasad, G S; Choudhury, Anirban Roy

    2014-03-01

    Response surface methodology was used to develop an economically feasible process for the fermentative production of pullulan using agri-industrial residues, jaggery, de-oiled jatropha seed cake (DOJSC) and corn steep liquor (CSL), as sole media components. A second order polynomial model was obtained using central composite design to understand the effects of interactions among these substrates on pullulan biosynthesis. Results indicated that, lower concentrations of CSL and DOJSC and higher concentrations of jaggery favoured pullulan production. The optimal nutrient composition (18% jaggery, 3% DOJSC and 0.97% CSL) as suggested by the model resulted in production of 66.25 g/L pullulan with a productivity of 0.92 g/Lh. Analysis of raw material cost component for pullulan production suggested that sole utilization of agri-residues may lead to development of cost effective process for pullulan production. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Development of immunoassays for detecting clothianidin residue in agricultural products.

    Science.gov (United States)

    Li, Ming; Sheng, Enze; Cong, Lujing; Wang, Minghua

    2013-04-17

    Two enzyme-linked immunosorbent assays (ELISAs) based on polyclonal antibodies (PcAbs) for clothianidin are described: colorimetric detection format (ELISA) and pattern of chemiluminescent assay (CLEIA). Clothianidin hapten was synthesized and conjugated to bovine serum albumin (BSA) and ovalbumin (OVA) to produce immunogen and coating antigen. Anticlothianidin PcAbs were obtained from immunized New Zealand white rabbits. Under optimal conditions, the half-maximal inhibition concentration (IC₅₀) and the limit of detection (LOD, IC₂₀) of clothianidin were 0.046 and 0.0028 mg/L for the ELISA and 0.015 and 0.0014 mg/L for the CLEIA, respectively. There were no obvious cross-reactivities of the antibodies with its analogues except for dinotefuran. Recoveries of 76.4-116.4% for the immunoassays were achieved from spiked samples. The results of immunoassays for the spiked and authentic samples were largely consistent with gas chromatography. Therefore, the proposed immunoassays would be convenient and satisfactory analytical methods for the monitoring of clothianidin in agricultural products.

  3. Fermentative utilization of glycerol residue for the production of acetic acid

    Science.gov (United States)

    Irvan; Trisakti, B.; Hasibuan, R.; Joli, M.

    2018-02-01

    Glycerol residue, frequently known as pitch, is a waste produced from the downstream product of crude glycerine distillation. With the increasing need of pure glycerine in the world, the glycerol residue produced is also increasing. Glycerol residue is a solid waste at room temperature, highly alkaline (pH > 13), corrosive, and categorized as hazardous and poisonous waste. In this research, acetic acid was produced from glycerol residue through the anaerobic fermentation process by using purple non-sulphur photosynthetic bacteria. The purpose of this study was to find out the influence of concentration change of glycerol residue on time and to find out the possibility of glycerol residue to be utilized as acetic acid. In this research, at first 400 g of glycerol residue was diluted with 200 ml of distilled water to change the glycerine phase, from solid to liquid at room temperature, acidified by using hydrochloric acid until pH 2. The top layer formed was fatty acid and triglycerides that should be removed. Meanwhile, the bottom layer was diluted glycerol residue which was then neutralized with caustic soda. To produce acetic acid, glycerol residue with various concentrations, salt, and purple non-sulphur photosynthetic bacteria were put together into a 100 ml bottle which had been previously sterilized, then incubated for four weeks under the light of 40-watt bulb. The result showed that on the 28th day of fermentation, the produced acetic acid were 0.28, 1.85, and 0.2% (w/w) by using glycerine with the concentration of 0.5, 1.0, and 1.5% (w/w), respectively.

  4. Pesticide residue assessment in three selected agricultural production systems in the Choluteca River Basin of Honduras

    International Nuclear Information System (INIS)

    Kammerbauer, J.; Moncada, J.

    1999-01-01

    There is a basic lack of information about the presence of pesticide residues in the environment in Central America. Over the period of February 1995 to June 1997, river, well, lagoon and spring water samples, as well as soil, fish tissue, lagoon bed sediments and some foodstuffs were taken from the greater Cholutecan River Basin of Honduras and analyzed for pesticide residues. These were collected at three separate sites (La Lima, Zamorano and Choluteca), each characterized by differing agricultural production systems. The main pesticide residues found in soil samples were dieldrin and p,p'-DDT, while river water samples were found to have detectable levels of heptachlor, endosulfan and chlorpyrifos, with lagoon and well water also being shown to contain heptachlor. These pesticides detected were in more than 20% of the samples assessed. In river water samples more pesticide residues at higher concentrations were found to be associated with areas of more intensive agricultural production. The fewest pesticides with lowest concentrations were found in the small subwatershed associated with traditional agricultural production. Although the pesticides found in the soils at the three sites were generally similar they tended to be higher in the southern part of the Cholutecan watershed, followed by the central zone, with the lowest concentrations being found in the more traditional production zone. In lagoon and well water samples more pesticides, but mostly in lower concentrations were detected at the traditional production site than at the others. Ten pesticide compounds were detected in fish tissue, mainly organochlorines, some of which were also found in lagoon sediments. In terms of food products, almost no pesticides were detected in vegetables, but the kidney adipose tissue taken from slaughtered cows was shown to have a tendency to contain some organochlorines. Spring water in the traditional agricultural production zone contained three organochlorine compounds

  5. Residual Isocyanates in Medical Devices and Products: A Qualitative and Quantitative Assessment

    Directory of Open Access Journals (Sweden)

    Gillian Franklin

    2016-01-01

    Full Text Available We conducted a pilot qualitative and quantitative assessment of residual isocyanates and their potential initial exposures in neonates, as little is known about their contact effect. After a neonatal intensive care unit (NICU stockroom inventory, polyurethane (PU and PU foam (PUF devices and products were qualitatively evaluated for residual isocyanates using Surface SWYPE ™ . Those containing isocyanates were quantitatively tested for methylene diphenyl diisocyanate (MDI species, using UPLC-UV-MS/MS method. Ten of 37 products and devices tested, indicated both free and bound residual surface isocyanates; PU/PUF pieces contained aromatic isocyanates; one product contained aliphatic isocyanates. Overall, quantified mean MDI concentrations were low (4,4‘-MDI = 0.52 to 140.1 pg/mg and (2,4‘-MDI = 0.01 to 4.48 pg/mg. The 4,4‘-MDI species had the highest measured concentration (280 pg/mg. Commonly used medical devices/products contain low, but measurable concentrations of residual isocyanates. Quantifying other isocyanate species and neonatal skin exposure to isocyanates from these devices and products requires further investigation.

  6. A productivity and cost comparison of two systems for producing biomass fuel from roadside forest treatment residues

    Science.gov (United States)

    Nathaniel Anderson; Woodam Chung; Dan Loeffler; John Greg Jones

    2012-01-01

    Forest operations generate large quantities of forest biomass residues that can be used for production of bioenergy and bioproducts. However, a significant portion of recoverable residues are inaccessible to large chip vans, making use financially infeasible. New production systems must be developed to increase productivity and reduce costs to facilitate use of these...

  7. Evaluation of holocellulase production by plant-degrading fungi grown on agro-industrial residues.

    Science.gov (United States)

    de Siqueira, Félix Gonçalves; de Siqueira, Aline Gonçalves; de Siqueira, Eliane Gonçalves; Carvalho, Marly Azevedo; Peretti, Beatriz Magalhães Pinto; Jaramillo, Paula Marcela Duque; Teixeira, Ricardo Sposina Sobral; Dias, Eustáquio Souza; Félix, Carlos Roberto; Filho, Edivaldo Ximenes Ferreira

    2010-09-01

    Agaricus brasiliensis CS1, Pleurotus ostreatus H1 and Aspergillus flavus produced holocellulases when grown in solid and submerged liquid cultures containing agro-industrial residues, including sugar cane bagasse and dirty cotton residue, as substrates. These isolates proved to be efficient producers of holocellulases under the conditions used in this screening. Bromatological analysis of agro-industrial residues showed differences in protein, fiber, hemicellulose, cellulose and lignin content. Maximal holocellulase activity (hemicellulase, cellulase and pectinase) was obtained using solid-state cultivation with 10% substrate concentration. In this case, remarkably high levels of xylanase and polygalacturonase activity (4,008 and 4,548 IU/l, respectively) were produced by A. flavus when grown in media containing corn residue, followed by P. ostreatus H1 with IU/l values of 1,900 and 3,965 when cultivated on 5% and 10% sugar cane bagasse, respectively. A. brasiliensis CS1 showed the highest reducing sugar yield (11.640 mg/ml) when grown on medium containing sugar cane bagasse. A. brasiliensis was also the most efficient producer of protein, except when cultivated on dirty cotton residue, which induced maximal production in A. flavus. Comparison of enzymatic hydrolysis of sugar cane bagasse and dirty cotton residue by crude extracts of A. brasiliensis CS1, P. ostreatus H1 and A. flavus showed that the best reducing sugar yield was achieved using sugar cane bagasse as a substrate.

  8. Influence of turkey meat on residual nitrite in cured meat products.

    Science.gov (United States)

    Kilic, B; Cassens, R G; Borchert, L L

    2001-02-01

    A response surface experimental design was employed to estimate residual nitrite level at various initial nitrite concentrations, percent turkey meat in the formula, and heat quantity (F) values using a typical wiener as the test system. Pork and mechanically separated turkey were used as the meat ingredients. Residual nitrite and pH were measured at day 1, 7 days, 14 days, and 49 days after processing. Protein, fat, salt, moisture, and CIE (L*a*b*) color values were also determined. Results showed that the effect of turkey meat on residual nitrite level was significant (P meat in the formula resulted in lower residual nitrite levels at a fixed pH. The residual nitrite level was initially proportional to initial nitrite concentration, but it became a nonsignificant factor during longer storage time. Differences in heat quantity had a significant effect (P meat products at a fixed pH. However, this effect became nonsignificant during longer storage. Reduction of residual nitrite in wieners because of turkey meat addition at a fixed pH was due to characteristics of the turkey tissue, but the mechanism of action remains unknown. It was also established that commercial wieners had a higher pH if poultry meat was included in the formulation.

  9. Benchmark calculations on residue production within the EURISOL DS project; Part II: thick targets

    CERN Document Server

    David, J.-C; Boudard, A; Doré, D; Leray, S; Rapp, B; Ridikas, D; Thiollière, N

    Benchmark calculations on residue production using MCNPX 2.5.0. Calculations were compared to mass-distribution data for 5 different elements measured at ISOLDE, and to specific activities of 28 radionuclides in different places along the thick target measured in Dubna.

  10. Life cycle assessment of cellulosic ethanol and biomethane production from forest residues

    Science.gov (United States)

    Shaobo Liang; Hongmei Gu; Richard D. Bergman

    2017-01-01

    There is a strong need to manage low-value forest residues generated from the management practices associated with wildfire, pest, and disease control strategies to improve both the environmental and economic sustainability of forestlands. The conversion of this woody biomass into value-added products provides a great opportunity to benefit both the environment and...

  11. Evaluation of residue management practices effects on corn productivity, soil quality, and greenhouse gas emissions

    Science.gov (United States)

    Guzman, Jose German

    The removal of crop residues left after harvest is being considered as a potential feedstock source for bioethanol production which can contribute to the reduction of fossil fuel use and net greenhouse gas (GHG). The objectives of this study were to: (i) examine how tillage, N fertilization rates, residue removal, and their interactions affect crop productivity, (ii) SOC and soil physical properties, and (iii) GHG emissions, and (iv) calculated a soil C budget to determine how much crop residue can be sustainably be removed in Central and Southwest Iowa. After three years of residue removal under different management practices, the findings of this study suggest that a portion of the corn residue that is left on the soil surface after harvest can be removed, with no negative impacts in the short term continuous corn yield in sites at Central and Southwest Iowa. However, significant decreases in SOC sequestration rates, microbial biomass-C, bulk density, soil penetration resistance, wet aggregate stability, and infiltration rates were observed, but varied with soil type and management practices. Additionally, soil surface CO2 and N2O emissions were responsive to management practices; primarily by altering soil temperature, soil water content, soil mineral N, and crop growth. Results from soil C budget show that in 2010 when corn growth was not water stressed (lack of moisture), approximately 35 and 30% of the residue could be sustainably removed in the Central and Southwest sites, respectively. In 2011, drier soil conditions resulted in approximately 2 and 49% of the residue could be sustainably removed in the Central and Southwest sites, respectively.

  12. The gravimetric method for the determination of residual moisture in freeze-dried biological products.

    Science.gov (United States)

    May, J C; Wheeler, R M; Grim, E

    1989-06-01

    The gravimetric test for the determination of residual moisture in freeze-dried biological products performed in a humidity- and temperature-controlled room with the use of scrupulous gravimetric analytical technique can be used to accurately determine residual moisture in freeze-dried biological products such as antihemophilic factor (human) or honey bee venom allergenic extract. This method determines the first water of hydration of sodium tartrate dihydrate (7.93%) to within 1.3% of the calculated value with a relative standard deviation of 0.3% for 10 replicates. For this gravimetric procedure, freeze-dried samples containing from 1.12 to 4.4% residual moisture had relative standard deviations ranging from 3.6 to 9.1%. Samples containing less than 1.0% residual moisture by the gravimetric method such as intravenous immune globulin and antihemophilic factor (human) had relative standard deviations ranging from 16.7 to 47.0%. Relative standard deviations for residual moisture tests performed on comparable samples by the Karl Fischer and thermogravimetric methods showed similar variability.

  13. The potential of agro-industrial residues for production of biogas and electricity in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Kivaisi, A.K.; Rubindamayugi, M.S.T. [Applied Microbiology Unit, Dar es salaam (Tanzania, United Republic of). Botany Dept.

    1996-09-01

    This paper gives an overview of the energy demands in Tanzania, and highlights the current serious shortages of electricity. Government strategy to alleviate the problem include exploitation of the country`s big natural gas reserves for power generation, and utilization of the renewable energies such as solar, wind and biogas. Important agro-industrial residues with a large potential for anaerobic conversion into biogas and electricity are identified, and their production and locations are described. Tanzania generates a total of 468,100 tonnes organic matter from coffee, sisal, sugar and cereal residues annually. Laboratory scale determinations of methane yields from the residues gave 400m{sup 3} CH{sub 4}/ton VS of sisal pulp; 400 m{sup 3} CH{sub 4}/ton VS of sisal production wastewater; 650 m{sup 3} CH{sub 4}/ton VS of Robusta coffee solid waste; 730 m{sup 3} CH{sub 4}/tone of Arabica coffee solid waste; 230 m{sup 3} CH{sub 4}/ton VS of sugar filter mat and 450 m{sup 3} CH{sub 4}/ton VS maize bran. Based on these results the estimated total annual potential electricity production from these residues is 1,135 million kWh. The total oil substitution from these residues has been estimated at 0.32 million tonnes crude diesel oil per annum equivalent to 2% of the total energy consumption in Tanzania. Case studies of the coffee and sisal processing factories indicate that exploitation of the residues for the production of electricity on site of these factories is feasible. Utilization of agro-industrial residues for biogas production has a big potential for reduction of environmental pollution. The potential substitution of fossil fuel with biogas represents an annual reduction in the net CO{sub 2} emission to the atmosphere of approximately 1.05 million tonnes. By treating the residues in controlled anaerobic systems it is possible to reduce the methane emission by about 189 million m{sup 3}, and at the same time reduce contamination of surface and ground waters.

  14. Recent Development in Sample Preparation and Analytical Techniques for Determination of Quinolone Residues in Food Products.

    Science.gov (United States)

    Zhang, Zhichao; Cheng, Hefa

    2017-05-04

    Used heavily in food animal production, quinolones occur widely in food products of animal origin. Development of highly sensitive and selective analytical techniques for the detection of quinolone residues, often at trace levels, in food samples is necessary to ensure food safety and understand their public health risk. With complex matrices, food samples typically require a series of pre-treatment steps, such as powdering, homogenization, deproteinization, and filtration. This review summarizes the recent advances in extraction, concentration, and detection techniques for quinolones in food product samples, and briefly compares the advantages and limitations of major techniques. Recent development of quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction method and immunoassay- and biosensor-based detection methods for the determination of quinolones residues in food products is discussed in details. A perspective on the trends and needs of future research is also presented.

  15. Protamylasse, a Residual Compound of Industrial Starch Production, Provides a Suitable Medium for Large-Scale Cyanophycin Production

    NARCIS (Netherlands)

    Elbahloul, Y.; Frey, K.; Sanders, J.P.M.; Steinbüchel, A.

    2005-01-01

    Protamylasse is a residual compound occurring during the industrial production of starch from potatoes. It contains a variety of nutrients and all necessary minerals and could be used as a carbon, nitrogen, and energy source for the growth of bacteria and also for cyanophycin (CGP) biosynthesis.

  16. Effects of evaporative cooling on reproductive performance and milk production of dairy cows in hot wet conditions

    Science.gov (United States)

    Khongdee, S.; Chaiyabutr, N.; Hinch, G.; Markvichitr, K.; Vajrabukka, C.

    2006-05-01

    Fourteen animals of second and third lactation of Thai Friesian crossbred cows (87.5% Friesian × 12.5% Bos indicus) located at Sakol Nakhon Research and Breeding Centre, Department of Livestock Development, Ministry of Agriculture and Cooperatives, were divided randomly into two groups of seven each to evaluate the effects of evaporative cooling on reproductive and physiological traits under hot, humid conditions. Results indicated that installation of evaporating cooling in the open shed gave a further improvement in ameliorating heat stress in dairy cows in hot-wet environments by utilising the low humidity conditions that naturally occur during the day. The cows housed in an evaporatively cooled environment had both a rectal temperature and respiration rate (39.09°C, 61.39 breaths/min, respectively) significantly lower than that of the non-cooled cows (41.21°C; 86.87 breaths/min). The former group also had higher milk yield and more efficient reproductive performance (pregnancy rate and reduced days open) than the latter group. It is suggested that the non-evaporatively cooled cows did not gain benefit from the naturally lower heat stress during night time.

  17. Construction of a risk assessment system for chemical residues in agricultural products.

    Science.gov (United States)

    Choi, Shinai; Hong, Jiyeon; Lee, Dayeon; Paik, Minkyoung

    2014-01-01

    Continuous monitoring of chemical residues in agricultural and food products has been performed by various government bodies in South Korea. These bodies have made attempts to systematically manage this information by creating a monitoring database system as well as a system based on these data with which to assess the health risk of chemical residues in agricultural products. Meanwhile, a database system is being constructed consisting of information about monitoring and, following this, a demand for convenience has led to the need for an evaluation tool to be constructed with the data processing system. Also, in order to create a systematic and effective tool for the risk assessment of chemical residues in foods and agricultural products, various evaluation models are being developed, both domestically and abroad. Overseas, systems such as Dietary Exposure Evaluation Model: Food Commodity Intake Database and Cumulative and Aggregate Risk Evaluation System are being used; these use the US Environmental Protection Agency as a focus, while the EU has developed Pesticide Residue Intake Model for assessments of pesticide exposure through food intake. Following this, the National Academy of Agricultural Science (NAAS) created the Agricultural Products Risk Assessment System (APRAS) which supports the use and storage of monitoring information and risk assessments. APRAS efficiently manages the monitoring data produced by NAAS and creates an extraction feature included in the database system. Also, the database system in APRAS consists of a monitoring database system held by the NAAS and food consumption database system. Food consumption data is based on Korea National Health and Nutrition Examination Survey. This system is aimed at exposure and risk assessments for chemical residues in agricultural products with regards to different exposure scenarios.

  18. Bioethanol production from forestry residues: A comparative techno-economic analysis

    International Nuclear Information System (INIS)

    Frankó, Balázs; Galbe, Mats; Wallberg, Ola

    2016-01-01

    Highlights: • A proposed cellulosic ethanol biorefinery in Sweden was simulated with Aspen Plus. • Forestry residues with different bark contents were evaluated as raw materials. • The bark content negatively influenced the minimum ethanol selling price. • Sensitivity analyses were performed to assess the influence of raw material cost. - Abstract: A techno-economic analysis was conducted to assess the feasibility of using forestry residues with different bark contents for bioethanol production. A proposed cellulosic ethanol biorefinery in Sweden was simulated with Aspen Plus. The plant was assumed to convert different forestry assortments (sawdust and shavings, fuel logs, early thinnings, tops and branches, hog fuel and pulpwood) to ethanol, pellets, biogas and electricity. The intention was not to obtain absolute ethanol production costs for future facilities, but to assess and compare the future potential of utilizing different forestry residues for bioethanol production. The same plant design and operating conditions were assumed in all cases, and the effect of including bark on the whole conversion process, especially how it influenced the ethanol production cost, was studied. While the energy efficiency (not including district heating) obtained for the whole process was between 67 and 69% regardless of the raw material used, the ethanol production cost differed considerably; the minimum ethanol selling price ranging from 0.77 to 1.52 USD/L. Under the basic assumptions, all the forestry residues apart from sawdust and shavings exhibited a negative net present value at current market prices. The profitability decreased with increasing bark content of the raw material. Sensitivity analyses showed that, at current market prices, the utilization of bark-containing forestry residues will not provide significant cost improvement compared with pulpwood unless the conversion of cellulose and hemicellulose to monomeric sugars is improved.

  19. Tillage as a tool to manage crop residue: impact on sugar beet production.

    Science.gov (United States)

    Hiel, Marie-Pierre; Chélin, Marie; Degrune, Florine; Parvin, Nargish; Bodson, Bernard

    2015-04-01

    Crop residues and plant cover represent a pool of organic matter that can be used either to restore organic matter in soils, and therefore maintain soil fertility, or that can be valorized outside of the field (e.g. energy production). However, it is crucial that the exportation of residues is not done to the detriment of the system sustainability. Three long term experiments have been settled in the loamy region in Belgium. All of them are designed to study the effect of residues management by several tillage systems (conventional plowing versus reduced tillage) on the whole soil-water-plant system. SOLRESIDUS is a field experiment where we study the impact of crop residue management while in SOLCOUVERT and SOLCOUVERT-BIS, we study the impact of cover crop management. SOLRESIDUS was started in 2008. In this field, four contrasted crop residues managements are tested in order to contrast as much as possible the responses from the soil-water plant system. Two practices characterize the four modalities: soil tillage (ploughing at 25 cm depth or reduce tillage at 10 cm max) and residue management (exportation or restitution). SOLCOUVERT and SOLCOUVERT-BIS were started in 2012 and 2013 respectively. In those fields cover crop management is also diverse: destruction of the cover crop by winter ploughing, spring ploughing, strip tillage (with a chemical destruction if needed) or shallow tillage (with a decompaction before cover crop sowing). Although although the overall project aims at studying the impact of management on the whole soil-water-plant system, here we will only present the results concerning crop production (sugar beet) in SOLCOUVERT experiments. The presented data will include germination rate, crop development (biomass quantification and BBCH stages) weeds population, disease occurrence, pest occurrences, nitrogen uptake by plants, quality and quantity of harvested products.

  20. Protamylasse, a Residual Compound of Industrial Starch Production, Provides a Suitable Medium for Large-Scale Cyanophycin Production

    OpenAIRE

    Elbahloul, Yasser; Frey, Kay; Sanders, Johan; Steinbüchel, Alexander

    2005-01-01

    Protamylasse is a residual compound occurring during the industrial production of starch from potatoes. It contains a variety of nutrients and all necessary minerals and could be used as a carbon, nitrogen, and energy source for the growth of bacteria and also for cyanophycin (CGP) biosynthesis. Media containing protamylasse as the sole compound diluted only in water were therefore examined for their suitability in CGP production. Among various bacterial strains investigated in this study, a ...

  1. Streamer Evaporation

    Science.gov (United States)

    Suess, Steven T.; Wang, A. H.; Wu, Shi T.; Nerney, S.

    1998-01-01

    Evaporation is the consequence of slow plasma heating near the tops of streamers where the plasma is only weakly contained by the magnetic field. The form it takes is the slow opening of field lines at the top of the streamer and transient formation of new solar wind. It was discovered in polytropic model calculations, where due to the absence of other energy loss mechanisms in magnetostatic streamers, its ultimate endpoint is the complete evaporation of the streamer. This takes, for plausible heating rates, weeks to months in these models. Of course streamers do not behave this way, for more than one reason. One is that there are losses due to thermal conduction to the base of the streamer and radiation from the transition region. Another is that streamer heating must have a characteristic time constant and depend on the ambient physical conditions. We use our global Magnetohydrodynamics (MHD) model with thermal conduction to examine a few examples of the effect of changing the heating scale height and of making ad hoc choices for how the heating depends on ambient conditions. At the same time, we apply and extend the analytic model of streamers, which showed that streamers will be unable to contain plasma for temperatures near the cusp greater than about 2xl0(exp 6) K. Slow solar wind is observed to come from streamers through transient releases. A scenario for this that is consistent with the above physical process is that heating increases the near-cusp temperature until field lines there are forced open. The subsequent evacuation of the flux tubes by the newly forming slow wind decreases the temperature and heating until the flux tubes are able to reclose. Then, over a longer time scale, heating begins to again refill the flux tubes with plasma and increase the temperature until the cycle repeats itself. The calculations we report here are first steps towards quantitative evaluation of this scenario.

  2. Impact of toxic heavy metals and pesticide residues in herbal products

    Directory of Open Access Journals (Sweden)

    Nema S. Shaban

    2016-03-01

    Full Text Available Medicinal plants have a long history of use in therapy throughout the world and still make an important part of traditional medicine. The World Health Organization (WHO estimates that 65%–80% of the world's populations depend on the herbal products as their primary form of health care. This review is conducted to provide a general idea about chemical contaminants such as heavy metals and pesticide residues as major common contaminants of the herbal medicine, which impose serious health risks to human health. Additionally, we aim to provide different analytical methods for analysis of heavy metals and pesticide residues in the herbal medicine.

  3. Technical feasibility and carbon footprint of biochar co-production with tomato plant residue.

    Science.gov (United States)

    Llorach-Massana, Pere; Lopez-Capel, Elisa; Peña, Javier; Rieradevall, Joan; Montero, Juan Ignacio; Puy, Neus

    2017-09-01

    World tomato production is in the increase, generating large amounts of organic agricultural waste, which are currently incinerated or composted, releasing CO 2 into the atmosphere. Organic waste is not only produced from conventional but also urban agricultural practices due recently gained popularity. An alternative to current waste management practices and carbon sequestration opportunity is the production of biochar (thermally converted biomass) from tomato plant residues and use as a soil amendment. To address the real contribution of biochar for greenhouse gas mitigation, it is necessary to assess the whole life cycle from the production of the tomato biomass feedstock to the actual distribution and utilisation of the biochar produced in a regional context. This study is the first step to determine the technical and environmental potential of producing biochar from tomato plant (Solanum lycopersicum arawak variety) waste biomass and utilisation as a soil amendment. The study includes the characterisation of tomato plant residue as biochar feedstock (cellulose, hemicellulose, lignin and metal content); feedstock thermal stability; and the carbon footprint of biochar production under urban agriculture at pilot and small-scale plant, and conventional agriculture at large-scale plant. Tomato plant residue is a potentially suitable biochar feedstock under current European Certification based on its lignin content (19.7%) and low metal concentration. Biomass conversion yields of over 40%, 50% carbon stabilization and low pyrolysis temperature conditions (350-400°C) would be required for biochar production to sequester carbon under urban pilot scale conditions; while large-scale biochar production from conventional agricultural practices have not the potential to sequestrate carbon because its logistics, which could be improved. Therefore, the diversion of tomato biomass waste residue from incineration or composting to biochar production for use as a soil amendment

  4. Utilization of tropical crop residues and agroindustrial by-products in animal nutrition. Constraints and perspectives

    International Nuclear Information System (INIS)

    Preston, T.R.; Parra, R.

    1983-01-01

    The importance of by-products and crop residues as animal feeds is increasing steadily. This is a consequence of the increasing demand for cereal grains as both human and animal (chiefly poultry) food, and the increasing demand for energy coupled with decreasing availability of fossil fuels. The effects of these two trends are that primary use of land for livestock production (usually grazing systems) will steadily diminish; at the same time, sources of biomass will increase in importance as renewable energy sources, and greater emphasis will be placed on draught animal power. Most by-products and crop residues are fibrous and therefore of only low to moderate nutritive value, or have special physical and chemical characteristics making them difficult to incorporate in conventional ''balanced'' rations. Such feed raw materials may need special processing and/or special forms of supplementation if they are to be used efficiently. It is hypothesized that industrial by-products and crop residues will be more efficiently utilized if they are incorporated in diversified and integrated production systems, i.e. (a) livestock production is integrated with production of cash crops both for food and fuel; (b) different livestock species are utilized in the same enterprise in a complementary way; (c) livestock feeding is based on crop residues (energy) supplemented with protein-rich forages and aquatic plants; and (d) animal wastes are recycled and used for food, fertilizer and fuel. This strategy is particularly suitable for the conditions in (i) tropical countries, whose climate favours high crop/biomass yields per unit area and ease of fermentation of organic wastes, and (ii) family farms, for which diversification means greater opportunity for self-sufficiency and increased possibilities for use of family resources. (author)

  5. Characterization of the isomerization products of aspartate residues at two different sites in a monoclonal antibody.

    Science.gov (United States)

    Sreedhara, Alavattam; Cordoba, Armando; Zhu, Qing; Kwong, Jeanne; Liu, Jun

    2012-01-01

    To identify and understand isomerization products and degradation profile of different aspartate residues in an IgG1 monoclonal antibody. Recombinant IgG1 was incubated for extended periods of time in a formulation buffer at recommended and accelerated storage temperatures. Isomerization reaction products were analyzed using ion exchange chromatography (IEC), hydrophobic interaction chromatography (HIC), peptide mapping, and LC-MS. Model peptides with sequences containing specific aspartate residues in IgG1 were synthesized and incubated under accelerated conditions. Products of isomerization reactions of peptides were analyzed by reverse phase chromatography (RP-HPLC) and LC-MS. X-ray crystallography data from Fab of IgG1 were used to understand mechanism of isomerization reactions. A MAb containing labile Asp32-Gly sequence in CDR I region undergoes rapid isomerization reaction and leads to formation of isoaspartate (IsoAsp) and cyclic imide (Asu) forms. Isomerization of aspartate residues was observed in a non-CDR region containing Asp74-Ser sequence. Isomerization reaction at Asp74-Ser led to formation of Asu74 and trace isoAsp74. While isoAsp32 increased linearly with time, isoAsp74 did not increase during storage. Asu32 and Asu74 followed non-linear degradation kinetics and reached steady state over time. Isomerization reaction of two different model peptides containing Asp32-Gly or Asp74-Ser with neighboring amino acid sequences as those found in the MAb result in formation of IsoAsp. Observed levels of Asu and trace IsoAsp at the Asp74 site are unusual for typical isomerization reactions. In addition to primary sequences, pKa, solvent exposure and high order structure around aspartate residues may have influenced isomerization reaction at Asp74 in MAbI. Different degradation profiles from the two Asp residues can influence shelf life and should be carefully evaluated during product development.

  6. Stimulation of Egg Production in Japanese Quails by Enriching Feed with Residual Yeast

    Directory of Open Access Journals (Sweden)

    Letitia Oprean

    2010-05-01

    Full Text Available Quail eggs are more and more approved for consumers because they bring many benefits to the human body. Therefore, quails breeding for eggs production have become a very profitable business. Residual yeast may be a nutritional supplement, especially rich in vitamins and proteins. This article studies the influence of residual beer yeast on egg laying in Japanese quails. In order to be integrated into the diet of quails the yeast has undergone a process of autolysis; its influence has been examined on separate groups. The results were reported as a percentage compared with the control group, where the feed does not contain this supplement. Due to its content rich in vitamins and proteins, the residual beer yeast used in feeding the quails bred for eggs stimulates egg laying.

  7. Research Progress on Pesticide Residue Analysis Techniques in Agro-products

    Directory of Open Access Journals (Sweden)

    HE Ze-ying

    2016-07-01

    Full Text Available There are constant occurrences of acute pesticide poisoning among consumers and pesticide residue violations in agro-products import/export trading. Pesticide residue analysis is the important way to protect the food safety and the interest of import/export enterprises. There has been a rapid development in pesticide residue analysis techniques in recent years. In this review, the research progress in the past five years were discussed in the respects of samples preparation and instrument determination. The application, modification and development of the QuEChERS method in samples preparation and the application of tandem mass spectrometry and high resolution mass spectrometry were reviewed. And the implications for the future of the field were discussed.

  8. Enhanced biogas production from penicillin bacterial residue by thermal-alkaline pretreatment

    International Nuclear Information System (INIS)

    Zhong, Weizhang; Li, Guixia; Gao, Yan; Li, Zaixing; Geng, Xiaoling; Li, Yubing; Yang, Jingliang; Zhou, Chonghui

    2015-01-01

    In this study, the orthogonal experimental design was used to determine the optimum conditions for the effect of thermal alkaline; pretreatment on the anaerobic digestion of penicillin bacterial residue. The biodegradability of the penicillin; bacterial residue was evaluated by biochemical methane potential tests in laboratory. The optimum values of temperature,; alkali concentration, pretreatment time and moisture content for the thermal-alkaline pretreatment were determined as; 70 °C, 6% (w/v), 30 min, and 85%, respectively. Thermal-alkaline pretreatment could significantly enhance the soluble; chemical oxygen demand solubilization, the suspended solid solubilization and the biodegradability. Biogas production; was enhanced by the thermal-alkaline pretreatment, probably as a result of the breakdown of cell walls and membranes of; micro-organisms, which may facilitate the contact between organic molecules and anaerobic microorganisms.; Keywords: penicillin bacterial residue; anaerobic digestion; biochemical methane potential tests; pretreatment

  9. Photo-fermentative hydrogen production from crop residue: A mini review.

    Science.gov (United States)

    Zhang, Quanguo; Wang, Yi; Zhang, Zhiping; Lee, Duu-Jong; Zhou, Xuehua; Jing, Yanyan; Ge, Xumeng; Jiang, Danping; Hu, Jianjun; He, Chao

    2017-04-01

    Photofermentative hydrogen production from crop residues, if feasible, can lead to complete conversion of organic substances to hydrogen (and carbon dioxide). This mini review lists the studies on photofermentative hydrogen production using crop residues as feedstock. Pretreatment methods, substrate structure, mechanism of photosynthetic bacteria growth and metabolism were discussed. Photofermentative hydrogen production from pure culture, consortia and mutants, and the geometry, light sources, mass transfer resistances and the operational strategies of the photo-bioreactor were herein reviewed. Future studies of regulation mechanism of photosynthetic bacteria, such as highly-efficient strain breeding and gene reconstruction, and development of new-generation photo-bioreactor were suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Numerical assessment of residual formability in sheet metal products: towards design for sustainability

    Science.gov (United States)

    Falsafi, Javad; Demirci, Emrah; Silberschmidt, Vadim. V.

    2016-08-01

    A new computational scheme is presented to addresses cold recyclability of sheet- metal products. Cold recycling or re-manufacturing is an emerging area studied mostly empirically; in its current form, it lacks theoretical foundation especially in the area of sheet metals. In this study, a re-formability index was introduced based on post-manufacture residual formability in sheet metal products. This index accounts for possible levels of deformation along different strain paths based on Polar Effective Plastic Strain (PEPS) technique. PEPS is strain-path independent, hence provides a foundation for residual formability analysis. A user- friendly code was developed to implement this assessment in conjunction with advanced finite- element (FE) analysis. The significance of this approach is the advancement towards recycling of sheet metal products without melting them.

  11. Screening of antibiotics and chemical analysis of penicillin residue in fresh milk and traditional dairy products in Oyo state, Nigeria

    OpenAIRE

    Olatoye, Isaac Olufemi; Daniel, Oluwayemisi Folashade; Ishola, Sunday Ayobami

    2016-01-01

    Background and Aim: There are global public health and economic concerns on chemical residues in food of animal origin. The use of antibiotics in dairy cattle for the treatment of diseases such as mastitis has contributed to the presence of residues in dairy products. Penicillin residues as low as 1 ppb can lead to allergic reactions and shift of resistance patterns in microbial population as well as interfere with the processing of several dairy products. Antibiotic monitoring is an essentia...

  12. Effect of nitrogen fertilization and residue management practices on ammonia emissions from subtropical sugarcane production

    Science.gov (United States)

    mudi, Sanku Datta; Wang, Jim J.; Dodla, Syam Kumar; Arceneaux, Allen; Viator, H. P.

    2016-08-01

    Ammonia (NH3) emission from soil is a loss of nitrogen (N) nutrient for plant production as well as an issue of air quality, due to the fact that it is an active precursor of airborne particulate matters. Ammonia also acts as a secondary source of nitrous oxide (N2O) emission when present in the soil. In this study, the impacts of different sources of N fertilizers and harvest residue management schemes on NH3 emissions from sugarcane production were evaluated based on an active chamber method. The field experiment plots consisting of two sources of N fertilizer (urea and urea ammonium nitrate (UAN)) and two common residue management practices, namely residue retained (RR) and residue burned (RB), were established on a Commerce silt loam. The NH3 volatilized following N fertilizer application was collected in an impinger containing diluted citric acid and was subsequently analyzed using ion chromatography. The NH3 loss was primarily found within 3-4 weeks after N application. Average seasonal soil NH3 flux was significantly greater in urea plots with NH3-N emission factor (EF) twice or more than in UAN plots (2.4-5.6% vs. 1.2-1.7%). The RR residue management scheme had much higher NH3 volatilization than the RB treatment regardless of N fertilizer sources, corresponding to generally higher soil moisture levels in the former. Ammonia-N emissions in N fertilizer-treated sugarcane fields increased with increasing soil water-filled pore space (WFPS) up to 45-55% observed in the field. Both N fertilizer sources and residue management approaches significantly affected NH3 emissions.

  13. Polyhydroxybutyrate production using agro-industrial residue as substrate by Bacillus sphaericus NCIM 5149

    Directory of Open Access Journals (Sweden)

    Nisha V. Ramadas

    2009-02-01

    Full Text Available The aim of this work was to study the production of polyhydroxybutyrate (PHB using agro- industrial residues as the carbon source. Seven substrates, viz., wheat bran, potato starch, sesame oil cake, groundnut oil cake, cassava powder, jackfruit seed powder and corn flour were hydrolyzed using commercial enzymes and the hydrolyzates assessed for selecting the best substrate for PHB production. Jackfruit seed powder gave the maximum production of PHB under submerged fermentation using Bacillus sphaericus (19% at the initial pH of 7.5.

  14. Two-Stage Fungal Pre-Treatment for Improved Biogas Production from Sisal Leaf Decortication Residues

    Science.gov (United States)

    Muthangya, Mutemi; Mshandete, Anthony Manoni; Kivaisi, Amelia Kajumulo

    2009-01-01

    Sisal leaf decortications residue (SLDR) is amongst the most abundant agro-industrial residues in Tanzania and is a good feedstock for biogas production. Pre-treatment of the residue prior to its anaerobic digestion (AD) was investigated using a two-stage pre-treatment approach with two fungal strains, CCHT-1 and Trichoderma reesei in succession in anaerobic batch bioreactors. AD of the pre-treated residue with CCTH-1 at 10% (wet weight inoculum/SLDR) inoculum concentration incubated for four days followed by incubation for eight days with 25% (wet weight inoculum/SLDR) of T. reesei gave a methane yield of 0.292 ± 0.04 m3 CH4/kg volatile solids (VS)added. On reversing the pre-treatment succession of the fungal inocula using the same parameters followed by AD, methane yield decreased by about 55%. Generally, an increment in the range of 30–101% in methane yield in comparison to the un-treated SLDR was obtained. The results confirmed the potential of CCHT-1 followed by Trichoderma reesei fungi pre-treatment prior to AD to achieve significant improvement in biogas production from SLDR. PMID:20087466

  15. Wetting and evaporation of binary mixture drops.

    Science.gov (United States)

    Sefiane, Khellil; David, Samuel; Shanahan, Martin E R

    2008-09-11

    Experimental results on the wetting behavior of water, methanol, and binary mixture sessile drops on a smooth, polymer-coated substrate are reported. The wetting behavior of evaporating water/methanol drops was also studied in a water-saturated environment. Drop parameters (contact angle, shape, and volume) were monitored in time. The effects of the initial relative concentrations on subsequent evaporation and wetting dynamics were investigated. Physical mechanisms responsible for the various types of wetting behavior during different stages are proposed and discussed. Competition between evaporation and hydrodynamic flow are evoked. Using an environment saturated with water vapor allowed further exploration of the controlling mechanisms and underlying processes. Wetting stages attributed to differential evaporation of methanol were identified. Methanol, the more volatile component, evaporates predominantly in the initial stage. The data, however, suggest that a small proportion of methanol remained in the drop after the first stage of evaporation. This residual methanol within the drop seems to influence subsequent wetting behavior strongly.

  16. Production of petroleum bitumen by oxidation of heavy oil residue with sulfur

    Science.gov (United States)

    Tileuberdi, Ye.; Akkazyn, Ye. A.; Ongarbayev, Ye. K.; Imanbayev, Ye. I.; Mansurov, Z. A.

    2018-03-01

    In this paper production of bitumen adding elemental sulfur at oxidation of oil residue are investigated. The objects of research were distilled residue of Karazhanbas crude oil and elemental sulfur. These oil residue characterized by a low output of easy fractions and the high content of tar-asphaltene substances, therefore is the most comprehensible feedstock for producing bitumen. The sulfur is one of the oil product collected in oil extraction regions. Oxidation process of hydrocarbons carried out at temperatures from 180 up to 210 °С without addition of sulfur and with the addition of sulfur (5-10 wt. %) for 4 hours. At 200 °С oxidation of hydrocarbons with 5, 7 and 10 wt.% sulfur within 3-4 h allows receiving paving bitumen on the mark BND 200/300, BND 130/200, BN 90/130 and BN 70/30. Physical and mechanical characteristics of oxidation products with the addition of 5-7 wt. % sulfur corresponds to grade of paving bitumen BND 40/60. At the given temperature oxidized for 2.5-3 h, addition of 10 wt. % sulfur gave the products of oxidation describing on parameters of construction grades of bitumen (BN 90/10).

  17. Comparative study on systems of residual water treatment in the process industry by evaporation, using fossils fuels or solar energy; Estudio comparativo sobre sistemas de tratamiento de aguas residuales de la industria de procesamiento por evaporacion, utilizando combustibles fosiles o energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Landgrave Romero, Julio; Canseco Contreras, Jose [Facultad de Quimica, UNAM (Mexico)

    1996-07-01

    The residual water treatment of the process industry, nowadays is an imminent necessity in our country. In the present study two different forms are considered to concentrate residual waters: multiple effect evaporation and solar evaporation. The use of solar evaporation lagoons is a good possibility to conserving energy by means of the diminution of fossil fuel consumption. The design basis of the evaporation systems via multiple effect, as well as solar evaporation, the results of the respective sizing and the estimation of the corresponding costs are presented. A practical case is described on the cooking of cotton linters (flock) [Spanish] El tratamiento de aguas residuales de la industria de proceso, hoy en dia es una necesidad inminente en nuestro pais. En el presente trabajo se consideran dos formas distintas para concentrar las aguas residuales: evaporacion de multiple efecto y evaporacion solar. El empleo de lagunas de evaporacion solar es una buena posibilidad para conseguir el ahorro de energia mediante disminucion del consumo de combustibles fosiles. Se presentan las bases de diseno de los sistemas de evaporacion via multiple efecto, asi como solar, los resultados del dimensionamiento respectivo y la estimacion de los costos correspondientes. Se describe un caso practico sobre el cocido de linters de algodon (borra)

  18. Impact of sustaining a controlled residual growth on polyhydroxybutyrate yield and production kinetics in Cupriavidus necator.

    Science.gov (United States)

    Grousseau, Estelle; Blanchet, Elise; Déléris, Stéphane; Albuquerque, Maria G E; Paul, Etienne; Uribelarrea, Jean-Louis

    2013-11-01

    In this study a complementary modeling and experimental approach was used to explore how growth controls the NADPH generation and availability, and the resulting impact on PHB (polyhydroxybutyrate) yields and kinetics. The results show that the anabolic demand allowed the NADPH production through the Entner-Doudoroff (ED) pathway, leading to a high maximal theoretical PHB production yield of 0.89 C mole C mole(-1); whereas without biomass production, NADPH regeneration is only possible via the isocitrate dehydrogenase leading to a theoretical yield of 0.67 C mole C mole(-1). Furthermore, the maximum specific rate of NADPH produced at maximal growth rate (to fulfil biomass requirement) was found to be the maximum set in every conditions, which by consequence determines the maximal PHB production rate. These results imply that sustaining a controlled residual growth improves the PHB specific production rate without altering production yield. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Development and quality characteristics of shelf-stable soy-agushie: a residual by-product of soymilk production.

    Science.gov (United States)

    Nti, Christina A; Plahar, Wisdom A; Annan, Nana T

    2016-03-01

    A process was developed for the production of a high-protein food ingredient, soy-agushie, from the residual by-product of soymilk production. The product, with a moisture content of about 6%, was evaluated for its quality characteristics and performance in traditional dishes. The protein content was about 26% with similar amino acids content as that of the whole soybean. Lysine remained high in the dehydrated product (6.57 g/16 g N). While over 60% of the original B vitamins content in the beans was extracted with the milk, high proportions of the minerals were found to be retained in the residual by-product. The process adequately reduced the trypsin inhibitor levels in the beans from 25 to 1.5 mg/g. High sensory scores were obtained for recipes developed with soy-agushie in traditional dishes. The scope of utilization of the soy-agushie could be widened to include several traditional foods and bakery products for maximum nutritional benefits.

  20. Hepatocytes contribute to residual glucose production in a mouse model for glycogen storage disease type Ia.

    Science.gov (United States)

    Hijmans, Brenda S; Boss, Andreas; van Dijk, Theo H; Soty, Maud; Wolters, Henk; Mutel, Elodie; Groen, Albert K; Derks, Terry G J; Mithieux, Gilles; Heerschap, Arend; Reijngoud, Dirk-Jan; Rajas, Fabienne; Oosterveer, Maaike H

    2017-12-01

    It is a long-standing enigma how glycogen storage disease (GSD) type I patients retain a limited capacity for endogenous glucose production despite the loss of glucose-6-phosphatase activity. Insight into the source of residual endogenous glucose production is of clinical importance given the risk of sudden death in these patients, but so far contradictory mechanisms have been proposed. We investigated glucose-6-phosphatase-independent endogenous glucose production in hepatocytes isolated from a liver-specific GSD Ia mouse model (L-G6pc -/- mice) and performed real-time analysis of hepatic glucose fluxes and glycogen metabolism in L-G6pc -/- mice using state-of-the-art stable isotope methodologies. Here we show that G6pc-deficient hepatocytes are capable of producing glucose. In vivo analysis of hepatic glucose metabolism revealed that the hepatic glucokinase flux was decreased by 95% in L-G6pc -/- mice. It also showed increased glycogen phosphorylase flux in L-G6pc -/- mice, which is coupled to the release of free glucose through glycogen debranching. Although the ex vivo activities of debranching enzyme and lysosomal acid maltase, two major hepatic α-glucosidases, were unaltered in L-G6pc -/- mice, pharmacological inhibition of α-glucosidase activity almost completely abolished residual glucose production by G6pc-deficient hepatocytes. Our data indicate that hepatocytes contribute to residual glucose production in GSD Ia. We show that α-glucosidase activity, i.e. glycogen debranching and/or lysosomal glycogen breakdown, contributes to residual glucose production by GSD Ia hepatocytes. A strong reduction in hepatic GCK flux in L-G6pc-/- mice furthermore limits the phosphorylation of free glucose synthesized by G6pc-deficient hepatocytes, allowing the release of glucose into the circulation. The almost complete abrogation of GCK flux in G6pc-deficient liver also explains the contradictory reports on residual glucose production in GSD Ia patients. (Hepatology

  1. Maximum conversion of heavy hydrocarbons. Product stability dictates thermal and catalytic conversion rates of residues

    Energy Technology Data Exchange (ETDEWEB)

    Hennico, A.; Peries, J.P. (Institut Francais du Petrole, 92 - Rueil Malmaison (France)); Laurent, J.; Espeillac, M.

    1992-01-01

    The maximum conversion achieved by thermal cracking is limited by the fuel stability. The same holds for catalytic hydrotreating. ASVAHL has studied for many years the relation between conversion and product stability in thermal and catalytic processes. Thermal Mode: Several solutions are proposed to increase the conversion of the TERVAHL T visbreaking process such as the use of hydrogen (TERVAHL H) and possibly the addition of a few ppm of a dispersed catalyst (TERVAHL C). Catalytic Mode: The conversion of the HYVAHL residue hydrotreating process may be increased either by adding a hydrovisbreaking furnace before the hydrotreating step (HYVAHL T) or by adding an existing visbreaking downstream the hydrotreating step. These various routes enable the ASVAHL processes to maximize the marketable light product quantities in function of the residue to be upgraded and the fuel qualities to be assured. (orig.).

  2. TECHNOLOGICAL TESTS USING QUARTZITE RESIDUES AS COMPONENT OF CERAMIC MASS AT THE PORCELAIN STONEWARE PRODUCTION

    OpenAIRE

    Souza, Marcondes Mendes; Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte; da Costa, Francine Alves; Departamento de Engenharia Mecânica (UFRN)

    2015-01-01

    This work aims to evaluate through technological tests the use of quartzite residues as component at the the production of porcelain stoneware. Were collected five samples of quartzites called of green quartzite, black quartzite, pink quartzite, goldy quartzite, white quartzite. After, the raw materials were milled, passed by a sieve with a Mesh of 200# (Mesh) and characterized by chemical analysis in fluorescence of x-rays and also analysis of the crystalline phases by diffraction of x-rays....

  3. [Residual characteristics of HCHs in soils of a former lindane production enterprise].

    Science.gov (United States)

    Pan, Feng; Wang, Li-Li; Zhao, Hao; You, Qi-Zhong; Liu, Lin

    2013-02-01

    In order to study the soil pollution status of the fields left by organochlorine pesticide manufacturing enterprises, soils from a former lindane production enterprise of Xinxiang were investigated in November, 2010. A soxhlet extraction-gas chromatography-electron capture detector (SE-GC-ECD) method was used to detect the HCH residues in the contaminated soil samples. Results showed that the detection rate of the four HCHs isomers in each sampling site was 100%. In the 0-20 cm topsoil, concentrations of HCH residues (Sig;ma HCH ) changed with volatility, ranging from 0.0343 to 19.5608 mg.kg-1. In the soil layer at 0-80 cm depth and around the center point, concentrations of HCH residues (Sigma HCH ) first increased and then reduced while the soil depth increased, varying from 0.031 3 to 0.2947 mg.kg-1. Analysis of HCH composition showed that concentrations of the four isomers were in the order of beta-HCH > delta-HCH > alpha-HCH > alpha-HCH. The average percentage of p-HCH isomer was approximately 50%, which was obviously higher than those of the other isomers, indicating that there was no recent input of HCH. The results showed that over the recent decades, the HCH level in most of the soil samples (67.9%) were below the residue criterion of 0.5 mg.kg-1 of the China Soil Environmental Quality Standard (GB 15618-1995), indicating that they were safe. However, soil samples in western and eastern parts of backyard near the production plant were still seriously contaminated, the HCH concentrations in which were 1.5-20 times higher than the residue criterion of 1.0 mg.kg-1 of the China Soil Environmental Quality Standard, causing great potential safety hazard to human and environment.

  4. Recent results of measurements of evaporation residue excitation functions for 19F+194,196,198Pt and 16,18O+198Pt systems with HYRA spectrometer at IUAC

    Science.gov (United States)

    Behera, B. R.

    2015-01-01

    In this talk results of the evaporation residue (ER) cross sections for the 19F+194,196,198Pt (forming compound nuclei 213,215,217Fr) and 16,18O+198Pt (forming compound nuclei 214,216Rn) systems measured at Hybrid Recoil mass Analyzer (HYRA) spectrometer installed at the Pelletron+LINAC accelerator facility of the Inter University Accelerator Center (IUAC), New Delhi are reported. The survival probabilities of 215Fr and 217Fr with neutron numbers N = 126 are found to be lower than the survival probabilities of 215Fr and 217Fr with neutron numbers N = 128 and 130 respectively. Statistical model analysis of the ER cross sections show that an excitation energy dependent scaling factor of the finite-range rotating liquid drop model fission barrier is necessary to fit the experimental data. For the case of 214,216Rn, the experimental ER cross sections are compared with the predictions from the statistical model calculations of compound nuclear decay where Kramer's fission width is used. The strength of nuclear dissipation is treated as a free parameter in the calculations to fit the experimental data.

  5. Recent results of measurements of evaporation residue excitation functions for 19F+194,196,198Pt and 16,18O+198Pt systems with HYRA spectrometer at IUAC

    Directory of Open Access Journals (Sweden)

    Behera B.R.

    2015-01-01

    Full Text Available In this talk results of the evaporation residue (ER cross sections for the 19F+194,196,198Pt (forming compound nuclei 213,215,217Fr and 16,18O+198Pt (forming compound nuclei 214,216Rn systems measured at Hybrid Recoil mass Analyzer (HYRA spectrometer installed at the Pelletron+LINAC accelerator facility of the Inter University Accelerator Center (IUAC, New Delhi are reported. The survival probabilities of 215Fr and 217Fr with neutron numbers N = 126 are found to be lower than the survival probabilities of 215Fr and 217Fr with neutron numbers N = 128 and 130 respectively. Statistical model analysis of the ER cross sections show that an excitation energy dependent scaling factor of the finite-range rotating liquid drop model fission barrier is necessary to fit the experimental data. For the case of 214,216Rn, the experimental ER cross sections are compared with the predictions from the statistical model calculations of compound nuclear decay where Kramer’s fission width is used. The strength of nuclear dissipation is treated as a free parameter in the calculations to fit the experimental data.

  6. Mini review: fruit residues as plant biostimulants for bio-based product recovery

    Directory of Open Access Journals (Sweden)

    Andrea Ertani

    2017-08-01

    Full Text Available The request of natural products has augmented in the last years due to the increase in intolerance and allergy reactions showed by humans versus pesticides and certain chemical compounds used in agriculture. In response to this demand, innovative methods and new natural matrices have been exploited to obtain products able to increase plant nutrients use efficiency. In this context, agro-industrial residues contain bioactive molecules, including antioxidants and phenols, which may be used by farmers to improve crop productivity. Phenols are ubiquitous in plants and are essential components of the human diet by virtue of their antioxidant properties. They may also act as positive growth regulators by modifying the root architecture and, consequently, the uptake of macronutrients, potassium especially. In order to understand their effects on the plant metabolic pathways, agro-industrial residues were supplied to maize plants and the activity of specific enzymes was evaluated. In this review, developments and improved understanding on fruit residues on primary and secondary plants metabolism are discussed.

  7. Development of Value-Added Products from Residual Algae to Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Craig [Sapphire Energy, San Diego, CA (United States)

    2016-02-29

    DOE Award # EE0000393 was awarded to fund research into the development of beneficial uses of surplus algal biomass and the byproducts of biofuel production. At the time of award, Sapphire’s intended fuel production pathway was a fairly conventional extraction of lipids from biomass, resulting in a defatted residue which could be processed using anaerobic digestion. Over the lifetime of the award, we conducted extensive development work and arrived at the conclusion that anaerobic digestion presented significant technical challenges for this high-nitrogen, high-ash, and low carbon material. Over the same timeframe, Sapphire’s fuel production efforts came to focus on hydrothermal liquefaction. As a result of this technology focus, the residue from fuel production became unsuitable for either anaerobic digestion (or animal feed uses). Finally, we came to appreciate the economic opportunity that the defatted biomass could represent in the animal feed space, as well as understanding the impact of seasonal production on a biofuels extraction plant, and sought to develop uses for surplus biomass produced in excess of the fuel production unit’s capacity.

  8. Sustainability of soil fertility and the use of lignocellulosic crop harvest residues for the production of biofuels: a literature review.

    Science.gov (United States)

    Reijnders, L

    2013-01-01

    Use of lignocellulosic crop harvest residues for liquid or gaseous biofuel production may impact soil quality, long-term soil fertility and the major determinants of the latter, stocks of soil organic carbon and nutrients. When soil organic carbon stocks of mineral cropland soils are to be maintained, there is scope for the removal of lignocellulosic harvest residues in several systems with much reduced tillage or no tillage. The scope for such removal might be increased when suitably treated residues from the conversion of harvest residues into biofuel are returned to cropland soils. For mineral cropland soils under conventional tillage, the scope for the production of liquid biofuels from harvest residues is likely to be less than in the case of no-till systems. When fertility of cropland soils is to be sustainable, nutrients present in suitably treated biofuel production residues have to be returned to these soils. Apparently, the actual return of carbon and nutrients present in residues of biofuel production from crop harvest residues to arable soils currently predominantly concerns the application of digestates of anaerobic digestion. The effects thereof on soil fertility and quality need further clarification. Further clarification about the effects on soil fertility and quality of chars and of co-products of lignocellulosic ethanol production is also needed.

  9. Production and quality of Mombaça grass forage under different residual heights

    Directory of Open Access Journals (Sweden)

    Ana Luiza Silva Carvalho

    2017-04-01

    Full Text Available This study was conducted to evaluate management strategies in Mombaça grass pastures (Panicum maximum under intermittent grazing subjected to different residual heights. A randomized-block design with two treatments (two post-grazing residual heights: 30 and 50 cm and three replications was adopted. Pasture heights pre- and post-grazing, forage mass and accumulation, rest and occupation periods, pasture morphological components, milk yield and quality forage were evaluated. The data were submitted to analysis of variance and the means were compared by the F test at 5% probability. A longer grazing interval was observed in the treatments under the more severe grazing intensity. For forage mass post-grazing, larger production and higher percentage of leaves were found with the 50 cm residue, as well as higher crude protein contents and digestibility of leaves and stems and lower lignin and neutral detergent fiber contents. The residual height of 50 cm is recommended for the management of Mombaça grass pasture, as it provides greater milk yield per animal and a larger number of grazing cycles, ensuring better use of the area.

  10. Dissipation kinetics of fluquinconazole and pyrimethanil residues in apples intended for baby food production.

    Science.gov (United States)

    Szpyrka, Ewa; Walorczyk, Stanisław

    2013-12-15

    Dissipation behaviour of simultaneously applied fungicides fluquinconazole and pyrimethanil was studied in/on apples intended for baby food production (cultivars Jonagold Decosta, Golden and Champion). The apples were sprayed at two dosages to control the pathogen Venturia inaedequalis (Cooke) Aderh. A validated gas chromatographic method (GC-ECD and GC-NPD) was used to determine the fungicides residues, the analytical performance of which was highly satisfactory with expanded uncertainties not higher than 15% (coverage factor k=2, confidence level 95%) The dissipation of the fungicide residues was fitted to the experimental data assuming pseudo first-order decay kinetics (R(2) between 0.897 and 0.992). To obtain the fungicide residues below 0.01 mg/kg, which is the default maximum residue level for food intended for infants and young children, the application of the fungicides under study should be carried out 2 or 3 months before harvest at the lower (1.0 L/ha) and the higher (1.5 L/ha) recommended dose, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Utilization of agroindustrial residues for lipase production by solid-state fermentation

    OpenAIRE

    Damaso, M?nica Caramez Triches; Passianoto, Mois?s Augusto; de Freitas, Sidin?a Cordeiro; Freire, Denise Maria Guimar?es; Lago, Regina Celi Araujo; Couri, Sonia

    2008-01-01

    The aim of this work was to produce lipases by solid-state fermentation (SSF) using, as substrate, agroindustrial residue supplemented with by-products from corn oil refining process or olive oil. For a group of ten fungi strains selected in the first steps, the lipase activity obtained by SSF varied from 7.7 to 58.6 U/g of dry substrate (gds). Among the evaluated strains, the Aspergillus niger mutant 11T53A14 was selected by presenting the best enzymatic production. For the fermentation test...

  12. A proposal for pellet production from residual woody biomass in the island of Majorca (Spain

    Directory of Open Access Journals (Sweden)

    Javier Sánchez

    2015-09-01

    Full Text Available The use of residual biomass for energy purposes is of great interest in isolated areas like Majorca for waste reduction, energy sufficiency and renewable energies development. In addition, densification processes lead to easy-to-automate solid biofuels which additionally have higher energy density. The present study aims at (i the estimation of the potential of residual biomass from woody crops as well as from agri-food and wood industries in Majorca, and (ii the analysis of the optimal location of potential pellet plants by means of a GIS approach (location-allocation analysis and a cost evaluation of the pellets production chain. The residual biomass potential from woody crops in Majorca Island was estimated at 35,874 metric tons dry matter (t DM per year, while the wood and agri-food industries produced annually 21,494 t DM and 2717 t DM, respectively. Thus, there would be enough resource available for the installation of 10 pellet plants of 6400 t·year−1 capacity. These plants were optimally located throughout the island of Mallorca with a maximum threshold distance of 28 km for biomass transport from the production points. Values found for the biomass cost at the pellet plant ranged between 57.1 €·t−1 and 63.4 €·t−1 for biomass transport distance of 10 and 28 km. The cost of pelleting amounted to 56.7 €·t−1; adding the concepts of business fee, pellet transport and profit margin (15%, the total cost of pelleting was estimated at 116.6 €·t−1. The present study provides a proposal for pellet production from residual woody biomass that would supply up to 2.8% of the primary energy consumed by the domestic and services sector in the Balearic Islands.

  13. Safeguards By Design - As applied to the Sellafield Product and Residue Store (SPRS)

    International Nuclear Information System (INIS)

    Chare, Peter; Lahogue, Yves; Schwalbach, Peter; Smejkal, Andreas; Patel, Bharat

    2011-01-01

    Sellafield Product and Residue Store (SPRS) is a new facility that has been constructed on the site of Sellafield. The design work started in early 2001 and active commissioning commenced with the introduction of the first nuclear material which arrived in the building early 2011. The store has been designed for the long term storage of Plutonium product (PuO2) from Thorp and Magnox, MOX residue powder from Sellafield MOX Plant (SMP) as well as pellet, powder or granular PuO2 residues from the older stores on the Sellafield site. This paper describes the application of Safeguards By Design commencing at the early design stage based upon the Safeguards Approach to be applied by DG ENER at the Sellafield Product and Residue Store (SPRS). The approach had been developed based upon the requirements for implementing Commission Regulation 302(2005) and the technical measures to be implemented in order to meet Article 77(a) of the Euratom Treaty. In order to meet these requirements a close dialogue was established between the different interested parties and the design team for the installation of instrumentation with associated cabling in order to implement the agreed safeguards measures. Early contacts at the design stage facilitated the inclusion of installed safeguards supplied instrumentation into the overall design and facility construction. The equipment and cabling supplied by Euratom was incorporated into the planning and construction phases. This ensured that upon plant completion the safeguards tools were commissioned and ready for the verification of the first nuclear material to be introduced into SPRS. Detailed discussions at the early stages of the design phase raised the profile of nuclear material safeguards and made certain that the necessary instrumentation infrastructure was incorporated into the plant infrastructure.

  14. Biochemical production of bioenergy from agricultural crops and residue in Iran.

    Science.gov (United States)

    Karimi Alavijeh, Masih; Yaghmaei, Soheila

    2016-06-01

    The present study assessed the potential for biochemical conversion of energy stored in agricultural waste and residue in Iran. The current status of agricultural residue as a source of bioenergy globally and in Iran was investigated. The total number of publications in this field from 2000 to 2014 was about 4294. Iran ranked 21st with approximately 54 published studies. A total of 87 projects have been devised globally to produce second-generation biofuel through biochemical pathways. There are currently no second-generation biorefineries in Iran and agricultural residue has no significant application. The present study determined the amount and types of sustainable agricultural residue and oil-rich crops and their provincial distribution. Wheat, barley, rice, corn, potatoes, alfalfa, sugarcane, sugar beets, apples, grapes, dates, cotton, soybeans, rapeseed, sesame seeds, olives, sunflowers, safflowers, almonds, walnuts and hazelnuts have the greatest potential as agronomic and horticultural crops to produce bioenergy in Iran. A total of 11.33million tonnes (Mt) of agricultural biomass could be collected for production of bioethanol (3.84gigaliters (Gl)), biobutanol (1.07Gl), biogas (3.15billion cubic meters (BCM)), and biohydrogen (0.90BCM). Additionally, about 0.35Gl of biodiesel could be obtained using only 35% of total Iranian oilseed. The potential production capacity of conventional biofuel blends in Iran, environmental and socio-economic impacts including well-to-wheel greenhouse gas (GHG) emissions, and the social cost of carbon dioxide reduction are discussed. The cost of emissions could decrease up to 55.83% by utilizing E85 instead of gasoline. The possible application of gaseous biofuel in Iran to produce valuable chemicals and provide required energy for crop cultivation is also studied. The energy recovered from biogas produced by wheat residue could provide energy input for 115.62 and 393.12 thousand hectares of irrigated and rain-fed wheat

  15. Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review

    Directory of Open Access Journals (Sweden)

    Maurício Roberto Cherubin

    Full Text Available ABSTRACT: The use of crop residues as a bioenergy feedstock is considered a potential strategy to mitigate greenhouse gas (GHG emissions. However, indiscriminate harvesting of crop residues can induce deleterious effects on soil functioning, plant growth and other ecosystem services. Here, we have summarized the information available in the literature to identify and discuss the main trade-offs and synergisms involved in crop residue management for bioenergy production. The data consistently showed that crop residue harvest and the consequent lower input of organic matter into the soil led to C storage depletions over time, reducing cycling, supply and availability of soil nutrients, directly affecting the soil biota. Although the biota regulates key functions in the soil, crop residue can also cause proliferation of some important agricultural pests. In addition, crop residues act as physical barriers that protect the soil against raindrop impact and temperature variations. Therefore, intensive crop residue harvest can cause soil structure degradation, leading to soil compaction and increased risks of erosion. With regard to GHG emissions, there is no consensus about the potential impact of management of crop residue harvest. In general, residue harvest decreases CO2 and N2O emissions from the decomposition process, but it has no significant effect on CH4 emissions. Plant growth responses to soil and microclimate changes due to crop residue harvest are site and crop specific. Adoption of the best management practices can mitigate the adverse impacts of crop residue harvest. Longterm experiments within strategic production regions are essential to understand and monitor the impact of integrated agricultural systems and propose customized solutions for sustainable crop residue management in each region or landscape. Furthermore, private and public investments/cooperations are necessary for a better understanding of the potential environmental

  16. Comparison of biogas production from rapeseed and wheat residues in compound with cattle manure

    Directory of Open Access Journals (Sweden)

    M Safari

    2016-09-01

    process pH was observed in the first few days of the digestion and this is due to high volatile fatty acid (VFA formation. These results were compatible with sanaee moghadam et al. (2013. The results obtained showed that, the highest rate of VS reduction belonged to rapeseed residues at 52.22%.The lowest rate of VS reduction attributed to wheat residues at 36.79%. The rapeseed residues with 311.45 Lit.kg-1 VS had the highest accumulated methane followed by wheat straw with 167.69.28 L.Kg-1 VS in probability level of 5%. The average percentages of methane production for rapeseed straw and wheat straw during the 140 days experiment under mesophilic condition were 66% and 55%, respectively. Production of methane had delay and started after 46th day. Much reason may be possible. Inoculums used in this study were only fresh cattle dung. The mixture of fresh cattle dung and effluent of anaerobic digester or fresh rumen fluid may be decrease retention time and increase biogas production. According results of Budiyono the rumen fluid inoculated to biodigester significantly affected the biogas production. Rumen fluid inoculums caused biogas production rate and efficiency increase more than two times in compare to manure substrate without rumen fluid inoculums (Budyono et al., 2010. The other reason was pretreatment. This study applied just mechanical pretreatment. According to Cecilia studies, different pretreatment combined with mechanical pretreatment decrease retention time and increase biogas production efficiency (Cecilia et al, 2013. However, Zhang et al. claimed that it is hard to say which method is the best because each has its own strong point and weak point. Yet, until now, none of the pretreatment technologies has found a real breakthrough. Conclusions According to this study, rapeseed residues had the highest level of methane production in comparison with wheat residues. The rapeseed residues combine with cattle dung had suitable potential to methane production. The

  17. Utilization of lignite power generation residues for the production of lightweight aggregates.

    Science.gov (United States)

    Anagnostopoulos, Iason M; Stivanakis, Victor E

    2009-04-15

    A novel process is proposed for the utilization of lignite combustion solid residues in the production of inflammable lightweight aggregates (LWA). The process consists of two stages, pelletization and sintering, and carbon contained in BA was used as the process fuel. The main residues bottom ash (BA) and fly ash (FA) from Megalopolis power plant were characterized, mixed in different proportions and treated through pelletization and sintering process. Sintering benefits from combustion of BA carbon content and the product is a hardened porous cake. The energy required for achievement of high temperatures, in the range of 1250 degrees C, was offered by carbon combustion and CO(2) evolution is responsible for porous structure formation. Selected physical properties of sintered material relevant to use as lightweight aggregates were determined, including bulk density, porosity and water absorption. Bulk density varies from 0.83 to 0.91 g/cm(3), porosity varies from 60% to 64% and water absorption varies from 66% to 80%. LWA formed is used for the production of lightweight aggregate concrete (LWAC). Thermal conductivity coefficient varies from 0.25 to 0.37 W/mK (lower than maximum limit 0.43 W/mK) and compressive strength varies from 19 to 23 MPa (higher than minimum limit 17 MPa). The results indicate that sintering of lignite combustion residues is an efficient method of utilization of carbon containing BA and production of LWA for structural and insulating purposes. Carbon content of BA is a key factor in LWA production. Finally, this research work comprises the first proposed application for utilization of BA in Greece.

  18. Enhanced methane production of vinegar residue by response surface methodology (RSM).

    Science.gov (United States)

    Feng, Jiayu; Zhang, Jiyu; Zhang, Jiafu; He, Yanfeng; Zhang, Ruihong; Chen, Chang; Liu, Guangqing

    2017-12-01

    As the by-product of the vinegar production process, a large number of vinegar residue has been abandoned and caused a serious environmental pollution. Anaerobic digestion has been proved to be able to dispose and convert vinegar residue into bioenergy but still need to improve the efficiency. This study applied central composite design of response surface methodology to investigate the influences of feed to inoculum ratio, organic loading, and initial pH on methane production and optimize anaerobic digestion condition. The maximum methane yield of 203.91 mL gVS -1 and biodegradability of 46.99% were obtained at feed to inoculum ratio of 0.5, organic loading of 31.49 gVS L -1 , and initial pH of 7.29, which was considered as the best condition. It has a very significant improvement of 69.48% for methane production and 52.02% for biodegradability compared with our previous study. Additionally, a high methane yield of 182.09 mL gVS -1 was obtained at feed to inoculum ratio of 1.5, organic loading of 46.22 gVS L -1 , and initial pH of 7.32. And it is more appropriate to apply this condition in industrial application owing to the high feed to inoculum ratio and organic loading. Besides, a significant interaction was found between feed to inoculum ratio and organic loading. This study maximized the methane production of vinegar residue and made a good foundation for further study and future industrial application.

  19. Application of RESRAD Model to Assess Radiation Doses due to TENORM Accumulation in Evaporation Pond during Petroleum Production

    International Nuclear Information System (INIS)

    Othman, M.H.; Hassan, H.B.

    2013-01-01

    TE- Naturally Occurring Radioactive Materials (TE- NORM) is the potential radiation source in the petroleum industry which needs to be identified and controlled to maintain safe working conditions and protection of the environment. In this study radioactive contamination of produced water by NORM has been modeled by using RESRAD (version 6.5) computer code to evaluate potential radiological doses and health risks to workers at several oil field locations. The presence of NORM in produced water unlikely to cause external exposures which may be exceeded dose limits for workers. In this assessment the exposure source parameters were adjusted a period of 100 years and area of evaporation pond was 1300 m 2 and 10 m depth. The predicted maximum total effective doses equivalent received by workers from produced water in evaporation pond are (1.5×10 -5 mSv/yr) and for soil (categories I, II and III) are (0.732, 0.244 and 0.150 mSv/yr). Also its annual total cancer risk for produced water is (1.25×10 -9 ) and for soil (categories I, II and III) are (6.0×x10 -5 , 2.0 x10 -5 , 1.25 x10 -5 ) respectively.

  20. Determination of residual zirconia in the reaction product of zircon formation from zirconia and silica

    International Nuclear Information System (INIS)

    Hashiba, Minoru; Miura, Eiji; Nurishi, Yukio; Hibino, Taizo

    1978-01-01

    A new chemical method for the determination of zirconia in the reaction product of zircon formation from zirconia and silica is presented in this paper. The reaction product was fused in the temperature range between 400 0 C, and 450 0 C by ammonium sulfate (zirconia/ammonium sulfate = 1/10, weight). Zirconia was extracted by 4N H 2 SO 4 aqueous solution. After the residue was separated by filter paper containing filter pulp, it was washed by hot water thoroughly. By adding aqueous ammonia water to the combined filtrate, zirconium hydroxide was precipitated gelatinously. The precipitate was ignited in platinum crucible at 1000 0 C and the zirconia obtained was weighed. It was confirmed by the following experiments that the present method is very reliable for quantitative determination of residual zirconia. Firstly, in both zirconia and various mixtures of zircon and silica, the recovery of zirconia is about (99.6 +- 0.2)%. Secondly, the reaction for equimolar mixture of zirconia and silica was conducted at several temperatures between 1350 0 C and 1500 0 C. The quantity of residual zirconia on the way of the reaction was reasonably determined by the present method. In conclusion, the present method can be applicable for the study on the reaction mechanism of zircon formation from zirconia and silica. (auth.)

  1. Development of Analytical Method and Monitoring of Veterinary Drug Residues in Korean Animal Products.

    Science.gov (United States)

    Song, Jae-Sang; Park, Su-Jeong; Choi, Jung-Yun; Kim, Jin-Sook; Kang, Myung-Hee; Choi, Bo-Kyung; Hur, Sun Jin

    2016-01-01

    This study was conducted to determine the residual amount of veterinary drugs such as meloxicam, flunixin, and tulathromycin in animal products (beef, pork, horsemeat, and milk). Veterinary drugs have been widely used in the rearing of livestock to prevent and treat diseases. A total of 152 samples were purchased from markets located in major Korean cities (Seoul, Busan, Incheon, Daegu, Daejeon, Gwangju, Ulsan and Jeju), including Jeju. Veterinary drugs were analyzed by liquid chromatography-tandem mass spectrometry according to the Korean Food Standards Code. The resulting data, which are located within 70-120% of recovery range and less than 20% of relative standard deviations, are in compliance with the criteria of CODEX. A total of five veterinary drugs were detected in 152 samples, giving a detection rate of approximately 3.3%; and no food source violated the guideline values. Our result indicated that most of the veterinary drug residues in animal products were below the maximum residue limits specified in Korea.

  2. Technical assessment of synthetic natural gas (SNG) production from agriculture residuals

    Science.gov (United States)

    Song, Guohui; Feng, Fei; Xiao, Jun; Shen, Laihong

    2013-08-01

    This paper presents thermodynamic evaluations of the agriculture residual-to-SNG process by thermochemical conversion, which mainly consists of the interconnected fluidized beds, hot gas cleaning, fluidized bed methanation reactor and Selexol absorption unit. The process was modeled using Aspen Plus software. The process performances, i.e., CH4 content in SNG, higher heating value and yield of SNG, exergy efficiencies with and without heat recovery, unit power consumption, were evaluated firstly. The results indicate that when the other parameters remain unchanged, the steam-to-biomass ratio at carbon boundary point is the optimal value for the process. Improving the preheating temperatures of air and gasifying agent is beneficial for the SNG yield and exergy efficiencies. Due to the effects of CO2 removal efficiency, there are two optimization objectives for the SNG production process: (I) to maximize CH4 content in SNG, or (II) to maximize SNG yield. Further, the comparison among different feedstocks indicates that the decreasing order of SNG yield is: corn stalk > wheat straw > rice straw. The evaluation on the potential of agriculture-based SNG shows that the potential annual production of agriculture residual-based SNG could be between 555×108 ˜ 611×108 m3 with utilization of 100% of the available unexplored resources. The agriculture residual-based SNG could play a significant role on solving the big shortfall of China's natural gas supply in future.

  3. Valorization of agroindustrial solid residues and residues from biofuel production chains by thermochemical conversion: a review, citing Brazil as a case study

    Directory of Open Access Journals (Sweden)

    E. Virmond

    2013-06-01

    Full Text Available Besides high industrial development, Brazil is also an agribusiness country. Each year about 330 million metrics tons (Mg of biomass residues are generated, requiring tremendous effort to develop biomass systems in which production, conversion and utilization of bio-based products are carried out efficiently and under environmentally sustainable conditions. For the production of biofuels, organic chemicals and materials, it is envisaged to follow a biorefinery model which includes modern and proven green chemical technologies such as bioprocessing, pyrolysis, gasification, Fischer-Tropsch synthesis and other catalytic processes in order to make more complex molecules and materials on which a future sustainable society will be based. This paper presents promising options for valorization of Brazilian agroindustrial biomass sources and residues originating from the biofuel production chains as renewable energy sources and addresses the main aspects of the thermochemical technologies which have been applied.

  4. Comparison of hydrophilic variation and bioethanol production of furfural residues after delignification pretreatment.

    Science.gov (United States)

    Bu, Lingxi; Tang, Yong; Xing, Yang; Zhang, Weiming; Shang, Xinhui; Jiang, Jianxin

    2014-01-01

    Furfural residue (FR) is a waste lignocellulosic material with enormous potential for bioethanol production. In this study, bioethanol production from FR after delignification was compared. Hydrophilic variation was measured by conductometric titration to detect the relationship between hydrophilicity and bioethanol production. It was found that ethanol yield increased as delignification enhanced, and it reached up to 75.6% of theoretical yield for samples with 8.7% lignin. The amount of by-products decreased as delignification increased. New inflection points appeared in conductometric titration curves of samples that were partially delignified, but they vanished in the curves of the highly delignified samples. Total charges and carboxyl levels increased after slight delignification, and they decreased upon further delignification. These phenomena suggested some new hydrophilic groups were formed during pretreated delignification, which would be beneficial to enzymatic hydrolysis. However, some newly formed groups may act as toxicant to the yeast during simultaneous saccharification and fermentation.

  5. Use of residual hydrocarbons treated by Thermal Plasma (recovery of energy by-products)

    International Nuclear Information System (INIS)

    Carreno B, J.A.; Pacheco S, J.O.; Ramos F, F.; Cruz A, A.; Duran G, M.

    2001-01-01

    The emergence of new technologies is getting greater importance for the control of pollution. One of them is the destruction of hazardous wastes treated by thermal plasma, which is of special interest for the efficient treatment of the hazardous wastes since the heat generated by thermal plasma is able to destroy the molecular bonds generating solids and gaseous products which do not represent danger for the human being and the environment. The thermal plasma is the suitable technology for treating a wide range of hazardous wastes, including the residual hydrocarbons from the refinement process of petroleum, plasma exceeds the barrier of 3000 Centigrade. The efficiency of the degradation of residues is greater than 99.99%. Toxic emissions are not generated to environment as SO 2 , NO x and CO 2 neither dioxins and furans by being a pyrolysis process. The use of hydrogen as fuel does not generate pollution to environment. (Author)

  6. Study of the acceleration of ammonia generation process from poultry residues aiming at hydrogen production

    International Nuclear Information System (INIS)

    Egute, Nayara dos Santos

    2010-01-01

    The hydrogen, utilized in fuel cells, can be produced from a variety of intermediate chemicals, between them, the ammonia. The ammonia gas as a raw material for the hydrogen production has been used due to its high energetic content, facility of decomposition, high availability, low prices, low storage pressure and its by-products are environmentally correct. One of the sources of ammonia is poultry and egg production systems. In these systems the ammonia is produced from the decomposition of uric acid present in the excreta of birds. The residue from the poultry-rearing farms is the broiler litter and from the egg production system is the excreta without any substrate. The characterization of these residues was performed using the Wavelength-Dispersive X-Ray Fluorescence (WDXRF), Elementary Analysis (CHN), Thermogravimetry and GC/MS - Gas chromatography/ Mass spectrometry. The studied factors which influence the ammonia volatilization were: nitrogen content, raising period, urease enzyme, temperature, pH and moisture content. The experiment results with poultry litter and excreta allow to conclude that the manipulation of the following parameters increased the ammonia emission: pH, nitrogen content, raising period, age of birds and excreta accumulation, urease enzyme and the temperature. The addition of different amounts of sand in the excreta and different volumes of water in the poultry litter inhibited the emission of ammonia. The variation of the quantity of material (broiler litter or excreta) and the volume of the flask used as incubator chamber showed no significant alterations to be chosen as a variable. The excreta was considered more appropriate than poultry litter for the objectives of this work due to the higher ammonia concentrations determined in this material. Due to the large amount of poultry litter and excreta from the production processes, the reuse of poultry residues to obtain ammonia is necessary to improve the quality of the local

  7. Evaluation of residual antibacterial potency in antibiotic production wastewater using a real-time quantitative method.

    Science.gov (United States)

    Zhang, Hong; Zhang, Yu; Yang, Min; Liu, Miaomiao

    2015-11-01

    While antibiotic pollution has attracted considerable attention due to its potential in promoting the dissemination of antibiotic resistance genes in the environment, the antibiotic activity of their related substances has been neglected, which may underestimate the environmental impacts of antibiotic wastewater discharge. In this study, a real-time quantitative approach was established to evaluate the residual antibacterial potency of antibiotics and related substances in antibiotic production wastewater (APW) by comparing the growth of a standard bacterial strain (Staphylococcus aureus) in tested water samples with a standard reference substance (e.g. oxytetracycline). Antibiotic equivalent quantity (EQ) was used to express antibacterial potency, which made it possible to assess the contribution of each compound to the antibiotic activity in APW. The real-time quantitative method showed better repeatability (Relative Standard Deviation, RSD 1.08%) compared with the conventional fixed growth time method (RSD 5.62-11.29%). And its quantification limits ranged from 0.20 to 24.00 μg L(-1), depending on the antibiotic. We applied the developed method to analyze the residual potency of water samples from four APW treatment systems, and confirmed a significant contribution from antibiotic transformation products to potent antibacterial activity. Specifically, neospiramycin, a major transformation product of spiramycin, was found to contribute 13.15-22.89% of residual potency in spiramycin production wastewater. In addition, some unknown related substances with antimicrobial activity were indicated in the effluent. This developed approach will be effective for the management of antibacterial potency discharge from antibiotic wastewater and other waste streams.

  8. Ceramic residue for producing cements, method for the production thereof, and cements containing same

    OpenAIRE

    Sánchez de Rojas, María Isabel; Frías, Moisés; Asensio, Eloy; Medina Martínez, César

    2014-01-01

    [EN] The invention relates to a ceramic residue produced from construction and demolition residues, as a puzzolanic component of cements. The invention also relates to a method for producing said ceramic residues and to another method of producing cements using said residues. This type of residue is collected in recycling plants, where it is managed. This invention facilitates a potential commercial launch.

  9. Crop residues and agro-industrial by-products used in traditional ...

    African Journals Online (AJOL)

    The crop residues were grouped under cereal crop residues (3), root crop residues (5), legume crop residues (3), and fruit crop residues (3). All the sampled respondents kept livestock and depend on the natural pasture as the main source of feed for their animals. The mean stock number per farmer in this study was 14.0 ...

  10. Screening of antibiotics and chemical analysis of penicillin residue in fresh milk and traditional dairy products in Oyo state, Nigeria

    Directory of Open Access Journals (Sweden)

    Isaac Olufemi Olatoye

    2016-09-01

    Full Text Available Background and Aim: There are global public health and economic concerns on chemical residues in food of animal origin. The use of antibiotics in dairy cattle for the treatment of diseases such as mastitis has contributed to the presence of residues in dairy products. Penicillin residues as low as 1 ppb can lead to allergic reactions and shift of resistance patterns in microbial population as well as interfere with the processing of several dairy products. Antibiotic monitoring is an essential quality control measure in safe milk production. This study was aimed at determining antibiotic residue contamination and the level of penicillin in dairy products from Fulani cattle herds in Oyo State. Materials and Methods: The presence of antibiotic residues in 328 samples of fresh milk, 180 local cheese (wara, and 90 fermented milk (nono from Southwest, Nigeria were determined using Premi® test kit (R-Biopharm AG, Germany followed by high-performance liquid chromatography analysis of penicillin-G residue. Results: Antibiotic residues were obtained in 40.8%, 24.4% and 62.3% fresh milk, wara and nono, respectively. Penicillin-G residue was also detected in 41.1% fresh milk, 40.2% nono and 24.4% wara at mean concentrations of 15.22±0.61, 8.24±0.50 and 7.6±0.60 μg/L with 39.3%, 36.7% and 21.1%, respectively, containing penicillin residue above recommended Codex maximum residue limit (MRL of 5 μg/L in dairy. There was no significant difference between the mean penicillin residues in all the dairy products in this study. Conclusion: The results are of food safety concern since the bulk of the samples and substantial quantities of dairy products in Oyo state contained violative levels of antibiotic residues including penicillin residues in concentrations above the MRL. This could be due to indiscriminate and unregulated administration of antibiotics to dairy cattle. Regulatory control of antibiotic use, rapid screening of milk and dairy farmers

  11. Incorporation of feasibility study of residue thin kaolin in of porcelain formulations production

    International Nuclear Information System (INIS)

    Almeida, V.S. de; Ferreira, E.C.; Oliveira, T.M. de; Freitas, K.D. de Araujo; Soares Filho, J.E.; Sousa, F.J.P. de

    2016-01-01

    The porcelain is the more advanced product among traditional ceramics due to the high technology used in its manufacture and its excellent technological and aesthetic properties. Due to the continuing worldwide development, kaolin processing industries have increased their productivity and consequently generating large amounts of waste, contributing to environmental degradation. Studies are being conducted to analyze the incorporation of such wastes in the ceramic mass compositions. The objective of this study was to evaluate 4 formulations of porcelain as the possibility of using waste coming from the last stage of kaolin processing. Processing occurred by wet grinding process, with uniaxial compacting pressure of 45 MPa after heat treatment at 1250 ° C. Technological tests were carried out physical and mechanical product. The results showed that the addition of fine kaolin residue was presented as an efficient alternative for the porcelain industry. (author)

  12. UTILIZATION OF CANDEIA (Eremanthus erythropappus WOOD RESIDUES IN THE PRODUCTION OF PARTICLEBOAD WITH ADDITION OF PET

    Directory of Open Access Journals (Sweden)

    Rosimeire Cavalcante dos Santos

    2011-03-01

    Full Text Available This work aimed to evaluate, through the physical and mechanical properties, the panels production viability with inclusion of candeia (Eremanthus erythropappus wood residues and the influence of different percentages of PET (polyethylene terephthalate, as well as the presence and absence of paraffin on the properties of particleboard. There were used candeia wood residues, after oil extraction, in association with eucalypt wood in the proportion of 25:75 and urea-formaldehyde adhesive (12% for panels production; besides the PET incorporation in particle form, which were originated from soft drink bottles and included in three percentages (0%, 25% e 50% in treatments in the presence (1% and absence of paraffin emulsion. The panels pressing cycle occurred under electric heating at 160°C, 0.4 MPa of pressure, during 8 minutes. The experimental design was entirely randomized with three repetitions. The properties evaluated, according to DIN (1971, ASTM D 1037-93 (1995 and CS 236-66 (1968 standards, were: internal bonding; static bending (modulus of elasticity – MOE and rupture – MOR; compression parallel to the panel surface; water absorption and thickness swelling, after 2 and 24 hours water immersion. The panel mechanical properties decreased with increasing in PET level; in general, paraffin addition did not improve the wood/plastic panels resistance and higroscopicity; the utilization of candeia wood residues is viable, in association with eucalypt wood, for the wood/plastic panel production, since the properties attended the minimum demands of the standards, except static bending.

  13. Residual nitrogen fertilization effect of common bean production on succeeding corn intercropped with Congo grass

    Directory of Open Access Journals (Sweden)

    Antonio Carlos de Almeida Carmeis Filho

    Full Text Available ABSTRACT Crop production in conservation systems involving intercropped cultivations mainly with corn have been proposed as a technology to promote sustainability in the Brazilian Cerrado areas. The objective of this work was to evaluate the influence of residual nitrogen fertilization applied in common bean on subsequent corn sole or intercropped with Congo grass (Urochloa ruziziensis in no-tillage system. The experiment was carried out in randomized blocks with three replicates in a split-plot design. The treatments were composed by two cropping systems (sole and intercropped with Congo grass, and the sub-plots were five doses of nitrogen (0; 40; 80; 120 and 160 kg of N ha-1, applied in topdressing on common-bean (previous crop. There was no effect of cropping systems and residual amount of nitrogen application in the vegetative and reproductive development of corn. Corn intercropped with Congo grass leaded an adequate formation of crop residue and total land covering target at sustainability of no-tillage system.

  14. Highly sensitive and selective colorimetric detection of cartap residue in agricultural products.

    Science.gov (United States)

    Liu, Wei; Zhang, Daohong; Tang, Yafan; Wang, Yashan; Yan, Fei; Li, Zhonghong; Wang, Jianlong; Zhou, H Susan

    2012-11-15

    The residue of pesticide has posed a serious threat to human health. Fast, broad-spectrum detection methods are necessary for on-site screening of various types of pesticides. With citrate-coated Au nanoparticles (Au NPs) as colorimetric probes, a visual and spectrophotometric method for rapid assay of cartap, which is one of the most important pesticides in agriculture, is reported for the first time. Based on the color change of Au colloid solution from wine-red to blue resulting from the aggregation of Au NPs, cartap could be detected in the concentration range of 0.05-0.6 mg/kg with a low detection limit of 0.04 mg/kg, which is much lower than the strictest cartap safety requirement of 0.1 mg/kg. Due to the limited research on the rapid detection of cartap based on Au NPs, the performance of the present method was evaluated through aggregation kinetics, interference influence, and sample pretreatment. To further demonstrate the selectivity and applicability of the method, cartap detection is realized in cabbage and tea with excellent analyte concentration recovery. These results demonstrate that the present method provides an easy and effective way to analyze pesticide residue in common products, which is of benefit for the rapid risk evaluation and on-site screening of pesticide residue. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Biochar from different residues on soil properties and common bean production

    Directory of Open Access Journals (Sweden)

    Isley Cristiellem Bicalho da Silva

    Full Text Available ABSTRACT: The production of biochar from organic residues promises to be an interesting strategy for the management of organic waste. To assess the effect of biochar on soil properties and the production and nutrition of common bean (Phaseolus vulgaris L., three simultaneous experiments were conducted in a greenhouse with different biochar from organic residues (rice husk, sawdust, and sorghum silage used as filtration material for swine biofertilizer. In each experiment the treatments consisted of five different biochar concentrations (0, 25, 50, 75 and 100 L m−3, arranged in a completely randomized design, with four repetitions. In the experiments, the use of biochar increased soil pH, cation exchange capacity, nutrient availability in the soil, and nutrient accumulation in grains. The biochar concentrations corresponding to the maximum production of grain dry matter of bean plants were 100, 68, and 71 L m−3 for biochar from rice husk filter (BRHF, biochar from sawdust filter (BSF, and biochar from sorghum silage filter (BSSF, respectively.

  16. Bio-syngas production from agro-industrial biomass residues by steam gasification.

    Science.gov (United States)

    Pacioni, Tatiana Ramos; Soares, Diniara; Domenico, Michele Di; Rosa, Maria Fernanda; Moreira, Regina de Fátima Peralta Muniz; José, Humberto Jorge

    2016-12-01

    This study evaluated the steam gasification potential of three residues from Brazilian agro-industry by assessing their reaction kinetics and syngas production at temperatures from 650 to 850°C and a steam partial pressure range of 0.05 to 0.3bar. The transition temperature between kinetic control and diffusion control regimes was identified. Prior to the gasification tests, the raw biomasses, namely apple pomace, spent coffee grounds and sawdust, were pyrolyzed in a fixed-bed quartz tubular reactor under controlled conditions. Gasification tests were performed isothermally in a magnetic suspension thermobalance and the reaction products were analyzed by a gas chromatograph with TCD/FID detectors. According to the characterization results, the samples presented higher carbon and lower volatile matter contents than the biomasses. Nevertheless, all of the materials had high calorific value. Syngas production was influenced by both temperature and steam partial pressure. Higher concentrations of H 2 and CO were found in the conversion range of 50-80% and higher concentrations of CO 2 in conversions around 10%, for all the gasified biochars. The H 2 /CO decreased with increasing temperature, mainly in kinetic control regime, in the lower temperature range. The results indicate the gasification potential of Brazilian biomass residues and are an initial and important step in the development of gasification processes in Brazil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Utilizing Iron Residues from Zinc Production in the U.S.S.R.

    Science.gov (United States)

    Piskunov, V. M.; Matveev, A. F.; Yaroslavtsev, A. S.

    1988-08-01

    When zinc calcine leach residues are subjected to conventional hydro-metallurgical treatment, iron is removed from the production circuit in the form of jarosite or goethite. A combined hydrometallurgical treatment of zinc calcine and zinc oxide fume leach residues applied at a zinc plant in the U.S.S.R. produces potassium jarosite containing undesirable impurities of 1.5-2.0 wt.% Zn, 0.2-0.3 wt.% Cu, 0.2-0.6 wt.% Pb, 0.005-0.01 wt. % Cd and 27-29 wt. % Fe. After some study, it was found that low-contaminant jarosite can be used in iron-oxide pigments and in cement clinker production. Methods for manufacturing such products have been developed and tested on a pilot-plant scale, and commercial tests are in progress. The investigations carried out for low-contaminantjarosite utilization resulted not only in the development of a wasteless and environmentally acceptable technology for zinc calcine treatment, but made it possible to recover one more valuable component—iron—from zinc raw materials.

  18. Monitoring volatilization products using Residual Gas Analyzers during MeV ion beam irradiations

    Science.gov (United States)

    Wetteland, C. J.; Kriewaldt, K.; Taylor, L. A.; McSween, H. Y.; Sickafus, K. E.

    2018-03-01

    The use of Residual Gas Analyzers (RGAs) during irradiation experiments can provide valuable information when incorporated into experimental end-stations. The instruments can track the volatilization products of beam-sensitive materials, which may ultimately aid researchers in selecting appropriate flux values for conducting experiments. Furthermore, the type of gaseous species released during an irradiation can be monitored directly, which may lead to new insights into the radiolysis and/or heating mechanisms responsible for gas evolution. A survey of several classes of materials exposed to extremes in particle flux is presented to show how RGA instrumentation can be incorporated to qualitatively assess ion-solid interactions in a variety of fields.

  19. Radiotracer studies of agrochemical residues in meat, milk and related products of livestock and poultry

    International Nuclear Information System (INIS)

    1987-01-01

    The joint FAO/IAEA programme was initiated in 1981 and terminates with this report. The specific objectives of the programme have been to evaluate the magnitude, fate and significance of agricultural chemical residues in edible tissues and by-products of livestock and poultry, aided by radiotracer techniques. It was anticipated that the data arising from studies conducted under this programme would be useful in assessing the toxicological significance of studied chemicals to exposed animals and to humans who may consume potentially polluted meat, milk or eggs. A separate abstract was prepared for each of the 13 papers in this report

  20. Safety aspects of targets for ADTT: Activity, volatile products, residual heat release

    International Nuclear Information System (INIS)

    Gai, E.V.; Ignatyuk, A.V.; Lunev, V.P.; Shubin, Yu.N.

    1999-01-01

    Safety aspects of heavy metal liquid targets for the accelerator driven systems connected with the activity accumulation and residual energy release due to the irradiation with high energy proton beam are discussed. The results obtained for the lead-bismuth target that are under construction in IPPE now in the frame of ISTC Project No. 559 are briefly presented. The calculations and the analysis of the accumulation of the spallation reaction products, activity and energy release at various moments after the accelerator shutdown are presented. The concentrations of the reaction products, the total and partial activities, the activities of volatile products are determined. The contributions of the short-lived nuclides important for the prediction of the facility behaviour in regimes with the accelerator beam trips. The calculations and analysis of the residual energy release due to different decay type have been performed. The conclusions are as follows. The obtained results showed that long lived radioactivity accumulates mainly due to primary nuclear reactions. Secondary reactions are responsible for the production of small number of long-lived isotopes Bi-207, Po-210 and some others, being generated by radiative capture of low energy neutrons. It is possible to make a conclusion that neutrons in the energy range 20 - 800 MeV and protons with energy above 100 MeV give main contribution to the total activity generation although these parts of spectra inside the target give comparatively small contribution to the total flux. The correct consideration of short-lived nuclides contribution is the main problem in the analysis of the target behaviour in the case of short accelerator shutdowns. They make the determining contribution to the both activity and the heat release at the first moments after the accelerator shutdown, creating the intermediate links and additional channels for the long-lived nuclides accumulation chains. The strong dependence of calculated

  1. Improving technology and setting-up a production line for high quality zinc oxide (99.5%) with a capacity of 150 ton/year by evaporation-oxidation process

    International Nuclear Information System (INIS)

    Phan Dinh Thinh; Pham Minh Tuan; Luong Manh Hung; Tran Ngoc Vuong

    2015-01-01

    This report presents the technology improvement and a production line to produce high quality zinc oxide of purity upper than 99.5% ZnO by evaporation-oxidation method. Secondary zinc metal recovered from galvanizing industrial will undergo a pre-treatment to meet all requirements of standardized feed material for evaporation-oxidation process. Zinc metal is melted at a temperature of about 650 o C, some impurities and metallic oxides are separated preliminary, then zinc metal is converted into liquid in evaporation pot. Here the temperature is maintained around 1050 o C, zinc liquid is evaporated, zinc vapor is oxidized by air in the oxidation chamber naturally by oxygen in the air and then zinc vapor is converted to zinc oxide. Zinc oxide is passed through a product classification systems and then go to a product collection of filtering bag design. The whole process of melting, evaporation, oxidation, particles classification and product collection is a continuous process. The efficiency of the transformation of zinc metal into zinc oxide can reach the value of 1.1 to 1.2. ZnO product quality is higher than 99.5%. (author)

  2. Influence of the "Self-Radiation" of Combustion Products on the Intensity of Evaporation of an Inhomogeneous Water Droplet in the Flame

    Science.gov (United States)

    Vysokomornaya, O. V.; Kuznetsov, G. V.; Piskunov, M. V.; Strizhak, P. A.

    2016-07-01

    The processes of heat transfer during the heating, evaporation, and boiling of an inhomogeneous (with a solid inclusion) droplet of a liquid (water) in a high-temperature (800-1500 K) gas medium have been modeled numerically. The inclusion (carbonaceous particle) in the shape of a disk of height and diameter 2 mm has been considered. The volume of the water enveloping the inclusion ranged within 5-20 μL. It has been shown that the ″self-radiation″ of triatomic gases in combustion products (using commercial alcohol as an example) significantly intensifies (compared to the air heated to the same temperatures) the heating of the inhomogeneous liquid droplet. A comparative analysis of the influence of the temperature of the gas medium and of the thickness in the liquid film enveloping the inclusion on the basic characteristic of the process under study, i.e., the time of existence (complete evaporation) of the droplet, has been made. The reliability of the results of theoretical investigations and the legitimacy of the conclusions drawn have been assessed experimentally.

  3. Novel in vitro systems for prediction of veterinary drug residues in ovine milk and dairy products.

    Science.gov (United States)

    González-Lobato, L; Real, R; Herrero, D; de la Fuente, A; Prieto, J G; Marqués, M M; Alvarez, A I; Merino, G

    2014-01-01

    A new in vitro tool was developed for the identification of veterinary substrates of the main drug transporter in the mammary gland. These drugs have a much higher chance of being concentrated into ovine milk and thus should be detectable in dairy products. Complementarily, a cell model for the identification of compounds that can inhibit the secretion of drugs into ovine milk, and thus reduce milk residues, was also generated. The ATP-binding cassette transporter G2 (ABCG2) is responsible for the concentration of its substrates into milk. The need to predict potential drug residues in ruminant milk has prompted the development of in vitro cell models over-expressing ABCG2 for these species to detect veterinary drugs that interact with this transporter. Using these models, several substrates for bovine and caprine ABCG2 have been found, and differences in activity between species have been reported. However, despite being of great toxicological relevance, no suitable in vitro model to predict substrates of ovine ABCG2 was available. New MDCKII and MEF3.8 cell models over-expressing ovine ABCG2 were generated for the identification of substrates and inhibitors of ovine ABCG2. Five widely used veterinary antibiotics (marbofloxacin, orbifloxacin, sarafloxacin, danofloxacin and difloxacin) were discovered as new substrates of ovine ABCG2. These results were confirmed for the bovine transporter and its Y581S variant using previously generated cell models. In addition, the avermectin doramectin was described as a new inhibitor of ruminant ABCG2. This new rapid assay to identify veterinary drugs that can be concentrated into ovine milk will potentially improve detection and monitoring of veterinary drug residues in ovine milk and dairy products.

  4. Enhancement of Rhamnolipid Production in Residual Soybean Oil by an Isolated Strain of Pseudomonas aeruginosa

    Science.gov (United States)

    de Lima, C. J. B.; França, F. P.; Sérvulo, E. F. C.; Resende, M. M.; Cardoso, V. L.

    In the present work, the production of rhamnolipid from residual soybean oil (RSO) from food frying facilities was studied using a strain of Pseudomonas aeruginosa of contaminated lagoon, isolated from a hydrocarbon contaminated soil. The optimization of RSO, amonium nitrate, and brewery residual yeast concentrations was accomplished by a central composite experimental design and surface response analysis. The experiments were performed in 500-mL Erlenmeyer flasks containing 50mL of mineral medium, at 170 rpm and 30±1°C, for a 48-h fermentation period. Rhamnolipid production has been monitored by measurements of surface tension, rhamnose concentration, and emulsifying activity. The best-planned results, located on the central point, have corresponded to 22g/L of RSO, 5.625 g/ L of NH4NO3' and 11.5 g/L of brewery yeast. At the maximum point the values for rhamnose and emulsifying index were 2.2g/L and 100%, respectively.

  5. Utilization of residue from cassava starch processing for production of fermentable sugar by enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Luciana Reis Fontinelle SOUTO

    2016-01-01

    Full Text Available Abstract The aim of this study was to characterize and perform enzymatic hydrolysis of cassava peeling residue (peel and inner peel, mainly composed of peels and small pieces. Residue was sanitized, dried at 55 °C for 24 hours and ground. The obtained flour showed pH of 4.85; 72.53 g 100 g–1 moisture; 5.18 mL 1M NaOH 100 g–1 acidity; 60.68 g 100 g–1 starch; 1.08 g 100 g–1 reducing sugar; 1.63 g 100g–1 ash; 0.86 g 100 g–1 lipid and 3.97 g 100 g–1 protein. Enzymatic hydrolysis was carried out by means of rotational central composite design, analyzing the effects of concentrations of α-amylase enzyme (10 to 50 U g starch–1, and the amyloglucosidase enzyme (80 to 400 U g starch–1 on variable responses: percent conversion of starch into reducing sugars (RSC and soluble solid content (SS. Highest values of RSC (110% and SS (12 °Brix were observed when using the maximum concentration of amyloglucosidase and throughout the concentration range of α-amylase. Enzymatic hydrolysis of cassava peel is feasible and allows the use of hydrolysate in fermentation processes for the production of various products, such as alcoholic drinks, vinegar, among others.

  6. Cyanobacteria Biorefinery - Production of poly(3-hydroxybutyrate) with Synechocystis salina and utilisation of residual biomass.

    Science.gov (United States)

    Meixner, K; Kovalcik, A; Sykacek, E; Gruber-Brunhumer, M; Zeilinger, W; Markl, K; Haas, C; Fritz, I; Mundigler, N; Stelzer, F; Neureiter, M; Fuchs, W; Drosg, B

    2018-01-10

    This study evaluates a biorefinery concept for producing poly(3-hydroxybutyrate) (PHB) with the cyanobacterial strain Synechocystis salina. Due to this reason, pigment extraction and cell disruption were investigated as pre-treatment steps for the harvested cyanobacterial biomass. The results demonstrated that at least pigment removal was necessary to obtain PHB with processable quality (weight average molecular weight: 569-988kgmol -1 , melting temperature: 177-182°C), which was comparable to heterotrophically produced PHB. The removed pigments could be utilised as additional by-products (chlorophylls 0.27-1.98mgg -1 TS, carotenoids 0.21-1.51mgg -1 TS, phycocyanin 0-127mgg -1 TS), whose concentration depended on the used nutrient source. Since the residual biomass still contained proteins (242mgg -1 TS), carbohydrates (6.1mgg -1 TS) and lipids (14mgg -1 TS), it could be used as animal feed or converted to biomethane (348 m n 3 t -1 VS) and fertiliser. The obtained results indicate that the combination of photoautotrophic PHB production with pigment extraction and utilisation of residual biomass offer the highest potential, since it contributes to decrease the environmental footprint of the process and because biomass could be used in a cascading way and the nutrient cycle could be closed. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Isolation and characterization of lignin from the oak wood bioethanol production residue for adhesives.

    Science.gov (United States)

    Lee, Soo Jung; Kim, Hyun Joo; Cho, Eun Jin; Song, Younho; Bae, Hyeun-Jong

    2015-01-01

    Lignin was isolated from the residue of bioethanol production with oak wood via alkaline and catalyzed organosolv treatments at ambient temperature to improve the purity of lignin for the materials application. The isolated lignins were analyzed for their chemical composition by nitrobenzene oxidation method and their functionality was characterized via wet chemistry method, element analysis, (1)H NMR, GPC and FTIR-ATR. The isolated lignin by acid catalyzed organosolv treatment (Acid-OSL) contained a higher lignin content, aromatic proton, phenolic hydroxyl group and a lower nitrogen content that is more reactive towards chemical modification. The lignin-based adhesives were prepared and the bond strength was measured to evaluate the enhanced reactivity of lignin by the isolation. Two steps of phenolation and methylolation were applied for the modification of the isolated lignins and their tensile strengths were evaluated for the use as an adhesive. The acid catalyzed organosolv lignin-based adhesives had comparable bond strength to phenol-formaldehyde adhesives. The analysis of lignin-based adhesives by FTIR-ATR and TGA showed structural similarity to phenol adhesive. The results demonstrate that the reactivity of lignin was enhanced by isolation from hardwood bioethanol production residues at ambient temperature and it could be used in a value-added application to produce lignin-based adhesives. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Influence of delignification efficiency with alkaline peroxide on the digestibility of furfural residues for bioethanol production.

    Science.gov (United States)

    Wang, Kun; Yang, Haiyan; Chen, Qian; Sun, Run-cang

    2013-10-01

    Furfural residues (FR), the abundant lignocellulosic residues from commercial furfural production, were delignified with alkaline peroxide process and then taken as substrates for ethanol production by simultaneous saccharification and fermentation (SSF). It was apparent that the delignification efficiency was increased with higher chemical addition and temperature, reaching the maximum removal (73.5%) of lignin. The widespread accessible-cellulose in FR favored the enzymatic hydrolysis and achieved the considerable bioconversion (75.7% with 5 FPU+10 IU/g substrate). The delignification process increased the relative glucose content and then the bioconversion efficiency, closely relating to the increased specific surface area. As the cellulose contents were higher than 60%, the final conversions conversely fell to around 75%, probably due to the insufficient utilization of all active cellulose with low enzyme cocktails addition. Although the SSF bioconversion slightly decreased as the elevated amount of fermentable cellulose, the maximum of ethanol concentration (16.9 g/L) was expectedly obtained. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Evaluation of residual effect of partially acidulated phosphate rock on crop production

    International Nuclear Information System (INIS)

    Munyinda, K; Lungu, O.I.

    2005-01-01

    Many countries in Sub -Saharan Africa are rich in phosphate rock (PR) -the primary raw material for the production of phosphate fertilizers. Because of the low local demand and the global surplus of P fertilisers, these deposits have not been developed. Technical, economic and conducive policy regimes are needed in order to initiate tapping of these resources and providing them at low cost.Direct application of of ground PR would be one way of providing the PR at low cost, but this mode of application has proved not to be effective with Zambian PR. In current field trials, simply processed partially acidulated PR (PAPR) was utilised. The main objective of this study was to evaluate the agronomic effectiveness of PAPR produced from simply processed phospate rock products in soils of varying soil chemical properties for direct and residual application on field crops. The results of the three year study have demonstrated that PAPR was a good source of P in providing P to plants and improving crop yields.Where soils were acidic and acutely P deficient, PAPR was a better source of P compared to highly soluble fertilizers.The results have also shown that in the third year as in the second year , there was a greater residual effect of PAPR to increase crop yields. A one time application of P was effective for up to three years. (author)

  10. Comparison of communities of stored product mites in grain mass and grain residues in the Czech Republic.

    Science.gov (United States)

    Hubert, Jan; Munzbergová, Zuzana; Kucerová, Zuzana; Stejskal, Václav

    2006-01-01

    In storage facilities one can find grain either in stored grain mass or in grain residues in the store corners or machinery. Although it is claimed that grain residues are serious pest reservoirs since they harbor numbers of stored product arthropods and are connected via continuous emigration with grain mass, the documentation for this is not convincing. Therefore in 78 selected grain stores, we simultaneously sampled the grain mass and residues in order to compare concurrent mite communities in these two different habitats. We found 30 species in about 614,000 individuals in residues and 23 species in about 20 000 individuals in grain mass. Canonical correspondence analysis (CCA) of transformed abundance data showed differences in the communities of mites in grain mass and residues: (i) species associated to grain residues (e.g. Tyrophagus longior, Tydeus interruptus, Acarus farris and Cheyletus eruditus) and (ii) species associated to both grain mass and grain residues (e.g. Tarsonemus granarius, Acarus siro, Tyrophagus putrescentiae, Lepidoglyphus destructor and Cheyletus malaccensis). Although the residue samples had more mites and higher species diversity than the stored grain mass, no correlation in mite abundance and species numbers between samples from grain residues and grain mass was found, thereby indicating low connectivity of these two habitats.

  11. Modelling of different enzyme productions by solid-state fermentation on several agro-industrial residues.

    Science.gov (United States)

    Diaz, Ana Belen; Blandino, Ana; Webb, Colin; Caro, Ildefonso

    2016-11-01

    A simple kinetic model, with only three fitting parameters, for several enzyme productions in Petri dishes by solid-state fermentation is proposed in this paper, which may be a valuable tool for simulation of this type of processes. Basically, the model is able to predict temporal fungal enzyme production by solid-state fermentation on complex substrates, maximum enzyme activity expected and time at which these maxima are reached. In this work, several fermentations in solid state were performed in Petri dishes, using four filamentous fungi grown on different agro-industrial residues, measuring xylanase, exo-polygalacturonase, cellulose and laccase activities over time. Regression coefficients after fitting experimental data to the proposed model turned out to be quite high in all cases. In fact, these results are very interesting considering, on the one hand, the simplicity of the model and, on the other hand, that enzyme activities correspond to different enzymes, produced by different fungi on different substrates.

  12. RISKS ASSOCIATED WITH THE PRESENCE OF ANTIMICROBIAL DRUG RESIDUES IN MEAT PRODUCTS AND PRODUCTS OF ANIMAL SLAUGHTER

    Directory of Open Access Journals (Sweden)

    D. S. Bataeva

    2016-01-01

    Full Text Available The risks associated with the presence of antimicrobial drug residues in meat and products of animal slaughter were determined. One of them is the emergence of antimicrobial resistance in pathogenic and conditionally pathogenic microorganisms isolated from meat and products of animal slaughter. It was established that Escherichia coli, Salmonella and Pseudomonas were resistant to ampicillin, tetracycline, tylosin and cephalolexin. However, Listeria monocytogenes did not have resistance to these antibiotics. It was also established that when entering an animal body, antimicrobials were accumulated mostly in liver and kidneys of an animal followed by meat and, to the least degree, in fat. It was found that up to 65% of the tested samples were contaminated with antimicrobials to a greater or lesser degree.

  13. Production of green biodegradable plastics of poly(3-hydroxybutyrate) from renewable resources of agricultural residues.

    Science.gov (United States)

    Dahman, Yaser; Ugwu, Charles U

    2014-08-01

    This work describes potential opportunities for utilization of agro-industrial residues to produce green biodegradable plastics of poly(3-hydroxybutyrate) (PHB). Wheat straws were examined with good efficacy of carbon substrates using Cupriavidus necator. Production was examined in separate hydrolysis and fermentation (SHF) in the presence and absence of WS hydrolysis enzymes, and in simultaneous saccharification and fermentation (SSF) with enzymes. Results showed that production of PHB in SSF was more efficient in terms of viable cell count, cell dry weight, and PHB production and yield compared to those of SHF and glucose-control cultures. While glucose control experiment produced 4.6 g/L PHB; SSF produced 10.0 g/L compared to 7.1 g/L in SHF when utilizing enzymes during WS hydrolysis. Results showed that most of sugars produced during the hydrolysis were consumed in SHF (~98 %) compared to 89.2 % in SSF. Results also demonstrated that a combination of glucose and xylose can compensate for the excess carbon required for enhancing PHB production by C. necator. However, higher concentration of sugars at the beginning of fermentation in SHF can lead to cell inhibition and consequently catabolite repressions. Accordingly, results demonstrated that the gradual release of sugars in SSF enhanced PHB production. Moreover, the presence of sugars other than glucose and xylose can eliminate PHB degradation in medium of low carbon substrate concentrations in SSF.

  14. Use of residual banana for polyhydroxybutyrate (PHB) production: case of study in an integrated biorefinery.

    Science.gov (United States)

    Naranjo, Javier M; Cardona, Carlos A; Higuita, Juan C

    2014-12-01

    Polyhydroxybutyrate is a type of biopolymer that can be produced from hydrolyzed polysaccharide materials and could eventually replace polypropylene and polyethylene, being biodegradable, biocompatible and produced from renewable carbon sources. However, polyhydroxybutyrate is not still competitive compared to petrochemical polymers due to their high production costs. The improvement of the production processes requires a search for new alternative raw materials, design of the pretreatment technique and improvement in the fermentation and separation steps. In addition, if the polyhydroxybutyrate production is coupled into a multiproduct biorefinery it could increase the economic and environmental availability of the process through energy and mass integration strategies. In this work alternatives of energy and mass integrations for the production of polyhydroxybutyrate into a biorefinery from residual banana (an agro-industrial waste) were analyzed. The results show that the energetic integration can reduce up to 30.6% the global energy requirements of the process and the mass integration allows a 35% in water savings. Thus, this work demonstrates that energy and mass integration in a biorefinery is a very important way for the optimal use of energy and water resources hence decreasing the production cost and the negative environmental impacts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Itaconic Acid Production by Filamentous Fungi in Starch-Rich Industrial Residues.

    Science.gov (United States)

    Bafana, Richa; Sivanesan, Sarvanadevi; Pandey, R A

    2017-09-01

    Several fungi and starch-rich industrial residues were screened for itaconic acid (IA) production. Out of 15 strains, only three fungal strains were found to produce IA, which was confirmed by HPLC and GC-MS analysis. These strains were identified as Aspergillus terreus strains C1 and C2, and Ustilago maydis strain C3 by sequencing of 18S rRNA gene and internal transcribed spacer regions. Cis -aconitate decarboxylase ( cad ) gene, which encodes a key enzyme in IA production in A. terreus , was characterized from strains C1 and C2. C1 and C2 cad gene sequences showed about 96% similarity to the only available GenBank sequence of A. terreus cad gene. 3-D structure and cis -aconitic acid binding pocket of Cad enzyme were predicted by structural modeling. Rice, corn and potato starch wastes were screened for IA production. These materials were enzymatically hydrolyzed under experimentally optimized conditions resulting in the highest glucose production of 230 mg/mL from 20% potato waste. On comparing the production potential of selected strains with different wastes, the best IA production was achieved with strain C1 (255.7 mg/L) using potato waste. Elemental composition as well as batch-to-batch variation in waste substrates were analyzed. The difference in IA production from two different batches of potato waste was found to inversely correlate with their phosphorus content, which indicated that A. terreus produced IA under phosphate limiting condition. The potato waste hydrolysate was deionized to remove inhibitory ions like phosphate, resulting in improved IA production of 4.1 g/L by C1 strain, which is commercially competitive.

  16. Estimating emissions from crop residue open burning in China based on statistics and MODIS fire products.

    Science.gov (United States)

    Li, Jing; Bo, Yu; Xie, Shaodong

    2016-06-01

    With the objective of reducing the large uncertainties in the estimations of emissions from crop residue open burning, an improved method for establishing emission inventories of crop residue open burning at a high spatial resolution of 0.25°×0.25° and a temporal resolution of 1month was established based on the moderate resolution imaging spectroradiometer (MODIS) Thermal Anomalies/Fire Daily Level3 Global Product (MOD/MYD14A1). Agriculture mechanization ratios and regional crop-specific grain-to-straw ratios were introduced to improve the accuracy of related activity data. Locally observed emission factors were used to calculate the primary pollutant emissions. MODIS satellite data were modified by combining them with county-level agricultural statistical data, which reduced the influence of missing fire counts caused by their small size and cloud cover. The annual emissions of CO2, CO, CH4, nonmethane volatile organic compounds (NMVOCs), N2O, NOx, NH3, SO2, fine particles (PM2.5), organic carbon (OC), and black carbon (BC) were 150.40, 6.70, 0.51, 0.88, 0.01, 0.13, 0.07, 0.43, 1.09, 0.34, and 0.06Tg, respectively, in 2012. Crop residue open burning emissions displayed typical seasonal and spatial variation. The highest emission regions were the Yellow-Huai River and Yangtse-Huai River areas, and the monthly emissions were highest in June (37%). Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of within ±126% for N2O to a high of within ±169% for NH3. Copyright © 2016. Published by Elsevier B.V.

  17. Evaporation and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the influence of climate change on evaporation is discussed. The emphasis is on open water evaporation. Three methods for calculating evaporation are compared considering only changes in temperature and factors directly dependent on temperature. The Penman-method is used to

  18. Protamylasse, a Residual Compound of Industrial Starch Production, Provides a Suitable Medium for Large-Scale Cyanophycin Production

    Science.gov (United States)

    Elbahloul, Yasser; Frey, Kay; Sanders, Johan; Steinbüchel, Alexander

    2005-01-01

    Protamylasse is a residual compound occurring during the industrial production of starch from potatoes. It contains a variety of nutrients and all necessary minerals and could be used as a carbon, nitrogen, and energy source for the growth of bacteria and also for cyanophycin (CGP) biosynthesis. Media containing protamylasse as the sole compound diluted only in water were therefore examined for their suitability in CGP production. Among various bacterial strains investigated in this study, a recombinant strain of Escherichia coli DH1 harboring plasmid pMa/c5-914::cphA6803, which carries the cyanophycin synthetase structural gene (cphA) from Synechocystis sp. strain PCC6803, was found to be most suitable. Various cultivation conditions for high CGP contents were first optimized in shake flask cultures. The optimized conditions were then successfully applied to 30- and 500-liter fermentation scales in stirred tank reactors. A maximum CGP content of 28% (wt/wt) CGP per cell dry matter was obtained in 6% (vol/vol) protamylasse medium at an initial pH of 7.0 within a cultivation period of only 24 h. The CGP contents obtained with this recombinant strain employing protamylasse medium were higher than those obtained with the same strain cultivated in mineral salts medium or in expensive commercial complex media such as Luria-Bertani or Terrific broth. It was shown that most amino acids present in the protamylasse medium were almost completely utilized by the cells during cultivation. Exceptions were alanine, tryptophan, tyrosine, and most interestingly, arginine. Furthermore, CGP was easily isolated from protamylasse-grown cells by applying the acid extraction method. The CGP exhibited a molecular mass of about 26 to 30 kDa and was composed of 50% (mol/mol) aspartate, 46% (mol/mol) arginine, and 4% (mol/mol) lysine. The use of cheap residual protamylasse could contribute in establishing an economically and also ecologically feasible process for the biotechnological

  19. Antioxidant, Anti-Tyrosinase and Anti-Inflammatory Activities of Oil Production Residues from Camellia tenuifloria

    Science.gov (United States)

    Chiou, Shu-Yuan; Ha, Choi-Lan; Wu, Pei-Shan; Yeh, Chiu-Ling; Su, Ying-Shan; Li, Man-Po; Wu, Ming-Jiuan

    2015-01-01

    Camellia tenuifloria is an indigenous Camellia species used for the production of camellia oil in Taiwan. This study investigated for the first time the potential antioxidant, anti-tyrosinase and anti-inflammatory activities of oil production byproducts, specifically those of the fruit shell, seed shell, and seed pomace from C. tenuifloria. It was found that the crude ethanol extract of the seed shell had the strongest DPPH scavenging and mushroom tyrosinase inhibitory activities, followed by the fruit shell, while seed pomace was the weakest. The IC50 values of crude extracts and fractions on monophenolase were smaller than diphenolase. The phenolic-rich methanol fraction of seed shell (SM) reduced nitric oxide (NO) production, and inducible nitric oxide synthase (iNOS) expression in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. It also repressed the expression of IL-1β, and secretion of prostaglandin E2 (PGE2) and IL-6 in response to LPS. SM strongly stimulated heme oxygenase 1 (HO-1) expression and addition of zinc protoporphyrin (ZnPP), a HO-1 competitive inhibitor, reversed the inhibition of NO production, indicating the involvement of HO-1 in its anti-inflammatory activity. The effects observed in this study provide evidence for the reuse of residues from C. tenuifloria in the food additive, medicine and cosmetic industries. PMID:26690417

  20. Antioxidant, Anti-Tyrosinase and Anti-Inflammatory Activities of Oil Production Residues from Camellia tenuifloria

    Directory of Open Access Journals (Sweden)

    Shu-Yuan Chiou

    2015-12-01

    Full Text Available Camellia tenuifloria is an indigenous Camellia species used for the production of camellia oil in Taiwan. This study investigated for the first time the potential antioxidant, anti-tyrosinase and anti-inflammatory activities of oil production byproducts, specifically those of the fruit shell, seed shell, and seed pomace from C. tenuifloria. It was found that the crude ethanol extract of the seed shell had the strongest DPPH scavenging and mushroom tyrosinase inhibitory activities, followed by the fruit shell, while seed pomace was the weakest. The IC50 values of crude extracts and fractions on monophenolase were smaller than diphenolase. The phenolic-rich methanol fraction of seed shell (SM reduced nitric oxide (NO production, and inducible nitric oxide synthase (iNOS expression in lipopolysaccharide (LPS-stimulated RAW 264.7 cells. It also repressed the expression of IL-1β, and secretion of prostaglandin E2 (PGE2 and IL-6 in response to LPS. SM strongly stimulated heme oxygenase 1 (HO-1 expression and addition of zinc protoporphyrin (ZnPP, a HO-1 competitive inhibitor, reversed the inhibition of NO production, indicating the involvement of HO-1 in its anti-inflammatory activity. The effects observed in this study provide evidence for the reuse of residues from C. tenuifloria in the food additive, medicine and cosmetic industries.

  1. Utilization of agroindustrial residues for lipase production by solid-state fermentation.

    Science.gov (United States)

    Damaso, Mônica Caramez Triches; Passianoto, Moisés Augusto; de Freitas, Sidinéa Cordeiro; Freire, Denise Maria Guimarães; Lago, Regina Celi Araujo; Couri, Sonia

    2008-10-01

    The aim of this work was to produce lipases by solid-state fermentation (SSF) using, as substrate, agroindustrial residue supplemented with by-products from corn oil refining process or olive oil. For a group of ten fungi strains selected in the first steps, the lipase activity obtained by SSF varied from 7.7 to 58.6 U/g of dry substrate (gds). Among the evaluated strains, the Aspergillus niger mutant 11T53A14 was selected by presenting the best enzymatic production. For the fermentation tests, two substrates were also investigated: wheat bran and corn cob, both supplemented with olive oil. The best results were obtained with wheat bran. Additionally, three industrial by-products from corn oil refining (soapstock, stearin and fatty acids) were evaluated as substitutes to the olive oil in the function of lipases production inducer. Among them, soapstock and stearin were the best inducers, whereas fatty acids presented an inhibitor effect. The highest lipase activities using soapstock, stearin and fatty acids were 62.7 U/gds, 37.7 U/gds and 4.1 U/gds, respectively.

  2. Activated carbons from waste biomass: an alternative use for biodiesel production solid residues.

    Science.gov (United States)

    Nunes, Anne A; Franca, Adriana S; Oliveira, Leandro S

    2009-03-01

    Defective coffee press cake, a residue from coffee oil biodiesel production, was evaluated as raw material for production of an adsorbent for removal of methylene blue (MB) from aqueous solution. Batch adsorption tests were performed at 25 degrees C and the effects of particle size, contact time, adsorbent dosage and pH were investigated. Preliminary adsorption tests indicated that thermal treatment is necessary in order to improve adsorption capacity. Adsorption kinetics was determined by fitting first and second-order kinetic models to the experimental data, with the second-order model providing the best description of MB adsorption onto the prepared adsorbent. The experimental adsorption equilibrium data were fitted to Langmuir, Freundlich and Temkin adsorption models, with the last two providing the best fits. The experimental data obtained in the present study indicated that this type of waste material is a suitable candidate for use in the production of adsorbents for removal of cationic dyes, thus contributing for the implementation of sustainable development in both the coffee and biodiesel production chains.

  3. Logistics cost analysis of rice residues for second generation bioenergy production in Ghana.

    Science.gov (United States)

    Vijay Ramamurthi, Pooja; Cristina Fernandes, Maria; Sieverts Nielsen, Per; Pedro Nunes, Clemente

    2014-12-01

    This study explores the techno-economic potential of rice residues as a bioenergy resource to meet Ghana's energy demands. Major rice growing regions of Ghana have 70-90% of residues available for bioenergy production. To ensure cost-effective biomass logistics, a thorough cost analysis was made for two bioenergy routes. Logistics costs for a 5 MWe straw combustion plant were 39.01, 47.52 and 47.89 USD/t for Northern, Ashanti and Volta regions respectively. Logistics cost for a 0.25 MWe husk gasification plant (with roundtrip distance 10 km) was 2.64 USD/t in all regions. Capital cost (66-72%) contributes significantly to total logistics costs of straw, however for husk logistics, staff (40%) and operation and maintenance costs (46%) dominate. Baling is the major processing logistic cost for straw, contributing to 46-48% of total costs. Scale of straw unit does not have a large impact on logistic costs. Transport distance of husks has considerable impact on logistic costs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale

    Directory of Open Access Journals (Sweden)

    Yann Nicolas Barbot

    2015-09-01

    Full Text Available The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP and biomethane recovery of industrial Laminaria japonica waste (LJW in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC, as well as a co-digestion approach with maize silage (MS did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g−1 volatile solids (VS were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g−1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg−1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded.

  5. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale.

    Science.gov (United States)

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-09-18

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g(-1) volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g(-1) VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH₄ recovery of 189 L kg(-1) VS was achieved and a biogas composition of 55% CH₄ and 38% CO₂ was recorded.

  6. Logistics cost analysis of rice residues for second generation bioenergy production in Ghana

    DEFF Research Database (Denmark)

    Vijay Ramamurthi, Pooja; Cristina Fernandes, Maria; Nielsen, Per Sieverts

    2014-01-01

    –72%) contributes significantly to total logistics costs of straw, however for husk logistics, staff (40%) and operation and maintenance costs (46%) dominate. Baling is the major processing logistic cost for straw, contributing to 46–48% of total costs. Scale of straw unit does not have a large impact on logistic......This study explores the techno-economic potential of rice residues as a bioenergy resource to meet Ghana’s energy demands. Major rice growing regions of Ghana have 70–90% of residues available for bioenergy production. To ensure cost-effective biomass logistics, a thorough cost analysis was made...... for two bioenergy routes. Logistics costs for a 5MWe straw combustion plant were 39.01, 47.52 and 47.89USD/t for Northern, Ashanti and Volta regions respectively. Logistics cost for a 0.25MWe husk gasification plant (with roundtrip distance 10km) was 2.64USD/t in all regions. Capital cost (66...

  7. Pyrolysis of automotive shredder residue for the production of fuel-grade gas

    International Nuclear Information System (INIS)

    Sharp, L.L.; Ness, R.O. Jr.

    1993-01-01

    Every year eight to ten million cars and trucks are disposed of by shredding at one of the 200 auto shredders located in the United States. Automotive shredder residue (ASR) is a by-product created in the dismantling of automobiles. Figure 1 illustrates the process by which ASR is generated. An automobile is stripped of useful and/or hazardous items, such as the gas tank, battery, tires, and radiator. Although it is beneficial to have these items removed for safety and environmental concerns, this is not always accomplished. After removal of some or all of these items, the automobile is shredded to provide a material less than 4 inches in size and composed of approximately 50% organic and 50% inorganic fractions. Ferrous scrap is then separated out magnetically. This ferrous scrap supplies the steel industry with 12 to 14 million tons per year for electric arc furnace feedstock. Air cyclone separators isolate a low density open-quotes fluffclose quotes from the nonferrous fraction (aluminum, copper, etc.). This fluff (shredder residue) is composed of a variety of plastics, fabrics, foams, glass, rubber, and an assortment of contaminants. Fluff bulk density is approximately 20 lb/ft

  8. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale

    Science.gov (United States)

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-01-01

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g−1 volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g−1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg−1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded. PMID:26393620

  9. TECHNOLOGICAL TESTS USING QUARTZITE RESIDUES AS COMPONENT OF CERAMIC MASS AT THE PORCELAIN STONEWARE PRODUCTION

    Directory of Open Access Journals (Sweden)

    Marcondes Mendes Souza

    2015-03-01

    Full Text Available This work aims to evaluate through technological tests the use of quartzite residues as component at the the production of porcelain stoneware. Were collected five samples of quartzites called of green quartzite, black quartzite, pink quartzite, goldy quartzite, white quartzite. After, the raw materials were milled, passed by a sieve with a Mesh of 200# (Mesh and characterized by chemical analysis in fluorescence of x-rays and also analysis of the crystalline phases by diffraction of x-rays. The porcelain tiles mass is composed of five formulations containing 57% of feldspar, 37% of clay and 6% of residues of quartzite with different coloration. For the preparation of the specimens, it was used uniaxial pressing, which afterwards were synthesized at 1150°C, 1200°C and 1250°C. After the sintering, the specimens were submit for tests of technological characterization like: water absorption, linear shrinkage, apparently porosity, density and flexural strain at three points. The results presented in the fluorescence of x-rays showed a high-content of iron oxide on black quartzite that is why it was discarded the utilization of it in porcelain stoneware. All quartzite formulations had low water absorption achieved when synthesized at 1200°C, getting 0.1 to 0.36% without having gone through the atomization process. At the tests of flexural strain, all the quartzite had in acceptance limits, according to the European norm EN 100, overcoming 27 MPA at 1200°C

  10. Balance of natural radionuclides in the brown coal based power generation and harmlessness of the residues and side product utilization

    International Nuclear Information System (INIS)

    Schulz, Hartmut; Kunze, Christian; Hummrich, Holger

    2017-01-01

    During brown coal combustion a partial enrichment of natural radionuclides occurs in different residues. Residues and side product from brown coal based power generation are used in different ways, for example filter ashes and gypsum from flue gas desulfurization facilities are used in the construction materials fabrication and slags for road construction. Detailed measurement and accounting of radionuclides in the mass throughputs in coal combustion power plants have shown that the utilized gypsum and filter ashes are harmless in radiologic aspects.

  11. Conceptual model and procedures to assimilate production technologies of bioenergetics of residual biomass

    International Nuclear Information System (INIS)

    Muto Lubota, David; González Suárez, Erenio; Hernández Pérez, Gilberto; Miño Valdés, Juan Esteban

    2016-01-01

    The present work expose the conceptual pattern for a process of assimilation of technologies with the purpose of creating obtaining capacities of bio energy with the objective of achieving an energy insurance of the recycle of Urban Solid Residuals (RSU) in the municipality of Cabinda, Angola. The conceptual pattern is novel because it considers the south-south collaboration, and it is supported by a general procedure of assimilation of the technologies that includes in one of its steps a specify procedure for the step concerning the insurance of the chain supply that contains as additional aspect, in a novel way, the determination of the initial’s investors capacities assisting to the demand of final products as well as to the readiness of the raw materials, based in the problems of uncertainty to the future changes. Finally conclusions are elaborated with projections for the future work. (author)

  12. Environmental performance of crop residues as an energy source for electricity production

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik; Mogensen, Lisbeth

    2013-01-01

    This paper aims to address the question, “What is the environmental performance of crop residues as an alternative energy source to fossil fuels, and whether and how can it be improved?”. In order to address the issue, we compare electricity production from wheat straw to that from coal and natural...... that of coal but worse than natural gas. In order to investigate the question of whether and how a reduction in the single score per kW h of electricity produced from straw is feasible, we perform a scenario analysis where we consider two approaches. The first one is a potential significant reduction...... gas. The results on the environmental performance of straw for energy utilization and the two fossil fuel references are displayed first for different midpoint categories and then aggregated into a single score. The midpoint impact assessment shows that substitution of straw either for coal...

  13. Analysis of Petroleum Products in Fire Debris Residues by Gas Chromatography: A Literature Review

    Directory of Open Access Journals (Sweden)

    Gurvinder Singh Bumbrah

    2017-06-01

    Full Text Available This review gives a brief overview of developments in the analysis of petroleum products (PP in fire debris residues (FDR by gas chromatography (GC. The review covers different aspects of analysis such as the substrates involved, isolation procedures, column and mobile phase used, and subsequent detection in tabular form. This paper covers detection of PP such as petrol, kerosene, and diesel in various types’ of samples of interest to fire debris analysts. Solid phase microextraction is most frequently used along with gas chromatography-mass spectrometry (GC-MS for the extraction and identification of PP from FDR. Chemometric tools should be used to improve the significance and reliability of results obtained from the analysis of FDR. However, the potential utility of portable GC-MS in fire debris analysis cannot be ignored, and its proper development and validation is required before using it for this purpose.

  14. Conjugated fatty acid synthesis: residues 111 and 115 influence product partitioning of Momordica charantia conjugase.

    Science.gov (United States)

    Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John

    2012-05-11

    Conjugated linolenic acids (CLNs), 18:3 Δ(9,11,13), lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ(9,12,15)). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ(9cis,11trans,13cis)) or α-eleostearic acid (18:3 Δ(9cis,11trans,13trans)). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation.

  15. Rapid detection of chlorpyrifos pesticide residue concentration in agro-product using Raman spectroscopy

    Science.gov (United States)

    Dhakal, Sagar; Peng, Yankun; Li, Yongyu; Chao, Kuanglin; Qin, Jianwei; Zhang, Leilei; Xu, Tianfeng

    2014-05-01

    Different chemicals are sprayed in fruits and vegetables before and after harvest for better yield and longer shelf-life of crops. Cases of pesticide poisoning to human health are regularly reported due to excessive application of such chemicals for greater economic benefit. Different analytical technologies exist to detect trace amount of pesticides in fruits and vegetables, but are expensive, sample destructive, and require longer processing time. This study explores the application of Raman spectroscopy for rapid and non-destructive detection of pesticide residue in agricultural products. Raman spectroscopy with laser module of 785 nm was used to collect Raman spectral information from the surface of Gala apples contaminated with different concentrations of commercially available organophosphorous (48% chlorpyrifos) pesticide. Apples within 15 days of harvest from same orchard were used in this study. The Raman spectral signal was processed by Savitzky-Golay (SG) filter for noise removal, Multiplicative Scatter Correction (MSC) for drift removal and finally polynomial fitting was used to eliminate the fluorescence background. The Raman spectral peak at 677 cm-1 was recognized as Raman fingerprint of chlorpyrifos. Presence of Raman peak at 677 cm-1 after fluorescence background removal was used to develop classification model (presence and absence of pesticide). The peak intensity was correlated with actual pesticide concentration obtained using Gas Chromatography and MLR prediction model was developed with correlation coefficient of calibration and validation of 0.86 and 0.81 respectively. Result shows that Raman spectroscopy is a promising tool for rapid, real-time and non-destructive detection of pesticide residue in agro-products.

  16. Growth and Productivity of Response of Hybrid Rice to Application of Animal Manures, Plant Residues and Phosphorus

    Directory of Open Access Journals (Sweden)

    Dr. Amanullah

    2016-10-01

    Full Text Available The objective of this research was to evaluate the impact of organic sources (animal manures vs. plant residues at the rate of 10 t ha-1 each on the productivity profitability of small land rice (Oryza sativa L. grower under different levels of phosphorus (0, 30, 60 and 90 kg P ha-1 fertilization. Two separate field experiments were conducted. In experiment (1, impact of three animal manures sources (cattle, sheep & poultry manures and P levels was studied along with one control plot (no animal manure and P applied as check was investigated. In experiment (2, three plant residues sources (peach leaves, garlic residues & wheat straw and P levels was studied along with one control plot (no plant residues and P applied as check. Both the experiments were carried out on small land farmer field at District Swabi, Khyber Pakhtunkhwa Province (Northwest Pakistan during summer 2015. The results revealed that in both experiments the control plot had significantly (p≤0.05 less productivity than the average of all treated plots with organic sources and P level. The increase in P levels in both experiments (animal manure vs. plant residues had resulted in higher rice productivity (90 = 60 > 30 > 0 kg P ha-1. In the experiment under animal manures, application of poultry manure increased rice productivity as compared with sheep and cattle manures (poultry > sheep > cattle manures. In the experiment under plant residues, application of peach leaves or garlic resides had higher rice productivity over wheat straw (peach leaves = garlic residues > wheat straw. On the average, the rice grown under animal manures produced about 20% higher grain yield than the rice grown under crop residues. We concluded from this study that application of 90 kg P ha-1 along with combined application of animal manures especially poultry manure could increase rice productivity. We conclude from this study that application of 90 kg P ha-1 along with combined application of animal

  17. Optimization of fibrinolytic protease production from Bacillus subtilis I-2 using agro-residues

    Directory of Open Access Journals (Sweden)

    Bijender Kumar Bajaj

    2014-10-01

    Full Text Available The aim of this work was to study the production of fibrinolytic protease by Bacillus subtilis I-2 on agricultural residues. Molasses substantially enhanced (63% protease production (652.32 U/mL than control (398.64 U/mL. Soybean meal supported maximum protease production (797.28 U/mL, followed by malt extract (770.1 U/mL, cotton cake (761.04 U/mL, gelatin (742.92 U/mL and beef extract (724.8 U/mL. Based on the Plackett-Burman designed experiments, incubation time, soybean meal, mustard cake and molasses were identified as the significant fermentation parameters. Ammonium sulfate precipitation and DEAE sephadex chromatography resulted 4.8-fold purification of protease. Zymography showed the presence of three iso-forms in the partially purified protease preparation, which was confirmed by the SDS-PAGE analysis (42, 48, 60 kDa. Protease exhibited maximum activity at 50oC and at pH 8.0. Significant stability was observed at 30-50oC and at pH 7.0-10.0. Mg2+, Zn2+, Co2+, Ca2+, Mn2+ and Cu2+,EGTA, EDTA and aprotinin severely decreased the enzyme activity.

  18. Production of green biocellulose nanofibers by Gluconacetobacter xylinus through utilizing the renewable resources of agriculture residues.

    Science.gov (United States)

    Al-Abdallah, Wahib; Dahman, Yaser

    2013-11-01

    The present study demonstrates the ability to produce green biocellulose nanofibers using the renewable resources of agriculture residues. Locally grown wheat straws (WS) were hydrolyzed under different conditions. Their hydrolysates were utilized to produce the nanofibers in separate hydrolysis fermentation process by Gluconacetobacter xylinus strain bacterium. Highest biocellulose production of ~10.6 g/L was achieved with samples that were enzymatically hydrolyzed. Moreover, acidic hydrolyzed WS produced up to 9.7 g/L, with total sugar concentrations in culture media of 43 g/L. Generally, enzymatic hydrolysis of WS resulted in more total sugar concentration than the acidic hydrolysis (i.e., 52.12 g/L), while water hydrolysis produced the least. This can be related to utilizing Xylanase in addition to Cellulase and Beta-glucosidase that helps to hydrolyse WS dry basis of cellulose and hemicelluloses. Sugar mixtures produced under all hydrolysis conditions were mainly composed of glucose and xylose with average percentages of 56 and 28 %, respectively. Acidic hydrolysis at higher acid concentration, as well as soaking WS in the acidic solution for longer time, improved the total sugar concentration in the culture media by 18 %. Conducting thermal treatment at more intense conditions of higher temperature or heating time improved the total sugar produced with acidic hydrolysis. These conditions, however, resulted in further production of furfural, which considerably affected bacterial cells proliferation. This resulted in lowest sugar consumption in the range of 62-64 % that affected final BC production.

  19. Biogas production from N-methylmorpholine-N-oxide (NMMO) pretreated forest residues.

    Science.gov (United States)

    Aslanzadeh, Solmaz; Berg, Andreas; Taherzadeh, Mohammad J; Sárvári Horváth, Ilona

    2014-03-01

    Lignocellulosic biomass represents a great potential for biogas production. However, a suitable pretreatment is needed to improve their digestibility. This study investigates the effects of an organic solvent, N-Methylmorpholine-N-oxide (NMMO) at temperatures of 120 and 90 °C, NMMO concentrations of 75 and 85% and treatment times of 3 and 15 h on the methane yield. The long-term effects of the treatment were determined by a semicontinuous experiment. The best results were obtained using 75% NMMO at 120 °C for 15 h, resulting in 141% increase in the methane production. These conditions led to a decrease by 9% and an increase by 8% in the lignin and in the carbohydrate content, respectively. During the continuous digestion experiments, a specific biogas production rate of 92 NmL/gVS/day was achieved while the corresponding rate from the untreated sample was 53 NmL/gVS/day. The operation conditions were set at 4.4 gVS/L/day organic loading rate (OLR) and hydraulic retention time (HRT) of 20 days in both cases. NMMO pretreatment has substantially improved the digestibility of forest residues. The present study shows the possibilities of this pretreatment method; however, an economic and technical assessment of its industrial use needs to be performed in the future.

  20. 18O + 12C fusion-evaporation reaction

    International Nuclear Information System (INIS)

    Heusch, B.; Beck, C.; Coffin, J.P.; Freeman, R.M.; Gallmann, A.; Haas, F.; Rami, F.; Wagner, P.; Alburger, D.E.

    1980-01-01

    A study of the 18 O + 12 C fusion evaporation reaction has been undertaken for 2 reasons: to make a systematic study of the formation cross section for each individual evaporation residue over a broad excitation energy region in the compound nucleus 30 Si:30 to 62 MeV; and to compare all results to fusion-evaporation calculations done in the framework of the Hauser-Feschbach statistical model

  1. Analyzing key constraints to biogas production from crop residues and manure in the EU—A spatially explicit model

    Science.gov (United States)

    Persson, U. Martin

    2017-01-01

    This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates’ biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures’ carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops), or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent). PMID:28141827

  2. Analyzing key constraints to biogas production from crop residues and manure in the EU-A spatially explicit model.

    Directory of Open Access Journals (Sweden)

    Rasmus Einarsson

    Full Text Available This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates' biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures' carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops, or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent.

  3. Analysis of veterinary drug residue monitoring results for commercial livestock products in Taiwan between 2011 and 2015

    Directory of Open Access Journals (Sweden)

    Hsin-Chun Lee

    2018-04-01

    Full Text Available Antibiotics have been widely used in the treatment of livestock diseases. However, the emergence of issues related to drug resistance prompted governments to enact a series of laws regulating the use of antibiotics in livestock. Following control of the problem of drug resistant bacteria, public attention has shifted to the recurring incidence of human health and safety issues caused by residual veterinary drugs in livestock products. To guarantee the safety and hygiene of meat, milk, and eggs from food-producing animals, governments and relevant agencies established laws and regulations for the use of veterinary drugs. It is, therefore, necessary to monitor the content of residual drugs in livestock products at regular intervals to assess whether the regulations have resulted in the effective management of food product safety, and to prevent and manage sudden problems related to this issue. A 2011–2015 livestock product post-marketing monitoring program launched by the Taiwan Food and Drug Administration (TFDA inspected 1487 livestock products. Over the past 5 years, there were 34 samples identified that did not conform to the regulations; these samples included residue drugs such as β-agonists, chloramphenicols, β-lactam antibiotics, sulfa drugs, enrofloxacin, and lincomycin. Inspections of commercial livestock products with the consistent cooperation of agricultural authorities did not detect the drugs that were banned by the government, whereas the detection of other drugs decreased annually with an increase in the post-market monitoring sample size. In the future, the TFDA will continue to monitor the status of residual veterinary drugs in commercial livestock products, adjust the sampling of food products annually according to monitoring results, and closely cooperate with agricultural authorities on source management. Keywords: Agricultural authorities, Livestock products, Post-market monitoring, Veterinary drug residues

  4. Towards efficient bioethanol production from agricultural and forestry residues: Exploration of unique natural microorganisms in combination with advanced strain engineering.

    Science.gov (United States)

    Zhao, Xinqing; Xiong, Liang; Zhang, Mingming; Bai, Fengwu

    2016-09-01

    Production of fuel ethanol from lignocellulosic feedstocks such as agricultural and forestry residues is receiving increasing attention due to the unsustainable supply of fossil fuels. Three key challenges include high cellulase production cost, toxicity of the cellulosic hydrolysate to microbial strains, and poor ability of fermenting microorganisms to utilize certain fermentable sugars in the hydrolysate. In this article, studies on searching of natural microbial strains for production of unique cellulase for biorefinery of agricultural and forestry wastes, as well as development of strains for improved cellulase production were reviewed. In addition, progress in the construction of yeast strains with improved stress tolerance and the capability to fully utilize xylose and glucose in the cellulosic hydrolysate was also summarized. With the superior microbial strains for high titer cellulase production and efficient utilization of all fermentable sugars in the hydrolysate, economic biofuels production from agricultural residues and forestry wastes can be realized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems

    International Nuclear Information System (INIS)

    Santagata, R.; Ripa, M.; Ulgiati, S.

    2017-01-01

    Highlights: • Animal by-products use for electricity generation is investigated as a case-study. • Different methodological approaches to deal with by-products are explored in LCA. • Adopting a holistic perspective is crucial to achieve a circular economy framework. - Abstract: The food processing industry continues to grow, generating large amount of organically rich waste flows per year: these processors face significant economic and environmental pressures for appropriate conversion and disposal of these waste flows. Solid waste disposal problems, mostly in highly urbanized environments, energy shortages (primarily oil) and/or high petroleum prices, as well as environmental issues such as the shrinking landfill capacity, can all be addressed by converting waste material into useful and saleable products. This paper brings to the attention a possible strategy in order to meet the general EU directives concerning the residues utilization and percentage contribution for the total energy consumption by 2020, by evaluating the use of animal by-products (category 3, as defined in the directive 2002/1774/EC) for energy purposes. Slaughterhouse waste represents an important potential source of renewable energy: on average, 40–50% of a live animal is waste, with a potential energy content close to diesel fuel. Treatment of animal waste from slaughterhouse and the subsequent conversion to electricity is investigated as a case study in the Campania Region (Italy): the animal waste undergoes a rendering process, to separate a protein-rich fraction useful for animal meal production and a fat-rich fraction, to be combusted in a diesel engine for power and heat generation (CHP). An environmental assessment of the entire process is performed by means of LCA, providing a quantitative understanding of the plant processing. The study aims to understand to what extent electricity production from animal fat is environmentally sound and if there are steps and/or components

  6. Multi-residue method for the confirmation of four avermectin residues in food products of animal origin by ultra-performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Wang, Fengmei; Chen, Junhui; Cheng, Hongyan; Tang, Zhixu; Zhang, Gang; Niu, Zengyuan; Pang, Shiping; Wang, Xiaoru; Lee, Frank Sen-Chun

    2011-05-01

    A confirmatory method was developed for the rapid determination of abamectin, ivermectin, doramectin and eprinomectin residues in various food products of animal origin, such as pork muscle, pork liver, fish and milk. Samples were homogenized, extracted and de-proteinized by acetonitrile, cleaned via two-step cleaning procedure using Bond Elut C(18) SPE columns and then alumina-N cartridges. All the four avermectin residues in different animal-food products were simultaneously separated and determined by ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) within 3.5 min. Data acquisition under positive ESI-MS/MS was performed by applying multiple reaction monitoring (MRM) for both identification and quantification, and mass spectrometric conditions were optimized to increase selectivity and sensitivity. The matrix-matched calibration curves for different matrices, such as pork muscle, pork liver, fish and milk, were constructed and the interference effect of different sample matrices on the ionization was effectively eliminated. The UPLC-MS/MS method was validated with satisfactory linearity, recovery, precision and stability. Matrix-matched calibration curves of abamectin, ivermectin, doramectin and eprinomectin in four different matrices were linear (r(2)( )≥ 0.990, goodness-of-fit coefficients ≤12.8%) in the range 2.5-200 µg kg(-1). The limits of detection and quantification for the four avermectins were in the range 0.05-0.68 and 0.17-2.27 µg kg(-1), respectively. Recoveries were 62.4-104.5% with good intra- and inter-day precision. The method was rapid, sensitive and reliable, and can be applied to the quantitative analysis of avermectin residues in different animal-food products.

  7. Effect of the rearing tank residue of fish farms on the production of passion fruit tree seedlings

    Directory of Open Access Journals (Sweden)

    F. O. R. Silva

    2017-03-01

    Full Text Available The objective of this study was to evaluate the initial growth of seedlings and biomass production of blue and yellow passion fruit trees (round cultivar produced from residue of the rearing tanks of fish farms. The experiment was conducted in a greenhouse using residue obtained from fish farming tanks. Ravine soil (RS, fish tank residue (FR and Tropstrato (TR were used as substrate. The treatments were: T1 = control consisting of Tropstrato substrate; T2 = 25% FR + 75% RS; T3 = 50% FR + 50% RS; T4 = 25% RS + 75% FR; T5 = 100% FR. A completely randomized block design consisting of 5 treatments, 4 replicates and 11 plants per plot was used. Treatment T5 (100% fish farming residue resulted in the largest average number of leaves, highest dry matter production of the aerial part, and highest dry matter accumulation in the root (P<0.05. The worst results were obtained for the treatment using 25% FR (T2, which resulted in less uniformity of the variables studied. Stem height of the passion fruit tree was greater for the treatments that included FR, with the greatest mean height being observed for T5. In conclusion, the treatment using the residue of fish farming tanks was found to be beneficial to produce yellow passion fruit seedlings (round cultivar, representing a good alternative for the reutilization of this residue.

  8. Catalyst systems in the production of biodiesel from residual oil; Sistemas cataliticos na producao de biodiesel por meio de oleo residual

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Carlos Alexandre de [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)

    2006-07-01

    The vegetable oils and fat animals appear like an alternative for substitution the diesel oil in ignition engines for compression. Submitting the oil on transesterification reaction, we obtain a fuel with same characteristics as diesel, called biodiesel. Generally, 85 per cent of biodiesel cost is from the oil production. Through transesterification vegetable oil can be transformed in a mixture of esters of fatty acids. The residual oil from frying has been used as a possibility of raw materials of biodiesel, due to its easy acquisition and the viability of not being discarded as waste. (author)

  9. Reconstitution of dewatered food processing residuals with manure to increase energy production from anaerobic digestion

    International Nuclear Information System (INIS)

    Wall, David M.; Wu-Haan, Wei; Safferman, Steven I.

    2012-01-01

    Solid residuals generated from dewatering food processing wastewater contain organic carbon that can potentially be reclaimed for energy through anaerobic digestion. This results in the diversion of waste from a landfill and uses it for a beneficial purpose. Dewatering the waste concentrates the carbon, reducing transportation costs to a farm digester where it can be blended with manure to increase biogas yield. Polymers are often used in the dewatering of the food waste but little is known regarding their impact on biogas production. Four 2 dm 3 working volume, semi-continuous reactors, were used at a mesophilic temperature and a solids retention time (SRT) of 15 days. Reactors were fed daily with a blended feedstock containing a food processing sludge waste (FPSW)/manure ratio of 2.2:1 (by weight) as this produced the optimized carbon to nitrogen ratio. Results demonstrated that reconstitution of dewatered FPSW with dairy manure produced approximately 2 times more methane than animal manure alone for the same volume. However, only approximately 30% of volatile solids (VS) were consumed indicating energy potential still remained. Further, the efficiency of the conversion of VS to methane for the blended FPSW/manure was substantially less than for manure only. However, the overall result is an increase in energy production for a given tank volume, which can decrease life cycle costs. Because all FPSW is unique and the determination of dewatering additives is customized based on laboratory testing and field adjustment, generalizations are difficult and specific testing is required. -- Highlights: ► Energy production in anaerobic digestion can increase by co-blending food waste. ► Energy for transporting food waste to blend with manure is less when dewatered. ► Dewatered food waste in manure produced twice as much methane than manure. ► Efficiency of carbon to methane was low because of ammonium bicarbonate production. ► Carbon destruction was 30%, more

  10. Residual stresses and their mechanisms of production at circumferential weld by heat-sink welding

    International Nuclear Information System (INIS)

    Ueda, Yukio; Nakacho, Keiji; Ohkubo, Katsumi; Shimizu, Tsubasa.

    1983-01-01

    In the previous report, the authors showed effectiveness of the heat-sink welding (water cooling) to accomplish this end by conducting theoretical analysis and an experiment on residual stresses in the 4B pipe of SUS 304 by the conventional welding and the heat-sink welding at a certain standard heat-input condition. In this research, different pipe sizes and varied heat-input are applied. The welding residual stresses by the conventional welding and the heat-sink welding are obtained by the theoretical analysis and their production mechanisms are clarified. Hence the influence of the above changes of conditions on effectiveness of the heat-sink welding is investigated. The main results are summarized as follow. (1) In case of this pipes such as 2B and 4B pipes, it is important to minimize heat-input per one pass (especially for latter half passes) in order to improve the effectiveness of the heat-sink welding. The effectiveness can be predicted either by theoretical analysis of the temperature distribution history with consideration of the characteristic of heat transfer under spray-watering or by experimental measurement. (2) In case of 24B pipes, thick pipes, it is desirable to minimize heat-input for the first half passes, by which the heat-sink welding becomes more effective. In addition, no matter whether the conventional welding or the heat-sink welding, it is important to prevent angular distorsion which produces tensile axial stresses on the inner surface of the pipe in the weld zone. Possible measures to meet these requirements are to apply restraining jigs, to minimize the section area of the groove (ex. application of the narrow gap arc welding), and to change continuous welding to skip one. (J.P.N.)

  11. Thermal and physiochemical properties of pellets with power aims made of sawmill residual product

    International Nuclear Information System (INIS)

    Casanova Treto, Pedro; Solis, Kattia; Carrillo, Tonny

    2017-01-01

    Sawmill residual product of Pylon (Hyeronima alchorneoides) and Eucalyptus (Eucalyptus spp) species was used to produce pellets under different conditions of densification. Experimental equipment was used to determine the thermal conductivity, thermal diffusivity and specific heat. Physicochemical properties of the pellets obtained under different conditions of densification, such as ash content and calorific value were determined. The content of nitrogen, chlorine and sulfur present in the material used to produce the pellets was estimated. Thermal conductivity values were determined between 0,253 W/m·K and 0,279 W/m·K; 1,748 m2 /s and 2,314 m2 /s for the thermal diffusivity, and in the case of specific heat were determined values between 3,019 kJ/kg·K and 2,183 kJ/kg·K. The high heat values was between 18 907 kJ/kg and 18 960 kJ/kg. An ash content of 1,31% was determined on a dry basis. Finally, the content of nitrogen, chlorine and sulfur determined in the residual biomass used, corresponds to 0,1129%, 0,0592 % and 0,0317%, respectively. A direct relationship between increasing the bulk density of the pellets and the thermal properties was determined. The calorific value and the ash content had a negligible effect due to the treatments applied. The estimated content of N, Cl and S corresponds to that expected in the selected biomass. Comparison of the properties of the pellets produced under the conditions studied -densification, against regulations-, showed acceptable results, entering these in terms of different categories of quality. (author) [es

  12. Cimicifuga species identification by high performance liquid chromatography-photodiode array/mass spectrometric/evaporative light scattering detection for quality control of black cohosh products.

    Science.gov (United States)

    He, Kan; Pauli, Guido F; Zheng, Bolin; Wang, Huikang; Bai, Naisheng; Peng, Tangsheng; Roller, Marc; Zheng, Qunyi

    2006-04-21

    Black cohosh has become one of the most important herbal products in the US dietary supplements market. It is manufactured from roots and rhizomes of Cimicifuga racemosa (Ranunculaceae). Botanical identification of the raw starting material is a key step in the quality control of black cohosh preparations. The present report summarizes a fingerprinting approach based on high performance liquid chromatography-photodiode array/mass spectrometric/evaporative light scattering detection (HPLC-PDA/MS/ELSD) that has been developed and validated using a total of 10 Cimicifuga species. These include three North American species, Cimicifuga racemosa, Cimicifuga americana, Cimicifuga rubifolia, and seven Asian species, Cimicifuga acerina, Cimicifuga biternat, Cimicifuga dahurica, Cimicifuga heracleifolia, Cimicifuga japonica, Cimicifuga foetida, and Cimicifuga simplex. The chemotaxonomic distinctiveness of the HPLC fingerprints allows identification of all 10 Cimicifuga species. The triterpene glycoside cimigenol-3-O-arabinoside (3), cimifugin (12), and cimifugin-3-O-glucoside (18) were determined to be suitable species-specific markers for the distinction of C. racemosa from the other Cimicifuga species. In addition to identification, the fingerprint method provided insight into chemical interconversion processes occurring between the diverse triterpene glycosides contained in black cohosh. The reported method has proven its usefulness in the botanical standardization and quality control of black cohosh products.

  13. Study on vacuum pyrolysis of coffee industrial residue for bio-oil production

    Science.gov (United States)

    Chen, Nanwei; Ren, Jie; Ye, Ziwei; Xu, Qizhi; Liu, Jingyong; Sun, Shuiyu

    2017-03-01

    Coffee industrial residue (CIR) is a biomass with high volatile content (64.94 wt.%) and heating value (21.3 MJ·kg-1). This study was carried out to investigate the pyrolysis condition and products of CIR using thermogravimetric analyser (TGA) and vacuum tube furnace. The influence of pyrolysis temperature, time, pressure and heating rate on the yield of pyrolysis products were discussed. There was an optimal pyrolysis condition: CIR was heated from normal temperature to 400 °C for 60 min, with 10 °C·min-1 heating rate and a pressure of 30 kPaabs. In this condition, the yields of bio-oil, char and non-condensable gas were 42.29, 33.14 and 24.57 wt.%, respectively. The bio-oil contained palmitic acid (47.48 wt.%), oleic acid (17.45 wt.%), linoleic acid (11.34 wt.%), octadecanoic acid (7.62 wt.%) and caffeine (5.18 wt.%).

  14. Production of hydrolysate from processed Nile tilapia (Oreochromis niloticus residues and assessment of its antioxidant activity

    Directory of Open Access Journals (Sweden)

    Daniela Miotto BERNARDI

    2016-01-01

    Full Text Available Abstract The objective of this work was to produce protein hydrolysates from by-products of the Nile tilapia fileting process, and to assess the effects of different hydrolysis times on the antioxidant activity of the hydrolysed animal-based protein, in free form and incorporated into a food matrix. Gutted tilapia heads and carcasses were hydrolysed by Alcalase® for different hydrolysis times producing six hydrolysates. The protein content, degree of hydrolysis, reverse-phase high-performance liquid chromatography, and antioxidant activity by the ORAC, FRAP and TEAC methods were analysed. Three mini-hamburger formulations were produced and the lipidic oxidation of mini-hamburger was determined by TBARS. The protein contained in the residue was completely recovered in the process. The hydrolysates varied in their degree of hydrolysis, but presented similar levels of antioxidant activity. In the mini-hamburgers the hydrolysate was capable of delaying oxidation after 7 days of storage. Hydrolysis of tilapia processing by-products produced peptides may be used in the formulation of functional foods.

  15. Production of bio-sugar and bioethanol from coffee residue (CR) by acid-chlorite pretreatment.

    Science.gov (United States)

    Kim, Ho Myeong; Choi, Yong-Soo; Lee, Dae-Seok; Kim, Yong-Hwan; Bae, Hyeun-Jong

    2017-07-01

    Nowadays, coffee residue (CR) after roasting is recognized as one of the most useful resources in the world for producing the biofuel and bio-materials. In this study, we evaluated the potential of bio-sugar and bioethanol production from acid-chlorite treated CR. Notably, CR treated three times with acid-chlorite after organic solvent extraction (OSE-3), showed the high monosaccharide content, and the efficient sugar conversion yield compared to the other pretreatment conditions. The OSE-3 (6% substrate loading, w/v) can produce bio-sugar (0.568g/g OSE-3). Also, simultaneous saccharification and fermentation (SSF) produced ethanol (0.266g/g OSE-3), and showed an ethanol conversion yield of 73.8% after a 72-h reaction period. These results suggest that acid-chlorite pretreatment can improve the bio-sugar and bioethanol production of CR by removing the phenolic and brown compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. MULTIVARIATE TECHNIQUES APPLIED TO EVALUATION OF LIGNOCELLULOSIC RESIDUES FOR BIOENERGY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2013-12-01

    Full Text Available http://dx.doi.org/10.5902/1980509812361The evaluation of lignocellulosic wastes for bioenergy production demands to consider several characteristicsand properties that may be correlated. This fact demands the use of various multivariate analysis techniquesthat allow the evaluation of relevant energetic factors. This work aimed to apply cluster analysis and principalcomponents analyses for the selection and evaluation of lignocellulosic wastes for bioenergy production.8 types of residual biomass were used, whose the elemental components (C, H, O, N, S content, lignin, totalextractives and ashes contents, basic density and higher and lower heating values were determined. Bothmultivariate techniques applied for evaluation and selection of lignocellulosic wastes were efficient andsimilarities were observed between the biomass groups formed by them. Through the interpretation of thefirst principal component obtained, it was possible to create a global development index for the evaluationof the viability of energetic uses of biomass. The interpretation of the second principal component alloweda contrast between nitrogen and sulfur contents with oxygen content.

  17. Evaluation of composition and performance of composts derived from guacamole production residues.

    Science.gov (United States)

    González-Fernández, J Jorge; Galea, Zesay; Alvarez, José M; Hormaza, J Iñaki; López, Rafael

    2015-01-01

    The utilization of organic wastes to improve soils or for growth media components in local farms and nurseries can reduce the environmental pollution linked to waste disposal while increasing the sustainability of crop production. This approach could be applied to waste products generated from the production of guacamole (an emerging activity in the avocado production areas in mainland Spain), where appropriate treatment of this oily and doughy waste product has not been previously reported. The aim of this work is to study the feasibility of co-composting guacamole production residues (GR) with garden pruning waste (PW) as bulking agent, and the possible use of the compost produced depending on its quality. A windrow composting trial using three GR:PW ratios, 2:1, 1:2, and 1:7 was carried out. Temperature, moisture, organic matter, and C/N ratio were used to follow the evolution of the composting process during 7 months. After an additional 3-month curing period, composts were sieved to less than 10 mm and a set of European quality criteria was used to assess compost quality and intended use. In general, the 3 composting mixtures followed the classical process evolution, with minor differences among them. The 1:2 GR:PW ratio appeared most adequate for combining better process evolution and maximum GR ratio. Except for their high pH that limits their use as growing media component in some particular cases, the obtained composts fulfilled the more stringent European standards for commercial composts. Self-heating tests confirmed the high stability of the composts produced. The germination of cress by the direct contact method was satisfactory for composts GR:PW 1:2 and 1:7, showing no signs of toxicity. Avocado seedlings planted in substrates containing 67% of the GR:PW composts exhibited greater plant growth than those in the control treatment, and with no signs of phytotoxicity. The results open an interesting opportunity for the sustainable treatment of avocado

  18. Production of Nutritious Flour from Residue Custard Apple (Annona squamosa L. for the Development of New Products

    Directory of Open Access Journals (Sweden)

    Felipe Thiago Caldeira Souza

    2018-01-01

    Full Text Available Currently, the fruit processing industry generates a high volume of waste in fruits that have not reached a quality standard for consumption or by-products generated throughout the production process. To reduce this waste, mitigating measures, such as reuse in food formulations, have been proposed. In this work the custard apple bagasse flour (Annona squamosa L. (CAB was produced and incorporated into cookie formulations in different proportions (5 to 50% evaluating its acceptability. The CAB flour was characterized by physicochemical analysis, proximate composition, mineral analysis, determination of the phenolic content, and antioxidant capacity. The results of the physicochemical and proximate characterizations show that the processed flour presents values and specifications suitable for food formulations. The mineral composition of the CAB flour responds to more than 20% of the daily intake of nutrients, highlighting the Cu, Fe, Mn, Zn, Ca, and Mg. The composition of phenolic compounds for CAB flour and cookies formulations presented values ranging from 200 to 658 mg GAE/100 g, similar to flour and formulations prepared of residues tropical fruit, while DPPH• inhibition showed a variation of 9.68–10.75%. Cookies made from the CAB flour showed high acceptability making the flour promising in the nutritional incorporation in food formulations.

  19. Simultaneous determination of nitrite and nitrate residues in meat products marketed in Shiraz by high performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    H Golkari

    2012-08-01

    Full Text Available Nitrite and nitrate are the key ingredients and play a multifunctional role in meat curing technology. Despite all of their desirable effects, the addition of nitrite to meat is the major cause of carcinogenic N-nitrosamines formation. In this study, the amount of residual nitrite and nitrate in meat products containing 61% to 80% meat were assessed. The samples were obtained at the fourth day of their production from Shiraz retails and analyzed using high performance liquid chromatography (HPLC. According to the results, the mean concentrations of residual nitrite and nitrate were estimated at 36.96 ± 7.38 and 85.81 ± 5.5 mg/kg in small-diameter (1.5-2 cm sausages. Meanwhile, in large-diameter (5.5-8 cm sausages the residues were estimated at 20.97 ± 3.28 and 124.85±5.3 mg/kg, respectively. In all analyzed samples, the residual nitrite level was found below the permitted level of 120 mg/kg which indicated the application of allowed concentrations of nitrite in such products. The mean values of residual nitrite and nitrate concentrations were statistically different (p

  20. Recovery of biogas as a source of renewable energy from ice-cream production residues and wastewater.

    Science.gov (United States)

    Demirel, Burak; Orok, Murat; Hot, Elif; Erkişi, Selin; Albükrek, Metin; Onay, Turgut T

    2013-01-01

    Proper management of waste streams and residues from agro-industry is very important to prevent environmental pollution. In particular, the anaerobic co-digestion process can be used as an important tool for safe disposal and energy recovery from agro-industry waste streams and residues. The primary objective of this laboratory-scale study was to determine whether it was possible to recover energy (biogas) from ice-cream production residues and wastewater, through a mesophilic anaerobic co-digestion process. A high methane yield of 0.338 L CH4/gCOD(removed) could be achieved from anaerobic digestion of ice-cream wastewater alone, with almost 70% of methane in biogas, while anaerobic digestion of ice-cream production residue alone did not seem feasible. When wastewater and ice-cream production residue were anaerobically co-digested at a ratio of 9:1 by weight, the highest methane yield of 0.131 L CH4/gCOD(removed) was observed. Buffering capacity seemed to be imperative in energy recovery from these substrates in the anaerobic digestion process.

  1. In Situ Biodiesel Production from Residual Oil Recovered from Spent Bleaching Earth

    Directory of Open Access Journals (Sweden)

    Ramli Mat

    2011-05-01

    Full Text Available Currently, semi-refined and refined vegetable oils are used as a feedstock in biodiesel production. However, due to competition with conventional fossil fuel, economic reasons, shortage supply of food and its social impact on the global scale has somewhat slowed the development of biodiesel industry. Studies have been conducted to recover oil from mill palm oil operation especially from the spent bleaching earth. Hence, the study was to investigate the potential recovery of oil from spent bleaching earth to be used as a feedstock for biodiesel production. The effect of different types of catalysts (sodium hydroxide alkali and sulfuric acid catalysts on biodiesel yield was studied. In addition, the effect of volume addition of methanol to the weight of spent bleaching earth on the product yield was also studied. Furthermore, the effect of ratio of hexane to methanol was also carried out to determine its product yield. The studies were carried out in an in-situ biodiesel reactor system and the biodiesel product was analyzed using gas chromatography mass spectrometry. Result shows that the use of alkali catalyst produced the highest yield of biodiesel and the most optimum biodiesel yield was obtained when the methanol to spent bleaching earth ratio was 3.2:1 (gram of methanol: gram of SBE and hexane to methanol ratio of 0.6:1 (volume of hexane: volume of methanol. © 2011 BCREC UNDIP. All rights reserved(Received: 19th December 2010, Revised: 10th May 2011; Accepted: 18th May 2011[How to Cite: R. Mat, O.S. Ling, A. Johari, M. Mohamed. (2011. In Situ Biodiesel Production from Residual Oil Recovered from Spent Bleaching Earth. Bulletin of Chemical Reaction Engineering & Catalysis, 6(1: 53-57. doi:10.9767/bcrec.6.1.678.53-57][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.678.53-57 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/678 ] | View in 

  2. Microwave heating type evaporator

    International Nuclear Information System (INIS)

    Taura, Masazumi; Nishi, Akio; Morimoto, Takashi; Izumi, Jun; Tamura, Kazuo; Morooka, Akihiko.

    1987-01-01

    Purpose: To prevent evaporization stills against corrosion due to radioactive liquid wastes. Constitution: Microwaves are supplied from a microwave generator by way of a wave guide tube and through a microwave permeation window to the inside of an evaporatization still. A matching device is attached to the wave guide tube for transmitting the microwaves in order to match the impedance. When the microwaves are supplied to the inside of the evaporization still, radioactive liquid wastes supplied from a liquid feed port by way of a spray tower to the inside of the evaporization still is heated and evaporated by the induction heating of the microwaves. (Seki, T.)

  3. Evaporation Anisotropy of Forsterite

    Science.gov (United States)

    Ozawa, K.; Nagahara, H.; Morioka, M.

    1996-03-01

    Evaporation anisotropy of a synthetic single crystal of forsterite was investigated by high temperature vacuum experiments. The (001), (010), and (001) surfaces show microstructures characteristic for each surface. Obtained overall linear evaporation rates for the (001), (010), and (001) surfaces are ~17, ~7, and ~22 mm/hour, and the intrinsic evaporation rates, obtained by the change in surface microstructures, are ~10, ~4.5, and ~35 mm/hour, respectively. The difference between the intrinsic evaporation rates and overall rates can be regarded as contribution of dislocation, which is notable for the (100) and (010) surfaces and insignificant for the (001) surface. This is consistent with observed surface microstructures.

  4. Mercury residues and productivity in osprey and grebes from a mine-dominated ecosystem.

    Science.gov (United States)

    Anderson, Daniel W; Suchanek, Thomas H; Eagles-Smith, Collin A; Cahill, Thomas M

    2008-12-01

    Mercury (Hg) and reproduction and status of Western and Clark's Grebes (Aechmophorus sp.) and Osprey (Pandion haliaetus) were studied from 1992 through 2001 and then less intensely through 2006 at Clear Lake, California, USA. Remediation to reduce Hg loading from the Sulphur Bank Mercury Mine was initiated in 1992. Mercury in grebe feathers declined monotonically from approximately 23 mg/kg dry mass (DM) in 1967-1969 to 1 mg/kg in 2003, but then increased to 7 mg/kg in 2004-2006. Mercury in Osprey feathers varied similarly, with mean values of 20 mg/kg DM in 1992, declining to a low of 2 mg/kg in 1998, but increasing to 23 mg/kg in 2003, and 12 mg/kg in 2006. Mercury in Osprey feathers at our reference site (Eagle Lake, California) remained low (1-8 ppm) throughout the entire period, 1992-2003. Grebe productivity at Clear Lake improved from approximately 0.1 to 0.5 fledged young per adult during the latter part of the study when human disturbance was prevented. At that period in time, improved productivity did not differ from our reference site at Eagle Lake. Human disturbance, however, as a co-factor made it impossible to evaluate statistically subtle Hg effects on grebe productivity at Clear Lake. Osprey reproduced sufficiently to maintain increasing breeding numbers from 1992 to 2006. Mercury in Clear Lake water, sediments, invertebrates, and fish did not decline from 1992 to 2003, but a shift in trophic structure induced by an introduced planktivorous fish species may have caused significant alterations in Hg concentrations in several species of prey fishes that may have produced concomitant changes in Osprey and grebe Hg exposure. The temporary declines observed in grebe and Osprey feather residues in the late 1990s, with coincidental improvements in reproductive performance, however, could not be attributed to remediation at the mine site.

  5. Ecotoxicological assessment of residues from different biogas production plants used as fertilizer for soil.

    Science.gov (United States)

    Stefaniuk, Magdalena; Bartmiński, Piotr; Różyło, Krzysztof; Dębicki, Ryszard; Oleszczuk, Patryk

    2015-11-15

    Residues from biogas production (RBP) are a relatively new materials, which may be an interesting resource for the improvement of soil fertility. Nevertheless, in spite of the potential benefits from the agricultural utilization of RBP, there is a need of comprehensive estimation of their toxicity. This information is needed to exclude potential negative environmental impacts arising from the use of RBP. Samples of RBP obtained from six biogas production plants with varied biogas production methods were analysed. The samples with and without separation on solid and liquid phases were investigated. The physicochemical properties of the RBP, heavy metals content (Cr, Cu, Ni, Cd, Pb i Zn) and toxicity on bacteria (Vibrio fischeri, MARA test - 11 different strains), collembolans (Folsomia candida) and two plant species (Lepidium sativum and Sinapis alba) was investigated. Toxicity of RBP was examined using Phytotoxkit F (root growth inhibition), collembolan test (mortality, inhibition of reproduction), Microtox® (inhibition of the luminescence of V. fischeri) and MARA test (growth of microorganisms). An especially negative effect on the tested organisms whereas was noted for the liquid phase after separation. In many cases, RBP without separation also showed unfavourable effects on the tested organisms. Liquid phase after separation and non-separated materials caused inhibition of root growth of L. sativum and S. alba at the level of 17.42-100% and 30.5-100%, respectively, as well as the inhibition of reproduction of F. candida with the range from 68.89 to 100%. In most cases, no ecotoxicological effect was observed for solid phase after separation for tested organisms. The solid phase after separation presented the most favorable properties between all investigated RBP. Therefore, it can be a potential material for the improvement of soil properties and for later use in agriculture. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Sustainable waste management by production of activated carbon from agroforestry residues

    Directory of Open Access Journals (Sweden)

    Victor Ntuli

    2013-01-01

    Full Text Available Agroforestry waste presents a problem for disposal and negatively impacts on the environment if left to rot or burn. The aim of this study was to reduce environmental problems associated with agroforestry waste by promoting the innovative use of such waste in the production of activated carbons (ACs using a low-cost production technique, and ultimately delivering more affordable water and effluent treatment adsorbents. Four varieties of ACs from four different agroforestry materials – pine (Pinus contorta cones (PC, Abies (Abies cilicica seeds (AS, maple (Acer ginnala seeds (MS and peach (Prunus persica stones (PS – were prepared by single-step steam pyrolysis and characterised. The raw materials were evaluated for AC yield while the respective ACs were evaluated on the basis of iodine number, phenol specific area, ash content, pH, moisture content and removal of metal ions, nitrates and sulphates from aqueous solution. The AC yields for PS, PC, AS and MS were found to be 23.0%, 18.0%, 17.8% and 14.6%, respectively. The yield for PS (23% is within the specified commercial limits of 20% to 40%. The phenol specific areas of the ACs ranged between 381 m2/g and 415 m2/g higher than the commercial lower limit (300 m2/g generally specified. The ACs also showed the capacity to remove heavy metal ions from their aqueous solutions. Removal of both nitrates and sulphates in raw water was greater than 50%. Although no quantitative analysis has been performed to date, it is envisaged that the production of AC from agroforestry wastes can contribute to the sustainable management of environmental pollution by these residues and the concomitant delivery of cheaper adsorbents.

  7. Effect of household and industrial processing on levels of pesticide residues and degradation products in melons

    OpenAIRE

    Bonnechère, Aurore; Hanot, Vincent; Bragard, Claude; Bedoret, Thomas; Van Loco, Joris

    2012-01-01

    Abstract Two varieties of melons (Cucumis melo) were treated by two fungicides (carbendazim and maneb) and four insecticides (acetamiprid, cyromazin, imazalil and thiamethoxam) to quantify the effect of household processing on the pesticide residues. To ensure sufficiently high levels of residues in flesh and peels, the most concentrated formulations were applied pursuant to Good Agricultural Practices (GAPs). The peeling step decreased the concentration of pesticide residues for ...

  8. Experimental tests on commercial Sweet Product Residue (SPR) as a suitable feed for anaerobic bioenergy (H2+CH4) production.

    Science.gov (United States)

    Malavè, Andrea C Luongo; Fino, Debora; Gómez Camacho, Carlos E; Ruggeri, Bernardo

    2018-01-01

    Food stores can find themselves in the position of having to dispose of different types of products, such as snacks, confectionery, prepackaged food, drinks and others, Sweet Product Residue (SPR), which presents a great opportunity to produce energy through Anaerobic Digestion (AD), due to its high sugar, carbohidrate and fat contents. In order to valorise SPR, this paper takes into consideration the all necessary treatments; owing the fact that the refuses are constitute by an organic part and packaging (plastic, paper and their combinations), a pretreatment able to remove the latter is necessary. SPR refuse was initially subjected to novel pretreatment approach: extrusion at 200atm to remove the packaging, and a Basic Pre-treatment (BP) then tested through a Two-Stage AD (TSAD) process, for H 2 and CH 4 productions. The experimental results were analysed considering three parameters: Efficiency (ξ), which takes into account the quantity of the energy produced as hydrogen plus methane that the bioreaction is able to extract; Efficacy (η), which takes into account the efficiency of the actual test, compared with that obtained from a reference test carried out with glucose; Energy Sustainability Index (ESI), which takes into account the total amount of energy produced as H 2 plus CH 4 , and the amount of energy consumed to pre-treat the refuse. The effectiveness of the extrusion process in removing the packaging was very high: about 80% of the organic part present in the SPR was recovered. The obtained results have pointed out that SPR is suitable for energy valorization process: ξ=50%, η=0.67 and ESI=24.4, without the need of basic pre-treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A novel life cycle impact assessment method on biomass residue harvesting reckoning with loss of biomass productivity

    NARCIS (Netherlands)

    Wiloso, E.I.; Heijungs, R.; Huppes, G.

    2014-01-01

    Second generation bioenergy such as cellulosic bioethanol is expected to become commercially available in the near future. Large scale production of this bioenergy will require secure and continuous supplies of raw materials. One promising source of materials is biomass residues that currently

  10. Sustainability of soil fertility and the use of lignocellulosic crop harvest residues for the production of biofuels: a literature review

    NARCIS (Netherlands)

    Reijnders, L.

    2013-01-01

    Use of lignocellulosic crop harvest residues for liquid or gaseous biofuel production may impact soil quality, long-term soil fertility and the major determinants of the latter, stocks of soil organic carbon and nutrients. When soil organic carbon stocks of mineral cropland soils are to be

  11. The use of solid phase extraction method for analysis of residues of pesticides used in banana production in Costa Rica

    International Nuclear Information System (INIS)

    Castillo, L.E.; Ruepert, C.; Alfaro, A.R.; Solis, E.

    1999-01-01

    Different solid phase extraction devices were tested for the analysis of residues of eleven pesticides used in banana production in Costa Rica. The analysis was performed by using gas chromatograph equipped with NPD and ECD detectors. In general low recoveries and high variation coefficients were found for chlorothalonil, imazalil, terbufos and thiabendazole. For the other pesticides recoveries ranged between 60 and over 100%. (author)

  12. Productivity and residual benefits of grain legumes to sorghum under semi-arid conditions in southwestern Zimbabwe

    NARCIS (Netherlands)

    Ncube, B.; Twomlow, S.J.; Wijk, van M.T.; Dimes, J.P.; Giller, K.E.

    2007-01-01

    The productivity and residual benefits of four grain legumes to sorghum (Sorghum bicolor) grown in rotation were measured under semi-arid conditions over three cropping seasons. Two varieties of each of the grain legumes; cowpea (Vigna unguiculata); groundnut (Arachis hypogaea); pigeon pea (Cajanus

  13. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity

    NARCIS (Netherlands)

    Paul, B.K.; Vanlauwe, B.; Ayuke, F.; Gassner, A.; Hoogmoed, M.; Hurisso, T.T.; Koala, S.; Lelei, D.; Ndabamenye, T.; Six, J.; Pulleman, M.M.

    2013-01-01

    Conservation agriculture is widely promoted for soil conservation and crop productivity increase, although rigorous empirical evidence from sub-Saharan Africa is still limited. This study aimed to quantify the medium-term impact of tillage (conventional and reduced) and crop residue management

  14. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin - A comprehensive review.

    Science.gov (United States)

    Gaudin, Valérie

    2017-04-15

    Antibiotic residues may be found in food of animal origin, since veterinary drugs are used for preventive and curative purposes to treat animals. The control of veterinary drug residues in food is necessary to ensure consumer safety. Screening methods are the first step in the control of antibiotic residues in food of animal origin. Conventional screening methods are based on different technologies, microbiological methods, immunological methods or physico-chemical methods (e.g. thin-layer chromatography, HPLC, LC-MS/MS). Screening methods should be simple, quick, inexpensive and specific, with low detection limits and high sample throughput. Biosensors can meet some of these requirements. Therefore, the development of biosensors for the screening of antibiotic residues has been increasing since the 1980s. The present review provides extensive and up-to-date findings on biosensors for the screening of antibiotic residues in food products of animal origin. Biosensors are constituted of a bioreceptor and a transducer. In the detection of antibiotic residues, even though antibodies were the first bioreceptors to be used, new kinds of bioreceptors are being developed more and more (enzymes, aptamers, MIPs); their advantages and drawbacks are discussed in this review. The different categories of transducers (electrochemical, mass-based biosensors, optical and thermal) and their potential applications for the screening of antibiotic residues in food are presented. Moreover, the advantages and drawbacks of the different types of transducers are discussed. Lastly, outlook and the future development of biosensors for the control of antibiotic residues in food are highlighted. Copyright © 2016. Published by Elsevier B.V.

  15. Filtration of sludge residue from chamber 804 during production of primary bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Pfirrmann

    1942-02-23

    The filtration experiments and three common types of filter in use in coal liquefaction plants are described. The types of filter were the Kerzenfilter (candle filter), the Dorr filter, and the Scholven filter. The process for production of bitumen operated at 300 atm. pressure 25.5 millivolts temperature, and throughput of 0.5 kg/liter of reaction space/hr. The residue was thinned with middle oil and tested for filterability in a small pressure filter (2-kg samples) which gave results agreeing with the results obtained in industrial-size filter installations. The Kerzenfilter operated under 5 atm. nitrogen pressure and alternated between periods of filtration and of blowing off acumulated filter cake by 8 to 10 atm. reverse nitrogen pressure. The disadvantages of this type were that the yield of filtrate diminished greatly through time because of clogging up of the stone filter plate, rips in the plate often let excessive amounts of ash through, and the blowing off of filter cake caused losses of oil and damage to workers and surroundings. The Dorr filter was an almost continuously-operating filter which used Kieselgur (diatomaceous earth) suspended in middle oil over an asbestos cloth base as the filter. It worked very well, but had the disadvantages of operating under vacuum instead of under pressure (greater oil losses to vaporization) and the expense of the Kieselgur; experiments were underway to minimize both disadvantages. The Scholven filter was not satisfactory because its metal filter plate stopped up almost completely.

  16. Production and partial characterization of cellulases and Xylanases from Trichoderma atroviride 676 using lignocellulosic residual biomass.

    Science.gov (United States)

    Grigorevski-Lima, André Luiz; de Oliveira, Mariana Menezes Quadros; do Nascimento, Rodrigo Pires; Bon, Elba Pinto da Silva; Coelho, Rosalie Reed Rodrigues

    2013-02-01

    Trichoderma atroviride 676 was studied to evaluate its efficiency in the production of some lignocellulolytic enzymes, using lignocellulosic residual biomass. Best results were obtained when 3.0 % (w/v) untreated sugarcane bagasse was used (61.3 U mL(-1) for xylanase, 1.9 U mL(-1) for endoglucanase, 0.25 U mL(-1) for FPase, and 0.17 U mL(-1) for β-glucosidase) after 3-4 days fermentation. The maximal enzymatic activity for endoglucanase, FPase, and xylanase were observed at 50-60 °C and pH 4.0-5.0, whereas thermal stability at 50 °C (CMCase and FPase) or 40 °C (xylanase) was obtained after 8 h. Zymograms have shown two bands of 104 and 200 kDa for endoglucanases and three bands for xylanase (23, 36, and 55.7 kDa). The results obtained with T. atroviride strain 676 were comparable to those obtained with the cellulolytic strain Trichoderma reesei RUT-C30, indicating, in the studied conditions, its great potential for biotechnological application, especially lignocellulose biomass hydrolysis.

  17. Effect of pre-treatments on methane production potential of energy crops and crop residues

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomaki, A.; Ronkainen; Rintala, J.A. [Jyvaskla Univ. (Finland). Dept. of Biological and Environmental Sciences; Viinikainen, T.A. [Jyvaskla Univ. (Finland). Dept. of Chemistry

    2004-07-01

    Energy crops, that is, crops grown specifically for energy purposes are an alternative to food production in areas with sufficient agricultural land. Crop residues are also a potential source of energy. The anaerobic digestion of solid materials is limited by hydrolysis of complex polymeric substances such as lignocellulose. The methane producing potential of ligno cellulosic material is to pretreat the substrate in order to break up the polymer chains to more easily accessible soluble compounds. In this study, three different substrates were used: sugar beet tops, grass hay, and straw of oats. Biological pretreatments were the following: enzyme treatment, composting, white-rot fungi treatment. Also, pretreatment in water was tried. Chemical pretreatments included peracetic acid treatment, and treatment with two different alkalis. Alkaline pretreatments of hay and sugar beet tops have the potential to improve the methane yield. For instance, the yield of grass hay was increased 15 per cent by one particular alkaline treatment. Straw did not respond to any of the treatments tried. 18 refs., 1 tab., 2 figs.

  18. Energy from agricultural residues and consequences for land requirements for food production

    NARCIS (Netherlands)

    Nonhebel, Sanderine

    Using biomass as an energy source is often mentioned as an option to mitigate the enhancing greenhouse effect. Biomass for energy purposes can be obtained from dedicated energy crops and/or from agricultural residues. The available amount of residues is large and suggests a significant energy

  19. Pyrolysis of forest residues: an approach to techno-economics for bio-fuel production

    Science.gov (United States)

    The techno-economics for producing liquid fuels from Maine forest residues were determined from a combination of: (1) laboratory experiments at USDA-ARS’s Eastern Regional Research Center using hog fuel (a secondary woody residue produced from mill byproducts such as sawdust, bark and shavings) as a...

  20. Advanced evaporator technology progress report FY 1992

    International Nuclear Information System (INIS)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A.

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program open-quotes Technology Development for Concentrating Process Streams.close quotes The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report

  1. Advanced evaporator technology progress report FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

  2. Bioethanol production from corn stover residues. Process design and Life Cycle Assessment

    International Nuclear Information System (INIS)

    De Bari, I.; Dinnino, G.; Braccio, G.

    2008-01-01

    In this report, the mass and energy balance along with a land-to-wheel Life Cycle Assessment (LCA) is described for a corn stover-to-ethanol industrial process assumed to consist of the main technologies being researched at ENEA TRISAIA: pretreatment by steam explosion and enzymatic hydrolysis. The modelled plant has a processing capacity of 60kt/y (dimensioned on realistic supplying basins of residues in Italy); biomass is pre-treated by acid catalyzed-steam explosion; cellulose and hemicelluloses are hydrolyzed and separately fermented; enzymes are on-site produced. The main target was to minimize the consumption of fresh water, enzymes and energy. The results indicate that the production of 1kg bio ethanol (95.4 wt%) requires 3.5 kg biomass dry matter and produces an energy surplus up to 740 Wh. The main purpose of the LCA analysis was to assess the environmental impact of the entire life cycle from the bio ethanol production up to its end-use as E10 blended gasoline. Boustead Model was used as tool to compile the life cycle inventory. The results obtained and discussed in this reports suffer of some limitations deriving from the following main points: some process yields have been extrapolated according to optimistic development scenarios; the energy and steam recovery could be lower than that projected because of lacks in the real systems; water recycle could be limited by the yeast tolerance toward the potential accumulation of toxic compounds. Nevertheless, the detailed process analysis here provided has its usefulness in: showing the challenging targets (even if they are ambitious) to bet on to make the integrated process feasible; driving the choice of the most suitable technologies to bypass some process bottlenecks [it

  3. Residual and cumulative effects of soil application of sewage sludge on corn productivity.

    Science.gov (United States)

    Vieira, Rosana Faria; Moriconi, Waldemore; Pazianotto, Ricardo Antônio Almeida

    2014-05-01

    The objective of this study was to evaluate the effect of frequent and periodic applications of sewage sludge to the soil, on corn productivity. The experiment was carried out as part of an experiment that has been underway since 1999, using two types of sludge. One came from the Barueri Sewage Treatment Station (BS, which receives both household and industrial sludge) and the other came from the Franca Sewage Treatment Station (FS, which receives only household sludge). The Barueri sludge was applied from 1999 up to the agricultural year of 2003/2004. With the exception of the agricultural years of 2004/2005 and 2005/2006, the Franca sludge was applied up to 2008/2009. All the applications were made in November, with the exception of the first one which was made in April 1999. After harvesting the corn, the soil remained fallow until the next cultivation. The experiment was set up as a completely randomized block design with three replications and the following treatments: control without chemical fertilization or sludge application, mineral fertilization, and dose 1 and dose 2 of sludge (Franca and Barueri). The sludges were applied individually. Dose 1 was calculated by considering the recommended N application for corn. Dose 2 was twice dose 1. It was evident from this work that the successive application of sludge to the soil in doses sufficient to reach the productivity desired with the use of nitrogen fertilizers could cause environmental problems due to N losses to the environment and that the residual and cumulative effects should be considered when calculating the application of sludge to soil.

  4. The Effect of Fungicide Residues and Yeast Assimilable Nitrogen on Fermentation Kinetics and H2S Production during Cider Fermentation

    OpenAIRE

    Boudreau IV, Thomas Francis

    2016-01-01

    The Virginia cider industry has grown rapidly in the past decade, and demands research-based recommendations for cider fermentation. This study evaluated relationships between the unique chemistry of apples and production of hydrogen sulfide (H2S) in cider fermentations. Yeast assimilable nitrogen (YAN) concentration and composition and residual fungicides influence H2S production by yeast during fermentation, but these factors have to date only been studied in wine grape fermentations. This ...

  5. Analysis of veterinary drug residue monitoring results for commercial livestock products in Taiwan between 2011 and 2015.

    Science.gov (United States)

    Lee, Hsin-Chun; Chen, Chi-Min; Wei, Jen-Ting; Chiu, Hsiu-Yi

    2018-04-01

    Antibiotics have been widely used in the treatment of livestock diseases. However, the emergence of issues related to drug resistance prompted governments to enact a series of laws regulating the use of antibiotics in livestock. Following control of the problem of drug resistant bacteria, public attention has shifted to the recurring incidence of human health and safety issues caused by residual veterinary drugs in livestock products. To guarantee the safety and hygiene of meat, milk, and eggs from food-producing animals, governments and relevant agencies established laws and regulations for the use of veterinary drugs. It is, therefore, necessary to monitor the content of residual drugs in livestock products at regular intervals to assess whether the regulations have resulted in the effective management of food product safety, and to prevent and manage sudden problems related to this issue. A 2011-2015 livestock product post-marketing monitoring program launched by the Taiwan Food and Drug Administration (TFDA) inspected 1487 livestock products. Over the past 5 years, there were 34 samples identified that did not conform to the regulations; these samples included residue drugs such as β-agonists, chloramphenicols, β-lactam antibiotics, sulfa drugs, enrofloxacin, and lincomycin. Inspections of commercial livestock products with the consistent cooperation of agricultural authorities did not detect the drugs that were banned by the government, whereas the detection of other drugs decreased annually with an increase in the post-market monitoring sample size. In the future, the TFDA will continue to monitor the status of residual veterinary drugs in commercial livestock products, adjust the sampling of food products annually according to monitoring results, and closely cooperate with agricultural authorities on source management. Copyright © 2017. Published by Elsevier B.V.

  6. Evaporation and weather

    NARCIS (Netherlands)

    Bruin, H.A.R. de; Feddes, R.A.; Holtslag, A.A.M.; Lablans, W.N.; Schuurmans, C.J.E.; Shuttleworth, W.J.

    1987-01-01

    Data on evaporation to be used in agriculture, hydrology, forestry, etc. are usually supplied by meteorologists. Meteorologists themselves also use evaporation data. Air mass properties determining weather are strongly dependent on the input of water vapour from the surface. So for weather

  7. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  8. Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen

    International Nuclear Information System (INIS)

    Yan, Xiaoyuan; Ti, Chaopu; Zhu, Zhaoliang; Vitousek, Peter; Chen, Deli; Leip, Adrian; Cai, Zucong

    2014-01-01

    China is the world’s largest consumer of synthetic nitrogen (N), where very low rates of fertilizer N recovery in crops have been reported, raising discussion around whether fertilizer N use can be significantly reduced without yield penalties. However, using recovery rates as indicator ignores a possible residual effect of fertilizer N—a factor often unknown at large scales. Such residual effect might store N in the soil increasing N availability for subsequent crops. The objectives of the present study were therefore to quantify the residual effect of fertilizer N in China and to obtain more realistic rates of the accumulative fertilizer N recovery efficiency (RE) in crop production systems of China. Long-term spatially-extensive data on crop production, fertilizer N and other N inputs to croplands in China were used to analyze the relationship between crop N uptake and fertilizer N input (or total N input), and to estimate the amount of residual fertilizer N. Measurement results of cropland soil N content in two time periods were obtained to compare the change in the soil N pool. At the provincial scale, it was found that there is a linear relationship between crop N uptake and fertilizer N input or total N input. With the increase in fertilizer N input, annual direct fertilizer N RE decreased and was indeed low (below 30% in recent years), while its residual effect increased continuously, to the point that 40–68% of applied fertilizer was used for crop production sooner or later. The residual effect was evidenced by a buildup of soil N and a large difference between nitrogen use efficiencies of long-term and short-term experiments. (paper)

  9. Increase in the amount of evaporator concentrate from nuclear power plants in cemented products; Aumento da quantidade de concentrado de evaporador proveniente de usinas nucleares em produtos cimentados

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Bruna S., E-mail: brusilveirac@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Tello, Clédola C.O., E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Nuclear power plants, research centers and other nuclear facilities are sources of radioactive liquid waste generation. These wastes can come from cooling of the primary reactor system, cleaning spent pool of fuel, washing contaminated clothing, among others. One of the most used methods for the treatment of these aqueous flows is the evaporation, which generates the concentrate of the evaporator, waste classified as low and medium level of radiation. Norms determine that radioactive waste must be minimized, and that to be accepted in repositories, they must be solidified. The work sought to reduce the volume of the evaporated concentrate waste and its subsequent solidification in cement. In order to carry out the tests, the evaporator concentrate (CE) simulation solution was prepared and then dried in an oven. Subsequently, cementation of the dry material was made using cement, fluidizer, NaOH and water. After a curing time of 28 days, the compressive strength tests were made for all specimens obtained, and for the samples that obtained resistance above that required by the norm, which is 10MPa, the percentages of reject incorporated and volume reduction. The results showed that, by drying the evaporator concentrate, it was possible to reduce the volume of the waste generated by up to 27% in relation to the waste without drying, which shows that drying is an effective way to increase the incorporation of the evaporator concentrate in packaged waste.

  10. The potential of agro-industrial residues and municipal solid waste for production of biogas and electricity in Tanzania

    International Nuclear Information System (INIS)

    Kivaisi, A.K.

    1997-01-01

    This paper gives an overview of the energy demands in Tanzania, and highlights the current serious shortage of electricity. Government strategy to alleviate the problem include exploitation of the country's big natural gas reserves for power generation, and utilization of the renewable energies such as solar, wind and biogas. Important agro-industrial residues and municipal solid wastes with large potentials for anaerobic converstion into biogas and electricity have been identified and quantified. Tanzania is estimated to generate about 615,000 organic matter from coffee, sisal, sugar and cereal residues and households in main towns are estimated to generate about 600,000 tons of organic matter annually. Laboratory scale determinations of methane yields from the residues gave 400 m 3 CH 4 /ton VS of sisal pulp; 400 m 3 CH 4 /ton VS of sisal production wastewater; 400 m 3 CH 4 /ton VS of Robusta coffee solid waste, 350 m 3 CH 4 /ton VS of sugar processing wastewater; 250 m 3 CH 4 /ton VS of sugar filter mat, 450 m 3 CH 4 /ton VS maize bran and 300 m 3 CH 4 /ton VS of mixed household waste. Based on these results the estimated total annual potential electricity production from these residues is 1.4 million MW. The total oil substitution from these residues has been estimated at 0.35 million tonnes crude diesel oil per annum equivalent to 2% of the total energy consumption in Tanzania. Case studies onthe coffee and sisal processing factories indicate that exploitation of the residues for the production of electricity on site these factories is feasible. Utilization of agro-industrial residues and municipal waste for biogas production has enormous potential for reduction of environmental pollution. The potential substitution of fossil fuel with biogas represents an annual reduction in the net CO 2 emission to the atmosphere of approximately 1.3 million tonnes. By treating the residues in controlled anaerobic systems it is possible to reduce the methane emission by

  11. The potential of agro-industrial residues and municipal solid waste for production of biogas and electricity in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Kivaisi, A.K. [Univ. of Dar es Salaam, Botany Dept., Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    This paper gives an overview of the energy demands in Tanzania, and highlights the current serious shortage of electricity. Government strategy to alleviate the problem include exploitation of the country`s big natural gas reserves for power generation, and utilization of the renewable energies such as solar, wind and biogas. Important agro-industrial residues and municipal solid wastes with large potentials for anaerobic converstion into biogas and electricity have been identified and quantified. Tanzania is estimated to generate about 615,000 organic matter from coffee, sisal, sugar and cereal residues and households in main towns are estimated to generate about 600,000 tons of organic matter annually. Laboratory scale determinations of methane yields from the residues gave 400 m{sup 3} CH{sub 4}/ton VS of sisal pulp; 400 m{sup 3} CH{sub 4}/ton VS of sisal production wastewater; 400 m{sup 3} CH{sub 4}/ton VS of Robusta coffee solid waste, 350 m{sup 3} CH{sub 4}/ton VS of sugar processing wastewater; 250 m{sup 3} CH{sub 4}/ton VS of sugar filter mat, 450 m{sup 3} CH{sub 4}/ton VS maize bran and 300 m{sup 3} CH{sub 4}/ton VS of mixed household waste. Based on these results the estimated total annual potential electricity production from these residues is 1.4 million MW. The total oil substitution from these residues has been estimated at 0.35 million tonnes crude diesel oil per annum equivalent to 2% of the total energy consumption in Tanzania. Case studies onthe coffee and sisal processing factories indicate that exploitation of the residues for the production of electricity on site these factories is feasible. Utilization of agro-industrial residues and municipal waste for biogas production has enormous potential for reduction of environmental pollution. The potential substitution of fossil fuel with biogas represents an annual reduction in the net CO{sub 2} emission to the atmosphere of approximately 1.3 million tonnes. By treating the residues in controlled

  12. Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process.

    Science.gov (United States)

    Masarin, Fernando; Cedeno, Fernando Roberto Paz; Chavez, Eddyn Gabriel Solorzano; de Oliveira, Levi Ezequiel; Gelli, Valéria Cress; Monti, Rubens

    2016-01-01

    Biorefineries serve to efficiently utilize biomass and their by-products. Algal biorefineries are designed to generate bioproducts for commercial use. Due to the high carbohydrate content of algal biomass, biorefinery to generate biofuels, such as bioethanol, is of great interest. Carrageenan is a predominant polysaccharide hydrocolloid found in red macroalgae and is widely used in food, cosmetics, and pharmaceuticals. In this study, we report the biorefinery of carrageenan derived from processing of experimental strains of the red macroalgae Kappaphycus alvarezii. Specifically, the chemical composition and enzymatic hydrolysis of the residue produced from carrageenan extraction were evaluated to determine the conditions for efficient generation of carbohydrate bioproducts. The productivity and growth rates of K. alvarezii strains were assessed along with the chemical composition (total carbohydrates, ash, sulfate groups, proteins, insoluble aromatics, galacturonic acid, and lipids) of each strain. Two strains, brown and red, were selected based on their high growth rates and productivity and were treated with 6 % KOH for extraction of carrageenan. The yields of biomass from treatment with 6 % KOH solution of the brown and red strains were 89.3 and 89.5 %, respectively. The yields of carrageenan and its residue were 63.5 and 23 %, respectively, for the brown strain and 60 and 27.8 %, respectively, for the red strain. The residues from the brown and red strains were assessed to detect any potential bioproducts. The galactan, ash, protein, insoluble aromatics, and sulfate groups of the residue were reduced to comparable extents for the two strains. However, KOH treatment did not reduce the content of glucan in the residue from either strain. Glucose was produced by enzymatic hydrolysis for 72 h using both strains. The glucan conversion was 100 % for both strains, and the concentrations of glucose from the brown and red strains were 13.7 and 11.5 g L(-1

  13. Study on production mechanism of welding residual stress at the juncture of a pipe penetrating a thick plate

    International Nuclear Information System (INIS)

    Mochizuki, Masahito; Enomoto, Kunio; Okamoto, Noriaki; Saitoh, Hideyo; Hayashi, Eisaku.

    1994-01-01

    This paper studies welding residual stresses at the intersection of a small diameter pipe penetrating a thick plate. The pipe is welded to the plate, and Tungsten Innert Gas (TIG) cladding is melted on the inner surface of the pipe to protect it from stress corrosion cracking due to long operation in nuclear power plants. Stresses are calculated by heat conduction analysis and thermal elasto-plastic analysis, and also measured by strain gauges. Welding residual stresses are shown to have no corrosive influence on the inner pipe surface, and the stresses are compressed enough to protect the pipe against stress corrosion cracking on the outer surface. It was also studied to make clear the production mechanism of the residual stresses which were generated by welding processes at the pipe. (author)

  14. Effect of household and industrial processing on the levels of pesticide residues and degradation products in melons.

    Science.gov (United States)

    Bonnechère, A; Hanot, V; Bragard, C; Bedoret, T; van Loco, J

    2012-01-01

    Two varieties of melons (Cucumis melo) were treated with two fungicides (carbendazim and maneb) and four insecticides (acetamiprid, cyromazin, imazalil and thiamethoxam) to quantify the effect of household processing on the pesticide residues. To ensure sufficiently high levels of residues in flesh and peel, the most concentrated formulations were applied observing good agricultural practice. The peeling step decreased the concentration of pesticide residues for maneb, imazalil and acetamiprid by more than 90%. Cyromazin, carbendazim and thiamethoxam were reduced by approximately 50%. The reduction of the pesticides could not be fully explained by the systemic character of the pesticides. However, the agricultural practices (time of application), solubility and mode of action (systemic versus contact pesticide) of the pesticides could be used to explain the difference in processing factors for the studied pesticides. Degradation products (melamine and ethylenethiourea) were also investigated in this study, but were not detected.

  15. Detection and quantification of residues and metabolites of medicinal products in environmental compartments, food commodities and workplaces. A review.

    Science.gov (United States)

    Bottoni, Paola; Caroli, Sergio

    2015-03-15

    The toxicological assessment of medicinal products (MPs) and their residues and metabolites in the environment have become a challenging task worldwide. The contamination of environmental compartments, biota, workplace, foodstuff and feedstuff by residues and metabolites of these substances poses a risk to human health which is still far from being fully understood. On the other hand, existing analytical methods not always possess sufficient detection power to quantify residues of MPs at very low concentrations. This review sets forth some of the most significant contributions made in this field over the past decade with a special focus on novel fit-for-purpose analytical approaches for the detection, identification and quantification of these pollutants and the assessment of their noxious potential for human beings and the environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Optimization of manganese peroxidase production from Schizophyllum sp. F17 in solid-state fermentation of agro-industrial residues.

    Science.gov (United States)

    Zhou, Yue; Yang, Bing; Yang, Yang; Jia, Rong

    2014-03-01

    Manganese peroxidase (MnP), a crucial enzyme in lignin degradation, has wide potential applications in environmental protection. However, large-scale industrial application of this enzyme is limited due to several factors primarily related to cost and availability. Special attention has been paid to the production of MnP from inexpensive sources, such as lignocellulosic residues, using solid-state fermentation (SSF) systems. In the present study, a suitable SSF medium for the production of MnP by Schizophyllum sp. F17 from agro-industrial residues has been optimized. The mixed solid medium, comprising pine sawdust, rice straw, and soybean powder at a ratio of 0.52:0.15:0.33, conferred a maximum enzyme activity of 11.18 U/g on the sixth day of SSF. The results show that the use of wastes such as pine sawdust and rice straw makes the enzyme production more economical as well as helps solve environmental problems.

  17. Investigation of food waste valorization through sequential lactic acid fermentative production and anaerobic digestion of fermentation residues.

    Science.gov (United States)

    Demichelis, Francesca; Pleissner, Daniel; Fiore, Silvia; Mariano, Silvia; Navarro Gutiérrez, Ivette Michelle; Schneider, Roland; Venus, Joachim

    2017-10-01

    This work concerns the investigation of the sequential production of lactic acid (LA) and biogas from food waste (FW). LA was produced from FW using a Streptococcus sp. strain via simultaneous saccharification and fermentation (SSF) and separate enzymatic hydrolysis and fermentation (SHF). Via SHF a yield of 0.33g LA /g FW (productivity 3.38g LA /L·h) and via SSF 0.29g LA /g FW (productivity 2.08g LA /L·h) was obtained. Fermentation residues and FW underwent anaerobic digestion (3wt% TS). Biogas yields were 0.71, 0.74 and 0.90Nm 3 /kg VS for FW and residues from SSF and SHF respectively. The innovation of the approach is considering the conversion of FW into two different products through a biorefinery concept, therefore making economically feasible LA production and valorising its fermentative residues. Finally, a mass balance of three different outlines with the aim to assess the amount of LA and biogas that may be generated within different scenarios is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaporative cooling of trapped atoms

    International Nuclear Information System (INIS)

    Ketterle, W.; Van Druten, N.J.

    1996-01-01

    This report discusses the following topics on evaporative cooling of trapped atoms: Theoretical models for evaporative cooling; the role of collisions for real atoms; experimental techniques and summary of evaporative cooling experiments. 166 refs., 6 figs., 3 tabs

  19. Biogas Production from Vietnamese Animal Manure, Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield

    Directory of Open Access Journals (Sweden)

    T. T. T. Cu

    2015-02-01

    Full Text Available Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4 production to the chemical characteristics of the biomass. The biochemical methane potential (BMP and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL CH4 kg−1 volatile solids (VS compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg−1 VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

  20. Biogas production from vietnamese animal manure, plant residues and organic waste: influence of biomass composition on methane yield.

    Science.gov (United States)

    Cu, T T T; Nguyen, T X; Triolo, J M; Pedersen, L; Le, V D; Le, P D; Sommer, S G

    2015-02-01

    Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL) CH4 kg(-1) volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg(-1) VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

  1. Biogas Production by Co-Digestion of Goat Manure with Three Crop Residues

    Science.gov (United States)

    Zhang, Tong; Liu, Linlin; Song, Zilin; Ren, Guangxin; Feng, Yongzhong; Han, Xinhui; Yang, Gaihe

    2013-01-01

    Goat manure (GM) is an excellent raw material for anaerobic digestion because of its high total nitrogen content and fermentation stability. Several comparative assays were conducted on the anaerobic co-digestion of GM with three crop residues (CRs), namely, wheat straw (WS), corn stalks (CS) and rice straw (RS), under different mixing ratios. All digesters were implemented simultaneously under mesophilic temperature at 35±1 °C with a total solid concentration of 8%. Result showed that the combination of GM with CS or RS significantly improved biogas production at all carbon-to-nitrogen (C/N) ratios. GM/CS (30:70), GM/CS (70:30), GM/RS (30:70) and GM/RS (50:50) produced the highest biogas yields from different co-substrates (14840, 16023, 15608 and 15698 mL, respectively) after 55 d of fermentation. Biogas yields of GM/WS 30:70 (C/N 35.61), GM/CS 70:30 (C/N 21.19) and GM/RS 50:50 (C/N 26.23) were 1.62, 2.11 and 1.83 times higher than that of CRs, respectively. These values were determined to be the optimal C/N ratios for co-digestion. However, compared with treatments of GM/CS and GM/RS treatments, biogas generated from GM/WS was only slightly higher than the single digestion of GM or WS. This result was caused by the high total carbon content (35.83%) and lignin content (24.34%) in WS, which inhibited biodegradation. PMID:23825574

  2. Optimizing production of hydroxyapatite from alkaline residue for removal of Pb{sup 2+} from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yubo; Wang, YanPeng; Sun, Xiuyun, E-mail: sunxyun@njust.edu.cn; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Liu, Xiaodong; Wang, Lianjun, E-mail: wanglj@njust.edu.cn

    2014-10-30

    Highlights: • The solid waste from Soda Ash Plants was firstly converted into the high-efficiency adsorbent (O-HAP). • The response surface methodology was used to optimize the preparation conditions of O-HAP. • The O-HAP showed excellent immobilization ability for Pb{sup 2+} in both aqueous and soil medium. • The maximum adsorption capacity for Pb{sup 2+} (1429 mg/g) was considerably greater than other familiar adsorbents. - Abstract: Alkaline residue, a common solid waste generated from the ammonia-soda process for the production of soda ash, has been converted into hydroxyapatite for Pb{sup 2+} removal from wastewater. Response surface methodology was used to optimize the preparation conditions which were Ca/P (molar ratio), reaction temperature and reaction time, with the Pb{sup 2+} removal percentage as targeted response. The optimum conditions were identified to be Ca/P of 1.29, reaction temperature of 165.87 °C and reaction time of 14.5 h. Batch tests were conducted to evaluate the adsorption performance of optimum adsorbent (O-HAP), and the adsorption data were analyzed with different kinetic and isotherm models. The results showed that the pseudo-second order kinetic model and Langmuir isotherm model could best describe the adsorption of Pb{sup 2+} on O-HAP. The maximum adsorption capacity calculated from Langmuir equation was 1429 mg/g, which was greater than other familiar adsorbents. The MINTEQ results predicted that the formation of different Pb precipitates was the main mechanism in Pb{sup 2+} removal process, which was in good agreement with the kinetic and thermodynamic studies and were confirmed by the SEM-EDS and XRD analysis. In addition to aqueous medium, the O-HAP also could efficiently immobilize Pb{sup 2+} from contaminated soil.

  3. Preparation of a Chicken scFv to Analyze Gentamicin Residue in Animal Derived Food Products.

    Science.gov (United States)

    Li, Cui; He, Jinxin; Ren, Hao; Zhang, Xiaoying; Du, Enqi; Li, Xinping

    2016-04-05

    Chicken is an ideal model for simplified recombinant antibody library generation. It has been rarely been reported to apply chicken single-chain variable fragments (scFvs) in immunoassays for the detection of antibiotic and chemical contaminants in animal food products. In this study, the scFvs (S-1 and S-5) were isolated from a phage display library derived from a hyperimmunized chicken. The checker board titration revealed that the optimum concentrations of S-1 and S-5 were 0.78 μg/mL and 0.44 μg/mL respectively, to obtain OD450 around 1.0 at 5 μg/mL of Gent-OVA coating concentration. Both S-1 and S-5 exhibited negligible cross reactivity with kanamycin and amikacin. The 50% inhibitory concentration (IC50) of S-1 and S-5 were 12.418 ng/mL and 14.674 ng/mL respectively. In the indirect competitive ELISA (ic-ELISA), the limits of detection for S-1 and S-5 were 0.147 ng/mL and 0.219 ng/mL respectively. The mean recovery for Gent ranged from 60.91% to 118.09% with no more than 10.35% relative standard deviation (RSD) between the intra-assay and the inter-assay. These results indicate the chicken scFv based ic-ELISA method is suitable for the detection of Gent residue in animal derived edible tissues and milk.

  4. Recovery of Glucose from Residual Starch of Sago Hampas for Bioethanol Production

    Science.gov (United States)

    Awg-Adeni, D. S.; Bujang, K. B.; Hassan, M. A.; Abd-Aziz, S.

    2013-01-01

    Lower concentration of glucose was often obtained from enzymatic hydrolysis process of agricultural residue due to complexity of the biomass structure and properties. High substrate load feed into the hydrolysis system might solve this problem but has several other drawbacks such as low rate of reaction. In the present study, we have attempted to enhance glucose recovery from agricultural waste, namely, “sago hampas,” through three cycles of enzymatic hydrolysis process. The substrate load at 7% (w/v) was seen to be suitable for the hydrolysis process with respect to the gelatinization reaction as well as sufficient mixture of the suspension for saccharification process. However, this study was focused on hydrolyzing starch of sago hampas, and thus to enhance concentration of glucose from 7% substrate load would be impossible. Thus, an alternative method termed as cycles I, II, and III which involved reusing the hydrolysate for subsequent enzymatic hydrolysis process was introduced. Greater improvement of glucose concentration (138.45 g/L) and better conversion yield (52.72%) were achieved with the completion of three cycles of hydrolysis. In comparison, cycle I and cycle II had glucose concentration of 27.79 g/L and 73.00 g/L, respectively. The glucose obtained was subsequently tested as substrate for bioethanol production using commercial baker's yeast. The fermentation process produced 40.30 g/L of ethanol after 16 h, which was equivalent to 93.29% of theoretical yield based on total glucose existing in fermentation media. PMID:23509813

  5. Optimization of Thermostable Alpha-Amylase Production Via Mix Agricultural-Residues and Bacillus amyloliquefaciens

    Directory of Open Access Journals (Sweden)

    Shalini RAI

    2014-03-01

    Full Text Available This study reports utilization of mixture of wheat and barley bran (1:1 for the production of thermostable alpha-amylase enzyme through a spore former, heat tolerant strain of Bacillus amyloliquefaciens in solid state fermentation. Maximum yield of alpha-amylase (252.77 U mL-1 was obtained in following optimized conditions, inoculums size 2 mL (2 × 106 CFU/mL, moisture 80%, pH 7±0.02, NaCl (3%, temperature 38±1°C, incubation for 72 h, maltose (1% and tryptone (1%. After SSF crude enzyme was purified via ammonium sulfate precipitation, ion exchange and column chromatography by DEAE Cellulose. Purified protein showed a molecular weight of 42 kDa by SDS-PAGE electrophoresis. After purification, purified enzyme was characterized against several enzymes inhibitors such as temperature, NaCl, pH, metal and surfactants. Pure enzyme was highly active over broad temperature (50-70°C, NaCl concentration (0.5-4 M, and pH (6-10 ranges, indicating it’s a thermoactive and alkali-stable nature. Moreover, CaCl2, MnCl2, =-mercaptoethanol were found to stimulate the amylase activity, whereas FeCl3, sodium dodecyl sulfate (SDS, CuCl3 and ethylenediaminetetraacetic acid (EDTA strongly inhibited the enzyme. Moreover, enzyme specificity and thermal stability conformed by degradation of different soluble starch up to 55°C. Therefore, the present study proved that the extracellular alpha-amylase extracted through wheat flour residues by organism B. amyloliquefaciens MCCB0075, both have considerable potential for industrial application owing to its properties.

  6. Glucose(xylose isomerase production by Streptomyces sp. CH7 grown on agricultural residues

    Directory of Open Access Journals (Sweden)

    Kankiya Chanitnun

    2012-09-01

    Full Text Available Streptomyces sp. CH7 was found to efficiently produce glucose(xylose isomerase when grown on either xylan or agricultural residues. This strain produced a glucose(xylose isomerase activity of roughly 1.8 U/mg of protein when it was grown in medium containing 1% xylose as a carbon source. Maximal enzymatic activities of about 5 and 3 U/mg were obtained when 1% xylan and 2.5% corn husks were used, respectively. The enzyme was purified from a mycelial extract to 16-fold purity with only two consecutive column chromatography steps using Macro-prep DEAE and Sephacryl-300, respectively. The approximate molecular weight of the purified enzyme is 170 kDa, and it has four identical subunits of 43.6 kDa as estimated by SDS-PAGE. Its Km values for glucose and xylose were found to be 258.96 and 82.77 mM, respectively, and its Vmax values are 32.42 and 63.64 μM/min/mg, respectively. The purified enzyme is optimally active at 85ºC and pH 7.0. It is stable at pH 5.5-8.5 and at temperatures up to 60ºC after 30 min. These findings indicate that glucose(xylose isomerase from Streptomyces sp. CH7 has the potential for industrial applications, especially for high-fructose syrup production and bioethanol fermentation from hemicellulosic hydrolysates by Saccharomyces cerevisiae.

  7. Secondary organic aerosol formation during evaporation of droplets containing atmospheric aldehydes, amines, and ammonium sulfate.

    Science.gov (United States)

    Galloway, Melissa M; Powelson, Michelle H; Sedehi, Nahzaneen; Wood, Stephanie E; Millage, Katherine D; Kononenko, Julia A; Rynaski, Alec D; De Haan, David O

    2014-12-16

    Reactions of carbonyl compounds in cloudwater produce organic aerosol mass through in-cloud oxidation and during postcloud evaporation. In this work, postcloud evaporation was simulated in laboratory experiments on evaporating droplets that contain mixtures of common atmospheric aldehydes with ammonium sulfate (AS), methylamine, or glycine. Aerosol diameters were measured during monodisperse droplet drying experiments and during polydisperse droplet equilibration experiments at 75% relative humidity, and condensed-phase mass was measured in bulk thermogravimetric experiments. The evaporation of water from a droplet was found to trigger aldehyde reactions that increased residual particle volumes by a similar extent in room-temperature experiments, regardless of whether AS, methylamine, or glycine was present. The production of organic aerosol volume was highest from droplets containing glyoxal, followed by similar production from methylglyoxal or hydroxyacetone. Significant organic aerosol production was observed for glycolaldehyde, acetaldehyde, and formaldehyde only at elevated temperatures in thermogravimetric experiments. In many experiments, the amount of aerosol produced was greater than the sum of all solutes plus nonvolatile solvent impurities, indicating the additional presence of trapped water, likely caused by increasing aerosol-phase viscosity due to oligomer formation.

  8. Vacuum evaporation of pure metals

    OpenAIRE

    Safarian, Jafar; Engh, Thorvald Abel

    2013-01-01

    Theories on the evaporation of pure substances are reviewed and applied to study vacuum evaporation of pure metals. It is shown that there is good agreement between different theories for weak evaporation, whereas there are differences under intensive evaporation conditions. For weak evaporation, the evaporation coefficient in Hertz-Knudsen equation is 1.66. Vapor velocity as a function of the pressure is calculated applying several theories. If a condensing surface is less than one collision...

  9. Evaporation in hydrology and meteorology

    OpenAIRE

    Brandsma, T.

    1990-01-01

    In this paper the role of evaporation in hydrology and meteorology is discussed, with the emphasis on hydrology. The basic theory of evaporation is given and methods to determine evaporation are presented. Some applications of evaporation studies in literature are given in order to illustrate the theory. Further, special conditions in evaporation are considered, followed by a fotmulation of the difficulties in determining evaporation, The last part of the paper gives a short discussion about ...

  10. Evaporation under vacuum condition

    International Nuclear Information System (INIS)

    Mizuta, Satoshi; Shibata, Yuki; Yuki, Kazuhisa; Hashizume, Hidetoshi; Toda, Saburo; Takase, Kazuyuki; Akimoto, Hajime

    2000-01-01

    In nuclear fusion reactor design, an event of water coolant ingress into its vacuum vessel is now being considered as one of the most probable accidents. In this report, the evaporation under vacuum condition is evaluated by using the evaporation model we have developed. The results show that shock-wave by the evaporation occurs whose behavior strongly depends on the initial conditions of vacuum. And in the case of lower initial pressure and temperature, the surface temp finally becomes higher than other conditions. (author)

  11. Evaluation of ground calcite/water heavy media cyclone suspensions for production of residual plastic concentrates.

    Science.gov (United States)

    Gent, Malcolm; Sierra, Héctor Muñiz; Menéndez, Mario; de Cos Juez, Francisco Javier

    2018-01-01

    Viable recycled residual plastic (RP) product(s) must be of sufficient quality to be reusable as a plastic or source of hydrocarbons or fuel. The varied composition and large volumes of such wastes usually requires a low cost, high through-put recycling method(s) to eliminate contaminants. Cyclone separation of plastics by density is proposed as a potential method of achieving separations of specific types of plastics. Three ground calcite separation medias of different grain size distributions were tested in a cylindrical cyclone to evaluate density separations at 1.09, 1.18 and 1.27 g/cm 3 . The differences in separation recoveries obtained with these medias by density offsets produced due to displacement of separation media solid particles within the cyclone caused by centrifugal settling is evaluated. The separation density at which 50% of the material of that density is recovered was found to increase from 0.010 to 0.026 g/cm 3 as the separation media density increased from 1.09 to 1.27 g/cm 3 . All separation medias were found to have significantly low Ep 95 values of 0.012-0.033 g/cm 3 . It is also demonstrated that the presence of an excess content of 75%) resulted in reduced separation efficiencies. It is shown that the optimum separations were achieved when the media density offset was 0.03-0.04 g/cm 3 . It is shown that effective heavy media cyclone separations of RP denser than 1.0 g/cm 3 can produce three sets of mixed plastics containing: PS and ABS/SAN at densities of >1.0-1.09 g/cm 3 ; PC, PMMA at a density of 1.09-1.18 g/cm 3 ; and PVC and PET at a density of >1.27 g/cm 3 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Field evaporation test of uranium tailings solution

    International Nuclear Information System (INIS)

    Chandler, B.L.; Shepard, T.A.; Stewart, T.A.

    1985-01-01

    A field experiment was performed to observe the effect on evaporation rate of a uranium tailings impoundment pond water as salt concentration of the water increased. The duration of the experiment was long enough to cause maximum salt concentration of the water to be attained. The solution used in the experiment was tailings pond water from an inactive uranium tailings disposal site in the initial stages of reclamation. The solution was not neutralized. The initial pH was about 1.0 decreasing to a salt gel at the end of the test. The results of the field experiment show a gradual and slight decrease in evaporation efficiency. This resulted as salt concentrations increased and verified the practical effectiveness of evaporation as a water removal method. In addition, the physical and chemical nature of the residual salts suggest that no long-term stability problem would likely result due to their presence in the impoundment during or after reclamation

  13. Production of crude enzyme from Aspergillus nidulans AKB-25 using black gram residue as the substrate and its industrial applications

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2016-06-01

    Full Text Available The production of crop residues in India is estimated to be about 500–550 million tons annually. It is estimated that about 93 million tons of crop residues is burnt annually which is not only wastage of valuable biomass resources but pollution of the environment with the production of green house gases also. Among different low cost crop residues, black gram residue as the substrate produced maximal endoglucanase, FPase, and β-glucosidase activities from Aspergillus nidulans AKB-25 under solid-state fermentation. During optimisation of cultural parameters A. nidulans AKB-25 produced maximal endoglucanase (152.14 IU/gds, FPase (3.42 FPU/gds and xylanase (2441.03 IU/gds activities. The crude enzyme was found effective for the saccharification of pearl millet stover and bio-deinking of mixed office waste paper. The crude enzyme from A. nidulans AKB-25 produced maximum fermentable sugars of 546.91 mg/g from alkali-pretreated pearl millet stover by saccharification process at a dose of 15 FPU/g of substrate. Pulp brightness and deinking efficiency of mixed office waste paper improved by 4.6% and 25.01% respectively and mitigated dirt counts by 74.70% after bio-deinking. Physical strength properties like burst index, tensile index and double fold number were also improved during bio-deinking of mixed office waste paper.

  14. Residual efficacy of pyriproxyfen and hydroprene applied to wood, metal and concrete for control of stored-product insects.

    Science.gov (United States)

    Arthur, Frank H; Liu, Siwei; Zhao, Baige; Phillips, Thomas W

    2009-07-01

    Pyriproxyfen and hydroprene are insect growth regulators (IGRs) that have been evaluated to control insect pests of field crops, but there are limited reports of efficacy against stored-product insects. A laboratory study was conducted to determine residual efficacy of pyriproxyfen and hydroprene on wood, metal and concrete surfaces. Pyriproxyfen was applied to the surfaces at 1.15 and 2.3 mg active ingredient [AI] m(-2), while hydroprene was applied at the label rate of 19 mg AI m(-2). Late-instar larvae of Tribolium confusum Jacqueline DuVal, T. castaneum (Herbst), Oryzaephilus surinamenis L., Lasioderma serricorne (F.) and Plodia interpunctella (Hübner) were exposed with a food source on the treated surfaces. Residual testing was conducted at 1, 28 and 56 days post-treatment. Hydroprene was least persistent on concrete and generally most persistent on metal. Pyriproxyfen gave greater residual persistence than hydroprene, and there was no consistent difference in efficacy among the three surfaces. Efficacy varied among the five insect species, but generally P. interpunctella was the most tolerant species to both IGRs. Pyriproxyfen gave effective residual control of primary stored-product insect species by inhibiting adult emergence of exposed larvae. Results show that pyriproxyfen can be a useful addition for pest management programs in mills, warehouses and food storage facilities. (c) John Wiley & Sons, Ltd.

  15. Numerical Investigation of the Influence of Convection in a Mixture of Combustion Products on the Integral Characteristics of the Evaporation of a Finely Atomized Water Drop paragraph>Please check captured article title, if appropriate.paragraph>-->

    Science.gov (United States)

    Kuznetsov, G. V.; Strizhak, P. A.

    2014-01-01

    A model of the heat-and-mass transfer in the neighborhood of a finely atomized water drop moving through the high-temperature products of combustion of materials has been developed for numerical analysis of the macroscopic mechanisms of movement of such a drop in a mixture of combustion products and water vapor with account for the complex of interrelated physical processes and phase transitions taking place in this case. The influence of the convection on the integral characteristics of the evaporation of the indicated drop was analyzed and the sizes of its "temperature" and "concentration" wakes were estimated. The conditions under which the integral characteristics of the evaporation of this drop can be calculated in the diffusion approximation were determined.

  16. Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues.

    Science.gov (United States)

    Kourti, Ioanna; Rani, D Amutha; Deegan, D; Boccaccini, A R; Cheeseman, C R

    2010-04-15

    Air pollution control (APC) residues are the hazardous waste produced from cleaning gaseous emissions at energy-from-waste (EfW) facilities processing municipal solid waste (MSW). APC residues have been blended with glass-forming additives and treated using DC plasma technology to produce a high calcium alumino-silicate glass. This research has investigated the optimisation and properties of geopolymers prepared from this glass. Work has shown that high strength geopolymers can be formed and that the NaOH concentration of the activating solution significantly affects the properties. The broad particle size distribution of the APC residue glass used in these experiments results in a microstructure that contains unreacted glass particles included within a geopolymer binder phase. The high calcium content of APC residues may cause the formation of some amorphous calcium silicate hydrate (C-S-H) gel. A mix prepared with S/L=3.4, Si/Al=2.6 and [NaOH]=6M in the activating solution, produced high strength geopolymers with compressive strengths of approximately 130 MPa. This material had high density (2070 kg/m(3)) and low porosity. The research demonstrates for the first time that glass derived from DC plasma treatment of APC residues can be used to form high strength geopolymer-glass composites that have potential for use in a range of applications. 2009 Elsevier B.V. All rights reserved.

  17. Multi-Residue studies of pesticides in fermented dried cocoa beans and selected cocoa products produced in Ghana

    International Nuclear Information System (INIS)

    Frimpong, S. K

    2011-01-01

    Cocoa is a major cash crop and contributes significantly to Ghana's economy. Majority of this contribution is as a result of foreign earnings in foreign trade partnership. Cocoa products are consumed locally aside it generating foreign income for the country. Pesticide residues above allowable limits in cocoa beans have potential detrimental effects on human health, depending on the frequency of exposure and/or the potency or toxicity of the pesticide. Pesticide residues on cocoa also attract trade sanctions from international trading partners. The approved pesticides, which are used to control pests in the growing cocoa in Ghana, are: Diazinon, Cypermethrin, Deltamethrin, Acetamiprid, Imidicloprid and Pyrethrums; nevertheless some unapproved pesticides on cocoa such as Pirimiphos-methyl, Chlorpyrifos, Endosulfan, Fenitrotion, Fenvalerate, Permethrin and others find their way for use on cocoa in Ghana. The main objective of this study was to determine the levels of pesticide residues in fermented dried cocoa beans produced and ready for export in Ghana, using gas chromatography mass spectrometry. It also seeks to provide the baseline information on contamination levels of pesticide residues in semi-finished and selected finished fermented dried cocoa beans products. Fermented dried cocoa beans were sampled at random in the two main COCOBOD warehouses located in Tema and Takoradi. Semi-finished and finished cocoa products were obtained from processing industries in Tema. Two extraction methods were used. The second extraction method was as by the QuEChERS method for vegetable oils which was used for the cocoa butter samples only, after being liquefied in water bath at 40 degrees celsius. The investigated pesticides consisted of fifteen organochlorine pesticides, thirteen organophosphorous pesticides and nine synthetic pyrethroids pesticides. Percentage recoveries ranged from 70-110 percent, with instrumental detection limits of 0.3ug/kg, 0.15ug/g and 0.15ug/g for

  18. Evaporation from microreservoirs.

    Science.gov (United States)

    Lynn, N Scott; Henry, Charles S; Dandy, David S

    2009-06-21

    As a result of very large surface area to volume ratios, evaporation is of significant importance when dealing with lab-on-a-chip devices that possess open air/liquid interfaces. For devices utilizing a reservoir as a fluid delivery method to a microfluidic network, excessive evaporation can quickly lead to reservoir dry out and overall device failure. Predicting the rates of evaporation from these reservoirs is difficult because the position of the air/liquid interface changes with time as the volume of liquid in the reservoir decreases. Here we present a two-step method to accurately predict the rates of evaporation of such an interface over time. First, a simple method is proposed to determine the shape of an air/liquid meniscus in a reservoir given a specific liquid volume. Second, computational fluid dynamics simulations are used to calculate the instantaneous rate of evaporation for that meniscus shape. It is shown that the rate of evaporation is strongly dependent on the overall geometry of the system, enhanced in expanding reservoirs while suppressed in contracting reservoirs, where the geometry can be easily controlled with simple experimental methods. Using no adjustable parameters, the model accurately predicts the position of the inner moving contact line as a function of time following meniscus rupture in poly(dimethylsiloxane) reservoirs, and predicts the overall time for the persistence of liquid in those reservoirs to within 0.5 minutes. The methods in this study can be used to design holding reservoirs for lab-on-a-chip devices that involve no external control of evaporation, such that evaporation rates can be adjusted as necessary by modification of the reservoir geometry.

  19. Process design of in situ esterification-transesterifica tion for biodiesel production from residual oil of spent bleaching earth (SBE)

    Science.gov (United States)

    Suryani, A.; Mubarok, Z.; Suprihatin; Romli, M.; Yunira, E. N.

    2017-05-01

    Indonesia is the largest producer of Crude Palm Oil (CPO) in the world. CPO refining process produces spent bleaching earth (SBE), which still contains 20-30% oil. This residual oil is very potential to be developed as a biodiesel feedstock. The purpose of this research was to develop an in situbiodiesel production process of residual oil of SBE, which covered stirring speed of esterification and transesterification and also transesterification time to produce biodiesel with the best characteristics. The production was conducted in a 100 L reactor. The stirring speeds applied were 650 rpm and 730 rpm, and the transesterification time varied at 60, 90 and 120 minutes. The combination of 730 rpm stirring speed for 90 minutes transesterification resulted in the best biodiesel characteristics with the yield of 85%, the specific energy of 6,738 kJ/kg and the heater efficiency of 48%. The physico-chemical properties of biodiesel was in conformity with the SNI of Biodiesel.

  20. The interactive effect of fungicide residues and yeast assimilable nitrogen on fermentation kinetics and hydrogen sulfide production during cider fermentation

    OpenAIRE

    Boudreau, Thomas F; Peck, Gregory M; O'Keefe, Sean F; Stewart, Amanda C

    2016-01-01

    Abstract BACKGROUND Fungicide residues on fruit may adversely affect yeast during cider fermentation, leading to sluggish or stuck fermentation or the production of hydrogen sulfide (H2S), which is an undesirable aroma compound. This phenomenon has been studied in grape fermentation but not in apple fermentation. Low nitrogen availability, which is characteristic of apples, may further exacerbate the effects of fungicides on yeast during fermentation. The present study explored the effects of...

  1. Recycling the nutrients in residues from methane digesters of aquatic macrophytes for new biomass production

    Science.gov (United States)

    Hanisak, M. D.; Williams, L. D.; Ryther, J. H.

    1980-04-01

    The floating freshwater macrophyte Eichhornia crassipes (water hyacinth) was fermented anaerobically to produce 0.4 l of biogas/g volatile solids at 60% methane with a bioconversion efficiency of 47%. Both the liquid and solid digester residues were a rich source of nutrients that were recycled to produce additional biomass. An approximate balance of the nitrogen recycled through the culture-digester-culture system indicated that nitrogen was conserved within the digester. All of the nitrogen originally added to the digester in the form of shredded water hyacinths could be found in the liquid (48%) and solid (52%) residues; 65.5% of the nitrogen in these residues could be reassimilated by cultures of water hyacinths. This study indicated the potential of bioconversion of aquatic macrophytes to methane as a possible means of both producing and conserving energy.

  2. Evaluation of electricity generation from lignin residue and biogas in cellulosic ethanol production.

    Science.gov (United States)

    Liu, Gang; Bao, Jie

    2017-11-01

    This study takes the first insight on the rigorous evaluation of electricity generation based on the experimentally measured higher heating value (HHV) of lignin residue, as well as the chemical oxygen demand (COD) and biological oxygen demand (BOD 5 ) of wastewater. For producing one metric ton of ethanol fuel from five typical lignocellulose substrates, including corn stover, wheat straw, rice straw, sugarcane bagasse and poplar sawdust, 1.26-1.85tons of dry lignin residue is generated from biorefining process and 0.19-0.27tons of biogas is generated from anaerobic digestion of wastewater, equivalent to 4335-5981kWh and 1946-2795kWh of electricity by combustion of the generated lignin residue and biogas, respectively. The electricity generation not only sufficiently meets the electricity needs of process requirement, but also generates more than half of electricity surplus selling to the grid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cellulase and xylanase productions by isolated Amazon Bacillus strains using soybean industrial residue based solid-state cultivation

    Directory of Open Access Journals (Sweden)

    Heck Júlio X.

    2002-01-01

    Full Text Available In Brazil, a large amount of a fibrous residue is generated as result of soybean (Glycine max protein production. This material, which is rich in hemicellulose and cellulose, can be used in solid state cultivations for the production of valuable metabolites and enzymes. In this work, we studied the bioconversion of this residue by bacteria strains isolated from water and soil collected in the Amazon region. Five strains among 87 isolated bacteria selected for their ability to produce either celullases or xylanases were cultivated on the aforementioned residue. From strain BL62, identified as Bacillus subtilis, it was obtained a preparation showing the highest specific cellulase activity, 1.08 UI/mg protein within 24 hours of growth. Concerning xylanase, the isolate BL53, also identified as Bacillus subtilis, showed the highest specific activity for this enzyme, 5.19 UI/mg protein within 72 hours of cultivation. It has also been observed the production of proteases that were associated with the loss of cellulase and xylanase activities. These results indicated that the selected microorganisms, and the cultivation process, have great biotechnological potential.

  4. Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review

    Directory of Open Access Journals (Sweden)

    Hiel, MP.

    2016-01-01

    Full Text Available Introduction. Residues of previous crops provide a valuable amount of organic matter that can be used either to restore soil fertility or for external use. A better understanding of the impact of crop residue management on the soil-water-plant system is needed in order to manage agricultural land sustainably. This review focuses on soil physical aspects related to crop residue management, and specifically on the link between soil structure and hydraulic properties and its impact on crop production. Literature. Conservation practices, including crop residue retention and non-conventional tillage, can enhance soil health by improving aggregate stability. In this case, water infiltration is facilitated, resulting in an increase in plant water availability. Conservation practices, however, do not systematically lead to higher water availability for the plant. The influence of crop residue management on crop production is still unclear; in some cases, crop production is enhanced by residue retention, but in others crop residues can reduce crop yield. Conclusions. In this review we discuss the diverse and contrasting effects of crop residue management on soil physical properties and crop production under a temperate climate. The review highlights the importance of environmental factors such as soil type and local climatic conditions, highlighting the need to perform field studies on crop residue management and relate them to specific pedo-climatic contexts.

  5. Technologies for hydrogen production based on direct contact of gaseous hydrocarbons and evaporated water with Molten Pb or Pb-Bi

    International Nuclear Information System (INIS)

    Gulevich, A. V.; Martynov, P. N.; Gulevsky, V. A.; Ulyanov, V. V.

    2007-01-01

    hydrogen (at t≥500 degree C). A valuable product is formed in this process - powdery carbon readily removable from the reaction zone owing to a large density difference of carbon vs. liquid metal. 3. The oxidation conversion of hydrocarbons (at t≥500 degree C). Hydrogen and CO 2 , hydrogen and synthetic gas (H 2 and CO mixture) can be obtained as end products. This process develops more effectively compared to the traditional vapor conversion. The increase of conversion effectiveness is caused by the new processes not employed before: hydrocarbon oxidation by oxides present in the reaction zone as dissolved in the melt and in solid phase; co-oxidation of hydrocarbons by evaporated water and HLMC oxides. As a result of enhanced effectiveness of oxidation conversion, the conditions for its fulfillment can be considerably simplified - the working pressure, as well as the process temperature can be decreased to the level at which it becomes possible to use structural materials, equipment, and appropriate measures for the employment of technology with coolants that have been developed and substantiated for operation in circuits with Pb and Pb-Bi coolants. The dimensions of 'direct contact' devices for hydrogen production can be very small. Therefore, they can find application both in large-scale hydrogen production, and in small-size (remote) sources of hydrogen

  6. 7 CFR 58.913 - Evaporators and vacuum pans.

    Science.gov (United States)

    2010-01-01

    ... AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) GRADING AND INSPECTION, GENERAL SPECIFICATIONS FOR APPROVED PLANTS AND STANDARDS FOR GRADES OF DAIRY PRODUCTS 1 General... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans. ...

  7. Liquid waste evaporator operating experience

    International Nuclear Information System (INIS)

    Beauchamp, A.

    2006-01-01

    Atomic Energy of Canada Limited (AECL) operates the Waste Treatment Centre (WTC) to treat and immobilize some of the low- level radioactive waste (LLRW) streams at the Chalk River Laboratories (CRL). The WTC at treats low- level radioactive liquid waste by removing the contaminants from the wastewater, concentrating them, and immobilizing them. The fundamental design concept for the WTC is to process the waste streams using forced circulation type liquid waste evaporation (LWE), to solidify the concentrates using thin film evaporator and to discharge the purified effluent into the Ottawa River following verification monitoring. The solidified product drums are stored in existing storage facilities in the CRL. The LWE was installed in the WTC to treat the LLRW. After about four (4) years of design, construction and cold commissioning, the active commissioning of the evaporator process using radioactive waste streams commenced in February 2000. The LWE has overcome problems encountered with previous processing system such as fouling and enabled treatment of historical liquid wastes, which are currently stored in tanks at CRL, and waste from future CRL projects. This paper summarizes some of the operating experience obtained during the last four years of operation. (author)

  8. Crop residue is key for sustaining maximum food production and for conservation of our biosphere

    Science.gov (United States)

    Crop residue is key in our efforts to move towards agricultural sustainability. This paper provides a quick overview of some selected references and looks at some of the newest advances related to cover crops. Several authors have described in detail the benefits derived from improving soil quality ...

  9. Fractionation of Forest Residues of Douglas-fir for Fermentable Sugar Production by SPORL Pretreatment

    Science.gov (United States)

    Chao Zhang; J.Y. Zhu; Roland Gleisner; John Sessions

    2012-01-01

    Douglas-fir (Pseudotsuga menziesii) forest residues were physically fractionated through sieving. The bark and wood were separated for large-sized fractions (>12.7 mm), and their contents were determined. The chemical compositions of the large fractions were calculated based on the contents and chemical compositions of the bark and wood. The...

  10. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues.

    Science.gov (United States)

    Liu, Wanchao; Yang, Jiakuan; Xiao, Bo

    2009-01-15

    Red mud is a solid waste produced in the process of alumina extraction from bauxite. In this paper, recovery iron from Bayer red mud was studied with direct reduction roasting process followed by magnetic separation, and then building materials were prepared from alumosilicate residues. After analysis of chemical composition and crystalline phase, the effects of different parameters on recovery efficiency of iron were carried out. The optimum reaction parameters were proposed as the following: ratio of carbon powder: red mud at 18:100, ratio of additives: red mud at 6:100, roasting at 1300 degrees C for 110min. With these optimum parameters, total content of iron in concentrated materials was 88.77%, metallization ratio of 97.69% and recovery ratio of 81.40%. Then brick specimens were prepared with alumosilicate residues and hydrated lime. Mean compressive strength of specimens was 24.10MPa. It was indicated that main mineral phase transformed from nepheline (NaAlSiO4) in alumosilicate residues to gehlenite (Ca2Al2SiO7) in brick specimens through X-ray diffraction (XRD) technology. The feasibility of this transformation under the experimental conditions was proved by thermodynamics calculation analysis. Combined the recovery of iron with the reuse of alumosilicate residues, it can realize zero-discharge of red mud from Bayer process.

  11. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wanchao [School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074 (China); Yang Jiakuan [School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074 (China)], E-mail: yjiakuan@hotmail.com; Xiao Bo [School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074 (China)

    2009-01-15

    Red mud is a solid waste produced in the process of alumina extraction from bauxite. In this paper, recovery iron from Bayer red mud was studied with direct reduction roasting process followed by magnetic separation, and then building materials were prepared from alumosilicate residues. After analysis of chemical composition and crystalline phase, the effects of different parameters on recovery efficiency of iron were carried out. The optimum reaction parameters were proposed as the following: ratio of carbon powder: red mud at 18:100, ratio of additives: red mud at 6:100, roasting at 1300 deg. C for 110 min. With these optimum parameters, total content of iron in concentrated materials was 88.77%, metallization ratio of 97.69% and recovery ratio of 81.40%. Then brick specimens were prepared with alumosilicate residues and hydrated lime. Mean compressive strength of specimens was 24.10 MPa. It was indicated that main mineral phase transformed from nepheline (NaAlSiO{sub 4}) in alumosilicate residues to gehlenite (Ca{sub 2}Al{sub 2}SiO{sub 7}) in brick specimens through X-ray diffraction (XRD) technology. The feasibility of this transformation under the experimental conditions was proved by thermodynamics calculation analysis. Combined the recovery of iron with the reuse of alumosilicate residues, it can realize zero-discharge of red mud from Bayer process.

  12. Evaporation in hydrology and meteorology

    NARCIS (Netherlands)

    Brandsma, T.

    1990-01-01

    In this paper the role of evaporation in hydrology and meteorology is discussed, with the emphasis on hydrology. The basic theory of evaporation is given and methods to determine evaporation are presented. Some applications of evaporation studies in literature are given in order to illustrate the

  13. CO2 Enhanced Oil Recovery from the Residual Zone - A Sustainable Vision for North Sea Oil Production

    Science.gov (United States)

    Stewart, Jamie; Haszeldine, Stuart; Wilkinson, Mark; Johnson, Gareth

    2014-05-01

    This paper presents a 'new vision for North Sea oil production' where previously unattainable residual oil can be produced with the injection of CO2 that has been captured at power stations or other large industrial emitters. Not only could this process produce incremental oil from a maturing basin, reducing imports, it also has the capability to store large volumes of CO2 which can offset the emissions of additional carbon produced. Around the world oil production from mature basins is in decline and production from UK oil fields peaked in 1998. Other basins around the world have a similar story. Although in the UK a number of tax regimes, such as 'brown field allowances' and 'new field allowances' have been put in place to re-encourage investment, it is recognised that the majority of large discoveries have already been made. However, as a nation our demand for oil remains high and in the last decade imports of crude oil have been steadily increasing. The UK is dependent on crude oil for transport and feedstock for chemical and plastics production. Combined with the necessity to provide energy security, there is a demand to re-assess the potential for CO2 Enhanced Oil Recovery (CO2-EOR) in the UK offshore. Residual oil zones (ROZ) exist where one of a number of natural conditions beyond normal capillary forces have caused the geometry of a field's oil column to be altered after filling [1]. When this re-structuring happens the primary interest to the hydrocarbon industry has in the past been in where the mobile oil has migrated to. However it is now considered that significant oil resource may exist in the residual zone play where the main oil column has been displaced. Saturations within this play are predominantly close to residual saturation (Sr) and would be similar to that of a water-flooded field [2]. Evidence from a number of hydrocarbon fairways shows that, under certain circumstances, these residual zones in US fields are comparable in thickness to the

  14. Isotopic production cross sections of fission residues in 197Au-on-proton collisions at 800 A MeV

    International Nuclear Information System (INIS)

    Benlliure, J.; Armbruster, P.; Bernas, M.

    2000-02-01

    Interactions of 197 Au projectiles at 800 A MeV with protons leading to fission are investigated. We measured the production cross sections and velocities of all fission residues which are fully identified in atomic and mass number by using the in-flight separator FRS at GSI. The new data are compared with partial measurements of the characteristics of fission in similar reactions. Both the production cross sections and the recoil energies are relevant for a better understanding of spallation reactions. (orig.)

  15. Treatment of concentrates from wastewater evaporation in the pulp and paper industry; Metsaeteollisuuden jaetevesien haihduttamokonsentraattien jatkokaesittely - KLT 03

    Energy Technology Data Exchange (ETDEWEB)

    Fagernaes, L. [VTT Energy, Espoo (Finland)

    1998-12-31

    Different organic and inorganic compounds are dissolved in process waters in paper production processes. When closing water cycles this dissolved material is enriched in circulation waters. One alternative for removing this harmful material is evaporation. The aim of the project was to characterise concentrates and condensates formed in the evaporation of different waste waters and circulation waters in the pulp and paper industry, and to survey alternatives for their further treatment and utilisation. Furthermore, one aim was to study precipitation of material and contamination of heat transfer surfaces during evaporation. In the work, TMP and CTMP filtrates, debarking waters as well as concentrates from pilot and demonstration evaporation plants were used as samples. The water samples were evaporated, and the concentrates were evaporated further to higher dry solids contents. Waste water parameters and the compositions of feed, condensate and concentrate samples were measured. An analysis scheme was developed for the organic matter in CTMP filtrates and their concentrates. Primarily low-molecular acids and alcohols are evaporated with the water from TMP and CTMP filtrates and from debarking waters. The other substances were concentrated in the residues. The proportion of organic matter in the concentrates of TMP filtrates was about a half, while the concentrates of debarking water consisted nearly totally of organic matter. Fuel properties were determined and preliminary heat treatment experiments were carried out for the concentrates. The ash and sodium contents of the TMP and CTMP filtrates were high. The project was terminated in spring 1998. The research work will be continued in a new project within the CACTUS Programme under the title `Overall solution for water circulation based on evaporation` (KLT 01). The research plan of this project is presented elsewhere in this yearbook. (orig.)

  16. Residue processing

    Energy Technology Data Exchange (ETDEWEB)

    Gieg, W.; Rank, V.

    1942-10-15

    In the first stage of coal hydrogenation, the liquid phase, light and heavy oils were produced; the latter containing the nonliquefied parts of the coal, the coal ash, and the catalyst substances. It was the problem of residue processing to extract from these so-called let-down oils that which could be used as pasting oils for the coal. The object was to obtain a maximum oil extraction and a complete removal of the solids, because of the latter were returned to the process they would needlessly burden the reaction space. Separation of solids in residue processing could be accomplished by filtration, centrifugation, extraction, distillation, or low-temperature carbonization (L.T.C.). Filtration or centrifugation was most suitable since a maximum oil yield could be expected from it, since only a small portion of the let-down oil contained in the filtration or centrifugation residue had to be thermally treated. The most satisfactory centrifuge at this time was the Laval, which delivered liquid centrifuge residue and centrifuge oil continuously. By comparison, the semi-continuous centrifuges delivered plastic residues which were difficult to handle. Various apparatus such as the spiral screw kiln and the ball kiln were used for low-temperature carbonization of centrifuge residues. Both were based on the idea of carbonization in thin layers. Efforts were also being made to produce electrode carbon and briquette binder as by-products of the liquid coal phase.

  17. Production of residual nuclides by proton-induced reactions on target W at the energy of 72 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Miah, Moazzem Hossain [Univ. of Chittagong, Dept. of Physics, Chittagong (Bangladesh); Kuhnhenn, Jochen; Herpers, Ulrich [Univ. of Cologne, Dept. of Nuclear Chemistry, Cologne (Germany); Michel, Rolf [University of Hannover, Centre for Radiation Protection and Radioecology (Germany); Kubik, Peter [Paul Scherrer Inst., c/o Institute for Particle Physics, ETH Hoenggerberg, Zuerich (Switzerland)

    2002-08-01

    Investigations of cross-sections for residual nuclide production on the target element W by proton-induced reactions were performed by irradiating the target with 72 MeV protons using the cyclotron facilities at Paul-Scherrer Institute, Zurich, Switzerland. Residual nuclides were measured by gamma-spectrometry of HpGe detectors calibrated with standard gamma sources. The measured data contains 104 individual cross-sections for 20 identified nuclides in the proton energies between 52.5 - 68.9 MeV. These nuclear data is important in the study of spallation neutron source and in accelerator driven technologies such as waste transmutation and energy amplification. The present data are compared with the shape of the excitation functions of earlier only one measurement at higher energies and they are in good agreement to each other. (author)

  18. Espresso coffee residues as a nitrogen amendment for small-scale vegetable production.

    Science.gov (United States)

    Cruz, Soraia; Marques dos Santos Cordovil, Cláudia S C

    2015-12-01

    Espresso coffee grounds constitute a residue which is produced daily in considerable amounts, and is often pointed out as being potentially interesting for plant nutrition. Two experiments (incubations and field experiments) were carried out to evaluate the potential nitrogen (N) and phosphorus (P) supply for carrot (Daucus carota L.), spinach (Spinacea oleracea L.) and lettuce (Lactuca sativa L.) nutrition. Immobilisation of nitrogen and phosphorus was detected in all the incubations and, in the field experiments, germination and yield growth were decreased by the presence of espresso coffee grounds, in general for all the species studied. The study showed an inhibition of N and P mineralisation and a reduction of plant germination and growth. Further research is required to determine whether this is related to the immobilising capacity of the residue or possibly due to the presence of caffeine. © 2015 Society of Chemical Industry.

  19. PLANT PROTECTION PRODUCT RESIDUES IN APPLES, CAULIFLOWER, CEREALS, GRAPE, LETTUCE, PEAS, PEPPERS, POTATOES AND STRAWBERRIES OF THE SLOVENE ORIGIN IN 2006

    Directory of Open Access Journals (Sweden)

    Helena BAŠA ČESNIK

    2010-02-01

    Full Text Available In the year 2006, 181 apple, cauliflower, cereal, grape, lettuce, pea, pepper, potato and strawberry samples from Slovene producers were analysed for plant protection product residues. The samples were analysed for the presence of 86 different active compounds using four analytical methods. In nine samples (5.0 % exceeded maximum residue levels (MRLs were determined which is comparable with the results of the monitoring of plant protection product residues in products of plant origin in the European union, Norway, Iceland and Liechtenstein in 2005 (4.9 %.

  20. Considerations on the utilisation of the extraction residue from U, Th production from low grade ores

    International Nuclear Information System (INIS)

    Huwyler, S.

    1979-11-01

    A literature review about processes for the winning of metals from the extraction residue of low grade U, Th-ores has been made. Among the metals recoverable aluminium is being considered as the most interesting one. The aluminium extraction processes discussed here include high temperature chlorination, the BAYER-process, acid and SO 3 digestion processes, winning of an AlSiFe-alloy by electrometallurgy. The merits of the different processes are compared. (Auth.)

  1. Production of energy and activated carbon from agri-residue: sunflower seed example.

    Science.gov (United States)

    Donaldson, Adam A; Kadakia, Parag; Gupta, Murlidhar; Zhang, Zisheng

    2012-09-01

    In this work, a biomass processing facility is designed and simulated for the annual conversion of 77 ktons of sunflower residue into electricity and activated carbon. The residue is initially pyrolized to produce low hydrocarbon gases (35 wt%), bio-oils (30 wt%), and char (35 wt%). The gases and bio-oils are separated and combusted to generate high pressure steam, electricity, and steam for conversion of char into activated carbon. Assuming 35% of the char's mass is lost during activation, the proposed process produces 15.6 ktons activated carbon and 5.5 ktons ash annually, while generating 10.2 MW of electricity. Economic analysis of the proposed facility yielded capital costs of $31.64 million, annual operating costs of $31.58 million, and a yearly gross revenue of $38.9 million. A discounted payback period of 6.1 years was determined for the current design, extending to 10 years if the facility were operated at 75% capacity. While the proposed process appears to be economically viable, profitability is highly sensitive to the selling price of electricity and activated carbon, highlighting the need for additional research into the pyrolysis reactor design, char/ash separation techniques, and the quality of activated carbon obtained using char from sunflower residue pyrolysis.

  2. The interactive effect of fungicide residues and yeast assimilable nitrogen on fermentation kinetics and hydrogen sulfide production during cider fermentation.

    Science.gov (United States)

    Boudreau, Thomas F; Peck, Gregory M; O'Keefe, Sean F; Stewart, Amanda C

    2017-01-01

    Fungicide residues on fruit may adversely affect yeast during cider fermentation, leading to sluggish or stuck fermentation or the production of hydrogen sulfide (H 2 S), which is an undesirable aroma compound. This phenomenon has been studied in grape fermentation but not in apple fermentation. Low nitrogen availability, which is characteristic of apples, may further exacerbate the effects of fungicides on yeast during fermentation. The present study explored the effects of three fungicides: elemental sulfur (S 0 ) (known to result in increased H 2 S in wine); fenbuconazole (used in orchards but not vineyards); and fludioxonil (used in post-harvest storage of apples). Only S 0 led to increased H 2 S production. Fenbuconazole (≥0.2 mg L -1 ) resulted in a decreased fermentation rate and increased residual sugar. An interactive effect of yeast assimilable nitrogen (YAN) concentration and fenbuconazole was observed such that increasing the YAN concentration alleviated the negative effects of fenbuconazole on fermentation kinetics. Cidermakers should be aware that residual fenbuconazole (as low as 0.2 mg L -1 ) in apple juice may lead to stuck fermentation, especially when the YAN concentration is below 250 mg L -1 . These results indicate that fermentation problems attributed to low YAN may be caused or exacerbated by additional factors such as fungicide residues, which have a greater impact on fermentation performance under low YAN conditions. © 2016 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2016 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  3. Tamarind kernel powder: a novel agro-residue for the production of cellobiose dehydrogenase under submerged fermentation by Termitomyces clypeatus.

    Science.gov (United States)

    Saha, Tanima; Sasmal, Soumya; Alam, Shariful; Das, Nirmalendu

    2014-04-16

    The study investigates the potential of substitution of the conventional carbohydrate nutrient (cellulose) in media with cheap agro-residues for cellobiose dehydrogenase production by Termitomyces clypeatus (CDHtc) under submerged conditions. Different agro-residues tested for enzyme production were characterized using FTIR and XRD analysis. As CDHtc production was highest with tamarind kernel powder (TKP), it was selected for process optimizations through shake-flask fermentations. The optimized parameters were then applied to batch cultures in a 5 L bioreactor that gave enzyme yield (57.4 U mL⁻¹) similar to that obtained under shake-flask fermentations (57.05 U mL⁻¹). The study also made an attempt to predict CDHtc production with respect to time of fermentation and mycelial growth. The specific growth rate and carrying capacity of the mycelia were also determined, and the values lie in the ranges of 0.024-0.027 h⁻¹ and 7.2-7.1 mg mL⁻¹, respectively.

  4. Biodiesel Production from Residual Palm Oil Contained in Spent Bleaching Earth by In Situ Trans-Esterification

    Directory of Open Access Journals (Sweden)

    A S Fahmil QRM

    2014-06-01

    Full Text Available Spent Bleaching Earth (SBE is an industrial solid waste of vegetable oil industry that has a high residual oil to be potentialy converted to biodiesel. This study aims at developing a biodiesel production process technology by utilizing residual palm oil contained in SBE and to test the use of hexane in the trans-esterification process. Optimization process was done by using the Response Surface Method (RSM. The variables studied included catalyst concentration and reaction time. On the other hand, the deoiled SBE resulted from biodiesel production was tested as an adsorbent on biodiesel purification after being reactivated. The method used in the biodiesel production included an in situ acid catalysed esterification followed by in situ base catalysed trans-esterification. The results of RSM showed that the optimum process was obtained at NaOH concentration of 1.8% and reaction time of 104.73 minutes, with a predicted response rate of 97.18% and 95.63% for validation results. The use of hexane could also increase the yield of biodiesel which was obtained on the ratio of hexane to methanol of 0.4:1 (volume of hexane: volume of methanol. On the other hand, the reactivated bleaching earth was effective as an adsorbent in biodiesel production, which was still conform with the Indonesian National Standard.

  5. High titer and yield ethanol production from undetoxified whole slurry of Douglas-fir forest residue using pH profiling in SPORL

    Science.gov (United States)

    Jinlan Cheng; Shao-Yuan Leu; JY Zhu; Rolland Gleisner

    2015-01-01

    Forest residue is one of the most cost-effective feedstock for biofuel production. It has relatively high bulk density and can be harvested year round, advantageous for reducing transportation cost and eliminating onsite storage. However, forest residues, especially those from softwood species, are highly recalcitrant to biochemical conversion. A severe pretreatment...

  6. Partial Optimization of Endo-1, 4-Β-Xylanase Production by Aureobasidium pullulans Using Agro-Industrial Residues.

    Science.gov (United States)

    Nasr, Shaghayegh; Soudi, Mohammad Reza; Hatef Salmanian, Ali; Ghadam, Parinaz

    2013-12-01

    Objective(s) : Although bacteria and molds are the pioneering microorganisms for production of many enzymes, yet yeasts provide safe and reliable sources of enzymes with applications in food and feed. Single xylanase producer yeast was isolated from plant residues based on formation of transparent halo zones on xylan agar plates. The isolate showed much greater endo-1, 4-β-xylanase activity of 2.73 IU/ml after optimization of the initial extrinsic conditions. It was shown that the strain was also able to produce β-xylosidase (0.179 IU/ml) and α-arabinofuranosidase (0.063 IU/ml). Identification of the isolate was carried out and the endo-1, 4-β-xylanaseproduction by feeding the yeast cells on agro-industrial residues was optimized using one factor at a time approach. The enzyme producer strain was identified as Aureobasidiumpullulans. Based on the optimization approach, an incubation time of 48 hr at 27°C, inoculum size of 2% (v/v), initial pH value of 4 and agitation rate of 90 rpm were found to be the optimal conditions for achieving maximum yield of the enzyme. Xylan, containing agricultural residues, was evaluated as low-cost alternative carbon source for production of xylanolytic enzymes. The production of xylanase enzyme in media containing wheat bran as the sole carbon source was very similar to that of the medium containing pure beechwoodxylan. This finding indicates the feasibility of growing of A. pullulans strain SN090 on wheat bran as an alternate economical substrate in order for reducing the costs of enzyme production and using this fortified agro-industrial byproduct in formulation of animal feed.

  7. Waste disposal process on the basis of fission product solutions, and suitable plant

    International Nuclear Information System (INIS)

    Thiele, D.

    1984-01-01

    The nitrous fission product solution containing ruthenium is concentrated in a wiper blade evaporator. After intermediate drying the residue is vitrified adding vitrifying agents and NH4 in an amount of 20 to 300% referred to the nitrate content of the concentrated residue. (orig./PW)

  8. Washing water treatment process for UF6 cylinder by adjusting evaporation technology in a low temperature and low pressure

    International Nuclear Information System (INIS)

    Kim, Ki-tae; Ju, Young-jong; Cho, Nam-chan; Kim, Yun-kwan; Jin, Chang-suk

    2016-01-01

    The liquid waste is treated in this procedure; 1) Add NaOH to the liquid waste and filter the mixture with a screen. 2) Screened residue is dried and then stored in a uranium storage. 3) liquid part is moved to a storage tank and radioactivity is measured in the liquid. 5) If the concentration of radioactivity is lower than corresponding regulation limit, the liquid moved to a reaction tank and evaporated with additional low concentration HF in 105℃. 6) Radioactivity of distillate is measured and the value is lower than regulation, it is treated with a thermal decomposition process and discharged to the atmosphere in gas state. 7) Solid waste produced in the evaporation step is managed as solid nuclear waste. The treatment procedure mentioned above has disadvantageous points, producing large amount of solid waste as well as, high energy and chemical consumption. In this study, liquid waste from a real scaled cylinder wash process is applied to evaporation system to confirm feasibility of the application of evaporation and, to reduce waste production and energy consumption. Liquid radioactive wastewater from a real scaled UF6 cylinder wash process was applied to evaporation treatment system. Radioactive concentration in gross alpha was removed 99.9% in the evaporation system. And the concentration in distillate was lower than the discharge regulation. Removal of U-235 was 99.9% in the process. And 15 other kinds of radionuclides in the raw wastewater were removed completely. Secondary waste production of the evaporation system is 15g/L

  9. Innovative bioelectrochemical-anaerobic-digestion integrated system for ammonia recovery and bioenergy production from ammonia-rich residues

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    Ammonia (NH4+/NH3) inhibition during anaerobic digestion process is one of the most frequent problems existing in biogas plants, resulting in unstable process and reduced biogas production. In this study, we developed a novel hybrid system, consisted of a submersed microbial resource recovery cell...... (SMRC) and a continuous stirred tank reactor (CSTR), to prevent ammonia toxicity during anaerobic digestion by in-situ ammonia recovery and electricity production (Figure 1). In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L with an average recovery rate of 0.18 g...... of ammonia recovery on the microbial community composition in the integrated system. Results clearly indicate the great potential of the SMRC-CSTR-coupled system for efficient and cost-effective ammonia recovery, energy production and treatment of ammonia-rich residues....

  10. Biochar production from coffee residues: Optimization of surface characteristics and sorptive behavior

    Science.gov (United States)

    Fotopoulou, Kalliopi; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.

    2015-04-01

    Biochar with high surface area is a promising sorbent for environmental remediation and is produced by heating biomass in an oxygen-limited environment. Knowing the surface characteristics increases our understanding of biochar interactions with pollutants. The hypothesis of the present study is that by controlling pyrolysis conditions, the surface characteristics and subsequently the sorption behavior of produced biochars can be optimized. Coffee residues were dried overnight at 50oC and then pyrolized into a gradient furnace at 850oC. Different solid/oxygen ratios during pyrolysis were tested as well as the up scaling of the process. The biochars produced were systematically characterized for their surface characteristics such as BET surface area, open surface area, pore and micropore volume, and average pore size. The effect of pyrolysis on the biochar suspension pH was examined with the mass addition technique that involves the addition of increasing amounts of the biochar to bottles containing 0.1 M NaNO3. FTIR analysis was used in order to determine the functional groups of the coffee residue and of the biochars. The macrostructure of the biochars was visualized by Scanning Electron Microscopy (SEM). Total Carbon (TC) in the samples was determined by Carlo Erba Elemental Analyzer CHNS, EO 1108 after calibration with standard samples. The sorption behavior of produced biochars was tested with two different pollutants (Hg(II), phenanthrene) using batch reactors with the same initial single-compound solution and the same mass of coffee residue and different biochars. The biochars produced exhibited a wide range of surface area from 21 to 770 m2/g and open surface area due to macropores from 21 to 65 m2/g. This suggests that the surface area in the biochars with high surface area results from the formation of pores. Actually for the biochar with the highest surface area, it was calculated that up to 90

  11. Radiotracer studies on the fate and transformation of pesticide residues in the environment and food chains. Part of a coordinated programme on isotopic-tracer-aided studies of chemical residues in cotton seed, feed, oil and related products

    International Nuclear Information System (INIS)

    Lee, S.R.

    1980-10-01

    The magnitude and fate of some pesticide chemicals in Korean foods were studied with particular reference to oil-bearing crops and related products. Application of the chemicals was made under conditions of actual agricultural practice. Analytical methodologies included nuclear activation, gas chromatographic, spectrophotometric and radiotracer techniques. Residues of benzene hexachloride, heptachlor, heptachlor epoxide, aldrin, dieldrin, endrin and DDT found in refined vegetable oil samples were below or within the tolerance limits set by international organizations and as such, these are unlikely to present any toxicological hazard to the consumer. Also, residues of the herbicides nitrogen, alachlor and butachlor applied to oil-bearing crops were not detected in the seeds. Studies on 14 C-BHC residues in rice revealed that polishing and washing play an important role in removing a considerable portion of the residue. Data on the arsenic-containing neoasozine residues suggest that the products consumed by the human (grain and oil) contained residues below the tolerance limit and are unlikely to present any toxicological hazard to the consumer. On the other hand, relatively high arsenic concentrations (2.2 mg/kg) were found in the cake (serving as animal feed) and should be carefully evaluated in the light of toxicological data

  12. Initial Effects of Reproduction Cutting Treatments on Residual Hard Mast Production in the Ouachita Mountains

    Science.gov (United States)

    Roger W. Perry; Ronald E. Thill

    2003-01-01

    We compared indices of total hard mast production (oak and hickory combined) in 20, second-growth, pine-hardwood stands under five treatments to determine the effects of different reproduction treatments on mast production in the Ouachita Mountains. We evaluated mast production in mature unharvested controls and stands under four reproduction cutting methods (single-...

  13. Fermentative high-titer ethanol production from Douglas-fir forest residue without detoxification using SPORL: high SO2 loading at low temperature

    Science.gov (United States)

    Feng Gu; William Gilles; Roland Gleisner; J.Y. Zhu

    2016-01-01

    This study evaluated high sulfur dioxide (SO2) loading in applying Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL) to Douglas-fir forest residue (FS-10) for ethanol production through yeast fermentation. Three pretreatments were conducted at 140

  14. Evaluation of the biomass potential for the production of lignocellulosic bioethanol from various agricultural residues in Austria and Worldwide

    Science.gov (United States)

    Kahr, Heike; Steindl, Daniel; Wimberger, Julia; Schürz, Daniel; Jäger, Alexander

    2013-04-01

    Due to the fact that the resources of fossil fuels are steadily decreasing, researchers have been trying to find alternatives over the past few years. As bioethanol of the first generation is based on potential food, its production has become an increasingly controversial topic. Therefore the focus of research currently is on the production of bioethanol of the second generation, which is made from cellulosic and lignocellulosic materials. However, for the production of bioethanol of the second generation the fibres have to be pre-treated. In this work the mass balances of various agricultural residues available in Austria were generated and examined in lab scale experiments for their bioethanol potential. The residues were pretreatment by means of state of the art technology (steam explosion), enzymatically hydrolysed and fermented with yeast to produce ethanol. Special attention was paid the mass balance of the overall process. Due to the pretreatment the proportion of cellulose increases with the duration of the pre-treatment, whereby the amount of hemicellulose decreases greatly. However, the total losses were increasing with the duration of the pre-treatment, and the losses largely consist of hemicellulose. The ethanol yield varied depending on the cellulose content of the substrates. So rye straw 200 °C 20 min reaches an ethanol yield of 169 kg/t, by far the largest yield. As result on the basis of the annual straw yield in Austria, approximately 210 000 t of bioethanol (266 million litres) could be produced from the straw of wheat (Triticum vulgare), rye (Secale cereale), oat (Avena sativa) and corn (Zea mays) as well as elephant grass (Miscanthus sinensis) using appropriate pre-treatment. So the greenhouse gas emissions produced by burning fossil fuels could be reduced significantly. About 1.8 million tons of motor gasoline are consumed in Austria every year. The needed quantity for a transition to E10 biofuels could thus be easily provided by bioethanol

  15. Seed Production, Herbage Residue and Crude Protein Content of Centro (Centrosema pubescens) in the Year of Establishment at Shika, Nigeria

    OpenAIRE

    Omokanye, AT.

    2001-01-01

    A field trial was carried out on seed production pattern of centro (Centrosema pubescens,) in the year of establishment in a sub humid environment of Nigeria as influenced by sowing date and phosphorus application levels. The herbage residue and its crude protein content were also determined after pod harvest. The variation in seeds per pod for plantings between June 21 to August 2 was from 16.5 to 14.5, while for unfertilized and fertilized plots seeds number varied between 12.6 and 16.2/pod...

  16. Forest evaporation models: Relationships between stand growth and evaporation

    CSIR Research Space (South Africa)

    Le Maitre, David C

    1997-06-01

    Full Text Available The relationships between forest stand structure, growth and evaporation were analysed to determine whether forest evaporation can be estimated from stand growth data. This approach permits rapid assessment of the potential impacts of afforestation...

  17. Life cycle efficiency of beef production: VIII. Relationship between residual feed intake of heifers and subsequent cow efficiency ratios.

    Science.gov (United States)

    Davis, M E; Lancaster, P A; Rutledge, J J; Cundiff, L V

    2016-11-01

    Data were collected from 1953 through 1980 from identical and fraternal twin beef and dairy females born in 1953, 1954, 1959, 1964, and 1969, and from crossbred females born as singles in 1974, and their progeny. Numbers of dams that weaned at least 1 calf and were included in the first analysis were 37, 45, and 56 in the 1964, 1969, and 1974 data sets, respectively. Respective numbers of dams that weaned 3 calves and were included in a second analysis were 6, 8, 8, 22, 33, and 33 in the 1953, 1954, 1959, 1964, 1969, and 1974 experiments. Individual feed consumption was measured at 28-d intervals from the time females were placed on the experiment until 3 calves were weaned or the dams had reached 5 yr of age. Residual feed intake (RFI) and residual gain (RG) of the heifers that subsequently became the dams in this study were determined based on ADG and DMI from 240 d of age to first calving. Various measures of cow efficiency were calculated on either a life cycle or actual lifetime basis using ratios of progeny and dam weight outputs to progeny and dam feed inputs. Residual feed intake was phenotypically independent of ADG and metabolic midweight (MMW), whereas the correlation between RFI and DMI was positive and highly significant ( = 0.67; calving had superior efficiency ratios as cows. Residual feed intake was not significantly correlated with age at puberty, age at calving, or milk production. Results of this study do not indicate any serious antagonisms of postweaning heifer RFI with subsequent cow and progeny performance traits or with life cycle or actual lifetime cow efficiency. In addition, selection for increased RG would result in earlier ages at calving, but would also tend to result in taller and heavier cows.

  18. 95-1 Campaign evaporator boildown results

    International Nuclear Information System (INIS)

    Miller, G.L.

    1994-01-01

    The Process Chemistry Laboratories were requested to support the 242-A Evaporator restart as part of the overall 222-S laboratory effort. The net purpose of these studies is to determine the characteristics of double-shell tank materials as they are processed in the evaporator. The results for the boildown study (which includes pressure and temperature versus % waste volume reduction and density of final boildown residue) supporting the 242-A Evaporator restart are reported below. The boildown was performed in a vacuum distillation apparatus with an adjustable vacuum limiting manometer and an isolatable collection graduated cylinder. The boildown was conducted over a seven hour period. The evaporation was done at 60 torr (to avoid excessive foaming and bumping of solution) for approximately half of the boildown, the pressure then being reduced to 40 torr when the reduction in solution volume allowed this to be done. Percent waste volume reduction was measured by observing the amount of condensate collected in a graduated cylinder. As the graduated cylinder became full, it was isolated from the rest of the system and the condensate removed. Pressure was set using an electronic manometer with a low pressure limiter set at the desired level. Temperature was measured using a J-type thermocouple. The apparatus was calibrated by observing the pressure versus temperature response of pure water, and comparing the values thus obtained to published values

  19. Simultaneous saccharification and cofermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media

    Directory of Open Access Journals (Sweden)

    Cristhian Carrasco

    2011-07-01

    Full Text Available Abstract Background As the supply of starch grain and sugar cane, currently the main feedstocks for bioethanol production, become limited, lignocelluloses will be sought as alternative materials for bioethanol production. Production of cellulosic ethanol is still cost-inefficient because of the low final ethanol concentration and the addition of nutrients. We report the use of simultaneous saccharification and cofermentation (SSCF of lignocellulosic residues from commercial furfural production (furfural residue, FR and corn kernels to compare different nutritional media. The final ethanol concentration, yield, number of live yeast cells, and yeast-cell death ratio were investigated to evaluate the effectiveness of integrating cellulosic and starch ethanol. Results Both the ethanol yield and number of live yeast cells increased with increasing corn-kernel concentration, whereas the yeast-cell death ratio decreased in SSCF of FR and corn kernels. An ethanol concentration of 73.1 g/L at 120 h, which corresponded to a 101.1% ethanol yield based on FR cellulose and corn starch, was obtained in SSCF of 7.5% FR and 14.5% corn kernels with mineral-salt medium. SSCF could simultaneously convert cellulose into ethanol from both corn kernels and FR, and SSCF ethanol yield was similar between the organic and mineral-salt media. Conclusions Starch ethanol promotes cellulosic ethanol by providing important nutrients for fermentative organisms, and in turn cellulosic ethanol promotes starch ethanol by providing cellulosic enzymes that convert the cellulosic polysaccharides in starch materials into additional ethanol. It is feasible to produce ethanol in SSCF of FR and corn kernels with mineral-salt medium. It would be cost-efficient to produce ethanol in SSCF of high concentrations of water-insoluble solids of lignocellulosic materials and corn kernels. Compared with prehydrolysis and fed-batch strategy using lignocellulosic materials, addition of starch

  20. Pesticide residue levels in strawberry processing by-products that are rich in ellagitannins and an assessment of their dietary risk to consumers

    Directory of Open Access Journals (Sweden)

    Michał Sójka

    2015-06-01

    Conclusion: Although the pesticide residue contents in strawberry by-products are higher than in fresh fruits, the suggested doses of the by-products are lower. Therefore, the dietary risk to consumers from strawberry by-products is comparable to that from fresh fruits.

  1. A Method for a Multi-Platform Approach to Generate Gridded Surface Evaporation

    Science.gov (United States)

    Badger, A.; Livneh, B.; Small, E. E.; Abolafia-Rosenzweig, R.

    2017-12-01

    Evapotranspiration is an integral component of the surface water balance. While there are many estimates of evapotranspiration, there are fewer estimates that partition evapotranspiration into evaporation and transpiration components. This study aims to generate a CONUS-scale, observationally-based soil evaporation dataset by using the time difference of surface soil moisture by Soil Moisture Active Passive (SMAP) satellite with adjustments for transpiration and a bottom flux out of the surface layer. In concert with SMAP, the Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite, North American Land Data Assimilation Systems (NLDAS) and the Hydrus-1D model are used to fully analyze the surface water balance. A biome specific estimate of the total terrestrial ET is calculated through a variation of the Penman-Monteith equation with NLDAS forcing and NLDAS Noah Model output for meteorological variables. A root density restriction and SMAP-based soil moisture restriction are applied to obtain terrestrial transpiration estimates. By forcing Hydrus-1D with NLDAS meteorology and our terrestrial transpiration estimates, an estimate of the flux between the soil surface and root zone layers (qbot) will dictate the proportion of water that is available for soil evaporation. After constraining transpiration and the bottom flux from the surface layer, we estimate soil evaporation as the residual of the surface water balance. Application of this method at Fluxnet sites shows soil evaporation estimates of approximately 0­3 mm/day and less than ET estimates. Expanding this methodology to produce a gridded product for CONUS, and eventually a global-scale product, will enable a better understanding of water balance processes and contribute a dataset to validate land-surface model's surface flux processes.

  2. Effects of evaporative cooling on the regulation of body water and milk production in crossbred Holstein cattle in a tropical environment

    Science.gov (United States)

    Chaiyabutr, N.; Chanpongsang, S.; Suadsong, S.

    2008-09-01

    The aim of this study was to determine how evaporative cooling modifies body function with respect to water metabolism and other variables relevant to milk synthesis in crossbred cattle. The study was conducted on two groups of 0.875HF:0.125RS crossbred Holstein cattle (87.5%) housed in an open-sided barn with a tiled roof (non-cooled animals) and in a close-sided barn under an evaporative cooling system (cooled animals). The maximum ambient temperature and relative humidity for the non-cooled group were 33°C and 61%, with the corresponding values for the evaporatively cooled barn being 28°C and 84%, respectively. The temperature humidity index (THI) of under non-cooled conditions was higher ( P triglyceride of cooled animals were not significantly different compared with values for non-cooled animals. No differences were seen in plasma hormonal levels for triiodotyronine (T3) and insulin-like growth factor-1 (IGF-1), but plasma cortisol and thyroxine (T4) levels tended to be lower in non-cooled animals. This study suggests that low cooling temperature accompanied by high humidity influences a galactopoietic effect, in part through increases in ECF, blood volume and plasma volume in association with an increase in DMI, which partitions the distribution of nutrients to the mammary gland for milk synthesis. Cooled animals were unable to maintain high milk yield as lactation advances even though a high level of body fluids was maintained during long-term cooled exposure. The decline in milk yield, coinciding with a decrease in net energy for lactation as lactation advances, could be attributed to a local change within the mammary gland.

  3. Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus.

    Science.gov (United States)

    Zheng, Lirong; Zheng, Pu; Sun, Zhihao; Bai, Yanbing; Wang, Jun; Guo, Xinfu

    2007-03-01

    A new technology of transforming ferulic acid, which was from waste residue of rice bran oil, into vanillin was developed by a combination of fungal strains Aspergillus niger CGMCC0774 and Pycnoporus cinnabarinus CGMCC1115. Various concentrations of ferulic acid were compared, and the highest yield reached 2.2 g l(-1) of vanillic acid by A. niger CGMCC0774 in a 25 l fermenter when concentration of ferulic acid was 4 g l(-1). The filtrate of A. niger CGMCC0774 culture was concentrated and vanillic acid in the filtrate was bio-converted into vanillin by P. cinnabarinus CGMCC1115. The yield of vanillin reached 2.8 g l(-1) when 5 g l(-1) of glucose and 25 g of HZ802 resin were supplemented in the bioconversion medium. The 13C isotope analysis indicated that delta13C(PDB) of vanillin prepared was much different from chemically synthesized vanillin.

  4. Agricultural residue valorization using a hydrothermal process for second generation bioethanol and oligosaccharides production.

    Science.gov (United States)

    Vargas, Fátima; Domínguez, Elena; Vila, Carlos; Rodríguez, Alejandro; Garrote, Gil

    2015-09-01

    In the present work, the hydrothermal valorization of an abundant agricultural residue has been studied in order to look for high added value applications by means of hydrothermal pretreatment followed by fed-batch simultaneous saccharification and fermentation, to obtain oligomers and sugars from autohydrolysis liquors and bioethanol from the solid phase. Non-isothermal autohydrolysis was applied to barley straw, leading to a solid phase with about a 90% of glucan and lignin and a liquid phase with up to 168 g kg(-1) raw material valuable hemicellulose-derived compounds. The solid phase showed a high enzymatic susceptibility (up to 95%). It was employed in the optimization study of the fed-batch simultaneous saccharification and fermentation, carried out at high solids loading, led up to 52 g ethanol/L (6.5% v/v). Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Residues of bioenergy production chains as soil amendments: Immediate and temporal phytotoxicity

    NARCIS (Netherlands)

    Gell, K.; Groenigen, van J.W.; Cayuela, M.L.

    2011-01-01

    The current shift towards bioenergy production increases streams of bioenergy rest-products (RPs), which are likely to end-up as soil amendments. However, their impact on soil remains unclear. In this study we evaluated crop phytotoxicity of 15 RPs from common bioenergy chains (biogas, biodiesel,

  6. Convection-enhanced water evaporation

    OpenAIRE

    B. M. Weon; J. H. Je; C. Poulard

    2011-01-01

    Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL) water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive) evaporation in nanoliter water droplet...

  7. Research Status of Evaporative Condenser

    Science.gov (United States)

    Wang, Feifei; Yang, Yongan

    2018-02-01

    Reducing energy consumption, saving water resources, recycling cool water are main directions of China’s development. Evaporative condenser using latent heat reduces water resources waste, with energy-saving advantages. This paper reviews the research status of evaporative condenser at home and abroad, and introduces the principle, classification, various influencing factors of evaporative condenser, and puts forward the future research direction.

  8. Evaporation effect on two-dimensional wicking in porous media.

    Science.gov (United States)

    Benner, Eric M; Petsev, Dimiter N

    2018-03-15

    We analyze the effect of evaporation on expanding capillary flow for losses normal to the plane of a two-dimensional porous medium using the potential flow theory formulation of the Lucas-Washburn method. Evaporation induces a finite steady state liquid flux on capillary flows into fan-shaped domains which is significantly greater than the flux into media of constant cross section. We introduce the evaporation-capillary number, a new dimensionless quantity, which governs the frontal motion when multiplied by the scaled time. This governing product divides the wicking behavior into simple regimes of capillary dominated flow and evaporative steady state, as well as the intermediate regime of evaporation influenced capillary driven motion. We also show flow dimensionality and evaporation reduce the propagation rate of the wet front relative to the Lucas-Washburn law. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The evaporation of oil spills: variation with temperature and correlation with distillation data

    International Nuclear Information System (INIS)

    Fingas, M.

    1996-01-01

    The basic physics and chemistry of oil spill evaporation was studied, focusing on the effect of temperature and predicting oil evaporation. Previous studies have shown that the evaporation rate is highly sensitive to temperature and is greater than linear. The author has found that the evaporation rate is, in fact, linear. It was also found that although each type of oil yields a unique relationship for temperature and evaporation rate, these could be predicted using the evaporation rate at 15 degrees C alone, or using distillation data. The slope of the distillation curve at 140 degrees C correlated well with the slope and intercept of the temperature curve determined empirically. The evaporative characteristics of 19 different crude oils and petroleum products were measured. The data was used to develop equations by which the oil evaporation could be predicted from distillation data alone. Evaporation equations for 60 oils and petroleum products were given. refs., tabs., figs

  10. Measurement of nuclide cross-sections of spallation residues in 1 A GeV 238U + proton collisions

    International Nuclear Information System (INIS)

    Taieb, J.; Tassan-Got, L.; Bernas, M.; Mustapha, B.; Rejmund, F.; Stephan, C.; Schmidt, K.H.; Armbruster, P.; Benlliure, J.; Enqvist, T.; Boudard, A.; Legrain, R.; Leray, S.; Volant, C.; Wlazlo, W.; Casarejos, E.; Czajkowski, S.; Pravikoff, M.

    2003-02-01

    The production of heavy nuclides from the spallation-evaporation reaction of 238 U induced by 1 GeV protons was studied in inverse kinematics. The evaporation residues from tungsten to uranium were identified in-flight in mass and atomic number. Their production cross-sections and their momentum distributions were determined. The data are compared with empirical systematics. A comparison with previous results from the spallation of 208 Pb and 197 Au reveals the strong influence of fission in the spallation of 238 U. (orig.)

  11. In vitro ability of beer fermentation residue and yeast-based products to bind aflatoxin B1

    Directory of Open Access Journals (Sweden)

    Fernanda Bovo

    2015-06-01

    Full Text Available This study aimed to verify the in vitro ability of beer fermentation residue (BFR containing Saccharomyces cerevisiae cells and five commercial products that differed in the viability and integrity of S. cerevisiae cells to remove aflatoxin B1 (AFB1 from a citrate-phosphate buffer solution (CPBS. BFR was collected at a microbrewery and prepared by drying and milling. The commercial yeast-based products were as follows: inactive intact yeast cells from beer alcoholic fermentation, inactive intact yeast cells from sugarcane alcoholic fermentation, hydrolyzed yeast cells, yeast cell walls and active yeast cells. Adsorption assays were performed in CPBS spiked with 1.0 μg AFB1/mL at pH 3.0 and 6.0 for a contact time of 60 min at room temperature. Analysis of AFB1 in the samples was performed by high performance liquid chromatography. AFB1 adsorption by the products ranged from 45.5% to 69.4% at pH 3.0 and from 24.0% to 63.8% at pH 6.0. The higher percentages (p 0.05 from commercial products containing inactive intact yeast cells. The results of this trial indicate that the yeast-based products tested, especially the BFR, have potential applications in animal feeds as a suitable biological method for reducing the adverse effects of aflatoxins.

  12. In vitro ability of beer fermentation residue and yeast-based products to bind aflatoxin B1.

    Science.gov (United States)

    Bovo, Fernanda; Franco, Larissa Tuanny; Rosim, Roice Eliana; Barbalho, Ricardo; de Oliveira, Carlos Augusto Fernandes

    2015-06-01

    This study aimed to verify the in vitro ability of beer fermentation residue (BFR) containing Saccharomyces cerevisiae cells and five commercial products that differed in the viability and integrity of S. cerevisiae cells to remove aflatoxin B1 (AFB1) from a citrate-phosphate buffer solution (CPBS). BFR was collected at a microbrewery and prepared by drying and milling. The commercial yeast-based products were as follows: inactive intact yeast cells from beer alcoholic fermentation, inactive intact yeast cells from sugarcane alcoholic fermentation, hydrolyzed yeast cells, yeast cell walls and active yeast cells. Adsorption assays were performed in CPBS spiked with 1.0 μg AFB1/mL at pH 3.0 and 6.0 for a contact time of 60 min at room temperature. Analysis of AFB1 in the samples was performed by high performance liquid chromatography. AFB1 adsorption by the products ranged from 45.5% to 69.4% at pH 3.0 and from 24.0% to 63.8% at pH 6.0. The higher percentages (p 0.05) from commercial products containing inactive intact yeast cells. The results of this trial indicate that the yeast-based products tested, especially the BFR, have potential applications in animal feeds as a suitable biological method for reducing the adverse effects of aflatoxins.

  13. Flavonoid-rich agro-industrial residues for enhanced bacterial laccase production by submerged and solid-state fermentation.

    Science.gov (United States)

    Sharma, Aarjoo; Gupta, Vijaya; Khan, Mussarat; Balda, Sanjeev; Gupta, Naveen; Capalash, Neena; Sharma, Prince

    2017-07-01

    Laccases have potential applications in industrial, biotechnological, and environmental set ups. Development of cost effective and efficient production technologies has gained significant attention in recent years. To enhance the laccase production from Rheinheimera sp. (Gram negative) using submerged fermentation (SmF) and from Lysinibacillus sp. (Gram positive) using solid-state fermentation (SSF), the inducing effect of various flavonoid-rich agro-industrial residues was investigated. Peels of citrus fruits, soybean meal, tofu dreg, lignin monomers, and lingo-cellulosic waste, used tea leaves and peels of onion and kiwi, paper, and dying industry effluents were tested as inducers. In SmF, 0.1% of soybean meal, tofu dreg, and powdered orange peel were best, enhancing the laccase production 2.57-, 2.11-, and 2.05-fold, respectively. In SSF, 10 mg (w/w) of used tata acti green tea leaves per 5 g of wheat bran, 1% pulp and paper industry effluent (agro based), and 1% wine made from Sygium cumini enhanced the laccase production 2.69-, 2.61-, and 2.09-fold, respectively. These results suggest the utilization of these flavonoid and phenolic-rich waste materials to be potential enhancers of industrially important laccase production.

  14. Enhanced production of xylanase from locally isolated fungal strain using agro-industrial residues under solid-state fermentation.

    Science.gov (United States)

    Abdullah, Roheena; Nisar, Kinza; Aslam, Aafia; Iqtedar, Mehwish; Naz, Shagufta

    2015-01-01

    This study is related to the isolation of fungal strain for xylanase production using agro-industrial residues. Forty fungal strains with xylanolytic potential were isolated by using xylan agar plates and quantitatively screened in solid-state fermentation. Of all the tested isolates, the strain showing highest ability to produce xylanase was assigned the code Aspergillus niger LCBT-14. For the enhanced production of the enzyme, five different fermentation media were evaluated. Out of all media, M4 containing wheat bran gave maximum enzyme production. Effect of different variables including incubation time, temperature, pH, carbon and nitrogen sources has been investigated. The optimum enzyme production was obtained after 72 h at 30°C and pH 4. Glucose as a carbon source while ammonium sulphate and yeast extract as nitrogen sources gave maximum xylanase production (946 U/mL/min). This study was successful in producing xylanase by A. niger LCBT-14 economically by utilising cheap indigenous substrate.

  15. Utilization of crop residues and Agro-industrial by-products as ...

    African Journals Online (AJOL)

    Nigerian Journal of Animal Production. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 23 (1996) >. Log in or Register to get access to full text downloads.

  16. Impact of residual elements on zinc quality in the production of zinc oxide

    Directory of Open Access Journals (Sweden)

    N. Luptáková

    2016-07-01

    Full Text Available The paper is focused on zinc oxide manufacturing process. The present work deals with the character and morphology of the input material for the production of ZnO by the indirect pyrometallurgical process. Undesirable phases in the feedstock can be identified through profound recognition of the source material and the nature of its microstructure. If these compounds diffuse into the lining during thermal processes, they become the cause of stress in metallurgical ceramics. The emergence of these chemical reactions may subsequently affect the entire metallurgical zinc smelting process. The results obtained by analysis are used to minimize waste - zinc slag and to eliminate the conditions which enable the formation of the undesired product, thereby increasing the productivity of the ZnO production.

  17. Oblique evaporation waves

    Science.gov (United States)

    Simões-Moreira, José R.

    Evaporation waves are processes that may occur under certain conditions in which a metastable or superheated liquid undergoes a sudden phase transition in a narrow and observable region, which resembles a shock wave. It is inferred from photographic documentation that in certain liquid jet flashing regimes the phenomenon is present. The evaporation wave discontinuity has been successfully modeled in a similar way as a deflagration wave in a combusting gas. One-dimensional laboratory experiments have demonstrated the existence of the (lower) Chapman-Jouguet solution for the cases where the liquid were at a high degree of metastability. Subsonic solutions were also observed for less pronounced degree of metastability (Hill 1991, Sim oes-Moreira 1994). In this paper, the fundamental theory is briefly revised and compared with some of the experimental results obtained for the cases operating at the C-J condition. Next, the paper presents the extension of the one-dimensional theory to include the oblique evaporation wave geometry. Relationships between upstream and downstream flow properties are discussed ant further consequences of these relationships are analyzed.

  18. Essays of leaching in cemented products containing simulated waste from evaporator concentrated of PWR reactor; Ensaios de lixiviacao em produtos cimentados contendo rejeito simulado de concentrado do evaporador de reator PWR

    Energy Technology Data Exchange (ETDEWEB)

    Haucz, Maria Judite A.; Calabria, Jaqueline A. Almeida; Tello, Cledola Cassia O.; Candido, Francisco Donizete; Seles, Sandro Rogerio Novaes, E-mail: hauczmj@cdtn.b, E-mail: jaalmeida@cdtn.b, E-mail: tellocc@cdtn.b, E-mail: fdc@cdtn.b, E-mail: seless@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-10-26

    This paper evaluated the results from leaching resistance essays of cemented products, prepared from three distinct formulations, containing simulated waste of concentrated from the PWR reactor evaporator. The leaching rate is a parameter of qualification of solidified products containing radioactive waste and is determined in accordance with regulation ISO 6961. This procedure evaluates the capacity of transfer organic and inorganic substances presents in the waste through dissolution in the extractor medium. For the case of radioactive waste it is reached the more retention of contaminants in the cemented product, i.e.the lesser value of lixiviation rate. Therefore, this work evaluated among the proposed formulation that one which attend the criterion established in the regulation CNEN-NN-6.09

  19. Pesticide residues in passifloras crops in regions of high production in Colombia

    OpenAIRE

    Dario A. Bastidas; Jairo A. Guerrero; Kris Wyckhuys

    2013-01-01

    As one of the most bio-diverse countries in the world, Colombia boasts a wide diversity of highly palatable tropical fruits. Even though Colombian fruit production has primarily targeted the domestic market, several fruit species, such as passion fruit (PassifloraSpp), are steadily gaining ground in the broader international arena.  Production of these crops and respond to raising domestic and international demand, many Colombian small-scale farmers use pesticides for pest and disease control...

  20. 7 CFR 58.937 - Physical requirements for evaporated milk.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Physical requirements for evaporated milk. 58.937... requirements for evaporated milk. (a) Flavor. The product shall possess a sweet, pleasing and desirable flavor.... It shall be smooth and free from fat separation, lumps, clots, gel formation, coarse milk solids...

  1. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S.-C. [Department of Atomic Science, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu 300, Taiwan (China); Chang, F.-C. [Research Center for Environmental Pollution Prevention and Control Technology, Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan (China)]. E-mail: d90541003@ntu.edu.tw; Lo, S.-L. [Research Center for Environmental Pollution Prevention and Control Technology, Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan (China); Lee, M.-Y. [Department of Civil Engineering, National Central University, 300 Jhongda Road, Jhongli 320, Taiwan (China); Wang, C.-F. [Department of Atomic Science, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu 300, Taiwan (China); Lin, J.-D. [Department of Civil Engineering, National Central University, 300 Jhongda Road, Jhongli 320, Taiwan (China)

    2007-06-01

    In this study, artificial lightweight aggregate (LWA) manufactured from recycled resources was investigated. Residues from mining, fly ash from an incinerator and heavy metal sludge from an electronic waste water plant were mixed into raw aggregate pellets and fed into a tunnel kiln to be sintered and finally cooled rapidly. Various feeding and sintering temperatures were employed to examine their impact on the extent of vitrification on the aggregate surface. Microstructural analysis and toxicity characteristic leaching procedure (TCLP) were also performed. The results show that the optimum condition of LWA fabrication is sintering at 1150 deg. C for 15 min with raw aggregate pellets fed at 750 deg. C. The rapidly vitrified surface envelops the gas produced with the increase in internal temperature and cooling by spraying water prevents the aggregates from binding together, thus forming LWA with specific gravity of 0.6. LWA produced by sintering in tunnel kiln shows good vitrified surface, low water absorption rate below 5%, and low cylindrical compressive strength of 4.3 MPa. In addition, only trace amounts of heavy metals were detected, making the LWA non-hazardous for construction use.

  2. Convection-enhanced water evaporation

    Directory of Open Access Journals (Sweden)

    B. M. Weon

    2011-03-01

    Full Text Available Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive evaporation in nanoliter water droplets. This suggests that convection of water vapor would enhance water evaporation at nanoliter scales, for instance, on microdroplets or inside nanochannels.

  3. Residual deposits (residual soil)

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1988-01-01

    Residual soil deposits is accumulation of new formate ore minerals on the earth surface, arise as a result of chemical decomposition of rocks. As is well known, at the hyper genes zone under the influence of different factors (water, carbonic acid, organic acids, oxygen, microorganism activity) passes chemical weathering of rocks. Residual soil deposits forming depends from complex of geologic and climatic factors and also from composition and physical and chemical properties of initial rocks

  4. Valorization of lignite combustion residues and ferroalumina in the production of aggregates.

    Science.gov (United States)

    Anagnostopoulos, I M; Stivanakis, V E; Angelopoulos, G N; Papamantellos, D C

    2010-02-15

    The present research study investigates the synergy of industrial solid by-products from lignite combustion (fly ash and bottom ash) and aluminum production (ferroalumina) in the production of lightweight aggregates (LWA). The process consists of two stages, pelletization and sintering. Bottom ash (BA) is used as the principal raw material in mixtures while ferroalumina (FAL) is added in lower percentages (5-30 wt%). BA carbon content is used as the fuel of sintering process in high temperatures, around 1250 degrees C, and gas generation is responsible for porous structure formation. Physical properties such as porosity, water absorption and bulk density, of sintering products are measured. Increase of FAL percentage in sintering mixtures results in decrease of porosity from 61% to 35% and of water absorption from 61% to 21% and in increase of bulk density from 1.02 g/cm(3) to 1.80 g/cm(3) of the produced aggregates. Aggregates produced by FAL addition up to 20 wt% are characterized as LWA. Aggregates formed are used in the production of concrete specimens. Compressive strength of concrete increases by increasing FAL addition in aggregates from 5 wt% to 15 wt% (highest strength value), while decrease by increasing FAL addition from 20 wt% to 30 wt%. FAL addition in lignite ashes sintering mixtures (up to 15 wt%) is considered as an important parameter for enhancing aggregates strength.

  5. Dietary risk ranking for residual antibiotics in cultured aquatic products around Tai Lake, China.

    Science.gov (United States)

    Song, Chao; Li, Le; Zhang, Cong; Qiu, Liping; Fan, Limin; Wu, Wei; Meng, Shunlong; Hu, Gengdong; Chen, Jiazhang; Liu, Ying; Mao, Aimin

    2017-10-01

    Antibiotics are widely used in aquaculture and therefore may be present as a dietary risk in cultured aquatic products. Using the Tai Lake Basin as a study area, we assessed the presence of 15 antibiotics in 5 widely cultured aquatic species using a newly developed dietary risk ranking approach. By assigning scores to each factor involved in the ranking matrices, the scores of dietary risks per antibiotic and per aquatic species were calculated. The results indicated that fluoroquinolone antibiotics posed the highest dietary risk in all aquatic species. Then, the total scores per aquatic species were summed by all 15 antibiotic scores of antibiotics, it was found that Crab (Eriocheir sinensis) had the highest dietary risks. Finally, the most concerned antibiotic category and aquatic species were selected. This study highlighted the importance of dietary risk ranking in the production and consumption of cultured aquatic products around Tai Lake. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    George, Anthe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geier, Manfred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspended in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.

  7. Life Cycle Performance of Hydrogen Production via Agro-Industrial Residue Gasification—A Small Scale Power Plant Study

    Directory of Open Access Journals (Sweden)

    Sara Rajabi Hamedani

    2018-03-01

    Full Text Available This study evaluates the environmental profile of a real biomass-based hydrogen production small-scale (1 MWth system composed of catalytic candle indirectly heated steam gasifier coupled with zinc oxide (ZnO guard bed, water gas shift (WGS and pressure swing absorber (PSA reactors. Environmental performance from cradle-to-gate was investigated by life cycle assessment (LCA methodology. Biomass production shows high influence over all impact categories. In the syngas production process, the main impacts observed are global warming potential (GWP and acidification potential (AP. Flue gas emission from gasifier burner has the largest proportion of total GWP. The residual off gas use in internal combustion engine (ICE leads to important environmental savings for all categories. Hydrogen renewability score is computed as 90% due to over 100% decline in non-renewable energy demand. Sensitivity analysis shows that increase in hydrogen production efficiency does not necessarily result in decrease in environmental impacts. In addition, economic allocation of environmental charges increases all impact categories, especially AP and photochemical oxidation (POFP.

  8. Anaerobic digestion of residues from production and refining of vegetable oils as an alternative to conventional solutions.

    Science.gov (United States)

    Torrijos, M; Thalla, Arun Kumar; Sousbie, P; Bosque, F; Delgenès, J P

    2008-01-01

    The purpose of this work was to study the anaerobic digestion of by-products generated during the production and refining of oil with the objective of proposing an alternative solution (methanisation) to the conventional solutions while reducing the energy consumption of fossil origin on refinery sites. The production of sunflower oil was taken as example. Glycerine from the production of biodiesel was also included in this study. The results show that glycerine has a high potential for methanisation because of its high methane potential (465 ml CH4/g VS) and high metabolization rates (0.42 g VS/g VSS.d). The use of oil cake as substrate for anaerobic digestion is not interesting because it has a low methane potential of 215 ml CH4/g VS only and because it is easily recovered in animal feed. Six residues have quite a high methane potential (465 to 850 ml CH4/g VS) indicating a good potential for anaerobic digestion. However, they contain a mixture of rapidly and slowly biodegradable organic matter and the loading rates must remain quite low (0.03 to 0.09 g VS/g VSS.d) to prevent any accumulation of slowly biodegradable solids in the digesters. IWA Publishing 2008.

  9. Optimization of thermostable α- amylase production by Streptomyces erumpens MTCC 7317 in solid-state fermentation using cassava fibrous residue

    Directory of Open Access Journals (Sweden)

    Kar Shaktimay

    2010-04-01

    Full Text Available Production of α- amylase under solid state fermentation by Streptomyces erumpens MTCC 7317 was investigated using cassava fibrous residue, one of the major solid waste released during extraction of starch from cassava (Manihot esculenta Crantz. Response surface methodology (RSM was used to evaluate the effect of the main variables, i.e., incubation period (60 h, moisture holding capacity (60% and temperature (50(0C on enzyme production by applying a full factorial Central Composite Design. Varying the inoculum concentration (5-25% of S. erumpens showed that 15% inoculum (v/w, 2.5 x 10(6 CFU/ml was the optimum for α- amylase production. Among the different nitrogen sources supplemented, beef extract was most suitable for enzyme production. The application of S. erumpens enzyme in liquefaction of soluble starch and cassava starch was studied. The maximum hydrolysis of soluble starch (85% and cassava starch (70% was obtained with the application of 5 ml crude enzyme (17185 units after 5 h of incubation.

  10. Solubility of plutonium and waste evaporation

    International Nuclear Information System (INIS)

    Karraker, D.G.

    1993-01-01

    Chemical processing of irradiated reactor elements at the Savannah River Site separates uranium, plutonium and fission products; fission products and process-added chemicals are mixed with an excess of NaOH and discharged as a basic slurry into large underground tanks for temporary storage. The slurry is composed of base-insoluble solids that settle to the bottom of the tank; the liquid supemate contains a mixture of base-soluble chemicals--nitrates, nitrites aluminate, sulfate, etc. To conserve space in the waste tanks, the supemate is concentrated by evaporation. As the evaporation proceeds, the solubilities of some components are exceeded, and these species crystallize from solution. Normally, these components are soluble in the hot solution discharged from the waste tank evaporator and do not crystallize until the solution cools. However, concern was aroused at West Valley over the possibility that plutonium would precipitate and accumulate in the evaporator, conceivably to the point that a nuclear accident was possible. There is also a concern at SRS from evaporation of sludge washes, which arise from washing the base-insoluble solids (open-quote sludge close-quote) with ca. 1M NaOH to reduce the Al and S0 4 -2 content. The sludge washes of necessity extract a low level of Pu from the sludge and are evaporated to reduce their volume, presenting the possibility of precipitating Pu. Measurements of the solubility of Pu in synthetic solutions of similar composition to waste supernate and sludge washes are described in this report

  11. Life cycle assessment of innovative technology for energy production from automotive shredder residue.

    Science.gov (United States)

    Rinaldi, Caterina; Masoni, Paolo; Salvati, Fabio; Tolve, Pietro

    2015-07-01

    Automotive Shredder Residue (ASR) is a problematic waste material remaining after shredding and recovery processes of end-of-life vehicles (ELVs). Its heterogeneous grain size and composition make difficult its recovery or disposal. Although ASR accounts for approximately 20% to 25% of the weight of an ELV, the European Union (EU)'s ELV Directive (2000/53/EC) requires that by 2015 a minimum 95% of the weight of an ELV must be reused or recovered, including a 10% weight energy recovery. The quantity of ASR is relevant: Approximately 2.4 million tons are generated in the EU each year and most of it is sent to landfills. This article describes a life cycle model of the "TEKNE-Fluff" process designed to make beneficial use of ASR that is based on the results of an experimental pilot plant for pyro-gasification, combustion, cogeneration, and emissions treatment of ASR. The goal of the research was the application of life cycle assessment (LCA) methodology to identify the environmental hot spots of the "TEKNE system" and use scenario analysis to check solutions to improve its environmental profile, supporting the design and industrialization process. The LCA was conducted based on data modeled from the experimental campaign. Moreover, different scenarios on shares of electricity and thermal energy produced by the cogeneration system and alternative treatment processes for the waste produced by the technology were compared. Despite the limitation of the research (results based on scaling up experimental data by modeling), impact assessment results are promising and sufficiently robust, as shown by Monte Carlo analysis. The TEKNE technology may become an interesting solution for the problem of ASR management: Besides representing an alternative to landfill disposal, the energy produced could avoid significant impacts on fossil resources depletion (a plant of 40,000 tons/y capacity could produce ∼ 147,000 GJ/yr, covering the annual need of ∼ 13,500 households). © 2015

  12. Impact of residual elements on zinc quality in the production of zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Dymáček, Petr; Pešlová, F.; Jurkovič, Z.; Barborák, O.; Stodola, J.

    2016-01-01

    Roč. 55, č. 3 (2016), s. 407-410 ISSN 0543-5846 Institutional support: RVO:68081723 Keywords : zinc * metallography * microstructure of zinc * zinc oxide * production of zinc oxide Subject RIV: JG - Metallurgy Impact factor: 0.959, year: 2014

  13. Sustainability of bioethanol production from wheat with recycled residues as evaluated by Emergy assessment

    DEFF Research Database (Denmark)

    Coppola, F.; Bastianoni, S.; Østergård, Hanne

    2009-01-01

    , were considered. Material and energy flows were assessed to evaluate the bioethanol yield, the production efficiency in terms of Emergy used compared to energy produced (transformity), and the environmental load (ELR) in terms of use of non-renewable resources. These three indicators varied among...

  14. Excitation functions of residual nuclei production from 40–2600 MeV ...

    Indian Academy of Sciences (India)

    shows the distributions of experimental uncertainties. Details of the experimental techniques are described in [2]. In total, 5972 nuclide production cross-sections were measured in 55 experiments. The data themselves and their graphical interpretation are presented in the final technical report of the ISTC Project #2002 and ...

  15. 75 FR 50771 - Draft Revised Guidance for Industry on Residual Solvents in New Veterinary Medicinal Products...

    Science.gov (United States)

    2010-08-17

    ... parallel initiative for veterinary medicinal products. The VICH is concerned with developing harmonized... the VICH Steering Committee: One representative from the government of Australia/New Zealand, one representative from the industry in Australia/New Zealand, one representative from the government of Canada, and...

  16. Seed Production, Herbage Residue and Crude Protein Content of Centro (Centrosema pubescens in the Year of Establishment at Shika, Nigeria

    Directory of Open Access Journals (Sweden)

    Omokanye, AT.

    2001-01-01

    Full Text Available A field trial was carried out on seed production pattern of centro (Centrosema pubescens, in the year of establishment in a sub humid environment of Nigeria as influenced by sowing date and phosphorus application levels. The herbage residue and its crude protein content were also determined after pod harvest. The variation in seeds per pod for plantings between June 21 to August 2 was from 16.5 to 14.5, while for unfertilized and fertilized plots seeds number varied between 12.6 and 16.2/pod. The weight of 1000 seeds decreased with delayed planting. Phosphorus application improved seed weight. Seed yield was highest (1000 kg/ha for July 5 sowing with phosphorus application of 60 kg/ha P205 combination. The variation in mean seed yield for planting between June 21 and August 2 was 782.0 to 360.3 kg/ha. The application of 0 to 60 kg/ha P205 resulted in mean seed yields of 405.7 to 776.8 kg/ha. Herbage residue was favoured more by June 21 sowing and the application of 60 kg/ha P205. The crude protein content was better with August sowing and 60 kg/ha P205.

  17. Optimization of low-cost biosurfactant production from agricultural residues through response surface methodology.

    Science.gov (United States)

    Ebadipour, N; Lotfabad, T Bagheri; Yaghmaei, S; RoostaAzad, R

    2016-01-01

    Biosurfactants are surface-active compounds capable of reducing surface tension and interfacial tension. Biosurfactants are produced by various microorganisms. They are promising replacements for chemical surfactants because of biodegradability, nontoxicity, and their ability to be produced from renewable sources. However, a major obstacle in producing biosurfactants at the industrial level is the lack of cost-effectiveness. In the present study, by using corn steep liquor (CSL) as a low-cost agricultural waste, not only is the production cost reduced but a higher production yield is also achieved. Moreover, a response surface methodology (RSM) approach through the Box-Behnken method was applied to optimize the biosurfactant production level. The results found that biosurfactant production was improved around 2.3 times at optimum condition when the CSL was at a concentration of 1.88 mL/L and yeast extract was reduced to 25 times less than what was used in a basic soybean oil medium (SOM). The predicted and experimental values of responses were in reasonable agreement with each other (Pred-R(2) = 0.86 and adj-R(2) = 0.94). Optimization led to a drop in raw material price per unit of biosurfactant from $47 to $12/kg. Moreover, the biosurfactant product at a concentration of 84 mg/L could lower the surface tension of twice-distilled water from 72 mN/m to less than 28 mN/m and emulsify an equal volume of kerosene by an emulsification index of (E24) 68% in a two-phase mixture. These capabilities made these biosurfactants applicable in microbial enhanced oil recovery (MEOR), hydrocarbon remediation, and all other petroleum industry surfactant applications.

  18. Validation of a standard field test method in four countries to assess the toxicity of residues in dung of cattle treated with veterinary medical products

    NARCIS (Netherlands)

    Floate, Kevin D.; Düring, Rolf Alexander; Hanafi, Jamal; Jud, Priska; Lahr, Joost; Lumaret, Jean Pierre; Scheffczyk, Adam; Tixier, Thomas; Wohde, Manuel; Römbke, Jörg; Sautot, Lucille; Blanckenhorn, Wolf U.

    2016-01-01

    Registration of veterinary medical products includes the provision that field tests may be required to assess potential nontarget effects associated with the excretion of product residues in dung of treated livestock (phase II, tier B testing). However, regulatory agencies provide no guidance on

  19. Cost estimate for the production of ethanol from spent sulphite liquors and wood residues

    International Nuclear Information System (INIS)

    Nguyen, Q.

    1990-03-01

    A Lotus 1-2-3 spreadsheet model for estimating the production cost of 95 wt % ethanol from spent sulfite liquors (SSL) and from a wood hydrolysis front-end is described. The most economically attractive process is the fermentation of softwood SSL (SSSL) by the yeast Saccharomyces cerevisiae, yielding a production cost estimate of $0.47/liter. The cost of producing ethanol from cellulosic waste (clarifier sludge) via acid hydrolysis is approximately $0.55/liter, still below the market price of ca $0.60/liter for industrial ethanol. Neither the fermentation of hardwood SSL nor the conversion of sawdust to ethanol, using current technology, are economically viable. However, these processes can become commercially viable if acetic acid-tolerant xylose-fermenting yeasts can be found. 17 refs., 12 figs., 16 tabs

  20. Identification of Residual Stress in the Production of Molding Tools by Turn-Milling Technology

    Science.gov (United States)

    Šajgalík, Michal; Pavlusík, Tomáš; Pilc, Jozef; Mikloš, Matej; Daniš, Igor; Martinček, Juraj; Pustay, Jozef

    2017-10-01

    This article describes how to plan the tool path and analyze the surface of the machined part by working simultaneously on two basic operations such as milling and turning. New machine tools allow parallel processing of both multi-axis tools at the same time, it is a production technology in which the workpiece and the tool are simultaneously rotating. This relatively new turnmilling technology could be an alternative to increasing productivity in many applications. Especially in cases involving heavy-duty materials or large diameters of machined surface. The aim of this study is to explore this new technology, especially with regard to the increased precision and quality of the surface of the workpiece. Experimental results show that the combination of these two operations is suitable for precise machining of rotationally symmetrical workpieces with high surface finish.

  1. Effects of coal properties on the production rate of combustion solid residue

    Energy Technology Data Exchange (ETDEWEB)

    Durgun, D. [Catalagzi Thermal Plant, Catalagzi, Zonguldak (Turkey); Genc, A. [Department of Environmental Engineering, Zonguldak Karaelmas University, 67100 Zonguldak (Turkey)

    2009-11-15

    The production rates of furnace bottom ash in a pulverized coal-fired power plant were monitored for a two-year period and its variations with respect to coal properties were analyzed. The power plant was originally designed to fire the coal sludge generated from a washing process; however, the coal sludge and its mixture with low-rank bituminous coal have been started to be used as the main fuel with time. The results of the hardgrove grindability measurements have shown that the grinding properties of sludge or its mixtures could not be predicted based on proximate analysis (moisture, ash, carbon and volatile contents); it could only be determined by experiments. The production rate of bottom ash in this particular power plant remained relatively insensitive to the high ash and moisture contents and could be estimated almost only by knowing the calorific value of the source coal. The evaluated dependency was linear. (author)

  2. Microclimate effects of crop residues on biological processes

    Science.gov (United States)

    Hatfield, J. L.; Prueger, J. H.

    1996-03-01

    Residues from crops left on the soil surface have an impact on the microclimate, primarily temperature, within the soil and the atmosphere; but, the impact on the biological system is largely unknown. Residue is assumed to have a positive impact on the biological system in the soil and a negative impact on crop growth. This report investigates the effect of standing residue on the microclimate surrounding a cotton ( Gossypium hirsutum L.) crop in a semi-arid environment and the effect of flat residue on the seasonal soil temperature and soil water regimes in a humid climate with a corn ( Zea mays L.) and soybean [ Glycine max (L.) Merr.] production system. A study was conducted during 1987 and 1988 in a semi-arid climate at Lubbock, Texas using standing wheat stubble to shelter cotton from wind. In this study soil water, microclimatic variables, and plant growth were measured within standing stubble and bare soil during the early vegetative growth period. Air temperatures were warmer at night within the standing residue and the air more humid throughout the day. This led to a reduction in the soil water evaporation rate and an increase in the water use efficiency of the cotton plant within the stubble. Studies on corn residue with continuous corn and corn-soybean rotations with no-till, chiselplow, and moldboard plow tillage practices in central Iowa showed that the average soil temperatures in the upper soil profile were not affected by the presence of flat residue after tillage. Diurnal temperature ranges were most affected by the residue throughout the year. The largest effect of the residue on soil temperature was in the fall after harvest when no-till fields cooled more slowly than tilled fields. In the spring, surface residue decreased the soil water evaporation rate and increased the soil water storage within the soil profile covered with residue. In years with below normal rainfall, the additional stored soil water due to the surface residue was used by the

  3. Phytostabilization of semiarid soils residually contaminated with trace elements using by-products: Sustainability and risks

    International Nuclear Information System (INIS)

    Perez-de-Mora, Alfredo; Madejon, Paula; Burgos, Pilar; Cabrera, Francisco; Lepp, Nicholas W.; Madejon, Engracia

    2011-01-01

    We investigated the efficiency of various by-products (sugarbeet lime, biosolid compost and leonardite), based on single or repeated applications to field plots, on the establishment of a vegetation cover compatible with a stabilization strategy on a multi-element (As, Cd, Cu, Pb and Zn) contaminated soil 4-6 years after initial amendment applications. Results indicate that the need for re-treatment is amendment- and element-dependent; in some cases, a single application may reduce trace element concentrations in above-ground biomass and enhance the establishment of a healthy vegetation cover. Amendment performance as evaluated by % cover, biomass and number of colonizing taxa differs; however, changes in plant community composition are not necessarily amendment-specific. Although the translocation of trace elements to the plant biotic compartment is greater in re-vegetated areas, overall loss of trace elements due to soil erosion and plant uptake is usually smaller compared to that in bare soil. - Highlights: → By-products enhance vegetation dynamics in contaminated semiarid soils. → Depending on the situation single or repeated incorporations may be required. → The structure of the plant community established is not amendment-dependent. → Phytostabilization reduces overall loss of trace elements in semiarid soils. - Phytostabilization using by-products as amendments is a suitable approach for long-term immobilization of various trace elements in semiarid contaminated soils.

  4. Phytostabilization of semiarid soils residually contaminated with trace elements using by-products: Sustainability and risks

    Energy Technology Data Exchange (ETDEWEB)

    Perez-de-Mora, Alfredo, E-mail: perezdemora@gmail.com [Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS), CSIC, PO Box 1052, 41080 Sevilla (Spain); Madejon, Paula; Burgos, Pilar; Cabrera, Francisco [Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS), CSIC, PO Box 1052, 41080 Sevilla (Spain); Lepp, Nicholas W. [35, Victoria Road, Formby, Liverpool L37 7DH (United Kingdom); Madejon, Engracia [Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS), CSIC, PO Box 1052, 41080 Sevilla (Spain)

    2011-10-15

    We investigated the efficiency of various by-products (sugarbeet lime, biosolid compost and leonardite), based on single or repeated applications to field plots, on the establishment of a vegetation cover compatible with a stabilization strategy on a multi-element (As, Cd, Cu, Pb and Zn) contaminated soil 4-6 years after initial amendment applications. Results indicate that the need for re-treatment is amendment- and element-dependent; in some cases, a single application may reduce trace element concentrations in above-ground biomass and enhance the establishment of a healthy vegetation cover. Amendment performance as evaluated by % cover, biomass and number of colonizing taxa differs; however, changes in plant community composition are not necessarily amendment-specific. Although the translocation of trace elements to the plant biotic compartment is greater in re-vegetated areas, overall loss of trace elements due to soil erosion and plant uptake is usually smaller compared to that in bare soil. - Highlights: > By-products enhance vegetation dynamics in contaminated semiarid soils. > Depending on the situation single or repeated incorporations may be required. > The structure of the plant community established is not amendment-dependent. > Phytostabilization reduces overall loss of trace elements in semiarid soils. - Phytostabilization using by-products as amendments is a suitable approach for long-term immobilization of various trace elements in semiarid contaminated soils.

  5. Residues of bioenergy production chains as soil amendments: immediate and temporal phytotoxicity.

    Science.gov (United States)

    Gell, Kealan; van Groenigen, JanWillem; Cayuela, Maria Luz

    2011-02-28

    The current shift towards bioenergy production increases streams of bioenergy rest-products (RPs), which are likely to end-up as soil amendments. However, their impact on soil remains unclear. In this study we evaluated crop phytotoxicity of 15 RPs from common bioenergy chains (biogas, biodiesel, bioethanol and pyrolysis). The RPs were mixed into a sandy soil and the seedling root and shoot elongation of lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), and wheat (Triticum aestivum L.) were measured. Immediate phytotoxic effects were observed with biodiesel and bioethanol RPs (root elongation reduced to 14-60% for the three crops; P<0.05). However, phytotoxicity was no longer significant after seven days. Digestates had no phytotoxic effect whereas biochars ranged from beneficial to detrimental depending on the original feedstock and temperature of pyrolysis. Biochar amendment alleviated phytotoxicity of bioethanol by-products for wheat and radish. Phytotoxicity assessment is critical for successful soil amendment with bioenergy RPs. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Pesticide residues in grapes from integrated production of the Slovene origin The CORRECTED TITLE is: Pesticide residues in grapes from vineyards included in integrated pest management in Slovenia.

    OpenAIRE

    Baša Česnik , Helena; Gregorčič , Ana; Čuš , Franc

    2008-01-01

    Abstract Although the list of pesticides used in integrated pest management (IPM) in grape growing and their annual application rates are limited, we are still confronted with the problem of pesticide residues in grapes. The paper presents the results of pesticide monitoring in 47 samples of wine grapes (Vitis vinifera L.) of the 2006 vintage from the vineyards included in IPM. The grape samples were analysed for the presence of 67 pesticides. Among them, 20 were allowed in IPM in ...

  7. Miniature electron bombardment evaporation source: evaporation rate measurement

    International Nuclear Information System (INIS)

    Nehasil, V.; Masek, K.; Matolin, V.; Moreau, O.

    1997-01-01

    Miniature electron beam evaporation sources which operate on the principle of vaporization of source material, in the form of a tip, by electron bombardment are produced by several companies specialized in UHV equipment. These sources are used primarily for materials that are normally difficult to deposit due to their high evaporation temperature. They are appropriate for special applications such as heteroepitaxial thin film growth requiring a very low and well controlled deposition rate. A simple and easily applicable method of evaporation rate control is proposed. The method is based on the measurement of ion current produced by electron bombardment of evaporated atoms. The absolute evaporation flux values were measured by means of the Bayard-Alpert ion gauge, which enabled the ion current vs evaporation flux calibration curves to be plotted. (author). 1 tab., 4 figs., 6 refs

  8. Adaptive nitrogen and integrated weed management in conservation agriculture: impacts on agronomic productivity, greenhouse gas emissions, and herbicide residues.

    Science.gov (United States)

    Oyeogbe, Anthony Imoudu; Das, T K; Bhatia, Arti; Singh, Shashi Bala

    2017-04-01

    Increasing nitrogen (N) immobilization and weed interference in the early phase of implementation of conservation agriculture (CA) affects crop yields. Yet, higher fertilizer and herbicide use to improve productivity influences greenhouse gase emissions and herbicide residues. These tradeoffs precipitated a need for adaptive N and integrated weed management in CA-based maize (Zea mays L.)-wheat [Triticum aestivum (L.) emend Fiori & Paol] cropping system in the Indo-Gangetic Plains (IGP) to optimize N availability and reduce weed proliferation. Adaptive N fertilization was based on soil test value and normalized difference vegetation index measurement (NDVM) by GreenSeeker™ technology, while integrated weed management included brown manuring (Sesbania aculeata L. co-culture, killed at 25 days after sowing), herbicide mixture, and weedy check (control, i.e., without weed management). Results indicated that the 'best-adaptive N rate' (i.e., 50% basal + 25% broadcast at 25 days after sowing + supplementary N guided by NDVM) increased maize and wheat grain yields by 20 and 14% (averaged for 2 years), respectively, compared with whole recommended N applied at sowing. Weed management by brown manuring (during maize) and herbicide mixture (during wheat) resulted in 10 and 21% higher grain yields (averaged for 2 years), respectively, over the weedy check. The NDVM in-season N fertilization and brown manuring affected N 2 O and CO 2 emissions, but resulted in improved carbon storage efficiency, while herbicide residuals in soil were significantly lower in the maize season than in wheat cropping. This study concludes that adaptive N and integrated weed management enhance synergy between agronomic productivity, fertilizer and herbicide efficiency, and greenhouse gas mitigation.

  9. Elimination of microcystin-LR and residual Mn species using permanganate and powdered activated carbon: Oxidation products and pathways.

    Science.gov (United States)

    Jeong, Boyoung; Oh, Min-Seok; Park, Hyun-Mee; Park, Chanhyuk; Kim, Eun-Ju; Hong, Seok Won

    2017-05-01

    The oxidation of microcystin-LR (MC-LR) in deionized water (DI) and river water using potassium permanganate (KMnO 4 ) at a neutral pH and at 23 ± 2 °C was investigated. These two aqueous systems (i.e., DI and river water) gave comparable second-order rate constants (289.9 and 285.5 M -1 s -1 (r 2  > 0.99), respectively), which confirmed the effectiveness of this oxidation process for the treatment of natural surface water. The presence of either humic or fulvic acid reduced the removal efficiency of MC-LR, with the latter exhibiting a greater inhibitory effect. Monitoring of MC-LR and residual Mn 2+ levels with adding KMnO 4 (1 mg/L) and powdered activated carbon (PAC, 5-20 mg L -1 ) before and during coagulation, respectively, revealed that 60 min of permanganate pre-oxidation followed by coagulant addition with PAC was the most effective approach for reducing both levels below limits stated by WHO guidelines. The MC-LR degradation products were the result of oxidation occurring at the diene and aromatic moieties of the Adda (3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid) side-chain, in addition to amine bond hydrolysis of the Mdha (N-methyldehydroalanine) moiety. Several toxic by-products with an intact Adda chain were observed during the reaction, but completely disappeared after 60 min. This further supports the conclusion that sufficient contact time with permanganate (i.e., >60 min) is essential to reducing the residual toxicity and maximizing the efficiency of MC-LR oxidation when treating raw water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Use of mass spectrometry methods as a strategy for detection and determination of residual solvents in pharmaceutical products.

    Science.gov (United States)

    Pérez Pavón, José Luis; del Nogal Sanchez, Miguel; García Pinto, Carmelo; Fernandez Laespada, M Esther; Moreno Cordero, Bernardo

    2006-07-15

    In the present work a strategy for the qualitative and quantitative analysis of residual solvents in pharmaceutical products is reported. First, a low-resolution chromatogram is generated for the identification of the solvents present in the samples by means of headspace generation-fast gas chromatography-mass spectrometry (HS-fast GC/MS). From the plotting of this information by means of contour plots with time and mass/charge axes, it is decided whether quantification of such compounds can be accomplished without chromatographic separation or whether it should be done by fast gas chromatography. The nonseparative method is based on direct coupling of a headspace sampler with a mass spectrometer (HS-MS) and requires a signal recording time of only 3 min, while with fast gas chromatography the time required to obtain a chromatogram is 7.16 min. The use of headspace generation for introducing the sample and standard addition as a quantification technique provided satisfactory results and minimized the matrix effect. An important advantage of the methodologies used here is related to the fact that no prior treatment of the sample is required, thus minimizing the creation of analytical artifacts and the errors associated with this step of the analytical process. The methods were applied to the determination of residual solvents in 27 different pharmaceutical products. Detection and quantitation limits were sufficiently low to enable the estimation of organic volatile impurities according to the International Conference on Harmonization (ICH) of Technical Requirements for the Registration of Pharmaceuticals for Human Use.

  11. PFR evaporator leak

    International Nuclear Information System (INIS)

    Smedley, J.A.

    1975-01-01

    PFR has three heat removal circuits each one having an evaporator, superheater, reheater; all separate units. The status of the system was that circuit No 3 was steaming with 10 MW thermal nuclear power; No 1 circuit was filled with sodium but with the evaporator awaiting modification to cure gas entrainment problems already reported. The leak was in No 2 circuit and was located in the evaporator unit. The evaporator is rated at 120 M thermal at full power and as such is a large unit. The circuit was filled with both sodium and water for the first time three weeks before the conference so it was recent history being reported and therefore any figures quoted should be taken as indicative only. The history of the steam generator was that it was built at works to a very high standard and underwent all the usual tests of strength, inspection of welds and helium leak testing. The steam generator is of U tube design with a tube plate to which the boiler tubes are welded, with all the welds in one of two gas spaces. The inlet and outlet sides are separated by a baffle and the salient features are illustrated in the attached figure. The unit achieved a leak tightness better than the detection limit in the helium leak test at works. This limit was assessed as being less than an equivalent leak of 10 -6 g/s water under steam generator service conditions. However even though all the steam generator units passed this test at works a further test was carried out when the circuits had been completed. The test was carried out during commissioning after sodium filling and with the units hot. The method was to introduce a mixture of helium/ argon at 500 pounds/square inch into the water side of the steam generators and measure the helium concentration in the sodium side gas spaces of the circuit. The test lasted many days and under these conditions the sensitivity is such that a leak equivalent to somewhere between 10 -7 to 10 -6 g/s equivalent water leak could be detected, i

  12. Evaporation and Antievaporation Instabilities

    Directory of Open Access Journals (Sweden)

    Andrea Addazi

    2017-10-01

    Full Text Available We review (antievaporation phenomena within the context of quantum gravity and extended theories of gravity. The (antievaporation effect is an instability of the black hole horizon discovered in many different scenarios: quantum dilaton-gravity, f ( R -gravity, f ( T -gravity, string-inspired black holes, and brane-world cosmology. Evaporating and antievaporating black holes seem to have completely different thermodynamical features compared to standard semiclassical black holes. The purpose of this review is to provide an introduction to conceptual and technical aspects of (antievaporation effects, while discussing problems that are still open.

  13. Analysis of the monitoring status of residual nitrite in meat products in China from 2000 to 2011.

    Science.gov (United States)

    Zhang, Hongchao; Sun, Changbao; Han, Wanjun; Zhang, Jiaxiu; Hou, Juncai

    2018-02-01

    The aim of this article was to analyze the monitoring status of nitrite in meat products consumed from 2000 to 2011 in 24 provinces, autonomous regions or direct-controlled municipalities in China. Statistical analyses were performed on the monitoring status including number, proportion, and distribution of 13,316 samples, of which 11,320 (85%) contained up to 2808.2mg/kg nitrite and 1996 (15%) contained no nitrite. A total of 10,299 samples (77%) qualified for GB/T 5009.33-2003, 2003; however, 3017 samples (23%) contained nitrite at levels higher than the national standard. The districts with high percentage of samples with no nitrite were Shanghai (49%), Beijing (47%), and Liaoning (30%). While the districts with high percentage of meat products containing nitrite at levels exceeding the national standard were Jiangxi (49%), Jiangsu (33%), Shandong (29%) and Sichuan (29%). Therefore, the status of residue nitrite in meat products is of concern. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.

    Science.gov (United States)

    Zheng, Hongli; Ma, Xiaochen; Gao, Zhen; Wan, Yiqin; Min, Min; Zhou, Wenguang; Li, Yun; Liu, Yuhuan; Huang, He; Chen, Paul; Ruan, Roger

    2015-10-01

    This study investigated the feasibility of lipid production of Chlorella sp. from waste materials. Lipid-extracted microalgal biomass residues (LMBRs) and molasses were hydrolyzed, and their hydrolysates were analyzed. Five different hydrolysate mixture ratios (w/w) of LMBRs/molasses (1/0, 1/1, 1/4, 1/9, and 0/1) were used to cultivate Chlorella sp. The results showed that carbohydrate and protein were the two main compounds in the LMBRs, and carbohydrate was the main compound in the molasses. The highest biomass concentration of 5.58 g/L, Y biomass/sugars of 0.59 g/g, lipid productivity of 335 mg/L/day, and Y lipids/sugars of 0.25 g/g were obtained at the hydrolysate mixture ratio of LMBRs/molasses of 1/4. High C/N ratio promoted the conversion of sugars into lipids. The lipids extracted from Chlorella sp. shared similar lipid profile of soybean oil and is therefore a potential viable biodiesel feedstock. These results showed that Chlorella sp. can utilize mixed sugars and amino acids from LMBRs and molasses to accumulate lipids efficiently, thus reducing the cost of microalgal biodiesel production and improving its economic viability.

  15. Techno-economic Assessment of Integrated Hydrothermal Liquefaction and Combined Heat and Power Production from Lignocellulose Residues

    Directory of Open Access Journals (Sweden)

    Mohamed Magdeldin

    2018-03-01

    Full Text Available Waste biomass as a mean for global carbon dioxide emissions mitigation remains under-utilized. This is mainly due to the low calorific value of virgin feedstock, characterized generally with high moisture content. Aqueous processing, namely hydrothermal liquefaction in subcritical water conditions, has been demonstrated experimentally to thermally densify solid lignocellulose into liquid fuels without the pre-requisite and energy consuming drying step. This study presents a techno-economic evaluation of an integrated hydrothermal liquefaction system with downstream combined heat and power production from forest residues. The utilization of the liquefaction by-products and waste heat from the elevated processing conditions, coupled with the chemical upgrading of the feedstock enables the poly-generation of biocrude, electricity and district heat. The plant thermal efficiency increases by 3.5 to 4.6% compared to the conventional direct combustion case. The economic assessment showed that the minimum selling price of biocrude, based on present co-products market prices, hinders commercialization and ranges between 138 EUR to 178 EUR per MWh. A sensitivity analysis and detailed discussion on the techno-economic assessment results are presented for the different process integration and market case scenarios.

  16. Agroindustrial residues and energy crops for the production of hydrogen and poly-β-hydroxybutyrate via photofermentation.

    Science.gov (United States)

    Corneli, Elisa; Adessi, Alessandra; Dragoni, Federico; Ragaglini, Giorgio; Bonari, Enrico; De Philippis, Roberto

    2016-09-01

    The present study was aimed at assessing the biotransformation of dark fermented agroindustrial residues and energy crops for the production of hydrogen and poly-β-hydroxybutyrate (PHB), in lab-scale photofermentation. The investigation on novel substrates for photofermentation is needed in order to enlarge the range of sustainable feedstocks. Dark fermentation effluents of ensiled maize, ensiled giant reed, ensiled olive pomace, and wheat bran were inoculated with Rhodopseudomonas palustris CGA676, a mutant strain suitable for hydrogen production in ammonium-rich media. The highest hydrogen producing performances were observed in wheat bran and maize effluents (648.6 and 320.3mLL(-1), respectively), both characterized by high initial volatile fatty acids (VFAs) concentrations. Giant reed and olive pomace effluents led to poor hydrogen production due to low initial VFAs concentrations, as the original substrates are rich in fiber. The highest PHB content was accumulated in olive pomace effluent (11.53%TS), ascribable to magnesium deficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Fermentation Process and Metabolic Flux of Ethanol Production from the Detoxified Hydrolyzate of Cassava Residue

    Directory of Open Access Journals (Sweden)

    Xingjiang Li

    2017-08-01

    Full Text Available With the growth of the world population, energy problems are becoming increasingly severe; therefore, sustainable energy sources have gained enormous importance. With respect to ethanol fuel production, biomass is gradually replacing grain as the main raw material. In this study, we explored the fermentation of five- and six-carbon sugars, the main biomass degradation products, into alcohol. We conducted mutagenic screening specifically for Candida tropicalis CICC1779 to obtain a strain that effectively used xylose (Candida tropicalis CICC1779-Dyd. By subsequently studying fermentation conditions under different initial liquid volume oxygen transfer coefficients (kLα, and coupling control of the aeration rate and agitation speed under optimal conditions, the optimal dissolved oxygen change curve was obtained. In addition, we constructed metabolic flow charts and equations to obtain a better understanding of the fermentation mechanism and to improve the ethanol yield. In our experiment, the ethanol production of the wild type stain was 17.58 g·L−1 at a kLα of 120. The highest ethanol yield of the mutagenic strains was 24.85 g·L−1. The ethanol yield increased to 26.56 g·L−1 when the dissolved oxygen content was optimized, and the conversion of sugar into alcohol reached 0.447 g·g−1 glucose (the theoretical titer of yeast-metabolized xylose was 0.46 g ethanol/g xylose and the glucose ethanol fermentation titer was 0.51 g ethanol/g glucose. Finally, the detected activity of xylose reductase and xylose dehydrogenase was higher in the mutant strain than in the original, which indicated that the mutant strain (CICC1779-Dyd could effectively utilize xylose for metabolism.

  18. Sustainable options for the utilization of solid residues from wine production.

    Science.gov (United States)

    Zhang, Nansen; Hoadley, Andrew; Patel, Jim; Lim, Seng; Li, Chao'en

    2017-02-01

    The efficient use of solid organic waste materials is an issue of particular importance for the wine industry. This paper focuses on the valorization of grape marc, the major component of winery organic waste (60-70%). Two methods were designed and compared: combustion to generate electricity, and the pyrolysis for the production of bio-char, bio-oil, and bio-gas. Each of these processes was analysed to determine their economic and environmental viability. The flow-sheeting software, ASPEN PLUS, was used to model the two cases. Data from the simulations was used to inform techno-economic and environmental analyses. Pyrolysis was found to be the superior method of utilizing grape marc from both economic and environmental perspectives. Both pyrolysis and combustion exploit the energy content of the waste, which is not recovered by the traditional treatments, composting or distillation. In addition to the production of energy, pyrolysis yielded 151kg of bio-char and 140kg of bio-oil per tonne of grape marc. These products may be used in place of fossil fuels, resulting in a net reduction of carbon dioxide emissions. However, the potential deleterious effects resulting from the replacement of the traditional treatments was not considered. Investment in either pyrolysis or combustion had a negligible impact on the price of the wine produced for wineries with an annual grape crush larger than 1000 tonnes. Composting has significant economic advantages in wineries with a small grape crush of less than 50 tonnes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Dry fermentation technology for utilization of Bio-energy crops/crop residues for biogas production

    Directory of Open Access Journals (Sweden)

    Sooch S. S.

    2015-04-01

    Full Text Available Indian state Punjab produces 160 lakh tones of paddy every year. More than this quantity of paddy, straw is also produced which is not properly utilized. Paddy is burnt in the farmer’s fields itself, which produces lot of smoke and atmospheric pollution. Farmers have their own difficulty for burning this valuable straw as they have to vacate the fields for the next crop. Biogas production is one alternative for the individual farmer, for individual village or on the regional basis. In our opinion, it is possible to digest paddy straw anaerobically for biogas production and the digested humus would be utilized as crop manure. Anaerobic digestion of crop waste cannot be done by conventional anaerobic process for biogas production because of the floating characteristics of paddy straw in water. New process of anaerobic digestion has to be followed with small quantity of water to avoid floating of paddy straw. This process is commonly known as dry fermentation. This technique is well known in United States, Taiwan, German and Sri Lanka. In these countries, steel containers are being used as digester for anaerobic digestion. Digester of steel is ideal but the cost involved is very huge. Attempts have been made at PAU to construct masonry structure as digester but lot of difficulties were being faced to make it gas tight. The PAU has found suitable method to make the digester strong and gas tight. The life of structure will be more than 15 years. The advantage of the masonry structure is that the whole structure will be underground on which cold would have little effect in winter. This process of Dry Fermentation is a batch process, once the digester is loaded and activated, would produce sufficient gas for a period of 3 - 4 months. Therefore, 2 sets of digester are required to meet the whole year demand.

  20. Antimony recovery from end-of-life products and industrial process residues: A critical review

    OpenAIRE

    Dupont, David; Arnout, Sander; Jones, Peter Tom; Binnemans, Koen

    2016-01-01

    Antimony has become an increasingly critical element in recent years, due to a surge in industrial demand and the Chinese domination of primary production. Antimony is produced from stibnite ore (Sb2O3) which is processed into antimony metal and antimony oxide (Sb2O3). The industrial importance of antimony is mainly derived from its use as flame retardant in plastics, coatings, and electronics, but also as decolourizing agent in glass, alloys in lead-acid batteries, and catalysts for the p...

  1. Treatment of waste incinerator air-pollution-control residues with FeSO4: Concept and product characterization

    DEFF Research Database (Denmark)

    Lundtorp, Kasper; Jensen, Dorthe Lærke; Sørensen, Mette Abildgaard

    2002-01-01

    This paper describes a new concept for treatment of air- pollution-control (APC) residues from waste incineration and characterises the wastewater and stabilised residues generated by the process. The process involves mixing of APC-residues with a ferrous sulphate solution and subsequent oxidation...

  2. Divergence for residual feed intake of Holstein-Friesian cattle during growth did not affect production and reproduction during lactation.

    Science.gov (United States)

    Macdonald, K A; Thomson, B P; Waghorn, G C

    2016-11-01

    Residual feed intake (RFI) is the difference between actual and predicted dry matter intake (DMI) of individual animals. Recent studies with Holstein-Friesian calves have identified an ~20% difference in RFI during growth (calf RFI) and these groups remained divergent in RFI during lactation. The objective of the experiment described here was to determine if cows selected for divergent RFI as calves differed in milk production, reproduction or in the profiles of BW and body condition score (BCS) change during lactation, when grazing pasture. The cows used in the experiment (n=126) had an RFI of -0.88 and +0.75 kg DM intake/day for growth as calves (efficient and inefficient calf RFI groups, respectively) and were intensively grazed at four stocking rates (SR) of 2.2, 2.6, 3.1 and 3.6 cows/ha on self-contained farmlets, over 3 years. Each SR treatment had equal number of cows identified as low and high calf RFI, with 24, 28, 34 and 40/11 ha farmlet. The cows divergent for calf RFI were randomly allocated to each SR. Although SR affected production, calf RFI group (low or high) did not affect milk production, reproduction, BW, BCS or changes in these parameters throughout lactation. The most efficient animals (low calf RFI) lost similar BW and BCS as the least efficient (high calf RFI) immediately post-calving, and regained similar BW and BCS before their next calving. These results indicate that selection for RFI as calves to increase efficiency of feed utilisation did not negatively affect farm productivity variables (milk production, BCS, BW and reproduction) as adults when managed under an intensive pastoral grazing system.

  3. Boosting biogas production from sewage sludge by adding small amount of agro-industrial by-products and food waste residues.

    Science.gov (United States)

    Maragkaki, A E; Fountoulakis, M; Kyriakou, A; Lasaridi, K; Manios, T

    2018-01-01

    In Greece, in many cities, wastewater treatment plants (WWTPs) operate their own anaerobic digestion (AD) facility in order to treat sewage sludge rather than achieve optimum biogas production. Nowadays, there is a growing interest regarding the addition of other co-substrates in these existing facilities in order to increase gas yield from the biomass. This practice may be possible by adding small amount of co-substrates which will not affect significantly in the designed hydraulic retention time. Nonetheless, the lack of experimental data regarding this option is a serious obstacle. In this study, the effect of co-digestion sewage sludge, with small amount of agro-industrial by-products and food wastes is examined in lab-scale experiments. Specifically, co-digestion of SS and food waste (FW), grape residues (GR), crude glycerol (CG), cheese whey (CW) and sheep manure (SM), in a small ratio of 5-10% (v/v) was investigated. The effect of agro-industrial by-products and food waste residues on biogas production was investigated using one 1L and three 3L lab-scale reactors under mesophilic conditions at a 24-day hydraulic retention time. The biogas production rate reached 223, 259, 406, 572, 682 and 1751 mlbiogas/lreactor/d for 100% SS, 5% SM & 95% SS, 10% CW & 90% SS, 5% FW & 95% SS, 5% FW & 5% CG & 90% SS and 5% CG & 95% SS respectively. Depending on the co-digestion material, the average removal of total chemical oxygen demand (TCOD) ranged between 20% (5% SM & 95% SS) and 76% (5% FW & 5% CG & 90% SS). Reduction in the volatile solids ranged between 26% (5% SM & 95% SS) and 62% (5% FW & 5% CG & 90% SS) for organic loading rates between 0.8kgVSm -3 d -1 and 2.0kgVSm -3 d -1 . Moreover, co-digestion improved biogas production from 14% (5% SM & 95% SS) to 674% (5% CG & 95% SS). This work suggests that WWTPs in Greece can increase biogas production by adding other wastes to the sewage sludge without affecting the operation of existing digesters and without requiring

  4. Catalyst deactivation due to deposition of reaction products in macropores during hydroprocessing of petroleum residuals

    Energy Technology Data Exchange (ETDEWEB)

    Khang, S.J.; Mosby, J.F.

    1986-04-01

    A pore-filling model is proposed to describe deactivation of hydroprocessing catalysts of a wide-pore structure in well-mixed and plug-flow reactors where the catalyst pellets are deactivated due to slow and uniform deposition of reaction products (mostly metal compounds) in their macropores. The model based on no mass-transfer restriction in the main channels of the pores incorporates additional active sites created by metal compounds in the deposited layers and has been shown to have two parameters of the similar type of the Thiele modulus. The model along with lumped reaction kinetics is applied for hydroprocessing reactions in trickle-bed reactors and provides reasonable deactivation curves for desulfurization and demetallation reaction when less than 50% of the original pore volume is filled with metal compounds.

  5. Evaporation of inclined water droplets

    Science.gov (United States)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  6. 242-A evaporator hazards assessment

    International Nuclear Information System (INIS)

    Johnson, T.L.

    1998-01-01

    This document establishes the technical basis in support of Emergency Planning activities for the 242-A Evaporator, on the Hanford Site. Through this document the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated. The evaporator sues a conventional, forced-circulation, vacuum evaporation system to concentrate radioactive waste solutions. This concentration results in the reduction in waste volume and reduces the number of double-shelled tanks required to store the waste

  7. Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities

    Science.gov (United States)

    Mackie, R.I.; Koike, S.; Krapac, I.; Chee-Sanford, J.; Maxwell, Susan; Aminov, R.I.

    2006-01-01

    Antibiotics are used at therapeutic levels to treat disease; at slightly lower levels as prophylactics; and at low, subtherapeutic levels for growth promotion and improvement of feed efficiency. Over 88% of swine producers in the United States gave antimicrobials to grower/finisher pigs in feed as a growth promoter in 2000. It is estimated that ca. 75% of antibiotics are not absorbed by animals and are excreted in urine and feces. The extensive use of antibiotics in swine production has resulted in antibiotic resistance in many intestinal bacteria, which are also excreted in swine feces, resulting in dissemination of resistance genes into the environment.To assess the impact of manure management on groundwater quality, groundwater samples have been collected near two swine confinement facilities that use lagoons for manure storage and treatment. Several key contaminant indicators-including inorganic ions, antibiotics, and antibiotic resistance genes-were analyzed in groundwater collected from the monitoring wells. Chloride, ammonium, potassium, and sodium were predominant inorganic constituents in the manure samples and served as indicators of groundwater contamination. Based on these analyses, shallow groundwater has been impacted by lagoon seepage at both sites. Liquid chromatography-mass spectroscopy (LC-MS) was used to measure the dissolved concentrations of tetracycline, chlortetracycline, and oxytetracycline in groundwater and manure. Although tetracyclines were regularly used at both facilities, they were infrequently detected in manure samples and then at relatively trace concentrations. Concentrations of all tetracyclines and their breakdown products in the groundwater sampled were generally less than 0.5 ??g/L.Bacterial tetracycline resistance genes served as distinct genotypic markers to indicate the dissemination and mobility of antibiotic resistance genes that originated from the lagoons. Applying PCR to genomic DNA extracted from the lagoon and

  8. Evaporator line for special electron tubes, in particular electron multipliers

    International Nuclear Information System (INIS)

    Richter, M.

    1984-01-01

    The invention has been aimed at reducing the effort for preventing short circuits in achieving certain material-dependent effects e.g. secondary emission, by deposition through evaporation in the production of electron tubes, in particular electron multipliers

  9. Residual compost from the production of Bactris gasipaes Kunth and Pleurotus ostreatus as soil conditioners for Lactuca sativa ‘Veronica’

    Directory of Open Access Journals (Sweden)

    Marcelo Barba Bellettini

    2017-05-01

    Full Text Available This study evaluated the residual compost from the production of Bactris gasipaes Kunth (pupunha heart of palm (RP and the mushroom Pleurotus ostreatus (RM. The residuals were used as soil conditioners for Lactuca sativa ‘Veronica’ crops. After adding RP and RM to the soil, all treatments exhibited similar behaviors and soils in each treatment were classified as eutrophic. Soil treatments involving increased application of residual compost resulted in the production of lettuce with greater widths because of an increase in the angle between the stem and leaf, resulting from a lack of nitrogen available to the plant. Soil treatments with 5% of RP and RM resulted in a 1.7 and 1.2 times (44% and 22%, respectively decrease in dry weight of lettuce, as compared to the soil without residual compost addition. The addition of RP and RM as soil substrate reduced the growth of lettuce compared to the soil without residual compost. In general, the possibility of replacing chemical fertilizers (NPK with RP or RM without previous composting was found to be inefficient. The resultant dry weight parameters were below the commercial level, and a complete period of composting RP and RM was deemed necessary for incorporating nitrogen into the soil. Lignocellulosic mushrooms such as Pleurotus spp. present highly fibrous residual compost with low nitrogen content, thus requiring a full period of composting before subsequent use in soil enrichment for various crops.

  10. Investigation of biogas production and its residue with fertilization effect from municipal waste.

    Science.gov (United States)

    Bee, Soo-Tueen; Nithiyaa, Manikam; Sin, Lee Tin; Tee, Tiam-Ting; Rahmat, A R

    2013-10-15

    This study was aimed to investigate the production of methane gas from three different types of food waste (vegetables waste, fruit waste and grain waste) using batch type anaerobic digestion method. The digestion process was conducted by using temperature range of 27 to 36 degrees C and pH 6.5 to 7.5 to yield an optimum condition for the digestion process. The digestion was continued for a period of two weeks with the aid of cow dung as the inoculums. It was found that the grain waste yielded the highest methane 2546 mL due to the high content of carbohydrate. At the mean time, the fruit waste produced the second highest methane gas with 2000 mL as well as the vegetable waste generated the lowest methane gas with volume of 1468 mL. The vegetable waste produced the lowest methane gas because the vegetables waste contains high fibres and cellulose walls but low in glucose amount. For the fertilization test, fruit waste demonstrated the best observation for the growth of plant due to high content of potassium and followed by vegetable waste. The least effective fertilizer was grain waste due to less content of nutrients essential for plants growth.

  11. Multifamily determination of pesticide residues in soya-based nutraceutical products by GC/MS-MS.

    Science.gov (United States)

    Páleníková, Agneša; Martínez-Domínguez, Gerardo; Arrebola, Francisco Javier; Romero-González, Roberto; Hrouzková, Svetlana; Frenich, Antonia Garrido

    2015-04-15

    An analytical method based on a modified QuEChERS extraction coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS) was evaluated for the determination of 177 pesticides in soya-based nutraceutical products. The QuEChERS method was optimised and different extraction solvents and clean-up approaches were tested, obtaining the most efficient conditions with a mixture of sorbents (PSA, C18, GBC and Zr-Sep(+)). Recoveries were evaluated at 10, 50 and 100 μg/kg and ranged between 70% and 120%. Precision was expressed as relative standard deviation (RSD), and it was evaluated for more than 160 pesticides as intra and inter-day precision, with values always below 20% and 25%, respectively. Limits of detection (LODs) ranged from 0.1 to 10 μg/kg, whereas limits of quantification (LOQs) from 0.5 to 20 μg/kg. The applicability of the method was proved by analysing soya-based nutraceuticals. Two pesticides were found in these samples, malathion and pyriproxyfen, at 11.1 and 1.5 μg/kg respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Pectinase Production by Bacillus and Paenibacillus sp. Isolated from Decomposing Wood Residues in the Lagos Lagoon

    Directory of Open Access Journals (Sweden)

    Busayo Tosin Akinyemi

    2017-09-01

    Full Text Available Three wood decomposing bacteria isolated from the Lagos lagoon, Bacillus megaterium, Bacillus bataviensis and Paenibacillus sp. were screened for their pectinase producing abilities using pectin as substrate under submerged fermentation (SMF conditions. The results showed that all three isolates produced appreciable pectinolytic activities. Paenibacillus sp. showed the highest pectinase activity when compared with the other two isolates. The optimum pH for pectinase activity for both B. megaterium and B. bataviensis was 8.0 while it was 6.5 for Paenibacillus sp., B. bataviensis, and B. megaterium showed optimum pectinase activity at 60°C and Paenibacillus sp. at 40°C. Metal ions such as Na+ and K+ improved the activity of pectinase produced by the three isolates when compared to the effect of Zn2+ and Mn2+. The molecular weights of the enzymes were also estimated by gel filtration as 29,512 da, 32,359 da, and 25,119 da for Paenibacillus sp., B. megaterium and B. bataviensis respectively. The study has provided a platform for further investigation into the biochemical characterization of the enzyme, and optimization of culture conditions to scale up pectinase production for commercial exploitation.

  13. The transport of antibiotic resistance genes and residues in groundwater near swine production facilities

    Science.gov (United States)

    Lin, Y. F.; Yannarell, A. C.; Mackie, R. I.; Krapac, I. G.; Chee-Sanford, J. S.; Koike, S.

    2008-12-01

    The use of antibiotics at concentrated animal feeding operations (CAFOs) for disease prevention, disease treatment, and growth promotion can contribute to the spread of antibiotic compounds, their breakdown products, and antibiotic resistant bacteria and/or the genes that confer resistance. In addition, constitutive use of antibiotics at sub-therapeutic levels can select for antibiotic resistance among the bacteria that inhabit animal intestinal tracts, onsite manure treatment facilities, and any environments receiving significant inputs of manure (e.g. through waste lagoon leakage or fertilizer amendments to farm soils). If the antibiotic resistant organisms persist in these new environments, or if they participate in genetic exchanges with the native microflora, then CAFOs may constitute a significant reservoir for the spread of antibiotic resistance to the environment at large. Our results have demonstrated that leakage from waste treatment lagoons can influence the presence and persistence of tetracycline resistance genes in the shallow aquifer adjacent to swine CAFOs, and molecular phylogeny allowed us to distinguish "native" tetracycline resistance genes in control groundwater wells from manure-associated genes introduced from the lagoon. We have also been able to detect the presence of erythromycin resistance genes in CAFO surface and groundwater even though erythromycin is strictly reserved for use in humans and thus is not utilized at any of these sites. Ongoing research, including modeling of particle transport in groundwater, will help to determine the potential spatial and temporal extent of CAFO-derived antibiotic resistance.

  14. Comparison of gamma irradiation and steam explosion pretreatment for ethanol production from agricultural residues

    International Nuclear Information System (INIS)

    Wang, Ke-qin; Xiong, Xing-yao; Chen, Jing-ping; Chen, Liang; Su, Xiaojun; Liu, Yun

    2012-01-01

    It was evaluated the influence of gamma irradiation and steam explosion pretreatment on the components and the water-soluble sugars of rice straw. Compared with the steam explosion pretreated rice straw, cellucose, hemicellucose and lignin for irradiation pretreated rice sample were much more greatly degraded and the relative content of glucose was significantly enhanced from 6.58% to 47.44%. Interestingly, no glucuronide acid was detected in irradiation pretreated rice straw, while glucuronide acid with the content from 8.5 mg/g to 9.2 mg/g was obtained in steam explosion pretreated sample. Followed by enzymatic hydrolysis, higher concentration of reducing sugars (including glucose and xylose) of irradiation pretreated rice sample (90.3 mg/g) was obtained, which was approximately 2.4- and 1.1- fold higher of the unpretreated (37.2 mg/g) and of steam explosion pretreated sample (85.4 mg/g). To further verify the effectiveness of irradiation pretreatment, characterizations of rice straw, corn stalk and bagasse by an integrated process of dilute acid/enzymatic hydrolysis and irradiation pretreatment were also investigated. -- Highlights: ► We compare irradiation and steam explosion pretreatments for bioethanol production. ► We examine changes in compositions of the components and the water-soluble sugars. ► No glucuronide acid was detected in gamma irradiation pretreated rice straw. ► We evaluate an integrated method of acid/enzyme-hydrolyzed irradiation pretreatment.

  15. Dual-fuel production from restaurant grease trap waste: bio-fuel oil extraction and anaerobic methane production from the post-extracted residue.

    Science.gov (United States)

    Kobayashi, Takuro; Kuramochi, Hidetoshi; Maeda, Kouji; Tsuji, Tomoya; Xu, Kaiqin

    2014-10-01

    An effective way for restaurant grease trap waste (GTW) treatment to generate fuel oil and methane by the combination of physiological and biological processes was investigated. The heat-driven extraction could provide a high purity oil equivalent to an A-grade fuel oil of Japanese industrial standard with 81-93 wt% of extraction efficiency. A post-extracted residue was treated as an anaerobic digestion feedstock, and however, an inhibitory effect of long chain fatty acid (LCFA) was still a barrier for high-rate digestion. From the semi-continuous experiment fed with the residual sludge as a single substrate, it can be concluded that the continuous addition of calcium into the reactor contributed to reducing LCFA inhibition, resulting in the long-term stable operation over one year. Furthermore, the anaerobic reactor performed well with 70-80% of COD reduction and methane productivity under an organic loading rate up to 5.3g-COD/L/d. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The crop-residue of fiber hemp cv. Futura 75: from a waste product to a source of botanical insecticides.

    Science.gov (United States)

    Benelli, Giovanni; Pavela, Roman; Lupidi, Giulio; Nabissi, Massimo; Petrelli, Riccardo; Ngahang Kamte, Stephane L; Cappellacci, Loredana; Fiorini, Dennis; Sut, Stefania; Dall'Acqua, Stefano; Maggi, Filippo

    2017-11-06

    In the attempt to exploit the potential of the monoecious fiber hemp cv. Futura 75 in new fields besides textile, cosmetics and food industry, its crop-residue given by leaves and inflorescences was subjected to hydrodistillation to obtain the essential oils. These are niche products representing an ideal candidate for the development of natural insecticides for the control and management of mosquito vectors, houseflies and moth pests. After GC-MS analysis highlighting a safe and legal chemical profile (THC in the range 0.004-0.012% dw), the leaf and inflorescence essential oils were investigated for the insecticidal potential against three insect targets: the larvae of Culex quinquefasciatus and Spodoptera littoralis and the adults of Musca domestica. The essential oil from inflorescences, showing (E)-caryophyllene (21.4%), myrcene (11.3%), cannabidiol (CBD, 11.1%), α-pinene (7.8%), terpinolene (7.6%), and α-humulene (7.1%) as the main components, was more effective than leaf oil against these insects, with LD 50 values of 65.8 μg/larva on S. littoralis, 122.1 μg/adult on M. domestica, and LC 50 of 124.5 μl/l on C. quinquefasciatus larvae. The hemp essential oil moderately inhibited the acetylcholinesterase (AChE), which is a target enzyme in pesticide science. Overall, these results shed light on the future application of fiber hemp crop-residue for the development of effective, eco-friendly and sustainable insecticides.

  17. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies.

    Science.gov (United States)

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Fernández, Carlos; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale) two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively) fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L.) grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form) to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95%) ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency.

  18. Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor.

    Science.gov (United States)

    Pattiya, Adisak

    2011-01-01

    Biomass residues from cassava plants, namely cassava stalk and cassava rhizome, were pyrolysed in a fluidised-bed reactor for production of bio-oil. The aims of this work were to investigate the yields and properties of pyrolysis products produced from both feedstocks as well as to identify the optimum pyrolysis temperature for obtaining the highest organic bio-oil yields. Results showed that the maximum yields of the liquid bio-oils derived from the stalk and rhizome were 62 wt.% and 65 wt.% on dry basis, respectively. The pyrolysis temperatures that gave highest bio-oil yields for both feedstocks were in the range of 475-510 °C. According to the analysis of the bio-oils properties, the bio-oil derived from cassava rhizome showed better quality than that derived from cassava stalk as the former had lower oxygen content, higher heating value and better storage stability. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Energy production from agricultural residues: High methane yields in pilot-scale two-stage anaerobic digestion

    International Nuclear Information System (INIS)

    Parawira, W.; Read, J.S.; Mattiasson, B.; Bjoernsson, L.

    2008-01-01

    There is a large, unutilised energy potential in agricultural waste fractions. In this pilot-scale study, the efficiency of a simple two-stage anaerobic digestion process was investigated for stabilisation and biomethanation of solid potato waste and sugar beet leaves, both separately and in co-digestion. A good phase separation between hydrolysis/acidification and methanogenesis was achieved, as indicated by the high carbon dioxide production, high volatile fatty acid concentration and low pH in the acidogenic reactors. Digestion of the individual substrates gave gross energy yields of 2.1-3.4 kWh/kg VS in the form of methane. Co-digestion, however, gave up to 60% higher methane yield, indicating that co-digestion resulted in improved methane production due to the positive synergism established in the digestion liquor. The integrity of the methane filters (MFs) was maintained throughout the period of operation, producing biogas with 60-78% methane content. A stable effluent pH showed that the methanogenic reactors had good ability to withstand the variations in load and volatile fatty acid concentrations that occurred in the two-stage process. The results of this pilot-scale study show that the two-stage anaerobic digestion system is suitable for effective conversion of semi-solid agricultural residues as potato waste and sugar beet leaves

  20. Quantitative real-time PCR technique for the identification of E. coli residual DNA in streptokinase recombinant product.

    Science.gov (United States)

    Fazelahi, Mansoureh; Kia, Vahid; Kaghazian, Hooman; Paryan, Mahdi

    2017-11-26

    Recombinant streptokinase is a biopharmaceutical which is usually produced in E. coli. Residual DNA as a contamination and risk factor may remain in the product. It is necessary to control the production procedure to exclude any possible contamination. The aim of the present study was to develop a highly specific and sensitive quantitative real-time PCR-based method to determine the amount of E. coli DNA in recombinant streptokinase. A specific primers and a probe was designed to detect all strains of E. coli. To determine the specificity, in addition to using NCBI BLASTn, 28 samples including human, bacterial, and viral genomes were used. The results confirmed that the assay detects no genomic DNA but E. coli's and the specificity was determined to be 100%. To determine the sensitivity and limit of detection of the assay, a 10-fold serial dilution (10 1 to 10 7 copies/µL) was tested in triplicate. The sensitivity of the test was determined to be 101 copies/µL or 35 fg/µL. Inter-assay and intra-assay were determined to be 0.86 and 1.69%, respectively. Based on the results, this assay can be used as an accurate method to evaluate the contamination of recombinant streptokinase in E. coli.

  1. Anatomic and tissue characteristics in goats fed for extended periods with residue of castor biodiesel production

    Directory of Open Access Journals (Sweden)

    Cláudio Henrique de Almeida Oliveira

    2013-12-01

    Full Text Available Twenty-five adult crossbred goats, divided in two groups, were fed over a period of 16 months with diets based on Tifton hay and concentrate feed with (DCO or without (WDCO detoxified castor bean meal as a substitute for soybean meal. Throughout 480 days, blood samples were taken to measure lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, urea, albumin and creatinine. The animals were euthanized, and the anatomical components (lungs, heart, spleen, liver, kidneys, tongue, empty stomach, empty intestines, omentum, cardiac and renal adipose tissue, carcass and commercial cuts (shoulder, ham, loin, ribs and neck were weighed. Thereafter, an anatomic dissection of the loin was performed, separating the muscle, adipose and bone tissues. On the muscular part of the loin, longissimus dorsi, the proximate composition, fatty acid profile and the expression of SEW-1, IGF-I and IGF-II were analyzed. A higher incidence of bone tissue was observed in the anatomical dissections of the loin and a lower incidence of fat in the proximate composition of the longissimus dorsi of the DCO group compared to the WDCO group (p<0.05. The expression of the IGF-II and SEW-1 genes was higher (p<0.001 for each in the muscle tissue of the DCO animals. Thus, using detoxified castor bean meal for long periods does not produce significant changes in the anatomical composition of the loin or the proximate composition of the longissimus dorsi. However, the differences in gene expression suggest the need for new investigations and care when using this product for animal feeding.

  2. HPLC-MS Analysis of Chloramphenicol Residues in Milk and Powdered Milk Products

    Directory of Open Access Journals (Sweden)

    Bošnir, J.

    2007-02-01

    Full Text Available Chloramphenicol (CAP is a broad-spectrum antibiotic with bacteriostatic action but also has toxic properties, which is why its presence in food and feed is prohibited in Croatia and the European Union.In the aim of consumer protection it is essential to develop a sensitive analytical method for detection of CAP fractions lower than w = 0.3 µg kg-1. For the efficient control and monitoring of CAP, a rapid, sensitive, and selective method for its identification and quantification, using highperformance liquid chromatography in combination with mass spectrometry LC-MS, has been developed.The cleaning procedure was based on the AOAC official method 993.32. HPLC-MS analysis used the ODS Hypersile column and the water/acetonitrile gradient. Electrospray negative ionization (neg ESI was used before single ion monitoring (SIM detection of three m/z 321, 323 and 325. As additional criteria, the ratio between these masses in real and spiked milk samples was also investigated in accordance with theoretical values of the isotope pattern for 2 chlorine atoms present in the analyte.The detection limit of 0.1 µg kg-1 was achieved. The mean value of recovery was 94 %, the correlation coefficient of the calibration curves calculated for 2 m/z values was higher than 0.99.Fourty samples of milk and milk products were tested with the HPLC-MS method, and obtained results showed that samples had CAP 0.37, 0.29, 0.39 µg kg-1, respectively. All the other analysed samples contained CAP concentrations below the detection limit.

  3. Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion

    International Nuclear Information System (INIS)

    Bohutskyi, Pavlo; Chow, Steven; Ketter, Ben; Betenbaugh, Michael J.; Bouwer, Edward J.

    2015-01-01

    Highlights: • Semi-continuous AD of untreated and enzymatically pretreated lipid extracted algae. • Coupled biodiesel and methane process yields 40% more energy than biodiesel alone. • Thermal pretreatment (150–170 °C) of whole algae was more effective than enzymatic. • Addition of 5% of AD effluent was optimal to support high growth of Nannochloropsis. • AD effluent can partly replace chemical fertilizer for algal growth. - Abstract: Sustainable mass production of algal biofuels requires a reduction in nutrient demand and efficient conversion into fuels of all biomass including lipid-extracted algal residues (LEA). This study evaluated methane production, nutrient recovery and recycling from untreated and enzymatically pretreated Nannochloropsis LEA using semi-continuous anaerobic digestion (AD). Additionally, this process was compared to methane generation from whole Nannochloropsis alga (WA) and thermally pretreated WA. The methane production from untreated LEA and WA reached up to 0.22 L and 0.24 L per gram of biomass volatile solids (VS), respectively, corresponding to only 36–38% of the theoretical potential. Additionally, observed VS reduction was only 40–50% confirming biomass recalcitrance to biodegradation. While enzymatic treatment hydrolyzed up to 65% of the LEA polysaccharides, the methane production increased by only 15%. Alternatively, WA thermal pretreatment at 150–170 °C enhanced methane production up to 40%. Overall, an integrated process of lipid conversion into biodiesel coupled with LEA conversion into methane generates nearly 40% more energy compared to methane production from WA, and about 100% more energy than from biodiesel alone. Additionally, the AD effluent contained up to 60–70% of the LEA phosphorus content, 30–50% of the nitrogen, sulfur, calcium and boron, 20% of the iron and cobalt, and 10% of manganese, zinc and copper, which can partially replace chemical fertilizers during algal cultivation. Consequently

  4. Washing water treatment process for UF{sub 6} cylinder by adjusting evaporation technology in a low temperature and low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-tae; Ju, Young-jong; Cho, Nam-chan [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of); Kim, Yun-kwan; Jin, Chang-suk [Jeontech CO., Suwon (Korea, Republic of)

    2016-10-15

    The liquid waste is treated in this procedure; 1) Add NaOH to the liquid waste and filter the mixture with a screen. 2) Screened residue is dried and then stored in a uranium storage. 3) liquid part is moved to a storage tank and radioactivity is measured in the liquid. 5) If the concentration of radioactivity is lower than corresponding regulation limit, the liquid moved to a reaction tank and evaporated with additional low concentration HF in 105℃. 6) Radioactivity of distillate is measured and the value is lower than regulation, it is treated with a thermal decomposition process and discharged to the atmosphere in gas state. 7) Solid waste produced in the evaporation step is managed as solid nuclear waste. The treatment procedure mentioned above has disadvantageous points, producing large amount of solid waste as well as, high energy and chemical consumption. In this study, liquid waste from a real scaled cylinder wash process is applied to evaporation system to confirm feasibility of the application of evaporation and, to reduce waste production and energy consumption. Liquid radioactive wastewater from a real scaled UF6 cylinder wash process was applied to evaporation treatment system. Radioactive concentration in gross alpha was removed 99.9% in the evaporation system. And the concentration in distillate was lower than the discharge regulation. Removal of U-235 was 99.9% in the process. And 15 other kinds of radionuclides in the raw wastewater were removed completely. Secondary waste production of the evaporation system is 15g/L.

  5. Preparation by thermal evaporation under vacuum of thin nickel films without support

    International Nuclear Information System (INIS)

    Prugne, P.; Garin, P.; Lechauguette, G.

    1959-01-01

    This note deals with the preparation of nickel films without support by means of the technique described but using a new evaporation apparatus. In effect it was necessary, in order to obtain these nickel films, to modify the thermal evaporation conditions. An attempt to obtain a film without support after evaporation in a conventional apparatus led almost invariably to defeat. This appeared to be due to the high concentration of oxygen and of various vapors (diffusion pumps, degassing, etc.) present in the residual atmosphere of the conventional evaporation system. Reprint of a paper published in 'Le Vide, N. 74, March-April 1958, p. 82-83

  6. Evaporative cooling of the dipolar hydroxyl radical.

    Science.gov (United States)

    Stuhl, Benjamin K; Hummon, Matthew T; Yeo, Mark; Quéméner, Goulven; Bohn, John L; Ye, Jun

    2012-12-20

    Atomic physics was revolutionized by the development of forced evaporative cooling, which led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases and ultracold optical lattice simulations of condensed-matter phenomena. More recently, substantial progress has been made in the production of cold molecular gases. Their permanent electric dipole moment is expected to generate systems with varied and controllable phases, dynamics and chemistry. However, although advances have been made in both direct cooling and cold-association techniques, evaporative cooling has not been achieved so far. This is due to unfavourable ratios of elastic to inelastic scattering and impractically slow thermalization rates in the available trapped species. Here we report the observation of microwave-forced evaporative cooling of neutral hydroxyl (OH(•)) molecules loaded from a Stark-decelerated beam into an extremely high-gradient magnetic quadrupole trap. We demonstrate cooling by at least one order of magnitude in temperature, and a corresponding increase in phase-space density by three orders of magnitude, limited only by the low-temperature sensitivity of our spectroscopic thermometry technique. With evaporative cooling and a sufficiently large initial population, much colder temperatures are possible; even a quantum-degenerate gas of this dipolar radical (or anything else it can sympathetically cool) may be within reach.

  7. Characterization of lithium evaporators for LTX

    Science.gov (United States)

    Nieto-Perez, M.; Majeski, R.; Timberlake, J.; Lundberg, D.; Kaita, R.; Arevalo-Torres, B.

    2010-11-01

    The presence of lithium on the internal components of fusion devices has proven to be beneficial for reactor performance. The Lithium Tokamak Experiment (LTX) will be the first experimental fusion device operating with a significant portion of its internal surface coated with lithium. One of the key capabilities in the device is the reliable production of lithium films inside the reactor. This task is accomplished with the use of lithium evaporators, specially designed for LTX using resistively heated yttria crucibles. In the present work, results from the operation of one of these evaporators on a separate test stand are presented. Deposition measurements at different power levels were performed using a quartz crystal deposition monitor, and temperature distributions in the evaporator crucible and its content were obtained using an infrared camera and a dip-in thermocouple probe. Modeling of the evaporation cloud was done with the raytracing software OptiCAD, and comparisons between the computations and the temperature and flux measurements were performed, in order to accurately predict spatial lithium deposition rates in different locations of the LTX device.

  8. Research within the coordinated programme on isotopic-tracer-aided studies of chemical residues in cotton seed, oil, feed and related products

    International Nuclear Information System (INIS)

    Qureshi, M.J.

    1981-06-01

    14 C-methyl and 14 C-ring-labelled carbaryl (1-naphthyl-N-methyl carbamate) were used to study the fate and magnitude of the insecticide in the plant and cotton seed products. Under conditions of actual agricultural practice, 0.08-0.09, 0.23-0.30 and 0.05 mg/kg of 14 C-residues were found in the seed, crude oil and cake respectively. In oil, the residue was resolved into 4 compounds, 2 identified as carbaryl and 1-naphthol. Residues from the soil did not exceed 0.3 mg/kg after the first week and declined to 0.1 mg/kg after 5 weeks. Parallel experiments were conducted under field conditions using 14 C-phenyl leptophos (4-bromo-2,5-dichlorophenyl methyl phenyl phosphorothioate). Leptophos residues were determined in the cotton seed products during 1975, 1976 and 1977, with mean values for leptophos residues in the cotton seed, crude oil and cake of 0.26, 1.10 and 0.07 mg/kg, respectively. Experiments with non-labelled monocrotophos [3-(dimethoxy phosphinyloxy)-N-methyl cis-crotonamide] gave residues of 0.30, 1.56 and 0.02 mg/kg in the seed, crude oil and cake, respectively. Carbaryl residues in two local maize varieties were determined by a colorimetric method. Cooking in aqueous, oil or aqueous-oil media led to 63-83% loss of carbaryl residues, after 30 minutes. Storage of corn oil for one year had essentially no effect on the concentration of carbaryl residues under laboratory conditions (presumably similar to regular storage conditions). An overall effect of simulated commercial processing procedures (saponification, deodorization and winterization) gave a loss of 70% of the original carbaryl in the oil. Commercial cooking procedures for national popular dishes resulted in near-complete elimination of carbaryl residues (up to 98%). Frying onions and potatoes in carbaryl-spiked corn oil for 3 min. up to 210 0 C resulted in 55-60% loss of the residue

  9. What, no black hole evaporation

    International Nuclear Information System (INIS)

    Hajicek, P.; Israel, W.

    1980-01-01

    Tipler has claimed that the inward flux of negative energy across the horizon which (according to the semi-classical approximation) accompanies the evaporation of a black hole would cause a solar mass black hole to evaporate in less than a second. It is shown that this claim is in error. (orig.)

  10. Modeling Treated LAW Feed Evaporation

    International Nuclear Information System (INIS)

    DANIEL, WE

    2004-01-01

    This task examines the potential of the treated waste feed blends to form sodium-aluminum silicate precipitates when evaporated using the zeolite database. To investigate the behavior of the blended pretreated waste feed, an OLI Environmental Simulation Package Software (OLI ESP) model of the treated low activity waste (LAW) evaporator was built. A range of waste feed compositions representative of Envelope A, B, and C were then fed into the OLI model to predict various physical and chemical properties of the evaporator concentrates. Additional runs with treated LAW evaporator were performed to compare chemical and physical property model predictions and experimental results for small-scale radioactive tests of the treated feed evaporation process

  11. CFD Analysis of Evaporation-Condensation Phenomenon In an Evaporation Chamber of Natural Vacuum Solar Desalination

    Science.gov (United States)

    Ambarita, H.; Ronowikarto, A. D.; Siregar, R. E. T.; Setyawan, E. Y.

    2018-01-01

    Desalination technologies is one of solutions for water scarcity. With using renewable energy, like solar energy, wind energy, and geothermal energy, expected will reduce the energy demand. This required study on the modeling and transport parameters determination of natural vacuum solar desalination by using computational fluid dynamics (CFD) method to simulate the model. A three-dimensional case, two-phase model was developed for evaporation-condensation phenomenon in natural vacuum solar desalination. The CFD simulation results were compared with the avalaible experimental data. The simulation results shows inthat there is a phenomenon of evaporation-condensation in an evaporation chamber. From the simulation, the fresh water productivity is 2.21 litre, and from the experimental is 2.1 litre. This study shows there’s an error of magnitude 0.4%. The CFD results also show that, vacuum pressure will degrade the saturation temperature of sea water.

  12. Effects of pretreatment of wheat bran on the quality of protein-rich residue for animal feeding and on monosaccharide release for ethanol production

    NARCIS (Netherlands)

    Borne, van den J.J.G.C.; Kabel, M.A.; Briens, M.; Poel, van der A.F.B.; Hendriks, W.H.

    2012-01-01

    The effects of hydrothermal conditions for pretreating wheat bran on the quality of residual protein for animal feeding, and on monosaccharide release for ethanol production were studied according to a 4 × 2 × 2 design with the factors, temperature (120, 140, 160, and 180 °C), acidity (pH 2.3 and

  13. Evaluation of a recent product to remove lipids and other matrix co-extractives in the analysis of pesticide residues and environmental contaminants in foods

    Science.gov (United States)

    This study demonstrates the application of a novel lipid removal product to the residue analysis of 65 pesticides and 52 environmental contaminants in kale, pork, salmon, and avocado by fast, low pressure gas chromatography – tandem mass spectrometry (LPGC-MS/MS). Sample preparation involves QuEChE...

  14. Increased Butyrate Production During Long-Term Fermentation of In Vitro-Digested High Amylose Cornstarch Residues with Human Feces.

    Science.gov (United States)

    Li, Li; Jiang, Hongxin; Kim, Hyun-Jung; Yum, Man-Yu; Campbell, Mark R; Jane, Jay-Lin; White, Pamela J; Hendrich, Suzanne

    2015-09-01

    An in vitro semi-continuous long-term (3 wk) anaerobic incubation system simulating lower gut fermentation was used to determine variability in gut microbial metabolism between 4 predigested high amylose-resistant starch residues (SR): SRV, SRVI, SRVII, and SRGEMS in human fecal samples. Subjects participated twice, 5 mo apart: 30 in Phase I (15 lean, 9 overweight and 6 obese), 29 in Phase II (15 lean, 9 overweight, 5 obese); 13 of 15 lean subjects participated in both phases. Of the 4 SRs, SRV displayed the highest gelatinization temperature, peak temperature, enthalpy changes, and the least digestibility compared with the other SRs. In both phases, compared with blank controls, all SRs increased butyrate ∼2-fold which stabilized at week 2 and only SRV caused greater propionate concentration (∼30%) after 3 wk which might have been partly mediated by its lesser digestibility. Fecal samples from lean and overweight/obese subjects incubated with SRs showed similar short-chain fatty acid production across both time points, which suggests that resistant starch may benefit individuals across BMIs. © 2015 Institute of Food Technologists®

  15. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues.

    Science.gov (United States)

    Bansal, Namita; Tewari, Rupinder; Soni, Raman; Soni, Sanjeev Kumar

    2012-07-01

    Various agricultural and kitchen waste residues were assessed for their ability to support the production of a complete cellulase system by Aspergillus niger NS-2 in solid state fermentation. Untreated as well as acid and base-pretreated substrates including corn cobs, carrot peelings, composite, grass, leaves, orange peelings, pineapple peelings, potato peelings, rice husk, sugarcane bagasse, saw dust, wheat bran, wheat straw, simply moistened with water, were found to be well suited for the organism's growth, producing good amounts of cellulases after 96 h without the supplementation of additional nutritional sources. Yields of cellulases were higher in alkali treated substrates as compared to acid treated and untreated substrates except in wheat bran. Of all the substrates tested, wheat bran appeared to be the best suited substrate producing appreciable yields of CMCase, FPase and β-glucosidase at the levels of 310, 17 and 33 U/g dry substrate respectively. An evaluation of various environmental parameters demonstrated that appreciable levels of cellulases could be produced over a wide range of temperatures (20-50 °C) and pH levels (3.0-8.0) with a 1:1.5 to 1:1.75 substrate to moisture ratio. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Determination of organophosphorus pesticides and their major degradation product residues in food samples by HPLC-UV.

    Science.gov (United States)

    Peng, Guilong; He, Qiang; Lu, Ying; Mmereki, Daniel; Zhong, Zhihui

    2016-10-01

    A simple method based on dispersive solid-phase extraction (DSPE) and dispersive liquid-liquid microextraction method based on solidification of floating organic droplets (DLLME-SFO) was developed for the extraction of chlorpyrifos (CP), chlorpyrifos-methyl (CPM), and their main degradation product 3,5,6-trichloro-2-pyridinol (TCP) in tomato and cucumber samples. The determination was carried out by high performance liquid chromatography with ultraviolet detection (HPLC-UV). In the DSPE-DLLME-SFO, the analytes were first extracted with acetone. The clean-up of the extract by DSPE was carried out by directly adding activated carbon sorbent into the extract solution, followed by shaking and filtration. Under the optimum conditions, the proposed method was sensitive and showed a good linearity within a range of 2-500 ng/g, with the correlation coefficients (r) varying from 0.9991 to 0.9996. The enrichment factors ranged from 127 to 138. The limit of detections (LODs) were in the range of 0.12-0.68 ng/g, and the relative standard deviations (RSDs) for 50 ng/g of each analytes in tomato samples were in the range of 3.25-6.26 % (n = 5). The proposed method was successfully applied for the extraction and determination of the mentioned analytes residues in tomato and cucumber samples, and satisfactory results were obtained.

  17. Sustainable utilization of waste palm oil and sulfonated carbon catalyst derived from coconut meal residue for biodiesel production.

    Science.gov (United States)

    Thushari, Indika; Babel, Sandhya

    2018-01-01

    In this study, an inexpensive, environmental benign acid catalyst is prepared using coconut meal residue (CMR) and employed for biodiesel production from waste palm oil (WPO). The total acid density of the catalyst is found to be 3.8mmolg -1 . The catalyst shows a unique amorphous structure with 1.33m 2 g -1 of surface area and 0.31cm 3 g -1 of mean pore volume. Successful activation is confirmed by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The highest biodiesel yield of 92.7% was obtained from WPO in an open reflux system using the catalyst. Results show that biodiesel yield increases with increasing methanol:oil (molar ratio) and reaction time up to an optimum value. It is found that the catalyst can be reused for at least four cycles for >80% biodiesel yield. Fuel properties of the produced biodiesel meet international biodiesel standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Lignocellulosic residues for production of electricity, biogas or second generation biofuel: A case study of technical and sustainable potential of rice straw in Mali

    DEFF Research Database (Denmark)

    Nygaard, Ivan; Dembelé, Filifing; Daou, Ibrahima

    2016-01-01

    Biomass from agricultural residues, especially lignocellulosic biomass, is not only seen as a sustainable biomass source for the production of electricity, but increasingly as a resource for the production of biogas and second generation biofuel in developing countries. Based on empirical research...... in an irrigated rice-growing area, Office du Niger, in Mali, this article builds scenarios for the sustainable potential of rice straw. The paper concludes that there is great uncertainty regarding the size of the sustainable resources of rice straw available for energy, but that the most likely scenario...... to underestimate the uncertainty of resource assessments, and secondly to overestimate the resources available for energy production, mainly due to optimistic residue-to-product ratios and availability factors.© 2016 Elsevier Ltd. All rights reserved....

  19. Influence of agricultural residues interpretation and allocation procedures on the environmental performance of bioelectricity production – A case study on woodchips from apple orchards

    International Nuclear Information System (INIS)

    Boschiero, Martina; Kelderer, Markus; Schmitt, Armin O.; Andreotti, Carlo; Zerbe, Stefan

    2015-01-01

    Highlights: • An LCA of bioelectricity production from apple woody residues (AWRs) is performed. • Two AWRs interpretation are investigated: by-products and co-products. • Different allocation procedures are used for upstream and downstream emissions. • AWRs guarantee significant environmental benefits, when interpreted as by-products. - Abstract: Agricultural woody residues are available in massive quantities and provide a considerable potential for energy production. However, to encourage environmentally sustainable bioenergy strategies, it is necessary to assess the environmental performance of each specific bioenergy chain. Life cycle assessment (LCA) is recognized to be one of the best methodologies to evaluate the environmental burdens of bioenergy chains. The application of LCA to bioenergy from agricultural residues requires practitioners to make choices on how to interpret agricultural residues (i.e. by-products or co-products) and on how to allocate emissions among the different products generated along the bioenergy chain. These are among the most debated issues in the LCA community, given their potentially large influence on final LCA outcomes. A uniform consensus on these issues is still lacking, and no single method is equally suitable for all solutions. The aim of this paper is to assess how different ways of agricultural residue interpretation and different allocation methods (both of upstream and downstream emissions), affect the environmental performance of bioenergy production fed by agricultural residues. In order to address the issue, we perform a full attributional LCA of the electricity production in a combustion combined heat and power plant (CHP) fed with woody residues from apple orchards (AWRs), as a case study. Bioelectricity production from CHP fed with agricultural residues is a good example of a multifunctional process, since multiple products (e.g. grain, fruit, straw, wood, etc.) and energy (e.g. heat and power) are co

  20. Evaporation characteristics of ETBE-blended gasoline

    International Nuclear Information System (INIS)

    Okamoto, Katsuhiro; Hiramatsu, Muneyuki; Hino, Tomonori; Otake, Takuma; Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi

    2015-01-01

    Highlights: • We chose 8-component hydrocarbon mixture as a model gasoline, and defined the molar mass of gasoline. • We proposed an evaporation model assuming a 2-component mixture of gasoline and ETBE. • We predicted the change in the vapor pressure of ETBE-blended gasoline by evaporation. • The vapor pressures were measured and compared as a means of verifying the model. • We presented the method for predicting flash points of the ETBE-blended gasoline. - Abstract: To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were

  1. Tank 26F-2F Evaporator Study

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K.

    2012-12-19

    Tank 26F supernate sample was sent by Savannah River Remediation to Savannah River National Laboratory for evaporation test to help understand the underlying cause of the recent gravity drain line (GDL) pluggage during operation of the 2F Evaporator system. The supernate sample was characterized prior to the evaporation test. The evaporation test involved boiling the supernate in an open beaker until the density of the concentrate (evaporation product) was between 1.4 to 1.5 g/mL. It was followed by filtering and washing of the precipitated solids with deionized water. The concentrate supernate (or concentrate filtrate), the damp unwashed precipitated solids, and the wash filtrates were characterized. All the precipitated solids dissolved during water washing. A semi-quantitative X-ray diffraction (XRD) analysis on the unwashed precipitated solids revealed their composition. All the compounds with the exception of silica (silicon oxide) are known to be readily soluble in water. Hence, their dissolution during water washing is not unexpected. Even though silica is a sparingly water-soluble compound, its dissolution is also not surprising. This stems from its small fraction in the solids as a whole and also its relative freshness. Assuming similar supernate characteristics, flushing the GDL with water (preferably warm) should facilitate dissolution and removal of future pluggage events as long as build up/aging of the sparingly soluble constituent (silica) is limited. On the other hand, since the amount of silica formed is relatively small, it is quite possible dissolution of the more soluble larger fraction will cause disintegration or fragmentation of the sparingly soluble smaller fraction (that may be embedded in the larger soluble solid mass) and allow its removal via suspension in the flushing water.

  2. Evaporation characteristics of ETBE-blended gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Katsuhiro, E-mail: okamoto@nrips.go.jp [National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882 (Japan); Hiramatsu, Muneyuki [Yamanashi Prefectural Police H.Q., 312-4 Kubonakajima, Isawa-cho, Usui, Yamanashi 406-0036 (Japan); Hino, Tomonori; Otake, Takuma [Metropolitan Police Department, 2-1-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8929 (Japan); Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi [National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882 (Japan)

    2015-04-28

    Highlights: • We chose 8-component hydrocarbon mixture as a model gasoline, and defined the molar mass of gasoline. • We proposed an evaporation model assuming a 2-component mixture of gasoline and ETBE. • We predicted the change in the vapor pressure of ETBE-blended gasoline by evaporation. • The vapor pressures were measured and compared as a means of verifying the model. • We presented the method for predicting flash points of the ETBE-blended gasoline. - Abstract: To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were

  3. Rehabilitation of semi-arid coal mine spoil bank soils with mine residues and farm organic by-products

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.; Bosch-Serra, A.; Estudillos, G.; Poch, R.M. [University of Lleida, Lleida (Spain). Dept. of Environmental & Soil Science

    2009-07-01

    A method of rehabilitating coal mine soils was studied under the conditions of a semi-arid climate, lack of topsoil but availability of farm by-products in NE Spain. The objectives of the research were to assess a new method in order to achieve a suitable substrate for the establishment of native vegetation, to evaluate environmental impacts associated with the reclamation process, and to determine the time necessary to integrate the treated area into the surrounding environment. Eight plots (10 x 35 m{sup 2}) were established in September 1997. Substrate combinations of two types of mine spoil (coal dust and coarse-sized material), two levels of pig slurry (39 and 94 Mg ha{sup -1}dry-wt), and cereal straw (0 and 15 Mg ha{sup -1}) were applied. Monitoring of select physical and chemical soil properties and vegetation characteristics was performed from 1997 until 2005. The bulk density and the saturated hydraulic conductivity measured did not limit plant development and water availability. Initial substrate salinity (1.37 S m{sup -1}) decreased with time and in the long term did not limit plant colonization to salinity-adapted species. Initial nitrate concentration was 298 mg kg{sup -1}, but was reduced significantly to acceptable values in 3 years (55 mg kg{sup -1}) and the measured pH (7.6) was maintained at the level of initial spoil values. Vegetation cover reached up to 90%. In the treated area, spontaneous vegetation cover (15 to 70%) colonized the nonsown areas widely. In the medium term, vegetation cover tended to be higher in plots with a thicker layer of coal dust material and the higher slurry rate. Soil rehabilitation and environmental reintegration, taking into account soil and vegetation indicators, was possible in the studied area with low cost inputs using residual materials from mining activities and animal husbandry by-products.

  4. Energy consumption during Refractance Window evaporation of selected berry juices

    Energy Technology Data Exchange (ETDEWEB)

    Nindo, C.I.; Tang, J. [Washington State University, Pullman, WA (United States). Dept. of Biological Systems Engineering; Powers, J.R. [Washington State University, Pullman, WA (United States). Dept. of Food Science and Human Nutrition; Bolland, K. [MCD Technologies, Tacoma, WA (United States)

    2004-07-01

    The Refractance Window evaporator represents a novel concept in the design of evaporation systems for small food processing plants. In this system thermal energy from circulating hot water is transmitted through a plastic sheet to evaporate water from a liquid product flowing concurrently on the top surface of the plastic. The objectives of this study were to investigate the heat transfer characteristics of this evaporator, determine its energy consumption, and capacity at different tilt angles and product flow rates. The system performance was evaluated with tap water, raspberry juice, and blueberry juice and puree as feed. With a direct steam injection heating method, the steam economy ranged from 0.64 to 0.84, while the overall heat transfer coefficient (U) was 666 W m{sup -2} {sup o}C{sup -1}. Under this condition, the highest evaporation capacity was 27.1 kg h{sup -1} m{sup -2} for blueberry juice and 31.8 kg h{sup -1} m{sup -2} for blueberry puree. The energy consumption was 2492-2719 kJ kg{sup -1} of water evaporated. Installation of a shell and tube heat exchanger with better temperature control minimized incidences of boiling and frequent discharge of condensate. The steam economy, highest evaporation rate and overall heat transfer coefficient increased to 0.99, 36.0 kg h{sup -1} m{sup -2} and 733 W m{sup -2} {sup o}C{sup -1}, respectively. [Author].

  5. Evaporative cooling: Effective latent heat of evaporation in relation to evaporation distance from the skin

    NARCIS (Netherlands)

    Havenith, G.; Bröde, P.; Hartog, E.A. den; Kuklane, K.; Holmer, I.; Rossi, R.M.; Richards, M.; Farnworth, B.; Wang, X.

    2013-01-01

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has

  6. BECCS potential in Brazil: Achieving negative emissions in ethanol and electricity production based on sugar cane bagasse and other residues

    International Nuclear Information System (INIS)

    Moreira, José Roberto; Romeiro, Viviane; Fuss, Sabine; Kraxner, Florian; Pacca, Sérgio A.

    2016-01-01

    Highlights: • Demonstrates the cost competitiveness of sugarcane based bioenergy carbon capture and storage (BECCS). • Evaluates BECCS based on emissions from sugar fermentation, which is the low hanging fruit technology available. • Determines the BECCS cost premium of CO 2 , ethanol and electricity. • Determines the full mitigation potential of this BECCS technology in Brazil. • Discusses polices to enable BECCS deployment by society. - Abstract: Stabilization at concentrations consistent with keeping global warming below 2 °C above the pre-industrial level will require drastic cuts in Greenhouse Gas (GHG) emissions during the first half of the century; net negative emissions approaching 2100 are required in the vast majority of current emission scenarios. For negative emissions, the focus has been on bioenergy with carbon capture and storage (BECCS), where carbon-neutral bioenergy would be combined with additional carbon capture thus yielding emissions lower than zero. Different BECCS technologies are considered around the world and one option that deserves special attention applies CCS to ethanol production. It is currently possible to eliminate 27.7 million tonnes (Mt) of CO 2 emissions per year through capture and storage of CO 2 released during fermentation, which is part of sugar cane-based ethanol production in Brazil. Thus, BECCS could reduce the country’s emissions from energy production by roughly 5%. Such emissions are additional to those due to the substitution of biomass-based electricity for fossil-fueled power plants. This paper assesses the potential and cost effectiveness of negative emissions in the joint production system of ethanol and electricity based on sugar cane, bagasse, and other residues in Brazil. An important benefit is that CO 2 can be captured twice along the proposed BECCS supply chain (once during fermentation and once during electricity generation). This study only considers BECCS from fermentation because capturing

  7. Investigation of potential of agro-industrial residues for ethanol production by using Candida tropicalis and Zymomonas mobilis

    Science.gov (United States)

    Patle, Sonali

    India is becoming more susceptible regarding energy security with increasing world prices of crude oil and increasing dependence on imports. Based on experiments by the Indian Institute of Petroleum, a 10% ethanol blend with gasoline is being considered for use in vehicles in at least one state and it will be mandatory for all oil companies to blend petrol with 10% ethanol from October 2008. In view of the above, the Government has already started supply of 5% ethanol blended petrol from 2003 in nine states and four contiguous Union Territories. Currently, fuel ethanol is produced mainly from molasses, corn, wheat and sugar beets. The production cost of ethanol from these agro-feedstocks is more than twice the price of gasoline. The high feedstock cost poses a major obstacle to large scale implementation of ethanol as a transportation fuel. Molasses could be in short supply due to the implementation of 10% blending norm. A reduction in import duty for industrial alcohol from7.5% to 5% has been suggested. The use of lignocellulosic energy crops, and particularly low cost biomass residues, offers excellent perspectives for application of ethanol in transportation fuels (Ridder, 2000). These materials will increase the ethanol production capacity and reduce the production cost to a competitive level. There is a huge demand (500 million litres) of ethanol to meet the 5% blending in India. With the present infrastructure, only 90 million litres of ethanol was produced till November 2006 and could reach up to 140 million litres (around) till October 2007. Bioethanol from these materials provides a highly cost effective option for CO2 emission reduction in the transportation sector. The aim of the present investigation was to evaluate the potential of biomass as feedstock for ethanol production. The dedicated energy crops would require thorough support as well as planning efforts such as assessing resources, availability and utilization. Furthermore, applied research is

  8. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies

    Science.gov (United States)

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Fernández, Carlos; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale) two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively) fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L.) grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form) to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95%) ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency. PMID:26982183

  9. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies.

    Directory of Open Access Journals (Sweden)

    Belén Martínez-Alcántara

    Full Text Available Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L. grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95% ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency.

  10. Hydrothermal waves in evaporating sessile drops

    OpenAIRE

    Brutin, D.; Rigollet, F.; Niliot, C. Le

    2009-01-01

    Drop evaporation is a simple phenomena but still unclear concerning the mechanisms of evaporation. A common agreement of the scientific community based on experimental and numerical work evidences that most of the evaporation occurs at the triple line. However, the rate of evaporation is still empirically predicted due to the lack of knowledge on the convection cells which develop inside the drop under evaporation. The evaporation of sessile drop is more complicated than it appears due to the...

  11. Analysis of hazardous organic residues from sodium hydrosulfite industry and utilization as raw materials in a novel solid lubricant production

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Jiwu [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Zhang, Yihe, E-mail: zyh@cugb.edu.cn [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Zhou, Fengshan; Lv, Fengzhu; Han, Feng; Lu, Jinbo; Meng, Xianghai [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Ye, Zhengfang [Department of Environmental Engineering, Key Laboratory of Water and Sediment Sciences of the Ministry of Education, Peking University, Beijing 100871 (China); Xing, Jing [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer The hazardous organic residual wastes produced by the sodium hydrosulfite industry are analyzed and the main compounds are found to be thiodiglycol and 2,2 Prime -dithiodiethanol. Black-Right-Pointing-Pointer The lubricity of the organic residues is subsequently studied and the homemade solid lubricant is observed to have good lubricity. Black-Right-Pointing-Pointer The clean process is expected to not only have commercial impact but also help to reduce environmental pollution. - Abstract: The hazardous organic residual wastes produced by the sodium hydrosulfite industry are demonstrated to be convertible into a novel solid lubricant. Identification and isolation of the organic residues are achieved by Fourier transform infrared (FTIR) spectroscopy, gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR). FTIR and GC-MS provide important information about the residues and the two main components obtained by column chromatography are further analyzed by NMR. The main organic residues are found to be thiodiglycol and 2,2 Prime -dithiodiethanol which have potential applications in petroleum drilling because of their S-S and/or C-S functional groups. The lubricity of the organic residues is subsequently studied and the influence of different adsorbents on the lubricity is investigated and discussed. This homemade lubricant is observed to have good lubricity and by increasing the concentration of the commercial solid lubricant M, the lubricity diminishes. The process is expected to not only have commercial impact but also help to reduce environmental pollution.

  12. Cooling clothing utilizing water evaporation

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Tominaga, Naoto; Melikov, Arsen Krikor

    2014-01-01

    We developed cooling clothing that utilizes water evaporation to cool the human body and has a mechanism to control the cooling intensity. Clean water was supplied to the outer surface of the T-shirt of the cooling clothing, and a small fan was used to enhance evaporation on this outer surface...... temperature ranging from 27.4 to 30.7 °C to establish a suitable water supply control method. A water supply control method that prevents water accumulation in the T-shirt and water dribbling was validated; this method is established based on the concept of the water evaporation capacity under the applied...

  13. Interfacial Instabilities in Evaporating Drops

    Science.gov (United States)

    Moffat, Ross; Sefiane, Khellil; Matar, Omar

    2007-11-01

    We study the effect of substrate thermal properties on the evaporation of sessile drops of various liquids. An infra-red imaging technique was used to record the interfacial temperature. This technique illustrates the non-uniformity in interfacial temperature distribution that characterises the evaporation process. Our results also demonstrate that the evaporation of methanol droplets is accompanied by the formation of wave-trains in the interfacial temperature field; similar patterns, however, were not observed in the case of water droplets. More complex patterns are observed for FC-72 refrigerant drops. The effect of substrate thermal conductivity on the structure of the complex pattern formation is also elucidated.

  14. Xylanase production by Streptomyces viridosporus T7A in submerged and solid-state fermentation using agro-industrial residues

    Directory of Open Access Journals (Sweden)

    Luiz Romulo Alberton

    2009-11-01

    Full Text Available The study of xylanase production was conducted by Streptomyces viridosporus T7A in submerged (SmF and solid-state fermentation (SSF, using agro-industrial residues and sub-products. Napier grass, sugarcane bagasse and soybean bran were used as carbon source, substrate/support, and nitrogen source, respectively. In SmF, Napier grass (1% v/w supplemented with soybean bran, hydroxyethylcellulose and B complex vitamins were used. Soybean bran (1.5 % w/v, B complex vitamins (0.1%, and hydroxyethilcellulose (0.15% led to an increase in xylanase production (23.41 U/mL. In SSF, the effects of the following parameters were studied: substrate composition (sugarcane bagasse, Napier grass and soybean bran, initial moisture, and inoculum rate. In SSF, the highest xylanase activity (423.9 U/g was reached with: 70 % sugarcane bagasse, 20% Napier grass and 10% soybean meal, 90% of moisture, and 10(7/g substrate.A produção de xilanase por Streptomyces viridosporus T7A foi realizada em fermentação submersa (FSm e fermentação no estado sólido (FES utilizando resíduos e sub-produtos agroindustriais. Capim Napier, bagaço de cana e farelo de soja foram empregados como fonte de carbono, suporte/substrato e fonte nitrogênio, respectivamente. Em FSm, o capim Napier (1 % p/v foi suplementado com farelo de soja (1,5 % p/v, hidroxietilcelulose (0,15 % e vitaminas do complexo B (1,5 % sendo que a produção de xilanase atingiu 23.41 U/mL. Em FES, o efeito dos seguintes parâmetros foi estudado: composição do substrato (bagaço de cana, Capim Napier e farelo de soja, umidade inicial, aeração e taxa de inoculação. A mais elevada produção de xilanase (423,9 U/g foi atingida com 70% bagaço de cana, 20% de capim Napier e 10 % farelo de soja, 90 % de umidade inicial e 10(7 células/g substrato.

  15. Introducing ultrasonic falling film evaporator for moderate temperature evaporation enhancement.

    Science.gov (United States)

    Dehbani, Maryam; Rahimi, Masoud

    2018-04-01

    In the present study, Ultrasonic Falling Film (USFF), as a novel technique has been proposed to increase the evaporation rate of moderate temperature liquid film. It is a proper method for some applications which cannot be performed at high temperature, such as foodstuff industry, due to their sensitivity to high temperatures. Evaporation rate of sodium chloride solution from an USFF on an inclined flat plate compared to that for Falling Film without ultrasonic irradiation (FF) at various temperatures was investigated. The results revealed that produced cavitation bubbles have different effects on evaporation rate at different temperatures. At lower temperatures, size fluctuation and collapse of bubbles and in consequence induced physical effects of cavitation bubbles resulted in more turbulency and evaporation rate enhancement. At higher temperatures, the behavior was different. Numerous created bubbles joined together and cover the plate surface, so not only decreased the ultrasound vibrations but also reduced the evaporation rate in comparison with FF. The highest evaporation rate enhancement of 353% was obtained at 40 °C at the lowest Reynolds number of 250. In addition, the results reveal that at temperature of 40 °C, USFF has the highest efficiency compared to FF. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Formation of nitrogen-containing oligomers by methylglyoxal and amines in simulated evaporating cloud droplets.

    Science.gov (United States)

    De Haan, David O; Hawkins, Lelia N; Kononenko, Julia A; Turley, Jacob J; Corrigan, Ashley L; Tolbert, Margaret A; Jimenez, Jose L

    2011-02-01

    Reactions of methylglyoxal with amino acids, methylamine, and ammonium sulfate can take place in aqueous aerosol and evaporating cloud droplets. These processes are simulated by drying droplets and bulk solutions of these compounds (at low millimolar and 1 M concentrations, respectively) and analyzing the residuals by scanning mobility particle sizing, nuclear magnetic resonance, aerosol mass spectrometry (AMS), and electrospray ionization MS. The results are consistent with imine (but not diimine) formation on a time scale of seconds, followed by the formation of nitrogen-containing oligomers, methylimidazole, and dimethylimidazole products on a time scale of minutes to hours. Measured elemental ratios are consistent with imidazoles and oligomers being major reaction products, while effective aerosol densities suggest extensive reactions take place within minutes. These reactions may be a source of the light-absorbing, nitrogen-containing oligomers observed in urban and biomass-burning aerosol particles.

  17. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant

    International Nuclear Information System (INIS)

    Wäger, Patrick A.; Hischier, Roland

    2015-01-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6–10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail. - Highlights: • LCA of plastics production from plastics-rich WEEE treatment residues • Multiple stakeholder perspectives addressed via different research questions • Plastics production from WEEE treatment residues clearly superior to alternatives • Robust results as demonstrated by extensive sensitivity analyses

  18. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant

    Energy Technology Data Exchange (ETDEWEB)

    Wäger, Patrick A., E-mail: patrick.waeger@empa.ch; Hischier, Roland

    2015-10-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6–10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail. - Highlights: • LCA of plastics production from plastics-rich WEEE treatment residues • Multiple stakeholder perspectives addressed via different research questions • Plastics production from WEEE treatment residues clearly superior to alternatives • Robust results as demonstrated by extensive sensitivity analyses.

  19. Optimization of Thermostable Alpha-Amylase Production Via Mix Agricultural-Residues and Bacillus amyloliquefaciens

    Directory of Open Access Journals (Sweden)

    Shalini RAI

    2014-03-01

    Full Text Available This study reports utilization of mixture of wheat and barley bran (1:1 for the production of thermostable alpha-amylase enzyme through a spore former, heat tolerant strain of Bacillus amyloliquefaciens in solid state fermentation. Maximum yield of alpha-amylase (252.77 U mL-1 was obtained in following optimized conditions, inoculums size 2 mL (2 × 106 CFU/mL, moisture 80%, pH 7±0.02, NaCl (3%, temperature 38±1°C, incubation for 72 h, maltose (1% and tryptone (1%. After SSF crude enzyme was purified via ammonium sulfate precipitation, ion exchange and column chromatography by DEAE Cellulose. Purified protein showed a molecular weight of 42 kDa by SDS-PAGE electrophoresis. After purification, purified enzyme was characterized against several enzymes inhibitors such as temperature, NaCl, pH, metal and surfactants. Pure enzyme was highly active over broad temperature (50-70°C, NaCl concentration (0.5-4 M, and pH (6-10 ranges, indicating it’s a thermoactive and alkali-stable nature. Moreover, CaCl2, MnCl2, =-mercaptoethanol were found to stimulate the amylase activity, whereas FeCl3, sodium dodecyl sulfate (SDS, CuCl3 and ethylenediaminetetraacetic acid (EDTA strongly inhibited the enzyme. Moreover, enzyme specificity and thermal stability conformed by degradation of different soluble starch up to 55°C. Therefore, the present study proved that the extracellular alpha-amylase extracted through wheat flour residues by organism B. amyloliquefaciens MCCB0075, both have considerable potential for industrial application owing to its properties.

  20. OPTIMAL EVAPORATING AND CONDENSING TEMPERATURES ...

    African Journals Online (AJOL)

    ORC) in a hot and humid environment. A theoretical procedure is proposed for the determination of the optimal evaporation temperature (OET) and optimal condensing temperature (OCT) of a subcritical ORC plant, which is based on ...

  1. The evaporative vector: Homogeneous systems

    International Nuclear Information System (INIS)

    Klots, C.E.

    1987-05-01

    Molecular beams of van der Waals molecules are the subject of much current research. Among the methods used to form these beams, three-sputtering, laser ablation, and the sonic nozzle expansion of neat gases - yield what are now recognized to be ''warm clusters.'' They contain enough internal energy to undergo a number of first-order processes, in particular that of evaporation. Because of this evaporation and its attendant cooling, the properties of such clusters are time-dependent. The states of matter which can be arrived at via an evaporative vector on a typical laboratory time-scale are discussed. Topics include the (1) temperatures, (2) metastability, (3) phase transitions, (4) kinetic energies of fragmentation, and (5) the expression of magical properties, all for evaporating homogeneous clusters

  2. Overview on drying technologies for radioactive evaporation concentrates

    International Nuclear Information System (INIS)

    Graf, R.; Krug, G.; Schwiertz, V.

    1995-01-01

    Radioactive waste water is normally treated by evaporation resulting in evaporation concentrates with solid contents in the range of 15 to 30% by weight. Typical compositions of evaporation concentrates depend on the type of the nuclear power plant (especially BWR or PNW) and the time of arising (operational phase, phases of intervention such as major repair and maintenance). Main components can be boron acids, sulfates, chlorides, nitrates, chemicals from decontamination procedures. Evaporation concentrates from BWRs are free from boron acids, whereas those from PWRs contain boron acids up to 30% by weight. In Germany today, mainly two types of conditioning facilities are used to transform liquid evaporation concentrates that contain boron acids into the solid state: one stationary facility, called ROBE, and one facility that can be operated mobile as well as stationary, called FAVORIT. Both processes can be described as drying below atmospheric pressure (vacuum) supported by indirect heating. All products fulfill the requirements for final and interim storage as far as they are defined today in Germany. The products from the thin-film evaporation process are very similar to those from the ROBE-system concerning density and humidity. Products from the spray drying process and the fluidized bed drying and granulation process are different. Mobile plants must fulfill certain geometric conditions (e.g. transportation in 20 feet-containers). Maximum heights and masses are also restricted due to the working situation in nuclear power plants. First concepts have been developed and will undergo further review

  3. Cimicifuga species identification by high performance liquid chromatography-photodiode array/mass spectrometric/evaporative light scattering detection for quality control of black cohosh products

    OpenAIRE

    He, Kan; Pauli, Guido F.; Zheng, Bolin; Wang, Huikang; Bai, Naisheng; Peng, Tangsheng; Roller, Marc; Zheng, Qunyi

    2006-01-01

    Black cohosh has become one of the most important herbal products in the U.S. dietary supplements market. It is manufactured from roots and rhizomes of Cimicifuga racemosa (Ranunculaceae). Botanical identification of the raw starting material is a key step in the quality control of black cohosh preparations. The present report summarizes a fingerprinting approach based on HPLC-PDA/MS/ELSD that has been developed and validated using a total of ten Cimicifuga species. These include three North ...

  4. Evaporation behaviour of different organic effluents from open surfaces.

    Science.gov (United States)

    Jhorar, B S; Malik, R S

    1993-01-01

    Production of large quantities of effluents from different industrial units and the problems of their disposal necessitated this evaporation study. The evaporation of water, sewage water, oil refinery effluent, papermill effluent and liquor distillery effluent was observed in glass beakers when placed (i) in an oven at 60 degrees C and (ii) in screen house for 30 days, by periodically weighing of the beakers. In other experiments, the effect of increasing the frequency of stirring on increasing the evaporation efficiency of the liquor distillery effluent (ELD) was examined in detail. All of the organic effluents except ELD had similar evaporation behaviours as water, but formation of a self-forming film caused the evaporation of ELD to be considerably lower. Resistance to evaporation caused by this film was found to be a decreasing function of the frequency of stirring. This study has a bearing on improving the efficiency of evaporation lagoons, and three stirrings in a day with a manually drawn stirrer in a full-scale lagoon are proposed as a practical and economically viable technique to save 44% of lagoon land in arid and semi-arid regions of the world.

  5. Residual stresses in material processing

    Science.gov (United States)

    Kozaczek, K. J.; Watkins, T. R.; Hubbard, C. R.; Wang, Xun-Li; Spooner, S.

    Material manufacturing processes often introduce residual stresses into the product. The residual stresses affect the properties of the material and often are detrimental. Therefore, the distribution and magnitude of residual stresses in the final product are usually an important factor in manufacturing process optimization or component life prediction. The present paper briefly discusses the causes of residual stresses. It then addresses the direct, nondestructive methods of residual stress measurement by X ray and neutron diffraction. Examples are presented to demonstrate the importance of residual stress measurement in machining and joining operations.

  6. Preliminary investigation on the production of fuels and bio-char from Chlamydomonas reinhardtii biomass residue after bio-hydrogen production.

    Science.gov (United States)

    Torri, Cristian; Samorì, Chiara; Adamiano, Alessio; Fabbri, Daniele; Faraloni, Cecilia; Torzillo, Giuseppe

    2011-09-01

    The aim of this work was to investigate the potential conversion of Chlamydomonas reinhardtii biomass harvested after hydrogen production. The spent algal biomass was converted into nitrogen-rich bio-char, biodiesel and pyrolysis oil (bio-oil). The yield of lipids (algal oil), obtained by solvent extraction, was 15 ± 2% w/w(dry-biomass). This oil was converted into biodiesel with a 8.7 ± 1% w/w(dry-biomass) yield. The extraction residue was pyrolysed in a fixed bed reactor at 350 °C obtaining bio-char as the principal fraction (44 ± 1% w/w(dry-biomass)) and 28 ± 2% w/w(dry-biomass) of bio-oil. Pyrolysis fractions were characterized by elemental analysis, while the chemical composition of bio-oil was fully characterized by GC-MS, using various derivatization techniques. Energy outputs resulting from this approach were distributed in hydrogen (40%), biodiesel (12%) and pyrolysis fractions (48%), whereas bio-char was the largest fraction in terms of mass. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Bioprocess and biotecnology: effect of xylanase from Aspergillus niger and Aspergillus flavus on pulp biobleaching and enzyme production using agroindustrial residues as substract

    OpenAIRE

    de Alencar Guimaraes, Nelciele Cavalieri; Sorgatto, Michele; Peixoto-Nogueira, Simone de Carvalho; Betini, Jorge Henrique Almeida; Zanoelo, Fabiana Fonseca; Marques, Maria Rita; de Moraes Polizeli, Maria de Lourdes Teixeira; Giannesi, Giovana C

    2013-01-01

    This study compares two xylanases produced by filamentous fungi such as A. niger and A. flavus using agroindustrial residues as substract and evaluated the effect of these enzymes on cellulose pulp biobleaching process. Wheat bran was the best carbon source for xylanase production by A. niger and A. flavus. The production of xylanase was 18 and 21% higher on wheat bran when we compare the xylanase production with xylan. At 50°C, the xylanase of A. niger retained over 85% activity with 2 h of ...

  8. USE OF WOOD RESIDUES OF Pinus spp. FOR SUBSTITUTION TO THE FINE AGGREGATE IN THE PRODUCTION OF CONCRETE BLOCKS FOR STRUCTURAL MASONRY

    Directory of Open Access Journals (Sweden)

    Adauto José Miranda de Lima

    2014-03-01

    Full Text Available http://dx.doi.org/10.5902/1980509813339This research was developed with the objective of evaluating the potential use of residues of the productionof Pinus spp. sawnwood, as substitution to the fine aggregate of the concrete used for the production ofblocks for structural masonry. The evaluation of the physical characteristics (density, porosity and waterabsorption and mechanics (compression and tension strength of the concrete was evaluated in agreementwith the ABNT normalization. Substitutions of the fine aggregate were tested by percentages of 0, 20,40, 60, 80 and 100% of residue of Pinus spp. in natura, Pinus spp. in natura and with addition of 4,5%CaCl2.2H2O and residue of Pinus spp. pre-treated with extraction in cold water for 48 hours (AF-48H.The compositions were initially used for the production, in laboratory, of cylindrical specimens of 50 mmdiameter, by the use of a molding system for vibrate-compression and later, for producing blocks, withoptimized compositions, in vibrate-press commercial machine. Satisfactory results were obtained withsubstitutions of up to 50% of the mineral fine aggregate for the residue of Pinus spp.

  9. DWPF Recycle Evaporator Simulant Tests

    International Nuclear Information System (INIS)

    Stone, M

    2005-01-01

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  10. DWPF Recycle Evaporator Simulant Tests

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted

  11. Return of phosphorus in agricultural residues and urban sewage sludge to soil using biochar from low-temperature gasification as fertilizer product

    DEFF Research Database (Denmark)

    Müller-Stöver, Dorette Sophie; Jensen, Lars Stoumann; Grønlund, Mette

    The return of residual products from bioenergy generation to soils is a step towards closing nutrient cycles, which is especially important for nutrients produced from non-renewable resources such as phosphorus (P). Low-temperature gasification is an innovative process efficiently generating ener...... from different biomass fuels, such as agricultural residues and waste streams, and at the same time producing a biochar product potentially valuable for soil amendment. In pot experiments, different residual products originating from low-temperature gasification were tested for their P......-fertilizing potential with spring barley as a test crop. Biochar resulting from gasification of pure wheat straw showed the best P fertilizer value, however, because of the low P content, extremely high amounts had to be applied when crop P demand should be met, which came along with an over-fertilization of potassium...... (K). Gasification of pure sewage sludge with a high Fe and Al content practically eliminated its P fertilizer value, while co-gasification of sludge lower in Fe and Al together with wheat straw resulted in a biochar product with only somewhat reduced P availability and improved P/K ratio...

  12. Carbaryl and monocrotophos residues in cottonseed products. Part of a coordinated programme on isotopic tracer-aided studies of chemical residues in cotton seed, feed, oil and related products

    International Nuclear Information System (INIS)

    Pablo, F.E.

    1981-03-01

    Cotton plants of Deltapine variety were treated with carbaryl (naphthyl-1- 14 C), (6.7 mg/plant) three times at two week intervals. Seeds were collected at maturity and 14 C-residues were determined in the oil and cake by standard procedures. 14 C-carbaryl and/or metabolite residues were 0.42 and 0.15 mg/kg in the crude oil and cake respectively. Parallel studies were conducted with spectrophotometric techniques using p-nitrobenzene diazonium fluoborate as chromogenic agent. Applications were made three times at a rate of 14 mg/plant. Residues in the crude oil and cake were found to be 0.83 and 0.04 mg/kg respectively. The higher residue level in the oil - compared to the radiometric technique - probably relates to higher application rates. Cotton plants of Deltapine variety were treated with (N-methyl- 14 C) monocrotophos (0.09 mg/plant) three times at two week intervals, as recommended for agricultural practice. Seeds were collected at maturity and standard procedures for extraction, clean-up and paper and thin-layer chromatography were adopted for the ultimate determination of residues in seed, oil and cake. Parallel experiments, using spectrophotometric techniques, were made for comparison. 14 C-residues of monocrotophos and/or metabolites in cottonseed, crude oil and cake were found to be 0.06, 0.12 and 0.05 mg/kg respectively. Corresponding data obtained by non-nuclear techniques were 0.18, 0.42 and 0.15 mg/kg respectively. The discrepancy between the two sets of results may be related to different rates of application: 0.3 mg and 0.09 mg/plant for non-nuclear and radiometric techniques respectively. Among the major metabolites identified in the cottonseed were dimethyl phosphate and O-desmethyl monocrotophos. N-demethylated monocrotophos and sugar conjugates were also identified

  13. Effect of increased milking frequency and residual milk removal on milk production and milk fatty acid composition in lactating cows.

    Science.gov (United States)

    Ferneborg, Sabine; Kovac, Lucia; Shingfield, Kevin J; Agenäs, Sigrid

    2017-11-01

    It has been well established that milk yield is affected both by milking frequency and due to the removal of residual milk, but the influence of a combination of these factors is unclear. In this study, four mid-lactation cows were used in a 4 × 4 Latin square design to test the hypothesis that the effects of more frequent milking and residual milk removal on milk yield and composition are additive and alter milk fatty acid composition. Treatments comprised two or four times daily milking in combination with (or without) residual milk removal over a 96 h interval preceded by a 2 d pretreatment period and followed by a 8 d washout in each 14 d experimental period. Milk was sampled at each milking for the analysis of gross composition and SCC. Samples of available and residual milk collected on the last milking during each treatment period were collected and submitted for fatty acid composition analysis. Increases in milking frequency and residual milk removal alone or in combination had no effect on milk yield or on the secretion of lactose and protein in milk. However, residual milk removal during more frequent milking increased milk fat yield. Milking treatments had no major influence on the fatty acid composition of available milk, but resulted in rather small changes in the relative abundance of specific fatty acids, with no evidence that the additive effects of treatments were due to higher utilisation of preformed fatty acids relative to fatty acid synthesis de novo. For all treatments, fat composition of available and residual milk was rather similar indicating a highly uniform fatty acid composition of milk fat within the mammary gland.

  14. Cimicifuga species identification by high performance liquid chromatography-photodiode array/mass spectrometric/evaporative light scattering detection for quality control of black cohosh products

    Science.gov (United States)

    He, Kan; Pauli, Guido F.; Zheng, Bolin; Wang, Huikang; Bai, Naisheng; Peng, Tangsheng; Roller, Marc; Zheng, Qunyi

    2006-01-01

    Black cohosh has become one of the most important herbal products in the U.S. dietary supplements market. It is manufactured from roots and rhizomes of Cimicifuga racemosa (Ranunculaceae). Botanical identification of the raw starting material is a key step in the quality control of black cohosh preparations. The present report summarizes a fingerprinting approach based on HPLC-PDA/MS/ELSD that has been developed and validated using a total of ten Cimicifuga species. These include three North American species, C. racemosa, C. americana, C. rubifolia, and seven Asian species, C. acerina, C. biternat, C. dahurica, C. heracleifolia, C. japonica, C. foetida, and C. simplex. The chemotaxonomic distinctiveness of the HPLC fingerprints allows identification of all ten Cimicifuga species. The triterpene glycosides cimigenol-3-O-arabinoside (3), cimifugin (12), and cimifugin-3-O-glucoside (18) were determined to be suitable species-specific markers for the distinction of C. racemosa from the other Cimicifuga species. In addition to identification, the fingerprint method provided insight into chemical interconversion processes occurring between the diverse triterpene glycosides contained in black cohosh. The reported method has proven its usefulness in the botanical standardization and quality control of black cohosh products. PMID:16515793

  15. Novel technology for hydrothermal treatment of NPP evaporator concentrates

    International Nuclear Information System (INIS)

    Avramenko, Valentin; Dobrzhansky, Vitaly; Marinin, Dmitry; Sergienko, Valentin; Shmatko, Sergey

    2007-01-01

    A novel technology was developed for treatment of evaporator concentrates produced as a result of operation of evaporation devices comprising the main component of special water purification systems of nuclear power plants (NPP). The developed technology includes a hydrothermal (T=250-300 deg. C and P=80-120 bar) processing of evaporator concentrates in oxidation medium in order to destruct stable organic complexes of cobalt radionuclides and remove these radionuclides by oxide materials formed during such a processing. The cesium radionuclides contained in evaporator concentrates are removed by a conventional method-through application of one of the developed composite sorbents with ferrocyanides of transition metals used as active agents. Extensive laboratory studies of the processes occurring in evaporator concentrates under hydrothermal conditions were performed. It was shown that hydrothermal oxidation of evaporator concentrates has a number of advantages as compared to traditional oxidation methods (ozonization, photo-catalytic, electrochemical and plasma oxidation). A laboratory installation was built for the flow-type hydrothermal oxidation of NPP evaporator concentrates. The obtained experimental results showed good prospects for the developed method application. On the basis of the results obtained, a pilot installation of productivity up to 15 l/hour was developed and built in order to work out the technology of evaporator concentrates hydrothermal treatment. The pilot tests of the hydrothermal technology for evaporator concentrates hydrothermal treatment were performed for 6 months in 2006 at the 1. reactor unit of the Novovoronezhskaya NPP (Voronezh Region, Russia). Optimal technological regimes were determined, and estimations of the economic soundness of the technology were made. The advantages of the presented technology in terms of management of concentrated liquid radioactive wastes (LRW) at nuclear cycle facilities, as compared to other methods

  16. Analysis of hazardous organic residues from sodium hydrosulfite industry and utilization as raw materials in a novel solid lubricant production.

    Science.gov (United States)

    Shang, Jiwu; Zhang, Yihe; Zhou, Fengshan; Lv, Fengzhu; Han, Feng; Lu, Jinbo; Meng, Xianghai; Chu, Paul K; Ye, Zhengfang; Xing, Jing

    2011-12-30

    The hazardous organic residual wastes produced by the sodium hydrosulfite industry are demonstrated to be convertible into a novel solid lubricant. Identification and isolation of the organic residues are achieved by Fourier transform infrared (FTIR) spectroscopy, gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR). FTIR and GC-MS provide important information about the residues and the two main components obtained by column chromatography are further analyzed by NMR. The main organic residues are found to be thiodiglycol and 2,2'-dithiodiethanol which have potential applications in petroleum drilling because of their S-S and/or C-S functional groups. The lubricity of the organic residues is subsequently studied and the influence of different adsorbents on the lubricity is investigated and discussed. This homemade lubricant is observed to have good lubricity and by increasing the concentration of the commercial solid lubricant M, the lubricity diminishes. The process is expected to not only have commercial impact but also help to reduce environmental pollution. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. New alternatives in the control of plagues and projections of the ICA in the handling of the residuals in agricultural products

    International Nuclear Information System (INIS)

    Clavijo Navarro, P.E.

    1995-01-01

    The strategies are described indicated by the ICA for the control of plagues and of toxic residuals of agro-chemicals in the agricultural products, with emphasis in the implementation of mechanisms like the integrated control of plagues. It stands out the paper of the bio-insecticides as alternative to the agro-chemicals use and enter these stable products they are mentioned with the help of Bacillus thuringiensis, Beauveria bassiana, Nomuraea rileyi, Metarhizium anisoplidae and Verticilium lecanni. Some implications of the presence of toxic residuals are mentioned in Colombian export fruits and the measures that have been adopted to avoid them, as well as some mechanisms adopted in the international environment with the same end. The effective legisla