WorldWideScience

Sample records for evaporation process structural

  1. Liquid evaporation process and evaporator

    International Nuclear Information System (INIS)

    Bergey, Claude; Ravenel, Jacques.

    1975-01-01

    The process described enables a liquid to be evaporated rapidly without any projection. A jet of hot gas is applied to the liquid, the power and angle of the jet being chosen so as to spin the liquid. It is particularly used in the case of radioactive products [fr

  2. CAPSULE REPORT: EVAPORATION PROCESS

    Science.gov (United States)

    Evaporation has been an established technology in the metal finishing industry for many years. In this process, wastewaters containing reusable materials, such as copper, nickel, or chromium compounds are heated, producing a water vapor that is continuously removed and condensed....

  3. Portable brine evaporator unit, process, and system

    Science.gov (United States)

    Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  4. Evaporation

    International Nuclear Information System (INIS)

    Delaney, B.T.; Turner, R.J.

    1989-01-01

    Evaporation has long been used as a unit operation in the manufacture of various products in the chemical-process industries. In addition, it is currently being used for the treatment of hazardous wastes such as radioactive liquids and sludges, metal-plating wastes, and other organic and inorganic wastes. Design choice is dependent on the liquid to be evaporated. The three most common types of evaporation equipment are the rising-film, falling-film, and forced-circulation evaporators. The first two rely on boiling heat transfer and the latter relies on flash vaporization. Heat exchangers, flash tanks, and ejectors are common auxiliary equipment items incorporated with evaporator bodies to complete an evaporator system. Properties of the liquid to be evaporated are critical in final selection of an appropriate evaporator system. Since operating costs are a significant factor in overall cost, heat-transfer characteristics and energy requirements are important considerations. Properties of liquids which are critical to the determination of final design include: heat capacity, heat of vaporization, density, thermal conductivity, boiling point rise, and heat-transfer coefficient. Evaporation is an expensive technology, both in terms of capital costs and operating costs. Additionally, mechanical evaporation produces a condensate and a bottoms stream, one or both of which may require further processing or disposal. 3 figs

  5. Spacetime structure of an evaporating black hole in quantum gravity

    International Nuclear Information System (INIS)

    Bonanno, A.; Reuter, M.

    2006-01-01

    The impact of the leading quantum gravity effects on the dynamics of the Hawking evaporation process of a black hole is investigated. Its spacetime structure is described by a renormalization group improved Vaidya metric. Its event horizon, apparent horizon, and timelike limit surface are obtained by taking the scale dependence of Newton's constant into account. The emergence of a quantum ergosphere is discussed. The final state of the evaporation process is a cold, Planck size remnant

  6. Defense Waste Processing Facility Recycle Stream Evaporation

    International Nuclear Information System (INIS)

    STONE, MICHAEL

    2006-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) stabilizes high level radioactive waste (HLW) by vitrification of the waste slurries. DWPF currently produces approximately five gallons of dilute recycle for each gallon of waste vitrified. This recycle stream is currently sent to the HLW tank farm at SRS where it is processed through the HLW evaporators with the concentrate eventually sent back to the DWPF for stabilization. Limitations of the HLW evaporators and storage space constraints in the tank farm have the potential to impact the operation of the DWPF and could limit the rate that HLW is stabilized. After an evaluation of various alternatives, installation of a dedicated evaporator for the DWPF recycle stream was selected for further evaluation. The recycle stream consists primarily of process condensates from the pretreatment and vitrification processes. Other recycle streams consist of process samples, sample line flushes, sump flushes, and cleaning solutions from the decontamination and filter dissolution processes. The condensate from the vitrification process contains some species, such as sulfate, that are not appreciably volatile at low temperature and could accumulate in the system if 100% of the evaporator concentrate was returned to DWPF. These species are currently removed as required by solids washing in the tank farm. The cleaning solutions are much higher in solids content than the other streams and are generated 5-6 times per year. The proposed evaporator would be required to concentrate the recycle stream by a factor of 30 to allow the concentrate to be recycled directly to the DWPF process, with a purge stream sent to the tank farm as required to prevent buildup of sulfate and similar species in the process. The overheads are required to meet stringent constraints to allow the condensate to be sent directly to an effluent treatment plant. The proposed evaporator would nearly de-couple the DWPF process from the

  7. Intensification of Evaporation and Condensation Processes in Heat Exchange Apparatus

    Directory of Open Access Journals (Sweden)

    L. L. Vasiliev

    2005-01-01

    Full Text Available The paper describes proposed design solutions for an intensification of heat transfer in evaporation and condensation heat exchangers. Complex experimental research of heat and mass transfer processes in flat and round cross-section miniature heat pipes is carried out. Optimization, development, manufacturing and an experimental investigation of copper miniature heat pipes with sintered powder are executed. Investigation results of capillary-porous structure properties that are used in evaporation and condensation heat-exchange apparatus are presented.

  8. Evaporators

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard

    1996-01-01

    Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients.......Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients....

  9. Structuring of polymer solutions upon solvent evaporation

    NARCIS (Netherlands)

    Schaefer, C.; van der Schoot, P.|info:eu-repo/dai/nl/102140618; Michels, J. J.

    2015-01-01

    The morphology of solution-cast, phase-separated polymers becomes finer with increasing solvent evaporation rate. We address this observation theoretically for a model polymer where demixing is induced by steady solvent evaporation. In contrast to what is the case for a classical, thermal quench

  10. Investigating performance of microchannel evaporators with different manifold structures

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Junye; Qu, Xiaohua; Qi, Zhaogang; Chen, Jiangping [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai 200240 (China)

    2011-01-15

    In this paper, the performances of microchannel evaporators with different manifold structures are experimentally investigated. Eight evaporator samples with 7 different designs of the I/O manifold and 5 different designs of the return manifold are made for this study. The performances of the evaporator samples are tested on a psychometric calorimeter test bench with the refrigerant 134A at a real automotive AC condition. The results on the variations of the cooling capacity and air temperature distribution of the evaporator due to the deflector designs in the I/O manifold and flow hole arrangements in the return manifold are presented and analyzed. By studying the KPI's for the performance of an evaporator, the design trade-off for an evaporator designer is summarized and discussed. (author)

  11. Control of instability in nitric acid evaporators for plutonium processing

    International Nuclear Information System (INIS)

    1998-03-01

    Improved control of the nitric acid process evaporators requires the detection of spontaneously unstable operating conditions. This process reduces the volume of contaminated liquid by evaporating nitric acid and concentrating salt residues. If a instability is identified quickly, prompt response can avert distillate contamination. An algorithm applied to the runtime data was evaluated to detect this situation. A snapshot of data from a histogram in the old process control software was captured during the unstable conditions and modeled

  12. BSW process of the slowly evaporating charged black hole

    OpenAIRE

    Wang, Liancheng; He, Feng; Fu, Xiangyun

    2015-01-01

    In this paper, we study the BSW process of the slowly evaporating charged black hole. It can be found that the BSW process will also arise near black hole horizon when the evaporation of charged black hole is very slow. But now the background black hole does not have to be an extremal black hole, and it will be approximately an extremal black hole unless it is nearly a huge stationary black hole.

  13. Structure of Non-evaporating diesel sprays

    International Nuclear Information System (INIS)

    Mirza, M.R.; Baluch, A.H.; Tahir, Z.R.

    2008-01-01

    Need is always felt of some rational experimental information on fuel spray jet formation, its development and dispersion in the combustion chamber of an internal combustion engine. The latest study uses computational fluid dynamics for the modeling of engine flows. The original experimental work of the present author on non-evaporating sprays produced by a single-hole orifice type nozzle using a distribution type commercial fuel injection pump forms the basis to derive correlations for penetration rates, break up times and lengths of non-evaporating diesel sprays. The correlations derived can be used to do CFD modeling of sprays under variable conditions of injector nozzle hole diameter, fuel injection pressure and combustion chamber pressure. (author)

  14. Leader completes installation of process water evaporation system

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-11-01

    The installation of a patent-pending evaporation system at a facility in northeast British Columbia was discussed. The system captures excess waste exhaust heat from natural gas-fired compressor engines and is used to evaporate process water. The disposal of process water is a major cost in the production of natural gas and is usually hauled and disposed at water disposal wells located off-site. The cost to truck and dispose of the water at the facility was estimated at between $30 to $40 per cubic metre. The evaporation system can evaporate 4 to 8 cubic metres of process water every 24 hours and has an estimated useful life of 20 years. The evaporator relies on heat that would otherwise be expelled directly into the atmosphere, and the systems are expected to provide substantial savings. A wide-ranging manufacturing and marketing strategy was expected to commence by the end of 2005. With rising energy prices, operators of facilities are seeking more efficient ways of managing energy needs. The system was created by Leader Energy Services Ltd., a company that provides essential field services for oil and gas well stimulation in Alberta.

  15. Vacuum evaporator-crystallizer process development for Hanford defense waste

    International Nuclear Information System (INIS)

    Tanaka, K.H.

    1978-04-01

    One of the major programs in the Department of Energy (DOE) waste management operations at Hanford is the volume reduction and solidification of Hanford Defense Residual Liquor (HDRL) wastes. These wastes are neutralized radioactive wastes that have been concentrated and stored in single-shell underground tanks. Two production vacuum evaporator-crystallizers were built and are operating to reduce the liquid volume and solidify these wastes. The process involves evaporating water under vacuum and thus concentrating and crystallizing the salt waste. The high caustic residual liquor is composed primarily of nitrate, nitrite, aluminate, and carbonate salts. Past evaporator-crystallizer operation was limited to crystallizing nitrate, nitrite, and carbonate salts. These salts formed a drainable salt cake that was acceptable for storage in the original single-shell tanks. The need for additional volume reduction and further concentration necessitated this process development work. Further concentration forms aluminate salts which pose unique processing problems. The aluminate salts are very fine crystals, non-drainable, and suitable only for storage in new double-shell tanks where the fluid waste can be continuously monitored. A pilot scale vacuum evaporator-crystallizer system was built and operated by Rockwell Hanford Operations to support flowsheet development for the production evaporator-crystallizers. The process developed was the concentration of residual liquor to form aluminate salts. The pilot plant tests demonstrated that residual liquors with high aluminum concentrations could be concentrated and handled in a vacuum evaporator-crystallizer system. The dense slurry with high solids content and concentrated liquor was successfully pumped in the insulated heated piping system. The most frequent problem encountered in the pilot plant was the failure of mechanical pump seals due to the abrasive slurry

  16. Experimental study of air evaporative cooling process using microporous membranes

    Directory of Open Access Journals (Sweden)

    Englart Sebastian

    2017-01-01

    Full Text Available This article describes the potential use of microporous membranes in evaporative cooling applications for air conditioning. The structure of membrane contractor and the measuring device are described. On the basis of the results of the measurements air cooling effectiveness coefficient has been determined.

  17. A multi-component evaporation model for beam melting processes

    Science.gov (United States)

    Klassen, Alexander; Forster, Vera E.; Körner, Carolin

    2017-02-01

    In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.

  18. Power balance equation in electron beam evaporation process

    International Nuclear Information System (INIS)

    Blumenfeld, L.; Soubbaramayer.

    1994-01-01

    The aim of the paper is to solve the equation giving the total power of the gun, used in the electron beam evaporation process, in terms of the power used to generated the vapor stream and the three main power losses due to three parasite phenomena: turbulent thermal convection in the molten pool, electron back scattering and heat radiation from the vapor emitting surface. Scaling laws are first reviewed and results are given with the example of the evaporation of aluminium with a 5 kW axisymmetric gun working in steady state mode. The influence of an applied magnetic field on the evaporation rate is also examined. 5 refs., 3 figs., 1 tab

  19. Modeling and computational simulation of the osmotic evaporation process

    Directory of Open Access Journals (Sweden)

    Freddy Forero Longas

    2016-09-01

    Conclusions: It was found that for the conditions studied the Knudsen diffusion model is most suitable to describe the transfer of water vapor through the hydrophobic membrane. Simulations developed adequately describe the process of osmotic evaporation, becoming a tool for faster economic development of this technology.

  20. Numerical study of the evaporation process and parameter estimation analysis of an evaporation experiment

    Directory of Open Access Journals (Sweden)

    K. Schneider-Zapp

    2010-05-01

    Full Text Available Evaporation is an important process in soil-atmosphere interaction. The determination of hydraulic properties is one of the crucial parts in the simulation of water transport in porous media. Schneider et al. (2006 developed a new evaporation method to improve the estimation of hydraulic properties in the dry range. In this study we used numerical simulations of the experiment to study the physical dynamics in more detail, to optimise the boundary conditions and to choose the optimal combination of measurements. The physical analysis exposed, in accordance to experimental findings in the literature, two different evaporation regimes: (i a soil-atmosphere boundary layer dominated regime (regime I close to saturation and (ii a hydraulically dominated regime (regime II. During this second regime a drying front (interface between unsaturated and dry zone with very steep gradients forms which penetrates deeper into the soil as time passes. The sensitivity analysis showed that the result is especially sensitive at the transition between the two regimes. By changing the boundary conditions it is possible to force the system to switch between the two regimes, e.g. from II back to I. Based on this findings a multistep experiment was developed. The response surfaces for all parameter combinations are flat and have a unique, localised minimum. Best parameter estimates are obtained if the evaporation flux and a potential measurement in 2 cm depth are used as target variables. Parameter estimation from simulated experiments with realistic measurement errors with a two-stage Monte-Carlo Levenberg-Marquardt procedure and manual rejection of obvious misfits lead to acceptable results for three different soil textures.

  1. Asymmetric block copolymer membranes with ultrahigh porosity and hierarchical pore structure by plain solvent evaporation

    KAUST Repository

    Yu, H.

    2016-09-14

    Membranes with a hierarchical porous structure could be manufactured from a block copolymer blend by pure solvent evaporation. Uniform pores in a 30 nm thin skin layer supported by a macroporous structure were formed. This new process is attractive for membrane production because of its simplicity and the lack of liquid waste.

  2. Asymmetric block copolymer membranes with ultrahigh porosity and hierarchical pore structure by plain solvent evaporation

    KAUST Repository

    Yu, H.; Qiu, Xiaoyan; Behzad, Ali Reza; Musteata, Valentina-Elena; Smilgies, D.-M.; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2016-01-01

    Membranes with a hierarchical porous structure could be manufactured from a block copolymer blend by pure solvent evaporation. Uniform pores in a 30 nm thin skin layer supported by a macroporous structure were formed. This new process is attractive for membrane production because of its simplicity and the lack of liquid waste.

  3. The evaporation of viscose process liquors: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, R

    1984-01-01

    A program of work aimed at producing designs for an energy efficient process for the evaporation of water from viscose process liquors has been completed. The process uses mechanical vapor recompression in conjunction with a thin plastic heat transfer surface. A bench laboratory evaporation rig was built to prove the technical viability of the process. This was followed by the construction of a research plant at a viscose production site. The capacity of this plant was 100 to 150 kg/h of water evaporated. The construction and operation of a plastic heat exchanger with thin walled plastic tubes was achieved with considerable success. The lining of the concrete containment vessel proved more difficult, and the technique employed may not be the best for commercial units. Heat transfer coefficients of up to 550 Wm/sup -2/ K/sup -1/ were measured on the research plant. These agreed well with results obtained from a mathematical model developed for the process. An optimum design for a commercial unit has been costed and the financial parameters determined. Courtaulds considers that the construction of a demonstration plant is justified. 3 refs., 8 figs.

  4. Towards efficient next generation light sources: combined solution processed and evaporated layers for OLEDs

    Science.gov (United States)

    Hartmann, D.; Sarfert, W.; Meier, S.; Bolink, H.; García Santamaría, S.; Wecker, J.

    2010-05-01

    Typically high efficient OLED device structures are based on a multitude of stacked thin organic layers prepared by thermal evaporation. For lighting applications these efficient device stacks have to be up-scaled to large areas which is clearly challenging in terms of high through-put processing at low-cost. One promising approach to meet cost-efficiency, high through-put and high light output is the combination of solution and evaporation processing. Moreover, the objective is to substitute as many thermally evaporated layers as possible by solution processing without sacrificing the device performance. Hence, starting from the anode side, evaporated layers of an efficient white light emitting OLED stack are stepwise replaced by solution processable polymer and small molecule layers. In doing so different solutionprocessable hole injection layers (= polymer HILs) are integrated into small molecule devices and evaluated with regard to their electro-optical performance as well as to their planarizing properties, meaning the ability to cover ITO spikes, defects and dust particles. Thereby two approaches are followed whereas in case of the "single HIL" approach only one polymer HIL is coated and in case of the "combined HIL" concept the coated polymer HIL is combined with a thin evaporated HIL. These HIL architectures are studied in unipolar as well as bipolar devices. As a result the combined HIL approach facilitates a better control over the hole current, an improved device stability as well as an improved current and power efficiency compared to a single HIL as well as pure small molecule based OLED stacks. Furthermore, emitting layers based on guest/host small molecules are fabricated from solution and integrated into a white hybrid stack (WHS). Up to three evaporated layers were successfully replaced by solution-processing showing comparable white light emission spectra like an evaporated small molecule reference stack and lifetime values of several 100 h.

  5. Evaporation and Condensation Flows of a Vapor-Gas Mixture from or onto the Condensed Phase with an Internal Structure

    National Research Council Canada - National Science Library

    Onishi, Yoshimoto; Yamada, Ken

    2005-01-01

    Transient motions of a vapor-gas mixture due to the evaporation and condensation processes from or onto the plane condensed phase, with a temperature field as its internal structure, have been studied...

  6. Techniques for evaluation of E-beam evaporative processes

    International Nuclear Information System (INIS)

    Meier, T.C.; Nelson, C.M.

    1996-01-01

    High dynamic range video imaging of the molten pool surface has provided insight regarding process responses at the melt pool liquid-vapor interface. A water-cooled video camera provides continuous high resolution imaging of the pool surface from a low angle position within 20 cm of the liquid-vapor interface. From the vantage point, the e-beam footprint is clearly defined and melt pool free surface shape can be observed. Effects of changes in a beam footprint, power distribution, and sweep frequency on pool surface shape and stability of vaporization are immediately shown. Other events observed and recorded include: formation of the pool and dissipation of ''rafts'' on the pool surface during startup, behavior of feed material as it enters the pool, effects of feed configuration changes on mixing of feed entering the pool volume and behaviors of co-evaporated materials of different vapor pressures at the feed/pool boundary. When used in conjunction with laser vapor monitoring, correlation between pool surface phenomena and vaporizer performance has been identified. This video capability was used in verifying the titanium evaporation model results presented at this conference by confirming the calculated melt pool surface deformations caused by vapor pressure of the departing evaporant at the liquid-vapor interface

  7. Evaporation process in histological tissue sections for neutron autoradiography.

    Science.gov (United States)

    Espector, Natalia M; Portu, Agustina; Santa Cruz, Gustavo A; Saint Martin, Gisela

    2018-05-01

    The analysis of the distribution and density of nuclear tracks forming an autoradiography in a nuclear track detector (NTD) allows the determination of 10 B atoms concentration and location in tissue samples from Boron Neutron Capture Therapy (BNCT) protocols. This knowledge is of great importance for BNCT dosimetry and treatment planning. Tissue sections studied with this technique are obtained by cryosectioning frozen tissue specimens. After the slicing procedure, the tissue section is put on the NTD and the sample starts drying. The thickness varies from its original value allowing more particles to reach the detector and, as the mass of the sample decreases, the boron concentration in the sample increases. So in order to determine the concentration present in the hydrated tissue, the application of corrective coefficients is required. Evaporation mechanisms as well as various factors that could affect the process of mass variation are outlined in this work. Mass evolution for tissue samples coming from BDIX rats was registered with a semimicro analytical scale and measurements were analyzed with software developed to that end. Ambient conditions were simultaneously recorded, obtaining reproducible evaporation curves. Mathematical models found in the literature were applied for the first time to this type of samples and the best fit of the experimental data was determined. The correlation coefficients and the variability of the parameters were evaluated, pointing to Page's model as the one that best represented the evaporation curves. These studies will contribute to a more precise assessment of boron concentration in tissue samples by the Neutron Autoradiography technique.

  8. Techniques for evaluation of E-beam evaporative processes

    Energy Technology Data Exchange (ETDEWEB)

    Meier, T.C.; Nelson, C.M.

    1996-10-01

    High dynamic range video imaging of the molten pool surface has provided insight regarding process responses at the melt pool liquid-vapor interface. A water-cooled video camera provides continuous high resolution imaging of the pool surface from a low angle position within 20 cm of the liquid-vapor interface. From the vantage point, the e-beam footprint is clearly defined and melt pool free surface shape can be observed. Effects of changes in a beam footprint, power distribution, and sweep frequency on pool surface shape and stability of vaporization are immediately shown. Other events observed and recorded include: formation of the pool and dissipation of ``rafts`` on the pool surface during startup, behavior of feed material as it enters the pool, effects of feed configuration changes on mixing of feed entering the pool volume and behaviors of co-evaporated materials of different vapor pressures at the feed/pool boundary. When used in conjunction with laser vapor monitoring, correlation between pool surface phenomena and vaporizer performance has been identified. This video capability was used in verifying the titanium evaporation model results presented at this conference by confirming the calculated melt pool surface deformations caused by vapor pressure of the departing evaporant at the liquid-vapor interface.

  9. Investigating performance of microchannel evaporators for automobile air conditioning with different port structures

    Directory of Open Access Journals (Sweden)

    Guoliang Zhou

    2017-08-01

    Full Text Available Microchannel evaporator has been widely applied in automobile air conditioning, while it faces the problem of refrigerant maldistribution which deteriorates the thermal performance of evaporator. In this study, the performances of microchannel evaporators with different port structures are experimentally investigated for purpose of reducing evaporator pressure drop. Four evaporator samples with different port number and hydraulic diameter are made for this study. The performances of the evaporator samples are tested on a psychometric calorimeter test bench with the refrigerant R-134A at a real automobile air conditioning. The results on the variations of the evaporator pressure drop and evaporator surface temperature distribution are presented and analyzed. By studying the performance of an evaporator, seeking proper port structure is an approach to reduce refrigerant pressure drop as well as improve refrigerant distribution.

  10. Results for the Brine Evaporation Bag (BEB) Brine Processing Test

    Science.gov (United States)

    Delzeit, Lance; Flynn, Michael; Fisher, John; Shaw, Hali; Kawashima, Brian; Beeler, David; Howard, Kevin

    2015-01-01

    The recent Brine Processing Test compared the NASA Forward Osmosis Brine Dewatering (FOBD), Paragon Ionomer Water Processor (IWP), UMPQUA Ultrasonic Brine Dewatering System (UBDS), and the NASA Brine Evaporation Bag (BEB). This paper reports the results of the BEB. The BEB was operated at 70 deg C and a base pressure of 12 torr. The BEB was operated in a batch mode, and processed 0.4L of brine per batch. Two different brine feeds were tested, a chromic acid-urine brine and a chromic acid-urine-hygiene mix brine. The chromic acid-urine brine, known as the ISS Alternate Pretreatment Brine, had an average processing rate of 95 mL/hr with a specific power of 5kWhr/L. The complete results of these tests will be reported within this paper.

  11. Structure and properties of selected cemented carbides and cermets covered with TiN/(Ti,Al,SiN/TiN coatings obtained by the cathodic arc evaporation process

    Directory of Open Access Journals (Sweden)

    Leszek A. Dobrzañski

    2005-06-01

    Full Text Available This study presents the results of microstructural examinations, mechanical tests and service performance tests carried out on thin TiN/(Ti,Al,SiN/TiN wear resistance coatings obtained by the CAE process on cermet and cemented carbide substrates. Microstructural examinations of the applied coatings and the substrate were made with an OPTON DSM 940 SEM and a LEICA MEF4A light microscope. Adhesion of the coatings on cemented carbides and cermets was measured using the scratch test. The cutting properties of the materials were determined from service tests in which continuous machining of C45E steel was carried out. The hardness of the substrate and the microhardness of the coatings were determined with a DUH 202 SHIMADZU ultra microhardness tester with a load of 70 mN. Roughness tests were also carried out before applying the coatings and after the PVD process. Cutting tests confirmed the advantages of the TiN/(Ti,Al,SiN/TiN type coatings obtained using the PVD method in the CAE mode on cemented carbides and cermets, as a material that undergoes very low abrasive, thermal and adhesion wear. These coatings extend tool life compared to commercially available uncoated tools with single and multi-layer coatings deposited using PVD/CVD methods.

  12. Calculation of the spallation product distribution in the evaporation process

    International Nuclear Information System (INIS)

    Nishida, T.; Kanno, I.; Nakahara, Y.; Takada, H.

    1989-01-01

    Some investigations are performed for the calculational model of nuclear spallation reaction in the evaporation process. A new version of a spallation reaction simulation code NUCLEUS has been developed by incorporating the newly revised Uno ampersand Yamada's mass formula and extending the counting region of produced nuclei. The differences between the new and original mass formulas are shown in the comparisons of mass excess values. The distributions of spallation products of a uranium target nucleus bombarded by energy (0.38 - 2.9 GeV) protons have been calculated with the new and original versions of NUCLEUS. In the fission component Uno ampersand Yamada's mass formula reproduces the measured data obtained from thin foil experiments significantly better, especially in the neutron excess side, than the combination of the Cameron's mass formula and the mass table compiled by Wapstra, et al., in the original version of NUCLEUS. Discussions are also made on how the mass-yield distribution of products varies dependent on the level density parameter a characterizing the particle evaporation. 16 refs., 7 figs., 1 tab

  13. Calculation of the spallation product distribution in the evaporation process

    International Nuclear Information System (INIS)

    Nishida, T.; Kanno, I.; Nakahara, Y.; Takada, H.

    1989-01-01

    Some investigations are performed for the calculational model of nuclear spallation reaction in the evaporation process. A new version of a spallation reaction simulation code NUCLEUS has been developed by incorporating the newly revised Uno and Yamada's mass formula and extending the counting region of produced nuclei. The differences between the new and original mass formulas are shown in the comparisons of mass excess values. The distributions of spallation products of a uranium target nucleus bombarded by energy (0.38 - 2.9 GeV) protons have been calculated with the new and original versions of NUCLEUS. In the fission component Uno and Yamada's mass formula reproduces the measured data obtained from thin foil experiments significantly better, especially in the neutron excess side, than the combination of the Cameron's mass formula and the mass table compiled by Wapstra, et al., in the original version of NUCLEUS. Discussions are also made on how the mass-yield distribution of products varies dependent on the level density parameter α characterizing the particle evaporation. (author)

  14. Process Control Plan for 242-A Evaporator Campaign January 2001

    International Nuclear Information System (INIS)

    LE, E.Q.

    2001-01-01

    Wastewater stored in 104-AW that was generated during the terminal cleanout of the PUREX facility is the primary feed to be processed during the 242-A Evaporator Campaign 01-01, Approximately 801,600 gallons of 104-AW waste was transferred to feed tank 102-AW at the end of January 2001, in preparation for the campaign. The total feed volume that will be processed during Campaign 01-01 is 8 15,200 gallons, which includes the waste from 104-AW and residual waste from the previous evaporator campaign, 00-01, Additional feed will be generated during the pre-campaign cold run and processed during campaign 01-01. Based on characterization data from 104-AW feed waste 'and the evaluation of waste processability presented in Section 5 of this PCP, Campaign 01-01 does not pose any unacceptable risks to the facility, safety, environmental, human health offsite, or onsite personnel. Evaporator Campaign 01-01 is essential in supporting the River Protection Project (RPP) to maintaining its critical mission schedule and regulator commitments for tank waste systems. Several of RPP critical activities requiring completion of Campaign 01-01 by April 1, 2001 are highlighted below. Availability of DST space: Additional tank space that will be made available by this campaign is needed to support the continued interim stabilization of Single-Shell Tanks (SSTs). This additional space will also be used to move waste among Double-Shell Tanks (DSTs) to support the demonstrations of SST waste retrieval. DST life extension: An electrical outage in the AW Tank Farm is scheduled to begin following completion of the Campaign 01-01. This outage is a critical step in identifying and completing life extension upgrades to the DST systems. DST upgrades: Project W-314 plans significant upgrades to the AW Tank Farm to retrieve and supply waste feed to the Waste Treatment (Vitrification) Plant using a system that complies with current environmental requirements. These upgrades will commence on

  15. Structuring of thin-film polymer mixtures upon solvent evaporation

    NARCIS (Netherlands)

    Schaefer, C.; Michels, J.J.; van der Schoot, P.P.A.M.

    2016-01-01

    We theoretically study the impact of solvent evaporation on the dynamics of isothermal phase separation of ternary polymer solutions in thin films. In the early stages we obtain a spinodal length scale that decreases with time under the influence of ongoing evaporation. After that rapid demixing

  16. Structuring of Thin-Film Polymer Mixtures upon Solvent Evaporation

    NARCIS (Netherlands)

    Schaefer, C.; Michels, J. J.; van der Schoot, P.

    2016-01-01

    We theoretically study the impact of solvent evaporation on the dynamics of isothermal phase separation of ternary polymer solutions in thin films. In the early stages we obtain a spinodal length scale that decreases with time under the influence of ongoing evaporation. After that rapid demixing

  17. Heavy metal evaporation kinetics in thermal waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Ch; Stucki, S; Schuler, A J [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    To investigate the evaporation kinetics of heavy metals, experiments were performed by conventional thermogravimetry and a new method using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The new method allows online measurements in time intervals that are typically below one minute. The evaporation of Cd, Cu, Pb, and Zn from synthetic mixtures and filter ashes from municipal solid waste incineration (MSWI) was of major interest. (author) 2 figs., 4 refs.

  18. Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process

    International Nuclear Information System (INIS)

    Förster, Henning; Wolfrum, Christian; Peukert, Wolfgang

    2012-01-01

    The generation of copper nanoparticles in an arc furnace by the evaporation/condensation method is systematically investigated. The evaporation/condensation process is advantageous because it allows direct synthesis using pure metals as starting materials avoiding reactions of expensive and potentially poisonous precursors. In the presented system, a transferred direct current arc provides the energy for evaporation of the metal target. In order to prevent an oxidation of the particles in the process, the synthesis is conducted in an atmosphere of inert gases (purity grade 5.0). The arc stability and its effect on particle synthesis are investigated. The experiments reveal excellent long-term arc stability for at least 8 h continuous operation delivering aerosols with high reproducibility (±10 % of average particle size). The influences of the arc current and length, the flow rates of the applied gases and the injection of hydrogen in the plasma zone on the particle size distributions and the agglomerate structure are studied. The produced copper nanoparticles are characterized by scanning mobility particle sizing and scanning electron microscopy. The average particle size could be well controlled in a size range 4–50 nm by selecting appropriate operating parameters.

  19. Study of various decontamination processes for evaporation concentrates

    International Nuclear Information System (INIS)

    Lefillatre, G.; Cudel, Y.; Rodi, L.

    1968-01-01

    Generally speaking, the evaporation concentrates are in the form of acid solutions of high salt content, about 400 g/l. The specific activity is very variable: from 0.5 mCi/l to many hundreds of Ci/l. Because of the high solubility of these salts, an attempt has been made to render the radio-elements insoluble in the concentrates before their possible coating with bitumen. With this in view, the possibility of fixing them on inorganic products, of precipitating them in the form of insoluble salts, or of adsorbing them on co-precipitates has been considered. In the case of a fixation of radio-elements by natural or synthetic inorganic products with a high absorptive capacity such as clays, diatomaceous earths, synthetic silicates and alumina, 48 products have been tried. Their selective efficiency with respect to 137 Cs, 90 Sr, 106 Ru-Rh, 144 Ce-Pr, 95 Zr-Nb has been determined both with acid concentrates and with neutralized concentrates (precipitation of hydroxides). In the case of the fixation of radio-elements as insoluble salts or their adsorption on co-precipitates, the choice of treatments involved the two most dangerous radio-elements: 137 Cs and 90 Sr. The conventional processing methods were tried. For 90 Sr. calcium carbonate, calcium oxalate, calcium phosphate, strontium phosphate, manganese oxides, barium sulfate. For 137 Cs: the ferrocyanides of nickel, copper, zinc, cobalt and manganese. The technique consists in carrying out the precipitations (hydroxides, specific processes for 90 Sr and 137 Cs) one after the other without separating the precipitates. (authors) [fr

  20. Process Control Plan for 242-A Evaporator Campaign

    International Nuclear Information System (INIS)

    LE, E.Q.

    2000-01-01

    The wastes in tanks 107-AP and 108-AP are designated as feed for 242-A Evaporator Campaign 2000-1, which is currently scheduled for the week of April 17, 2000. Waste in tanks 107-AP and 108-AP is predominantly comprised of saltwell liquor from 200 West Tank Farms

  1. Process control for a continuous uranyl nitrate evaporator

    International Nuclear Information System (INIS)

    Peterson, S.F.; MacIntyre, L.P.

    1984-07-01

    A continuous uranyl nitrate evaporator at the Savannah River Plant (SRP) in Aiken, South Carolina ws the subject of this work. A rigorous mathematical model of the evaporator was developed. A difference equation form of the model was then constructed and used for control studies. Relative gain analysis was done on the system in order to identify any promising multivariable control schemes. Several alternate control schemes were modeled, tuned, and compared against the scheme presently in use at SRP. As the pneumatic specific gravity instrumentation at SRP is very noisy, the noise was simulated and used in the second phase of the control study. In this phase, alternate tuning methods and filters were invesigated and compared. The control studies showed that the control algorithm now in use at SRP is the simplest and best available. 10 references, 53 figures, 22 tables

  2. Processing of radioactive waste solutions in a vacuum evaporator-crystallizer

    International Nuclear Information System (INIS)

    Petrie, J.C.; Donovan, R.I.; Van der Cook, R.E.; Christensen, W.R.

    1975-01-01

    Results of the first 18 months' operation of Hanford's vacuum evaporator-crystallizer are reported. This process reduces the volume of radioactive waste solutions and simultaneously converts the waste to a less mobile salt cake. The evaporator-crystallizer is operating at better than design production rates and has reduced the volume of radioactive wastes by more than 15 million gallons. A process description, plant performance data, mechanical difficulties, and future operating plans are discussed. Also discussed is a computer model of the evaporator-crystallizer process

  3. Foaming in Hanford River Protection Project Waste Treatment Plant LAW Evaporation Processes - FY01 Summary Report

    International Nuclear Information System (INIS)

    Calloway, T.B.

    2002-01-01

    The LAW evaporation processes currently being designed for the Hanford River Protection Project Waste Treatment Plant are subject to foaming. Experimental simulant studies have been conducted in an effort to achieve an effective antifoam agent suitable to mitigate such foaming

  4. Growth and structure of thermally evaporated Bi{sub 2}Te{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rogacheva, E.I., E-mail: rogacheva@kpi.kharkov.ua [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine); Budnik, A.V. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine); Dobrotvorskaya, M.V.; Fedorov, A.G.; Krivonogov, S.I.; Mateychenko, P.V. [Institute for Single Crystals of NAS of Ukraine, 60 Lenin Prospect, Kharkov 61001 (Ukraine); Nashchekina, O.N.; Sipatov, A.Yu. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine)

    2016-08-01

    The growth mechanism, microstructure, and crystal structure of the polycrystalline n-Bi{sub 2}Te{sub 3} thin films with thicknesses d = 15–350 nm, prepared by thermal evaporation in vacuum onto glass substrates, were studied. Bismuth telluride with Te excess was used as the initial material for the thin film preparation. The thin film characterization was performed using X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scan electron microscopy, and electron force microscopy. It was established that the chemical composition of the prepared films corresponded rather well to the starting material composition and the films did not contain any phases apart from Bi{sub 2}Te{sub 3}. It was shown that the grain size and the film roughness increased with increasing film thickness. The preferential growth direction changed from [00l] to [015] under increasing d. The X-ray photoelectron spectroscopy studies showed that the thickness of the oxidized surface layer did not exceed 1.5–2.0 nm and practically did not change in the process of aging at room temperature, which is in agreement with the results reported earlier for single crystals. The obtained data show that using simple and inexpensive method of thermal evaporation in vacuum and appropriate technological parameters, one can grow n-Bi{sub 2}Te{sub 3} thin films of a sufficiently high quality. - Highlights: • The polycrystalline n-Bi{sub 2}Te{sub 3} thin films were grown thermal evaporation onto glass. • The growth mechanism and film structure were studied by different structure methods. • The grain size and film roughness increased with increasing film thickness. • The growth direction changes from [00l] to [015] under film thickness increasing. • The oxidized layer thickness (1–2 nm) did not change under aging at room temperature.

  5. Evaporation phase change processes of water/methanol mixtures on superhydrophobic nanostructured surfaces

    Science.gov (United States)

    Chiang, Cheng-Kun; Lu, Yen-Wen

    2011-07-01

    Evaporation phenomena are a critical and frequently seen phase change process in many heat transfer applications. In this paper, we study the evaporation process of a sessile droplet on two topologically different surfaces, including smooth and nanostructured surfaces. The nanostructured surface has an array of high-aspect-ratio nanowires (height/diameter ~ 125) and is implemented by using a simple template-based nanofabrication method. It possesses superhydrophobicity (>140°) and low contact angle hysteresis (1.2-2.1°), allowing the liquid droplets to remain in the 'fakir' state throughout the evaporation processes. Sessile droplets of deionized (DI) water and water/methanol binary mixture test liquids with their contact angles and base diameters are monitored. The results show that the nanostructures play a critical role in the droplet dynamics during evaporation.

  6. Evaporation phase change processes of water/methanol mixtures on superhydrophobic nanostructured surfaces

    International Nuclear Information System (INIS)

    Chiang, Cheng-Kun; Lu, Yen-Wen

    2011-01-01

    Evaporation phenomena are a critical and frequently seen phase change process in many heat transfer applications. In this paper, we study the evaporation process of a sessile droplet on two topologically different surfaces, including smooth and nanostructured surfaces. The nanostructured surface has an array of high-aspect-ratio nanowires (height/diameter ∼ 125) and is implemented by using a simple template-based nanofabrication method. It possesses superhydrophobicity (>140°) and low contact angle hysteresis (1.2–2.1°), allowing the liquid droplets to remain in the 'fakir' state throughout the evaporation processes. Sessile droplets of deionized (DI) water and water/methanol binary mixture test liquids with their contact angles and base diameters are monitored. The results show that the nanostructures play a critical role in the droplet dynamics during evaporation

  7. Nature of capillary condensation and evaporation processes in ordered porous materials.

    Science.gov (United States)

    Grosman, Annie; Ortega, Camille

    2005-11-08

    We report on a detailed experimental study of capillary condensation-evaporation processes of N(2) in ordered mesoporous SBA-15 silica. We have carried out measurements of boundary hysteresis loops, reversal curves, and subloops in order to test whether this material behaves as an assembly of independent cylindrical pores open at both ends. With these data, we come to the conclusion that, whereas the boundary hysteresis loop has the classical shape of type H1 associated with condensation-evaporation in cylindrical pores open at both ends, the capillary evaporation does not take place at equilibrium as it is generally assumed. Moreover, the pores do not desorb independently of one another.

  8. Numerical modelling of evaporation in a ceramic layer in the tape casting process

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Jambhekar, V. A.; Hattel, Jesper Henri

    2016-01-01

    Evaporation of water from a ceramic layer is a key phenomenon in the drying process for the manufacturing of tape cast ceramics. This process contains mass, momentum and energy exchange between the porous medium and the free-flow region. In order to analyze such interaction processes, a Represent......Evaporation of water from a ceramic layer is a key phenomenon in the drying process for the manufacturing of tape cast ceramics. This process contains mass, momentum and energy exchange between the porous medium and the free-flow region. In order to analyze such interaction processes...

  9. Investigation of the evaporation process conditions on the optical constants of zirconia films

    International Nuclear Information System (INIS)

    Dobrowolski, J.A.; Grant, P.D.; Simpson, R.; Waldorf, A.

    1989-01-01

    Deposition parameters required for producing zirconia films for use in optical multilayer systems by electron-beam gun evaporation of zirconia and zirconium starting materials were investigated. The optical constants were determined as a function of distance, partial pressure of oxygen, and angle of incidence. The direct and reactive evaporation processes yielded ZrO 2 films with refractive indices of 2.08 and 2.14, respectively, for vapor incident on the substrate at normal incidence

  10. An investigation of process sensitivity for electron beam evaporation of beryllium

    International Nuclear Information System (INIS)

    Egert, C.M.; Schmoyer, D.D.; Nordin, C.W.; Berry, A.

    1991-01-01

    This paper reports on the process sensitivity of a beryllium coating process investigated using a statistical design of experiments approach. Process sensitivity is a measure of the variation in a given quality characteristic of the coating as a function of the evaporation process parameters. Manufacturing processes which maximize quality while simultaneously minimizing variability are most desirable. Three evaporation process parameters were included in this study: deposition rate, substrate temperature, and run time. A central composite experimental design employing a total of 18 coating runs was used to produce beryllium coatings on aluminum, silicon, fused silica, and beryllium substrates. The quality of the resulting coatings was characterized by scanning electron microscopy, IR spectrophotometry, stylus profilometry, and weight gain (thickness). Analysis of these results allowed the development of functional relationship between the quality characteristics (thickness, reflectance, etc.) and the evaporation process parameters. Process sensitivity for each response was then determined by calculating the gradient of each quality characteristic with respect to all three process parameters. Three dimensional plots were developed of the quality characteristic and its process sensitivity as a function of process parameters. Both quality characteristic and process sensitivity plots will be presented and discussed. For many of the quality characteristics, temperature during deposition was found to be the most sensitive process parameter for the beryllium c-beam evaporation process

  11. Evaporation of Water Droplets on “Lock-and-Key” Structures with Nanoscale Features

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Zhang, Chi; Liu, Xiaohan

    2012-01-01

    Highly ordered poly(dimethylsiloxane) microbowl arrays (MBAs) and microcap arrays (MCAs) with “lock-and-key” properties are successfully fabricated by self-assembly and electrochemical deposition. The wetting properties and evaporation dynamics of water droplets for both cases have been...... investigated. For the MBAs case, the wetting radius of the droplets remains unchanged until the portion of the droplet completely dries out at the end of the evaporation process. The pinning state extends for more than 99.5% of the total evaporation time, and the pinning–shrinking transition is essentially...

  12. Heat transfer in condensation and evaporation. Application to industrial and environmental processes

    Energy Technology Data Exchange (ETDEWEB)

    Marvillet, C [CEA/Grenoble, Dept. de Thermohydraulique et de Physique (DRN-GRETh), 38 (France); Vidil, R [CEA/Saclay, Direction des Technologies Avancees (DTA), 38 - Grenoble (France)

    1999-07-01

    Eurotherm Seminar number 62 objective is to provide a European forum for the presentation and the discussion of recent researches on heat transfer in condensation and evaporation and recent developments relevant to evaporators, condensers technology for: industrial processes; air conditioning and refrigeration processes; environmental processes; food industry processes; cooling processes of electronic or mechanical devices. The following topics are to be addressed: fundamentals of phase with pure fluids and mixtures; enhanced surfaces for improved tubular or plate heat exchangers; advanced methods and software for condenser and evaporator simulation and design; innovative design and concept of heat exchangers. This 2-days Seminar will be interest to a large group of researches and engineers from universities, research centres and industry. (authors)

  13. Process control plan for 242-A Evaporator Campaign 95-1

    Energy Technology Data Exchange (ETDEWEB)

    Le, E.Q.; Guthrie, M.D.

    1995-05-18

    The wastes from tanks 106-AP, 107-AP, and 106-AW have been selected to be candidate feed wastes for Evaporator Campaign 95-1. The wastes in tank 106-AP and 107-AP are primarily from B-Plant strontium processing and PUREX neutralized cladding removal, respectively. The waste in tank 106-AW originated primarily from the partially concentrated product from 242-A Evaporator Campaign 94-2. Approximately 8.67 million liters of waste from these tanks will be transferred to tank 102-AW during the campaign. Tank 102-AW is the dedicated waste feed tank for the evaporator and currently contains 647,000 liters of processable waste. The purpose of the 242-A Evaporator Campaign 95-1 Process Control Plan (hereafter referred to as PCP) is to certify that the wastes in tanks 106-AP, 107-AP, 102-AW, and 106-AW are acceptable for processing through evaporator and provide a general description of process strategies and activities which will take place during Campaign 95-1. The PCP also summarizes and presents a comprehensive characterization of the wastes in these tanks.

  14. Process control plan for 242-A Evaporator Campaign 95-1

    International Nuclear Information System (INIS)

    Le, E.Q.; Guthrie, M.D.

    1995-01-01

    The wastes from tanks 106-AP, 107-AP, and 106-AW have been selected to be candidate feed wastes for Evaporator Campaign 95-1. The wastes in tank 106-AP and 107-AP are primarily from B-Plant strontium processing and PUREX neutralized cladding removal, respectively. The waste in tank 106-AW originated primarily from the partially concentrated product from 242-A Evaporator Campaign 94-2. Approximately 8.67 million liters of waste from these tanks will be transferred to tank 102-AW during the campaign. Tank 102-AW is the dedicated waste feed tank for the evaporator and currently contains 647,000 liters of processable waste. The purpose of the 242-A Evaporator Campaign 95-1 Process Control Plan (hereafter referred to as PCP) is to certify that the wastes in tanks 106-AP, 107-AP, 102-AW, and 106-AW are acceptable for processing through evaporator and provide a general description of process strategies and activities which will take place during Campaign 95-1. The PCP also summarizes and presents a comprehensive characterization of the wastes in these tanks

  15. Influence of soil surface structure on simulated infiltration and subsequent evaporation

    International Nuclear Information System (INIS)

    Verplancke, H.; Hartmann, R.; Boodt, M. de

    1983-01-01

    A laboratory rainfall and evaporation experiment was conducted to study the effectiveness of the soil surface structure on infiltration and subsequent evaporation. The stability of the surface layer was improved through the application of synthetic additives such as bituminous emulsion and a prepolymer of polyurea (Uresol). The soil column where the soil surface was treated with a bituminous emulsion shows a decrease in depth of wetting owing to the water repellency of that additive, and consequently an increased runoff. However, the application of Uresol to the surface layer improved the infiltration. The main reason for these differences is that in the untreated soils there is a greater clogging of macropores originating from aggregate breakdown under raindrop impact in the top layer. The evaporation experiment started after all columns were wetted to a similar soil-water content and was carried out in a controlled environmental tunnel. Soil-water content profiles were established during evaporation by means of a fully automatic γ-ray scanner. It appears that in both treatments the cumulative evaporation was less than in the untreated soil. This was due to the effect of an aggregated and stabilized surface layer. Under a treated soil surface the evaporation remains constant during the whole experiment. However, under an untreated soil surface different evaporation stages were recorded. From these experiments the impression is gained that the effect of aggregating the soil surface is an increase of the saturated hydraulic conductivity under conditions near saturation. On the other hand, a finely structured layer exhibits a greater hydraulic conductivity during evaporation in the lower soil-water potential range than a coarsely aggregated layer. So it may be concluded that, to obtain the maximum benefit from the available water - optimal water conservation - much attention must be given to the aggregation of the top soil and its stability. (author)

  16. Black hole evaporation in a heat bath as a nonequilibrium process and its final fate

    International Nuclear Information System (INIS)

    Saida, Hiromi

    2007-01-01

    We consider a black hole in a heat bath, and the whole system which consists of the black hole and the heat bath is isolated from outside environments. When the black hole evaporates, the Hawking radiation causes an energy flow from the black hole to the heat bath. Therefore, since no energy flow arises in an equilibrium state, the thermodynamic state of the whole system is not in equilibrium. That is, in a region around the black hole, the matter field of Hawking radiation and that of heat bath should be in a nonequilibrium state due to the energy flow. Using a simple model which reflects the nonequilibrium nature of energy flow, we find the nonequilibrium effect on a black hole evaporation as follows: if the nonequilibrium region around a black hole is not so large, the evaporation time scale of a black hole in a heat bath becomes longer than that in an empty space (a situation without heat bath), because of the incoming energy flow from the heat bath to the black hole. However, if the nonequilibrium region around a black hole is sufficiently large, the evaporation time scale in a heat bath becomes shorter than that in an empty space, because a nonequilibrium effect of the temperature difference between the black hole and heat bath appears as a strong energy extraction from the black hole by the heat bath. Further, a specific nonequilibrium phenomenon is found: a quasi-equilibrium evaporation stage under the nonequilibrium effect proceeds abruptly to a quantum evaporation stage at a semi-classical level (at black hole radius R g > Planck length) within a very short time scale with a strong burst of energy. (Contrarily, when the nonequilibrium effect is not taken into account, a quasi-equilibrium stage proceeds smoothly to a quantum stage at R g < Planck length without so strong an energy burst.) That is, the nonequilibrium effect of energy flow tends to make a black hole evaporation process more dynamical and to accelerate that process. Finally, on the final fate

  17. Engineering evaluation/cost analysis for disposal of structural concrete and soil from the 183-H Solar Evaporation Basin

    International Nuclear Information System (INIS)

    Badden, J.W.; Miller, L.R.

    1996-08-01

    This engineering evaluation/cost analysis is intended to aid the US Department of Energy, Richland Operations Office in selecting a preferred response action alternative for removing contaminated structural concrete and soils stockpiled next to the 183-H evaporation basin, which was conducted under the Resource Conservation and Recovery Act of 1976. This EE/CA evaluates possible alternative response actions and documents the decision making process

  18. Modeling of evaporation processes in glass melting furnaces

    NARCIS (Netherlands)

    Limpt, van J.A.C.

    2007-01-01

    The majority of glass furnaces worldwide, apply fossil fuel combustion to transfer heat directly by radiation from the combustion processes to the melting batch and glass melt. During these high temperature melting processes, some glass components, such as: sodium, potassium, boron and lead species

  19. Chloroform micro-evaporation induced ordered structures of poly(L-lactide) thin films

    DEFF Research Database (Denmark)

    Huang, Shaoyong; Li, Hongfei; Shang, Yingrui

    2013-01-01

    Self-assembly of poly(L-lactide) (PLLA) in thin films induced by chloroform micro-evaporation was investigated by microscopic techniques and X-ray diffraction studies. A film-thickness dependent on highly ordered structures has been derived from disordered films. Ring-banded spherulitic...... and dendritic morphologies with radial periodic variation of thicknesses were formed in dilute solution driven by micro-evaporation of the solvent. Bunched morphologies stacked with a flat-on lozenge-shaped lamellae were created in thinner films. The formation of the concentric ring banded structures...

  20. Development of Falling Film Heat Transfer Coefficient for Industrial Chemical Processes Evaporator Design

    KAUST Repository

    Shahzad, Muhammad Wakil

    2018-03-07

    In falling film evaporators, the overall heat transfer coefficient is controlled by film thickness, velocity, liquid properties and the temperature differential across the film layer. This chapter presents the heat transfer behaviour for evaporative film boiling on horizontal tubes, but working at low pressures of 0.93–3.60 kPa as well as seawater salinity of 15,000–90,000 mg/l or ppm. Owing to a dearth of literature on film-boiling at these conditions, the chapter is motivated by the importance of evaporative film-boiling in the process industries. It is observed that in addition to the above-mentioned parameters, evaporative heat transfer of seawater is affected by the emergence of micro-bubbles within the thin film layer, particularly when the liquid saturation temperatures drop below 25°C (3.1 kPa). Such micro-bubbles are generated near to the tube wall surfaces, and they enhanced the heat transfer by two or more folds when compared with the predictions of conventional evaporative film-boiling. The appearance of micro-bubbles is attributed to the rapid increase in the specific volume of vapour, i.e. dv/dT, at low saturation temperature conditions. A new correlation is thus proposed in this chapter and it shows good agreement to the measured data with an experimental uncertainty less than ±8%.

  1. Determination of the radionuclide release factor for an evaporator process using nondestructive assay

    International Nuclear Information System (INIS)

    Johnson, R.E.

    1998-01-01

    The 242-A Evaporator is the primary waste evaporator for the Hanford Site radioactive liquid waste stored in underground double-shell tanks. Low pressure evaporation is used to remove water from the waste, thus reducing the amount of tank space required for storage. The process produces a concentrated slurry, a process condensate, and an offgas. The offgas exhausts through two stages of high-efficiency particulate air (HEPA) filters before being discharged to the atmosphere 40 CFR 61 Subpart H requires assessment of the unfiltered exhaust to determine if continuous compliant sampling is required. Because potential (unfiltered) emissions are not measured, methods have been developed to estimate these emissions. One of the methods accepted by the Environmental Protection Agency is the measurement of the accumulation of radionuclides on the HEPA filters. Nondestructive assay (NDA) was selected for determining the accumulation on the HEPA filters. NDA was performed on the HEPA filters before and after a campaign in 1997. NDA results indicate that 2.1 E+4 becquerels of cesium-137 were accumulated on the primary HEPA 1700 filter during the campaign. The feed material processed in the campaign contained a total of 1.4 E+l6 Bq of cesium-137. The release factor for the evaporator process is 1.5 E-12. Based on this release factor, continuous compliant sampling is not required

  2. Desalting of sea water by a wall-less evaporation process

    International Nuclear Information System (INIS)

    Kassel, C.; Sachine, P.; Vuillemey, R.

    1966-06-01

    The need for fresh water supplies in many parts of the globe has given a great impetus to the study of the desalting of sea-water. Research into this problem has been very varied. Although it is possible in the more-or-less near future that methods based on freezing may be developed, only evaporation methods have industrial applications at the present time. Amongst the many techniques using this method, the most favorably placed installations from the technical and economic points of view are those based on multiple effects and wall-less heat transfer. We have defined the characteristics of a wall-less evaporation process using the various factors involved in this evaporation: energy source, corrosion, furring, heat transfer, maximum temperature, etc... The unit considered in this work has a daily output of 100,000 m 3 , and makes use of the multi-stage technique with an organic heat-carrier. The maximum temperature of the first stage is 150 deg C and the evaporation factor is 0.4. After the description of the process and, the calculation of the equipment, an economic estimate is given of the cost-price : 1.49 F/m 3 . It is likely that more detailed study of the process (technique, equipment and energy consumed) should make it possible to obtain a significant improvement in the process and to reduce the price to 1 F/m 3 . (authors) [fr

  3. Studies of condensation/evaporation processes in the Glowworm Cave, New Zealand

    Directory of Open Access Journals (Sweden)

    de Freitas Chris R.

    2006-07-01

    Full Text Available The condensation/evaporation process is important in caves, especially in tourist caves where there is carbon dioxide enriched air caused by visitors. The cycle of condensation and evaporation of condensate is believed to enhance condensation corrosion. The problem is condensation is difficult to measure. This study addresses the problem and reports on a method for measuring and modelling condensation rates in a limestone cave. Electronic sensors for measuring condensation and evaporation of the condensate as part of a single continuous process of water vapour flux are tested and used to collect 12 months of data. The study site is the Glowworm tourist cave in New Zealand. The work describes an explanatory model of processes leading to condensation using data based on measurements of condensation and evaporation as part of a single continuous process of water vapour flux. The results show that the model works well. However, one of the most important messages from the research reported here is the introduction of the condensation sensor. The results show that condensation in caves can actually be measured and monitored, virtually in real time. In conjunction with the recent developments in data logging equipment, this opens exciting perspectives in cave climate studies, and, more generally, in hydrogeological studies in karst terrains.

  4. The effect of NO2 on spectroscopic and structural properties of evaporated ruthenium phthalocyanine dimer

    International Nuclear Information System (INIS)

    Alagna, Lucilla; Capobianchi, Aldo; Paoletti, Anna Maria; Pennesi, Giovanna; Rossi, Gentilina; Casaletto, Maria Pia; Generosi, Amanda; Paci, Barbara; Albertini, Valerio Rossi

    2006-01-01

    The chemical interaction between NO 2 gas and dimeric ruthenium phthalocyanine (RuPc) 2 (Pc = phthalocyanine ligand) films has been investigated by different techniques: UV-Visible spectroscopy, X-ray Photoelectron Spectroscopy (XPS) and Extended X-ray Absorption Fine Structure (EXAFS). The optical spectra in the Q band region (700-500 nm) registered 'in situ' enabled to follow the evolution of the process in real time indicating that a two steps reaction, showing two clear isosbestic points, occurs. The first phase was essentially characterised by: (a) the rapid disappearance of the 608 and 420 nm shoulders; (b) the intensity decrease of the main absorption peak and (c) the appearance of a new adsorption band centred around 510 nm. In the second step the remarkable feature is a further lowering of the main peak with the simultaneous decrease of the new 510 nm absorption. These spectral changes suggested that a chemical reaction occurred between NO 2 and ruthenium phthalocyanine with the formation of a radical species due to the macrocycle oxidation. The kinetics indicates that the adsorption of gas by the evaporated (RuPc) 2 film is a complex process involving more than one independent mechanism. XPS and EXAFS spectra collected before and after gas exposure showed that the central metals (Ru) were also involved in the oxidation process. The reversibility of the process has been also tested by treating the films at different temperatures, the original optical spectrum being not completely recovered

  5. One-Step Solvent Evaporation-Assisted 3D Printing of Piezoelectric PVDF Nanocomposite Structures.

    Science.gov (United States)

    Bodkhe, Sampada; Turcot, Gabrielle; Gosselin, Frederick P; Therriault, Daniel

    2017-06-21

    Development of a 3D printable material system possessing inherent piezoelectric properties to fabricate integrable sensors in a single-step printing process without poling is of importance to the creation of a wide variety of smart structures. Here, we study the effect of addition of barium titanate nanoparticles in nucleating piezoelectric β-polymorph in 3D printable polyvinylidene fluoride (PVDF) and fabrication of the layer-by-layer and self-supporting piezoelectric structures on a micro- to millimeter scale by solvent evaporation-assisted 3D printing at room temperature. The nanocomposite formulation obtained after a comprehensive investigation of composition and processing techniques possesses a piezoelectric coefficient, d 31 , of 18 pC N -1 , which is comparable to that of typical poled and stretched commercial PVDF film sensors. A 3D contact sensor that generates up to 4 V upon gentle finger taps demonstrates the efficacy of the fabrication technique. Our one-step 3D printing of piezoelectric nanocomposites can form ready-to-use, complex-shaped, flexible, and lightweight piezoelectric devices. When combined with other 3D printable materials, they could serve as stand-alone or embedded sensors in aerospace, biomedicine, and robotic applications.

  6. Bio-inspired Structural Colors from Deposition of Synthetic Melanin Nanoparticles by Evaporative Self-assembly

    Science.gov (United States)

    Xiao, Ming; Li, Yiwen; Deheyn, Dimitri; Yue, Xiujun; Gianneschi, Nathan; Shawkey, Matthew; Dhinojwala, Ali

    2015-03-01

    Melanin, a ubiquitous black or brown pigment in the animal kingdom, is a unique but poorly understood biomaterial. Many bird feathers contain melanosomes (melanin-containing organelles), which pack into ordered nanostructures, like multilayer or two-dimensional photonic crystal structures, to produce structural colors. To understand the optical properties of melanin and how melanosomes assemble into certain structures to produce colors, we prepared synthetic melanin (polydopamine) particles with variable sizes and aspect ratios. We have characterized the absorption and refractive index of the synthetic melanin particles. We have also shown that we can use an evaporative process to self-assemble melanin films with a wide range of colors. The colors obtained using this technique is modeled using a thin-film interference model and the optical properties of the synthetic melanin nanoparticles. Our results on self-assembly of synthetic melanin nanoparticles provide an explanation as why the use of melanosomes to produce colors is prevalent in the animal kingdom. National science foundation, air force office of scientific research, human frontier science program.

  7. Study of various decontamination processes for evaporation concentrates; Etude de differents traitements de decontamination sur des concentrats d'evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Lefillatre, G; Cudel, Y; Rodi, L [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1968-07-01

    Generally speaking, the evaporation concentrates are in the form of acid solutions of high salt content, about 400 g/l. The specific activity is very variable: from 0.5 mCi/l to many hundreds of Ci/l. Because of the high solubility of these salts, an attempt has been made to render the radio-elements insoluble in the concentrates before their possible coating with bitumen. With this in view, the possibility of fixing them on inorganic products, of precipitating them in the form of insoluble salts, or of adsorbing them on co-precipitates has been considered. In the case of a fixation of radio-elements by natural or synthetic inorganic products with a high absorptive capacity such as clays, diatomaceous earths, synthetic silicates and alumina, 48 products have been tried. Their selective efficiency with respect to {sup 137}Cs, {sup 90}Sr, {sup 106}Ru-Rh, {sup 144}Ce-Pr, {sup 95}Zr-Nb has been determined both with acid concentrates and with neutralized concentrates (precipitation of hydroxides). In the case of the fixation of radio-elements as insoluble salts or their adsorption on co-precipitates, the choice of treatments involved the two most dangerous radio-elements: {sup 137}Cs and {sup 90}Sr. The conventional processing methods were tried. For {sup 90}Sr. calcium carbonate, calcium oxalate, calcium phosphate, strontium phosphate, manganese oxides, barium sulfate. For {sup 137}Cs: the ferrocyanides of nickel, copper, zinc, cobalt and manganese. The technique consists in carrying out the precipitations (hydroxides, specific processes for {sup 90}Sr and {sup 137}Cs) one after the other without separating the precipitates. (authors) [French] D'une facon generale, les concentrats d'evaporation se presentent sous forme de solutions acides de mineralisation elevee, de l'ordre de 400 g/l. Leur activite specifique est tres variable: de 0.5 mCi/l a plusieurs centaines de Ci/l. En raison de la tres grande solubilite de ces sels, il a paru interessant de rechercher a

  8. Effect of internal flow and evaporation on hydrogel assembly process at droplet interface

    Science.gov (United States)

    Kang, Giho; Seong, Baekhoon; Gim, Yeonghyeon; Ko, Han Seo; Byun, Doyoung

    2017-11-01

    Recently, controlling the behavior of nanoparticles inside liquid droplet has been widely studied. There have been many reports about the mechanism of the nanoparticles assembly and fabrication of a thin film on a substrate. However, the assembly mechanism at a liquid-air interface has not been clearly understood to form polymer chains into films. Herein, we investigated the role of internal flow on the thin film assembly process at the interface of the hydrogel droplet. The internal fluid flow during the formation of the hydrogel film was visualized systematically using micro-PIV (Particle image velocimetry) technique at various temperatures. We show that the buoyancy effect and convection flow induced by heat can affect the film morphology and its mechanical characteristics. Due to the accelerated fluid flow inside the droplet and evaporation flux, densely assembled hydrogel film was able to be formed. Film strength was increased 24% with temperature increase from 40 to 80 degrees Celsius. We expect our investigations could be applied to many applications such as self-assembly of planar structures at the interface in coating and printing process. The support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2015R1A2A1A05001829) is acknowledged.

  9. Effect of solution processed and thermally evaporated interlayers on the performance of backgrated polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jayawardena, K.D.G.I.; Amarasinghe, K.M.P.; Nismy, N.A. [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Mills, C.A. [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Advanced Coatings Group, Surface Engineering Department, Tata Steel Research Development and Technology, Swinden Technology Centre, Rotherham, S60 3AR (United Kingdom); Silva, S.R.P., E-mail: s.silva@surrey.ac.uk [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2015-09-30

    Polymer solar cells are fast gaining momentum as a potential solution towards low cost sustainable energy generation. However, the performance of architectures is known to be limited by the thin film nature of the active layer which, although required due to low charge carrier mobilities, limits the optical coupling to the active layer. The formation of periodic backgratings has been proposed as a solution to this problem. Here, we investigate the effect of solution processed and thermally evaporated interlayers on the performance of backgrated polymer solar cells. Analysis of device performance under standard conditions indicates higher power conversion efficiencies with the incorporation of the evaporated interlayer (5.7%) over a sol–gel processed interlayer (4.9%). This is driven by a more conformal coating as evidenced through two orders of magnitude higher electron mobilities (10{sup −5} versus 10{sup −7} cm{sup 2} V{sup −1} s{sup −1}) as well as the balanced electron and hole transport observed for the former architecture. It is believed that these results will catalyse further development of such device engineering concepts for improved optical coupling in thin film photovoltaics. - Highlights: • Effect of interlayers on backgrated photovoltaic devices is tested. • Evaporated interlayers lead to better device performance. • Better charge extraction is observed for evaporated interlayers.

  10. Numerical modelling of evaporation in a ceramic layer in the tape casting process

    Energy Technology Data Exchange (ETDEWEB)

    Jabbari, M.; Hattel, J. H. [Process Modelling Group, Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs. Lyngby (Denmark); Jambhekar, V. A.; Helmig, R. [Department of Hydromechanics and Modelling of Hydrosystems, Institute for Modelling Hydraulic and Environmental Systems, Universität Stuttgart, Stuttgart (Germany)

    2016-06-08

    Evaporation of water from a ceramic layer is a key phenomenon in the drying process for the manufacturing of tape cast ceramics. This process contains mass, momentum and energy exchange between the porous medium and the free–flow region. In order to analyze such interaction processes, a Representative Elementary Volume (REV)–scale model concept is presented for coupling non–isothermal multi–phase compositional porous–media flow and single–phase compositional laminar free–flow. The preliminary results show the typical expected evaporation behaviour from a porous medium initially saturated with water, and its transport to the free–flow region according to the existent results from the literature.

  11. Novel Evaporation Process for Deposition of Kesterite Thin Films Synthesized by Solvothermal Method

    Directory of Open Access Journals (Sweden)

    J. A. Estrada-Ayub

    2017-01-01

    Full Text Available Kesterite, a quaternary compound of Cu2ZnSnS4, is a promising option as a material absorber to reduce the cost of photovoltaic solar cells. The solvothermal method is a way to synthesize nanoparticles of this material. In this work, once synthesized, particles were deposited on a substrate through evaporation, and their morphological, structural, and optical properties were studied. Results show that changes of precursor ratios during solvothermal synthesis result in a modification of particle morphology but not on its size. The deposition of already synthesized kesterite through evaporation preserves kesterite structure and permits the formation of a homogenous film on a substrate. Optical reflectance and transmittance measurements allowed estimating the band-gap energy between 1.41 and 1.46 eV for representative samples, which is near the optimum for the absorber material.

  12. Development of dynamic simulator for thermosyphon evaporator process with an application

    International Nuclear Information System (INIS)

    Shimizu, Yoshiaki; Tsutsui, Tenson.

    1986-06-01

    A dynamic simulator has been developed for radwaste evaporator system in the Research Reactor Institute of Kyoto University. Under mild assumptions, two-phase flow model of the thermosyphon evaporator was shown to be modelled by a set of ordinary and algebraic equations. Through a structure analysis of such equations, a compact but efficient computer program was realized using FORTRAN computer language. By comparing numerical results with experimental ones, reliability of the model has been examined. Furthermore, mentioning several applications imbedded into the developed simulator, a bi-objective optimal problem was formulated generally, and then solved numerically through a practical procedure. It is expected that such a consideration is helpful for the radwaste management in practice. (author)

  13. Decommissioning of evaporation technology for processing liquid radioactive waste in UJV Rez, a. s

    International Nuclear Information System (INIS)

    Tous, M.; Otcovsky, T.; Podlaha, J.

    2015-01-01

    The UJV Rez, a. s. is the main leader in processing institutional radioactive waste (RAW) in the Czech Republic and the Waste Management Department has been established since the research reactor VVR-S (now LVR-15) was put in operation. Due to the large activities in nuclear research and engineering in the past, a big capacity of waste management technologies was needed. The low pressure compactor for volume reduction of solid RAW, as well as chemical pre-treatment technology of liquid RAW were installed and later the evaporation technology for effective processing the liquid RAW with the cementation and bituminization unit for final conditioning of concentrated liquid RAW were used. During the years of research reactor operation and research activities in UJV Rez, a. s. there were two installed evaporation technologies in row. After the latest evaporator lifetime, changes in liquid RAW production and together with higher decontamination factor requirements, this technology was decided to be decommissioned. The decommissioned evaporation technology was installed and put in operation in 1991. This technology was used for processing liquid aqueous RAW produced from internal research activities and of course for external producers and institutions (e.g. universities, medicine, research institutes, industry). The approved decommissioning plan was prepared and the licence for immediate decommissioning was obtained in 2012. Then the decommissioning project started. The preparing stages as dosimetric survey, expected material balance and of course initial decontamination activities were performed. Evaporation technology dismantling and processing the arising RAW were done by the internal staff of Waste Management Department. The total volume of produced RAW was 49,5 m 3 of RAW. The secondary liquid RAW (from decontamination) of amount 1,4 m 3 , contaminated sludge of amount 0,5 m 3 , solid RAW (construction steel) of amount 39,1 m 3 , solid compressible RAW (protective

  14. Bituminization of simulated waste, spent resins, evaporator concentrates and animal ashes by extrusion process

    International Nuclear Information System (INIS)

    Grosche Filho, C.E.; Chandra, U.

    1987-01-01

    The results of the study of bituminization of simulated radwaste - spennt ion-exchange resins, borate evaporator/concentrates and animal ashes, are presented and discussed. Distilled and oxidizer bitumen were used. Characterization of the crude material and simulated wastes-bitumen mixtures of varying weigt composition (30, 40, 50, 60% by weight of dry waste material) was carried out. The asphaltene and parafin contents in the bitumens were also determined. Some additives and were used with an aim to improve the characteristcs of solidified wastes. For leaching studies, granular ion-exchange resins were with Cs - 134 and mixtures of resin-bitumen were prepared. The leaching studies were executed using the IAEA recommendation and the ISO method. A conventional screw-extruder, common in plastic industry, was used determine operational parameters and process difficulties. Mixtures of resin-bitumen and evaporator concentrate-bitumen obtained from differents operational conditions were characterized. (Author) [pt

  15. Experimental Investigation of Surface Color Changes in Vacuum Evaporation Process for Gold-like Stainless Steel

    Directory of Open Access Journals (Sweden)

    Yang Baojian

    2016-01-01

    Full Text Available In order to reduce the environmental pollution caused by the three wastes during the process of electroplating of gold-like film on stainless steel, in this paper, the "vacuum evaporation and annealing" composite technologies were adopted to evaporate gold-like film in 16 stainless steel 304 substrates, and electronic color cards and color software were also used for analyzing the color and luster of the gold-like film. Experiments shows that the negative pressure, annealing temperature and mass fraction of the double copper alloys have influence on preparation of imitation in assaying the fineness of gold film, the annealing temperature has significant effects on imitation in assaying the fineness of gold film.

  16. On Problem of Mathematical Modelling of Thermo-Physical Processes in Regenerative Water-Evaporating Coolers

    Science.gov (United States)

    Gulevsky, V. A.; Shatsky, V. P.; Osipov, E. I.; Menzhulova, A. S.

    2018-03-01

    For cooling the air environment of industrial premises water-evaporating air, conditioners are being increasingly applied. The simplicity of their construction, ecological safety and low power consumption distinguish them from the coolers of other types. Cooling the processed air is due to the loss of energy for the evaporation of moisture from the surface of the water-wetted plates that form air channels. As a result of this process, cooled air is often saturated with moisture, which limits the possibilities for the operation of the coolers of this type. In these cases, more complex coolers of indirect principle without such drawback should be applied. The most effective modification of indirect cooling is the installation of recuperative principle units. The paper presents a mathematical model of heat-mass transfer in such water-evaporating coolers. The scheme of realization of this model based on an iterative algorithm of solution of the system of finite–difference linear equations that takes into account longitudinal and transverse thermal conductivity of the heat transfer plates is suggested. The possibility of obtaining the optimal values of the redistribution of the main and auxiliary air flows through the substantiation of the aerodynamic resistance of the output grid is proved. This allows refusing the inclusion in the additional system cooling fan unit for discharging an auxiliary stream of air.

  17. Influence of boat material on the structure, stoichiometry and optical properties of gallium sulphide films prepared by thermal evaporation

    International Nuclear Information System (INIS)

    Rao, Pritty; Kumar, Sanjiv; Sahoo, N.K.

    2015-01-01

    The paper describes the deposition of thin films of gallium sulphide on soda-lime glass substrates by thermal evaporation of chemically synthesized powders consisting of gallium sulphide and gallium oxyhydroxide from a Mo or Ta boat and the evolution of their compositional, structural and optical properties on vacuum annealing. The films deposited from Mo or Ta boats possessed distinctly different properties. The Mo-boat evaporated pristine films were amorphous, transparent (α ∼ 10 3  cm −1 ) in visible region and had a direct band gap of about 3.2 eV. Vacuum annealing at 723 K brought about their crystallization predominantly into cubic γ-Ga 2 S 3 and a blue shift by about 0.2 eV. The Ta-boat evaporated pristine films were also amorphous but were absorbing (α ∼ 10 4  cm −1 ) and had a direct band gap of about 2.1 eV. These crystallized into hexagonal GaS and experienced a blue shift by more than 1.0 eV on vacuum annealing at 723 K. The dissimilar properties of the two kinds of films arose mainly from their different atomic compositions. The Mo-boat evaporated pristine films contained Ga and S in ∼1:1 atomic proportions while those prepared using Ta-boat were Ga rich which impaired their transmission characteristics. The former composition favoured the stabilization of S rich gallium sulphide (Ga 2 S 3 ) phase while the latter stabilised S deficient species, GaS. Besides inducing crystallization, vacuum annealing at 723 K also caused the diffusion of Ga in excess of atomic composition of the phase formed, into soda-lime glass which improved the optical transmission of the films. Gallium oxyhydroxide, an inevitable co-product of the chemical synthetic process, in the evaporant introduced oxygen and hydrogen impurities in the films which do not seem to significantly influence their optical properties. - Highlights: • Gallium sulphide films are prepared by thermal evaporation from a Mo or Ta boat. • Mo-boat prepared pristine film has Ga

  18. A Kolmogorov-Brutsaert structure function model for evaporation into a turbulent atmosphere

    Science.gov (United States)

    Katul, Gabriel; Liu, Heping

    2017-05-01

    In 1965, Brutsaert proposed a model that predicted mean evaporation rate E¯ from rough surfaces to scale with the 3/4 power law of the friction velocity (u∗) and the square-root of molecular diffusivity (Dm) for water vapor. In arriving at these results, a number of assumptions were made regarding the surface renewal rate describing the contact durations between eddies and the evaporating surface, the diffusional mass process from the surface into eddies, and the cascade of turbulent kinetic energy sustaining the eddy renewal process itself. The working hypothesis explored here is that E¯˜Dmu∗3/4 is a direct outcome of the Kolmogorov scaling for inertial subrange eddies modified to include viscous cutoff thereby bypassing the need for a surface renewal assumption. It is demonstrated that Brutsaert's model for E¯ may be more general than its original derivation implied.

  19. Middle Electrode in a Vertical Transistor Structure Using an Sn Layer by Thermal Evaporation

    Science.gov (United States)

    Nogueira, Gabriel Leonardo; da Silva Ozório, Maiza; da Silva, Marcelo Marques; Morais, Rogério Miranda; Alves, Neri

    2018-05-01

    We report a process for performing the middle electrode for a vertical field effect transistor (VOFET) by the evaporation of a tin (Sn) layer. Bare aluminum oxide (Al2O3), obtained by anodization, and Al2O3 covered with a polymethylmethacrylate (PMMA) layer were used as the gate dielectric. We measured the electrical resistance of Sn while the evaporation was carried out to find the best condition to prepare the middle electrode, that is, good lateral conduction associated with openings that give permeability to the electric field in a vertical direction. This process showed that 55 nm Sn thick is suitable for use in a VOFET, being easier to achieve optimal thickness when the Sn is evaporated onto PMMA than onto bare Al2O3. The addition of a PMMA layer on the Al2O3 surface modifies the morphology of the Sn layer, resulting in a lowering of the threshold voltage. The values of threshold voltage and electric field, VTH = - 8 V and ETH = 354.5 MV/m respectively, were calculated using an Al2O3 film 20 nm thick covered with a 14 nm PMMA layer as gate dielectric, while for bare Al2O3 these values were VTH = - 10 V and ETH = 500 MV/m.

  20. Middle Electrode in a Vertical Transistor Structure Using an Sn Layer by Thermal Evaporation

    Science.gov (United States)

    Nogueira, Gabriel Leonardo; da Silva Ozório, Maiza; da Silva, Marcelo Marques; Morais, Rogério Miranda; Alves, Neri

    2018-03-01

    We report a process for performing the middle electrode for a vertical field effect transistor (VOFET) by the evaporation of a tin (Sn) layer. Bare aluminum oxide (Al2O3), obtained by anodization, and Al2O3 covered with a polymethylmethacrylate (PMMA) layer were used as the gate dielectric. We measured the electrical resistance of Sn while the evaporation was carried out to find the best condition to prepare the middle electrode, that is, good lateral conduction associated with openings that give permeability to the electric field in a vertical direction. This process showed that 55 nm Sn thick is suitable for use in a VOFET, being easier to achieve optimal thickness when the Sn is evaporated onto PMMA than onto bare Al2O3. The addition of a PMMA layer on the Al2O3 surface modifies the morphology of the Sn layer, resulting in a lowering of the threshold voltage. The values of threshold voltage and electric field, VTH = - 8 V and ETH = 354.5 MV/m respectively, were calculated using an Al2O3 film 20 nm thick covered with a 14 nm PMMA layer as gate dielectric, while for bare Al2O3 these values were VTH = - 10 V and ETH = 500 MV/m.

  1. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    International Nuclear Information System (INIS)

    Sullivan, N.

    1995-01-01

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD)

  2. Visualization research on spray atomization, evaporation and combustion processes of ethanol–diesel blend under LTC conditions

    International Nuclear Information System (INIS)

    Huang, Sheng; Deng, Peng; Huang, Ronghua; Wang, Zhaowen; Ma, Yinjie; Dai, Hui

    2015-01-01

    Highlights: • Spray combustion of E20 diesel in LTC condition shows a U-shape flame structure. • The chasing behavior of fuel spray exists near the spray axis. • Fuel ignition doesn’t initiate at the spray tip but in peripheral regions behind it. • An improper chamber structure may lead to a long post-combustion duration. - Abstract: Utilization of ethanol in diesel engines has been widely studied by means of engine experiments and emission detection. However, pertinent studies on the spray combustion process of ethanol–diesel blends are scarce. In order to verify the effect of ethanol in modern diesel engines, an experiment is conducted to visualize the spray combustion process of ethanol–diesel blend under LTC conditions. Stages including atomization, evaporation and combustion, are investigated individually to realize synergistic analysis. Meanwhile, considering the long time scale of combustion after fuel injection finishes, characteristics during and after injection period are both targeted in this paper. Moreover, measurement of macroscopic characteristics, such as spray tip penetration, spray spreading cone angle and flame lift off length, provides a quantitative profile of the spray structure. Results show that, evaporation, different from atomization, has little influence on spray penetration, but promotes the spray spreading angle and spray projected area. So does combustion, which enlarges the spray projected area further. Ignition takes place on the periphery behind the spray tip, then quickly extends to the whole head of the spray and forms a U-shape diffusion structure. After the injection period, the residual spray tail develops into wavelike structures due to absence of subsequent entrainment force. Also, the penetration speed falls greatly to an extent much slower than flame propagation, which frees the flame from the lift-off effect. Subsequently, the flame propagates upstream towards the nozzle orifice. After consumed all fuel in

  3. Engineering work plan for implementing the Process Condensate Recycle Project at the 242-A evaporator

    International Nuclear Information System (INIS)

    Haring, D.S.

    1995-01-01

    The 242-A Evaporator facility is used to reduce the volume of waste stored in the Hanford double shell tanks. This facility uses filtered raw water for cooling, de-entrainment pad sprays, pump seal water, and chemical tank make-up. Some of these uses result in the introduction of filtered raw water into the process, thus increasing the volume of waste requiring evaporation and subsequent treatment by the 200 East Effluent Treatment Facility. The pump seal water and the de-entrainment pad spray systems were identified as candidates for a waste minimization upgrade. This work plan describes the activities associated with the design, installation, testing and initial operation of the process condensate recycle system. Implementation of the process condensate recycle system will permit the use of process condensate in place of raw water for the de-entrainment pad sprays and pump seals. This will reduce the amount of low-level liquid waste and generated during facility operation through source reduction and recycling

  4. Desalting of sea water by a wall-less evaporation process; Dessalement de l'eau de mer par un procede d'evaporation sans paroi

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, C; Sachine, P; Vuillemey, R [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-06-01

    The need for fresh water supplies in many parts of the globe has given a great impetus to the study of the desalting of sea-water. Research into this problem has been very varied. Although it is possible in the more-or-less near future that methods based on freezing may be developed, only evaporation methods have industrial applications at the present time. Amongst the many techniques using this method, the most favorably placed installations from the technical and economic points of view are those based on multiple effects and wall-less heat transfer. We have defined the characteristics of a wall-less evaporation process using the various factors involved in this evaporation: energy source, corrosion, furring, heat transfer, maximum temperature, etc... The unit considered in this work has a daily output of 100,000 m{sup 3}, and makes use of the multi-stage technique with an organic heat-carrier. The maximum temperature of the first stage is 150 deg C and the evaporation factor is 0.4. After the description of the process and, the calculation of the equipment, an economic estimate is given of the cost-price : 1.49 F/m{sup 3}. It is likely that more detailed study of the process (technique, equipment and energy consumed) should make it possible to obtain a significant improvement in the process and to reduce the price to 1 F/m{sup 3}. (authors) [French] Le probleme de l 'approvisionnement en eau de nombreuses regions du globe a mis a 1'ordre du jour le dessalement de l'eau de mer. Des recherches sur cette question ont ete faites dans de multiples directions. Si dans un avenir plus ou moins proche les procedes par congelation peuvent se developper, actuellement seules les methodes d'evaporation ont des applications industrielles. Parmi les nombreuses techniques qui visent a mettre en oeuvre ce principe, les installations a multiples effets et transfert de chaleur sans paroi semblent les mieux placees du point de vue technique et economique. A partir des divers

  5. Desalting of sea water by a wall-less evaporation process; Dessalement de l'eau de mer par un procede d'evaporation sans paroi

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, C.; Sachine, P.; Vuillemey, R. [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-06-01

    The need for fresh water supplies in many parts of the globe has given a great impetus to the study of the desalting of sea-water. Research into this problem has been very varied. Although it is possible in the more-or-less near future that methods based on freezing may be developed, only evaporation methods have industrial applications at the present time. Amongst the many techniques using this method, the most favorably placed installations from the technical and economic points of view are those based on multiple effects and wall-less heat transfer. We have defined the characteristics of a wall-less evaporation process using the various factors involved in this evaporation: energy source, corrosion, furring, heat transfer, maximum temperature, etc... The unit considered in this work has a daily output of 100,000 m{sup 3}, and makes use of the multi-stage technique with an organic heat-carrier. The maximum temperature of the first stage is 150 deg C and the evaporation factor is 0.4. After the description of the process and, the calculation of the equipment, an economic estimate is given of the cost-price : 1.49 F/m{sup 3}. It is likely that more detailed study of the process (technique, equipment and energy consumed) should make it possible to obtain a significant improvement in the process and to reduce the price to 1 F/m{sup 3}. (authors) [French] Le probleme de l 'approvisionnement en eau de nombreuses regions du globe a mis a 1'ordre du jour le dessalement de l'eau de mer. Des recherches sur cette question ont ete faites dans de multiples directions. Si dans un avenir plus ou moins proche les procedes par congelation peuvent se developper, actuellement seules les methodes d'evaporation ont des applications industrielles. Parmi les nombreuses techniques qui visent a mettre en oeuvre ce principe, les installations a multiples effets et transfert de chaleur sans paroi semblent les mieux placees du point de vue technique et economique. A

  6. The Hawking evaporation process of rapidly-rotating black holes: an almost continuous cascade of gravitons

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emek Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)

    2015-07-15

    It is shown that rapidly-rotating Kerr black holes are characterized by the dimensionless ratio τ{sub gap}/τ{sub emission} = O(1), where τ{sub gap} is the average time gap between the emissions of successive Hawking quanta and τ{sub emission} is the characteristic timescale required for an individual Hawking quantum to be emitted from the black hole. This relation implies that the Hawking cascade from rapidly-rotating black holes has an almost continuous character. Our results correct some inaccurate claims that recently appeared in the literature regarding the nature of the Hawking black-hole evaporation process. (orig.)

  7. The Hawking evaporation process of rapidly-rotating black holes: an almost continuous cascade of gravitons

    International Nuclear Information System (INIS)

    Hod, Shahar

    2015-01-01

    It is shown that rapidly-rotating Kerr black holes are characterized by the dimensionless ratio τ gap /τ emission = O(1), where τ gap is the average time gap between the emissions of successive Hawking quanta and τ emission is the characteristic timescale required for an individual Hawking quantum to be emitted from the black hole. This relation implies that the Hawking cascade from rapidly-rotating black holes has an almost continuous character. Our results correct some inaccurate claims that recently appeared in the literature regarding the nature of the Hawking black-hole evaporation process. (orig.)

  8. XPS analysis of the activation process in non-evaporable getter thin films

    CERN Document Server

    Lozano, M

    2000-01-01

    The surface activation process of sputter-coated non-evaporable getter (NEG) thin films based on Ti-Zr and Ti-Zr-V alloys has been studied in situ by means of X-ray photoelectron spectroscopy. After exposure of the NEG thin films to ambient air they become reactivated after a thermal treatment in an ultrahigh vacuum. In our case the films are heated up to ~250 degrees C for 2 h in a base pressure of ~10/sup -9/ Torr. (18 refs).

  9. Visual measurement of the evaporation process of a sessile droplet by dual-channel simultaneous phase-shifting interferometry.

    Science.gov (United States)

    Sun, Peng; Zhong, Liyun; Luo, Chunshu; Niu, Wenhu; Lu, Xiaoxu

    2015-07-16

    To perform the visual measurement of the evaporation process of a sessile droplet, a dual-channel simultaneous phase-shifting interferometry (DCSPSI) method is proposed. Based on polarization components to simultaneously generate a pair of orthogonal interferograms with the phase shifts of π/2, the real-time phase of a dynamic process can be retrieved with two-step phase-shifting algorithm. Using this proposed DCSPSI system, the transient mass (TM) of the evaporation process of a sessile droplet with different initial mass were presented through measuring the real-time 3D shape of a droplet. Moreover, the mass flux density (MFD) of the evaporating droplet and its regional distribution were also calculated and analyzed. The experimental results show that the proposed DCSPSI will supply a visual, accurate, noncontact, nondestructive, global tool for the real-time multi-parameter measurement of the droplet evaporation.

  10. Development of Falling Film Heat Transfer Coefficient for Industrial Chemical Processes Evaporator Design

    KAUST Repository

    Shahzad, Muhammad Wakil; Burhan, Muhammad; Ng, Kim Choon

    2018-01-01

    In falling film evaporators, the overall heat transfer coefficient is controlled by film thickness, velocity, liquid properties and the temperature differential across the film layer. This chapter presents the heat transfer behaviour for evaporative

  11. Impact of model structure and parameterization on Penman-Monteith type evaporation models

    KAUST Repository

    Ershadi, A.; McCabe, Matthew; Evans, J.P.; Wood, E.F.

    2015-01-01

    Overall, the results illustrate the sensitivity of Penman-Monteith type models to model structure, parameterization choice and biome type. A particular challenge in flux estimation relates to developing robust and broadly applicable model formulations. With many choices available for use, providing guidance on the most appropriate scheme to employ is required to advance approaches for routine global scale flux estimates, undertake hydrometeorological assessments or develop hydrological forecasting tools, amongst many other applications. In such cases, a multi-model ensemble or biome-specific tiled evaporation product may be an appropriate solution, given the inherent variability in model and parameterization choice that is observed within single product estimates.

  12. Annealing behaviour of structural and magnetic properties of evaporated Co thin films

    International Nuclear Information System (INIS)

    Jergel, M; Halahovets, Y; Siffalovic, P; Mat'ko, I; Senderak, R; Majkova, E; Luby, S; Cheshko, I; Protsenko, S

    2009-01-01

    Cobalt thin films of 50 nm nominal thickness were e-beam evaporated on silicon substrates covered with thermal oxide. Two series of independent and cumulative vacuum annealings up to 600 deg. C and 650 deg. C, respectively, were performed. The x-ray diffraction, specular and non-specular x-ray reflectivity and longitudinal magneto-optical Kerr effect measurements were applied to probe the annealing behaviour of the film structure and magnetic properties. A gradual transition from the hexagonal close-packed (hcp) to the face-centred cubic (fcc) structure was observed. Evolution of the in-plane magnetic anisotropy is dominated by residual stresses which relax during the structural transformation. The coercivity follows the stress behaviour in the hcp phase up to 300 deg. C and increases abruptly above 400 deg. C due to improving the magneto-crystalline anisotropy in the growing fcc crystallites and enhanced surface/interface roughness.

  13. Interfacial Instabilities in Evaporating Drops

    Science.gov (United States)

    Moffat, Ross; Sefiane, Khellil; Matar, Omar

    2007-11-01

    We study the effect of substrate thermal properties on the evaporation of sessile drops of various liquids. An infra-red imaging technique was used to record the interfacial temperature. This technique illustrates the non-uniformity in interfacial temperature distribution that characterises the evaporation process. Our results also demonstrate that the evaporation of methanol droplets is accompanied by the formation of wave-trains in the interfacial temperature field; similar patterns, however, were not observed in the case of water droplets. More complex patterns are observed for FC-72 refrigerant drops. The effect of substrate thermal conductivity on the structure of the complex pattern formation is also elucidated.

  14. The third order correction on Hawking radiation and entropy conservation during black hole evaporation process

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hao-Peng; Liu, Wen-Biao, E-mail: wbliu@bnu.edu.cn

    2016-08-10

    Using Parikh–Wilczek tunneling framework, we calculate the tunneling rate from a Schwarzschild black hole under the third order WKB approximation, and then obtain the expressions for emission spectrum and black hole entropy to the third order correction. The entropy contains four terms including the Bekenstein–Hawking entropy, the logarithmic term, the inverse area term, and the square of inverse area term. In addition, we analyse the correlation between sequential emissions under this approximation. It is shown that the entropy is conserved during the process of black hole evaporation, which consists with the request of quantum mechanics and implies the information is conserved during this process. We also compare the above result with that of pure thermal spectrum case, and find that the non-thermal correction played an important role.

  15. Comparative Study of Powdered Ginger Drink Processed by Different Method:Traditional and using Evaporation Machine

    Science.gov (United States)

    Apriyana, Wuri; Taufika Rosyida, Vita; Nur Hayati, Septi; Darsih, Cici; Dewi Poeloengasih, Crescentiana

    2017-12-01

    Ginger drink is one of the traditional beverage that became one of the products of interest by consumers in Indonesia. This drink is believed to have excellent properties for the health of the body. In this study, we have compared the moisture content, ash content, metal content and the identified compound of product which processed with traditional technique and using an evaporator machine. The results show that both of products fulfilled some parameters of the Indonesian National Standard for the traditional powdered drink. GC-MS analysis data showed the identified compound of both product. The major of hydrocarbon groups that influenced the flavor such as zingiberene, camphene, beta-phelladrine, beta-sesquepelladrine, curcumene, and beta-bisabolene were found higher in ginger drink powder treated with a machine than those processed traditionally.

  16. Structural and electrical properties of epitaxial Si layers prepared by E-beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, P. [Hahn-Meitner-Institut Berlin, Kekulestr. 5, 12489 Berlin (Germany)], E-mail: pinar.dogan@hmi.de; Rudigier, E.; Fenske, F.; Lee, K.Y.; Gorka, B.; Rau, B.; Conrad, E.; Gall, S. [Hahn-Meitner-Institut Berlin, Kekulestr. 5, 12489 Berlin (Germany)

    2008-08-30

    In this work, we present structural and electrical properties of thin Si films which are homoepitaxially grown at low substrate temperatures (T{sub s} 450-700 deg. C) by high-rate electron beam evaporation. As substrates, monocrystalline Si wafers with (100) and (111) orientations and polycrystalline Si (poly-Si) seed layers on glass were used. Applying Secco etching, films grown on Si(111) wafers exhibit a decreasing etch pit density with increasing T{sub s}. The best structural quality of the films was obtained on Si(100) wafers. Defect etching on epitaxially grown poly-Si absorbers reveal regions with different crystalline quality. Solar cells have been prepared on both wafers and seed layers. Applying Rapid Thermal Annealing (RTA) and Hydrogen plasma passivation an open circuit voltage of 570 mV for wafer based and 346 mV for seed layer based solar cells have been reached.

  17. Structure of MoCN films deposited by cathodic arc evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Gilewicz, A., E-mail: adam.gilewicz@tu.koszalin.pl [Koszalin University of Technology, Faculty of Technology and Education, Sniadeckich 2, 75-453 Koszalin (Poland); Jedrzejewski, R.; Kochmanska, A.E. [West Pomeranian University of Technology Szczecin, Faculty of Mechanical Engineering and Mechatronics, 19 Piastów Ave., 70-313 Szczecin (Poland); Warcholinski, B. [Koszalin University of Technology, Faculty of Technology and Education, Sniadeckich 2, 75-453 Koszalin (Poland)

    2015-02-27

    Molybdenum carbonitride (MoCN) coatings were deposited onto HS6-5-2 steel substrate using pure Mo targets in mixed acetylene and nitrogen atmosphere by cathodic arc evaporation. The structural properties of MoCN coatings with different carbon contents (as an effect of the C{sub 2}H{sub 2} flow rate) were investigated systematically. Phase and chemical composition evolution of the coatings were characterized both by the glancing angle of X-ray diffraction (XRD) and wavelength dispersive spectrometry, respectively. These analyses have been supplemented by estimates of grain sizes and stress in the coatings. The XRD results show that the increase in acetylene flow rate causes the formation of molybdenum carbide (MoC) hexagonal phase in the coatings, a reduction of grain size and an increase in internal stress. - Highlights: • MoN and MoCN coatings were deposited by cathodic arc evaporation in nitrogen atmosphere. • MoCN coatings were formed using different acetylene flow rates. • Phase composition evolution was observed. • Crystallite size and stress were calculated.

  18. Washing water treatment process for UF_6 cylinder by adjusting evaporation technology in a low temperature and low pressure

    International Nuclear Information System (INIS)

    Kim, Ki-tae; Ju, Young-jong; Cho, Nam-chan; Kim, Yun-kwan; Jin, Chang-suk

    2016-01-01

    The liquid waste is treated in this procedure; 1) Add NaOH to the liquid waste and filter the mixture with a screen. 2) Screened residue is dried and then stored in a uranium storage. 3) liquid part is moved to a storage tank and radioactivity is measured in the liquid. 5) If the concentration of radioactivity is lower than corresponding regulation limit, the liquid moved to a reaction tank and evaporated with additional low concentration HF in 105℃. 6) Radioactivity of distillate is measured and the value is lower than regulation, it is treated with a thermal decomposition process and discharged to the atmosphere in gas state. 7) Solid waste produced in the evaporation step is managed as solid nuclear waste. The treatment procedure mentioned above has disadvantageous points, producing large amount of solid waste as well as, high energy and chemical consumption. In this study, liquid waste from a real scaled cylinder wash process is applied to evaporation system to confirm feasibility of the application of evaporation and, to reduce waste production and energy consumption. Liquid radioactive wastewater from a real scaled UF6 cylinder wash process was applied to evaporation treatment system. Radioactive concentration in gross alpha was removed 99.9% in the evaporation system. And the concentration in distillate was lower than the discharge regulation. Removal of U-235 was 99.9% in the process. And 15 other kinds of radionuclides in the raw wastewater were removed completely. Secondary waste production of the evaporation system is 15g/L

  19. Bituminization of simulated waste, spent resins, evaporator concentrates and animal ashes by extrusion process

    International Nuclear Information System (INIS)

    Grosche Filho, C.E.; Chandra, U.

    1986-01-01

    The results of the study of simulated radwaste, spent ion-exchange resins, borates/evaporator-concentrates and animal ashes, in bituminized form, are presented and discussed. Distilled and oxidized bitumen were used for characterizing the crude material and simulated wastes-bitumen mixtures of varying weight composition 30, 40, 50, 60% by weight the dry waste material. The asphaltine and parafin contents in the bitumens were determined. Some additives and clays were used aiming best characteristics of solidified wastes. For leaching studies, granular ion-exchange resins were loaded with Cs 134 and mixtures of resins-bitumens were prepared. The leaching studies were executed using the IAEA recommendation and the ISO method. It was used a conventional screw-extruder, used in plastic industry, to determine operational conditions and process difficulties. Mixtures resins-bitumen and concentrate-bitumen in differents operational condition were prepared and analysed. (Author) [pt

  20. Deposition of metallic nanoparticles on carbon nanotubes via a fast evaporation process

    International Nuclear Information System (INIS)

    Ren Guoqiang; Xing Yangchuan

    2006-01-01

    A new technique was developed for the deposition of colloidal metal nanoparticles on carbon nanotubes. It involves fast evaporation of a suspension containing sonochemically functionalized carbon nanotubes and colloidal nanoparticles. It was demonstrated that metallic nanoparticles with different sizes and concentrations can be deposited on the carbon nanotubes with only a few agglomerates. The technique does not seem to be limited by what the nanoparticles are, and therefore would be applicable to the deposition of other nanoparticles on carbon nanotubes. PtPd and CoPt 3 alloy nanoparticles were used to demonstrate the deposition process. It was found that the surfactants used to disperse the nanoparticles can hinder the nanoparticle deposition. When the nanoparticles were washed with ethanol, they could be well deposited on the carbon nanotubes. The obtained carbon nanotube supported metal nanoparticles were characterized by transmission electron microscopy, energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and cyclic voltammetry

  1. Evaporating firewalls

    Science.gov (United States)

    Van Raamsdonk, Mark

    2014-11-01

    In this note, we begin by presenting an argument suggesting that large AdS black holes dual to typical high-energy pure states of a single holographic CFT must have some structure at the horizon, i.e. a fuzzball/firewall, unless the procedure to probe physics behind the horizon is state-dependent. By weakly coupling the CFT to an auxiliary system, such a black hole can be made to evaporate. In a case where the auxiliary system is a second identical CFT, it is possible (for specific initial states) that the system evolves to precisely the thermofield double state as the original black hole evaporates. In this case, the dual geometry should include the "late-time" part of the eternal AdS black hole spacetime which includes smooth spacetime behind the horizon of the original black hole. Thus, if a firewall is present initially, it evaporates. This provides a specific realization of the recent ideas of Maldacena and Susskind that the existence of smooth spacetime behind the horizon of an evaporating black hole can be enabled by maximal entanglement with a Hawking radiation system (in our case the second CFT) rather than prevented by it. For initial states which are not finely-tuned to produce the thermofield double state, the question of whether a late-time infalling observer experiences a firewall translates to a question about the gravity dual of a typical high-energy state of a two-CFT system.

  2. Development of a lab-scale contaminated organic effluents treatment process using evaporation and supercritical water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Turc, H.A.; Joussot-Dubien, C

    2004-07-01

    The organic liquid waste produced in the ATALANTE facility have to be treated in order to reduce the fire and contamination risks. Therefore, the Mini-DELOS process has been developed, which combines a low pressure evaporator in a shielded enclosure and a continuous supercritical water oxidation (SCWO) reactor in a glovebox. Evaporation makes it possible to evacuate the main organic stream as decontaminated distillates to an industrial incinerator. The remaining residue, concentrating the radioactivity can be converted through SCWO into a contaminated aqueous effluent, fully compatible with the existing outlets of the facility. The preliminary results of the first year of active operation of the Mini- DELOS process are here presented. (authors)

  3. Structural specifics of the condensate prepared by thermal evaporation of alloys of As2S3-Yb systems

    International Nuclear Information System (INIS)

    Ehfendiev, Eh.G.; Mamedov, A.I.; Il'yasov, T.M.; Rustamov, P.G.

    1987-01-01

    The problem aimed at preparation of the films of As 2 S 3 -Yb system, at studying their substructure depending on condensation conditions and defining noncrystallinity region of this system in the film state, is formulated. It is shown that in representative samples of As 2 S 3 -Yb system the vitrification region is extended up to 7 at.% Yb, in the films noncrystallinity region is extended up to 30 at.% Yb. With up to 30 at.% increase of ytterbium amount in initial alloys a tendency to crystallization in amorphous condensate structure is noticed. In evaporation of As 2 S 3 + 40 at.% Yb and As 2 S 3 + 50 at.% Yb, unknown in the film state YbAs 2 S 4 , Yb 3 As 4 S 9 and YbAs 4 S 7 phases are prepared, and the latter is formed in case of As 2 S 3 + 50 at.% Yb alloy at small evaporation rates (∼10 A/s). Substructure of As 2 S 3 + 50 at.% Yb alloy prepared condensate is more dependent on evaporation rate than in evaporation of As 2 S 3 + 40 at.% Yb alloy. In this case, evaporation rates being ∼ 100 A/s, the condensate has a polycrystal structure, and at small rates of ∼ 10 A/c, condensate structure is primarily blocked

  4. The Development of Young Children's Understanding of the Process of Evaporation.

    Science.gov (United States)

    Beveridge, Michael

    1985-01-01

    This investigation of the development of young children's concept of evaporation examines their intuitive explanations of real world events involving evaporation. A study of the effects of providing evidence contradicting their explanations and of directing their attention to relevant situational features provides insight into the development of…

  5. Experimental Research of Moisture Evaporation Process from Biomass in a Drying Chamber

    Directory of Open Access Journals (Sweden)

    Bulba E.E.

    2015-01-01

    Full Text Available Presented mass evaporation rate hardwood (birch, aspen, maple, poplar derived from experimental studies. The dependence of temperature on evaporation mass rate and calculated the accommodation coefficient for the respective temperature ranges are obtained. Analyzed the temperature of drying conditions relevant species hardwood.

  6. Water evaporation on highly viscoelastic polymer surfaces.

    Science.gov (United States)

    Pu, Gang; Severtson, Steven J

    2012-07-03

    Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.

  7. Impact of model structure and parameterization on Penman-Monteith type evaporation models

    KAUST Repository

    Ershadi, A.

    2015-04-12

    The impact of model structure and parameterization on the estimation of evaporation is investigated across a range of Penman-Monteith type models. To examine the role of model structure on flux retrievals, three different retrieval schemes are compared. The schemes include a traditional single-source Penman-Monteith model (Monteith, 1965), a two-layer model based on Shuttleworth and Wallace (1985) and a three-source model based on Mu et al. (2011). To assess the impact of parameterization choice on model performance, a number of commonly used formulations for aerodynamic and surface resistances were substituted into the different formulations. Model response to these changes was evaluated against data from twenty globally distributed FLUXNET towers, representing a cross-section of biomes that include grassland, cropland, shrubland, evergreen needleleaf forest and deciduous broadleaf forest. Scenarios based on 14 different combinations of model structure and parameterization were ranked based on their mean value of Nash-Sutcliffe Efficiency. Results illustrated considerable variability in model performance both within and between biome types. Indeed, no single model consistently outperformed any other when considered across all biomes. For instance, in grassland and shrubland sites, the single-source Penman-Monteith model performed the best. In croplands it was the three-source Mu model, while for evergreen needleleaf and deciduous broadleaf forests, the Shuttleworth-Wallace model rated highest. Interestingly, these top ranked scenarios all shared the simple lookup-table based surface resistance parameterization of Mu et al. (2011), while a more complex Jarvis multiplicative method for surface resistance produced lower ranked simulations. The highly ranked scenarios mostly employed a version of the Thom (1975) formulation for aerodynamic resistance that incorporated dynamic values of roughness parameters. This was true for all cases except over deciduous broadleaf

  8. Evaporation Ponds or Recharge Structures ? the Role of Check Dams in Arkavathy River Basin, India

    Science.gov (United States)

    Jeremiah, K.; Srinivasan, V.; R, A.

    2014-12-01

    "Watershed development" has been the dominant paradigm for water management in India for the last two decades. Current spending on watershed development programmes rivals spending on large dams. In practice, watershed development involves a range of soil and water conservation measures including building check dams, gully plugs, contour bunds etc. Despite their dominance in water management paradigms, relatively little empirical data exists on these structures. Importantly, even though the benefits of individual watershed structures are recognized, the cumulative impact of building hundreds of such structures on hydrologic partitioning of a watershed remains unknown. We investigated the role of check dams in two small milli-watersheds in the Arkavathy River basin in South India. We conducted a comprehensive census of all check dams in the two milli-watersheds with a total area of 26 sq km. 40 check dams (representing a density of 1.35/sq km of watershed area) were geotagged, photographed, measured and their condition was recorded. We then selected twelve check dams and monitored the water stored using capacitance sensors. We also set up Automatic Weather Stations in each watershed. Inflows, evaporation and infiltration were calculated at each site to evaluate how check dams alter hydrologic partitioning in the watershed as a whole.

  9. Development of a hybrid sputtering/evaporation process for Cu(In,Ga)Se{sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, M.; Binetti, S.; Le Donne, A.; Lorenzi, B.; Caccamo, L.; Miglio, L. [Dipartimento di Scienza dei Materiali e Solar Energy Research Center MIB-SOLAR, Universita di Milano Bicocca, Milan (Italy); Moneta, R.; Marchionna, S.; Meschia, M. [Voltasolar s.r.l, Turate (Italy)

    2011-08-15

    In this paper we report a new method for Cu(In,Ga)Se{sub 2} deposition for solar cell application. Differently from the common co-evaporation process, an alterative approach for thin film Cu(In,Ga)Se{sub 2} has been tested: the sputtering deposition of metal elements combined with the selenium evaporation. We have studied the relationships between the growth parameters of our hybrid sputtering/evaporation method and the chemical-physical properties of the CIGS films. The cells are completed with a CdS buffer layer deposited by chemical bath deposition and ZnO + ITO deposited by RF sputtering. Test solar cells of 0.5 cm{sup 2} have shown an efficiency of 10% and 2.5% on glass and stainless steel substrate respectively. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Evaporation of impact water droplets in interception processes: Historical precedence of the hypothesis and a brief literature overview

    Science.gov (United States)

    Dunkerley, David L.

    2009-10-01

    SummaryIntra-storm evaporation depths exceed post-storm evaporation depths in the interception of rainfall on plant canopies. An important fraction of the intra-storm evaporation may involve the small impact (or splash) droplets produced when raindrops, and perhaps gravity drops (drips released from plant parts), collide with wet plant surfaces. This idea has been presented as a new conception by Murakami [Murakami, S., 2006. A proposal for a new forest canopy interception mechanism: splash droplet evaporation. Journal of Hydrology 319, 72-82; Murakami, S., 2007a. Application of three canopy interception models to a young stand of Japanese cypress and interpretation in terms of interception mechanism. Journal of Hydrology 342, 305-319; Murakami, S., 2007b. A follow-up for the splash droplet evaporation hypothesis of canopy interception and remaining problems: why is humidity unsaturated during rainfall? In: Proceedings of the 20th Annual Conference. Japan Society of Hydrology and Water Resources (in Japanese). ] but was in fact advanced by Dunin [Dunin, F.X., O'Loughlin, E.M., Reyenga, W., 1988. Interception loss from eucalypt forest: lysimeter determination of hourly rates for long term evaluation. Hydrological Processes 2, 315-329] more than 20 years ago. In addition, Dunin et al. considered that canopy ventilation might be enhanced in intense rain. This note draws attention to the historical precedence of the work of Dunin et al. and also presents a short review of literature on impact droplet production, highlighting areas where data are still required for the full exploration of the role of droplet evaporation in canopy interception. Droplet production needs to be properly parameterised and included in models of interception processes and landsurface-atmosphere interactions.

  11. Present status of rarefied gas dynamics approach to the structure of a laser-induced evaporating jet

    International Nuclear Information System (INIS)

    Cercignani, C.

    1980-01-01

    With reference to the relation between the state of the surface and the measurements downstream in the dynamic laser pulse technique, the problems arising in connection with the study of the structure of a jet evaporating into a vacuum are investigated. Particular attention is paid to the following aspects gas surface interaction, internal degrees of freedom, presence of more than one species, chemical reactions

  12. Determination of the crystalline structure of scale solids from the 16H evaporator gravity drain line to tank 38H

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-01

    August 2015, scale solids from the 16H Evaporator Gravity Drain Line (GDL) to the Tank 38H were delivered to SRNL for analysis. The desired analytical goal was to identify and confirm the crystalline structure of the scale material and determine if the form of the aluminosilicate mineral was consistent with previous analysis of the scale material from the GDL.

  13. Theoretical study of soil water balance and process of soil moisture evaporation

    Directory of Open Access Journals (Sweden)

    Yu. A. Savel'ev

    2017-01-01

    Full Text Available Nearly a half of all grain production in the Russian Federation is grown in dry regions. But crop production efficiency there depends on amount of moisture, available to plants. However deficit of soil moisture is caused not only by a lack of an atmospheric precipitation, but also inefficient water saving: losses reach 70 percent. With respect thereto it is important to reveal the factors influencing intensity of soil moisture evaporation and to develop methods of decrease in unproductive moisture losses due to evaporation. The authors researched soil water balance theoretically and determined the functional dependences of moisture loss on evaporation. Intensity of moisture evaporation depends on physicomechanical characteristics of the soil, a consistence of its surface and weather conditions. To decrease losses of moisture for evaporation it is necessary, first, to improve quality of crumbling of the soil and therefore to reduce the evaporating surface of the soil. Secondly - to create the protective mulching layer which will allow to enhance albedo of the soil and to reduce its temperature that together will reduce unproductive evaporative water losses and will increase its inflow in case of condensation from air vapors. The most widespread types of soil cultivation are considered: disk plowing and stubble mulch plowing. Agricultural background «no tillage» was chosen as a control. Subsoil mulching tillage has an essential advantage in a storage of soil moisture. So, storage of soil moisture after a disking and in control (without tillage decreased respectively by 24.9 and 19.8 mm while at the mulching tillage this indicator revised down by only 15.6 mm. The mulching layer has lower heat conductivity that provides decrease in unproductive evaporative water losses.

  14. Structural, electrical and magnetic properties of evaporated Ni/Cu and Ni/glass thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nacereddine, C. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria); Layadi, A. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria)]. E-mail: A_Layadi@yahoo.fr; Guittoum, A. [Centre de Recherche Nucleaire d' Alger (CRNA), Alger 16000 (Algeria); Cherif, S.-M. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse 93340 (France); Chauveau, T. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse 93340 (France); Billet, D. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse 93340 (France); Youssef, J. Ben [Laboratoire de Magnetisme de Bretagne, U.B.O., Brest 29238 (France); Bourzami, A. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria); Bourahli, M.-H. [Departement d' O. M. P., Universite Ferhat Abbas, Setif 19000 (Algeria)

    2007-01-25

    The structural, electrical and magnetic properties of Ni thin films evaporated onto glass and polycrystalline Cu substrates have been investigated. The Ni thickness ranges from 31 to 165 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to study the structure and morphology of these systems. The Ni/Cu and Ni/glass thin films are found to be polycrystalline with a (1 1 1) texture. There is an overall increase of the grain size with increasing thickness. A negative strain was noted indicating that all the samples are under a compressive stress. Diffusion at the grain boundaries seems to be a major contribution to the electrical resistivity in this thickness range. Study of the hysteresis curves, obtained by vibrating sample magnetometer (VSM), indicates that all samples are characterized by an in-plane magnetization easy axis. Higher in-plane coercive fields seem to be associated with higher grain size, indicating that coercivity may be due to nucleation of reverse domains rather than pinning of domain walls. The saturation field and the squareness have been studied as a function of the Ni thickness.

  15. Comparison of structural properties of thermally evaporated CdTe thin films on different substrates

    International Nuclear Information System (INIS)

    Tariq, G.H.; Anis-ur-Rehman, M.

    2011-01-01

    The direct energy band gap in the range of 1.5 eV and the high absorption coefficient (105 cm/sup -1/) makes Cadmium Telluride (CdTe) a suitable material for fabrication of thin film solar cells. Thin film solar cells based on CdTe (1 cm area) achieved efficiency of 15.6% on a laboratory scale. CdTe thin films were deposited by thermal evaporation technique under vacuum 2 X 10/sup -5/mbar on glass and stainless steel (SS) substrates. During deposition substrates temperature was kept same at 200 deg. C for all samples. The structural properties were determined by the X-ray Diffraction (XRD) patterns. All samples exhibit polycrystalline nature. Dependence of different structural parameters such as lattice parameter, micro strain, and grain size and dislocation density on thickness was studied. Also the influence of the different substrates on these parameters was investigated. The analysis showed that the preferential orientation of films was dependent on the substrate type. (author)

  16. Structural, magnetic and magneto-transport properties of thermally evaporated Fe/Cu multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bouziane, K.; Al-Busaidi, M.; Gismelseed, A.; Al-Rawas, A. [Physics Department, College of Science, Sultan Qabos University, P. O. Box 36, Postal Code 123, Al-Khodh, Muscat (Oman)

    2004-05-01

    Structural, magnetic and magneto-transport properties of thermally evaporated Fe/Cu multilayers (MLs) have been investigated. Although multilayered structure has been successfully obtained, a substantial interfacial roughness ranging from 0.6 nm to 1.2 nm has been determined. All Fe/Cu MLs were polycrystalline with an average grain size of about 10 nm. Fe was bcc and textured (110) whereas Cu was fcc(111). Transmission electron microscopy analysis showed that the fcc Cu layer was rather textured (110) and (100) at least in the first stage of growth of the Fe/Cu MLs. Conversion electron Moessbauer (CEMS) measurements indicated the existence of three phases. Two of them were magnetic with a dominant bcc Fe phase, followed by fcc Fe phase. The third phase was superparamagnetic. The CEMS results were explained in terms of the partial diffusion of Fe into Cu with three different zones. The small magnetoresistance (MR<0.2%) was correlated to Fe clusters located at Fe-Cu interfaces. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  17. Development of Wind Operated Passive Evaporative Cooling Structures for Storage of Tomatoes

    Directory of Open Access Journals (Sweden)

    M. O. Sunmonu

    2016-08-01

    Full Text Available A Wind operated passive evaporative cooler was developed. Two cooling chambers were made with clay container (cylindrical and square shapes. These two containers were separately inserted inside bigger clay pot inter- spaced with clay soil of 7 cm (to form pot-in-pot and wall-in wall with the outside structure wrapped with jute sack. The soil and the jute sacks were wetted with salt solution. Five blades were constructed inside the cooling chambers with aluminium material which were connected with a shaft to a vane located on a wooden cover outside the cooling chamber. The vanes (made of aluminium were to be powered by the wind which in turn rotates the blades inside the cooling chamber. The total volume of 40500cm3 and storage capacity of 31500cm3 were recorded for the square structures while total volume of 31792.5cm3 and storage capacity of 24727.5cm3 were recorded for the cylindrical structures. During the test period, the average temperatures of 27.07oC, 27.09oC and 33.6oC were obtained for the pot-in-pot (cylindrical, wall-in-wall (square and the ambient respectively. The average relative humidity of 92.27%, 91.99% and 69.41% were obtained for the pot-in-pot (cylindrical, wall-in-wall (square and the ambient respectively. The average minimum and maximum wind speed recorded for the month of October was 2.5m/s and 2.6m/s respectively

  18. Controlling water evaporation through self-assembly.

    Science.gov (United States)

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.

  19. Evaporation characteristics of a hydrophilic surface with micro-scale and/or nano-scale structures fabricated by sandblasting and aluminum anodization

    International Nuclear Information System (INIS)

    Kim, Hyungmo; Kim, Joonwon

    2010-01-01

    This paper presents the results of evaporation experiments using water droplets on aluminum sheets that were either smooth or had surface structures at the micro-scale, at the nano-scale or at both micro- and nano-scales (dual-scale). The smooth surface was a polished aluminum sheet; the surface with micro-scale structures was obtained by sandblasting; the surface with nano-scale structures was obtained using conventional aluminum anodization and the surface with dual-scale structures was prepared using sandblasting and anodization sequentially. The wetting properties and evaporation rates were measured for each surface. The evaporation rates were affected by their static and dynamic wetting properties. Evaporation on the surface with dual-scale structures was fastest and the evaporation rate was analyzed quantitatively.

  20. In-situ optical emission spectroscopy for a better control of hybrid sputtering/evaporation process for the deposition of Cu(In,Ga)Se{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Posada, Jorge; Jubault, Marie [Institute of Research and Development on Photovoltaic Energy (IRDEP), EDF-CNRS-Chimie ParisTech, UMR 7174, 6 Quai Watier, 78401 Chatou (France); Bousquet, Angélique; Tomasella, Eric [Clermont Université, Université Blaise Pascal, Institute of Chemistry of Clermont-Ferrand (ICCF), CNRS-UMR 6296, 24 Avenue des Landais, 63171 Aubière (France); Lincot, Daniel [Institute of Research and Development on Photovoltaic Energy (IRDEP), EDF-CNRS-Chimie ParisTech, UMR 7174, 6 Quai Watier, 78401 Chatou (France)

    2015-05-01

    In this work, we have developed a hybrid one-step co-sputtering/evaporation Cu(In,Ga)Se{sub 2} (CIGS) process, where Cu, In and Ga are sputtered simultaneously with the thermal evaporation of selenium, thus avoiding the H{sub 2}Se use. An appropriate control of the selenium flux is very important to prevent the target poisoning and hence some material flux variations. Indeed, the control of the CIGS composition must be rigorous to ensure reproducible solar cell properties. In this regard, a study of the correlations between plasma species and thin film composition, structure and morphology has been performed by varying power values and Se evaporation temperature in the 170 to 230 °C range. We started by studying the plasma with a powerful technique: optical emission spectroscopy, following light emissions from different plasma species: sputtered Cu, Ga, In but also evaporated Se. Hence, we determined the Se flow threshold avoiding target poisoning and the main parameter controlling the CIGS composition. Obviously, we also focused our interest on the material. We measured film composition and thickness of the samples with X-ray fluorescence and by energy dispersive X-ray. Different phases formed during the process were identified by Raman spectroscopy and X-ray diffraction. The optoelectronic cell properties showed promising efficiency of 10.3% for an absorber with composition ratios of [Cu]/([In] + [Ga]) = 1.02 and [Ga]/([In] + [Ga]) = 0.44. Finally, this work shows that we are able to control this hybrid process and thus the structure and composition of CIGS thin film for industrial transfer in the photovoltaic field. - Highlights: • We have developed a hybrid one-step co-sputtering/evaporation Cu(In,Ga)Se{sub 2} process. • Correlations between plasma species and thin film composition have been performed. • We determined the Se flow threshold avoiding target poisoning. • Efficient small-area CIGS cells with 10.3% efficiency were fabricated.

  1. Processing of C60 thin films by Matrix-Assisted Pulsed Laser Evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    2011-01-01

    Thin films of fullerenes (C60) were deposited onto silicon using matrix-assisted pulsed laser evaporation (MAPLE). The deposition was carried out from a frozen homogeneous dilute solution of C60 in anisole (0.67 wt%), and over a broad range of laser fluences, from 0.15 J/cm2 up to 3.9 J/cm2. MAPLE...

  2. Influence of substrate temperature and annealing on structural and optical properties of TiO{sub 2} films deposited by reactive e-beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Pjević, D., E-mail: dejanp@vinca.rs [VINČA Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade (Serbia); Marinković, T.; Savić, J.; Bundaleski, N.; Obradović, M.; Milosavljević, M. [VINČA Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade (Serbia); Kulik, M. [Frank Laboratory of Neutron Physics, JINR, Joliot-Curie St. 6, Dubna 141980, Moscow Region (Russian Federation)

    2015-09-30

    The influence of deposition and post-deposition annealing parameters on the structure and optical properties of TiO{sub 2} thin films synthesized by reactive e-beam evaporation is reported. Pure Ti (99.9%) was evaporated in oxygen atmosphere to form thin films on Si (100) and glass substrates. Depositions were conducted on substrates held at room temperature and at 200–400 °C heated substrates. Post-deposition annealing was done for 3 h at 500 °C in air. Compositional and structural studies were performed by Rutherford backscattering spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy, and optical properties were studied by ultraviolet–visible spectroscopy and analytically by pointwise unconstrained minimization approach method. It was found that both the structure and optical properties of the films are strongly influenced by the deposition and processing parameters. All deposited samples showed good stoichiometry of Ti:O ~ 1:2. Depending on the substrate temperature and oxygen pressure in the chamber during the deposition, anatase–rutile mixed films were obtained, and in some cases TiO and Ti{sub 2}O{sub 3} phases were observed. Substrate deposition temperature appears to play the major role on the final structure of the films, while post-deposition annealing adds up for the lack of oxygen in some cases and invokes crystal grain growth of already initiated phases. The results can be interesting towards the development of TiO{sub 2} thin films with defined structure and optical properties. - Highlights: • TiO{sub 2} films were deposited by reactive e-beam evaporation. • Structure and properties were studied as a function of deposition temperature. • Stoichiometry of as-deposited films was Ti:O ~ 1:2, containing different Ti-O phases. • Post-deposition annealing yielded phase transformation, affecting the properties. • Refractive index increases with the substrate deposition temperature.

  3. A Kolmogorov-Brutsaert Structure Function Model for Evaporation from a Rough Surface into a Turbulent Atmosphere

    Science.gov (United States)

    Katul, Gabriel; Liu, Heping

    2017-04-01

    In his 1881 acceptance letter of the Rumford Medal, Gibbs declared that "One of the principal objects of theoretical research is to find the point of view from which the subject appears in the greatest simplicity". Guided by this quotation, the subject of evaporation into the atmosphere from rough surfaces by turbulence offered in a 1965 study by Brutsaert is re-examined. Brutsaert proposed a model that predicted mean evaporation rate E from rough surfaces to scale with the 3/4 power-law of the friction velocity (u∗) and the square-root of molecular diffusivity (Dm) for water vapor. This result was supported by a large corpus of experiments and spawned a number of studies on inter-facial transfer of scalars, evaporation from porous media at single and multiple pore scales, bulk evaporation from bare soil surfaces, as well as isotopic fractionation in hydrological applications. It also correctly foreshadowed the much discussed 1/4 'universal' scaling of liquid transfer coefficients of sparingly soluble gases in air-sea exchange studies. In arriving at these results, a number of assumptions were made regarding the surface renewal rate describing the contact durations between eddies and the evaporating surface, the diffusional mass process from the surface into eddies, and the cascade of turbulent kinetic energy sustaining the eddy renewal process itself. The anzats explored here is that E ˜√Dm-u∗3/4 is a direct outcome of the Kolmogorov scaling for inertial subrange eddies modified to include viscous-cutoff thereby by-passing the need for a surface renewal assumption. It is demonstrated that Brutsaert's model for E may be more general than its original derivation assumed. Extensions to canopy surfaces as well as other scalars with different molecular Schmidt numbers are also featured.

  4. Forest evaporation models: Relationships between stand growth and evaporation

    CSIR Research Space (South Africa)

    Le Maitre, David C

    1997-06-01

    Full Text Available The relationships between forest stand structure, growth and evaporation were analysed to determine whether forest evaporation can be estimated from stand growth data. This approach permits rapid assessment of the potential impacts of afforestation...

  5. Supramolecular structure of a perylene derivative in thin films made by vacuum thermal evaporation

    International Nuclear Information System (INIS)

    Fernandes, Jose Diego

    2015-01-01

    The supramolecular arrangement of organic thin films is a factor that influences both optical and electrical properties of these films and, consequently, the technological applications involving organic electronics. In this dissertation, thin films of a perylene derivative (bis butylimido perylene, acronym BuPTCD) were produced by physical vapor deposition (PVD) using vacuum thermal evaporation. The aim of this work was to investigate the supramolecular arrangement of BuPTCD films, which implies to control the thickness at nanometer scale and to determine the molecular organization, the morphology (at nano and micrometer scales) and the crystallinity, besides the stability of this arrangement as a function of the temperature. Optical properties (such as absorption and emission) and electrical properties (such as conductivity and photoconductivity) were also determined. The UV-Vis absorption spectra revealed a controlled growth (uniform) of the BuPTCD films. Atomic force and optical microscopy images showed a homogeneous surface of the film at nano and micrometer scales, respectively. The X-ray diffraction showed that the BuPTCD powder and PVD film have different crystalline structures, with the BuPTCD molecules head-on oriented in the PVD films, supported on the substrate surface by the side group (FTIR). This structure favors the light emission (photoluminescence) by the formation of excimers. The thermal treatment (200°C for 10 min) does not affect the molecular organization of the PVD films, showing a thermal stability of the BuPTCD supramolecular arrangement under these circumstances. The electrical measurements (DC) showed a linear increase of the current as a function of the tension, which is characteristic of ohmic behavior. Also, the films exhibited an increase of current by 2 orders of magnitude when exposed to light (photoconductive properties). Finally, BuPTCD films were exposed to vapor of trifluoroacetic acid (TFA) to verify the sensitivity of the Bu

  6. Fabrication of mesoporous silica/polymer composites through solvent evaporation process and investigation of their excellent low thermal expansion property.

    Science.gov (United States)

    Suzuki, Norihiro; Kiba, Shosuke; Yamauchi, Yusuke

    2011-03-21

    We fabricate mesoporous silica/epoxy polymer composites through a solvent evaporation process. The easy penetration of the epoxy polymers into mesopores is achieved by using a diluted polymer solution including a volatile organic solvent. After the complete solvent evaporation, around 90% of the mesopores are estimated to be filled with the epoxy polymer chains. Here we carefully investigate the thermal expansion behavior of the obtained mesoporous silica/polymer composites. Thermal mechanical analysis (TMA) charts revealed that coefficient of linear thermal expansion (CTE) gradually decreases, as the amount of the doped mesoporous silica increases. Compared with spherical silica particle without mesopores, mesoporous silica particles show a greater effect on lowering the CTE values. Interestingly, it is found that the CTE values are proportionally decreased with the decrease of the total amount of the polymers outside the mesopores. These data demonstrate that polymers embedded inside the mesopores become thermally stable, and do not greatly contribute to the thermal expansion behavior of the composites.

  7. Isotopic fractionation of soil water during the evaporation process in the presence of a phreatic water table

    International Nuclear Information System (INIS)

    Leopoldo, P.R.; Stolf, R.

    1979-01-01

    This experiment was conducted with columns of soil, constitued by alluvion sediment keeping a phreatic watertable at a depth of 40 cm and constant water supply, and its objective was to check the water behaviour as to its deuterium and oxigen content when moving from the lower layers to the upper layers, and consequent loss to the atmosphere through evaporation. It was noted that the existing D and 18 O content in the water forming the phreativ watertable practivally does not vary with this process. In addition to the observations on soil columns, soil water from the Brasilian northeastern region was collected and analysed. The phreatic watertable at the collecting site lay at a depth of about 40-50 cm. Preliminarily, it was noted that these results apparently indicate an excess evaporation, and are also consistent with those obtained by other investigators, who proposed the use of stable isotopes to study problems related to salinization of water in this region. (Author) [pt

  8. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology.

    Science.gov (United States)

    Freitas, Sergio; Merkle, Hans P; Gander, Bruno

    2005-02-02

    The therapeutic benefit of microencapsulated drugs and vaccines brought forth the need to prepare such particles in larger quantities and in sufficient quality suitable for clinical trials and commercialisation. Very commonly, microencapsulation processes are based on the principle of so-called "solvent extraction/evaporation". While initial lab-scale experiments are frequently performed in simple beaker/stirrer setups, clinical trials and market introduction require more sophisticated technologies, allowing for economic, robust, well-controllable and aseptic production of microspheres. To this aim, various technologies have been examined for microsphere preparation, among them are static mixing, extrusion through needles, membranes and microfabricated microchannel devices, dripping using electrostatic forces and ultrasonic jet excitation. This article reviews the current state of the art in solvent extraction/evaporation-based microencapsulation technologies. Its focus is on process-related aspects, as described in the scientific and patent literature. Our findings will be outlined according to the four major substeps of microsphere preparation by solvent extraction/evaporation, namely, (i) incorporation of the bioactive compound, (ii) formation of the microdroplets, (iii) solvent removal and (iv) harvesting and drying the particles. Both, well-established and more advanced technologies will be reviewed.

  9. Multifragmentation and evaporation: two competing processes in intermediate energy nuclear collisions

    International Nuclear Information System (INIS)

    Campi, X.; Desbois, J.; Lipparini, E.

    1984-05-01

    We study the conditions at which mutiple break up of nuclei occurs during a collision. A minimal temperature of about 5MeV seems to be necessary to produce multifragmentation. The average number of fragments produced is correlated with the average number of primary nucleon-nucleon collisions. Based on these ideas a simple model of evaporation-multifragmentation reactions is developed, which accounts for most of the existing data for protons and heavy ions induced reactions

  10. Mathematical modeling of processes of heat and mass transfer in channels of water evaporating coolers

    Science.gov (United States)

    Gulevsky, V. A.; Ryazantsev, A. A.; Nikulichev, A. A.; Menzhulova, A. S.

    2018-05-01

    The variety of cooling systems is dictated by a wide range of demands placed on them. This is the price, operating costs, quality of work, ecological safety, etc. These requirements in a positive sense are put into correspondence by water evaporating plate coolers. Currently, their widespread use is limited by a lack of theoretical base. To solve this problem, the best method is mathematical modeling.

  11. The Misselhorn Cycle: Batch-Evaporation Process for Efficient Low-Temperature Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Moritz Gleinser

    2016-05-01

    Full Text Available The concept of the Misselhorn cycle is introduced as a power cycle that aims for efficient waste heat recovery of temperature sources below 100 °C. The basic idea shows advantages over a standard Organic Rankine Cycle (ORC in overall efficiency and utilization of the heat source. The main characteristic of this cycle is the use of at least three parallel batch evaporators instead of continuous heat exchangers. The operational phases of the evaporators are shifted so that there is always one vaporizer in discharge mode. A transient MATLAB® model (The MathWorks: Natick, MA, USA is used to simulate the achievable performance of the Misselhorn cycle. The calculations of the thermodynamic states of the system are based on the heat flux, the equations for energy conservation and the equations of state found in the NIST Standard Reference Database 23 (Reference Fluid Thermodynamic and Transport Properties - REFPROP, National Institute of Standards and Technology: Gaithersburg, MD, USA. In the isochoric batch evaporation, the pressure and the corresponding boiling temperature rise over time. With a gradually increasing boiling temperature, no pinch point limitation occurs. Furthermore, the heat source medium is passed through the evaporators in serial order to obtain a quasi-counter flow setup. It could be shown that these features offer the possibility to gain both high thermal efficiencies and an enhanced utilization of the heat source at the same time. A basic model with a fixed estimated heat transfer coefficient promises a possible system exergy efficiency of 44.4%, which is an increase of over 60% compared to a basic ORC with a system exergy efficiency of only 26.8%.

  12. Dynamic relaxation processes in compressible multiphase flows. Application to evaporation phenomena

    Directory of Open Access Journals (Sweden)

    Le Métayer O.

    2013-07-01

    Full Text Available Phase changes and heat exchanges are examples of physical processes appearing in many industrial applications involving multiphase compressible flows. Their knowledge is of fundamental importance to reproduce correctly the resulting effects in simulation tools. A fine description of the flow topology is thus required to obtain the interfacial area between phases. This one is responsible for the dynamics and the kinetics of heat and mass transfer when evaporation or condensation occurs. Unfortunately this exchange area cannot be obtained easily and accurately especially when complex mixtures (drops, bubbles, pockets of very different sizes appear inside the transient medium. The natural way to solve this specific trouble consists in using a thin grid to capture interfaces at all spatial scales. But this possibility needs huge computing resources and can be hardly used when considering physical systems of large dimensions. A realistic method is to consider instantaneous exchanges between phases by the way of additional source terms in a full non-equilibrium multiphase flow model [2,15,17]. In this one each phase obeys its own equation of state and has its own set of equations and variables (pressure, temperature, velocity, energy, entropy,.... When enabling the relaxation source terms the multiphase mixture instantaneously tends towards a mechanical or thermodynamic equilibrium state at each point of the flow. This strategy allows to mark the boundaries of the real flow behavior and to magnify the dominant physical effects (heat exchanges, evaporation, drag,... inside the medium. A description of the various relaxation processes is given in the paper. Les changements de phase et les transferts de chaleur sont des exemples de phénomènes physiques présents dans de nombreuses applications industrielles faisant intervenir des écoulements compressibles multiphasiques. La connaissance des mécanismes associés est primordiale afin de reproduire

  13. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  14. Modeling Evaporation and Particle Assembly in Colloidal Droplets.

    Science.gov (United States)

    Zhao, Mingfei; Yong, Xin

    2017-06-13

    Evaporation-induced assembly of nanoparticles in a drying droplet is of great importance in many engineering applications, including printing, coating, and thin film processing. The investigation of particle dynamics in evaporating droplets can provide fundamental hydrodynamic insight for revealing the processing-structure relationship in the particle self-organization induced by solvent evaporation. We develop a free-energy-based multiphase lattice Boltzmann method coupled with Brownian dynamics to simulate evaporating colloidal droplets on solid substrates with specified wetting properties. The influence of interface-bound nanoparticles on the surface tension and evaporation of a flat liquid-vapor interface is first quantified. The results indicate that the particles at the interface reduce surface tension and enhance evaporation flux. For evaporating particle-covered droplets on substrates with different wetting properties, we characterize the increase of evaporate rate via measuring droplet volume. We find that droplet evaporation is determined by the number density and circumferential distribution of interfacial particles. We further correlate particle dynamics and assembly to the evaporation-induced convection in the bulk and on the surface of droplet. Finally, we observe distinct final deposits from evaporating colloidal droplets with bulk-dispersed and interface-bound particles. In addition, the deposit pattern is also influenced by the equilibrium contact angle of droplet.

  15. DYNAMICS OF A PROMINENCE-HORN STRUCTURE DURING ITS EVAPORATION IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bing; Chen, Yao; Fu, Jie; Li, Bo [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai 264209 (China); Li, Xing [Department of Physics, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3BZ (United Kingdom); Liu, Wei, E-mail: yaochen@sdu.edu.cn [Stanford-Lockheed Institute for Space Research, Stanford University, Stanford, CA 94305 (United States)

    2016-08-20

    The physical connections among and formation mechanisms of various components of the prominence-horn cavity system remain elusive. Here we present observations of such a system, focusing on a section of the prominence that rises and separates gradually from the main body. This forms a configuration sufficiently simple to yield clues regarding the above issues. It is characterized by embedding horns, oscillations, and a gradual disappearance of the separated material. The prominence-horn structure exhibits a large-amplitude longitudinal oscillation with a period of ∼150 minutes and an amplitude of ∼30 Mm along the trajectory defined by the concave horn structure. The horns also experience a simultaneous transverse oscillation with a much smaller amplitude (∼3 Mm) and a shorter period (∼10–15 minutes), likely representative of a global mode of the large-scale magnetic structure. The gradual disappearance of the structure indicates that the horn, an observational manifestation of the field-aligned transition region separating the cool and dense prominence from the hot and tenuous corona, is formed due to the heating and diluting process of the central prominence mass; most previous studies suggested that it is the opposite process, i.e., the cooling and condensation of coronal plasmas, that formed the horn. This study also demonstrates how the prominence transports magnetic flux to the upper corona, a process essential for the gradual build-up of pre-eruption magnetic energy.

  16. Application of direct simulation Monte Carlo method for analysis of AVLIS evaporation process

    International Nuclear Information System (INIS)

    Nishimura, Akihiko

    1995-01-01

    The computation code of the direct simulation Monte Carlo (DSMC) method was developed in order to analyze the atomic vapor evaporation in atomic vapor laser isotope separation (AVLIS). The atomic excitation temperatures of gadolinium atom were calculated for the model with five low lying states. Calculation results were compared with the experiments obtained by laser absorption spectroscopy. Two types of DSMC simulations which were different in inelastic collision procedure were carried out. It was concluded that the energy transfer was forbidden unless the total energy of the colliding atoms exceeds a threshold value. (author)

  17. Flash evaporator

    OpenAIRE

    1997-01-01

    A device and method for flash evaporating a reagent includes an evaporation chamber that houses a dome on which evaporation occurs. The dome is solid and of high thermal conductivity and mass, and may be heated to a temperature sufficient to vaporize a specific reagent. The reagent is supplied from an external source to the dome through a nozzle, and may be supplied as a continuous stream, as a shower, and as discrete drops. A carrier gas may be introduced into the evaporation chamber and cre...

  18. Evaporation-based method for preparing gelatin foams with aligned tubular pore structures

    International Nuclear Information System (INIS)

    Frazier, Shane D.; Srubar, Wil V.

    2016-01-01

    Gelatin-based foams with aligned tubular pore structures were prepared via liquid-to-gas vaporization of tightly bound water in dehydrated gelatin hydrogels. This study elucidates the mechanism of the foaming process by investigating the secondary (i.e., helical) structure, molecular interactions, and water content of gelatin films before and after foaming using X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry and thermogravimetric analysis (TGA), respectively. Experimental data from gelatin samples prepared at various gelatin-to-water concentrations (5–30 wt.%) substantiate that resulting foam structures are similar in pore diameter (approximately 350 μm), shape, and density (0.05–0.22 g/cm"3) to those fabricated using conventional methods (e.g., freeze-drying). Helical structures were identified in the films but were not evident in the foamed samples after vaporization (~ 150 °C), suggesting that the primary foaming mechanism is governed by the vaporization of water that is tightly bound in secondary structures (i.e., helices, β-turns, β-sheets) that are present in dehydrated gelatin films. FTIR and TGA data show that the foaming process leads to more disorder and reduced hydrogen bonding to hydroxyl groups in gelatin and that no thermal degradation of gelatin occurs before or after foaming. - Highlights: • A new method is presented for fabricating gelatin foams with aligned, tubular pores. • Gelatin hydrogels were dehydrated then heated to 150 °C to induce foaming. • Vaporization of tightly (vs. loosely) bound water is the primary foaming mechanism • Foaming induced no thermal degradation but caused disorder in secondary structures • Foam microstructures are similar to those prepared using conventional methods.

  19. Evaporation-based method for preparing gelatin foams with aligned tubular pore structures

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, Shane D.; Srubar, Wil V., E-mail: wsrubar@colorado.edu

    2016-05-01

    Gelatin-based foams with aligned tubular pore structures were prepared via liquid-to-gas vaporization of tightly bound water in dehydrated gelatin hydrogels. This study elucidates the mechanism of the foaming process by investigating the secondary (i.e., helical) structure, molecular interactions, and water content of gelatin films before and after foaming using X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry and thermogravimetric analysis (TGA), respectively. Experimental data from gelatin samples prepared at various gelatin-to-water concentrations (5–30 wt.%) substantiate that resulting foam structures are similar in pore diameter (approximately 350 μm), shape, and density (0.05–0.22 g/cm{sup 3}) to those fabricated using conventional methods (e.g., freeze-drying). Helical structures were identified in the films but were not evident in the foamed samples after vaporization (~ 150 °C), suggesting that the primary foaming mechanism is governed by the vaporization of water that is tightly bound in secondary structures (i.e., helices, β-turns, β-sheets) that are present in dehydrated gelatin films. FTIR and TGA data show that the foaming process leads to more disorder and reduced hydrogen bonding to hydroxyl groups in gelatin and that no thermal degradation of gelatin occurs before or after foaming. - Highlights: • A new method is presented for fabricating gelatin foams with aligned, tubular pores. • Gelatin hydrogels were dehydrated then heated to 150 °C to induce foaming. • Vaporization of tightly (vs. loosely) bound water is the primary foaming mechanism • Foaming induced no thermal degradation but caused disorder in secondary structures • Foam microstructures are similar to those prepared using conventional methods.

  20. Evaluation of the freeze-thaw/evaporation process for the treatment of produced waters. Final report, August 1992--August 1996

    Energy Technology Data Exchange (ETDEWEB)

    Boysen, J.E.; Walker, K.L.; Mefford, J.L.; Kirsch, J.R. [Resource Technology Corp., Laramie, WY (United States); Harju, J.A. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

    1996-06-01

    The use of freeze-crystallization is becoming increasingly acknowledged as a low-cost, energy-efficient method for purifying contaminated water. The natural freezing process can be coupled with natural evaporative processes to treat oil and gas produced waters year round in regions where subfreezing temperatures seasonally occur. The climates typical of Colorado`s San Juan Basin and eastern slope, as well as the oil and gas producing regions of Wyoming, are well suited for application of these processes in combination. Specifically, the objectives of this research are related to the development of a commercially-economic FTE (freeze-thaw/evaporation) process for the treatment and purification of water produced in conjunction with oil and natural gas. The research required for development of this process consists of three tasks: (1) a literature survey and process modeling and economic analysis; (2) laboratory-scale process evaluation; and (3) field demonstration of the process. Results of research conducted for the completion of these three tasks indicate that produced water treatment and disposal costs for commercial application of the process, would be in the range of $0.20 to $0.30/bbl in the Rocky Mountain region. FTE field demonstration results from northwestern New Mexico during the winter of 1995--96 indicate significant and simultaneous removal of salts, metals, and organics from produced water. Despite the unusually warm winter, process yields demonstrate disposal volume reductions on the order of 80% and confirm the potential for economic production of water suitable for various beneficial uses. The total dissolved solids concentrations of the FTE demonstration streams were 11,600 mg/L (feed), 56,900 mg/L (brine), and 940 mg/L (ice melt).

  1. Streamer Evaporation

    Science.gov (United States)

    Suess, Steven T.; Wang, A. H.; Wu, Shi T.; Nerney, S.

    1998-01-01

    Evaporation is the consequence of slow plasma heating near the tops of streamers where the plasma is only weakly contained by the magnetic field. The form it takes is the slow opening of field lines at the top of the streamer and transient formation of new solar wind. It was discovered in polytropic model calculations, where due to the absence of other energy loss mechanisms in magnetostatic streamers, its ultimate endpoint is the complete evaporation of the streamer. This takes, for plausible heating rates, weeks to months in these models. Of course streamers do not behave this way, for more than one reason. One is that there are losses due to thermal conduction to the base of the streamer and radiation from the transition region. Another is that streamer heating must have a characteristic time constant and depend on the ambient physical conditions. We use our global Magnetohydrodynamics (MHD) model with thermal conduction to examine a few examples of the effect of changing the heating scale height and of making ad hoc choices for how the heating depends on ambient conditions. At the same time, we apply and extend the analytic model of streamers, which showed that streamers will be unable to contain plasma for temperatures near the cusp greater than about 2xl0(exp 6) K. Slow solar wind is observed to come from streamers through transient releases. A scenario for this that is consistent with the above physical process is that heating increases the near-cusp temperature until field lines there are forced open. The subsequent evacuation of the flux tubes by the newly forming slow wind decreases the temperature and heating until the flux tubes are able to reclose. Then, over a longer time scale, heating begins to again refill the flux tubes with plasma and increase the temperature until the cycle repeats itself. The calculations we report here are first steps towards quantitative evaluation of this scenario.

  2. Growth Structural and Optical Properties of the Thermally Evaporated Tin Diselenide (SnSe2) Thin Films

    OpenAIRE

    R. Sachdeva1,; M. Sharma1,; A. Devi1,; U. Parihar1,; N. Kumar1,; N. Padha1,; C.J. Panchal

    2011-01-01

    Tin diselenide (SnSe2) compound was prepared by melt-quenching technique from its constituent elements. The phase structure and composition of the chemical constituents present in the bulk has been determined using X-ray diffraction (XRD) and energy dispersion X-ray analysis (EDAX) respectively. SnSe2 thin films were grown using direct thermal evaporation of SnSe2 compound material on chemically cleaned glass substrate, which were held at different substrate temperatures. X-ray diffraction an...

  3. Modelling and analysis of a desiccant cooling system using the regenerative indirect evaporative cooling process

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.

    2013-01-01

    This paper focuses on the numerical modeling and analysis of a Desiccant Cooling (DEC) system with regenerative indirect evaporative cooling, termed Desiccant Dewpoint Cooling (DDC) system. The DDC system includes a Desiccant Wheel (DW), Dew Point Coolers (DPCs), a heat recovery unit and a heat...... in different climates: temperate in Copenhagen and Mediterranean in Venice. Cheap and clean heat sources (e.g. solar energy) strongly increase the attractiveness of the DDC system. For the Mediterranean climate the DDC system represents a convenient alternative to chiller-based systems in terms of energy costs...... and CO2 emissions. The electricity consumption for auxiliaries in the DDC system is higher than in the chiller-based systems. The number of commercial-size DPC units required to cover the cooling load during the whole period is high: 8 in Copenhagen and 12 in Venice....

  4. Evaporation-induced assembly of biomimetic polypeptides

    International Nuclear Information System (INIS)

    Keyes, Joseph; Junkin, Michael; Cappello, Joseph; Wu Xiaoyi; Wong, Pak Kin

    2008-01-01

    We report an evaporation assisted plasma lithography (EAPL) process for guided self-assembly of a biomimetic silk-elastinlike protein (SELP). We demonstrate the formation of SELP structures from millimeter to submicrometer range on plasma-treatment surface templates during an evaporation-induced self-assembly process. The self-assembly processes at different humidities and droplet volumes were investigated. The process occurs efficiently in a window of optimized operating conditions found to be at 70% relative humidity and 8 μl volume of SELP solution. The EAPL approach provides a useful technique for the realization of functional devices and systems using these biomimetic materials

  5. Structure, surface morphology and electrical properties of evaporated Ni thin films: Effect of substrates, thickness and Cu underlayer

    International Nuclear Information System (INIS)

    Hemmous, M.; Layadi, A.; Guittoum, A.; Souami, N.; Mebarki, M.; Menni, N.

    2014-01-01

    Series of Ni thin films have been deposited by thermal evaporation onto glass, Si(111), Cu, mica and Al 2 O 3 substrates with and without a Cu underlayer. The Ni thicknesses, t, are in the 4 to 163 nm range. The Cu underlayer has also been evaporated with a Cu thickness equal to 27, 52 and 90 nm. The effects of substrate, the Ni thickness and the Cu underlayer on the structural and electrical properties of Ni are investigated. Rutherford Backscattering Spectroscopy was used to probe the Ni/Substrate and Ni–Cu underlayer interfaces and to measure both Ni and Cu thicknesses. The texture, the strain and the grain size values were derived from X-ray diffraction experiments. The surface morphology is studied by means of a Scanning Electron Microscope. The electrical resistivity is measured by the four point probe. The Ni films grow with the <111> texture on all substrates. The Ni grain sizes D increase with increasing thickness for the glass, Si and mica substrates and decrease for the Cu one. The strain ε is positive for low thickness, decreases in magnitude and becomes negative as t increases. With the Cu underlayer, the growth mode goes through two phases: first, the stress (grain size) increases (decreases) up to a critical thickness t Cr , then stress is relieved and grain size increases. All these results will be discussed and correlated. - Highlights: • The structural and electrical properties of evaporated Ni thin films are studied. • The effect of thickness, substrates and Cu underlayer is investigated. • Texture, grain size, strain and surface morphology are discussed. • Growth modes are described as a function of Ni thickness

  6. The generalized second law and the black hole evaporation in an empty space as a nonequilibrium process

    International Nuclear Information System (INIS)

    Saida, Hiromi

    2006-01-01

    When a black hole is in an empty space in which there is no matter field except that of the Hawking radiation (Hawking field), then the black hole evaporates and the entropy of the black hole decreases. The generalized second law guarantees the increase of the total entropy of the whole system which consists of the black hole and the Hawking field. That is, the increase of the entropy of the Hawking field is faster than the decrease of the black hole entropy. In a naive sense, one may expect that the entropy increase of the Hawking field is due to the self-interaction among the composite particles of the Hawking field, and that the self-relaxation of the Hawking field results in the entropy increase. Then, when one considers a non-self-interacting matter field as the Hawking field, it is obvious that self-relaxation does not take place, and one may think that the total entropy does not increase. However, using nonequilibrium thermodynamics which has been developed recently, we find for the non-self-interacting Hawking field that the rate of entropy increase of the Hawking field (the entropy emission rate by the black hole) grows faster than the rate of entropy decrease of the black hole during the black hole evaporation in empty space. The origin of the entropy increase of the Hawking field is the increase of the black hole temperature. Hence an understanding of the generalized second law in the context of nonequilibrium thermodynamics is suggested; even if the self-relaxation of the Hawking field does not take place, the temperature increase of the black hole during the evaporation process causes the entropy increase of the Hawking field to result in the increase of the total entropy

  7. Stacking layered structure of polymer light emitting diodes prepared by evaporative spray deposition using ultradilute solution for improving carrier balance

    International Nuclear Information System (INIS)

    Aoki, Youichi; Shakutsui, Masato; Fujita, Katsuhiko

    2009-01-01

    Polymer light-emitting diodes (PLEDs) with staking layered structures are prepared by the evaporative spray deposition using ultradilute solution (ESDUS) method, which has enabled forming a polymer layer onto another polymer layer even if both polymers are soluble in a solvent used for the preparation. By this method, polymers having various HOMO and LUMO levels can be stacked as a hole transport layer, an emitting layer and an electron transport layer as commonly employed in small molecule-based organic light emitting diodes. Here we demonstrated that a PLED having a tri-layer structure using three kinds of polymers showed significant improvement in quantum efficiency compared with those having a single or bi-layer structure of corresponding polymers.

  8. Heteroepitaxial Growth of Vacuum-Evaporated Si-Ge Films on Nano structured Silicon Substrates

    International Nuclear Information System (INIS)

    Ayu Wazira Azhari; Ayu Wazira Azhari; Kamaruzzaman Sopian; Saleem Hussain Zaidi

    2015-01-01

    In this study, a low-cost vacuum-evaporated technique is used in the heteroepitaxial growth of Si-Ge films. Three different surface variations are employed: for example polished Si, Si micro pyramids and Si nano pillars profiles. A simple metal-assisted chemical etching method is used to fabricate the Si nano pillars, with Ag acting as a catalyst. Following deposition, substrates are subjected to post-deposition thermal annealing at 1000 degree Celsius to improve the crystallinity of the Ge layer. Optical and morphological studies of surface area are conducted using field emission scanning electron microscopy (FE-SEM), Energy Dispersive X-ray (EDX), Raman spectroscopy and infrared spectroscopy. From the infrared spectroscopy analysis, the energy bandgap for Si-Ge films is estimated to be around 0.94 eV. This high-quality Si-Ge film is most favourable for optics, optoelectronics and high-efficiency solar cell applications. (author)

  9. Mixing and evaporation processes in an inverse estuary inferred from δ2H and δ18O

    Science.gov (United States)

    Corlis, Nicholas J.; Herbert Veeh, H.; Dighton, John C.; Herczeg, Andrew L.

    2003-05-01

    We have measured δ2H and δ18O in Spencer Gulf, South Australia, an inverse estuary with a salinity gradient from 36‰ near its entrance to about 45‰ at its head. We show that a simple evaporation model of seawater under ambient conditions, aided by its long residence time in Spencer Gulf, can account for the major features of the non-linear distribution pattern of δ2H with respect to salinity, at least in the restricted part of the gulf. In the more exposed part of the gulf, the δ/ S pattern appears to be governed primarily by mixing processes between inflowing shelf water and outflowing high salinity gulf water. These data provide direct support for the oceanographic model of Spencer Gulf previously proposed by other workers. Although the observed δ/ S relationship here is non-linear and hence in notable contrast to the linear δ/ S relationship in the Red Sea, the slopes of δ2H vs. δ18O are comparable, indicating that the isotopic enrichments in both marginal seas are governed by similar climatic conditions with evaporation exceeding precipitation.

  10. [Dynamics of Irreversible Evaporation of a Water-Protein Droplet and a Problem of Structural and Dynamical Experiments with Single Molecules].

    Science.gov (United States)

    Shaitan, K V; Armeev, G A; Shaytan, A K

    2016-01-01

    We discuss the effect of isothermal and adiabatic evaporation of water on the state of a water-protein droplet. The discussed problem is of current importance due to development of techniques to perform single molecule experiments using free electron lasers. In such structure-dynamic experiments the delivery of a sample into the X-ray beam is performed using the microdroplet injector. The time between the injection and delivery is in the order of microseconds. In this paper we developed a specialized variant of all-atom molecular dynamics simulations for the study of irreversible isothermal evaporation of the droplet. Using in silico experiments we determined the parameters of isothermal evaporation of the water-protein droplet with the sodium and chloride ions in the concentration range of 0.3 M at different temperatures. The energy of irreversible evaporation determined from in silico experiments at the initial stages of evaporation virtually coincides with the specific heat of evaporation for water. For the kinetics of irreversible adiabatic evaporation an exact analytical solution was obtained in the limit of high thermal conductivity of the droplet (or up to the droplet size of -100 Å). This analytical solution incorporates parameters that are determined using in silico. experiments on isothermal droplet evaporation. We show that the kinetics of adiabatic evaporation and cooling of the droplet scales with the droplet size. Our estimates of the water-protemi droplet. freezing rate in the adiabatic regime in a vacuum chamber show that additional techniques for stabilizing the temperature inside the droplet should be used in order to study the conformational transitions of the protein in single molecules. Isothermal and quasi-isothermal conditions are most suitable for studying the conformational transitions upon object functioning. However, in this case it is necessary to take into account the effects of dehydration and rapid increase of ionic strength in an

  11. Structural, optical and magnetic properties of Mn diffusion-doped CdS thin films prepared by vacuum evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Aksu, S. [SoloPower, Inc., 5981 Optical Ct., San Jose, CA 95138 (United States); Bacaksiz, E., E-mail: eminb@ktu.edu.tr [Department of Physics, Karadeniz Technical University, 61080 Trabzon (Turkey); Parlak, M. [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey); Yilmaz, S.; Polat, I.; Altunbas, M. [Department of Physics, Karadeniz Technical University, 61080 Trabzon (Turkey); Tuerksoy, M.; Topkaya, R. [Department of Physics, Gebze Institute of Technology, Gebze, 41400 Kocaeli (Turkey); Ozdogan, K. [Department of Physics, Yildiz Technical University, 34210 Istanbul (Turkey)

    2011-10-17

    Highlights: {yields} Cadmium sulphide thin films were deposited by vacuum evaporation. {yields} Elemental Mn was deposited onto CdS thin films by using electron beam evaporation and annealed under vacuum at different temperatures. {yields} Structural, optical and magnetic studies of Mn-doped CdS have been investigated. {yields} X-ray diffraction results showed that the undoped CdS film had a zinc-blende structure with a strong preferred orientation along the (1 1 1) direction. {yields} Magnetic measurements show that Mn-doped CdS thin films exhibit a ferromagnetism behavior at room temperature. - Abstract: The effect of Mn-doping on the vacuum deposited CdS thin films has been investigated by studying the changes in the structural, optical and magnetic properties of the films. A thin Mn layer evaporated on the CdS film surface served as the source layer for the diffusion doping. Doping was accomplished by annealing the CdS/Mn stack layers at the temperature range from 300 deg. C to 400 deg. C in step of 50 deg. C for 30 min under vacuum. The X-ray diffraction results showed that the undoped CdS film had a zinc-blende structure with a strong preferred orientation along the (1 1 1) direction. The incorporation of Mn did not cause any change in the texture but reduced the peak intensity and lead to a smaller crystallite size. Investigation of surface morphology using atomic force microscopy confirmed the decrease in the grain size with the Mn diffusion. In addition, a more uniform grain size distribution was observed in the doped films. X-ray photoelectron spectroscopy analysis showed that Mn atoms on the surface of the films were bounded to either sulphur or oxygen atoms. Auger electron spectroscopy of the diffusion-doped CdS sample at 350 deg. C indicated that the atomic Mn concentration was higher close to the surface region and Mn was distributed with a steadily decreasing profile through the bulk of the film with an average atomic concentration value around few

  12. Washing water treatment process for UF{sub 6} cylinder by adjusting evaporation technology in a low temperature and low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-tae; Ju, Young-jong; Cho, Nam-chan [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of); Kim, Yun-kwan; Jin, Chang-suk [Jeontech CO., Suwon (Korea, Republic of)

    2016-10-15

    The liquid waste is treated in this procedure; 1) Add NaOH to the liquid waste and filter the mixture with a screen. 2) Screened residue is dried and then stored in a uranium storage. 3) liquid part is moved to a storage tank and radioactivity is measured in the liquid. 5) If the concentration of radioactivity is lower than corresponding regulation limit, the liquid moved to a reaction tank and evaporated with additional low concentration HF in 105℃. 6) Radioactivity of distillate is measured and the value is lower than regulation, it is treated with a thermal decomposition process and discharged to the atmosphere in gas state. 7) Solid waste produced in the evaporation step is managed as solid nuclear waste. The treatment procedure mentioned above has disadvantageous points, producing large amount of solid waste as well as, high energy and chemical consumption. In this study, liquid waste from a real scaled cylinder wash process is applied to evaporation system to confirm feasibility of the application of evaporation and, to reduce waste production and energy consumption. Liquid radioactive wastewater from a real scaled UF6 cylinder wash process was applied to evaporation treatment system. Radioactive concentration in gross alpha was removed 99.9% in the evaporation system. And the concentration in distillate was lower than the discharge regulation. Removal of U-235 was 99.9% in the process. And 15 other kinds of radionuclides in the raw wastewater were removed completely. Secondary waste production of the evaporation system is 15g/L.

  13. Gas sensing properties of zinc stannate (Zn{sub 2}SnO{sub 4}) nanowires prepared by carbon assisted thermal evaporation process

    Energy Technology Data Exchange (ETDEWEB)

    Tharsika, T., E-mail: tharsika@siswa.um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Akbar, S.A., E-mail: akbar.1@osu.edu [Center for Industrial Sensors and Measurements (CISM), Department of Materials Science and Engineering, Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Sabri, M.F.M., E-mail: faizul@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Wong, Y.H., E-mail: yhwong@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-01-05

    Highlights: • Zn{sub 2}SnO{sub 4} nanowires are grown on Au/alumina substrate by a carbon assisted thermal evaporation process. • Optimum growth conditions for Zn{sub 2}SnO{sub 4} nanowires are determined. • Ethanol gas is selectively sensed with high sensitivity. - Abstract: Zn{sub 2}SnO{sub 4} nanowires are successfully synthesized by a carbon assisted thermal evaporation process with the help of a gold catalyst under ambient pressure. The as-synthesized nanowires are characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) equipped with an energy dispersive X-ray spectroscopy (EDS). The XRD patterns and elemental mapping via TEM–EDS clearly indicate that the nanowires are Zn{sub 2}SnO{sub 4} with face centered spinel structure. HRTEM image confirms that Zn{sub 2}SnO{sub 4} nanowires are single crystalline with an interplanar spacing of 0.26 nm, which is ascribed to the d-spacing of (3 1 1) planes of Zn{sub 2}SnO{sub 4}. The optimum processing condition and a possible formation mechanism of these Zn{sub 2}SnO{sub 4} nanowires are discussed. Additionally, sensor performance of Zn{sub 2}SnO{sub 4} nanowires based sensor is studied for various test gases such as ethanol, methane and hydrogen. The results reveal that Zn{sub 2}SnO{sub 4} nanowires exhibit excellent sensitivity and selectivity toward ethanol with quick response and recovery times. The response of the Zn{sub 2}SnO{sub 4} nanowires based sensors to 50 ppm ethanol at an optimum operating temperature of 500 °C is about 21.6 with response and recovery times of about 116 s and 182 s, respectively.

  14. Influence of formulation and processing variables on properties of itraconazole nanoparticles made by advanced evaporative precipitation into aqueous solution.

    Science.gov (United States)

    Bosselmann, Stephanie; Nagao, Masao; Chow, Keat T; Williams, Robert O

    2012-09-01

    Nanoparticles, of the poorly water-soluble drug, itraconazole (ITZ), were produced by the Advanced Evaporative Precipitation into Aqueous Solution process (Advanced EPAS). This process combines emulsion templating and EPAS processing to provide improved control over the size distribution of precipitated particles. Specifically, oil-in-water emulsions containing the drug and suitable stabilizers are sprayed into a heated aqueous solution to induce precipitation of the drug in form of nanoparticles. The influence of processing parameters (temperature and volume of the heated aqueous solution; type of nozzle) and formulation aspects (stabilizer concentrations; total solid concentrations) on the size of suspended ITZ particles, as determined by laser diffraction, was investigated. Furthermore, freeze-dried ITZ nanoparticles were evaluated regarding their morphology, crystallinity, redispersibility, and dissolution behavior. Results indicate that a robust precipitation process was developed such that size distribution of dispersed nanoparticles was shown to be largely independent across the different processing and formulation parameters. Freeze-drying of colloidal dispersions resulted in micron-sized agglomerates composed of spherical, sub-300-nm particles characterized by reduced crystallinity and high ITZ potencies of up to 94% (w/w). The use of sucrose prevented particle agglomeration and resulted in powders that were readily reconstituted and reached high and sustained supersaturation levels upon dissolution in aqueous media.

  15. Organizational strategy, structure, and process.

    Science.gov (United States)

    Miles, R E; Snow, C C; Meyer, A D; Coleman, H J

    1978-07-01

    Organizational adaptation is a topic that has received only limited and fragmented theoretical treatment. Any attempt to examine organizational adaptation is difficult, since the process is highly complex and changeable. The proposed theoretical framework deals with alternative ways in which organizations define their product-market domains (strategy) and construct mechanisms (structures and processes) to pursue these strategies. The framework is based on interpretation of existing literature and continuing studies in four industries (college textbook publishing, electronics, food processing, and health care).

  16. Impact of additional sulphur on structure, morphology and optical properties of SnS thin films by thermal evaporation

    Science.gov (United States)

    Banotra, Arun; Padha, Naresh; Kumar, Shiv; Kapoor, Ashok K.

    2018-05-01

    Thin films of SnS have been obtained from Sn and S powders which were mixed up using ball mill technique with and without evaporating additional sulphur prior to annealing at 523K. The obtained samples were taken for structural, optical, chemical and morphological studies. The X-ray diffraction reveals the formation of SnS phase on annealing in vacuum having S/Sn ratio of 0.67 obtained from EDAX. This deficit in `S' is removed by supplementing additional `S' of 200nm prior to annealing which results in the S/Sn ratio of 1.01. The optical transmission recorded from spectrophotometer used to study different optical parameters. Morphological results corroborate well with the XRD, EDAX and optical study. The obtained stoichiometric films were also tested for Ag/p-SnS Schottky diodes on In coated glass substrates using current voltage measurements.

  17. Structural, optical, and photoluminescence characterization of electron beam evaporated ZnS/CdSe nanoparticles thin films

    Science.gov (United States)

    Mohamed, S. H.; Ali, H. M.

    2011-01-01

    Structural, optical, and photoluminescence investigations of ZnS capped with CdSe films prepared by electron beam evaporation are presented. X-ray diffraction analysis revealed that the ZnS/CdSe nanoparticles films contain cubic cadmium selenide and hexagonal zinc sulfide crystals and the ZnS grain sizes increased with increasing ZnS thickness. The refractive index was evaluated in terms of envelope method, which has been suggested by Swanepoel in the transparent region. The refractive index values were found to increase with increasing ZnS thickness. However, the optical band gap and the extinction coefficient were decreased with increasing ZnS thickness. Photoluminescence (PL) investigations revealed the presence of two broad emission bands. The ZnS thickness significantly influenced the PL intensities.

  18. Structural, mechanical, electrical and optical properties of a new lithium boro phthalate NLO crystal synthesized by a slow evaporation method

    Science.gov (United States)

    Mohanraj, K.; Balasubramanian, D.; Jhansi, N.

    2017-11-01

    A new non-linear optical (NLO) single crystal of lithium boro phthalate (LiBP) was grown by slow solvent evaporation technique. The powder sample was subjected to powder X-ray diffraction (PXRD) to find its crystalline nature and the crystal structure of the grown crystal was determined using single crystal X-ray (SXRD) diffraction analysis. The Fourier Transform Infrared (FTIR) spectrum was recorded for grown crystal to identify the various functional groups present in the compound. The mechanical property of the LiBP single crystal was studied using Vickers microhardness tester. The dielectric constant and dielectric loss measurements were carried out for the grown crystal at various temperatures. The grown crystal was subjected to UV-Visible Spectral Studies to analyze the linear optical behavior of the grown crystal. The Kurtz-Perry Powder technique was employed to measure the Second Harmonic Generation efficiency of the grown crystal.

  19. Implementation of new integrated evaporation equipment for the preparation of 238U targets and improvement of the deposition process

    Science.gov (United States)

    Vanleeuw, D.; Lewis, D.; Moens, A.; Sibbens, G.; Wiss, T.

    2018-05-01

    Measurement of neutron cross section data is a core activity of the JRC-Directorate G for Nuclear Safety and Security in Geel. After a period of reduced activity and in line with a renewed interest for nuclear data required for GenIV reactors and waste minimization, the demand for high quality actinide targets increased. Physical vapour deposition by thermal evaporation is a key technique to prepare homogeneous thin actinide layers, but due to ageing effects the earlier in-house developed equipment can no longer provide the required quality. Because of a current lack of experience and human resources cooperation with private companies is required for the development of new deposition equipment directly integrated in a glove box. In this paper we describe the design, implementation and validation of the first commercial actinide evaporator in a glove box as well as the optimization of the deposition process. Highly enriched 238U3O8 was converted to 238UF4 powder and several deposition runs were performed on different substrates. The deposition parameters were varied and defined in order to guarantee physical and chemical stable homogeneous UF4 layers, even on polished substrates which was not longer feasible with the older equipment. The stability problem is discussed in view of the thin layer growth by physical vapour deposition and the influence of the deposition parameters on the layer quality. The deposits were characterized for the total mass by means of substitution weighing and for the areal density of 238U by means of alpha particle counting and thermal ionization mass spectrometry (TIMS). The quality of the layer was visually evaluated and by means of stereo microscopy and auto radiography.

  20. A study on heat transfer through the fin-wick structure mounted in the evaporator for a plate loop heat pipe system

    International Nuclear Information System (INIS)

    Nguyen, Xuan Hung; Sung, Byung Ho; Choi, Jee Hoon; Kim, Chul Ju; Yoo, Jung Hyung; Seo, Min Whan

    2008-01-01

    This paper investigates the plate loop heat pipe system with an evaporator mounted with fin-wick structure to dissipate effectively the heat generated by the electronic components. The heat transfer formulation is modeled and predicted through thermal resistance analysis of the fin-wick structure in the evaporator. The experimental approach measures the thermal resistances and the operating characteristics. These results gathered in this investigation have been used to the objective of the information to improve the LHP system design so as to apply as the future cooling devices of the electronic components

  1. Process of obtaining the multilayer structure

    International Nuclear Information System (INIS)

    Buzdugan, A.; Dolghieru, V.; Jitari, V.; Colomeico, E.; Popescu, A.

    1997-01-01

    The invention relates to the multilayer structures of glassy semiconductors with the refractive index abrupt and smooth variation at the bound between the layers and may be used for manufacturing the optical information transmission and recording media. With a view to simplify the technology, compositionally different layers of chalcogenide glassy semiconductors having various refractive indexes from As 2 S 3 , are being by thermal vacuum evaporation, changing the vaporization temperature thereof from 120 to 280 C

  2. Control of evaporation by geometry in capillary structures. From confined pillar arrays in a gap radial gradient to phyllotaxy-inspired geometry.

    Science.gov (United States)

    Chen, Chen; Duru, Paul; Joseph, Pierre; Geoffroy, Sandrine; Prat, Marc

    2017-11-08

    Evaporation is a key phenomenon in the natural environment and in many technological systems involving capillary structures. Understanding the evaporation front dynamics enables the evaporation rate from microfluidic devices and porous media to be finely controlled. Of particular interest is the ability to control the position of the front through suitable design of the capillary structure. Here, we show how to design model capillary structures in microfluidic devices so as to control the drying kinetics. This is achieved by acting on the spatial organization of the constrictions that influence the invasion of the structure by the gas phase. Two types of control are demonstrated. The first is intended to control the sequence of primary invasions through the pore space, while the second aims to control the secondary liquid structures: films, bridges, etc., that can form in the region of pore space invaded by the gas phase. It is shown how the latter can be obtained from phyllotaxy-inspired geometry. Our study thus opens up a route toward the control of the evaporation kinetics by means of tailored capillary structures.

  3. Structural and magnetic properties of SmCo-based magnetic films grown by electron-beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, P., E-mail: psdrdo@gmail.com [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Vinod, V.T.P.; Černík, Miroslav [Institute for Nanomaterials, Advanced Technologies and Innovation, Department of Natural Sciences, Technical University of Liberec, Studentská 1402/2, Liberec 1, 461 17 (Czech Republic); Vishnuraj, R.; Arout Chelvane, J.; Kamat, S.V. [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Hsu, Jen-Hwa, E-mail: jhhsu@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)

    2015-07-01

    Sub-micron thick Sm–Co films (200 and 300 nm) with selective phase composition are grown on Si (100) substrates by electron-beam evaporation using Sm-lean alloy targets such as Sm{sub 4}Co{sub 96} and Sm{sub 8}Co{sub 92}. The structural and magnetic properties of Sm–Co films are characterized by x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and super-conducting quantum interference device (SQUID) magnetometer. The Sm–Co films obtained with the Sm{sub 4}Co{sub 96} target exhibit Sm{sub 2}Co{sub 17} as a prominent phase; while the films produced with the Sm{sub 8}Co{sub 92} target show Sm{sub 2}Co{sub 7} as a major phase. Both the Sm–Co films reveal granular morphology; however, the estimated grain size values are slightly lower in the case of Sm{sub 2}Co{sub 7} films, irrespective of their thicknesses. Coercivity (H{sub c}) values of 1.48 and 0.9 kOe are achieved for the as-grown 200-nm thick Sm{sub 2}Co{sub 17} and Sm{sub 2}Co{sub 7}-films. Temperature-dependent magnetization studies confirm that the demagnetization behaviors of these films are consistent with respect to the identified phase composition. Upon rapid thermal annealing, maximum H{sub c} value of 8.4 kOe is achieved for the 200 nm thick Sm{sub 2}Co{sub 17}-films. As far as e-beam evaporated Sm–Co films are concerned, this H{sub c} value is one of the best values reported so far. - Highlights: • Electron-beam evaporation was exploited to grow sub-μm thick Sm–Co films. • Sm{sub 2}Co{sub 7} and Sm{sub 2}Co{sub 17} magnetic phases were crystallized using Sm-lean alloy targets. • Both 200 and 300-nm thick Sm–Co films revealed distinct granular morphology. • Sm–Co films of lower thickness exhibited high H{sub c} and low M{sub s} and vice-versa. • Coercivity value of 8.4 kOe achieved for the 200-nm thick Sm{sub 2}Co{sub 17}-films after RTA.

  4. Is neutron evaporation from highly excited nuclei a poisson random process

    International Nuclear Information System (INIS)

    Simbel, M.H.

    1982-01-01

    It is suggested that neutron emission from highly excited nuclei follows a Poisson random process. The continuous variable of the process is the excitation energy excess over the binding energy of the emitted neutrons and the discrete variable is the number of emitted neutrons. Cross sections for (HI,xn) reactions are analyzed using a formula containing a Poisson distribution function. The post- and pre-equilibrium components of the cross section are treated separately. The agreement between the predictions of this formula and the experimental results is very good. (orig.)

  5. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This

  6. Black hole evaporation: a paradigm

    International Nuclear Information System (INIS)

    Ashtekar, Abhay; Bojowald, Martin

    2005-01-01

    A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: (i) resolution of the Schwarzschild singularity using quantum geometry methods and (ii) time evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional spacetime diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on spacetime geometry and structure of quantum theory would be resolved

  7. Evaporator bulb

    International Nuclear Information System (INIS)

    Stoll, W.

    1977-01-01

    In order to prevent the hazard of a possible excursion in an evaporator bulb for radioactive liquids there is provided in the bottom of the vessel a recess filled with a neutron-absorbing and moderating material. The bottom drain pipe is coming out sideways and connected with a heated pipe feeding above into the vessel tangentially. (TK) [de

  8. Theoretical modeling of heating and structure alterations in cartilage under laser radiation with regard to water evaporation and diffusion dominance

    Science.gov (United States)

    Sobol, Emil N.; Kitai, Moishe S.; Jones, Nicholas; Sviridov, Alexander P.; Milner, Thomas E.; Wong, Brian

    1998-05-01

    We develop a theoretical model to calculate the temperature field and the size of modified structure area in cartilaginous tissue. The model incorporates both thermal and mass transfer in a tissue regarding bulk absorption of laser radiation, water evaporation from a surface and temperature dependence of diffusion coefficient. It is proposed that due to bound- to free-phase transition of water in cartilage heated to about 70 degrees Celsius, some parts of cartilage matrix (proteoglycan units) became more mobile. The movement of these units takes place only when temperature exceed 70 degrees Celsius and results in alteration of tissue structure (denaturation). It is shown that (1) the maximal temperature is reached not on the surface irradiated at some distance from the surface; (2) surface temperature reaches a plateau quicker that the maximal temperature; (3) the depth of denatured area strongly depends on laser fluence and wavelength, exposure time and thickness of cartilage. The model allows to predict and control temperature and depth of structure alterations in the course of laser reshaping and treatment of cartilage.

  9. The use of processes evaporation and condensation to provide a suitable operating environment of systems

    Energy Technology Data Exchange (ETDEWEB)

    Kolková, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk [University of Žilina, Research centre, Univerzitná 8215/1, 010 26 Žilina (Slovakia); Holubčík, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 8215/1, 010 26 Žilina (Slovakia)

    2016-06-30

    All electronic components which exhibit electrical conductor resistance, generates heat when electricity is passed (Joule - Lenz’s Law). The generated heat is necessary to take into surrounding environment. To reduce the operating temperature of electronic components are used various types of cooling in electronic devices. The released heat is removed from the outside of the device in several ways, either alone or in combination. Intensification of cooling electronic components is in the use of heat transfer through phase changes. From the structural point of view it is important to create a cooling system which would be able to drain the waste heat converter for each mode of operation device. Another important criterion is the reliability of the cooling, and it is appropriate to choose cooling system, which would not contain moving elements. In this article, the issue tackled by the phase change in the heat pipe.

  10. The use of processes evaporation and condensation to provide a suitable operating environment of systems

    Science.gov (United States)

    Kolková, Zuzana; Holubčík, Michal; Malcho, Milan

    2016-06-01

    All electronic components which exhibit electrical conductor resistance, generates heat when electricity is passed (Joule - Lenz's Law). The generated heat is necessary to take into surrounding environment. To reduce the operating temperature of electronic components are used various types of cooling in electronic devices. The released heat is removed from the outside of the device in several ways, either alone or in combination. Intensification of cooling electronic components is in the use of heat transfer through phase changes. From the structural point of view it is important to create a cooling system which would be able to drain the waste heat converter for each mode of operation device. Another important criterion is the reliability of the cooling, and it is appropriate to choose cooling system, which would not contain moving elements. In this article, the issue tackled by the phase change in the heat pipe.

  11. Optical and structural properties of CuSbS2 thin films grown by thermal evaporation method

    International Nuclear Information System (INIS)

    Rabhi, A.; Kanzari, M.; Rezig, B.

    2009-01-01

    Structural, optical and electrical properties of CuSbS 2 thin films grown by thermal evaporation have been studied relating the effects of substrate heating conditions of these properties. The CuSbS 2 thin films were carried out at substrate temperatures in the temperature range 100-200 deg. C . The structure and composition were characterized by XRD, SEM and EDX. X-ray diffraction revealed that the films are (111) oriented upon substrate temperature 170 deg. C and amorphous for the substrate temperatures below 170 deg. C . No secondary phases are observed for all the films. The optical absorption coefficients and band gaps of the films were estimated by optical transmission and reflection measurements at room temperature. Strong absorption coefficients in the range 10 5 -10 6 cm -1 at 500 nm were found. The direct gaps Eg lie between 0.91-1.89 eV range. It is observed that there is a decrease in optical band gap Eg with increasing the substrate temperature. Resistivity of 0.03-0.96 Ω cm, in dependence on substrate temperature was characterized. The all unheated films exhibit p-type conductivity. The characteristics reported here also offer perspective for CuSbS 2 as an absorber material in solar cells applications

  12. Preparation of InSe Thin Films by Thermal Evaporation Method and Their Characterization: Structural, Optical, and Thermoelectrical Properties

    Directory of Open Access Journals (Sweden)

    Sarita Boolchandani

    2018-01-01

    Full Text Available The indium selenium (InSe bilayer thin films of various thickness ratios, InxSe(1-x (x = 0.25, 0.50, 0.75, were deposited on a glass substrate keeping overall the same thickness of 2500 Ǻ using thermal evaporation method under high vacuum atmosphere. Electrical, optical, and structural properties of these bilayer thin films have been compared before and after thermal annealing at different temperatures. The structural and morphological characterization was done using XRD and SEM, respectively. The optical bandgap of these thin films has been calculated by Tauc’s relation that varies within the range of 1.99 to 2.05 eV. A simple low-cost thermoelectrical power measurement setup is designed which can measure the Seebeck coefficient “S” in the vacuum with temperature variation. The setup temperature variation is up to 70°C. This setup contains a Peltier device TEC1-12715 which is kept between two copper plates that act as a reference metal. Also, in the present work, the thermoelectric power of indium selenide (InSe and aluminum selenide (AlSe bilayer thin films prepared and annealed in the same way is calculated. The thermoelectric power has been measured by estimating the Seebeck coefficient for InSe and AlSe bilayer thin films. It was observed that the Seebeck coefficient is negative for InSe and AlSe thin films.

  13. Structural, optical and electrical characterization of vacuum-evaporated nanocrystalline CdSe thin films for photosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vipin; Sharma, D.K.; Sharma, Kapil [Krishna Institute of Engineering and Technology, Department of Physics, Ghaziabad (India); Dwivedi, D.K. [M.M.M University of Technology, Department of Physics, Gorakhpur (India)

    2016-11-15

    II-VI nanocrystalline semiconductors offer a wide range of applications in electronics, optoelectronics and photonics. Thin films of CdSe were deposited onto ultra-clean glass substrates by vacuum evaporation method. The as-deposited films were annealed in vacuum at 350 K. The structural, elemental, morphological, optical and electrical investigations of annealed films were carried out. The X-ray diffraction pattern of the films shows that films were polycrystalline in nature having hexagonal structure with preferential orientation of grains along (002) plane. SEM image indicates that the films were uniform and well covered to the glass substrate. EDAX analysis confirms the stoichiometric composition of the film. Raman spectra were used to observe the characteristic vibrational modes of CdSe. The energy band gap of these films was obtained by absorption spectra. The films were found to have a direct type of transition of band gap occurring at 1.75 eV. The dark electrical conductivity and photoconductivity reveals that the films were semiconducting in nature indicating the suitability of these films for photosensor applications. The Hall effect measurement reveals that the films have n-type electrical conductivity. (orig.)

  14. Structural processing for wireless communications

    CERN Document Server

    Lu, Jianhua; Ge, Ning

    2015-01-01

    This brief presents an alternative viewpoint on processing technology for wireless communications based on recent research advances. As a lever in emerging processing technology, the structure perspective addresses the complexity and uncertainty issues found in current wireless applications. Likewise, this brief aims at providing a new prospective to the development of communication technology and information science, while stimulating new theories and technologies for wireless systems with ever-increasing complexity. Readers of this brief may range from graduate students to researchers in related fields.

  15. Using evaporation to control capillary instabilities in micro-systems.

    Science.gov (United States)

    Ledesma-Aguilar, Rodrigo; Laghezza, Gianluca; Yeomans, Julia M; Vella, Dominic

    2017-12-06

    The instabilities of fluid interfaces represent both a limitation and an opportunity for the fabrication of small-scale devices. Just as non-uniform capillary pressures can destroy micro-electrical mechanical systems (MEMS), so they can guide the assembly of novel solid and fluid structures. In many such applications the interface appears during an evaporation process and is therefore only present temporarily. It is commonly assumed that this evaporation simply guides the interface through a sequence of equilibrium configurations, and that the rate of evaporation only sets the timescale of this sequence. Here, we use Lattice-Boltzmann simulations and a theoretical analysis to show that, in fact, the rate of evaporation can be a factor in determining the onset and form of dynamical capillary instabilities. Our results shed light on the role of evaporation in previous experiments, and open the possibility of exploiting diffusive mass transfer to directly control capillary flows in MEMS applications.

  16. {11-bar 01} twin dislocation structures in evaporated titanium thin films

    International Nuclear Information System (INIS)

    Bursill, L.A.; Peng, Julin; Fan, Xudong; Kasukabe, Y.; Yamada, Y.

    1995-01-01

    High-resolution transmission electron micrographs of { 11-bar 01} interfacial twin dislocations in Ti thin films are reexamined. Computer simulations of the experimental images were obtained using atomic models deduced by Pond, Bacon and Serra (Phil Mag Letts, 1995). Two twin dislocations were analysed, with step heights of 4 x d(K 1 ) and 2 x d (K 1 ), where d(K 1 ) is the spacing of the { 11-bar 01 } planes. Reasonable agreement with the predicted structures was obtained at about 0.17nm resolution. 10 refs., 2 figs

  17. Structural characterization of nanocrystalline cadmium sulphide powder prepared by solvent evaporation technique

    Science.gov (United States)

    Pandya, Samir; Tandel, Digisha; Chodavadiya, Nisarg

    2018-05-01

    CdS is one of the most important compounds in the II-VI group of semiconductor. There are numerous applications of CdS in the form of nanoparticles and nanocrystalline. Semiconductors nanoparticles (also known as quantum dots), belong to state of matter in the transition region between molecules and solids, have attracted a great deal of attention because of their unique electrical and optical properties, compared to bulk materials. In the field of optoelectronic, nanocrystalline form utilizes mostly in the field of catalysis and fluid technology. Considering these observations, presented work had been carried out, i.e. based on the nanocrystalline material preparation. In the present work CdS nano-crystalline powder was synthesized by a simple and cost effective chemical technique to grow cadmium sulphide (CdS) nanoparticles at 200 °C with different concentrations of cadmium. The synthesis parameters were optimized. The synthesized powder was structurally characterized by X-ray diffraction and particle size analyzer. In the XRD analysis, Micro-structural parameters such as lattice strain, dislocation density and crystallite size were analysed. The broadened diffraction peaks indicated nanocrystalline particles of the film material. In addition to that the size of the prepared particles was analyzed by particle size analyzer. The results show the average size of CdS particles ranging from 80 to 100 nm. The overall conclusion of the work can be very useful in the synthesis of nanocrystalline CdS powder.

  18. Effect of surfactant concentration on characteristics of mesoporous bioactive glass prepared by evaporation induced self-assembly process

    International Nuclear Information System (INIS)

    Shih, Chi-Chung; Chien, Chi-Sheng; Kung, Jung-Chang; Chen, Jian-Chih; Chang, Shy-Shin; Lu, Pei-Shan; Shih, Chi-Jen

    2013-01-01

    Highlights: ► All the unwanted organic contents were removed completely at temperatures above 600 °C. ► Specific surface area and pore volume of Mesoporous bioactive glasses reached maximum at the critical surfactant concentration. ► SAED pattern suggests that some glassy structures in the Bioactive Glasses became crystalline due to the heat treatment. ► The MBGs can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods. - Abstract: Mesoporous bioactive glasses were prepared by the evaporation-induced self-assembly method. The main objective of the present study is to determine the effect of surfactant concentration on the synthesis of SiO 2 –CaO–P 2 O 5 mesoporous bioactive glasses; the characterization techniques used include X-ray diffraction, scanning electron microscopy and nitrogen adsorption and desorption isotherms. The results show that the specific surface area initially increased with increasing surfactant concentrations in the range of 2.1–9.1 wt% and significantly decreased from 328.7 to 204.0 m 2 /g in the concentration range of 9.1–12.5 wt%. For texture evaluation, the selected area electron diffraction patterns of the mesoporous bioactive glass precursor gels (9.1 wt% F127) calcined at different temperatures were analyzed; these patterns support the notion that some glassy structures in bioactive glasses become crystalline following heat treatment. The scanning electron microscopy images and X-ray diffraction patterns obtained agree with the inductively coupled plasma with atomic emission spectroscopy results as the mesoporous bioactive glasses can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods.

  19. Effect of surfactant concentration on characteristics of mesoporous bioactive glass prepared by evaporation induced self-assembly process

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chi-Chung [Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung, and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Department of Family Medicine, Chang Gung Memorial Hospital, Keelung, and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Chien, Chi-Sheng [Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Department of Orthopaedics, Chi Mei Foundation Hospital, Tainan, Taiwan (China); Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Kung, Jung-Chang [Department of Family Dentistry, Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, Jian-Chih [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, Shy-Shin [Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Department of Family Medicine, Chang Gung Memorial Hospital, Taoyuan, and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Lu, Pei-Shan [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Shih, Chi-Jen, E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 80708, Taiwan (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer All the unwanted organic contents were removed completely at temperatures above 600 Degree-Sign C. Black-Right-Pointing-Pointer Specific surface area and pore volume of Mesoporous bioactive glasses reached maximum at the critical surfactant concentration. Black-Right-Pointing-Pointer SAED pattern suggests that some glassy structures in the Bioactive Glasses became crystalline due to the heat treatment. Black-Right-Pointing-Pointer The MBGs can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods. - Abstract: Mesoporous bioactive glasses were prepared by the evaporation-induced self-assembly method. The main objective of the present study is to determine the effect of surfactant concentration on the synthesis of SiO{sub 2}-CaO-P{sub 2}O{sub 5} mesoporous bioactive glasses; the characterization techniques used include X-ray diffraction, scanning electron microscopy and nitrogen adsorption and desorption isotherms. The results show that the specific surface area initially increased with increasing surfactant concentrations in the range of 2.1-9.1 wt% and significantly decreased from 328.7 to 204.0 m{sup 2}/g in the concentration range of 9.1-12.5 wt%. For texture evaluation, the selected area electron diffraction patterns of the mesoporous bioactive glass precursor gels (9.1 wt% F127) calcined at different temperatures were analyzed; these patterns support the notion that some glassy structures in bioactive glasses become crystalline following heat treatment. The scanning electron microscopy images and X-ray diffraction patterns obtained agree with the inductively coupled plasma with atomic emission spectroscopy results as the mesoporous bioactive glasses can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods.

  20. Effect of projectile structure on evaporation residue yields in incomplete fusion reactions

    CERN Document Server

    Babu, K S; Sudarshan, K; Shrivastava, B D; Goswami, A; Tomar, B S

    2003-01-01

    The excitation functions of heavy residues, representing complete and incomplete fusion products, produced in the reaction of sup 1 sup 2 C and sup 1 sup 3 C on sup 1 sup 8 sup 1 Ta have been measured over the projectile energy range of 5 to 6.5 MeV/nucleon by the recoil catcher method and off-line gamma-ray spectrometry. Comparison of the measured excitation functions with those calculated using the PACE2 code based on the statistical model revealed the occurrence of incomplete fusion reactions in the formation of alpha emission products. The fraction of incomplete fusion cross sections in the sup 1 sup 2 C + sup 1 sup 8 sup 1 Ta reaction was found to be higher, by a factor of approx 2, than that in the sup 1 sup 3 C + sup 1 sup 8 sup 1 Ta reaction. The results have been discussed in terms of the effect of alpha cluster structure of the projectile on incomplete fusion reactions.

  1. Trophic structure and avian communities across a salinity gradient in evaporation ponds of the San Francisco Bay estuary

    Science.gov (United States)

    Takekawa, John Y.; Miles, A.K.; Schoellhamer, D.H.; Athearn, N.D.; Saiki, M.K.; Duffy, W.D.; Kleinschmidt, S.; Shellenbarger, G.G.; Jannusch, C.A.

    2006-01-01

    Commercial salt evaporation ponds comprise a large proportion of baylands adjacent to the San Francisco Bay, a highly urbanized estuary. In the past two centuries, more than 79% of the historic tidal wetlands in this estuary have been lost. Resource management agencies have acquired more than 10 000 ha of commercial salt ponds with plans to undertake one of the largest wetland restoration projects in North America. However, these plans have created debate about the ecological importance of salt ponds for migratory bird communities in western North America. Salt ponds are unique mesohaline (5–18 g l−1) to hyperhaline (> 40 g l−1) wetlands, but little is known of their ecological structure or value. Thus, we studied decommissioned salt ponds in the North Bay of the San Francisco Bay estuary from January 1999 through November 2001. We measured water quality parameters (salinity, DO, pH, temperature), nutrient concentrations, primary productivity, zooplankton, macroinvertebrates, fish, and birds across a range of salinities from 24 to 264 g l−1. Our studies documented how unique limnological characteristics of salt ponds were related to nutrient levels, primary productivity rates, invertebrate biomass and taxa richness, prey fish, and avian predator numbers. Salt ponds were shown to have unique trophic and physical attributes that supported large numbers of migratory birds. Therefore, managers should carefully weigh the benefits of increasing habitat for native tidal marsh species with the costs of losing these unique hypersaline systems.

  2. RESULTS OF GROUNDWATER MONITORING FOR THE 183-H SOLAR EVAPORATION BASINS AND 300 AREA PROCESS TRENCHES JANUARY - JUNE 2008

    International Nuclear Information System (INIS)

    Hartman, M.J.

    2008-01-01

    This is one of a series of reports on Resource Conservation and Recovery Act of 1976 (RCRA) monitoring at the 183-H solar evaporation basins and the 300 Area process trenches. It fulfills the requirement of Washington Administrative Code (WAC) 173-303-645(11)(g), 'Release from Regulated Units', to report twice each year on the effectiveness of the corrective action program. This report covers the period from January through June 2008. The current objective of corrective action monitoring the 183-H basins is simply to track trends. Although there is short-term variability in contaminant concentrations, trends over the past 10 years are downward. The current Hanford Facility RCRA Permit (Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste (Permit No. WA 7890008967)) and monitoring plan remain adequate for the objective of tracking trends. The objective of groundwater monitoring at the 300 Area process trenches is to demonstrate the effectiveness of the corrective action program by examining the trend of the constituents of interest to confirm that they are attenuating naturally. The overall concentration of uranium in network wells remained above the 30 (micro)g/L drinking water standard in the three downgradient wells screened at the water table. Fluctuations of uranium concentration are caused by changes in river stage. The concentration of cis-1,2-dichloroethene remained above the 70 (micro)g/L drinking water standard in one well (399-1-16B). Concentrations are relatively steady at this well and are not affected by river stage. Trichloroethene and tetrachloroethene concentrations were below detection limits in all wells during the reporting period

  3. Modeling black hole evaporation

    CERN Document Server

    Fabbri, Alessandro

    2005-01-01

    The scope of this book is two-fold: the first part gives a fully detailed and pedagogical presentation of the Hawking effect and its physical implications, and the second discusses the backreaction problem, especially in connection with exactly solvable semiclassical models that describe analytically the black hole evaporation process. The book aims to establish a link between the general relativistic viewpoint on black hole evaporation and the new CFT-type approaches to the subject. The detailed discussion on backreaction effects is also extremely valuable.

  4. Preliminary evaluation of the immobilization of simulated evaporator concentrate waste in low density polyethylene by extrusion process

    International Nuclear Information System (INIS)

    Cota, Stela; Oliveira, Tania Valeria S. de; Senne Junior, Murillo; Pacheco, Graziella

    2007-01-01

    Simulated evaporator concentrate was prepared by pre-treating sodium borate with calcium hydroxide to produce an insoluble borate salt. The resultant solid waste was blended by extrusion with virgin low density polyethylene (LDPE) in the proportion of 30 wt%. Samples were prepared to evaluate homogeneity, mechanical strength and leaching behavior. The homogeneity of each sample individually and in consecutive samples was indirectly estimated by sectioning each sample in four pieces and submitting each piece to density determination (ASTM standard D-792). Mechanical strength was evaluated through determination of compressive strength (ASTM standard D-695), and the results were compared to the value for the pure polymer and with the limit established by CNEN standard NN-6.09 for cement waste products. Samples were also tested for leaching by accelerated leaching test (ASTM standard C1308). Results showed a good homogeneity. Standard deviations of the density measurements were less than 1% for a single sample and less than 6% considering 3 samples. Polymer compressive strength at yield point and at 5% and 10% strain have increased after the mixture with the simulated waste, indicating an increase on the material strength. Estimated compressive strength was above CNEN standard limit for cement waste products if 5% strain could be considered a reasonable limit to assure structural integrity of the material. Cumulated leaching fraction after 11 days of accelerated leaching test was found to be below 10%, and diffusion coefficient was estimated as 9.06 x 10 -10 cm 2 /s, with deviation of 8.3%. (author)

  5. Preliminary evaluation of the immobilization of simulated evaporator concentrate waste in low density polyethylene by extrusion process

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Stela; Oliveira, Tania Valeria S. de; Senne Junior, Murillo; Pacheco, Graziella [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: sdsc@cdtn.br

    2007-07-01

    Simulated evaporator concentrate was prepared by pre-treating sodium borate with calcium hydroxide to produce an insoluble borate salt. The resultant solid waste was blended by extrusion with virgin low density polyethylene (LDPE) in the proportion of 30 wt%. Samples were prepared to evaluate homogeneity, mechanical strength and leaching behavior. The homogeneity of each sample individually and in consecutive samples was indirectly estimated by sectioning each sample in four pieces and submitting each piece to density determination (ASTM standard D-792). Mechanical strength was evaluated through determination of compressive strength (ASTM standard D-695), and the results were compared to the value for the pure polymer and with the limit established by CNEN standard NN-6.09 for cement waste products. Samples were also tested for leaching by accelerated leaching test (ASTM standard C1308). Results showed a good homogeneity. Standard deviations of the density measurements were less than 1% for a single sample and less than 6% considering 3 samples. Polymer compressive strength at yield point and at 5% and 10% strain have increased after the mixture with the simulated waste, indicating an increase on the material strength. Estimated compressive strength was above CNEN standard limit for cement waste products if 5% strain could be considered a reasonable limit to assure structural integrity of the material. Cumulated leaching fraction after 11 days of accelerated leaching test was found to be below 10%, and diffusion coefficient was estimated as 9.06 x 10{sup -10} cm{sup 2}/s, with deviation of 8.3%. (author)

  6. Fundamentals of evaporation and condensation phenomena

    International Nuclear Information System (INIS)

    Munir, Z.A.

    1979-01-01

    Fundamental relationships governing evaporation and condensation processes are reviewed. The terrace-ledge-kink (TLK) model is discussed in terms of atomic steps comprising growth and evaporation of crystals. Recent results in the field are described

  7. The GEM code. A simulation program for the evaporation and the fission process of an excited nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Furihata, Shiori [Mitsubishi Research Institute Inc., Tokyo (Japan); Niita, Koji [Research Organization for Information Science and Technology, Tokai, Ibaraki (Japan); Meigo, Shin-ichiro; Ikeda, Yujiro; Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    The GEM code is a simulation program which describes the de-excitation process of an excited nucleus, which is based on the Generalized Evaporation Model and the Atchison fission model. It has been shown that the combination of the Bertini intranuclear cascade model and GEM accurately predicts the cross sections of light fragments, such as Be produced from the proton-induced reactions. It has also been shown that the use of the reevaluated parameters in the Atchison model improves predictions of cross sections of fission fragments produced from the proton-induced reaction on Au. In this report, we present details and the usage of the GEM code. Furthermore, the results of benchmark calculations are shown by using the combination of the Bertini intranuclear cascade model and the GEM code (INC/GEM). Neutron spectra and isotope production cross sections from the reactions on various targets irradiated by protons are calculated with INC/GEM. Those results are compared with experimental data as well as the calculation results with LAHET. INC/GEM reproduces the experiments of double differential neutron emissions from the reaction on Al and Pb. The isotopic distributions for He, Li, and Be produced from the reaction on Ag are in good agreement with experimental data within 50%, although INC/GEM underestimates those of heavier nuclei than O. It is also shown that the predictions with INC/GEM for isotope production of light fragments, such as Li and Be, are better than those calculation with LAHET, particularly for heavy target. INC/GEM also gives better estimates of the cross sections of fission products than LAHET. (author)

  8. Optimal control of evaporator and washer plants

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1989-01-01

    Tests with radioactive tracers were used for experimental analysis of a multiple-effect evaporator plant. The residence time distribution of the liquor in each evaporator was described by one or two perfect mixers with time delay and by-pass flow terms. The theoretical model of a single evaporator unit was set up on the basis of its instantaneous heat and mass balances and such models were fitted to the test data. The results were interpreted in terms of physical structures of the evaporators. Further model parameters were evaluated by conventional step tests and by measurements of process variables at one or more steady states. Computer simulation and comparison with the experimental results showed that the model produces a satisfactory response to solids concentration input and could be extended to cover the steam feed and liquor flow inputs. An optimal feedforward control algorithm was developed for a two unit, co-current evaporator plant. The control criterion comprised the deviations of the final solids content of liquor and the consumption of fresh steam, from their optimal steady-state values. In order to apply the algorithm, the model of the solids in liquor was reduced to two nonlinear differential equations. (author)

  9. Drying of a tape-cast layer: Numerical modelling of the evaporation process in a graded/layered material

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Jambhekar, V. A.; Hattel, Jesper Henri

    2016-01-01

    -phase compositional porous-media flow — for the ceramic layer — and single-phase compositional laminar free flow — for the air above it. The preliminary results show the typical expected evaporation behaviour from a porous medium initially saturated with water, and water–vapour transport to the free-flow region...

  10. XPS analysis and structural and morphological characterization of Cu{sub 2}ZnSnS{sub 4} thin films grown by sequential evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, G. [Departamento de Física, Universidad Nacional de Colombia, Bogotá (Colombia); Calderón, C., E-mail: clcalderont@unal.edu.co [Departamento de Física, Universidad Nacional de Colombia, Bogotá (Colombia); Bartolo-Pérez, P. [Departamento de Física Aplicada, CINVESTAV-IPN, Mérida, Yuc. (Mexico)

    2014-06-01

    This work describes a procedure to grow single phase Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films with tetragonal-kesterite type structure, through sequential evaporation of the elemental metallic precursors under sulphur vapor supplied from an effusion cell. X-ray diffraction analysis (XRD) is mostly used for phase identification but cannot clearly distinguish the formation of secondary phases such as Cu{sub 2}SnS{sub 3} (CTS) because both compounds have the same diffraction pattern; therefore the use of a complementary technique is needed. Raman scattering analysis was used to distinguish these phases. The influence of the preparation conditions on the morphology and phases present in CZTS thin films were investigated through measurements of scanning electron microscopy (SEM) and XRD, respectively. From transmittance measurements, the energy band gap of the CZTS films was estimated to be around 1.45 eV. The limitation of XRD to identify some of the remaining phases after the growth process are investigated and the results of Raman analysis on the phases formed in samples grown by this method are presented. Further, the influence of the preparation conditions on the homogeneity of the chemical composition in the volume was studied by X-ray photoelectron spectroscopy (XPS) analysis.

  11. THE STRUCTURE AND SPECTRAL FEATURES OF A THIN DISK AND EVAPORATION-FED CORONA IN HIGH-LUMINOSITY ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Liu, J. Y.; Liu, B. F.; Qiao, E. L.; Mineshige, S.

    2012-01-01

    We investigate the accretion process in high-luminosity active galactic nuclei (HLAGNs) in the scenario of the disk evaporation model. Based on this model, the thin disk can extend down to the innermost stable circular orbit (ISCO) at accretion rates higher than 0.02 M-dot Edd while the corona is weak since part of the coronal gas is cooled by strong inverse Compton scattering of the disk photons. This implies that the corona cannot produce as strong X-ray radiation as observed in HLAGNs with large Eddington ratio. In addition to the viscous heating, other heating to the corona is necessary to interpret HLAGN. In this paper, we assume that a part of accretion energy released in the disk is transported into the corona, heating up the electrons, and is thereby radiated away. For the first time, we compute the corona structure with additional heating, fully taking into account the mass supply to the corona, and find that the corona could indeed survive at higher accretion rates and that its radiation power increases. The spectra composed of bremsstrahlung and Compton radiation are also calculated. Our calculations show that the Compton-dominated spectrum becomes harder with the increase of energy fraction (f) liberating in the corona, and the photon index for hard X-ray (2-10 keV) is 2.2 bol /L 2-10keV ) increases with increasing accretion rate for f < 8/35, which is roughly consistent with the observational results.

  12. The growth of nanoscale ZnO films by pulsed-spray evaporation chemical vapor deposition and their structural, electric and optical properties

    International Nuclear Information System (INIS)

    Jiang Yinzhu; Bahlawane, Naoufal

    2010-01-01

    Great interest in nanoscale thin films (sub-100 nm) has been stimulated by the developing demands of functional devices. In this paper, nanoscale zinc oxide (ZnO) thin films were deposited on glass substrates at 300 o C by pulsed-spray evaporation chemical vapor deposition. Scanning electron micrographs indicate uniform surface morphologies composed of nanometer-sized spherical particles. The growth kinetics and growth mode are studied and the relationship between the film thickness and the electric properties with respect to the growth mode is interpreted. X-ray diffraction shows that all ZnO films grown by this process were crystallized in a hexagonal structure and highly oriented with their c-axes perpendicular to the plane of the substrate. Optical measurements show transparencies above 85% in the visible spectral range for all films. The absorbance in the UV spectral range respects well the Beer-Lambert law, enabling an accurate optical thickness measurement, and the absorption coefficient was measured for a selected wavelength. The measured band gap energies exhibit an almost constant value of 3.41 eV for all films with different thicknesses, which attributed to the thickness-independent crystallite size.

  13. Effect of thermal annealing on structural properties of SrGa2S4:Ce thin films prepared by flash evaporation

    International Nuclear Information System (INIS)

    Gambarov, E.F.; Bayramov, A.I.

    2009-01-01

    In the present report the preparation technology and structural characterization of Ce 3 +activated SrGa 2 S 4 thin films are given. SrGa 2 S 4 : e thin films are prepared by so called flash evaporation which is simple and inexpensive method for thin film deposition. X-ray diffraction shows that the as deposited films exhibit amorphous behavior, but after annealing in H S stream, the polycrystalline one. EPMA results indicate nearly stoichiometric composition of the thin films

  14. Molecular dynamics simulations to examine structure, energetics, and evaporation/condensation dynamics in small charged clusters of water or methanol containing a single monatomic ion.

    Science.gov (United States)

    Daub, Christopher D; Cann, Natalie M

    2012-11-01

    We study small clusters of water or methanol containing a single Ca(2+), Na(+), or Cl(-) ion with classical molecular dynamics simulations, using models that incorporate polarizability via the Drude oscillator framework. Evaporation and condensation of solvent from these clusters is examined in two systems, (1) for isolated clusters initially prepared at different temperatures and (2) those with a surrounding inert (Ar) gas of varying temperature. We examine these clusters over a range of sizes, from almost bare ions up to 40 solvent molecules. We report data on the evaporation and condensation of solvent from the clusters and argue that the observed temperature dependence of evaporation in the smallest clusters demonstrates that the presence of heated gas alone cannot, in most cases, solely account for bare ion production in electrospray ionization (ESI), neglecting the key contribution of the electric field. We also present our findings on the structure and energetics of the clusters as a function of size. Our data agree well with the abundant literature on hydrated ion clusters and offer some novel insight into the structure of methanol and ion clusters, especially those with a Cl(-) anion, where we observe the presence of chain-like structures of methanol molecules. Finally, we provide some data on the reparameterizations necessary to simulate ions in methanol using the separately developed Drude oscillator models for methanol and for ions in water.

  15. Achievement of process control, safety, and regulatory compliance in a mixed waste evaporator system at the Hanford Site using data quality objectives

    International Nuclear Information System (INIS)

    Von Bargen, B.H.

    1995-01-01

    The Data Quality Objectives (DQO) Process was applied to the operation of the 242-A Evaporator at the Hanford Site. A team consisting of representatives from process engineering, environmental engineering, regulatory compliance, analytical laboratories, and DOE utilized the step by step DQO process to define the issues, variables, and inputs necessary to develop the decision rules which govern plant operations. The sampling and analyses required to make these decisions was then optimized concerning factors such as sample number, total analyses, cost, radiation exposure, quality assurance, and deliverables

  16. Control of black hole evaporation?

    International Nuclear Information System (INIS)

    Ahn, Doyeol

    2007-01-01

    Contradiction between Hawking's semi-classical arguments and the string theory on the evaporation of a black hole has been one of the most intriguing problems in fundamental physics. A final-state boundary condition inside the black hole was proposed by Horowitz and Maldacena to resolve this contradiction. We point out that the original Hawking effect can also be regarded as a separate boundary condition at the event horizon for this scenario. Here, we found that the change of the Hawking boundary condition may affect the information transfer from the initial collapsing matter to the outgoing Hawking radiation during the evaporation process and as a result the evaporation process itself, significantly

  17. Effect of Deposition Rate on Structure and Surface Morphology of Thin Evaporated Al Films on Dielectrics and Semiconductors

    DEFF Research Database (Denmark)

    Bordo, K.; Rubahn, H. G.

    2012-01-01

    Aluminum (Al) films with thickness of 100 nm were grown on unheated glass, silicon and mica substrates by electron beam evaporation. The deposition rates were adjusted in the range between 0.1 nm/s and 2 nm/s, the pressure in the vacuum chamber during deposition was lower than 1.10(-3) Pa. The st...

  18. Investigation of disposal of nitrate-bearing effluent from in-situ leaching process by natural evaporation in Yining uranium mine

    International Nuclear Information System (INIS)

    Huang Chongyuan; Li Weicai; Zhang Yutai; Gao Xizhen

    2000-01-01

    Experiments indicated, after lime neutralization and precipitation of nitrate-bearing effluent from in-situ leaching process, uranium concentration increase with the increasing of nitrate concentration. Only when nitrate concentration is <0.5 mg/L, uranium concentration can drop from 1.5-2.0 mg/L to about 1.0 mg/L. The permeability coefficient of soil is about 1.0-1.1 m/d in the place which is scheduled for building natural evaporation pool. After lime neutralization of nitrate-bearing effluent, it can drop to 0.03-0.01 m/d. Setting up water-proof layer in natural evaporation pool can reduce pollution of underground water by uranium, nitrate and ammonium

  19. Perspectival Structure and Vestibular Processing

    DEFF Research Database (Denmark)

    Alsmith, Adrian John Tetteh

    2016-01-01

    I begin by contrasting a taxonomic approach to the vestibular system with the structural approach I take in the bulk of this commentary. I provide an analysis of perspectival structure. Employing that analysis and following the structural approach, I propose three lines of empirical investigation...

  20. Theory of evapotranspiration. 2. Soil and intercepted water evaporation

    OpenAIRE

    Budagovskyi, Anatolij Ivanovič; Novák, Viliam

    2011-01-01

    Evaporation of water from the soil is described and quantified. Formation of the soil dry surface layer is quantitatively described, as a process resulting from the difference between the evaporation and upward soil water flux to the soil evaporating level. The results of evaporation analysis are generalized even for the case of water evaporation from the soil under canopy and interaction between evaporation rate and canopy transpiration is accounted for. Relationships describing evapotranspi...

  1. Silicon anode prepared by rotary evaporation for lithium ion batteries

    International Nuclear Information System (INIS)

    Shin, D H; Cho, G B; Song, M G; Choi, Y J; Gu, H B; Kim, K W

    2007-01-01

    A rotary evaporation process was applied to improve electrical contact between acetylene black (AB) and Si electrode. Morphologies and electrochemical properties of the Si electrode were compared with those of conventionally prepared Si electrode. In the evaporated Si electrode, AB particles consisted of network-like structure surrounding the surface of Si particle, while in the conventional one, AB particles partially stuck on the Si surface. Increasing the current density from 0.1 to 0.5 C, stable cycle behavior with a slight decrease in discharge capacity was found in the evaporated electrode, while unstable cycle behavior with a significantly decreased capacity was observed in the conventional electrode. At high-current density (0.5 C rate), the discharge capacity of the evaporated Si electrode was maintained over 480 mAh g -1 after 100 cycles. The good cycle performance was attributed to the low resistance induced by the improved interfacial contact between AB and Si particles

  2. Investigation of Relationship Between Hydrologic Processes of Precipitation, Evaporation and Stream Flow Using Linear Time Series Models (Case study: Western Basins of Lake Urmia

    Directory of Open Access Journals (Sweden)

    M. Moravej

    2016-02-01

    Full Text Available Introduction: Studying the hydrological cycle, especially in large scales such as water catchments, is difficult and complicated despite the fact that the numbers of hydrological components are limited. This complexity rises from complex interactions between hydrological components and environment. Recognition, determination and modeling of all interactive processes are needed to address this issue, but it's not feasible for dealing with practical engineering problems. So, it is more convenient to consider hydrological components as stochastic phenomenon, and use stochastic models for modeling them. Stochastic simulation of time series models related to water resources, particularly hydrologic time series, have been widely used in recent decades in order to solve issues pertaining planning and management of water resource systems. In this study time series models fitted to the precipitation, evaporation and stream flow series separately and the relationships between stream flow and precipitation processes are investigated. In fact, the three mentioned processes should be modeled in parallel to each other in order to acquire a comprehensive vision of hydrological conditions in the region. Moreover, the relationship between the hydrologic processes has been mostly studied with respect to their trends. It is desirable to investigate the relationship between trends of hydrological processes and climate change, while the relationship of the models has not been taken into consideration. The main objective of this study is to investigate the relationship between hydrological processes and their effects on each other and the selected models. Material and Method: In the current study, the four sub-basins of Lake Urmia Basin namely Zolachay (A, Nazloochay (B, Shahrchay (C and Barandoozchay (D were considered. Precipitation, evaporation and stream flow time series were modeled by linear time series. Fundamental assumptions of time series analysis namely

  3. Thermogravimetric analysis of fuel film evaporation

    Institute of Scientific and Technical Information of China (English)

    HU Zongjie; LI Liguang; YU Shui

    2006-01-01

    Thermogravimetric analysis (TGA) was compared with the petrochemical distillation measurement method to better understand the characteristics of fuel film evaporation at different wall tem- peratures. The film evaporation characteristics of 90# gasoline, 93# gasoline and 0# diesel with different initial thicknesses were investigated at different environmental fluxes and heating rates. The influences of heating rate, film thickness and environmental flux on fuel film evaporation for these fuels were found. The results showed that the environmental conditions in TGA were similar to those for fuel films in the internal combustion engines, so data from TGA were suitable for the analysis of fuel film evaporation. TGA could simulate the key influencing factors for fuel film evaporation and could investigate the basic quantificational effect of heating rate and film thickness. To get a rapid and sufficient fuel film evaporation, sufficiently high wall temperature is necessary. Evaporation time decreases at a high heating rate and thin film thickness, and intense gas flow is important to promoting fuel film evaporation. Data from TGA at a heating rate of 100℃/min are fit to analyze the diesel film evaporation during cold-start and warming-up. Due to the tense molecular interactions, the evaporation sequence could not be strictly divided according to the boiling points of each component for multicomponent dissolved mixture during the quick evaporation process, and the heavier components could vaporize before reaching their boiling points. The 0# diesel film would fully evaporate when the wall temperature is beyond 250℃.

  4. Waste Evaporator Accident Simulation Using RELAP5 Computer Code

    International Nuclear Information System (INIS)

    POLIZZI, L.M.

    2004-01-01

    An evaporator is used on liquid waste from processing facilities to reduce the volume of the waste through heating the waste and allowing some of the water to be separated from the waste through boiling. This separation process allows for more efficient processing and storage of liquid waste. Commonly, the liquid waste consists of an aqueous solution of chemicals that over time could induce corrosion, and in turn weaken the tubes in the steam tube bundle of the waste evaporator that are used to heat the waste. This chemically induced corrosion could escalate into a possible tube leakage and/or the severance of a tube(s) in the tube bundle. In this paper, analyses of a waste evaporator system for the processing of liquid waste containing corrosive chemicals are presented to assess the system response to this accident scenario. This accident scenario is evaluated since its consequences can propagate to a release of hazardous material to the outside environment. It is therefore important to ensure that the evaporator system component structural integrity is not compromised, i.e. the design pressure and temperature of the system is not exceeded during the accident transient. The computer code used for the accident simulation is RELAP5-MOD31. The accident scenario analyzed includes a double-ended guillotine break of a tube in the tube bundle of the evaporator. A mitigated scenario is presented to evaluate the excursion of the peak pressure and temperature in the various components of the evaporator system to assess whether the protective actions and controls available are adequate to ensure that the structural integrity of the evaporator system is maintained and that no atmospheric release occurs

  5. Organizational structure in process-based organizations

    NARCIS (Netherlands)

    Vanhaverbeke, W.P.M.; Torremans, H.P.M.

    1999-01-01

    This paper investigates the role of the organization structure in process-based organizations. We argue that companies cannot be designed upon organizational processes only or that process management can be simply imposed as an additional structural dimension on top of the existing functional or

  6. Flexibility of Data-driven Process Structures

    NARCIS (Netherlands)

    Muller, Dominic; Reichert, Manfred; Herbst, Joachim; Eder, Johann; Dustdar, Schahram

    2006-01-01

    The coordination of complex process structures is a fundamental task for enterprises, such as in the automotive industry. Usually, such process structures consist of several (sub-)processes whose execution must be coordinated and synchronized. Effecting this manually is both ineffective and

  7. Dual manifold heat pipe evaporator

    Science.gov (United States)

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  8. Solvent micro-evaporation and concentration gradient synergistically induced crystallization of poly(L-lactide) and ring banded supra-structures with radial periodic variation of thickness

    DEFF Research Database (Denmark)

    Huang, Shaoyong; Li, Hongfei; Wen, Huiying

    2014-01-01

    The crystalline morphology and structure of poly(L-lactide) (PLLA) in a PLLA film-chloroform system were investigated by means of wide angle X-ray diffraction (WAXD), polarized optical microscopy (POM) and atomic force microscopy (AFM). Birefringent and nonbirefringent ring banded supra-structure......The crystalline morphology and structure of poly(L-lactide) (PLLA) in a PLLA film-chloroform system were investigated by means of wide angle X-ray diffraction (WAXD), polarized optical microscopy (POM) and atomic force microscopy (AFM). Birefringent and nonbirefringent ring banded supra......-structures with radial periodic variation of thickness were obtained, which were induced by micro-evaporation of solvents and concentration gradient of PLLA. The ring banded morphologies consisted of multilayer lamellar crystals, which is a manifestation of alternating ridge and valley bands of periodic variation...

  9. INTENSIFICATION OF HEAT- AND MASS TRANSFER IN EVAPORATION - CONDENSATION DEVICES

    Directory of Open Access Journals (Sweden)

    A. G. Kulakov

    2005-01-01

    Full Text Available Results of investigation of capillary structure properties used in evaporation – condensation devices are presented.Constructive solutions for intensification of heat transfer in evaporation and condensation heat exchangers are offered. The obtained heat transfer experimental data at film-type vapor conden-sation are generalized in criterion form.Description of general rule of heat and mass transfer processes in miniature heat pipes with three various capillary structures at wide range of operating parameters is given in the paper.

  10. Self-assembly of highly fluorescent semiconductor nanorods into large scale smectic liquid crystal structures by coffee stain evaporation dynamics

    International Nuclear Information System (INIS)

    Nobile, Concetta; Carbone, Luigi; Fiore, Angela; Cingolani, Roberto; Manna, Liberato; Krahne, Roman

    2009-01-01

    We deposit droplets of nanorods dispersed in solvents on substrate surfaces and let the solvent evaporate. We find that strong contact line pinning leads to dense nanorod deposition inside coffee stain fringes, where we observe large scale lateral ordering of the nanorods with the long axis of the rods oriented parallel to the contact line. We observe birefringence of these coffee stain fringes by polarized microscopy and we find the direction of the extraordinary refractive index parallel to the long axis of the nanorods.

  11. DWPF Recycle Evaporator Simulant Tests

    International Nuclear Information System (INIS)

    Stone, M

    2005-01-01

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  12. Mixed phase evaporation source

    International Nuclear Information System (INIS)

    1975-01-01

    Apparatus for reducing convection current heat loss in electron beam evaporator is described. A material to be evaporated (evaporant) is placed in the crucible of an electron beam evaporation source along with a porous mass formed of a powdered or finely divided solid to act as an impedance to convection currents. A feed system is employed to replenish the supply of evaporant as it is vaporized

  13. Olive mill wastewater sludge from evaporation ponds: evolution of physico-chemical parameters during storage and composting process.

    Science.gov (United States)

    Abid, N; Aloui, F; Dhouib, A; Sayadi, S

    2006-02-01

    The evolution of analytical parameters of olive mill waste water sludge stored in evaporation ponds was investigated after one year and two years of storage. It was observed that some of the phenolic monomer compounds resisted removal and the fraction of water soluble phenols was only slightly polymerised. Co-composting of the sludge was carried out with yard trimming as bulking agent ratio and poultry manure to balance the C/N. Three turned piles with three proportions of 35%, 65% and 80% of olive mill waste water sludge were prepared. Co-composting of the sludge was possible in all the cases. Best results were obtained, however, at a proportion of 35% which permitted a shorter composting time, a higher degree of nitrification and a higher rate of total phenols decreasing. A high polymerisation of the fraction of water soluble phenols was observed at the end of composting in all the piles.

  14. The evaporative vector: Homogeneous systems

    International Nuclear Information System (INIS)

    Klots, C.E.

    1987-05-01

    Molecular beams of van der Waals molecules are the subject of much current research. Among the methods used to form these beams, three-sputtering, laser ablation, and the sonic nozzle expansion of neat gases - yield what are now recognized to be ''warm clusters.'' They contain enough internal energy to undergo a number of first-order processes, in particular that of evaporation. Because of this evaporation and its attendant cooling, the properties of such clusters are time-dependent. The states of matter which can be arrived at via an evaporative vector on a typical laboratory time-scale are discussed. Topics include the (1) temperatures, (2) metastability, (3) phase transitions, (4) kinetic energies of fragmentation, and (5) the expression of magical properties, all for evaporating homogeneous clusters

  15. Growth of manganese sulfide (α-MnS) thin films by thermal vacuum evaporation: Structural, morphological and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, Amira, E-mail: amira.hannachi88@gmail.com [MALTA-Consolider Team, Institut de Ciència dels Materials – Departamento de Fisica Aplicada, University of Valencia, E-46100 Burjassot, Valencia (Spain); Université de Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie, LR99ES15, 2092 Tunis (Tunisia); Segura, Alfredo [MALTA-Consolider Team, Institut de Ciència dels Materials – Departamento de Fisica Aplicada, University of Valencia, E-46100 Burjassot, Valencia (Spain); Maghraoui-Meherzi, Hager [Université de Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie, LR99ES15, 2092 Tunis (Tunisia)

    2016-09-15

    MnS thin films have been successfully prepared by thermal evaporation method at different substrate temperatures using different masses of MnS powder. The prepared films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and UV–visible spectrophotometry. The XRD measurements show that the films crystallized in the pure α-MnS for substrate temperatures above 100 °C. The optical bandgap of thin films is found to be in the range of 3.2–3.3 eV. A factorial experimental design was used for determining the influence of the two experimental parameters on the films growth. - Highlights: • α-MnS films were deposited on glass and quartz substrates using the thermal evaporation technique. • The effect of substrate temperature on the properties of the MnS films has been studied. • The factorial design was used to determine the most influence parameters.

  16. Processing of hierarchical syntactic structure in music.

    Science.gov (United States)

    Koelsch, Stefan; Rohrmeier, Martin; Torrecuso, Renzo; Jentschke, Sebastian

    2013-09-17

    Hierarchical structure with nested nonlocal dependencies is a key feature of human language and can be identified theoretically in most pieces of tonal music. However, previous studies have argued against the perception of such structures in music. Here, we show processing of nonlocal dependencies in music. We presented chorales by J. S. Bach and modified versions in which the hierarchical structure was rendered irregular whereas the local structure was kept intact. Brain electric responses differed between regular and irregular hierarchical structures, in both musicians and nonmusicians. This finding indicates that, when listening to music, humans apply cognitive processes that are capable of dealing with long-distance dependencies resulting from hierarchically organized syntactic structures. Our results reveal that a brain mechanism fundamental for syntactic processing is engaged during the perception of music, indicating that processing of hierarchical structure with nested nonlocal dependencies is not just a key component of human language, but a multidomain capacity of human cognition.

  17. Numerical modelling and experimental study of liquid evaporation during gel formation

    Science.gov (United States)

    Pokusaev, B. G.; Khramtsov, D. P.

    2017-11-01

    Gels are promising materials in biotechnology and medicine as a medium for storing cells for bioprinting applications. Gel is a two-phase system consisting of solid medium and liquid phase. Understanding of a gel structure evolution and gel aging during liquid evaporation is a crucial step in developing new additive bioprinting technologies. A numerical and experimental study of liquid evaporation was performed. In experimental study an evaporation process of an agarose gel layer located on Petri dish was observed and mass difference was detected using electronic scales. Numerical model was based on a smoothed particle hydrodynamics method. Gel in a model was represented as a solid-liquid system and liquid evaporation was modelled due to capillary forces and heat transfer. Comparison of experimental data and numerical results demonstrated that model can adequately represent evaporation process in agarose gel.

  18. Study of structural and morphological properties of thermally evaporated Sn{sub 2}Sb{sub 6}S{sub 11} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ben Mehrez, N., E-mail: najia.benmehrez@gmail.com [Université Tunis El Manar, Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère, 1002 Tunis (Tunisia); Khemiri, N. [Université Tunis El Manar, Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère, 1002 Tunis (Tunisia); Kanzari, M. [Université Tunis El Manar, Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère, 1002 Tunis (Tunisia); Institut Préparatoire aux Etudes d’Ingénieurs de Tunis Montfleury, Université de Tunis (Tunisia)

    2016-10-01

    In this study, we report the structural and morphological properties of the new material Sn{sub 2}Sb{sub 6}S{sub 11} thin films prepared on glass substrates by vacuum thermal evaporation at various substrate temperatures (30, 60, 100, 140, 180 and 200 °C). Sn{sub 2}Sb{sub 6}S{sub 11} ingot was synthesized by the horizontal Bridgman technique. The structural properties of Sn{sub 2}Sb{sub 6}S{sub 11} powder were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy. The films were characterized for their structural properties by using XRD. All films were polycrystalline in nature. The variations of the structural parameters of the films with the substrate temperature were investigated. The results show that the crystallite sizes increase as the substrate temperature increases. The morphological properties of the films were analyzed by atomic force microscopy (AFM). The roughness and the topography of the surface of the films strongly depend on the substrate temperature. - Highlights: • Sn{sub 2}Sb{sub 6}S{sub 11} powder was successfully synthesized by the horizontal Bridgman technique. • Sn{sub 2}Sb{sub 6}S{sub 11} films were grown by thermal evaporation at different substrate temperatures. • Structural properties of Sn{sub 2}Sb{sub 6}S{sub 11} powder were investigated. • The effect of the substrate temperature on structural and morphological of Sn{sub 2}Sb{sub 6}S{sub 11} films properties was studied.

  19. Structural and Process Quality of Danish Preschools

    DEFF Research Database (Denmark)

    Slot, Pauline Louise; Bleses, Dorthe; Justice, Laura M.

    2018-01-01

    Structural quality in childcare centers is considered a precondition for process quality, which in turn is related to children’s outcomes. However, the evidence on relations between structural and process quality is mixed. Moreover, despite strong theoretical claims, empirical evidence supporting...

  20. General hydroisotopic study of direct infiltration and evaporation process through the unsaturated zone in Damascus oasis, Syrian Arab Republic

    International Nuclear Information System (INIS)

    Abou Zakhem, B.; Hafez, R.

    2001-01-01

    Damascus oasis plays an important economical and environmental role in the city life because it presents the surrounding green places and the groundwater is the main sources for irrigation. In this study we will focus on the unsaturated zone in Damascus oasis. Environmental isotopes as 18 O, 2 H and 3 H are considered one of the most important techniques that are used in unsaturated zone study in order to study the water movement mechanism, estimate the effective velocity, the rate and spatial variations of the direct infiltration through this zone.The Deuterium profile allow to estimate the direct evaporation rate, and it is observed that the evaporation in the eastern part of the studied area is 5-6.5 mm/y. The Tritium peak of profile that is belonging to the atmospheric nuclear tests at the beginning of the sixties indicates the effective infiltration velocity of 27.8 mm/y. The effective porosity was estimated about 6.5% and the permeability parameter is 0.6*10 -10 m/s. The direct infiltration rate was estimated by the chemical Chloride balance in the studied profiles in addition to their spatial distribution where it was distinguished between the eastern area where the direct infiltration is less than 2 mm/y characterized by very fine clay soils and western area where the direct infiltration rate is more than 2 mm/y with sandy soils. It is thought that the lower part of the unsaturated zone indicated the direct infiltration rate about 3.5 mm/y, under more wet climatic conditions where the rainfall was about 423 mm/y, this wet period was extended from about 432 y to more than 760y ago.The Nitrate concentration variation with depth indicated that unsaturated zone play important role as purification zone, and the groundwater which has more than 5 m depth is prevented from pollution, whereas the groundwater that has less than 5 m depth is more prone to pollution by high concentration of Nitrates. (author)

  1. Is evaporative colling important for shallow clouds?

    Science.gov (United States)

    Gentine, P.; Park, S. B.; Davini, P.; D'Andrea, F.

    2017-12-01

    We here investigate and test using large-eddy simulations the hypothesis that evaporative cooling might not be crucial for shallow clouds. Results from various Shallow convection and stratocumulus LES experiments show that the influence of evaporative cooling is secondary compared to turbulent mixing, which dominates the buoyancy reversal. In shallow cumulus subising shells are not due to evaporative cooling but rather reflect a vortical structure, with a postive buoyancy anomaly in the core due to condensation. Disabling evaporative cooling has negligible impact on this vortical structure and on buoyancy reversal. Similarly in non-precipitating stratocumuli evaporative cooling is negeligible copmared to other factors, especially turbulent mixing and pressure effects. These results emphasize that it may not be critical to icnlude evaporative cooling in parameterizations of shallow clouds and that it does not alter entrainment.

  2. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2013-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  3. Evaporative processes for desalination of produced water; Processos evaporativos para dessalinizacao de agua produzida a fins de reuso

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Vivian T.; Dezotti, Marcia W. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Quimica; Schuhli, Juliana B.; Gomes, Marcia T.; Pereira Junior, Oswaldo A. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    During the productive life of an oil well, it gets the moment when a big quantity of produced water comes together with the oil. It can achieve 99% in the end of its economical life. The thermal desalination of the formation water is one of the most common technologies for achieving its reuse. This way, it was constructed one 'Robert' evaporator. The tests used different sodium chloride concentrations from 2,000 mg/L to 80,000 mg/L simulating concentrations found in the produced water from PETROBRAS wells. The tests were conducted in three different vacuum pressures. It was observed, increasing the vacuum applied to the system, results in reduction of solution boiling point. The salt concentrations of the brine blowdown were influenced by the sodium chloride concentration at the feed flow, by the vacuum applied to the system and, consequently, by the solution boiling point and flow rates. The produced distillate water presented sodium chloride concentration lower than 2 mg/L, indicating that this system can produce water to reuse in irrigation. (author)

  4. Vacuum evaporation of KCl-NaCl salts. Part 2: Vaporization-rate model and experimental results

    International Nuclear Information System (INIS)

    Wang, L.L.; Wallace, T.C. Sr.; Hampel, F.G.; Steele, J.H.

    1996-01-01

    Separation of chloride salts from the actinide residue by vacuum evaporation is a promising method of treating wastes from the pyrochemical plutonium processes. A model based on the Hertz-Langmuir relation is used to describe how evaporation rates of the binary KCl-NaCl system change with time. The effective evaporation coefficient (α), which is a ratio of the actual evaporation rate to the theoretical maximum, was obtained for the KCl-NaCl system using this model. In the temperature range of 640 C to 760 C, the effective evaporation coefficient ranges from ∼0.4 to 0.1 for evaporation experiments conducted at 0.13 Pa. At temperatures below the melting point, the lower evaporation coefficients are suggested to result from the more complex path that a molecule needs to follow before escaping to the gas phase. At the higher liquid temperatures, the decreasing evaporation coefficients result from a combination of the increasing vapor-flow resistances and the heat-transfer effects at the evaporation surface and the condensate layer. The microanalysis of the condensate verified that composition of the condensate changes with time, consistent with the model calculation. The microstructural examination revealed that the vaporate may have condensed as a single solution phase, which upon cooling forms fine lamellar structures of the equilibrium KCl and NaCl phases. In conclusion, the optimum design of the evaporation process and equipment must take the mass and heat transfer factors and equipment materials issues into consideration

  5. Transfer-free synthesis of multilayer graphene using a single-step process in an evaporator and formation confirmation by laser mode-locking

    International Nuclear Information System (INIS)

    Kim, Won-Jun; Debnath, Pulak C; Song, Yong-Won; Lee, Junsu; Lee, Ju Han; Lim, Dae-Soon

    2013-01-01

    Multilayer graphene is synthesized by a simplified process employing an evaporator in which a target substrate is deposited with a Ni catalyst layer before being heated to grow graphene directly. Carbon atoms adsorbed onto the surface of the Ni source as impurities from the atmosphere are incorporated into the catalyst layer during the deposition, and diffuse toward the catalyst/substrate interface, where they crystallize as graphene with a thickness of less than 2 nm. The need for a transfer process and external carbon supply is eliminated. The graphene is characterized by conventional analysis approaches, including nano-scale visualization and Raman spectroscopy, and utilizing photonics, graphene-functionalized passive laser mode-locking is demonstrated to confirm the successful synthesis of the graphene layer, resulting in an operating center wavelength of 1569.4 nm, a pulse duration of 1.35 ps, and a repetition rate of 31.6 MHz. (paper)

  6. Numerical analysis of the heat and mass transfer processes in selected M-Cycle heat exchangers for the dew point evaporative cooling

    International Nuclear Information System (INIS)

    Pandelidis, Demis; Anisimov, Sergey

    2015-01-01

    Highlights: • The comparative numerical study of the eight M-Cycle heat exchangers was presented. • The mathematical model is compared against the experimental data. • The results show, that the original M-Cycle heat and mass exchanger can be improved. • The effectiveness of the heat and mass exchangers depends strongly on the inlet air parameters. - Abstract: This paper investigates a mathematical simulation of heat and mass transfer in eight different types of the Maisotsenko Cycle (M-Cycle) heat and mass exchangers (HMXs) used for indirect evaporative air cooling. A two-dimensional heat and mass transfer model is developed to perform the thermal calculations of the indirect evaporative cooling process and quantifying the overall performance. The mathematical model was validated against experimental data. A numerical simulation reveals many unique features of the considered HMXs, enabling an accurate prediction of their performance. Results of the model allow for comparison of the analyzed devices in order to improve the performance of the original HMX

  7. Approximate bilateral symmetry in evaporation-induced polycrystalline structures from droplets of wheat grain leakages and fluctuating asymmetry as quality indicator

    Science.gov (United States)

    Kokornaczyk, Maria Olga; Dinelli, Giovanni; Betti, Lucietta

    2013-01-01

    The present paper reports on an observation that dendrite-like polycrystalline structures from evaporating droplets of wheat grain leakages exhibit bilateral symmetry. The exactness of this symmetry, measured by means of fluctuating asymmetry, varies depending on the cultivar and stress factor influence, and seems to correspond to the seed germination rate. In the bodies of plants, animals, and humans, the exactness of bilateral symmetry is known to reflect the environmental conditions of an organism's growth, its health, and its success in sexual selection. In polycrystalline structures, formed under the same conditions, the symmetry exactness depends on the properties of the crystallizing solution such as the composition and viscosity; however, it has never been associated with sample quality. We hypothesize here that, as in living nature, the exactness of approximate bilateral symmetry might be considered a quality indicator also in crystallographic methods applied to food quality analysis.

  8. Structural, optical and electrical properties of CuIn{sub 5}S{sub 8} thin films grown by thermal evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Gannouni, M., E-mail: gm_mounir@yahoo.fr [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs -ENIT BP 37, Le belvedere 1002-Tunis (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs -ENIT BP 37, Le belvedere 1002-Tunis (Tunisia)

    2011-05-19

    Highlights: > In this work, thin films of CuIn{sub 5}S{sub 8} were successfully deposited onto glass substrates by thermal evaporation and annealed in air. > Post-depositional annealing effects on structural, optical and electrical properties of thermal evaporated CuIn{sub 5}S{sub 8} thin films were studied. > The results reported in this work make this material attractive as an absorber material in solar cells applications. - Abstract: Stoichiometric compound of copper indium sulfur (CuIn{sub 5}S{sub 8}) was synthesized by direct reaction of high purity elemental copper, indium and sulfur in an evacuated quartz tube. The phase structure of the synthesized material revealed the cubic spinel structure. The lattice parameter (a) of single crystals was calculated to be 10.667 A. Thin films of CuIn{sub 5}S{sub 8} were deposited onto glass substrates under the pressure of 10{sup -6} Torr using thermal evaporation technique. CuIn{sub 5}S{sub 8} thin films were then thermally annealed in air from 100 to 300 deg. C for 2 h. The effects of thermal annealing on their physico-chemical properties were investigated using X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), optical transmission and hot probe method. XRD studies of CuIn{sub 5}S{sub 8} thin films showed that as-deposited films were amorphous in nature and transformed into polycrystalline spinel structure with strong preferred orientation along the (3 1 1) plane after the annealing at 200 deg. C. The composition is greatly affected by thermal treatment. From the optical transmission and reflection, an important absorption coefficient exceeds 10{sup 4} cm{sup -1} was found. As increasing the annealing temperature, the optical energy band gap decreases from 1.83 eV for the as-deposited films to 1.43 eV for the annealed films at 300 deg. C. It was found that CuIn{sub 5}S{sub 8} thin film is an n-type semiconductor at 300 deg. C.

  9. Structural and electrical properties of co-evaporated Cu(In,Ga)Se{sub 2} thin films with varied Cu contents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Young; Kim, Girim; Kim, Jongwan; Park, Jae Hwan; Lim, Donggun, E-mail: dglim@ut.ac.kr

    2013-11-01

    Cu(In,Ga)Se{sub 2} (CIGS) thin films were fabricated with varying Cu contents. Cu/(Ga + In) ratios were varied between 0.4 and 1.02. Solar cells were then fabricated by co-evaporation using the CIGS layers as absorbers. The influences of Cu content on the cells' structural, optical and electrical properties were studied. The CIGS thin films were characterized by X-ray diffractometer, scanning electron microscopy, energy-dispersive spectroscopy, four-point probe measurement and Hall measurement. Grain size in the films increased with increasing Cu content. At a Cu/(Ga + In) ratio of 0.86, the (220/204) peak was stronger than the (112) peak and carrier concentration was 1.49 × 10{sup 16} cm{sup −3}. Optimizing the Cu content resulted in a CIGS solar cell with an efficiency of 16.5%. - Highlights: • Improvement of technique to form Cu(In,Ga)Se{sub 2} (CIGS) film by co-evaporation method • Cu/(In + Ga) ratio to improve the efficiency for CIGS thin film solar cell • Cu content effects have been analyzed. • Optimum condition of CIGS layer as an absorber of thin film solar cells.

  10. Structure, processing, and properties of potatoes

    Science.gov (United States)

    Lloyd, Isabel K.; Kolos, Kimberly R.; Menegaux, Edmond C.; Luo, Huy; McCuen, Richard H.; Regan, Thomas M.

    1992-06-01

    The objective of this experiment and lesson intended for high school students in an engineering or materials science course or college freshmen is to demonstrate the relation between processing, structure, and thermodynamic and physical properties. The specific objectives are to show the effect of structure and structural changes on thermodynamic properties (specific heat) and physical properties (compressive strength); to illustrate the first law of thermodynamics; to compare boiling a potato in water with cooking it in a microwave in terms of the rate of structural change and the energy consumed to 'process' the potato; and to demonstrate compression testing.

  11. Structure, processing, and properties of potatoes

    Science.gov (United States)

    Lloyd, Isabel K.; Kolos, Kimberly R.; Menegaux, Edmond C.; Luo, Huy; Mccuen, Richard H.; Regan, Thomas M.

    1992-01-01

    The objective of this experiment and lesson intended for high school students in an engineering or materials science course or college freshmen is to demonstrate the relation between processing, structure, and thermodynamic and physical properties. The specific objectives are to show the effect of structure and structural changes on thermodynamic properties (specific heat) and physical properties (compressive strength); to illustrate the first law of thermodynamics; to compare boiling a potato in water with cooking it in a microwave in terms of the rate of structural change and the energy consumed to 'process' the potato; and to demonstrate compression testing.

  12. Evaporator Cleaning Studies

    International Nuclear Information System (INIS)

    Wilmarth, W.R.

    1999-01-01

    Operation of the 242-16H High Level Waste Evaporator proves crucial to liquid waste management in the H-Area Tank Farm. Recent operational history of the Evaporator showed significant solid formation in secondary lines and in the evaporator pot. Additional samples remain necessary to ensure material identity in the evaporator pot. Analysis of these future samples will provide actinide partitioning information and dissolution characteristics of the solid material from the pot to ensure safe chemical cleaning

  13. Evaporation and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the influence of climate change on evaporation is discussed. The emphasis is on open water evaporation. Three methods for calculating evaporation are compared considering only changes in temperature and factors directly dependent on temperature. The Penman-method is used to

  14. Sessile Drop Evaporation and Leidenfrost Phenomenon

    OpenAIRE

    A. K. Mozumder; M. R. Ullah; A. Hossain; M. A. Islam

    2010-01-01

    Problem statement: Quenching and cooling are important process in manufacturing industry for controlling the mechanical properties of materials, where evaporation is a vital mode of heat transfer. Approach: This study experimentally investigated the evaporation of sessile drop for four different heated surfaces of Aluminum, Brass, Copper and Mild steel with a combination of four different liquids as Methanol, Ethanol, Water and NaCl solution. The time of evaporation for the droplet on the hot...

  15. Waste characterization for radioactive liquid waste evaporators at Argonne National Laboratory - West

    International Nuclear Information System (INIS)

    Christensen, B. D.

    1999-01-01

    Several facilities at Argonne National Laboratory - West (ANL-W) generate many thousand gallons of radioactive liquid waste per year. These waste streams are sent to the AFL-W Radioactive Liquid Waste Treatment Facility (RLWTF) where they are processed through hot air evaporators. These evaporators remove the liquid portion of the waste and leave a relatively small volume of solids in a shielded container. The ANL-W sampling, characterization and tracking programs ensure that these solids ultimately meet the disposal requirements of a low-level radioactive waste landfill. One set of evaporators will process an average 25,000 gallons of radioactive liquid waste, provide shielding, and reduce it to a volume of six cubic meters (container volume) for disposal. Waste characterization of the shielded evaporators poses some challenges. The process of evaporating the liquid and reducing the volume of waste increases the concentrations of RCIU regulated metals and radionuclides in the final waste form. Also, once the liquid waste has been processed through the evaporators it is not possible to obtain sample material for characterization. The process for tracking and assessing the final radioactive waste concentrations is described in this paper, The structural components of the evaporator are an approved and integral part of the final waste stream and they are included in the final waste characterization

  16. Advanced evaporator technology progress report FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

  17. Advanced evaporator technology progress report FY 1992

    International Nuclear Information System (INIS)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A.

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program open-quotes Technology Development for Concentrating Process Streams.close quotes The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report

  18. Amplitude structure of off-shell processes

    International Nuclear Information System (INIS)

    Fearing, H.W.; Goldstein, G.R.; Moravcsik, M.J.

    1984-01-01

    The structure of M matrices, or scattering amplitudes, and of potentials for off-shell processes is discussed with the objective of determining how one can obtain information on off-shell amplitudes of a process in terms of the physical observables of a larger process in which the first process is embedded. The procedure found is inevitably model dependent, but within a particular model for embedding, a determination of the physically measurable amplitudes of the larger process is able to yield a determination of the off-shell amplitudes of the embedded process

  19. Image Information Obtained Using a Charge-Coupled Device (CCD) Camera During an Immersion Liquid Evaporation Process for Measuring the Refractive Index of Solid Particles.

    Science.gov (United States)

    Niskanen, Ilpo; Sutinen, Veijo; Thungström, Göran; Räty, Jukka

    2018-06-01

    The refractive index is a fundamental physical property of a medium, which can be used for the identification and purity issues of all media. Here we describe a refractive index measurement technique to determine simultaneously the refractive index of different solid particles by monitoring the transmittance of light from a suspension using a charge-coupled device (CCD) camera. An important feature of the measurement is the liquid evaporation process for the refractive index matching of the solid particle and the immersion liquid; this was realized by using a pair of volatile and non-volatile immersion liquids. In this study, refractive indices of calcium fluoride (CaF 2 ) and barium fluoride (BaF 2 ) were determined using the proposed method.

  20. An evaporation based digital microflow meter

    NARCIS (Netherlands)

    Nie, C; Frijns, A J H; Mandamparambil, R; Zevenbergen, M A G; den Toonder, J M J

    2015-01-01

    In this work, we present a digital microflow meter operating in the range 30-250 nl min-1 for water. The principle is based on determining the evaporation rate of the liquid via reading the number of wetted pore array structures in a microfluidic system, through which continuous evaporation takes

  1. An evaporation based digital microflow meter

    NARCIS (Netherlands)

    Nie, C.; Frijns, A.J.H.; Mandamparambil, R.; Zevenbergen, M.A.G.; Toonder, den J.M.J.

    2015-01-01

    In this work, we present a digital microflow meter operating in the range 30–250 nl min-1 for water. The principle is based on determining the evaporation rate of the liquid via reading the number of wetted pore array structures in a microfluidic system, through which continuous evaporation takes

  2. Wetting and evaporation of binary mixture drops.

    Science.gov (United States)

    Sefiane, Khellil; David, Samuel; Shanahan, Martin E R

    2008-09-11

    Experimental results on the wetting behavior of water, methanol, and binary mixture sessile drops on a smooth, polymer-coated substrate are reported. The wetting behavior of evaporating water/methanol drops was also studied in a water-saturated environment. Drop parameters (contact angle, shape, and volume) were monitored in time. The effects of the initial relative concentrations on subsequent evaporation and wetting dynamics were investigated. Physical mechanisms responsible for the various types of wetting behavior during different stages are proposed and discussed. Competition between evaporation and hydrodynamic flow are evoked. Using an environment saturated with water vapor allowed further exploration of the controlling mechanisms and underlying processes. Wetting stages attributed to differential evaporation of methanol were identified. Methanol, the more volatile component, evaporates predominantly in the initial stage. The data, however, suggest that a small proportion of methanol remained in the drop after the first stage of evaporation. This residual methanol within the drop seems to influence subsequent wetting behavior strongly.

  3. Structure and magnetic properties of Fe doped In{sub 2}O{sub 3} thin films prepared by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, N. Sai; Kaleemulla, S., E-mail: skaleemulla@gmail.com; Rao, N. Madhusudhana; Krishnamoorthi, C.; Begam, M. Rigana [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore – 632014 (India); Amarendra, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); UGC-DAE-CSR, Kalpakkam Node, Kokilamedu, Tamilnadu -603104 (India)

    2015-06-24

    Pure and Fe (7 at.%) doped In{sub 2}O{sub 3} thin films were grown onto the glass substrates by electron beam evaporation technique. The structural and magnetic properties of the pure and Fe doped In{sub 2}O{sub 3} thin films have been studied. The undoped and Fe doped In{sub 2}O{sub 3} thin films shown ferromagnetic property at room temperature. A magnetization of 24 emu/cm{sup 3} was observed for pure In{sub 2}O{sub 3} thin films. The magnetization of 38.23 emu/cm{sup 3} was observed for the Fe (7 at.%) doped In{sub 2}O{sub 3} thin films.

  4. Improving technology and setting-up a production line for high quality zinc oxide (99.5%) with a capacity of 150 ton/year by evaporation-oxidation process

    International Nuclear Information System (INIS)

    Phan Dinh Thinh; Pham Minh Tuan; Luong Manh Hung; Tran Ngoc Vuong

    2015-01-01

    This report presents the technology improvement and a production line to produce high quality zinc oxide of purity upper than 99.5% ZnO by evaporation-oxidation method. Secondary zinc metal recovered from galvanizing industrial will undergo a pre-treatment to meet all requirements of standardized feed material for evaporation-oxidation process. Zinc metal is melted at a temperature of about 650"oC, some impurities and metallic oxides are separated preliminary, then zinc metal is converted into liquid in evaporation pot. Here the temperature is maintained around 1050"oC, zinc liquid is evaporated, zinc vapor is oxidized by air in the oxidation chamber naturally by oxygen in the air and then zinc vapor is converted to zinc oxide. Zinc oxide is passed through a product classification systems and then go to a product collection of filtering bag design. The whole process of melting, evaporation, oxidation, particles classification and product collection is a continuous process. The efficiency of the transformation of zinc metal into zinc oxide can reach the value of 1.1 to 1.2. ZnO product quality is higher than 99.5%. (author)

  5. Bayesian structural inference for hidden processes

    Science.gov (United States)

    Strelioff, Christopher C.; Crutchfield, James P.

    2014-04-01

    We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian structural inference (BSI) relies on a set of candidate unifilar hidden Markov model (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological ɛ-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be ɛ-machines, irrespective of estimated transition probabilities. Properties of ɛ-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSI's effectiveness in estimating a process's randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.

  6. Evaporation and crystallization of a droplet of desulfurization wastewater from a coal-fired power plant

    International Nuclear Information System (INIS)

    Liang, Zhengxing; Zhang, Li; Yang, Zhongqing; Qiang, Tang; Pu, Ge; Ran, Jingyu

    2017-01-01

    Highlights: • Evaporation and crystallization characteristics of the droplets of desulfurization wastewater. • TGA and DSC methods were used to investigate the evaporation and crystallization processes. • Evaporation and crystallization rates increase with the increase of temperature increasing rate. • Increasing volume of the droplet increases the evaporation rate, but decreases the crystallization rate. • Structure of the crystals changes significantly when the temperature increasing rate and the volume of the droplet change. - Abstract: Relationship between evaporation and crystallization characteristics of a droplet of desulfurization wastewater from a coal-fired power plant and some operating conditions was studied experimentally using a thermogravimetric analyzer (TGA) with differential scanning calorimetry (DSC) function and a scanning electron microscope (SEM). The results shows that, between 15 °C/min and 45 °C/min, a higher temperature increasing rate leads to higher evaporation and crystallization rates. The increment in the evaporation rate, caused by the same increment of temperature increasing rate, is larger, when the temperature increasing rate is lower. In addition, the final temperatures, ranging from 90 °C to 150 °C, have little impact on the evaporation and crystallization rates of the 0.5 μL droplet. Ultimately, for the droplets, ranging from 0.2 μL to 2.5 μL, evaporation rate increases with increasing volumes of the droplets, but the crystallization rate decreases. From the SEM results, it can be observed that the quantity of cracks on the surface of the crystals also declines with the increase in volumes. Furthermore, the Stefan flow becomes a significant and unneglectable factor in order to decrease the evaporation rate at the end of the evaporation period.

  7. Syntactic Structures as Descriptions of Sensorimotor Processes

    Directory of Open Access Journals (Sweden)

    Alistair Knott

    2014-02-01

    Full Text Available In this paper I propose a hypothesis linking elements of a model of theoretical syntax with neural mechanisms in the domain of sensorimotor processing. The syntactic framework I adopt to express this linking hypothesis is Chomsky’s Minimalism: I propose that the language-independent ’Logical Form’ (LF of a sentence reporting a concrete episode in the world can be interpreted as a detailed description of the sensorimotor processes involved in apprehending that episode. The hypothesis is motivated by a detailed study of one particular episode, in which an agent grasps a target object. There are striking similarities between the LF structure of transitive sentences describing this episode and the structure of the sensorimotor processes through which it is apprehended by an observer. The neural interpretation of Minimalist LF structure allows it to incorporate insights from empiricist accounts of syntax, relating to sentence processing and to the learning of syntactic constructions.

  8. Self-excited hydrothermal waves in evaporating sessile drops

    Science.gov (United States)

    Sefiane, K.; Moffat, J. R.; Matar, O. K.; Craster, R. V.

    2008-08-01

    Pattern formation driven by the spontaneous evaporation of sessile drops of methanol, ethanol, and FC-72 using infrared thermography is observed and, in certain cases, interpreted in terms of hydrothermal waves. Both methanol and ethanol drops exhibit thermal wave trains, whose wave number depends strongly on the liquid volatililty and substrate thermal conductivity. The FC-72 drops develop cellular structures whose size is proportional to the local thickness. Prior to this work, hydrothermal waves have been observed in the absence of evaporation in shallow liquid layers subjected to an imposed temperature gradient. In contrast, here both the temperature gradients and the drop thickness vary spatially and temporally and are a natural consequence of the evaporation process.

  9. Odors from evaporation of acidified pig urine

    NARCIS (Netherlands)

    Willers, H.C.; Hobbs, P.J.; Ogink, N.W.M.

    2004-01-01

    In the Dutch Hercules project feces and urine from pigs are collected separately underneath the slatted floor in a pig house and treated in two processes. Feces are composted and urine is concentrated by water evaporation in a packed bed. Exhaust air from the pig house is used for the evaporation in

  10. Aerospace structural design process improvement using systematic evolutionary structural modeling

    Science.gov (United States)

    Taylor, Robert Michael

    2000-10-01

    A multidisciplinary team tasked with an aircraft design problem must understand the problem requirements and metrics to produce a successful design. This understanding entails not only knowledge of what these requirements and metrics are, but also how they interact, which are most important (to the customer as well as to aircraft performance), and who in the organization can provide pertinent knowledge for each. In recent years, product development researchers and organizations have developed and successfully applied a variety of tools such as Quality Function Deployment (QFD) to coordinate multidisciplinary team members. The effectiveness of these methods, however, depends on the quality and fidelity of the information that team members can input. In conceptual aircraft design, structural information is of lower quality compared to aerodynamics or performance because it is based on experience rather than theory. This dissertation shows how advanced structural design tools can be used in a multidisciplinary team setting to improve structural information generation and communication through a systematic evolution of structural detail. When applied to conceptual design, finite element-based structural design tools elevate structural information to the same level as other computationally supported disciplines. This improved ability to generate and communicate structural information enables a design team to better identify and meet structural design requirements, consider producibility issues earlier, and evaluate structural concepts. A design process experiment of a wing structural layout in collaboration with an industrial partner illustrates and validates the approach.

  11. Spatial structure of the arc in a pulsed GMAW process

    International Nuclear Information System (INIS)

    Kozakov, R; Gött, G; Schöpp, H; Uhrlandt, D; Schnick, M; Häßler, M; Füssel, U; Rose, S

    2013-01-01

    A pulsed gas metal arc welding (GMAW) process of steel under argon shielding gas in the globular mode is investigated by measurements and simulation. The analysis is focussed on the spatial structure of the arc during the current pulse. Therefore, the radial profiles of the temperature, the metal vapour species and the electric conductivity are determined at different heights above the workpiece by optical emission spectroscopy (OES). It is shown that under the presence of metal vapour the temperature minimum occurs at the centre of the arc. This minimum is preserved at different axial positions up to 1 mm above the workpiece. In addition, estimations of the electric field in the arc from the measurements are given. All these results are compared with magneto-hydrodynamic simulations which include the evaporation of the wire material and the change of the plasma properties due to the metal vapour admixture in particular. The experimental method and the simulation model are validated by means of the satisfactory correspondence between the results. Possible reasons for the remaining deviations and improvements of the methods which should be aspired are discussed. (paper)

  12. Thermal evolution of the morphology, structure, and optical properties of multilayer nanoperiodic systems produced by the vacuum evaporation of SiO and SiO2

    International Nuclear Information System (INIS)

    Ershov, A. V.; Chugrov, I. A.; Tetelbaum, D. I.; Mashin, A. I.; Pavlov, D. A.; Nezhdanov, A. V.; Bobrov, A. I.; Grachev, D. A.

    2013-01-01

    The alternate vacuum evaporation of SiO and SiO 2 from separate sources is used to produce amorphous a-SiO x /SiO 2 multilayer nanoperiodic structures with periods of 5–10 nm and a number of layers of up to 64. The effect of annealing at temperatures T a = 500–1100°C on the structural and optical properties of the nanostructures is studied. The results of transmission electron microscopy of the samples annealed at 1100°C indicate the annealing-induced formation of vertically ordered quasiperiodic arrays of Si nanocrystals, whose dimensions are comparable to the a-SiO x -layer thickness in the initial nanostructures. The nanostructures annealed at 1100°C exhibit size-dependent photoluminescence in the wavelength range 750–830 nm corresponding to Si nanocrystals. The data on infrared absorption and Raman scattering show that the thermal evolution of structural and phase state of the SiO x layers with increasing annealing temperature proceeds through the formation of amorphous Si nanoinclusions with the subsequent formation and growth of Si nanocrystals.

  13. Effects of straw mulching on soil evaporation during the soil thawing ...

    Indian Academy of Sciences (India)

    26

    Keywords: straw mulching, soil water evaporation, soil thawing period, freezing depth, soil liquid water .... moisture and the soil water evaporation process. The Songnen Plain ...... soils on soil infiltration and evaporation: Water Sci. Technol.

  14. Ultrafast Optical Signal Processing with Bragg Structures

    Directory of Open Access Journals (Sweden)

    Yikun Liu

    2017-05-01

    Full Text Available The phase, amplitude, speed, and polarization, in addition to many other properties of light, can be modulated by photonic Bragg structures. In conjunction with nonlinearity and quantum effects, a variety of ensuing micro- or nano-photonic applications can be realized. This paper reviews various optical phenomena in several exemplary 1D Bragg gratings. Important examples are resonantly absorbing photonic structures, chirped Bragg grating, and cholesteric liquid crystals; their unique operation capabilities and key issues are considered in detail. These Bragg structures are expected to be used in wide-spread applications involving light field modulations, especially in the rapidly advancing field of ultrafast optical signal processing.

  15. Microwave heating type evaporator

    International Nuclear Information System (INIS)

    Taura, Masazumi; Nishi, Akio; Morimoto, Takashi; Izumi, Jun; Tamura, Kazuo; Morooka, Akihiko.

    1987-01-01

    Purpose: To prevent evaporization stills against corrosion due to radioactive liquid wastes. Constitution: Microwaves are supplied from a microwave generator by way of a wave guide tube and through a microwave permeation window to the inside of an evaporatization still. A matching device is attached to the wave guide tube for transmitting the microwaves in order to match the impedance. When the microwaves are supplied to the inside of the evaporization still, radioactive liquid wastes supplied from a liquid feed port by way of a spray tower to the inside of the evaporization still is heated and evaporated by the induction heating of the microwaves. (Seki, T.)

  16. Isotope Fractionation of Water During Evaporation Without Condensation

    International Nuclear Information System (INIS)

    Cappa, Christopher D.; Drisdell, Walter S.; Smith, Jared D.; Saykally, Richard J.; Cohen, Ronald C.

    2005-01-01

    The microscopic events engendering liquid water evaporation have received much attention over the last century, but remain incompletely understood. We present measurements of isotope fractionation occurring during free molecular evaporation from liquid microjets and show that the isotope ratios of evaporating molecules exhibit dramatic differences from equilibrium vapor values, strong variations with the solution deuterium mole fraction, and a clear temperature dependence. These results indicate the existence of an energetic barrier to evaporation and that the evaporation coefficient of water is less than unity. These new insights into water evaporation promise to advance our understanding of the processes that control the formation and lifetime of clouds in the atmosphere.

  17. Resensi Buku: Organization Strategy, Structure, and Process

    Directory of Open Access Journals (Sweden)

    Ayi Ahadiyat

    2009-08-01

    Full Text Available Book ReviewJudul Buku    : Organization Strategy, Structure, and ProcessPenulis    : Raymond E. Miles and Charles C. SnowPenerbit     : McGraw-Hill Kogakusha, Ltd (International Student Edition, Tokyo,  274 hlm.Tahun    : 1978

  18. Information processing for aerospace structural health monitoring

    Science.gov (United States)

    Lichtenwalner, Peter F.; White, Edward V.; Baumann, Erwin W.

    1998-06-01

    Structural health monitoring (SHM) technology provides a means to significantly reduce life cycle of aerospace vehicles by eliminating unnecessary inspections, minimizing inspection complexity, and providing accurate diagnostics and prognostics to support vehicle life extension. In order to accomplish this, a comprehensive SHM system will need to acquire data from a wide variety of diverse sensors including strain gages, accelerometers, acoustic emission sensors, crack growth gages, corrosion sensors, and piezoelectric transducers. Significant amounts of computer processing will then be required to convert this raw sensor data into meaningful information which indicates both the diagnostics of the current structural integrity as well as the prognostics necessary for planning and managing the future health of the structure in a cost effective manner. This paper provides a description of the key types of information processing technologies required in an effective SHM system. These include artificial intelligence techniques such as neural networks, expert systems, and fuzzy logic for nonlinear modeling, pattern recognition, and complex decision making; signal processing techniques such as Fourier and wavelet transforms for spectral analysis and feature extraction; statistical algorithms for optimal detection, estimation, prediction, and fusion; and a wide variety of other algorithms for data analysis and visualization. The intent of this paper is to provide an overview of the role of information processing for SHM, discuss various technologies which can contribute to accomplishing this role, and present some example applications of information processing for SHM implemented at the Boeing Company.

  19. Parallel processing of structural integrity analysis codes

    International Nuclear Information System (INIS)

    Swami Prasad, P.; Dutta, B.K.; Kushwaha, H.S.

    1996-01-01

    Structural integrity analysis forms an important role in assessing and demonstrating the safety of nuclear reactor components. This analysis is performed using analytical tools such as Finite Element Method (FEM) with the help of digital computers. The complexity of the problems involved in nuclear engineering demands high speed computation facilities to obtain solutions in reasonable amount of time. Parallel processing systems such as ANUPAM provide an efficient platform for realising the high speed computation. The development and implementation of software on parallel processing systems is an interesting and challenging task. The data and algorithm structure of the codes plays an important role in exploiting the parallel processing system capabilities. Structural analysis codes based on FEM can be divided into two categories with respect to their implementation on parallel processing systems. The first category codes such as those used for harmonic analysis, mechanistic fuel performance codes need not require the parallelisation of individual modules of the codes. The second category of codes such as conventional FEM codes require parallelisation of individual modules. In this category, parallelisation of equation solution module poses major difficulties. Different solution schemes such as domain decomposition method (DDM), parallel active column solver and substructuring method are currently used on parallel processing systems. Two codes, FAIR and TABS belonging to each of these categories have been implemented on ANUPAM. The implementation details of these codes and the performance of different equation solvers are highlighted. (author). 5 refs., 12 figs., 1 tab

  20. On knowledge structures for process operators

    International Nuclear Information System (INIS)

    Wirstad, J.

    1981-05-01

    A conceptual framework for operator competency and job training planning and design being developed and used for operators in Swedish nuclear power stations is presented briefly. This conceptual framework represents a training technological approach. It uses terms which are system oriented and familiar to people working in the plant. Another conceptual framework is focusing on the information processing of the operator and its relation to physical, functional and abstract representations of the plant and the process. This conceptual framework has been developed by Risoe in Denmark especially for man process-interaction analysis and design. There are interesting relations between the two structures, e.g. human information processing in plant operation is largely a function of operator learning of the work, the processes and the plants units, its subsystems and components. The two framework are analysed and relations between them are indicated. (author)

  1. Structure and properties of ZnSxSe1-x thin films deposited by thermal evaporation of ZnS and ZnSe powder mixtures

    Science.gov (United States)

    Valeev, R. G.; Romanov, E. A.; Vorobiev, V. L.; Mukhgalin, V. V.; Kriventsov, V. V.; Chukavin, A. I.; Robouch, B. V.

    2015-02-01

    Interest to ZnSxSe1-x alloys is due to their band-gap tunability varying S and Se content. Films of ZnSxSe1-x were grown evaporating ZnS and ZnSe powder mixtures onto SiO2, NaCl, Si and ITO substrates using an original low-cost method. X-ray diffraction patterns and Raman spectroscopy, show that the lattice structure of these films is cubic ZnSe-like, as S atoms replace Se and film compositions have their initial S/Se ratio. Optical absorption spectra show that band gap values increase from 2.25 to 3 eV as x increases, in agreement with the literature. Because S atomic radii are smaller than Se, EXAFS spectra confirm that bond distances and Se coordination numbers decrease as the Se content decreases. The strong deviation from linearity of ZnSe coordination numbers in the ZnSxSe1-x indicate that within this ordered crystal structure strong site occupation preferences occur in the distribution of Se and S ions. The behavior is quantitatively confirmed by the strong deviation from the random Bernoulli distribution of the three sight occupation preference coefficients of the strained tetrahedron model. Actually, the ternary ZnSxSe1-x system is a bi-binary (ZnS+ZnSe) alloy with evanescent formation of ternary configurations throughout the x-range.

  2. Structural, morphological, gas sensing and photocatalytic characterization of MoO3 and WO3 thin films prepared by the thermal vacuum evaporation technique

    Science.gov (United States)

    Arfaoui, A.; Touihri, S.; Mhamdi, A.; Labidi, A.; Manoubi, T.

    2015-12-01

    Thin films of molybdenum trioxide and tungsten trioxide were deposited on glass substrates using a simplified thermal evaporation under vacuum method monitored by heat treatment in flowing oxygen at 500 °C for 1 h. The structural and morphological properties of the films were investigated using X-ray diffraction, Raman spectroscopy, atomic force microscopy and scanning electron microscopy. The X-ray diffraction analysis shows that the films of MoO3 and WO3 were well crystallized in orthorhombic and monoclinic phase respectively with the crystallites preferentially oriented toward (2 0 0) direction parallel a-axis for both samples. In literature, we have shown in previous papers that structural and surface morphology of metal thin films play an important role in the gas detection mechanism. In this article, we have studied the response evolution of MoO3 and WO3 thin films sensors ethanol versus time, working temperature and the concentration of the ethanol. It was found that these films had high sensitivity to ethanol, which made them as a good candidate for the ethanol sensor. Finally, the photocatalytic activity of the samples was evaluated with respect to the degradation reaction of a wastewater containing methylene blue (MB) under UV-visible light irradiation. The molybdenum trioxide exhibits a higher degradation rate than the tungsten trioxide thin films under similar experimental conditions.

  3. Electric power generation and LNG evaporation with the aid of gas turbines within a closed-cycle process. [In German

    Energy Technology Data Exchange (ETDEWEB)

    Weber, D

    1978-01-01

    LNG, after being pumped to customary pipeline pressure, has a high working potential which can be technically utilized. Thus, in a modern large-size terminal, a power potential in the order of magnitude of several hundred MW is available. In the course of rising power prices the question becomes important if this potential continues to be wasted or if conversion to electric power is economical. In the proposed process the working fluid of a gas turbine plant with a closed circuit is cooled to -140/sup 0/C with LNG before entering the compressor and heated to +720/sup 0/C before entering the turbine by means of external heat gained by burning natural gas. With a 1 million m/sup 3//h throughput of LNG in its normal state, 237 MW of electric power can be generated with 53% efficiency with this simple circuit, which can be further developed. In a combination of closed gas turbine and diesel generator, almost 289 MW of electric power can be produced per 1 million m/sup 3//h LNG with an efficiency of 60%.

  4. Effect of the RE (RE = Eu, Er) doping on the structural and textural properties of mesoporous TiO{sub 2} thin films obtained by evaporation induced self-assembly method

    Energy Technology Data Exchange (ETDEWEB)

    Borlaf, Mario, E-mail: mborlaf@icv.csic.es [Instituto de Cerámica y Vidrio, CSIC, C/Kelsen, 5, Cantoblanco, E-28049 Madrid (Spain); Caes, Sebastien; Dewalque, Jennifer [LCIS-GREENMAT, Institute of Chemistry, University of Liege, B6 Sart Tilman, 4000 Liege (Belgium); Colomer, María Teresa; Moreno, Rodrigo [Instituto de Cerámica y Vidrio, CSIC, C/Kelsen, 5, Cantoblanco, E-28049 Madrid (Spain); Cloots, Rudi; Boschini, Frederic [LCIS-GREENMAT, Institute of Chemistry, University of Liege, B6 Sart Tilman, 4000 Liege (Belgium); APTIS, Institute of Physics, University of Liege, B5 Sart Tilman, 4000 Liege (Belgium)

    2014-05-02

    Polymeric sol–gel route has been used for the preparation of TiO{sub 2} and RE{sub 2}O{sub 3–}TiO{sub 2} (RE = Eu, Er) mesoporous thin films by evaporation induced self-assembly method using Si (100) as a substrate. The influence of the relative humidity (RH) on the preparation of the film has been studied being necessary to work under 40% RH in order to obtain homogeneous and transparent thin films. The films were annealed at different temperatures until 900 °C/1 h and the anatase crystallization and its crystal size evolution were followed by low angle X-ray diffraction. Neither the anatase–rutile transition nor the formation of other compounds was observed in the studied temperature range. Ellipsoporosimetry studies demonstrated that the thickness of the thin films did not change after calcination at 500 °C, the porosity was constant until 700 °C, the pore size increased and the specific surface area decreased with temperature. Moreover, the effect of the doping with Er{sup 3+} and Eu{sup 3+} was studied and a clear inhibition of the crystal growth and the sintering process was detected (by transmission electron and atomic force microscopy) when the doped films are compared with the undoped ones. Finally, Eu{sup 3+} and Er{sup 3+} f–f transitions were detected by PL measurements. - Highlights: • Eu and Er–TiO{sub 2} mesoporous films were prepared by evaporation induced self-assembly. • Influence of humidity on porosity and photoluminescent properties has been tested. • Influence of calcination on structural and textural properties has been also studied. • f–f transitions indicate that the thin films are active photoluminescent materials.

  5. Effect of the RE (RE = Eu, Er) doping on the structural and textural properties of mesoporous TiO2 thin films obtained by evaporation induced self-assembly method

    International Nuclear Information System (INIS)

    Borlaf, Mario; Caes, Sebastien; Dewalque, Jennifer; Colomer, María Teresa; Moreno, Rodrigo; Cloots, Rudi; Boschini, Frederic

    2014-01-01

    Polymeric sol–gel route has been used for the preparation of TiO 2 and RE 2 O 3– TiO 2 (RE = Eu, Er) mesoporous thin films by evaporation induced self-assembly method using Si (100) as a substrate. The influence of the relative humidity (RH) on the preparation of the film has been studied being necessary to work under 40% RH in order to obtain homogeneous and transparent thin films. The films were annealed at different temperatures until 900 °C/1 h and the anatase crystallization and its crystal size evolution were followed by low angle X-ray diffraction. Neither the anatase–rutile transition nor the formation of other compounds was observed in the studied temperature range. Ellipsoporosimetry studies demonstrated that the thickness of the thin films did not change after calcination at 500 °C, the porosity was constant until 700 °C, the pore size increased and the specific surface area decreased with temperature. Moreover, the effect of the doping with Er 3+ and Eu 3+ was studied and a clear inhibition of the crystal growth and the sintering process was detected (by transmission electron and atomic force microscopy) when the doped films are compared with the undoped ones. Finally, Eu 3+ and Er 3+ f–f transitions were detected by PL measurements. - Highlights: • Eu and Er–TiO 2 mesoporous films were prepared by evaporation induced self-assembly. • Influence of humidity on porosity and photoluminescent properties has been tested. • Influence of calcination on structural and textural properties has been also studied. • f–f transitions indicate that the thin films are active photoluminescent materials

  6. Intrinsic Evaporative Cooling by Hygroscopic Earth Materials

    Directory of Open Access Journals (Sweden)

    Alexandra R. Rempel

    2016-08-01

    Full Text Available The phase change of water from liquid to vapor is one of the most energy-intensive physical processes in nature, giving it immense potential for cooling. Diverse evaporative cooling strategies have resulted worldwide, including roof ponds and sprinklers, courtyard fountains, wind catchers with qanats, irrigated green roofs, and fan-assisted evaporative coolers. These methods all require water in bulk liquid form. The evaporation of moisture that has been sorbed from the atmosphere by hygroscopic materials is equally energy-intensive, however, yet has not been examined for its cooling potential. In arid and semi-arid climates, hygroscopic earth buildings occur widely and are known to maintain comfortable indoor temperatures, but evaporation of moisture from their walls and roofs has been regarded as unimportant since water scarcity limits irrigation and rainfall; instead, their cool interiors are attributed to well-established mass effects in delaying the transmission of sensible gains. Here, we investigate the cooling accomplished by daily cycles of moisture sorption and evaporation which, requiring only ambient humidity, we designate as “intrinsic” evaporative cooling. Connecting recent soil science to heat and moisture transport studies in building materials, we use soils, adobe, cob, unfired earth bricks, rammed earth, and limestone to reveal the effects of numerous parameters (temperature and relative humidity, material orientation, thickness, moisture retention properties, vapor diffusion resistance, and liquid transport properties on the magnitude of intrinsic evaporative cooling and the stabilization of indoor relative humidity. We further synthesize these effects into concrete design guidance. Together, these results show that earth buildings in diverse climates have significant potential to cool themselves evaporatively through sorption of moisture from humid night air and evaporation during the following day’s heat. This finding

  7. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  8. Rearrangement of cluster structure during fission processes

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Andrey V.

    2004-01-01

    Results of molecular dynamics simulations of fission reactions $Na_10^2+ -->Na_7^++ Na_3^+ and Na_18^2+--> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analysed. It is demonstrated that the energy necessary for removing homothetic...... groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual...

  9. Drop evaporation and triple line dynamics

    Science.gov (United States)

    Sobac, Benjamin; Brutin, David; Gavillet, Jerome; Université de Provence Team; Cea Liten Team

    2011-03-01

    Sessile drop evaporation is a phenomenon commonly came across in nature or in industry with cooling, paintings or DNA mapping. However, the evaporation of a drop deposited on a substrate is not completely understood due to the complexity of the problem. Here we investigate, with several nano-coating of the substrate (PTFE, SiOx, SiOc and CF), the influence of the dynamic of the triple line on the evaporation process. The experiment consists in analyzing simultaneously the motion of the triple line, the kinetics of evaporation, the internal thermal motion and the heat and mass transfer. Measurements of temperature, heat-flux and visualizations with visible and infrared cameras are performed. The dynamics of the evaporative heat flux appears clearly different depending of the motion of the triple line

  10. Dynamic Wet Etching of Silicon through Isopropanol Alcohol Evaporation

    Directory of Open Access Journals (Sweden)

    Tiago S. Monteiro

    2015-10-01

    Full Text Available In this paper, Isopropanol (IPA availability during the anisotropic etching of silicon in Potassium Hydroxide (KOH solutions was investigated. Squares of 8 to 40 µm were patterned to (100 oriented silicon wafers through DWL (Direct Writing Laser photolithography. The wet etching process was performed inside an open HDPE (High Density Polyethylene flask with ultrasonic agitation. IPA volume and evaporation was studied in a dynamic etching process, and subsequent influence on the silicon etching was inspected. For the tested conditions, evaporation rates for water vapor and IPA were determined as approximately 0.0417 mL/min and 0.175 mL/min, respectively. Results demonstrate that IPA availability, and not concentration, plays an important role in the definition of the final structure. Transversal SEM (Scanning Electron Microscopy analysis demonstrates a correlation between microloading effects (as a consequence of structure spacing and the angle formed towards the (100 plane.

  11. Quantum Evaporation from Liquid 4He by Rotons

    Science.gov (United States)

    Hope, F. R.; Baird, M. J.; Wyatt, A. F. G.

    1984-04-01

    We have shown that rotons as well as phonons can evaporate 4He atoms in a single-quantum process. Measurements of the time of flight and the angular distribution of the evaporated atoms clearly distinguish between evaporation by phonons and rotons. The results indicate that energy and the parallel component of momentum are conserved at the free liquid surface.

  12. Biological activity during co-composting of sludge issued from the OMW evaporation ponds with poultry manure-Physico-chemical characterization of the processed organic matter.

    Science.gov (United States)

    Hachicha, Salma; Sellami, Fatma; Cegarra, Juan; Hachicha, Ridha; Drira, Noureddine; Medhioub, Khaled; Ammar, Emna

    2009-02-15

    Olive mill sludge (OMS), a by-product resulting from natural evaporation of olive oil processing effluent, poses a major environmental threat. A current cost-effective practice of OMS management is composting. A mixture of OMS (60%) with poultry manure (PM) was successfully composted for 210 days. During the process, effluents of olive oil mill and confectionary were used to keep moisture at optimal level (40-60%). Biological indicators reflecting stability of the compost (microbial biota respiration and enumeration, and germination index) were analysed for the assessment of the product quality. The composted mixture showed a high microbial activity with a succession of microbial populations depending on the temperature reached during the biodegradation. The pathogen content from PM decreased with composting as did phytotoxic compounds. Phenols and lipids were reduced, respectively, by 40% and 84% while germination index increased with composting progress. Fourier transform infrared (FTIR) spectroscopic analysis revealed that the final compost improved the aromatic content compared to the starting materials, with a decrease in aliphatic groups and a reduction in the easily assimilated components by the microflora acting during the biological process. The final compost was characterized by relatively high organic matter content (26.21%), a low C/N ratio (16.21), an alkaline pH (8.32), a relatively high electrical conductivity (9.21mS/cm) and a high level of nutrients. The germination index for Lepidium sativum L. was 87.71% after 210 days of composting, showing that the final compost was not phytotoxic.

  13. Transhorizon Radiowave Propagation due to Evaporation Dueting

    Indian Academy of Sciences (India)

    from the meteorological perspective, evaporation ducts have far reaching implications on radio communications ... Background Theory ... It is in this context that the tropo- .... eters that are representative of the ongoing physical processes at.

  14. Processing and Structure of Carbon Nanofiber Paper

    Directory of Open Access Journals (Sweden)

    Zhongfu Zhao

    2009-01-01

    Full Text Available A unique concept of making nanocomposites from carbon nanofiber paper was explored in this study. The essential element of this method was to design and manufacture carbon nanofiber paper with well-controlled and optimized network structure of carbon nanofibers. In this study, carbon nanofiber paper was prepared under various processing conditions, including different types of carbon nanofibers, solvents, dispersants, and acid treatment. The morphologies of carbon nanofibers within the nanofiber paper were characterized with scanning electron microscopy (SEM. In addition, the bulk densities of carbon nanofiber papers were measured. It was found that the densities and network structures of carbon nanofiber paper correlated to the dispersion quality of carbon nanofibers within the paper, which was significantly affected by papermaking process conditions.

  15. Study on structural design technique of silicon carbide applied for thermochemical hydrogen production IS process

    International Nuclear Information System (INIS)

    Takegami, Hiroaki; Terada, Atsuhiko; Inagaki, Yoshiyuki; Ishikura, Syuichi

    2011-03-01

    The IS process is the hydrogen production method which used the thermochemical reaction cycle of sulfuric acid and iodyne. Therefore, the design to endure the high temperature and moreover corrode-able environment is required to the equipment. Specifically, the sulfuric acid decomposer which is one of the main equipment of the IS process is the equipment to heat with hot helium and for the sulfuric acid of 90 wt% to evaporate. Moreover, it is the important equipment to supply the SO 3 decomposer which is the following process, resolving the part of sulfuric acid vapor into SO 3 with. The heat exchanger that sulfuric acid evaporates must be made pressure-resistant structure because it has the high-pressure helium of 4 MPa and the material that the high temperature and the corrosion environment of equal to or more than 700degC can be endured must be used. As the material, it is selected from the corrosion experiment and so on when SiC which is carbonization silicone ceramics is the most excellent material. However, even if it damages the ceramic block which is a heat exchanger because it becomes the structure which is stored in pressure-resistant metallic container, fluid such as sulfuric acid becomes the structure which doesn't leak out outside. However, the structure design technique to have been unified when using ceramics as the structure part isn't serviced as the standard. This report is the one which was studied about the structural design technique to have taken the material strength characteristic of the ceramics into consideration, refer to existing structural design standard. (author)

  16. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  17. 1/f noise in titanium doped aluminum thin film deposited by electron beam evaporation method and its dependence on structural variation with temperature

    Science.gov (United States)

    Ananda, P.; Vedanayakam, S. Victor; Thyagarajan, K.; Nandakumar, N.

    2018-05-01

    A brief review of Titanium doped Aluminum film has many attractive properties such as thermal properties and 1/f noise is highlighted. The thin film devices of Titanium doped alluminium are specially used in aerospace technology, automotive, biomedical fields also in microelectronics. In this paper, we discus on 1/f noise and nonlinear effects in titanium doped alluminium thin films deposited on glass substrate using electron beam evaporation for different current densities on varying temperatures of the film. The plots are dawn for 1/f noise of the films at different temperatures ranging from 300°C to 450°C and the slopes are determined. The studies shows a higher order increment in FFT amplitude of low frequency 1/f noise in thin films at annealing temperature 400°C. In this technology used in aerospace has been the major field of application of titanium doped alluminium, being one of the major challenges of the development of new alloys with improved strength at high temperature, wide chord Titanium doped alluminium fan blades increases the efficiency while reducing 1/f noise. Structural properties of XRD is identified.

  18. Effect of thermal annealing on the structural and optical properties of Cu2FeSnS4 thin films grown by vacuum evaporation method

    Science.gov (United States)

    Oueslati, H.; Rabeh, M. Ben; Kanzari, M.

    2018-02-01

    In this work, the effect of different types of thermal annealing on the properties of Cu2FeSnS4 (CFTS) thin films deposited by thermal evaporation at room temperature on glass substrate were investigated. CFTS powder was synthesized by direct melting of the constituent elements taken in stoichiometry compositions. The X-ray diffraction experimental data indicating that the Cu2FeSnS4 powder illustrating a stannite structure in space group I\\bar {4}2m. From the XRD analysis we have found that the polycrystalline CFTS thin film was only obtained by thermal annealed in sulfur atmosphere under a high vacuum of 400 °C temperature during 2 h. Optical study reveals that the thin films have relatively high absorption coefficients (≈ 105cm-1) and the values of optical band gap energy ranged between 1.38 and 1.48 eV. Other optical parameters were evaluated according to the models of Wemple Di-Domenico and Spitzer-Fan. Finally, hot probe measurements of CFTS thin films reveal p-type conductivity.

  19. Morphological analysis of co-evaporated blend films based on initial growth for organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Yosei, E-mail: yosei.shibata@aist.go.jp [Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Taima, Tetsuya [Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Zhou, Ying; Ohashi, Noboru; Kono, Takahiro [Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Yoshida, Yuji, E-mail: yuji.yoshida@aist.go.jp [Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2015-11-15

    Graphical abstract: - Highlights: • Initial growth mode of co-evaporated films was observed. • Balanced crystal growth leads to improvement of photovoltaic performance. • Crystal growth of fullerene during co-evaporation process was restricted. • The power conversion efficiency of 3% was obtained without electron blocking layer. - Abstract: Bulk heterojunction structures composed of electron donor and acceptor molecules for application in high-performance organic photovoltaics studied. To fabricate these structures, the co-evaporation method in vacuum is commonly applied; however, the details of the crystal growth process during co-evaporation have not yet been established. Here, we focused on structural analysis of blend films composed of phthalocyanine and fullerene based on initial growth stage. Similar crystal growth behavior to that typically observed in single-component molecules is obtained for the films. These results suggest that the competitive crystal growth between donors and acceptors occurs during co-evaporation process. The balance of thin film growth among donor and acceptor molecules can be related to improved photovoltaic performance. The homogeneous blend structure leads to improvement of the power conversion efficiency from 1.2% to 3.0%.

  20. Effect of preparation processes and structural insight into the supermolecular system: Bisacodyl and β-cyclodextrin inclusion complex

    International Nuclear Information System (INIS)

    Li, Shanshan; Zhai, Yuanming; Yan, Jin; Wang, Lili; Xu, Kailin; Li, Hui

    2016-01-01

    In this study, β-cyclodextrin (β-CD) and bisacodyl were chosen as model host and guest molecule to explore the effect of preparation processes on the physicochemical properties of inclusion complexes (ICs) and to gain an insight into the structure of ICs. The influence of temperature and pH on complexation was studied by multiple temperature–pH phase solubility analysis. The most favorable conformation was predicted by molecular modeling using AutoDock. "1H nuclear magnetic resonance and rotating frame nuclear Overhauser effect spectroscopy further confirmed the structure. Moreover, bisacodyl·β-CD ICs in solid state were successfully prepared via three different procedures (co-crystallization, co-evaporation, and co-grinding) and fully characterized by several solid-state techniques, namely, Fourier transform infrared spectroscopy, X-ray powder diffraction, thermogravimetric analysis, differential scanning calorimetry, solid-state NMR spectroscopy, and scanning electron microscopy. It was found that acid solution and low temperature were unfavorable for formation of bisacodyl·β-CD. The pyridine moiety was suggested to be enclosed in the hydrophobic cavity of β-CD. The complexes prepared using co-crystallization showed properties similar to those prepared using co-evaporation. Moreover, ICs obtained by co-evaporation and co-grinding had higher loading efficiency, water solubility, and dissolution rate than ICs obtained by co-crystallization. - Highlights: • The structure of inclusion complex-bisacodyl·β-CD was determined. • Thermodynamic behaviors of complexation under different conditions were discussed. • Products from three different preparation methods were systemically compared. • Co-crystallization and co-evaporation produced similar complexes. • Co-evaporation and co-grinding had better effects than co-crystallization.

  1. Effect of preparation processes and structural insight into the supermolecular system: Bisacodyl and β-cyclodextrin inclusion complex

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shanshan [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Zhai, Yuanming [Analytical and Testing Center, Sichuan University, Chengdu 610064 (China); Yan, Jin; Wang, Lili; Xu, Kailin [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Li, Hui, E-mail: lihuilab@sina.com [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China)

    2016-01-01

    In this study, β-cyclodextrin (β-CD) and bisacodyl were chosen as model host and guest molecule to explore the effect of preparation processes on the physicochemical properties of inclusion complexes (ICs) and to gain an insight into the structure of ICs. The influence of temperature and pH on complexation was studied by multiple temperature–pH phase solubility analysis. The most favorable conformation was predicted by molecular modeling using AutoDock. {sup 1}H nuclear magnetic resonance and rotating frame nuclear Overhauser effect spectroscopy further confirmed the structure. Moreover, bisacodyl·β-CD ICs in solid state were successfully prepared via three different procedures (co-crystallization, co-evaporation, and co-grinding) and fully characterized by several solid-state techniques, namely, Fourier transform infrared spectroscopy, X-ray powder diffraction, thermogravimetric analysis, differential scanning calorimetry, solid-state NMR spectroscopy, and scanning electron microscopy. It was found that acid solution and low temperature were unfavorable for formation of bisacodyl·β-CD. The pyridine moiety was suggested to be enclosed in the hydrophobic cavity of β-CD. The complexes prepared using co-crystallization showed properties similar to those prepared using co-evaporation. Moreover, ICs obtained by co-evaporation and co-grinding had higher loading efficiency, water solubility, and dissolution rate than ICs obtained by co-crystallization. - Highlights: • The structure of inclusion complex-bisacodyl·β-CD was determined. • Thermodynamic behaviors of complexation under different conditions were discussed. • Products from three different preparation methods were systemically compared. • Co-crystallization and co-evaporation produced similar complexes. • Co-evaporation and co-grinding had better effects than co-crystallization.

  2. Vacuum evaporation of pure metals

    OpenAIRE

    Safarian, Jafar; Engh, Thorvald Abel

    2013-01-01

    Theories on the evaporation of pure substances are reviewed and applied to study vacuum evaporation of pure metals. It is shown that there is good agreement between different theories for weak evaporation, whereas there are differences under intensive evaporation conditions. For weak evaporation, the evaporation coefficient in Hertz-Knudsen equation is 1.66. Vapor velocity as a function of the pressure is calculated applying several theories. If a condensing surface is less than one collision...

  3. Evaporation in hydrology and meteorology

    OpenAIRE

    Brandsma, T.

    1990-01-01

    In this paper the role of evaporation in hydrology and meteorology is discussed, with the emphasis on hydrology. The basic theory of evaporation is given and methods to determine evaporation are presented. Some applications of evaporation studies in literature are given in order to illustrate the theory. Further, special conditions in evaporation are considered, followed by a fotmulation of the difficulties in determining evaporation, The last part of the paper gives a short discussion about ...

  4. Rapid Evaporation of microbubbles

    Science.gov (United States)

    Gautam, Jitendra; Esmaeeli, Asghar

    2008-11-01

    When a liquid is heated to a temperature far above its boiling point, it evaporates abruptly. Boiling of liquid at high temperatures can be explosive and destructive, and poses a potential hazard for a host of industrial processes. Explosive boiling may occur if a cold and volatile liquid is brought into contact with a hot and non-volatile liquid, or if a liquid is superheated or depressurized rapidly. Such possibilities are realized, for example, in the depressurization of low boiling point liquefied natural gas (LNG) in the pipelines or storage tanks as a result of a leak. While boiling of highly heated liquids can be destructive at macroscale, the (nearly) instantaneous pace of the process and the release of large amount of kinetic energy make the phenomena extremely attractive at microscale where it is possible to utilize the released energy to derive micromechanical systems. For instance, there is currently a growing interest in micro-explosion of liquid for generation of micro bubbles for actuation purposes. The aim of the current study is to gain a fundamental understanding of the subject using direct numerical simulations. In particular, we seek to investigate the boundary between stable and unstable nucleus growth in terms of the degree of liquid superheat and to compare the dynamics of unstable and stable growth.

  5. Evaporation under vacuum condition

    International Nuclear Information System (INIS)

    Mizuta, Satoshi; Shibata, Yuki; Yuki, Kazuhisa; Hashizume, Hidetoshi; Toda, Saburo; Takase, Kazuyuki; Akimoto, Hajime

    2000-01-01

    In nuclear fusion reactor design, an event of water coolant ingress into its vacuum vessel is now being considered as one of the most probable accidents. In this report, the evaporation under vacuum condition is evaluated by using the evaporation model we have developed. The results show that shock-wave by the evaporation occurs whose behavior strongly depends on the initial conditions of vacuum. And in the case of lower initial pressure and temperature, the surface temp finally becomes higher than other conditions. (author)

  6. Putting evaporators to work: wiped film evaporator for high level wastes

    International Nuclear Information System (INIS)

    Dierks, R.D.; Bonner, W.F.

    1976-01-01

    At Battelle, Pacific Northwest Laboratories, a pilot scale, wiped film evaporator was tested for concentrating high level liquid wastes from Purex-type nuclear fuel recovery processes. The concentrates produced up to 60 wt-percent total solids; and the simplicity of operation and design of the evaporator gave promise for low maintenance and high reliability

  7. Clustered field evaporation of metallic glasses in atom probe tomography

    International Nuclear Information System (INIS)

    Zemp, J.; Gerstl, S.S.A.; Löffler, J.F.; Schönfeld, B.

    2016-01-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3 nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different – as yet unknown – physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses. - Highlights: • Field evaporation of metallic glasses is heterogeneous on a scale of up to 3 nm. • Amount of clustered evaporation depends on ion species and temperature. • Length scales of clustered evaporation and correlative evaporation are similar.

  8. Application of a mechanistic model as a tool for on-line monitoring of pilot scale filamentous fungal fermentation processes-The importance of evaporation effects.

    Science.gov (United States)

    Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Sin, Gürkan; Gernaey, Krist V

    2017-03-01

    A mechanistic model-based soft sensor is developed and validated for 550L filamentous fungus fermentations operated at Novozymes A/S. The soft sensor is comprised of a parameter estimation block based on a stoichiometric balance, coupled to a dynamic process model. The on-line parameter estimation block models the changing rates of formation of product, biomass, and water, and the rate of consumption of feed using standard, available on-line measurements. This parameter estimation block, is coupled to a mechanistic process model, which solves the current states of biomass, product, substrate, dissolved oxygen and mass, as well as other process parameters including k L a, viscosity and partial pressure of CO 2 . State estimation at this scale requires a robust mass model including evaporation, which is a factor not often considered at smaller scales of operation. The model is developed using a historical data set of 11 batches from the fermentation pilot plant (550L) at Novozymes A/S. The model is then implemented on-line in 550L fermentation processes operated at Novozymes A/S in order to validate the state estimator model on 14 new batches utilizing a new strain. The product concentration in the validation batches was predicted with an average root mean sum of squared error (RMSSE) of 16.6%. In addition, calculation of the Janus coefficient for the validation batches shows a suitably calibrated model. The robustness of the model prediction is assessed with respect to the accuracy of the input data. Parameter estimation uncertainty is also carried out. The application of this on-line state estimator allows for on-line monitoring of pilot scale batches, including real-time estimates of multiple parameters which are not able to be monitored on-line. With successful application of a soft sensor at this scale, this allows for improved process monitoring, as well as opening up further possibilities for on-line control algorithms, utilizing these on-line model outputs

  9. Dew Point Evaporative Comfort Cooling

    Science.gov (United States)

    2012-11-01

    Multiple DASs were installed at Fort Carson, and the data from all the sensors were stored and partially processed on Campbell Scientific Data Loggers. The...evaporative cooling technologies would be expected to easily overcome utility- scale water withdrawal rates. As an example, an evaluation of an...Ambient pressure Outdoor Setra 276 1% of full scale Pyranometer Horizontal Campbell Scientific CS300 5% of daily total The OAT measurement has an

  10. Synthesis of CaO-SiO2-P2O5 mesoporous bioactive glasses with high P2O5 content by evaporation induced self assembly process.

    Science.gov (United States)

    Zhao, Shan; Li, Yanbao; Li, Dongxu

    2011-02-01

    Mesoporous bioactive glasses (MBGs) of the CaO-SiO(2)-P(2)O(5) system containing relatively high P(2)O(5) contents (10-30 mol%) were prepared from a sol-gel. An evaporation-induced self-assembly (EISA) technique was used with poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (EO(20)-PO(70)-EO(20), P123) acting as a template. The structural, morphological and textural properties of MBGs were investigated by small-angle X-ray diffraction (SAXRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and a N(2) sorption/desorption technique. SAXRD and TEM results display the reduced long-range ordering of mesopores with increasing P(2)O(5) content. N(2) sorption/desorption analysis shows that all three samples exhibit a type IV isotherm with type H1 hysteresis loops, characteristic of independent cylindrical slim pore channels and this material has a Barret-Joyner-Halenda (BJH) model pore size of ~4 nm and BET specific surface area ~430 m(2)/g. NMR results indicate a more condensed framework for samples with 30 mol% P(2)O(5) than samples with 10 mol% P(2)O(5). For in vitro bioactivity tests where samples were soaked in simulated body fluid (SBF), samples with 30 mol% P(2)O(5) showed higher crystallinity than those with lower P(2)O(5) contents Silicon concentration increased in SBF solution during the soaking period, which indicates MBGs can be degradable in SBF solution.

  11. Crystal Structure, Optical, and Electrical Properties of SnSe and SnS Semiconductor Thin Films Prepared by Vacuum Evaporation Techniques for Solar Cell Applications

    Science.gov (United States)

    Ariswan; Sutrisno, H.; Prasetyawati, R.

    2017-05-01

    Thin films of SnSe and SnS semiconductors had been prepared by vacuum evaporation techniques. All prepared samples were characterized on their structure, optical, and electrical properties in order to know their application in technology. The crystal structure of SnSe and SnS was determined by X-Ray Diffraction (XRD) instrument. The morphology and chemical composition were obtained by Scanning Electron Microscopy (SEM) coupled with Energy Dispersive of X-Ray Analysis (EDAX). The optical property such as band gap was determined by DR-UV-Vis (Diffuse Reflectance-Ultra Violet-Visible) spectroscopy, while the electrical properties were determined by measuring the conductivity by four probes method. The characterization results indicated that both SnSe and SnS thin films were polycrystalline. SnSe crystallized in an orthorhombic crystal system with the lattice parameters of a = 11.47 Å, b = 4.152 Å and c = 4.439 Å, while SnS had an orthorhombic crystal system with lattice parameters of a = 4.317 Å, b = 11.647 Å and c = 3.981 Å. Band gaps (Eg) of SnSe and SnS were 1.63 eV and 1.35 eV, respectively. Chemical compositions of both thin films were non-stoichiometric. Molar ratio of Sn : S was close to ideal which was 1 : 0.96, while molar ratio of Sn : S was 1 : 0.84. The surface morphology described the arrangement of the grains on the surface of the thin film with sizes ranging from 0.2 to 0.5 microns. Color similarity on the surface of the SEM images proved a homogenous thin layer.

  12. Tax issues in structuring gas process arrangements

    International Nuclear Information System (INIS)

    Iverach, R.J.

    1999-01-01

    The current status of various tax issues regarding ownership, operation and financing of gas processing facilities in Canada was discussed. Frequently, energy companies are not taxed because of their large pools of un-depreciated capital cost and other resource related accounts. In addition, their time horizons for taxability are being extended in line with the expansion of their businesses. However, other investors are fully taxable, hence they wish to shelter their income through the use of tax efficient investment arrangements. This paper provides a detailed description of the tax treatment of gas processing facilities, tax implications of various structures between the producer and the investor such as lease, processing fee arrangements etc., and use of 'Canadian Renewable and Conservation Expense' (CRCE) for cogeneration projects within processing plants. All these need to be considered before completing a financing transaction involving a gas processing facility, since the manner in which the transaction is completed will determine the advantages and benefits from an income tax perspective. The accounting and legal aspects must be similarly scrutinized to ensure that the intended results for all parties are achieved. 8 figs

  13. Asymmetric fission and evaporation of C60r+ (r = 2-4) fullerene ions in ion-C60 collisions: II. Dependence on collisional processes?

    International Nuclear Information System (INIS)

    Rentenier, A; Bordenave-Montesquieu, A; Moretto-Capelle, P; Bordenave-Montesquieu, D

    2004-01-01

    In this paper, a quantitative comparison of our experimental data for the asymmetrical fission (AF) and neutral evaporation of the C 60 molecule under proton impact (part I) is made with data published by other authors and often obtained in rather different collisional systems. The comparison with multicharged ions for which more quantitative data are available is focused on. It is demonstrated that size distributions of fragments, averaged fragment sizes, branching ratios between AF and evaporation or between AF channels, are common to all the collisional systems. Differences only appear when the comparison includes the undissociated stable fullerene ion signals

  14. Boilers, evaporators, and condensers

    International Nuclear Information System (INIS)

    Kakac, S.

    1991-01-01

    This book reports on the boilers, evaporators and condensers that are used in power plants including nuclear power plants. Topics included are forced convection for single-phase side heat exchangers, heat exchanger fouling, industrial heat exchanger design, fossil-fuel-fired boilers, once through boilers, thermodynamic designs of fossil fuel-first boilers, evaporators and condensers in refrigeration and air conditioning systems (with respect to reducing CFC's) and nuclear steam generators

  15. Effects of Surface Dipole Lengths on Evaporation of Tiny Water Aggregation

    International Nuclear Information System (INIS)

    Wang Shen; Wan Rongzheng; Fang Haiping; Tu Yusong

    2013-01-01

    Using molecular dynamics simulation, we compared evaporation behavior of a tiny amount of water molecules adsorbed on solid surfaces with different dipole lengths, including surface dipole lengths of 1 fold, 2 folds, 4 folds, 6 folds and 8 folds of 0.14 nm and different charges from 0.1e to 0.9e. Surfaces with short dipole lengths (1-fold system) can always maintain hydrophobic character and the evaporation speeds are not influenced, whether the surface charges are enhanced or weakened; but when surface dipole lengths get to 8 folds, surfaces become more hydrophilic as the surface charge increases, and the evaporation speeds increase gradually and monotonically. By tuning dipole lengths from 1-fold to 8-fold systems, we confirmed non-monotonic variation of the evaporation flux (first increases, then decreases) in 4 fold system with charges (0.1e–0.7e), reported in our previous paper [S. Wang, et al., J. Phys. Chem. B 116 (2012) 13863], and also show the process from the enhancement of this unexpected non-monotonic variation to its vanishment with surface dipole lengths increasing. Herein, we demonstrated two key factors to influence the evaporation flux of a tiny amount of water molecules adsorbed on solid surfaces: the exposed surficial area of water aggregation from where the water molecules can evaporate directly and the attraction potential from the substrate hindering the evaporation. In addition, more interestingly, we showed extra steric effect of surface dipoles on further increase of evaporation flux for 2-folds, 4-folds, 6-folds and 8-folds systems with charges around larger than 0.7e. (The steric effect is first reported by parts of our authors [C. Wang, et al., Sci. Rep. 2 (2012) 358]). This study presents a complete physical picture of the influence of surface dipole lengths on the evaporation behavior of the adsorbed tiny amount of water. (condensed matter: structural, mechanical, and thermal properties)

  16. Evaporation of nanofluid droplet on heated surface

    Directory of Open Access Journals (Sweden)

    Yeung Chan Kim

    2015-04-01

    Full Text Available In this study, an experiment on the evaporation of nanofluid sessile droplet on a heated surface was conducted. A nanofluid of 0.5% volumetric concentration mixed with 80-nm-sized CuO powder and pure water were used for experiment. Droplet was applied to the heated surface, and images of the evaporation process were obtained. The recorded images were analyzed to find the volume, diameter, and contact angle of the droplet. In addition, the evaporative heat transfer coefficient was calculated from experimental result. The results of this study are summarized as follows: the base diameter of the droplet was maintained stably during the evaporation. The measured temperature of the droplet was increased rapidly for a very short time, then maintained constantly. The nanofluid droplet was evaporated faster than the pure water droplet under the experimental conditions of the same initial volume and temperature, and the average evaporative heat transfer coefficient of the nanofluid droplet was higher than that of pure water. We can consider the effects of the initial contact angle and thermal conductivity of nanofluid as the reason for this experimental result. However, the effect of surface roughness on the evaporative heat transfer of nanofluid droplet appeared unclear.

  17. 242-A evaporator safety analysis report

    International Nuclear Information System (INIS)

    CAMPBELL, T.A.

    1999-01-01

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR

  18. 242-A evaporator safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    CAMPBELL, T.A.

    1999-05-17

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  19. Retrieving latent heating vertical structure from cloud and precipitation Profiles—Part I: Warm rain processes

    International Nuclear Information System (INIS)

    Min, Qilong; Li, Rui; Wu, Xiaoqing; Fu, Yunfei

    2013-01-01

    An exploratory study on physical based latent heat (LH) retrieval algorithm is conducted by parameterizing the physical linkages of hydrometeor profiles of cloud and precipitation to the major processes related to the phase change of atmospheric water. Specifically, rain events are segregated into three rain types: warm, convective, and stratiform, based on their dynamical and thermodynamical characteristics. As the first of the series, only the warm rain LH algorithm is presented and evaluated here. The major microphysical processes of condensation and evaporation for warm rain are parameterized through traditional rain growth theory, with the aid of Cloud Resolving Model (CRM) simulations. The evaluation or the self-consistency tests indicate that the physical based retrievals capture the fundamental LH processes associated with the warm rain life cycle. There is no significant systematic bias in terms of convection strength, illustrated by the month-long CRM simulation as the mesoscale convective systems (MCSs) experience from initial, mature, to decay stages. The overall monthly-mean LH comparison showed that the total LH, as well as condensation heating and evaporation cooling components, agree with the CRM simulation. -- Highlights: ► An exploratory study on physics-based warm rain latent heat retrieval algorithm. ► Utilize the full information of the vertical structures of cloud and rainfall. ► Directly link water mass measurements to latent heat at instantaneous pixel level. ► Applicable at various stages of cloud system life cycle

  20. Semiclassical Approach to Black Hole Evaporation

    OpenAIRE

    Lowe, David A.

    1992-01-01

    Black hole evaporation may lead to massive or massless remnants, or naked singularities. This paper investigates this process in the context of two quite different two dimensional black hole models. The first is the original CGHS model, the second is another two dimensional dilaton-gravity model, but with properties much closer to physics in the real, four dimensional, world. Numerical simulations are performed of the formation and subsequent evaporation of black holes and the results are fou...

  1. Towards a rational definition of potential evaporation

    OpenAIRE

    Lhomme, Jean-Paul

    1997-01-01

    International audience; The concept of potential evaporation is defined on the basis of the following criteria: (i) it must establish an upper limit to the evaporation process in a given environment (the term "environment" including meteorological and surface conditions), and (ii) this upper limit must be readily calculated from measured input data. It is shown that this upper limit is perfectly defined and is given by the Penman equation, applied with the corresponding meteorological data (i...

  2. Structural analysis of co-evaporated In{sub 2}S{sub 3} and In{sub 2}S{sub 3}:V for solar cell absorber applications

    Energy Technology Data Exchange (ETDEWEB)

    Waegele, Leonard A.; Rata, Diana; Scheer, Roland [Institute of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle (Saale) (Germany); Gurieva, Galina [Department Structure and Dynamics of Energy Materials, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2017-06-15

    In this study we use co-evaporation to grow In{sub 2}S{sub 3} thin films on glass substrates and X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) to analyse the structural properties of annealed In{sub 2}S{sub 3} and V-doped In{sub 2}S{sub 3} for intermediate band solar cell application. We find co-evaporated In{sub 2}S{sub 3} to be polycrystalline on float glass and with improved crystallinity after annealing in S-atmosphere. We confirm that excessive incorporation of vanadium into the host structure is possible without formation of secondary crystalline phases. The analysis indicates a reduced crystalline quality after V doping. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Role of heat treatment on structural and optical properties of thermally evaporated Ga{sub 10}Se{sub 81}Pb{sub 9} chalcogenide thin films

    Energy Technology Data Exchange (ETDEWEB)

    El-Sebaii, A.A., E-mail: ahmedelsebaii@yahoo.com [Department of Physics, Faculty of Science, King Abdulaziz University, 80203 Jeddah 21589 (Saudi Arabia); Khan, Shamshad A. [Department of Physics, St. Andrews College, Gorakhpur 273001 (India); Al-Marzouki, F.M.; Faidah, A.S.; Al-Ghamdi, A.A. [Department of Physics, Faculty of Science, King Abdulaziz University, 80203 Jeddah 21589 (Saudi Arabia)

    2012-08-15

    Amorphous chalcogenides, based on Se, have become materials of commercial importance and were widely used for optical storage media. The present work deals with the structural and optical properties of Ga{sub 10}Se{sub 81}Pb{sub 9} ternary chalcogenide glass prepared by melt quenching technique. The glass transition, crystallization and melting temperatures of the synthesized glass were measured by non-isothermal DSC measurements at a constant heating rate of 30 K/min. Thin films of thickness 4000 A were prepared by thermal evaporation techniques on glass/Si (1 0 0) wafer substrate. These thin films were thermally annealed for two hours at three different annealing temperatures of 345, 360 and 375 K, which were in between the glass transition and crystallization temperatures of the Ga{sub 10}Se{sub 81}Pb{sub 9} glass. The structural, morphological and optical properties of as-prepared and annealed thin films were studied. Analysis of the optical absorption data showed that the rules of the non-direct transitions predominate. It was also found that the optical band gap decreases while the absorption coefficient, refractive index and extinction coefficient increase with increasing the annealing temperature. Due to the higher values of absorption coefficient and annealing dependence of the optical band gap and optical constants, the investigated material could be used for optical storage. - Highlights: Black-Right-Pointing-Pointer Annealing effect on structure and optical band gap has been investigated. Black-Right-Pointing-Pointer The amorphous nature has been verified by x-ray diffraction and DSC measurements. Black-Right-Pointing-Pointer Thermal annealing causes a decrease in optical band gap in Ga{sub 10}Se{sub 81}Pb{sub 9} thin films. Black-Right-Pointing-Pointer The decrease in optical band gap can be interpreted on the basis of amorphous-crystalline phase transformation. Black-Right-Pointing-Pointer Optical absorption data showed that the rules of the non

  4. Characterization of Uranium in Archived 2H Evaporator Scale

    International Nuclear Information System (INIS)

    DUFF, MC

    2004-01-01

    This research was conducted to improve our fundamental understanding of the mechanisms of U accumulation with NAS in the evaporators and in other process areas at the SRS that may concentrate U in the presence of silicates, aluminum and NAS. Our study uses information gained from the characterization of solids formed in laboratory tests under similar HLW evaporator conditions to aid our interpretation of characterization data of an actual archived 2H Evaporator scale sample. These basic scientific studies will help support the basis for the continued safe operation of SRS evaporators and this fundamental information will be used to help mitigate U accumulation during evaporator operation

  5. Evaporation in hydrology and meteorology

    NARCIS (Netherlands)

    Brandsma, T.

    1990-01-01

    In this paper the role of evaporation in hydrology and meteorology is discussed, with the emphasis on hydrology. The basic theory of evaporation is given and methods to determine evaporation are presented. Some applications of evaporation studies in literature are given in order to illustrate the

  6. Expertise and processing distorted structure in chess.

    Science.gov (United States)

    Bartlett, James C; Boggan, Amy L; Krawczyk, Daniel C

    2013-01-01

    A classic finding in research on human expertise and knowledge is that of enhanced memory for stimuli in a domain of expertise as compared to either stimuli outside that domain, or within-domain stimuli that have been degraded or distorted in some way. However, we do not understand how experts process degradation or distortion of stimuli within the expert domain (e.g., a face with the eyes, nose, and mouth in the wrong positions, or a chessboard with pieces placed randomly). Focusing on the domain of chess, we present new fMRI evidence that when experts view such distorted/within-domain stimuli, they engage an active search for structure-a kind of exploratory chunking-that involves a component of a prefrontal-parietal network linked to consciousness, attention and working memory.

  7. Decomposability and convex structure of thermal processes

    Science.gov (United States)

    Mazurek, Paweł; Horodecki, Michał

    2018-05-01

    We present an example of a thermal process (TP) for a system of d energy levels, which cannot be performed without an instant access to the whole energy space. This TP is uniquely connected with a transition between some states of the system, that cannot be performed without access to the whole energy space even when approximate transitions are allowed. Pursuing the question about the decomposability of TPs into convex combinations of compositions of processes acting non-trivially on smaller subspaces, we investigate transitions within the subspace of states diagonal in the energy basis. For three level systems, we determine the set of extremal points of these operations, as well as the minimal set of operations needed to perform an arbitrary TP, and connect the set of TPs with thermomajorization criterion. We show that the structure of the set depends on temperature, which is associated with the fact that TPs cannot increase deterministically extractable work from a state—the conclusion that holds for arbitrary d level system. We also connect the decomposability problem with detailed balance symmetry of an extremal TPs.

  8. Towards a rational definition of potential evaporation

    Directory of Open Access Journals (Sweden)

    J.-P. Lhommel

    1997-01-01

    Full Text Available The concept of potential evaporation is defined on the basis of the following criteria: (i it must establish an upper limit to the evaporation process in a given environment (the term 'environment' including meteorological and surface conditions, and (ii this upper limit must be readily calculated from measured input data. It is shown that this upper limit is perfectly defined and is given by the Penman equation, applied with the corresponding meteorological data (incoming radiation and air characteristics measured at a reference height and the appropriate surface characteristics (albedo, roughness length, soil heat flux. Since each surface has its own potential evaporation, a function of its own surface characteristics, it is useful to define a reference potential evaporation as a short green grass completely shading the ground. Although the potential evaporation from a given surface is readily calculated from the Penman equation, its physical significance or interpretation is not so straightforward, because it represents only an idealized situation, not a real one. Potential evaporation is the evaporation from this surface, when saturated and extensive enough to obviate any effect of local advection, under the same meteorological conditions. Due to the feedback effects of evaporation on air characteristics, it does not represent the 'real' evaporation (i.e. the evaporation which could be physically observed in the real world from such an extensive saturated surface in these given meteorological conditions (if this saturated surface were substituted for an unsaturated one previously existing. From a rigorous standpoint, this calculated potential evaporation is not physically observable. Nevertheless, an approximate representation can be given by the evaporation from a limited saturated area, the dimension of which depends on the height of measurement of the air characteristics used as input in the Penman equation. If they are taken at a height

  9. Evaporation of petroleum products from contaminated soils

    International Nuclear Information System (INIS)

    Kang, S.H.

    1996-01-01

    Bioremediation can remove petroleum products from soil that has been contaminated by leaking underground storage tanks, but abiotic processes such as evaporation can contribute significantly to the overall removal process. The mathematical model described in this paper was developed to predict the evaporation rate of volatile liquids from petroleum-contaminated sand. The model is based on simple concepts relating to molecular diffusion embodied in the theory underlying the estimation of binary diffusivities using measurements made with an Arnold diffusion cell. The model in its simplified form indicates that the rate of evaporation for a particular volatile liquid is proportional to the square root of the product of diffusivity and partial pressure divided by the molecular weight of the liquid. This in part explains why evaporative losses from sand are so much higher for gasoline than for diesel fuel. The model also shows that the time for evaporation is directly proportional to the square of the depth dried out and inversely proportional to the vapor pressure of the volatile liquid. The model was tested using gravimetric measurements of the evaporation of n-heptane, unleaded gasoline, and diesel fuel from sand under laboratory conditions

  10. Evaporation of freely suspended single droplets: experimental, theoretical and computational simulations

    International Nuclear Information System (INIS)

    Hołyst, R; Litniewski, M; Jakubczyk, D; Kolwas, K; Kolwas, M; Kowalski, K; Migacz, S; Palesa, S; Zientara, M

    2013-01-01

    Evaporation is ubiquitous in nature. This process influences the climate, the formation of clouds, transpiration in plants, the survival of arctic organisms, the efficiency of car engines, the structure of dried materials and many other phenomena. Recent experiments discovered two novel mechanisms accompanying evaporation: temperature discontinuity at the liquid–vapour interface during evaporation and equilibration of pressures in the whole system during evaporation. None of these effects has been predicted previously by existing theories despite the fact that after 130 years of investigation the theory of evaporation was believed to be mature. These two effects call for reanalysis of existing experimental data and such is the goal of this review. In this article we analyse the experimental and the computational simulation data on the droplet evaporation of several different systems: water into its own vapour, water into the air, diethylene glycol into nitrogen and argon into its own vapour. We show that the temperature discontinuity at the liquid–vapour interface discovered by Fang and Ward (1999 Phys. Rev. E 59 417–28) is a rule rather than an exception. We show in computer simulations for a single-component system (argon) that this discontinuity is due to the constraint of momentum/pressure equilibrium during evaporation. For high vapour pressure the temperature is continuous across the liquid–vapour interface, while for small vapour pressures the temperature is discontinuous. The temperature jump at the interface is inversely proportional to the vapour density close to the interface. We have also found that all analysed data are described by the following equation: da/dt = P 1 /(a + P 2 ), where a is the radius of the evaporating droplet, t is time and P 1 and P 2 are two parameters. P 1 = −λΔT/(q eff ρ L ), where λ is the thermal conductivity coefficient in the vapour at the interface, ΔT is the temperature difference between the liquid droplet

  11. Waste Feed Evaporation Physical Properties Modeling

    International Nuclear Information System (INIS)

    Daniel, W.E.

    2003-01-01

    This document describes the waste feed evaporator modeling work done in the Waste Feed Evaporation and Physical Properties Modeling test specification and in support of the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) project. A private database (ZEOLITE) was developed and used in this work in order to include the behavior of aluminosilicates such a NAS-gel in the OLI/ESP simulations, in addition to the development of the mathematical models. Mathematical models were developed that describe certain physical properties in the Hanford RPP-WTP waste feed evaporator process (FEP). In particular, models were developed for the feed stream to the first ultra-filtration step characterizing its heat capacity, thermal conductivity, and viscosity, as well as the density of the evaporator contents. The scope of the task was expanded to include the volume reduction factor across the waste feed evaporator (total evaporator feed volume/evaporator bottoms volume). All the physical properties were modeled as functions of the waste feed composition, temperature, and the high level waste recycle volumetric flow rate relative to that of the waste feed. The goal for the mathematical models was to predict the physical property to predicted simulation value. The simulation model approximating the FEP process used to develop the correlations was relatively complex, and not possible to duplicate within the scope of the bench scale evaporation experiments. Therefore, simulants were made of 13 design points (a subset of the points used in the model fits) using the compositions of the ultra-filtration feed streams as predicted by the simulation model. The chemistry and physical properties of the supernate (the modeled stream) as predicted by the simulation were compared with the analytical results of experimental simulant work as a method of validating the simulation software

  12. Systematics of evaporation

    International Nuclear Information System (INIS)

    Klots, C.E.

    1991-01-01

    Beginning with rather basic principles, general relations are obtained for evaporative rate constants. These are established both as a function of energy and of temperature. In parallel with this, expressions are developed for the kinetic energy distribution of the separating species. Explicit evaluation of the rate constants in the case of 'chemical' evaporation from an entity containing n monomeric units yields as a typical result k(T)(s -1 )=3.10 13 n 2/3 exp[6/n 1/3 ]exp(-ΔE a (n)/k B T). Experimental evidence in support of this relation is cited. Applications to thermionic emission are also noted. (orig.)

  13. Cuinse2 Thin Film For Solar Cell By Flash Evaporation

    Directory of Open Access Journals (Sweden)

    A.H. Soepardjo

    2009-11-01

    Full Text Available Deposition of thin films for material solar cell CuInSe2 are relatively simple. In this research mainly focused on the use of flash evaporation method, and the material created can then be characterized by optical and electrical properties. The optical characterization is done by X-ray Diffraction (XRD, Energy Dispersive Spectroscopy (EDS, and transmission and reflection by UV-VIS spectrophotometry. Electrical characterization is done by utilizing the Hall effect equipment. From these characterization, the atomic structure, absorption coefficient, energy gap, material type, composition of each elements and the mobility of CuInSe2 can be measured and determined. During process evaporation were carried out at substrate temperatures the range between 20ºC-415ºC.

  14. Performance of evaporative condensers

    Energy Technology Data Exchange (ETDEWEB)

    Ettouney, Hisham M.; El-Dessouky, Hisham T.; Bouhamra, Walid; Al-Azmi, Bader

    2001-07-01

    Experimental investigation is conducted to study the performance of evaporative condensers/coolers. The analysis includes development of correlations for the external heat transfer coefficient and the system efficiency. The evaporative condenser includes two finned-tube heat exchangers. The system is designed to allow for operation of a single condenser, two condensers in parallel, and two condensers in series. The analysis is performed as a function of the water-to-air mass flow rate ratio (L/G) and the steam temperature. Also, comparison is made between the performance of the evaporative condenser and same device as an air-cooled condenser. Analysis of the collected data shows that the system efficiency increases at lower L/G ratios and higher steam temperatures. The system efficiency for various configurations for the evaporative condenser varies between 97% and 99%. Lower efficiencies are obtained for the air-cooled condenser, with values between 88% and 92%. The highest efficiency is found for the two condensers in series, followed by two condensers in parallel and then the single condenser. The parallel condenser configuration can handle a larger amount of inlet steam and can provide the required system efficiency and degree of subcooling. The correlation for the system efficiency gives a simple tool for preliminary system design. The correlation developed for the external heat transfer coefficient is found to be consistent with the available literature data. (Author)

  15. Water droplet evaporation from sticky superhydrophobic surfaces

    Science.gov (United States)

    Lee, Moonchan; Kim, Wuseok; Lee, Sanghee; Baek, Seunghyeon; Yong, Kijung; Jeon, Sangmin

    2017-07-01

    The evaporation dynamics of water from sticky superhydrophobic surfaces was investigated using a quartz crystal microresonator and an optical microscope. Anodic aluminum oxide (AAO) layers with different pore sizes were directly fabricated onto quartz crystal substrates and hydrophobized via chemical modification. The resulting AAO layers exhibited hydrophobic or superhydrophobic characteristics with strong adhesion to water due to the presence of sealed air pockets inside the nanopores. After placing a water droplet on the AAO membranes, variations in the resonance frequency and Q-factor were measured throughout the evaporation process, which were related to changes in mass and viscous damping, respectively. It was found that droplet evaporation from a sticky superhydrophobic surface followed a constant contact radius (CCR) mode in the early stage of evaporation and a combination of CCR and constant contact angle modes without a Cassie-Wenzel transition in the final stage. Furthermore, AAO membranes with larger pore sizes exhibited longer evaporation times, which were attributed to evaporative cooling at the droplet interface.

  16. Microdroplet evaporation in closed digital microfluidic biochips

    International Nuclear Information System (INIS)

    Ahmadi, Ali; Buat, Matthew D; Hoorfar, Mina

    2013-01-01

    In this paper, microdroplet evaporation in the closed digital microfluidic systems is studied for hydrophobic and hydrophilic surfaces. The contact angle and contact radius are measured by an enhanced automated polynomial fitting approach. It is observed that the contact angle for both hydrophobic and hydrophilic surfaces remains constant during the evaporation process. However, a higher evaporation rate is observed for hydrophilic droplets compared to the hydrophobic droplets. Since no contact line pinning is observed, first, an analytical model based on the uniform vapor mass flux along the liquid–vapor interface is proposed. Interestingly, it is observed that in the hydrophobic case, the analytical model gives a higher evaporation rate, whereas for the hydrophilic case, the analytical model gives a lower evaporation rate. The discrepancy between the results of the analytical modeling and the experimental values is hypothesized to be due the constant flux assumption. To verify the hypothesis, a finite volume-based numerical model is developed to find the local flux along the liquid–vapor interface. The numerical modeling results confirm that for hydrophilic droplets, the evaporation flux increases very close to the three-phase contact line. In the case of the hydrophobic droplets, on the other hand, the flux decreases close to the contact line due to vapor saturation; as a result the uniform flux assumption overestimates the mass loss. (paper)

  17. Snap evaporation of droplets on smooth topographies.

    Science.gov (United States)

    Wells, Gary G; Ruiz-Gutiérrez, Élfego; Le Lirzin, Youen; Nourry, Anthony; Orme, Bethany V; Pradas, Marc; Ledesma-Aguilar, Rodrigo

    2018-04-11

    Droplet evaporation on solid surfaces is important in many applications including printing, micro-patterning and cooling. While seemingly simple, the configuration of evaporating droplets on solids is difficult to predict and control. This is because evaporation typically proceeds as a "stick-slip" sequence-a combination of pinning and de-pinning events dominated by static friction or "pinning", caused by microscopic surface roughness. Here we show how smooth, pinning-free, solid surfaces of non-planar topography promote a different process called snap evaporation. During snap evaporation a droplet follows a reproducible sequence of configurations, consisting of a quasi-static phase-change controlled by mass diffusion interrupted by out-of-equilibrium snaps. Snaps are triggered by bifurcations of the equilibrium droplet shape mediated by the underlying non-planar solid. Because the evolution of droplets during snap evaporation is controlled by a smooth topography, and not by surface roughness, our ideas can inspire programmable surfaces that manage liquids in heat- and mass-transfer applications.

  18. Evaporation of Lennard-Jones fluids.

    Science.gov (United States)

    Cheng, Shengfeng; Lechman, Jeremy B; Plimpton, Steven J; Grest, Gary S

    2011-06-14

    Evaporation and condensation at a liquid/vapor interface are ubiquitous interphase mass and energy transfer phenomena that are still not well understood. We have carried out large scale molecular dynamics simulations of Lennard-Jones (LJ) fluids composed of monomers, dimers, or trimers to investigate these processes with molecular detail. For LJ monomers in contact with a vacuum, the evaporation rate is found to be very high with significant evaporative cooling and an accompanying density gradient in the liquid domain near the liquid/vapor interface. Increasing the chain length to just dimers significantly reduces the evaporation rate. We confirm that mechanical equilibrium plays a key role in determining the evaporation rate and the density and temperature profiles across the liquid/vapor interface. The velocity distributions of evaporated molecules and the evaporation and condensation coefficients are measured and compared to the predictions of an existing model based on kinetic theory of gases. Our results indicate that for both monatomic and polyatomic molecules, the evaporation and condensation coefficients are equal when systems are not far from equilibrium and smaller than one, and decrease with increasing temperature. For the same reduced temperature T/T(c), where T(c) is the critical temperature, these two coefficients are higher for LJ dimers and trimers than for monomers, in contrast to the traditional viewpoint that they are close to unity for monatomic molecules and decrease for polyatomic molecules. Furthermore, data for the two coefficients collapse onto a master curve when plotted against a translational length ratio between the liquid and vapor phase.

  19. Simulation of Patterned Glass Film Formation in the Evaporating Colloidal Liquid under IR Heating

    Science.gov (United States)

    Kolegov, K. S.

    2018-02-01

    The paper theoretically studies the method of evaporative lithography in combination with external infrared heating. This method makes it possible to form solid microstructures of the required relief shape as a result of evaporation of the liquid film of the colloidal solution under the mask. The heated particles are sintered easier, so there are no cracks in the obtained structure, unlike the structure obtained employing the standard method of evaporative lithography. The paper puts forward a modification of the mathematical model which allows to describe not only heat and mass transfer at the initial stage of the process, but also the phase transition of colloidal solution into glass. Aqueous latex is taken as an example. The resulting final form of solid film is in good agreement with the experimental data of other authors.

  20. Solvothermal-assisted evaporation-induced self-assembly process for significant improvement in the textural properties of γ-Al2O3, and study dye adsorption efficiency

    Directory of Open Access Journals (Sweden)

    Sourav Ghosh

    2015-06-01

    Full Text Available A comparative study of the textural properties of γ-Al2O3 prepared by solvothermal-assisted evaporation-induced self-assembly (SA-EISA and conventional evaporation-induced self-assembly (EISA processes has been carried out using aluminum isopropoxide, triblock copolymer-type nonionic surfactant (Pluronic P123 and ethanol. The solvothermal reaction was carried out at 100 °C for 24 h followed by slow drying at 60 °C for 48 h. The synthesized products were characterized by thermogravimetry analysis (TGA, differential thermal analysis (DTA, X-ray diffraction (XRD analysis, N2 adsorption–desorption study and transmission electron microscopy (TEM. The γ-Al2O3 prepared by SA-EISA process became stable up to 1000 °C. The powder prepared by SA-EISA process resulted in a significant increase in textural properties (BET surface area, pore volume and pore diameter compared to that prepared by conventional EISA process. A better adsorption capacity for Congo red, a carcinogenic dye used in textile industry, was exhibited by the powders prepared by SA-EISA process. A proposed mechanism was illustrated for the formation of mesoporous γ-Al2O3 obtained by EISA and SA-EISA processes.

  1. Mobile evaporator corrosion test results

    International Nuclear Information System (INIS)

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80 degrees C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either open-quotes satisfactoryclose quotes (2-20 mpy) or open-quotes excellentclose quotes (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment

  2. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface.

    Science.gov (United States)

    Wang, Zhenhui; Liu, Yanming; Tao, Peng; Shen, Qingchen; Yi, Nan; Zhang, Fangyu; Liu, Quanlong; Song, Chengyi; Zhang, Di; Shang, Wen; Deng, Tao

    2014-08-27

    Plasmonic gold nanoparticles self-assembled at the air-water interface to produce an evaporative surface with local control inspired by skins and plant leaves. Fast and efficient evaporation is realized due to the instant and localized plasmonic heating at the evaporative surface. The bio-inspired evaporation process provides an alternative promising approach for evaporation, and has potential applications in sterilization, distillation, and heat transfer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Lake Evaporation in a Hyper-Arid Environment, Northwest of China—Measurement and Estimation

    OpenAIRE

    Xiao Liu; Jingjie Yu; Ping Wang; Yichi Zhang; Chaoyang Du

    2016-01-01

    Lake evaporation is a critical component of the hydrological cycle. Quantifying lake evaporation in hyper-arid regions by measurement and estimation can both provide reliable potential evaporation (ET0) reference and promote a deeper understanding of the regional hydrological process and its response towards changing climate. We placed a floating E601 evaporation pan on East Juyan Lake, which is representative of arid regions’ terminal lakes, to measure daily evaporation and conducted simulta...

  4. Simultaneous spreading and evaporation: recent developments.

    Science.gov (United States)

    Semenov, Sergey; Trybala, Anna; Rubio, Ramon G; Kovalchuk, Nina; Starov, Victor; Velarde, Manuel G

    2014-04-01

    The recent progress in theoretical and experimental studies of simultaneous spreading and evaporation of liquid droplets on solid substrates is discussed for pure liquids including nanodroplets, nanosuspensions of inorganic particles (nanofluids) and surfactant solutions. Evaporation of both complete wetting and partial wetting liquids into a nonsaturated vapour atmosphere are considered. However, the main attention is paid to the case of partial wetting when the hysteresis of static contact angle takes place. In the case of complete wetting the spreading/evaporation process proceeds in two stages. A theory was suggested for this case and a good agreement with available experimental data was achieved. In the case of partial wetting the spreading/evaporation of a sessile droplet of pure liquid goes through four subsequent stages: (i) the initial stage, spreading, is relatively short (1-2 min) and therefore evaporation can be neglected during this stage; during the initial stage the contact angle reaches the value of advancing contact angle and the radius of the droplet base reaches its maximum value, (ii) the first stage of evaporation is characterised by the constant value of the radius of the droplet base; the value of the contact angle during the first stage decreases from static advancing to static receding contact angle; (iii) during the second stage of evaporation the contact angle remains constant and equal to its receding value, while the radius of the droplet base decreases; and (iv) at the third stage of evaporation both the contact angle and the radius of the droplet base decrease until the drop completely disappears. It has been shown theoretically and confirmed experimentally that during the first and second stages of evaporation the volume of droplet to power 2/3 decreases linearly with time. The universal dependence of the contact angle during the first stage and of the radius of the droplet base during the second stage on the reduced time has been

  5. Optical and structural study of In{sub 2}S{sub 3} thin films growth by co-evaporation and chemical bath deposition (CBD) on Cu{sub 3}BiS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mesa, F., E-mail: fgmesar@unal.edu.co [Unidad de Estudios Universitarios, Colegio Mayor de Nuestra Señora del Rosario, Cra. 24 N° 63C-69, Bogotá (Colombia); Chamorro, W. [Université de Lorraine, Institut Jean Lamour, Nancy (France); Hurtado, M. [Departamento de Quimica, Universidad Nacional de Colombia, Cra. 30 N° 45-03, Bogotá (Colombia); Departamento de Física, Universidad de los Andes, Calle 21 No. 1-20, Bogotá (Colombia)

    2015-09-30

    Highlights: • In{sub 2}S{sub 3} thin films usually grow like an ultrathin. • Samples grown by CBD have a higher degree of coverage of the substrate unlike co-evaporation method. • Solar cells of Al/TCO/In{sub 2}S{sub 3}/Cu{sub 3}BiS{sub 3}/Mo structure. • In{sub 2}S{sub 3} thin films were deposited on Cu{sub 3}BiS{sub 3} (CBS), with of In{sub 2}S{sub 3} β-phase with tetragonal structure. - Abstract: We present the growth of In{sub 2}S{sub 3} onto Cu{sub 3}BiS{sub 3} layers and soda-lime glass (SLG) substrates by using chemical bath deposition (CBD) and physical co-evaporation. The results reveal that the microstructure and the optical properties of the In{sub 2}S{sub 3} films are highly dependent on the growth method. X-ray diffractrograms show that In{sub 2}S{sub 3} films have a higher crystallinity when growing by co-evaporation than by CBD. In{sub 2}S{sub 3} thin films grown by CBD with a thickness below 170 nm have an amorphous structure however when increasing the thickness the films exhibit two diffraction peaks associated to the (1 0 3) and (1 0 7) planes of the β-In{sub 2}S{sub 3} tetragonal structure. It was also found that the In{sub 2}S{sub 3} films present an energy bandgap (E{sub g}) of about 2.75 eV, regardless of the thickness of the samples.

  6. Musical information processing reflecting its structure

    OpenAIRE

    Hiraga, Rumi

    1999-01-01

    In pursuit of generating expressive musical rendition with rules, the computer music project Psyche has greatly concerned musical structure. Although described implicitly, musical structure exists innately and absolutely in musical scores. This thesis demonstrates the successful introduction of musical structure to computer music systems that are related to performance synthesis. Two systems, a performance visualization system and a computer-assisted musical analysis system Daphne, are descri...

  7. Convection-enhanced water evaporation

    OpenAIRE

    B. M. Weon; J. H. Je; C. Poulard

    2011-01-01

    Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL) water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive) evaporation in nanoliter water droplet...

  8. Evaporative water loss from welded tuff

    International Nuclear Information System (INIS)

    Hadley, G.R.; Turner, J.R. Jr.

    1980-04-01

    Welded tuff is one of the many candidate rocks presently being considered as a host medium for the disposal of radioactive waste. In the case where the disposal site lies above the water table, the host rock will in general be only partially saturated. This condition leads to a number of mass transfer processes of interest, including evaporative drying, two-phase water flow due to pressure gradients, capillary movement, plus others. Although these processes have all been known about for decades, it is not clear at this time what the relative importance of each is with regard to geologic media in a waste disposal environment. In particular, there seems to be no data available for tuff that would allow an investigator to sort out mechanisms. This work is intended to be a start in that direction. This paper reports the measurement of water loss rate for welded tuff at various temperatures due to the action of evaporative drying. The initial saturation was unknown, but the average initial water content was found to be 7% by weight. The resulting data show that the water loss rate declines monotonically with time at a given temperature and increases with increasing temperature as expected. Somewhat surprising, however, is the fact that over 90% of the water from a sample was lost by evaporation at room temperature within 72 hours. All the water loss data, including that taken at temperatures as high as 150 0 C, are explained to within a factor of two by a simple evaporation front model. The latter assumes the water is lost by the molecular diffusion of water vapor from a receding evaporation front. The motion of the evaporation front seems to depend on mass balance rather than energy balance. Capillary forces and the resulting liquid diffusion are evidently not strong enough to wash out the evaporation front, since the front model seems to fit the data well

  9. Evaporative and Convective Instabilities for the Evaporation of a Binary Mixture in a Bilayer System

    Science.gov (United States)

    Guo, Weidong; Narayanan, Ranga

    2006-11-01

    Evaporative convection in binary mixtures arises in a variety of industrial processes, such as drying of paint and coating technology. There have been theories devoted to this problem either by assuming a passive vapor layer or by isolating the vapor fluid dynamics. Previous work on evaporative and convective instabilities in a single component bilayer system suggests that active vapor layers play a major role in determining the instability of the interface. We have investigated the evaporation convection in binary mixtures taking into account the fluid dynamics of both phases. The liquid mixture and its vapor are assumed to be confined between two horizontal plates with a base state of zero evaporation but with linear vertical temperature profile. When the vertical temperature gradient reaches a critical value, the evaporative instability, Rayleigh and Marangoni convection set in. The effects of vapor and liquid depth, various wave numbers and initial composition of the mixture on the evaporative and convective instability are determined. The physics of the instability are explained and detailed comparison is made between the Rayleigh, Marangoni and evaporative convection in pure component and those in binary mixtures.

  10. Artificial weathering of oils by rotary evaporator

    International Nuclear Information System (INIS)

    Fieldhouse, B.; Hollebone, B.P.; Singh, N.R.; Tong, T.S.; Mullin, J.

    2009-01-01

    Oil weathering has a considerable affect on the behaviour, impact and ultimate fate of an oil spill. As such, efforts have been made to study weathering as a whole using bench-scale procedures. The studies are generally divided into individual processes where the effect of other major processes are introduce as an amended sample input rather than a concurrent process. The weathering process that has the greatest effect immediately following an oil spill is evaporation, particularly for lighter oils. The rotary evaporator apparatus offers a convenient means of producing artificially weathered oil for laboratory studies. This paper reported on a study that examined the representativeness of samples obtained by this method compared to pan evaporation and the impact of changes to the apparatus or method parameters on sample chemistry. Experiments were performed on Alberta Sweet Mixed Blend no. 5 in a rotary evaporator under varying conditions of temperature and air flow at ambient pressure using 2 apparatus. The rate of mass loss increased with temperature and air flow rate as expected, but the quantitative relationships could not be defined from the data due to contributions by other uncontrolled factors. It was concluded that the rotary evaporator is not suited for evaporation rate studies, but rather for producing samples suitable for use in other studies. Chemical analysis showed that the relative abundance distributions of target n-alkane hydrocarbons varied with the degree of weathering of an oil in a consistent manner at ambient pressure, regardless of the temperature, rate of air exchange or other factors related to the apparatus and procedure. The composition of the artificially weathered oil was also consistent with that from an open pan simulation of a weathered oil slick. Loss of water content varied with the conditions of evaporation because of the differential rates of evaporation due to relative humidity considerations. It was concluded that weathering

  11. New principle of feeding for flash evaporation MOCVD devices

    International Nuclear Information System (INIS)

    Kaul, A.R.; Seleznev, B.V.

    1993-01-01

    A novel scheme of flash evaporation feeding for MOCVD processes of multi-component oxide films deposition is proposed. The scheme comprises 1) microdozage of organic solution of solid volatile precursors on the glass fiber belt, 2) evaporation of the solvent and 3) flash evaporation of MOC microdoses from the belt. The functioning of the designed feeder is described and the features of proposed scheme in comparison to existing feeding principles are discussed. (orig.)

  12. A new stationary droplet evaporation model and its validation

    OpenAIRE

    Fang WANG; Jie YAO; Shaofeng YANG; Rui LIU; Jie JIN

    2017-01-01

    The liquid droplet evaporation character is important for not only combustion chamber design process but also high-accuracy spray combustion simulation. In this paper, the suspended droplets’ evaporation character was measured in a quiescent high-temperature environment by micro high-speed camera system. The gasoline and kerosene experimental results are consistent with the reference data. Methanol, common kerosene and aviation kerosene droplet evaporation characteristics, as well as their ev...

  13. Synthesis, structure and optical properties of thin films from GeS{sub 2}–In{sub 2}S{sub 3} system deposited by thermal co-evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, R., E-mail: rossen@iomt.bas.bg [Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Petkov, K. [Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Kincl, M. [Institute of Macromolecular Chemistry of Czech Academy of Science, Heyrovsky sq. 2, 162 06 Prague 6 (Czech Republic); Černošková, E. [Faculty of Chemical Technology, University of Pardubice, Studentská 84, 532 10 Pardubice (Czech Republic); Vlček, Mil.; Tichý, L. [Institute of Macromolecular Chemistry of Czech Academy of Science, Heyrovsky sq. 2, 162 06 Prague 6 (Czech Republic)

    2014-05-02

    This paper deals with the properties of the glasses and thin films from multi-component chalcogenide prepared by co-evaporation technique. The thin chalcogenide layers from GeS{sub 2}–In{sub 2}S{sub 3} system were deposited by thermal co-evaporation of GeS{sub 2} and In{sub 2}S{sub 3}. Using X-ray microanalysis it was found that the film compositions are closed to the expected ones. X-ray diffraction analysis shows that the thin films deposited by co-evaporation are amorphous. The refractive index, n and the optical band gap, E{sub g}{sup opt} were calculated from the transmittance and reflectance spectra. The thin film's structure was investigated by infrared spectroscopy. It was found that the photo-induced optical changes decrease with increase of indium content while significant thermo-induced changes in the optical properties and structure were observed at 14 at.% indium. The infrared spectra demonstrated high transmittance of the thin films in the range 4000–500 cm{sup −1}. The far-infrared spectra indicated that the indium participates in the glass network of the layers from Ge–S–In system in four coordinated InS{sub 4/2}{sup −} tetrahedral and six-coordinated InS{sub 6/2}{sup 3−} octahedral units. The changes in infrared spectra after annealing of the thin films evidence an increase of population of ethane-like S{sub 3}Ge–GeS{sub 3} units and/or structural or phase change of indium contain units. - Highlights: • The thin layers from GeS{sub 2}–In{sub 2}S{sub 3} system were deposited by thermal co-evaporation. • The photo-induced optical changes decrease with increase of indium content. • The thermo-induced changes in the optical properties and structure were investigated. • The structure of the thin films was investigated by infrared spectroscopy.

  14. Evaporative oxidation treatability test report

    International Nuclear Information System (INIS)

    1995-04-01

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment

  15. The continuous similarity model of bulk soil-water evaporation

    Science.gov (United States)

    Clapp, R. B.

    1983-01-01

    The continuous similarity model of evaporation is described. In it, evaporation is conceptualized as a two stage process. For an initially moist soil, evaporation is first climate limited, but later it becomes soil limited. During the latter stage, the evaporation rate is termed evaporability, and mathematically it is inversely proportional to the evaporation deficit. A functional approximation of the moisture distribution within the soil column is also included in the model. The model was tested using data from four experiments conducted near Phoenix, Arizona; and there was excellent agreement between the simulated and observed evaporation. The model also predicted the time of transition to the soil limited stage reasonably well. For one of the experiments, a third stage of evaporation, when vapor diffusion predominates, was observed. The occurrence of this stage was related to the decrease in moisture at the surface of the soil. The continuous similarity model does not account for vapor flow. The results show that climate, through the potential evaporation rate, has a strong influence on the time of transition to the soil limited stage. After this transition, however, bulk evaporation is independent of climate until the effects of vapor flow within the soil predominate.

  16. Near-infrared hyperspectral imaging of water evaporation dynamics for early detection of incipient caries.

    Science.gov (United States)

    Usenik, Peter; Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2014-10-01

    Incipient caries is characterized as demineralization of the tooth enamel reflecting in increased porosity of enamel structure. As a result, the demineralized enamel may contain increased amount of water, and exhibit different water evaporation dynamics than the sound enamel. The objective of this paper is to assess the applicability of water evaporation dynamics of sound and demineralized enamel for detection and quantification of incipient caries using near-infrared hyperspectral imaging. The time lapse of water evaporation from enamel samples with artificial and natural caries lesions of different stages was imaged by a near-infrared hyperspectral imaging system. Partial least squares regression was used to predict the water content from the acquired spectra. The water evaporation dynamics was characterized by a first order logarithmic drying model. The calculated time constants of the logarithmic drying model were used as the discriminative feature. The conducted measurements showed that demineralized enamel contains more water and exhibits significantly faster water evaporation than the sound enamel. By appropriate modelling of the water evaporation process from the enamel surface, the contrast between the sound and demineralized enamel observed in the individual near infrared spectral images can be substantially enhanced. The presented results indicate that near-infrared based prediction of water content combined with an appropriate drying model presents a strong foundation for development of novel diagnostic tools for incipient caries detection. The results of the study enhance the understanding of the water evaporation process from the sound and demineralized enamel and have significant implications for the detection of incipient caries by near-infrared hyperspectral imaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Design and Processing of Structural Composite Batteries

    National Research Council Canada - National Science Library

    Wong, E. L; Baechle, D. M; Xu, K; Carter, R. H; Snyder, J. F; Wetzel, E. D

    2007-01-01

    ...) 2007 Symposium and Exhibition held in Baltimore, MD, on 3-7 June 2007. Multifunctional structural composites are being developed to simultaneously bear mechanical loads and store electrochemical energy...

  18. The properties of samarium-doped zinc oxide/phthalocyanine structure for optoelectronics prepared by pulsed laser deposition and organic molecular evaporation

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Marešová, Eva; Fitl, Přemysl; Vlček, Jan; Bergmann, M.; Vondráček, Martin; Yatskiv, Roman; Bulíř, Jiří; Hubík, Pavel; Hruška, Petr; Drahokoupil, Jan; Abdellaoui, N.; Vrňata, M.; Lančok, Ján

    2016-01-01

    Roč. 122, č. 3 (2016), 1-8, č. článku 225. ISSN 0947-8396 R&D Projects: GA MŠk(CZ) LG15050; GA ČR(CZ) GAP108/11/0958; GA MŠk(CZ) LM2011029; GA ČR(CZ) GA14-10279S; GA MŠk(CZ) 7AMB14FR010 Institutional support: RVO:68378271 ; RVO:67985882 Keywords : samarium-doped zinc oxide zinc/phthalocyanine deposition * evaporation * pulsed laser deposition * thin films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.455, year: 2016

  19. Numerical simulation of droplet evaporation between two circular plates

    International Nuclear Information System (INIS)

    Bam, Hang Jin; Son, Gi Hun

    2015-01-01

    Numerical simulation is performed for droplet evaporation between two circular plates. The flow and thermal characteristics of the droplet evaporation are numerically investigated by solving the conservation equations of mass, momentum, energy and mass fraction in the liquid and gas phases. The liquid-gas interface is tracked by a sharp-interface level-set method which is modified to include the effects of evaporation at the liquid-gas interface and contact angle hysteresis at the liquid-gas-solid contact line. An analytical model to predict the droplet evaporation is also developed by simplifying the mass and vapor fraction equations in the gas phase. The numerical results demonstrate that the 1-D analytical prediction is not applicable to the high rate evaporation process. The effects of plate gap and receding contact angle on the droplet evaporation are also quantified.

  20. An automated tunnel evaporation measurement system for confined spaces

    Science.gov (United States)

    Salve, Rohit

    2002-04-01

    An automated tunnel evaporation-rate measurement system (TEMS) has been designed to measure automatically the evaporation from a cylinder 0·30 m in diameter and 0·10 m tall. This cylinder continuously maintains a constant height of water, with losses to evaporation replenished from a stilling cylinder connected to a water reservoir. The evaporation rate is measured by a transducer located at the bottom of the stilling well. The TEMS was tested over a period of 3 months in an underground research facility with relatively strong wind effects, changing temperature, and changing humidity. During this period, the TEMS continued to function uninterrupted, automatically measuring the evaporation amounts along a tunnel and an enclosed niche. These observations suggest that this tool can be useful for investigations of evaporation processes both in enclosed and ventilated environments. Published in 2002 by John Wiley & Sons, Ltd.

  1. Evaporative cooling of antiprotons for the production of trappable antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, D. M.; Cesar, C. L. [Instituto de Fisica - Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro (Brazil); Andresen, G. B.; Bowe, P. D.; Hangst, J. S. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Ashkezari, M. D.; Hayden, M. E. [Department of Physics, Simon Fraser University, Burnaby BC, V5A 1S6 (Canada); Baquero-Ruiz, M.; Chapman, S.; Fajans, J.; Povilus, A.; So, C.; Wurtele, J. S. [Department of Physics, University of California, Berkeley, California 94720-7300 (United States); Bertsche, W. [School of Physics and Astronomy, University of Manchester, M13 9PL Manchester (United Kingdom) and Cockroft Institute, WA4 4AD Warrington (United Kingdom); Butler, E. [CERN, PH Department, CH-1211 Geneva 23 (Switzerland); Charlton, M.; Madsen, N.; Werf, D. P. van der [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Friesen, T.; Hydomako, R. [Department of Physics and Astronomy, University of Calgary AB, T2N 1N4 (Canada); and others

    2013-03-19

    We describe the implementation of evaporative cooling of charged particles in the ALPHA apparatus. Forced evaporation has been applied to cold samples of antiprotons held in Malmberg-Penning traps. Temperatures on the order of 10 K were obtained, while retaining a significant fraction of the initial number of particles. We have developed a model for the evaporation process based on simple rate equations and applied it succesfully to the experimental data. We have also observed radial re-distribution of the clouds following evaporation, explained by simple conservation laws. We discuss the relevance of this technique for the recent demonstration of magnetic trapping of antihydrogen.

  2. SR 97 - Identification and structuring of process

    International Nuclear Information System (INIS)

    Pers, K.; Skagius, K.; Soedergren, S.; Wiborgh, M.; Hedin, A.; Moren, L.; Sellin, P.; Stroem, A.; Pusch, R.; Bruno, J.

    1999-12-01

    This report documents work conducted in recent years to identify processes and interactions of importance to the evaluation of long-term safety of a KBS 3 type deep repository for spent nuclear fuel. Previous, partly undocumented work regarding interaction matrices is described as well as the THMC diagrams that have been used in the safety assessment SR 97. The coupling between the two sources of information is documented in a database. In the same database, the interaction matrices are briefly documented, while the processes in the THMC diagrams are more thoroughly documented in a special so called Process Report, which forms an important supporting document for SR 97

  3. SR 97 - Identification and structuring of process

    Energy Technology Data Exchange (ETDEWEB)

    Pers, K.; Skagius, K.; Soedergren, S.; Wiborgh, M. [Kemakta Konsult AB, Stockholm (Sweden); Hedin, A.; Moren, L.; Sellin, P.; Stroem, A. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Pusch, R. [Geodevelopment AB, Lund (Sweden); Bruno, J. [QuantiSci SL, Barcelona (Spain)

    1999-12-01

    This report documents work conducted in recent years to identify processes and interactions of importance to the evaluation of long-term safety of a KBS 3 type deep repository for spent nuclear fuel. Previous, partly undocumented work regarding interaction matrices is described as well as the THMC diagrams that have been used in the safety assessment SR 97. The coupling between the two sources of information is documented in a database. In the same database, the interaction matrices are briefly documented, while the processes in the THMC diagrams are more thoroughly documented in a special so called Process Report, which forms an important supporting document for SR 97.

  4. CoPt nanoparticles deposited by electron beam evaporation

    International Nuclear Information System (INIS)

    Castaldi, L.; Giannakopoulos, K.; Travlos, A.; Niarchos, D.; Boukari, S.; Beaurepaire, E.

    2005-01-01

    Co 50 Pt 50 nanoparticles were co-deposited on thermally oxidized Si substrates by electron beam evaporation at 750 deg C. The mean particle sizes are between ∼5 and ∼20 nm and depend on the nominal thickness of the layer. Different processing conditions resulted in different structural and morphological properties of the samples which led to superparamagnetic and ferromagnetic behaviors. The post-annealing treatment of the CoPt nanograins resulted in the crystallization of the L1 0 ordered phase and in the magnetic hardening of nanoparticles with a maximum coercivity of ∼7.4 kOe

  5. In-situ observation of structure formation in polymer processing

    International Nuclear Information System (INIS)

    Murase, Hiroki

    2009-01-01

    In-situ X-ray scattering in polymer processing is a crucial method to elucidate the mechanism of structure formation in the process. Fiber spinning is one such process primarily imposing extensional deformation on polymeric melt at the spin-line during rapid cooling. In-situ small-angle X-ray scattering using synchrotron radiation on the spinning process allows direct observation of the transient structure developing in the process. (author)

  6. Entropy Budget for Hawking Evaporation

    Directory of Open Access Journals (Sweden)

    Ana Alonso-Serrano

    2017-07-01

    Full Text Available Blackbody radiation, emitted from a furnace and described by a Planck spectrum, contains (on average an entropy of 3 . 9 ± 2 . 5 bits per photon. Since normal physical burning is a unitary process, this amount of entropy is compensated by the same amount of “hidden information” in correlations between the photons. The importance of this result lies in the posterior extension of this argument to the Hawking radiation from black holes, demonstrating that the assumption of unitarity leads to a perfectly reasonable entropy/information budget for the evaporation process. In order to carry out this calculation, we adopt a variant of the “average subsystem” approach, but consider a tripartite pure system that includes the influence of the rest of the universe, and which allows “young” black holes to still have a non-zero entropy; which we identify with the standard Bekenstein entropy.

  7. Organic evaporator steam valve failure

    International Nuclear Information System (INIS)

    Jacobs, R.A.

    1992-01-01

    Defense Waste Processing Facility (DWPF) Technical has requested an analysis of the capacity of the Organic Evaporator (OE) condenser (OEC) be performed to determine its capability in the case where the OE steam flow control valve fails open. Calculations of the OE boilup and the OEC heat transfer coefficient indicate the OEC will have more than enough capacity to remove the heat at maximum OE boilup. In fact, the Salt Cell Vent Condenser (SCVC) should also have sufficient capacity to handle the maximum OE boilup. Therefore, it would require simultaneous loss of OEC and/or SCVC condensing capacity for the steam valve failure to cause high benzene in the Process Vessel Vent System (PVVS)

  8. Evaporator modeling - A hybrid approach

    International Nuclear Information System (INIS)

    Ding Xudong; Cai Wenjian; Jia Lei; Wen Changyun

    2009-01-01

    In this paper, a hybrid modeling approach is proposed to model two-phase flow evaporators. The main procedures for hybrid modeling includes: (1) Based on the energy and material balance, and thermodynamic principles to formulate the process fundamental governing equations; (2) Select input/output (I/O) variables responsible to the system performance which can be measured and controlled; (3) Represent those variables existing in the original equations but are not measurable as simple functions of selected I/Os or constants; (4) Obtaining a single equation which can correlate system inputs and outputs; and (5) Identify unknown parameters by linear or nonlinear least-squares methods. The method takes advantages of both physical and empirical modeling approaches and can accurately predict performance in wide operating range and in real-time, which can significantly reduce the computational burden and increase the prediction accuracy. The model is verified with the experimental data taken from a testing system. The testing results show that the proposed model can predict accurately the performance of the real-time operating evaporator with the maximum error of ±8%. The developed models will have wide applications in operational optimization, performance assessment, fault detection and diagnosis

  9. Automated simulation and study of spatial-structural design processes

    NARCIS (Netherlands)

    Davila Delgado, J.M.; Hofmeyer, H.; Stouffs, R.; Sariyildiz, S.

    2013-01-01

    A so-called "Design Process Investigation toolbox" (DPI toolbox), has been developed. It is a set of computational tools that simulate spatial-structural design processes. Its objectives are to study spatial-structural design processes and to support the involved actors. Two case-studies are

  10. Capillary evaporation of the ionic liquid [EMIM][BF4] in nanoscale solvophobic confinement

    Science.gov (United States)

    Shrivastav, Gourav; Remsing, Richard C.; Kashyap, Hemant K.

    2018-05-01

    Solvent density fluctuations play a crucial role in liquid-vapor transitions in solvophobic confinement and can also be important for understanding solvation of polar and apolar solutes. In the case of ionic liquids (ILs), density fluctuations can be used to understand important processes in the context of nanoscale aggregation and colloidal self-assemblies. In this article, we explore the nature of density fluctuations associated with capillary evaporation of the IL 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) in the confined region of model solvophobic nanoscale sheets by using molecular dynamics simulations combined with non-Boltzmann sampling techniques. We demonstrate that density fluctuations of the confined IL play an important role in capillary evaporation, suggesting analogies to dewetting transitions involving water. Significant changes in the interfacial structure of the IL are also detailed and suggested to underlie a non-classical (non-parabolic) dependence of the free energy barrier to evaporation on the degree of confinement.

  11. Water evaporation in silica colloidal deposits.

    Science.gov (United States)

    Peixinho, Jorge; Lefèvre, Grégory; Coudert, François-Xavier; Hurisse, Olivier

    2013-10-15

    The results of an experimental study on the evaporation and boiling of water confined in the pores of deposits made of mono-dispersed silica colloidal micro-spheres are reported. The deposits are studied using scanning electron microscopy, adsorption of nitrogen, and adsorption of water through attenuated total reflection-infrared spectroscopy. The evaporation is characterized using differential scanning calorimetry and thermal gravimetric analysis. Optical microscopy is used to observe the patterns on the deposits after evaporation. When heating at a constant rate and above boiling temperature, the release of water out of the deposits is a two step process. The first step is due to the evaporation and boiling of the surrounding and bulk water and the second is due to the desorption of water from the pores. Additional experiments on the evaporation of water from membranes having cylindrical pores and of heptane from silica deposits suggest that the second step is due to the morphology of the deposits. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Uranium concentration monitor manual, secondary intermediate evaporator

    International Nuclear Information System (INIS)

    Russo, P.A.; Sprinkle, J.K. Jr.; Slice, R.W.; Strittmatter, R.B.

    1985-08-01

    This manual describes the design, operation, and measurement control procedures for the automated uranium concentration monitor on the secondary intermediate evaporator at the Oak Ridge Y-12 Plant. The nonintrusive monitor provides a near-real time readout of uranium concentration in the return loop of time recirculating evaporator for purposes of process monitoring and control. A detector installed near the bottom of the return loop is used to acquire spectra of gamma rays from the evaporator solutions during operation. Pulse height analysis of each spectrum gives the information required to deduce the concentration of uranium in the evaporator solution in near-real time. The visual readout of concentration is updated at the end of every assay cycle. The readout includes an alphanumeric display of uranium concentration and an illuminated, colored LED (in an array of colored LEDs) indicating whether the measured concentration is within (or above or below) the desired range. An alphanumeric display of evaporator solution acid molarity is also available to the operator. 9 refs., 16 figs., 4 tabs

  13. Evaporation rate of water in hydrophobic confinement.

    Science.gov (United States)

    Sharma, Sumit; Debenedetti, Pablo G

    2012-03-20

    The drying of hydrophobic cavities is believed to play an important role in biophysical phenomena such as the folding of globular proteins, the opening and closing of ligand-gated ion channels, and ligand binding to hydrophobic pockets. We use forward flux sampling, a molecular simulation technique, to compute the rate of capillary evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of gap, surface size, and temperature. Over the range of conditions investigated (gaps between 9 and 14 Å and surface areas between 1 and 9 nm(2)), the free energy barrier to evaporation scales linearly with the gap between hydrophobic surfaces, suggesting that line tension makes the predominant contribution to the free energy barrier. The exponential dependence of the evaporation rate on the gap between confining surfaces causes a 10 order-of-magnitude decrease in the rate when the gap increases from 9 to 14 Å. The computed free energy barriers are of the order of 50 kT and are predominantly enthalpic. Evaporation rates per unit area are found to be two orders of magnitude faster in confinement by the larger (9 nm(2)) than by the smaller (1 nm(2)) surfaces considered here, at otherwise identical conditions. We show that this rate enhancement is a consequence of the dependence of hydrophobic hydration on the size of solvated objects. For sufficiently large surfaces, the critical nucleus for the evaporation process is a gap-spanning vapor tube.

  14. Black hole evaporation in conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo; Rachwał, Lesław [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China); Modesto, Leonardo [Department of Physics, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055 (China); Porey, Shiladitya, E-mail: bambi@fudan.edu.cn, E-mail: lmodesto@sustc.edu.cn, E-mail: shilp@iitk.ac.in, E-mail: rachwal@fudan.edu.cn [Department of Physics, Indian Institute of Technology, 208016 Kanpur (India)

    2017-09-01

    We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.

  15. Evaporative Cooling of Antiprotons to Cryogenic Temperatures

    CERN Document Server

    Andresen, G B; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A; Hydomako, R; Jonsell, S; Kurchaninov, L; Lambo, R; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wilding, D; Wurtele, J S; Yamazaki, Y

    2010-01-01

    We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9~K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.

  16. Semiclassical approach to black hole evaporation

    International Nuclear Information System (INIS)

    Lowe, D.A.

    1993-01-01

    Black hole evaporation may lead to massive or massless remnants, or naked singularities. This paper investigates this process in the context of two quite different two-dimensional black hole models. The first is the original Callan-Giddings-Harvey-Strominger (CGHS) model, the second is another two-dimensional dilaton-gravity model, but with properties much closer to physics in the real, four-dimensional, world. Numerical simulations are performed of the formation and subsequent evaporation of black holes and the results are found to agree qualitatively with the exactly solved modified CGHS models, namely, that the semiclassical approximation breaks down just before a naked singularity appears

  17. Experiments on Evaporative Emissions in Ventilated Rooms

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    In many new buildings the indoor air quality is affected by emissions of volatile organic compounds (VOCs) from building materials. The emission process may be controlled either by diffusion inside the material or evaporation from the surface but it always involves mass transfer across the boundary...... layer at the surface-air-interface. Experiments at different velocity levels were performed in a full-scale ventilated chamber to investigate the influence of local airflow on the evaporative emission from a surface. The experiments included velocity measurements in the flow over the surface...

  18. Damage and failure processes in structural materials

    International Nuclear Information System (INIS)

    Embury, J.D.

    1993-01-01

    At large plastic strains consideration must be given not only to the descriptions of work hardening and texture evolution but also to the process of damage accumulation and the documentation of the various modes of failure which may terminate the plastic history. In this presentation consideration is given first to documenting the various modes of failure and their dependence on stress state. It is then shown that damage accumulation can be studied in a quantitative manner by using model systems in conjunction with FEM calculations. Finally consideration is given to complex forming processes such as ironing to show how studies of damage initiation and accumulation relate to practical engineering problems. (orig.)

  19. Miniature electron bombardment evaporation source: evaporation rate measurement

    International Nuclear Information System (INIS)

    Nehasil, V.; Masek, K.; Matolin, V.; Moreau, O.

    1997-01-01

    Miniature electron beam evaporation sources which operate on the principle of vaporization of source material, in the form of a tip, by electron bombardment are produced by several companies specialized in UHV equipment. These sources are used primarily for materials that are normally difficult to deposit due to their high evaporation temperature. They are appropriate for special applications such as heteroepitaxial thin film growth requiring a very low and well controlled deposition rate. A simple and easily applicable method of evaporation rate control is proposed. The method is based on the measurement of ion current produced by electron bombardment of evaporated atoms. The absolute evaporation flux values were measured by means of the Bayard-Alpert ion gauge, which enabled the ion current vs evaporation flux calibration curves to be plotted. (author). 1 tab., 4 figs., 6 refs

  20. Organizational structure features supporting knowledge management processes

    OpenAIRE

    Claver-Cortés, Enrique; Zaragoza Sáez, Patrocinio del Carmen; Pertusa-Ortega, Eva

    2007-01-01

    Purpose – The idea that knowledge management can be a potential source of competitive advantage has gained strength in the last few years. However, a number of business actions are needed to generate an appropriate environment and infrastructure for knowledge creation, transfer and application. Among these actions there stands out the design of an organizational structure, the link of which with knowledge management is the main concern here. More specifically, the present paper has as its aim...

  1. PFR evaporator leak

    International Nuclear Information System (INIS)

    Smedley, J.A.

    1975-01-01

    PFR has three heat removal circuits each one having an evaporator, superheater, reheater; all separate units. The status of the system was that circuit No 3 was steaming with 10 MW thermal nuclear power; No 1 circuit was filled with sodium but with the evaporator awaiting modification to cure gas entrainment problems already reported. The leak was in No 2 circuit and was located in the evaporator unit. The evaporator is rated at 120 M thermal at full power and as such is a large unit. The circuit was filled with both sodium and water for the first time three weeks before the conference so it was recent history being reported and therefore any figures quoted should be taken as indicative only. The history of the steam generator was that it was built at works to a very high standard and underwent all the usual tests of strength, inspection of welds and helium leak testing. The steam generator is of U tube design with a tube plate to which the boiler tubes are welded, with all the welds in one of two gas spaces. The inlet and outlet sides are separated by a baffle and the salient features are illustrated in the attached figure. The unit achieved a leak tightness better than the detection limit in the helium leak test at works. This limit was assessed as being less than an equivalent leak of 10 -6 g/s water under steam generator service conditions. However even though all the steam generator units passed this test at works a further test was carried out when the circuits had been completed. The test was carried out during commissioning after sodium filling and with the units hot. The method was to introduce a mixture of helium/ argon at 500 pounds/square inch into the water side of the steam generators and measure the helium concentration in the sodium side gas spaces of the circuit. The test lasted many days and under these conditions the sensitivity is such that a leak equivalent to somewhere between 10 -7 to 10 -6 g/s equivalent water leak could be detected, i

  2. PFR evaporator leak

    Energy Technology Data Exchange (ETDEWEB)

    Smedley, J A

    1975-07-01

    PFR has three heat removal circuits each one having an evaporator, superheater, reheater; all separate units. The status of the system was that circuit No 3 was steaming with 10 MW thermal nuclear power; No 1 circuit was filled with sodium but with the evaporator awaiting modification to cure gas entrainment problems already reported. The leak was in No 2 circuit and was located in the evaporator unit. The evaporator is rated at 120 M thermal at full power and as such is a large unit. The circuit was filled with both sodium and water for the first time three weeks before the conference so it was recent history being reported and therefore any figures quoted should be taken as indicative only. The history of the steam generator was that it was built at works to a very high standard and underwent all the usual tests of strength, inspection of welds and helium leak testing. The steam generator is of U tube design with a tube plate to which the boiler tubes are welded, with all the welds in one of two gas spaces. The inlet and outlet sides are separated by a baffle and the salient features are illustrated in the attached figure. The unit achieved a leak tightness better than the detection limit in the helium leak test at works. This limit was assessed as being less than an equivalent leak of 10{sup -6} g/s water under steam generator service conditions. However even though all the steam generator units passed this test at works a further test was carried out when the circuits had been completed. The test was carried out during commissioning after sodium filling and with the units hot. The method was to introduce a mixture of helium/ argon at 500 pounds/square inch into the water side of the steam generators and measure the helium concentration in the sodium side gas spaces of the circuit. The test lasted many days and under these conditions the sensitivity is such that a leak equivalent to somewhere between 10{sup -7} to 10{sup -6} g/s equivalent water leak could be

  3. Evaporation and Antievaporation Instabilities

    Directory of Open Access Journals (Sweden)

    Andrea Addazi

    2017-10-01

    Full Text Available We review (antievaporation phenomena within the context of quantum gravity and extended theories of gravity. The (antievaporation effect is an instability of the black hole horizon discovered in many different scenarios: quantum dilaton-gravity, f ( R -gravity, f ( T -gravity, string-inspired black holes, and brane-world cosmology. Evaporating and antievaporating black holes seem to have completely different thermodynamical features compared to standard semiclassical black holes. The purpose of this review is to provide an introduction to conceptual and technical aspects of (antievaporation effects, while discussing problems that are still open.

  4. Effects of NaF evaporation during low temperature Cu(In,Ga)Se{sub 2} growth

    Energy Technology Data Exchange (ETDEWEB)

    Bissig, B., E-mail: benjamin.bissig@empa.ch; Reinhard, P.; Pianezzi, F.; Hagendorfer, H.; Nishiwaki, S.; Buecheler, S.; Tiwari, A.N.

    2015-05-01

    Co-evaporation of NaF during the 3{sup rd} stage of the low temperature Cu(In,Ga)Se{sub 2} multi-stage process is compared to post-deposition treatment (PDT) with NaF in view of their influence on the electronic and structural properties. In case of NaF co-evaporation, quantum efficiency losses in the near infrared region and thus lower short circuit current density cause a reduced efficiency compared to solar cells prepared with NaF PDT. The formation of a deep defect with activation energy of ~ 250 meV is measured by capacitance spectroscopy and can explain the deteriorated performance in such devices. In addition, NaF co-evaporation during the 3{sup rd} stage causes reduced grain size in the top part of Cu(In,Ga)Se{sub 2} and altered In, Ga, and Cu distribution. - Highlights: • NaF was co-evaporated in a low temperature CIGS process during and after the 3rd stage. • CIGS grains size is reduced in the top 300 nm when NaF is co-evaporated. • C-f measurements indicate deep defect formation when NaF is co-evaporated.

  5. THE USE OF POROUS CERAMICS FOR EVAPORATIVE AND EVAPORATIVE – VAPOR –COMPRESSION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Cheban D.N.

    2013-04-01

    Full Text Available The use of natural evaporative cooling is one of technical solutions of problem of energy efficiency in air conditioning systems. The use of evaporative cooling in the first combined cooling stage allows reducing the load on the condenser of the cooling machine due to reducing of the condensing temperature. This combination allows the use of this type of system in any climatic conditions, including regions with small water resources. Multi-porous ceramic structure is used in evaporative air coolers and water coolers in this case. The objective of this paper is to show advantages of the using of porous ceramic as a working attachment, and to show advantages of the proposed scheme of compression-evaporation systems in comparison with standard vapor compression systems. Experimental research proved the fact, that in the film mode cooling efficiency of air flow is between EA=0,6÷0,7 and is slightly dependent of water flow. For countries with hot and dry climate where reserves of water are limited, it is recommended to use cyclical regime with EA≈0,65 value, or to use channel regime with a value of EA≈0,55. This leads to considerable energy savings. It has been determined, that combined air conditioning system is completely closed on the consumption of water at the parameters of the outside air equal to tA =32ºC and XA>13g/kg (in system with direct evaporative cooling machine, and tA=32ºC and XA>12g/kg (in system with indirect evaporative cooling machine. With these parameters, the cost of water in evaporative cooling stage can be fully compensated by condensate from the evaporator chiller.

  6. Solubility of plutonium and waste evaporation

    International Nuclear Information System (INIS)

    Karraker, D.G.

    1993-01-01

    Chemical processing of irradiated reactor elements at the Savannah River Site separates uranium, plutonium and fission products; fission products and process-added chemicals are mixed with an excess of NaOH and discharged as a basic slurry into large underground tanks for temporary storage. The slurry is composed of base-insoluble solids that settle to the bottom of the tank; the liquid supemate contains a mixture of base-soluble chemicals--nitrates, nitrites aluminate, sulfate, etc. To conserve space in the waste tanks, the supemate is concentrated by evaporation. As the evaporation proceeds, the solubilities of some components are exceeded, and these species crystallize from solution. Normally, these components are soluble in the hot solution discharged from the waste tank evaporator and do not crystallize until the solution cools. However, concern was aroused at West Valley over the possibility that plutonium would precipitate and accumulate in the evaporator, conceivably to the point that a nuclear accident was possible. There is also a concern at SRS from evaporation of sludge washes, which arise from washing the base-insoluble solids (open-quote sludge close-quote) with ca. 1M NaOH to reduce the Al and S0 4 -2 content. The sludge washes of necessity extract a low level of Pu from the sludge and are evaporated to reduce their volume, presenting the possibility of precipitating Pu. Measurements of the solubility of Pu in synthetic solutions of similar composition to waste supernate and sludge washes are described in this report

  7. Sensitivity of potential evaporation estimates to 100 years of climate variability

    NARCIS (Netherlands)

    Bartholomeus, R.P.; Stagge, J.H.; Tallaksen, L.M.; Witte, J.P.M.

    2015-01-01

    Hydrological modeling frameworks require an accurate representation of evaporation fluxes for appropriate quantification of, e.g., the water balance, soil moisture budget, recharge and groundwater processes. Many frameworks have used the concept of potential evaporation, often estimated for

  8. Linking neural and symbolic representation and processing of conceptual structures

    NARCIS (Netherlands)

    van der Velde, Frank; Forth, Jamie; Nazareth, Deniece S.; Wiggins, Geraint A.

    2017-01-01

    We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like) structures. First is the Neural Blackboard Architecture (NBA), which aims to account for representation and processing of complex and combinatorial conceptual

  9. Integrating personality structure, personality process, and personality development

    NARCIS (Netherlands)

    Baumert, Anna; Schmitt, Manfred; Perugini, Marco; Johnson, Wendy; Blum, Gabriela; Borkenau, Peter; Costantini, Giulio; Denissen, J.J.A.; Fleeson, William; Grafton, Ben; Jayawickreme, Eranda; Kurzius, Elena; MacLeod, Colin; Miller, Lynn C.; Read, Stephen J.; Robinson, Michael D.; Wood, Dustin; Wrzus, Cornelia

    2017-01-01

    In this target article, we argue that personality processes, personality structure, and personality development have to be understood and investigated in integrated ways in order to provide comprehensive responses to the key questions of personality psychology. The psychological processes and

  10. Coronal Structures as Tracers of Sub-Surface Processes

    Indian Academy of Sciences (India)

    tribpo

    dramatic differences in appearance and physical processes, all these structures share a common ... mena that indicate a close relationship between coronal and sub-photo- spheric processes. .... 8) maintaining the same chirality. Large scale ...

  11. Steady Method for the Analysis of Evaporation Dynamics.

    Science.gov (United States)

    Günay, A Alperen; Sett, Soumyadip; Oh, Junho; Miljkovic, Nenad

    2017-10-31

    Droplet evaporation is an important phenomenon governing many man-made and natural processes. Characterizing the rate of evaporation with high accuracy has attracted the attention of numerous scientists over the past century. Traditionally, researchers have studied evaporation by observing the change in the droplet size in a given time interval. However, the transient nature coupled with the significant mass-transfer-governed gas dynamics occurring at the droplet three-phase contact line makes the classical method crude. Furthermore, the intricate balance played by the internal and external flows, evaporation kinetics, thermocapillarity, binary-mixture dynamics, curvature, and moving contact lines makes the decoupling of these processes impossible with classical transient methods. Here, we present a method to measure the rate of evaporation of spatially and temporally steady droplets. By utilizing a piezoelectric dispenser to feed microscale droplets (R ≈ 9 μm) to a larger evaporating droplet at a prescribed frequency, we can both create variable-sized droplets on any surface and study their evaporation rate by modulating the piezoelectric droplet addition frequency. Using our steady technique, we studied water evaporation of droplets having base radii ranging from 20 to 250 μm on surfaces of different functionalities (45° ≤ θ a,app ≤ 162°, where θ a,app is the apparent advancing contact angle). We benchmarked our technique with the classical unsteady method, showing an improvement of 140% in evaporation rate measurement accuracy. Our work not only characterizes the evaporation dynamics on functional surfaces but also provides an experimental platform to finally enable the decoupling of the complex physics governing the ubiquitous droplet evaporation process.

  12. Spin structure in high energy processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    DePorcel, L.; Dunwoodie, C. [eds.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  13. Spin structure in high energy processes: Proceedings

    International Nuclear Information System (INIS)

    DePorcel, L.; Dunwoodie, C.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z 0 s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ( 3 HE) and the Bjoerken sum rule; a consumer's guide to lattice QCD results; top ten models constrained by b → sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere

  14. A new stationary droplet evaporation model and its validation

    Directory of Open Access Journals (Sweden)

    Fang WANG

    2017-08-01

    Full Text Available The liquid droplet evaporation character is important for not only combustion chamber design process but also high-accuracy spray combustion simulation. In this paper, the suspended droplets’ evaporation character was measured in a quiescent high-temperature environment by micro high-speed camera system. The gasoline and kerosene experimental results are consistent with the reference data. Methanol, common kerosene and aviation kerosene droplet evaporation characteristics, as well as their evaporation rate changing with temperature, were obtained. The evaporation rate experimental data were compared with the prediction result of Ranz-Marshall boiling temperature model (RMB, Ranz-Marshall low-temperature model (RML, drift flux model (DFM, mass analogy model (MAM, and stagnant film model (SFM. The disparity between the experimental data and the model prediction results was mainly caused by the neglect of the natural convection effect, which was never introduced into the droplet evaporation concept. A new droplet evaporation model with consideration of natural convection buoyancy force effect was proposed in this paper. Under the experimental conditions in this paper, the calculation results of the new droplet evaporation model were agreed with the experimental data for kerosene, methanol and other fuels, with less than 20% relative deviations. The relative deviations between the new evaporation model predictions for kerosene and the experimental data from the references were within 10%.

  15. STUDI EKSPERIMENTAL FALLING FILM EVAPORATOR PADA EVAPORASI NIRA KENTAL

    Directory of Open Access Journals (Sweden)

    Medya Ayunda Fitri

    2016-06-01

    Full Text Available Falling film evaporator is a constructed equipment for concentrating dilute solution that are sensitive to heat flowing form a thin film. This research aims to study the evaporation of cane juice concentrated with air flow on falling film evaporator and knowing evaporation rate occured in falling film evaporator used. In the process, cane juice from plant pumped to the falling film evaporator that used in this experiment. This research used concentrated cane juice and air flow rate for variables of this experiment. Cane juice flow from top of evaporator through distributor to form thin film and air flow from the bottom of evaporator. After that, temperatur of pipe wall, inlet and outlet temperature of cane juice and air were measured. This experiment concluded that the highest concentration of outlet solution is 59 brix for liquid flow rate 154 l/h and air flow rate 10 m3/h, and the other hand inlet solution concentration 51 brix. Optimum evaporation rate is 35 kg/m2.h for 51 brix and air flow rate 10 m3/h.

  16. Optimized evaporation technique for leachate treatment: Small scale implementation.

    Science.gov (United States)

    Benyoucef, Fatima; Makan, Abdelhadi; El Ghmari, Abderrahman; Ouatmane, Aziz

    2016-04-01

    This paper introduces an optimized evaporation technique for leachate treatment. For this purpose and in order to study the feasibility and measure the effectiveness of the forced evaporation, three cuboidal steel tubs were designed and implemented. The first control-tub was installed at the ground level to monitor natural evaporation. Similarly, the second and the third tub, models under investigation, were installed respectively at the ground level (equipped-tub 1) and out of the ground level (equipped-tub 2), and provided with special equipment to accelerate the evaporation process. The obtained results showed that the evaporation rate at the equipped-tubs was much accelerated with respect to the control-tub. It was accelerated five times in the winter period, where the evaporation rate was increased from a value of 0.37 mm/day to reach a value of 1.50 mm/day. In the summer period, the evaporation rate was accelerated more than three times and it increased from a value of 3.06 mm/day to reach a value of 10.25 mm/day. Overall, the optimized evaporation technique can be applied effectively either under electric or solar energy supply, and will accelerate the evaporation rate from three to five times whatever the season temperature. Copyright © 2016. Published by Elsevier Ltd.

  17. Synthesis of computational structures for analog signal processing

    CERN Document Server

    Popa, Cosmin Radu

    2011-01-01

    Presents the most important classes of computational structures for analog signal processing, including differential or multiplier structures, squaring or square-rooting circuits, exponential or Euclidean distance structures and active resistor circuitsIntroduces the original concept of the multifunctional circuit, an active structure that is able to implement, starting from the same circuit core, a multitude of continuous mathematical functionsCovers mathematical analysis, design and implementation of a multitude of function generator structures

  18. Evaporation of inclined water droplets

    Science.gov (United States)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  19. Space structure of hadrons and soft processes

    International Nuclear Information System (INIS)

    Nyiri, J.

    1980-12-01

    A semi-phenomenological description of soft hadronic processes is given based on the picture of spatially separated quarks and on the spectator mechanism. It is pointed out that the data on the production of secondary mesons support the assumption of quark combinatorics. It is shown that the baryon production can be described roughly by the hypothesis of the dominance of the lowest SU(6)baryon multiplet. Two ways of explaining the slight discrepancy between the experimental data and the theoretical predictions on the increase of baryon multiplicities with the increase of energy are given. (P.L.)

  20. 242-A evaporator hazards assessment

    International Nuclear Information System (INIS)

    Johnson, T.L.

    1998-01-01

    This document establishes the technical basis in support of Emergency Planning activities for the 242-A Evaporator, on the Hanford Site. Through this document the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated. The evaporator sues a conventional, forced-circulation, vacuum evaporation system to concentrate radioactive waste solutions. This concentration results in the reduction in waste volume and reduces the number of double-shelled tanks required to store the waste

  1. Simultaneous measurement of monocomponent droplet temperature/refractive index, size and evaporation rate with phase rainbow refractometry

    Science.gov (United States)

    Wu, Yingchun; Crua, Cyril; Li, Haipeng; Saengkaew, Sawitree; Mädler, Lutz; Wu, Xuecheng; Gréhan, Gérard

    2018-07-01

    The accurate measurements of droplet temperature, size and evaporation rate are of great importance to characterize the heat and mass transfer during evaporation/condensation processes. The nanoscale size change of a micron-sized droplet exactly describes its transient mass transfer, but is difficult to measure because it is smaller than the resolutions of current size measurement techniques. The Phase Rainbow Refractometry (PRR) technique is developed and applied to measure droplet temperature, size and transient size changes and thereafter evaporation rate simultaneously. The measurement principle of PRR is theoretically derived, and it reveals that the phase shift of the time-resolved ripple structures linearly depends on, and can directly yield, nano-scale size changes of droplets. The PRR technique is first verified through the simulation of rainbows of droplets with changing size, and results show that PRR can precisely measure droplet refractive index, absolute size, as well as size change with absolute and relative errors within several nanometers and 0.6%, respectively, and thus PRR permits accurate measurements of transient droplet evaporation rates. The evaporations of flowing single n-nonane droplet and mono-dispersed n-heptane droplet stream are investigated by two PRR systems with a high speed linear CCD and a low speed array CCD, respectively. Their transient evaporation rates are experimentally determined and quantitatively agree well with the theoretical values predicted by classical Maxwell and Stefan-Fuchs models. With the demonstration of evaporation rate measurement of monocomponent droplet in this work, PRR is an ideal tool for measurements of transient droplet evaporation/condensation processes, and can be extended to multicomponent droplets in a wide range of industrially-relevant applications.

  2. Specific "scientific" data structures, and their processing

    Directory of Open Access Journals (Sweden)

    Jerzy Karczmarczuk

    2011-09-01

    Full Text Available Programming physicists use, as all programmers, arrays, lists, tuples, records, etc., and this requires some change in their thought patterns while converting their formulae into some code, since the "data structures" operated upon, while elaborating some theory and its consequences, are rather: power series and Padé approximants, differential forms and other instances of differential algebras, functionals (for the variational calculus, trajectories (solutions of differential equations, Young diagrams and Feynman graphs, etc. Such data is often used in a [semi-]numerical setting, not necessarily "symbolic", appropriate for the computer algebra packages. Modules adapted to such data may be "just libraries", but often they become specific, embedded sub-languages, typically mapped into object-oriented frameworks, with overloaded mathematical operations. Here we present a functional approach to this philosophy. We show how the usage of Haskell datatypes and - fundamental for our tutorial - the application of lazy evaluation makes it possible to operate upon such data (in particular: the "infinite" sequences in a natural and comfortable manner.

  3. Effect of the thermal evaporation rate of Al cathodes on organic light emitting diodes

    International Nuclear Information System (INIS)

    Shin, Hee Young; Suh, Min Chul

    2014-01-01

    Graphical abstract: - Highlights: • The TOF-SIMS analysis to investigate cathode diffusion during evaporation process. • Performance change of OLEDs prepared with different evaporation rate of Al cathode. • Change of electron transport behavior during thermal evaporation process. - Abstract: The relationship between the thermal evaporation rate of Al cathodes and the device performance of organic light-emitting diodes (OLEDs) was investigated to clarify the source of leakage current. Time-of-flight secondary ion mass spectrometry was applied to identify the diffusion of Li and Al fragments into the underlying organic layer during the thermal evaporation process. We prepared various OLEDs by varying the evaporation rates of the Al cathode to investigate different device performance. Interestingly, the leakage current level decreased when the evaporation rate reached ∼25 Å/s. In contrast, the best efficiency and operational lifetime was obtained when the evaporation rate was 5 Å/s

  4. Acetylene Black/Sulfur Composites Synthesized by a Solution Evaporation Concentration Crystallization Method and Their Electrochemical Properties for Li/S Batteries

    Directory of Open Access Journals (Sweden)

    Zhigao Yang

    2013-07-01

    Full Text Available A novel technique to prepare carbon/sulfur composites as cathode materials for Li/S batteries is proposed, which we call the ‘solution evaporation concentration crystallization’ method. Three composites with different S loadings were prepared, subject to two different solvent evaporation rates from acetylene black (AB/sulfur in carbon disulfide solutions. X-ray diffraction, environmental scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller measurements all show that the porous AB structure is well-filled with S. Composites prepared at a lower solvent evaporation rate with 50 wt % S content, had good electrochemical properties, with 1609.67 mAh g−1 after 100 cycles. Composites with better dispersibility at a low solvent evaporation rate can effectively prevent polysulfide from dissolving in the electrolyte, and serve to stabilize the structure of the S cathode during the charge-discharge process.

  5. Concentration of involatile salts at evaporating water surfaces

    International Nuclear Information System (INIS)

    Gardner, G.C.

    1988-02-01

    Safety cases for the PWR often need to know how much of the soluble salts in the water will evaporate with the steam during flashing and when the steam is discharged to the atmosphere. Some ideal evaporating systems to give guidance. Simple formulae are derived for the surface concentration relative to the bulk concentration. An analysis is also presented which derives a formula for the mass transfer process in the steam due to both diffusion and convection, which arises from the evaporation process. The convection process will usually dominate. (author)

  6. Indentification and structuring of data for automatic processing

    International Nuclear Information System (INIS)

    Wohland, H.; Rexer, G.; Ruehle, R.

    1976-01-01

    The data structure of a technical and scientific application system is described. The description of the structure is divided in different sections where the user can describe his own data. By fixing a section of this structure, a high degree of automation of the problem solving process can be achieved while preserving flexibility. (orig.) [de

  7. Turkish Undergraduates' Misconceptions of Evaporation, Evaporation Rate, and Vapour Pressure

    Science.gov (United States)

    Canpolat, Nurtac

    2006-01-01

    This study focused on students' misconceptions related to evaporation, evaporation rate, and vapour pressure. Open-ended diagnostic questions were used with 107 undergraduates in the Primary Science Teacher Training Department in a state university in Turkey. In addition, 14 students from that sample were interviewed to clarify their written…

  8. Morphological Evolution of Gyroid-Forming Block Copolymer Thin Films with Varying Solvent Evaporation Rate.

    Science.gov (United States)

    Wu, Yi-Hsiu; Lo, Ting-Ya; She, Ming-Shiuan; Ho, Rong-Ming

    2015-08-05

    In this study, we aim to examine the morphological evolution of block copolymer (BCP) nanostructured thin films through solvent evaporation at different rates for solvent swollen polystyrene-block-poly(l-lactide) (PS-PLLA). Interesting phase transitions from disorder to perpendicular cylinder and then gyroid can be found while using a partially selective solvent for PS to swell PS-PLLA thin film followed by solvent evaporation. During the transitions, gyroid-forming BCP thin film with characteristic crystallographic planes of (111)G, (110)G, and (211)G parallel to air surface can be observed, and will gradually transform into coexisting (110)G and (211)G planes, and finally transforms to (211)G plane due to the preferential segregation of constituted block to the surface (i.e., the thermodynamic origin for self-assembly) that affects the relative amount of each component at the air surface. With the decrease on the evaporation rate, the disorder phase will transform to parallel cylinder and then directly to (211)G without transition to perpendicular cylinder phase. Most importantly, the morphological evolution of PS-PLLA thin films is strongly dependent upon the solvent removal rate only in the initial stage of the evaporation process due to the anisotropy of cylinder structure. Once the morphology is transformed back to the isotropic gyroid structure after long evaporation, the morphological evolution will only relate to the variation of the surface composition. Similar phase transitions at the substrate can also be obtained by controlling the ratio of PLLA-OH to PS-OH homopolymers to functionalize the substrate. As a result, the fabrication of well-defined nanostructured thin films with controlled orientation can be achieved by simple swelling and deswelling with controlled evaporation rate.

  9. Out-of-tank evaporator demonstration: Tanks focus area

    International Nuclear Information System (INIS)

    1998-11-01

    Approximately 100 million gal of liquid waste is stored in underground storage tanks (UST)s at the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River Site (SRS), and Oak Ridge Reservation (ORR). This waste is radioactive with a high salt content. The US Department of Energy (DOE) wants to minimize the volume of radioactive liquid waste in USTs by removing the excess water. This procedure conserves tank space; lowers the cost of storage; and reduces the volume of wastes subsequently requiring separation, immobilization, and disposal. The Out-of-Tank Evaporator Demonstration (OTED) was initiated to test a modular, skid-mounted evaporator. A mobile evaporator system manufactured by Delta Thermal Inc. was selected. The evaporator design was routinely used in commercial applications such as concentrating metal-plating wastes for recycle and concentrating ethylene glycol solutions. In FY 1995, the skid-mounted evaporator system was procured and installed in an existing ORNL facility (Building 7877) with temporary shielding and remote controls. The evaporator system was operational in January 1996. The system operated 24 h/day and processed 22,000 gal of Melton Valley Storage Tank (MVST) supernatant. The distillate contained essentially no salts or radionuclides. Upon completion of the demonstration, the evaporator underwent decontamination testing to illustrate the feasibility of hands-on maintenance and potential transport to another DOE facility. This report describes the process and the evaporator, its performance at ORNL, future plans, applications of this technology, cost estimates, regulatory and policy considerations, and lessons learned

  10. Microstructure and mechanical properties of biodegradable poly (D/L) lactic acid/polycaprolactone blends processed from the solvent-evaporation technique.

    Science.gov (United States)

    Esmaeilzadeh, Javad; Hesaraki, Saeed; Hadavi, Seyed Mohammad-Mehdi; Esfandeh, Masoud; Ebrahimzadeh, Mohammad Hosein

    2017-02-01

    In this study, polymer blends comprising poly(D/L) lactic acid (PDLLA) and 0-30wt% polycaprolactone (PCL) was prepared by a solvent-evaporation technique. The effect of PCL content on the dynamic-mechanical properties and tensile and flexural characteristics of the blends was evaluated. The creep and stress relaxation behaviors were also determined and using various known models such as power law, Burgers model and Weibull distribution equation. The results showed that by increasing the PCL content from 10 to 30wt%, the yield stress and flexural strength decreased from 47MPa to 26MPa and 72MPa to 29MPa respectively. In addition to tensile and flexural strength, the elastic modulus of neat PDLLA declined with increasing the PCL content, whereas the elongation or the strain percentage at the break point increased considerably. Biphasic regions were observed in the microstructures of the blends, indicating the immiscibility of PCL in PDLLA matrix. However, the PCL spherulites with an average particle diameter of 100nm to 5μm were homogeneously dispersed in PDLLA phase even at high PCL concentrations. Moreover, the microstructures of the fractured surfaces of the polymers confirmed that PDLLA with a brittle fracture behavior tends toward a soft fracture behavior when it is blended with PCL. The dynamic-mechanical tests indicated that the damping energy and dissipative ability of PDLLA improve by adding PCL. Moreover, T g of neat PDLLA by adding of 10, 20 and 30wt% decreases from 67.3 to 66.2, 65.1 and 63.5°C respectively. Increasing in the recovered viscoelastic strain due to the addition of PCL was also experienced which can be attributed to the presence of large volumetric backbone of PCL chains as well as easy movement of them in the matrix. The results of modeling studies showed a good correlation between the experimentally obtained data. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Situational Script Management of Business Processes with Changeable Structure

    OpenAIRE

    Chaliy, Sergey; Chala, Oksana

    2008-01-01

    In the presented work the problem of management business-processes with changeable structure is considered and situational based approach to its decision is offered. The approach is based on situational model of management business-process according to which process is represented as a set of situations. The script defining necessary actions is connected with each situation. Management of process is carried out by means of the rules formalizing functional requirements to processes.

  12. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    Science.gov (United States)

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  13. Non-equilibrium quasiparticle processes in superconductor tunneling structures

    International Nuclear Information System (INIS)

    Perold, W.J.

    1990-01-01

    A broad overview is presented of the phenomenon of superconductivity. The tunneling of quasiparticles in superconducter-insulator structures is described. Related non-equilibrium processes, such as superconductor bandgap suppresion, quasiparticle diffusion and recombination, and excess quasiparticle collection are discussed. The processes are illustrated with numerical computer simulation data. The importance of the inter-relationship between these processes in practical multiple tunneling junction superconducting device structures is also emphasized. 14 refs., 8 figs

  14. Ground cover influence on evaporation and stable water isotopes in soil water

    Science.gov (United States)

    Magdalena Warter, Maria; Jiménez-Rodríguez, Cesar D.; Coenders-Gerrits, Miriam; Teuling, Adriaan J. Ryan

    2017-04-01

    Forest ecosystems are characterized by complex structures which influence hydrological processes such as evaporation. The vertical stratification of the forest modifies the effect of the evaporation process due to the composition and local distribution of species within the forest. The evaluation of it will improve the understanding of evaporation in forest ecosystems. To determine the influence of forest understory on the fractionation front, four ground cover types were selected from the Speulderbos forest in the Netherlands. The native species of Thamariskmoss (Thuidium thamariscinum), Rough Stalked Feathermoss (Brachythecium rutabulum), and Haircapmoss (Polytrichum commune) as well as one type of litter made up of Douglas-Fir needles (Pseudotsuga menziesii) were used to analyse the rate of evaporation and changes on the isotopic concentration of the soil water on an in-situ basis in a controlled environment. Over a period of 4 weeks soil water content and atmospheric conditions were continuously measured, while the rainfall simulations were performed with different amounts and timings. The reference water added to the boxes keeps a stable composition along the trial period with a δ ^2H value of -42.59±1.15 \\permil} and δ 18O of -6.01±0.21 \\permil}. The evaporation front in the four ground covers is located between 5 and 10 cm depth and deuterium excess values are bigger than 5 \\permil. The litter layer of Douglas-Fir needles is the cover with higher fractionation in respect to the added water at 10 cm depth (δ ^2H: -29.79 \\permil), while the Haircapmoss keeps the lower fractionation rate at 5 cm and 10 cm (δ ^2H: -33.62 and δ ^2H: -35.34 \\permil). The differences showed by the soil water beneath the different ground covers depict the influence of ground cover on fractionation rates of the soil water, underlining the importance of the spatial heterogeneity of the evaporation front in the first 15 cm of soil.

  15. Delisting strategy for the Hanford Site 242-A Evaporator PUREX Plant Condensate Treatment Facility

    International Nuclear Information System (INIS)

    1992-04-01

    This document describes the strategy that the US Department of Energy, Richland Field Office intends to use in preparing the delisting petition for the 242-A Evaporator/PUREX Plant Condensate Treatment Facility. Because the 242-A Evaporator/PUREX Plant Condensate Treatment Facility will not be operational until 1994, the delisting petition will be structured as an up-front petition based on the ''multiple waste treatment facility'' approach outline in the 1985 US Environmental Protection Agency's Petitions to Delist Hazardous Waste. The 242-A evaporator/PUREX Plant Condensate Treatment Facility effluent characterization data will not be available to support the delisting petition, because the delisting petition will be submitted to the US Environmental Protection Agency before start-up of the 242-A Evaporator/PUREX Plant Condensate Treatment Facility. Therefore, the delisting petition will be based on data collected during the pilot plant testing for the 242-A Evaporator/PUREX Plant Condensate Treatment Facility. This pilot plant testing will be conducted on synthetic waste. The composition of the synthetic waste will be based on: (1) constituents of regulatory concern, and (2) on process knowledge. The pilot plant testing will be performed to determine the removal efficiencies of the process equipment at concentrations greater than reasonably could be expected in the actual waste. This strategy document also describes the logic used to develop the synthetic waste, to develop the pilot plant testing program, and to prepare the delisting petition. This strategy document also described how full-scale operating data will be collected during initial operation of the 242-A Evaporator/PUREX Plant Condensate Treatment Facility to verify information presented in the delisting petition

  16. Evaporative Lithography in Open Microfluidic Channel Networks

    KAUST Repository

    Lone, Saifullah

    2017-02-24

    We demonstrate a direct capillary-driven method based on wetting and evaporation of various suspensions to fabricate regular two-dimensional wires in an open microfluidic channel through continuous deposition of micro- or nanoparticles under evaporative lithography, akin to the coffee-ring effect. The suspension is gently placed in a loading reservoir connected to the main open microchannel groove on a PDMS substrate. Hydrophilic conditions ensure rapid spreading of the suspension from the loading reservoir to fill the entire channel length. Evaporation during the spreading and after the channel is full increases the particle concentration toward the end of the channel. This evaporation-induced convective transport brings particles from the loading reservoir toward the channel end where this flow deposits a continuous multilayered particle structure. The particle deposition front propagates backward over the entire channel length. The final dry deposit of the particles is thereby much thicker than the initial volume fraction of the suspension. The deposition depth is characterized using a 3D imaging profiler, whereas the deposition topography is revealed using a scanning electron microscope. The patterning technology described here is robust and passive and hence operates without an external field. This work may well become a launching pad to construct low-cost and large-scale thin optoelectronic films with variable thicknesses and interspacing distances.

  17. Cognitive Structures in Vocational Information Processing and Decision Making.

    Science.gov (United States)

    Nevill, Dorothy D.; And Others

    1986-01-01

    Tested the assumptions that the structural features of vocational schemas affect vocational information processing and career self-efficacy. Results indicated that effective vocational information processing was facilitated by well-integrated systems that processed information along fewer dimensions. The importance of schematic organization on the…

  18. Linking Neural and Symbolic Representation and Processing of Conceptual Structures

    Directory of Open Access Journals (Sweden)

    Frank van der Velde

    2017-08-01

    Full Text Available We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like structures. First is the Neural Blackboard Architecture (NBA, which aims to account for representation and processing of complex and combinatorial conceptual structures in the brain. Second is IDyOT (Information Dynamics of Thinking, which derives sentence-like structures by learning statistical sequential regularities over a suitable corpus. Although IDyOT is designed at a level more abstract than the neural, so it is a model of cognitive function, rather than neural processing, there are strong similarities between the composite structures developed in IDyOT and the NBA. We hypothesize that these similarities form the basis of a combined architecture in which the individual strengths of each architecture are integrated. We outline and discuss the characteristics of this combined architecture, emphasizing the representation and processing of conceptual structures.

  19. Evaporation of Particle-Stabilized Emulsion Sunscreen Films.

    Science.gov (United States)

    Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-08-24

    We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here.

  20. Flows of a Vapor due to Phase Change Processes at the Condensed Phases with Temperature Fields as their Internal Structures

    National Research Council Canada - National Science Library

    Onishi, Yoshimoto; Ooshida, Takeshi

    2005-01-01

    Transient to steady motions of a vapor caused by the evaporation and condensation processes occurring at the condensed phases placed in parallel have been studied based on the Boltzmann equation of BGK type...

  1. Evaporation and skin penetration characteristics of mosquito repellent formulations

    International Nuclear Information System (INIS)

    Reifenrath, W.G.; Hawkins, G.S.; Kurtz, M.S.

    1989-01-01

    Formulations of the mosquito repellent N,N-diethyl-3-methylbenzamide (deet) in combination with a variety of additives were developed to control repellent evaporation and percutaneous penetration. Deet was also formulated with the repellent dimethyl phthalate to study the interaction of the two compounds on the skin. The evaporation and penetration processes were evaluated on whole and split-thickness pig skin using radiolabeled repellents with an in vitro apparatus. Under essentially still air and air flow conditions, one of the deet formulations resulted in significantly reduced total evaporation and percutaneous penetration of deet as compared to unformulated repellent. When deet and dimethyl phthalate were combined, neither repellent affected the total amount of evaporation and penetration of the other compound. However, initial percutaneous penetration and evaporation rates were slightly less and decayed less rapidly than when both chemicals were tested separately at the same dose. These results indicated a degree of competition of the two compounds for the same avenues of loss

  2. Falling film evaporators: organic solvent regeneration in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Garcin, I.

    1989-01-01

    The aim of this work was to improve knowledge about working of falling film evaporators used in nuclear fuel reprocessing plants for organic solvent regeneration. The first part deals with a non evaporation film. An original film thickness measuring technique was used; infrared thermography. It gave indications on hydrodynamics and wave amplitude and pointed out thermocapillary forces to be the cause of bad wetting of the heated wall. By another way we showed that a small slit spacing on the film distributor, an enhanced surface roughness and an important liquid flow rate favour a better wetting. The second part deals with evaporation of a binary solvent mixture. Experiments in an industrial evaporator corroborated the fact that it is essential for the efficiency of the apparatus to work at high flow rates. We propose an over-simple model which can be used to estimate performances of co-current falling film evaporators of the process [fr

  3. Magnitude and variability of land evaporation and its components at the global scale

    NARCIS (Netherlands)

    Miralles, D.G.; de Jeu, R.A.M.; Gash, J.H.C.; Holmes, T.R.H.; Dolman, A.J.

    2011-01-01

    A process-based methodology is applied to estimate land-surface evaporation from multi-satellite information. GLEAM (Global Land-surface Evaporation: the Amsterdam Methodology) combines a wide range of remotely-sensed observations to derive daily actual evaporation and its different components. Soil

  4. 242-A evaporator dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-01-01

    The 242-A Evaporator is a waste management unit within the Hanford Facility that consists of process vessels and support systems for heating, evaporating, and condensing double-shell tank (DST) waste generated by Hanford Site operations. Operation of the 242-A Evaporator serves to reduce the volume of waste solutions within the DSTs that do not self-boil, while separating inorganic and radionuclide constituents from organic constituents. This operation reduces the number of underground DSTs required for waste storage and also makes the mixed waste more suitable for future treatment and disposal (i.e., grouting and vitrification). The 242-A Evaporator receives mixed-waste streams from the DSTs that contain organic and inorganic constituents and radionuclides. The waste is a dangerous waste (DW) because of corrosivity, reactivity, and toxicity characteristics, and is an extremely hazardous waste (EHW) as a result of toxicity (state criteria only), carcinogenicity, and persistence under the state mixture rule. The waste also contains spent nonhalogenated solvents

  5. Modelling the evaporation of thin films of colloidal suspensions using dynamical density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, M J; Archer, A J; Thiele, U [Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2011-10-19

    Recent experiments have shown that various structures may be formed during the evaporative dewetting of thin films of colloidal suspensions. Nanoparticle deposits of strongly branched 'flower-like', labyrinthine and network structures are observed. They are caused by the different transport processes and the rich phase behaviour of the system. We develop a model for the system, based on a dynamical density functional theory, which reproduces these structures. The model is employed to determine the influences of the solvent evaporation and of the diffusion of the colloidal particles and of the liquid over the surface. Finally, we investigate the conditions needed for 'liquid-particle' phase separation to occur and discuss its effect on the self-organized nanostructures. (paper)

  6. Modeling Coupled Evaporation and Seepage in Ventilated Cavities

    International Nuclear Information System (INIS)

    Ghezzehei, T.; Trautz, R.; Finsterle, S.; Cook, P.; Ahlers, C.

    2004-01-01

    Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small

  7. A review on laser diagnostics on atomization and evaporation of liquid fuel

    Science.gov (United States)

    Zhang, Yuyin; Li, Shiyan; Lin, Baiyang; Liu, Yang; Wu, Jian; Xu, Bin

    2014-08-01

    To evaluate the atomization and evaporation processes of liquid fuel, there are several laser diagnostics available in present. In this paper, the recent progress in laser diagnostics for atomization and evaporation will be introduced, as two categories: atomization and evaporation. The diagnostics for the former includes the primary breakup from liquid jet to ligaments or droplets and the secondary atomization from a bigger droplet to a smaller one, and the latter includes the droplet evaporation and the vapor distributions in a spray.

  8. Influence of solvent evaporation rate on crystallization of poly ...

    Indian Academy of Sciences (India)

    the crystallization process. The in-situ substrate temperature is manipulated to control the rate of evaporation of. 2-butanone ..... Thickness measurement using AFM technique. A sec- .... Central Instrumentation Facility (CIF) at Pondicherry Uni-.

  9. Evaporative cooling: Effective latent heat of evaporation in relation to evaporation distance from the skin

    NARCIS (Netherlands)

    Havenith, G.; Bröde, P.; Hartog, E.A. den; Kuklane, K.; Holmer, I.; Rossi, R.M.; Richards, M.; Farnworth, B.; Wang, X.

    2013-01-01

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has

  10. Novel cost controlled materials and processing for primary structures

    Science.gov (United States)

    Dastin, S. J.

    1993-01-01

    Textile laminates, developed a number of years ago, have recently been shown to be applicable to primary aircraft structures for both small and large components. Such structures have the potential to reduce acquisition costs but require advanced automated processing to keep costs controlled while verifying product reliability and assuring structural integrity, durability and affordable life-cycle costs. Recently, resin systems and graphite-reinforced woven shapes have been developed that have the potential for improved RTM processes for aircraft structures. Ciba-Geigy, Brochier Division has registered an RTM prepreg reinforcement called 'Injectex' that has shown effectivity for aircraft components. Other novel approaches discussed are thermotropic resins producing components by injection molding and ceramic polymers for long-duration hot structures. The potential of such materials and processing will be reviewed along with initial information/data available to date.

  11. Structure, health benefits, antioxidant property and processing and ...

    African Journals Online (AJOL)

    Structure, health benefits, antioxidant property and processing and storage of carotenoids. ... It is sensitive to heat, light and oxygen. Enzymatic ... Thermal treatment and freezing increases the extractability of b-carotene from the food matrices.

  12. Structural design considerations for a radwaste processing facility

    International Nuclear Information System (INIS)

    Foelber, S.C.; Sabbe, M.A.

    1985-01-01

    The structural engineer needs to consider several criteria when designing a radioactive-waste processing facility in order to properly balance the requirements of safety and economy. This paper addresses the design criteria and structural design of a vitrification building and the special equipment and supports associated with remote process operations. In addition, approaches to construction, and the role of scale models to aid in engineering design and construction are discussed. 5 figures

  13. Bureaucratic Structure, Organizational Processes, and Three Dimensions of School Effectiveness.

    Science.gov (United States)

    Miskel, Cecil; And Others

    The purpose of this study was to test the hypotheses that schools with more participative processes and less structure have higher levels of perceived organizational effectiveness, teacher job satisfaction, and student achievement than schools with less participative climates and more structure. A sample of 114 school units and 1,632 teachers…

  14. Spin structure of nucleon in QCD: inclusive and exclusive processes

    International Nuclear Information System (INIS)

    Teryaev, O.V.

    2001-01-01

    There are two basically independent ways to describe the nucleon spin structure. One is related to quark and gluon spins and another one to their total angular momenta. The latter spin structure may be studied, in principle, in hard exclusive processes

  15. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    International Nuclear Information System (INIS)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R.M.

    2015-01-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence

  16. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Bloisi, Francesco, E-mail: bloisi@na.infn.it [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy); Calabria, Raffaela; Califano, Valeria [Istituto Motori – CNR, Naples (Italy); Depero, Laura E. [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Federici, Stefania [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Massoli, Patrizio [Istituto Motori – CNR, Naples (Italy); Vicari, Luciano R.M. [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy)

    2015-05-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  17. Water Evaporation and Conformational Changes from Partially Solvated Ubiquitin

    Directory of Open Access Journals (Sweden)

    Saravana Prakash Thirumuruganandham

    2010-01-01

    Full Text Available Using molecular dynamics simulation, we study the evaporation of water molecules off partially solvated ubiquitin. The evaporation and cooling rates are determined for a molecule at the initial temperature of 300 K. The cooling rate is found to be around 3 K/ns, and decreases with water temperature in the course of the evaporation. The conformation changes are monitored by studying a variety of intermediate partially solvated ubiquitin structures. We find that ubiquitin shrinks with decreasing hydration shell and exposes more of its hydrophilic surface area to the surrounding.

  18. Structure Characterization of Honey-Processed Astragalus Polysaccharides and Its Anti-Inflammatory Activity In Vitro

    Directory of Open Access Journals (Sweden)

    Jingzhu Liao

    2018-01-01

    Full Text Available Honey-processed Astragalus is a dosage form of Radix Astragalus mixed with honey by a traditional Chinese medicine processing method which strengthens the tonic effect. Astragalus polysaccharide (APS, perform its immunomodulatory effects by relying on the tonic effect of Radix Astragalus, therefore, the improved pharmacological activity of honey-processed Astragalus polysaccharide (HAPS might be due to structural changes during processing. The molecular weights of HAPS and APS were 1,695,788 Da, 2,047,756 Da, respectively, as determined by high performance gel filtration chromatography combined with evaporative light scattering detection (HPGFC-ELSD. The monosaccharide composition was determined by ultra-performance liquid chromatogram quadrupole time-of-flight mass spectrometry (UPLC/ESI-Q-TOF-MS after pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone (PMP. The results showed that the essential components were mannose, glucose, xylose, arabinose, glucuronic acid and rhamnose, is molar ratios of 0.06:28.34:0.58:0.24:0.33:0.21 and 0.27:12.83:1.63:0.71:1.04:0.56, respectively. FT-IR and NMR analysis of HAPS results showed the presence of uronic acid and acetyl groups. The anti-inflammatory activities of HAPS were more effective than those of APS according to the NO contents and the expression of IFN-γ, IL-1β, IL-22 and TNF-α in lipopolysaccharide (LPS-induced RAW264.7 cells. This findings suggest that the anti-inflammatory and bioactivity improvement might be associated with molecular structure changes, bearing on the potential immunomodulatory action.

  19. Structure Characterization of Honey-Processed Astragalus Polysaccharides and Its Anti-Inflammatory Activity In Vitro.

    Science.gov (United States)

    Liao, Jingzhu; Li, Chanyi; Huang, Jing; Liu, Wuping; Chen, Hongce; Liao, Shuangye; Chen, Hongyuan; Rui, Wen

    2018-01-15

    Honey-processed Astragalus is a dosage form of Radix Astragalus mixed with honey by a traditional Chinese medicine processing method which strengthens the tonic effect. Astragalus polysaccharide (APS), perform its immunomodulatory effects by relying on the tonic effect of Radix Astragalus , therefore, the improved pharmacological activity of honey-processed Astragalus polysaccharide (HAPS) might be due to structural changes during processing. The molecular weights of HAPS and APS were 1,695,788 Da, 2,047,756 Da, respectively, as determined by high performance gel filtration chromatography combined with evaporative light scattering detection (HPGFC-ELSD). The monosaccharide composition was determined by ultra-performance liquid chromatogram quadrupole time-of-flight mass spectrometry (UPLC/ESI-Q-TOF-MS) after pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone (PMP). The results showed that the essential components were mannose, glucose, xylose, arabinose, glucuronic acid and rhamnose, is molar ratios of 0.06:28.34:0.58:0.24:0.33:0.21 and 0.27:12.83:1.63:0.71:1.04:0.56, respectively. FT-IR and NMR analysis of HAPS results showed the presence of uronic acid and acetyl groups. The anti-inflammatory activities of HAPS were more effective than those of APS according to the NO contents and the expression of IFN-γ, IL-1β, IL-22 and TNF-α in lipopolysaccharide (LPS)-induced RAW264.7 cells. This findings suggest that the anti-inflammatory and bioactivity improvement might be associated with molecular structure changes, bearing on the potential immunomodulatory action.

  20. Hydrothermal waves in evaporating sessile drops

    OpenAIRE

    Brutin, D.; Rigollet, F.; Niliot, C. Le

    2009-01-01

    Drop evaporation is a simple phenomena but still unclear concerning the mechanisms of evaporation. A common agreement of the scientific community based on experimental and numerical work evidences that most of the evaporation occurs at the triple line. However, the rate of evaporation is still empirically predicted due to the lack of knowledge on the convection cells which develop inside the drop under evaporation. The evaporation of sessile drop is more complicated than it appears due to the...

  1. Modelling water evaporation during frying with an evaporation dependent heat transfer coefficient

    NARCIS (Netherlands)

    Koerten, van K.N.; Somsen, D.; Boom, R.M.; Schutyser, M.A.I.

    2017-01-01

    In this study a cylindrical crust-core frying model was developed including an evaporation rate dependent heat transfer coefficient. For this, we applied a Nusselt relation for cylindrical bodies and view the release of vapour bubbles during the frying process as a reversed fluidised bed. The

  2. The Savannah River Site Replacement High Level Radioactive Waste Evaporator Project

    International Nuclear Information System (INIS)

    Presgrove, S.B.

    1992-01-01

    The Replacement High Level Waste Evaporator Project was conceived in 1985 to reduce the volume of the high level radioactive waste Process of the high level waste has been accomplished up to this time using Bent Tube type evaporators and therefore, that type evaporator was selected for this project. The Title I Design of the project was 70% completed in late 1990. The Department of Energy at that time hired an independent consulting firm to perform a complete review of the project. The DOE placed a STOP ORDER on purchasing the evaporator in January 1991. Essentially, no construction was to be done on this project until all findings and concerns dealing with the type and design of the evaporator are resolved. This report addresses two aspects of the DOE design review; (1) Comparing the Bent Tube Evaporator with the Forced Circulation Evaporator, (2) The design portion of the DOE Project Review - concentrated on the mechanical design properties of the evaporator. 1 ref

  3. Retrieving latent heating vertical structure from cloud and precipitation profiles—Part II: Deep convective and stratiform rain processes

    International Nuclear Information System (INIS)

    Li, Rui; Min, Qilong; Wu, Xiaoqing; Fu, Yunfei

    2013-01-01

    An exploratory study on physical based latent heat (LH) retrieval algorithm is conducted by parameterizing the physical linkages between observed cloud and precipitation profiles to the major processes of phase change of atmospheric water. Specifically, rain is segregated into three rain types: warm, convective, and stratiform rain, based on their dynamical and thermodynamical characteristics. As the second of series, both convective and stratiform rain LH algorithms are presented and evaluated here. For convective and stratiform rain, the major LH-related microphysical processes including condensation, deposition, evaporation, sublimation, and freezing–melting are parameterized with the aid of Cloud Resolving Model (CRM) simulations. The condensation and deposition processes are parameterized in terms of rain formation processes through the precipitation formation theory. LH associated with the freezing–melting process is relatively small and is assumed to be a fraction of total condensation and deposition LH. The evaporation and sublimation processes are parameterized for three unsaturated scenarios: rain out of the cloud body, clouds at cloud boundary and clouds and rain in downdraft region. The evaluation or self-consistency test indicates the retrievals capture the major features of LH profiles and reproduce the double peaks at right altitudes. The LH products are applicable at various stages of cloud system life cycle for high-resolution models, as well as for large-scale climate models. -- Highlights: ► An exploratory study on physics-based cold rain latent heat retrieval algorithm. ► Utilize the full information of the vertical structures of cloud and rainfall. ► Include all major LH-related microphysical processes (in ice and liquid phase). ► Directly link water mass measurements to latent heat at instantaneous pixel level. ► Applicable at various stages of cloud system life cycle

  4. Introducing ultrasonic falling film evaporator for moderate temperature evaporation enhancement.

    Science.gov (United States)

    Dehbani, Maryam; Rahimi, Masoud

    2018-04-01

    In the present study, Ultrasonic Falling Film (USFF), as a novel technique has been proposed to increase the evaporation rate of moderate temperature liquid film. It is a proper method for some applications which cannot be performed at high temperature, such as foodstuff industry, due to their sensitivity to high temperatures. Evaporation rate of sodium chloride solution from an USFF on an inclined flat plate compared to that for Falling Film without ultrasonic irradiation (FF) at various temperatures was investigated. The results revealed that produced cavitation bubbles have different effects on evaporation rate at different temperatures. At lower temperatures, size fluctuation and collapse of bubbles and in consequence induced physical effects of cavitation bubbles resulted in more turbulency and evaporation rate enhancement. At higher temperatures, the behavior was different. Numerous created bubbles joined together and cover the plate surface, so not only decreased the ultrasound vibrations but also reduced the evaporation rate in comparison with FF. The highest evaporation rate enhancement of 353% was obtained at 40 °C at the lowest Reynolds number of 250. In addition, the results reveal that at temperature of 40 °C, USFF has the highest efficiency compared to FF. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Parametric study of thin film evaporation from nanoporous membranes

    Science.gov (United States)

    Wilke, Kyle L.; Barabadi, Banafsheh; Lu, Zhengmao; Zhang, TieJun; Wang, Evelyn N.

    2017-10-01

    The performance and lifetime of advanced electronics are often dictated by the ability to dissipate heat generated within the device. Thin film evaporation from nanoporous membranes is a promising thermal management approach, which reduces the thermal transport distance across the liquid film while also providing passive capillary pumping of liquid to the evaporating interface. In this work, we investigated the dependence of thin film evaporation from nanoporous membranes on a variety of geometric parameters. Anodic aluminum oxide membranes were used as experimental templates, where pore radii of 28-75 nm, porosities of 0.1-0.35, and meniscus locations down to 1 μm within the pore were tested. We demonstrated different heat transfer regimes and observed more than an order of magnitude increase in dissipated heat flux by operating in the pore-level evaporation regime. The pore diameter had little effect on pore-level evaporation performance due to the negligible conduction resistance from the pore wall to the evaporating interface. The dissipated heat flux scaled with porosity as the evaporative area increased. Furthermore, moving the meniscus as little as 1 μm into the pore decreased the dissipated heat flux by more than a factor of two due to the added resistance to vapor escaping the pore. The experimental results elucidate thin film evaporation from nanopores and confirm findings of recent modeling efforts. This work also provides guidance for the design of future thin film evaporation devices for advanced thermal management. Furthermore, evaporation from nanopores is relevant to water purification, chemical separations, microfluidics, and natural processes such as transpiration.

  6. Structural properties of reflected Lévy processes

    DEFF Research Database (Denmark)

    Andersen, Lars Nørvang; Mandjes, Michel

    This paper considers a number of structural properties of reflected Lévy processes, where both one-sided reflection (at 0) and two-sided reflection (at both 0 and K > 0) are examined. With Vt being the position of the reflected process at time t, we focus on the analysis of ζ(t) := EVt and ξ(t) :...

  7. Marangoni Flow Induced Evaporation Enhancement on Binary Sessile Drops.

    Science.gov (United States)

    Chen, Pin; Harmand, Souad; Ouenzerfi, Safouene; Schiffler, Jesse

    2017-06-15

    The evaporation processes of pure water, pure 1-butanol, and 5% 1-butanol aqueous solution drops on heated hydrophobic substrates are investigated to determine the effect of temperature on the drop evaporation behavior. The evolution of the parameters (contact angle, diameter, and volume) during evaporation measured using a drop shape analyzer and the infrared thermal mapping of the drop surface recorded by an infrared camera were used in investigating the evaporation process. The pure 1-butanol drop does not show any thermal instability at different substrate temperatures, while the convection cells created by the thermal Marangoni effect appear on the surface of the pure water drop from 50 °C. Because 1-butanol and water have different surface tensions, the infrared video of the 5% 1-butanol aqueous solution drop shows that the convection cells are generated by the solutal Marangoni effect at any substrate temperature. Furthermore, when the substrate temperature exceeds 50 °C, coexistence of the thermal and solutal Marangoni flows is observed. By analyzing the relation between the ratio of the evaporation rate of pure water and 1-butanol aqueous solution drops and the Marangoni number, a series of empirical equations for predicting the evaporation rates of pure water and 1-butanol aqueous solution drops at the initial time as well as the equations for the evaporation rate of 1-butanol aqueous solution drop before the depletion of alcohol are derived. The results of these equations correspond fairly well to the experimental data.

  8. Strategic Planning Process and Organizational Structure: Impacts, Confluence and Similarities

    Directory of Open Access Journals (Sweden)

    Dyogo Felype Neis

    2017-01-01

    Full Text Available This article aims to analyze the relationship between the strategic planning process and organizational structure in the reality of a complex organization: the Public Prosecutor’s Office of Santa Catarina (MPSC. The research is set by the single case study research strategy and data were collected through the following instruments: bibliographical research, documentary research, semi-structured interviews and systematic observation. The conclusion indicates that the phases of the strategic planning process influence and are influenced by the elements of the organizational structure and highlights the confluences, the impacts and similarities between the stages of formulation and implementation of the strategic process with the various constituent elements of the organizational structure.

  9. 1998 242-A interim evaporator tank system integrity assessment plan

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.E.

    1998-03-31

    Portions of the 242-A Evaporator on the Hanford Site must be assessed to meet the requirements of the Washington State Department of Ecology`s Dangerous Waste Regulation, Washington Administrative Code (WAC) 173-303. The assessment is limited to the provisions of Section 173-303-640. This Integrity Assessment Plan (IAP) identifies tasks which will be performed during the assessment phase and describes the intended assessment techniques. The 242-A Evaporator facility processes waste solutions from most of the operating laboratories and plants of the Hanford Site. The waste solutions are concentrated in the evaporator to a slurry of liquid and crystallized salts. This concentrated slurry is returned to the Tank Farms at a significantly reduce volume. The water vapor from the evaporation process is condensed, filtered, and can be pumped through an ion exchange bed before transfer to a retention basin. The non-condensable portion of the vapor is filtered and continuously monitored before venting to the atmosphere. The 242-A Evaporator will be assessed as seven subsystems. Four of the subsystems store, transport or treat Washington State Dangerous wastes, the other three subsystems are integral parts of the process, however, they do not directly store, transfer, or treat listed dangerous wastes. The facility will be inspected, tested, and analyzed through this assessment. The seven subsystems, defined in detail in Appendix B, are: Evaporator Process and Slurry Subsystem; Vapor Condenser Subsystem; Vessel Vent Subsystem; Process Condensate Subsystem; Steam Condensate Subsystem; Raw Water Disposal Subsystem; and Building and Secondary Containment Subsystem.

  10. 1998 242-A interim evaporator tank system integrity assessment plan

    International Nuclear Information System (INIS)

    Jensen, C.E.

    1998-01-01

    Portions of the 242-A Evaporator on the Hanford Site must be assessed to meet the requirements of the Washington State Department of Ecology's Dangerous Waste Regulation, Washington Administrative Code (WAC) 173-303. The assessment is limited to the provisions of Section 173-303-640. This Integrity Assessment Plan (IAP) identifies tasks which will be performed during the assessment phase and describes the intended assessment techniques. The 242-A Evaporator facility processes waste solutions from most of the operating laboratories and plants of the Hanford Site. The waste solutions are concentrated in the evaporator to a slurry of liquid and crystallized salts. This concentrated slurry is returned to the Tank Farms at a significantly reduce volume. The water vapor from the evaporation process is condensed, filtered, and can be pumped through an ion exchange bed before transfer to a retention basin. The non-condensable portion of the vapor is filtered and continuously monitored before venting to the atmosphere. The 242-A Evaporator will be assessed as seven subsystems. Four of the subsystems store, transport or treat Washington State Dangerous wastes, the other three subsystems are integral parts of the process, however, they do not directly store, transfer, or treat listed dangerous wastes. The facility will be inspected, tested, and analyzed through this assessment. The seven subsystems, defined in detail in Appendix B, are: Evaporator Process and Slurry Subsystem; Vapor Condenser Subsystem; Vessel Vent Subsystem; Process Condensate Subsystem; Steam Condensate Subsystem; Raw Water Disposal Subsystem; and Building and Secondary Containment Subsystem

  11. Application of a Mechanistic Model as a Tool for On-line Monitoring of Pilot Scale Filamentous Fungal Fermentation Processes - The Importance of Evaporation Effects

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albæk, Mads Orla

    2017-01-01

    A mechanistic model-based soft sensor is developed and validated for 550L filamentous fungus fermentations operated at Novozymes A/S. The soft sensor is comprised of a parameter estimation block based on a stoichiometric balance, coupled to a dynamic process model. The on-line parameter estimation...... a historical dataset of eleven batches from the fermentation pilot plant (550L) at Novozymes A/S. The model is then implemented on-line in 550L fermentation processes operated at Novozymes A/S in order to validate the state estimator model on fourteen new batches utilizing a new strain. The product...... block models the changing rates of formation of product, biomass, and water, and the rate of consumption of feed using standard, available on-line measurements. This parameter estimation block, is coupled to a mechanistic process model, which solves the current states of biomass, product, substrate...

  12. Thin film circuits for future applications. Pt. 2. Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Haug, G; Houska, K H; Schmidt, H J; Sprengel, H P; Wohak, K

    1976-06-01

    Investigations of thin film diffusion processes and reactions with encapsulation materials resulted in improved long term stability of evaporated NiCr resistors, SiO capacitors and NiCr/Au conductors for thin film circuits. Stable NiCr resistor networks can be formed on ceramic substrates, and SiO capacitors of good quality can be deposited on the new very smooth ceramic substrates. The knowledge of the influence of evaporation parameters make the production of SiO capacitors with definite properties and good reproducibility possible. The range of capacitance of tantalum thin film circuits can be extended by integration with evaporated SiO capacitors.

  13. Evaporation Kinetics in Short-Chain Alcohols by Optical Interference

    Science.gov (United States)

    Rosbrugh, Ian M.; Nishimura, S. Y.; Nishimura, A. M.

    2000-08-01

    The evaporation rates of volatile organic liquids may be determined through the observation of optical interference of spatially coincident light that is reflected from the top (air-liquid) and bottom (liquid-surface) of a liquid drop on a glass surface. As an example of what is possible with this technique, the evaporation for a series of short-chain alcohols and acetone was investigated. For 1-propanol, 2-propanol, 2-methyl-1-propanol, and acetone, the kinetics of evaporation was determined to be zero order. For methanol and ethanol, the process was significantly higher than zero order.

  14. Modelling and estimating degradation processes with application in structural reliability

    International Nuclear Information System (INIS)

    Chiquet, J.

    2007-06-01

    The characteristic level of degradation of a given structure is modeled through a stochastic process called the degradation process. The random evolution of the degradation process is governed by a differential system with Markovian environment. We put the associated reliability framework by considering the failure of the structure once the degradation process reaches a critical threshold. A closed form solution of the reliability function is obtained thanks to Markov renewal theory. Then, we build an estimation methodology for the parameters of the stochastic processes involved. The estimation methods and the theoretical results, as well as the associated numerical algorithms, are validated on simulated data sets. Our method is applied to the modelling of a real degradation mechanism, known as crack growth, for which an experimental data set is considered. (authors)

  15. Investigation of Relationship Between Hydrologic Processes of Precipitation, Evaporation and Stream Flow Using Linear Time Series Models (Case study: Western Basins of Lake Urmia)

    OpenAIRE

    M. Moravej; K. Khalili; J. Behmanesh

    2016-01-01

    Introduction: Studying the hydrological cycle, especially in large scales such as water catchments, is difficult and complicated despite the fact that the numbers of hydrological components are limited. This complexity rises from complex interactions between hydrological components and environment. Recognition, determination and modeling of all interactive processes are needed to address this issue, but it's not feasible for dealing with practical engineering problems. So, it is more convenie...

  16. ACToR Chemical Structure processing using Open Source ...

    Science.gov (United States)

    ACToR (Aggregated Computational Toxicology Resource) is a centralized database repository developed by the National Center for Computational Toxicology (NCCT) at the U.S. Environmental Protection Agency (EPA). Free and open source tools were used to compile toxicity data from over 1,950 public sources. ACToR contains chemical structure information and toxicological data for over 558,000 unique chemicals. The database primarily includes data from NCCT research programs, in vivo toxicity data from ToxRef, human exposure data from ExpoCast, high-throughput screening data from ToxCast and high quality chemical structure information from the EPA DSSTox program. The DSSTox database is a chemical structure inventory for the NCCT programs and currently has about 16,000 unique structures. Included are also data from PubChem, ChemSpider, USDA, FDA, NIH and several other public data sources. ACToR has been a resource to various international and national research groups. Most of our recent efforts on ACToR are focused on improving the structural identifiers and Physico-Chemical properties of the chemicals in the database. Organizing this huge collection of data and improving the chemical structure quality of the database has posed some major challenges. Workflows have been developed to process structures, calculate chemical properties and identify relationships between CAS numbers. The Structure processing workflow integrates web services (PubChem and NIH NCI Cactus) to d

  17. Energy consumption during Refractance Window evaporation of selected berry juices

    Energy Technology Data Exchange (ETDEWEB)

    Nindo, C.I.; Tang, J. [Washington State University, Pullman, WA (United States). Dept. of Biological Systems Engineering; Powers, J.R. [Washington State University, Pullman, WA (United States). Dept. of Food Science and Human Nutrition; Bolland, K. [MCD Technologies, Tacoma, WA (United States)

    2004-07-01

    The Refractance Window evaporator represents a novel concept in the design of evaporation systems for small food processing plants. In this system thermal energy from circulating hot water is transmitted through a plastic sheet to evaporate water from a liquid product flowing concurrently on the top surface of the plastic. The objectives of this study were to investigate the heat transfer characteristics of this evaporator, determine its energy consumption, and capacity at different tilt angles and product flow rates. The system performance was evaluated with tap water, raspberry juice, and blueberry juice and puree as feed. With a direct steam injection heating method, the steam economy ranged from 0.64 to 0.84, while the overall heat transfer coefficient (U) was 666 W m{sup -2} {sup o}C{sup -1}. Under this condition, the highest evaporation capacity was 27.1 kg h{sup -1} m{sup -2} for blueberry juice and 31.8 kg h{sup -1} m{sup -2} for blueberry puree. The energy consumption was 2492-2719 kJ kg{sup -1} of water evaporated. Installation of a shell and tube heat exchanger with better temperature control minimized incidences of boiling and frequent discharge of condensate. The steam economy, highest evaporation rate and overall heat transfer coefficient increased to 0.99, 36.0 kg h{sup -1} m{sup -2} and 733 W m{sup -2} {sup o}C{sup -1}, respectively. [Author].

  18. Global tree network for computing structures enabling global processing operations

    Science.gov (United States)

    Blumrich; Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.

    2010-01-19

    A system and method for enabling high-speed, low-latency global tree network communications among processing nodes interconnected according to a tree network structure. The global tree network enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations performed include one or more of: broadcast operations downstream from a root node to leaf nodes of a virtual tree, reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node. The global tree network is configurable to provide global barrier and interrupt functionality in asynchronous or synchronized manner, and, is physically and logically partitionable.

  19. (Anti-)Evaporation of Schwarzschild-de Sitter Black Holes

    OpenAIRE

    Bousso, Raphael; Hawking, Stephen

    1997-01-01

    We study the quantum evolution of black holes immersed in a de Sitter background space. For black holes whose size is comparable to that of the cosmological horizon, this process differs significantly from the evaporation of asymptotically flat black holes. Our model includes the one-loop effective action in the s-wave and large N approximation. Black holes of the maximal mass are in equilibrium. Unexpectedly, we find that nearly maximal quantum Schwarzschild-de Sitter black holes anti-evapor...

  20. Comparative study on systems of residual water treatment in the process industry by evaporation, using fossils fuels or solar energy; Estudio comparativo sobre sistemas de tratamiento de aguas residuales de la industria de procesamiento por evaporacion, utilizando combustibles fosiles o energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Landgrave Romero, Julio; Canseco Contreras, Jose [Facultad de Quimica, UNAM (Mexico)

    1996-07-01

    The residual water treatment of the process industry, nowadays is an imminent necessity in our country. In the present study two different forms are considered to concentrate residual waters: multiple effect evaporation and solar evaporation. The use of solar evaporation lagoons is a good possibility to conserving energy by means of the diminution of fossil fuel consumption. The design basis of the evaporation systems via multiple effect, as well as solar evaporation, the results of the respective sizing and the estimation of the corresponding costs are presented. A practical case is described on the cooking of cotton linters (flock) [Spanish] El tratamiento de aguas residuales de la industria de proceso, hoy en dia es una necesidad inminente en nuestro pais. En el presente trabajo se consideran dos formas distintas para concentrar las aguas residuales: evaporacion de multiple efecto y evaporacion solar. El empleo de lagunas de evaporacion solar es una buena posibilidad para conseguir el ahorro de energia mediante disminucion del consumo de combustibles fosiles. Se presentan las bases de diseno de los sistemas de evaporacion via multiple efecto, asi como solar, los resultados del dimensionamiento respectivo y la estimacion de los costos correspondientes. Se describe un caso practico sobre el cocido de linters de algodon (borra)

  1. Theoretical and testing performance of an innovative indirect evaporative chiller

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yi; Xie, Xiaoyun [Department of Building Science and Technology, Tsinghua University, Beijing (China)

    2010-12-15

    An indirect evaporative chiller is a device used to produce chilled water at a temperature between the wet bulb temperature and dew point of the outdoor air, which can be used in building HVAC systems. This article presents a theoretical analysis and practical performance of an innovative indirect evaporative chiller. First, the process of the indirect evaporative chiller is introduced; then, the matching characteristics of the process are presented and analyzed. It can be shown that the process that produces cold water by using dry air is a nearly-reversible process, so the ideal produced chilled water temperature of the indirect evaporative chiller can be set close to the dew point temperature of the chiller's inlet air. After the indirect evaporative chiller was designed, simulations were done to analyze the output water temperature, the cooling efficiency relative to the inlet dew point temperature, and the COP that the chiller can performance. The first installation of the indirect evaporative chiller of this kind has been run for 5 years in a building in the city of Shihezi. The tested output water temperature of the chiller is around 14-20 C, which is just in between of the outdoor wet bulb temperature and dew point. The tested COP{sub r,s} of the developed indirect evaporative chiller reaches 9.1. Compared with ordinary air conditioning systems, the indirect evaporative chiller can save more than 40% in energy consumption due to the fact that the only energy consumed is from pumps and fans. An added bonus is that the indirect evaporative chiller uses no CFCs that pollute to the aerosphere. The tested internal parameters, such as the water-air flow rate ratio and heat transfer area for each heat transfer process inside the chiller, were analyzed and compared with designed values. The tested indoor air conditions, with a room temperature of 23-27 C and relative humidity of 50-70%, proved that the developed practical indirect evaporative chiller

  2. Charging/discharging processes in nanocrystaline MOS structures - Theoretical study

    International Nuclear Information System (INIS)

    Tanous, D; Mazurak, A; Majkusiak, B

    2016-01-01

    We present the study of impact of some parameters of the metal-insulator-semiconductor structure with nanocrystals embedded in the insulator layer on the current-voltage and capacitance-voltage characteristics with the bias voltage ramp rate as a parameter. The developed model is used as a tool for theoretical understanding the physics behind charging and discharging processes in the considered structures. (paper)

  3. Improvement of the MSG code for the MONJU evaporators. Additional function of reverse flow calculation on water/steam model and animation for post processing

    International Nuclear Information System (INIS)

    Toda, Shin-ichi; Yoshikawa, Shinji; Oketani, Kazuhiro

    2003-05-01

    The improved version of the MSG code (Multi-dimensional Thermal-hydraulic Analysis Code for Steam Generators) has been released. It has been carried out to improve based on the original version in order to calculate reverse flow on water/steam side, and to animate the post-processing data. To calculate reverse flow locally, modification to set pressure at each divided node point of water/steam region in the helical-coil heat transfer tubes has been carried out. And the matrix solver has been also improved to treat a problem within practical calculation time against increasing the pressure points. In this case pressure and enthalpy have to be calculated simultaneously, however, it was found out that using the block-Jacobean method make a diagonal-dominant matrix, and solve the matrix efficiently with a relaxation method. As the result of calculations of a steady-state condition and a transient of SG blow down with manual trip operation, the improvement on calculation function of the MSG code was confirmed. And an animation function of temperature contour in the sodium shell side as a post processing has been added. Since the animation is very effective to understand thermal-hydraulic behavior on the sodium shell side of the SG, especially in case of transient condition, the analysis and evaluation of the calculation results will be enabled to be more quickly and effectively. (author)

  4. Process Machine Interactions Predicition and Manipulation of Interactions between Manufacturing Processes and Machine Tool Structures

    CERN Document Server

    Hollmann, Ferdinand

    2013-01-01

    This contributed volume collects the scientific results of the DFG Priority Program 1180 Prediction and Manipulation of Interactions between Structure and Process. The research program has been conducted during the years 2005 and 2012, whereas the primary goal was the analysis of the interactions between processes and structures in modern production facilities. This book presents the findings of the 20 interdisciplinary subprojects, focusing on different manufacturing processes such as high performance milling, tool grinding or metal forming. It contains experimental investigations as well as mathematical modeling of production processes and machine interactions. New experimental advancements and novel simulation approaches are also included.

  5. Structure to self-structuring: infrastructures and processes in neurobehavioural rehabilitation.

    Science.gov (United States)

    Jackson, Howard F; Hague, Gemma; Daniels, Leanne; Aguilar, Ralph; Carr, Darren; Kenyon, William

    2014-01-01

    The importance of structure in post-acute brain injury rehabilitation is repeatedly mentioned in clinical practice. However, there has been little exploration of the key elements of structure that promote greater levels of functioning and emotional/behavioural stability and how these elements are optimally integrated within the infrastructure of a rehabilitation service. The nature of structure and why it is helpful is explored initially. Thereafter, the processes involved in transition from externally supported structure to the client 'self-structuring' are described. The infrastructure for facilitating these transitional processes are considered in terms of the design of services for systemic neurorehabilitation encompassing environmental factors (e.g. living environments, vocational and recreational options, step-up services and social milieus), therapeutic alliances (rehabilitation professionals, family, friends), organisational structures (service delivery, rehabilitation coaching, transdisciplinary teams) and rehabilitation philosophies and practice. It is concluded that the process of supporting individuals to transition from the 'structure' of the environment and other people towards self-structuring skills is a critical process in rehabilitation. This is reliant upon a comprehensive and robust organisational infrastructure that can successfully and flexibly integrate the core elements of structure across a transitional pathway towards increased independence and self-structuring.

  6. Continuation-like semantics for modeling structural process anomalies

    Directory of Open Access Journals (Sweden)

    Grewe Niels

    2012-09-01

    Full Text Available Abstract Background Biomedical ontologies usually encode knowledge that applies always or at least most of the time, that is in normal circumstances. But for some applications like phenotype ontologies it is becoming increasingly important to represent information about aberrations from a norm. These aberrations may be modifications of physiological structures, but also modifications of biological processes. Methods To facilitate precise definitions of process-related phenotypes, such as delayed eruption of the primary teeth or disrupted ocular pursuit movements, I introduce a modeling approach that draws inspiration from the use of continuations in the analysis of programming languages and apply a similar idea to ontological modeling. This approach characterises processes by describing their outcome up to a certain point and the way they will continue in the canonical case. Definitions of process types are then given in terms of their continuations and anomalous phenotypes are defined by their differences to the canonical definitions. Results The resulting model is capable of accurately representing structural process anomalies. It allows distinguishing between different anomaly kinds (delays, interruptions, gives identity criteria for interrupted processes, and explains why normal and anomalous process instances can be subsumed under a common type, thus establishing the connection between canonical and anomalous process-related phenotypes. Conclusion This paper shows how to to give semantically rich definitions of process-related phenotypes. These allow to expand the application areas of phenotype ontologies beyond literature annotation and establishment of genotype-phenotype associations to the detection of anomalies in suitably encoded datasets.

  7. Structural health monitoring an advanced signal processing perspective

    CERN Document Server

    Chen, Xuefeng; Mukhopadhyay, Subhas

    2017-01-01

    This book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM.

  8. Out-of-order event processing in kinetic data structures

    DEFF Research Database (Denmark)

    Abam, Mohammad; de Berg, Mark; Agrawal, Pankaj

    2011-01-01

    ’s for the maintenance of several fundamental structures such as kinetic sorting and kinetic tournament trees, which overcome the difficulty by employing a refined event scheduling and processing technique. We prove that the new event scheduling mechanism leads to a KDS that is correct except for finitely many short......We study the problem of designing kinetic data structures (KDS’s for short) when event times cannot be computed exactly and events may be processed in a wrong order. In traditional KDS’s this can lead to major inconsistencies from which the KDS cannot recover. We present more robust KDS...

  9. QuikForm: Intelligent deformation processing of structural alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, R.J.; Wellman, G.W.

    1994-09-01

    There currently exists a critical need for tools to enhance the industrial competitiveness and agility of US industries involved in deformation processing of structural alloys. In response to this need, Sandia National Laboratories has embarked upon the QuikForm Initiative. The goal of this program is the development of computer-based tools to facilitate the design of deformation processing operations. The authors are currently focusing their efforts on the definition/development of a comprehensive system for the design of sheet metal stamping operations. The overall structure of the proposed QuikForm system is presented, and the focus of their thrust in each technical area is discussed.

  10. Capillary condenser/evaporator

    Science.gov (United States)

    Valenzuela, Javier A. (Inventor)

    2010-01-01

    A heat transfer device is disclosed for transferring heat to or from a fluid that is undergoing a phase change. The heat transfer device includes a liquid-vapor manifold in fluid communication with a capillary structure thermally connected to a heat transfer interface, all of which are disposed in a housing to contain the vapor. The liquid-vapor manifold transports liquid in a first direction and conducts vapor in a second, opposite direction. The manifold provides a distributed supply of fluid (vapor or liquid) over the surface of the capillary structure. In one embodiment, the manifold has a fractal structure including one or more layers, each layer having one or more conduits for transporting liquid and one or more openings for conducting vapor. Adjacent layers have an increasing number of openings with decreasing area, and an increasing number of conduits with decreasing cross-sectional area, moving in a direction toward the capillary structure.

  11. Lake Nasser evaporation reduction study

    Directory of Open Access Journals (Sweden)

    Hala M.I. Ebaid

    2010-10-01

    Full Text Available This study aims to evaluate the reduction of evaporation of Lake Nasser’s water caused by disconnecting (fully or partially some of its secondary channels (khors. This evaluation integrates remote sensing, Geographic Information System (GIS techniques, aerodynamic principles, and Landsat7 ETM+ images. Three main procedures were carried out in this study; the first derived the surface temperature from Landsat thermal band; the second derived evaporation depth and approximate evaporation volume for the entire lake, and quantified evaporation loss to the secondary channels’ level over one month (March by applied aerodynamic principles on surface temperature of the raster data; the third procedure applied GIS suitability analysis to determine which of these secondary channels (khors should be disconnected. The results showed evaporation depth ranging from 2.73 mm/day at the middle of the lake to 9.58 mm/day at the edge. The evaporated water-loss value throughout the entire lake was about 0.86 billion m3/month (March. The analysis suggests that it is possible to save an approximate total evaporation volume loss of 19.7 million m3/month (March, and thus 2.4 billion m3/year, by disconnecting two khors with approximate construction heights of 8 m and 15 m. In conclusion, remote sensing and GIS are useful for applications in remote locations where field-based information is not readily available and thus recommended for decision makers remotely planning in water conservation and management.

  12. A new planetary structure fabrication process using phosphoric acid

    Science.gov (United States)

    Buchner, Christoph; Pawelke, Roland H.; Schlauf, Thomas; Reissner, Alexander; Makaya, Advenit

    2018-02-01

    Minimising the launch mass is an important aspect of exploration mission planning. In-situ resource utilisation (ISRU) can improve this by reducing the amount of terrestrial materials needed for planetary exploration activities. We report on a recently concluded investigation into the requirements and available technologies for creating hardware on extra-terrestrial bodies, using the limited resources available on site. A trade-off of ISRU technologies for hardware manufacturing was conducted. A new additive manufacturing process suitable for fabricating structures on the Moon or Mars was developed. The process uses planetary regolith as the base material and concentrated phosphoric acid as the liquid binder. Mixing the reagents creates a sticky construction paste that slowly solidifies into a hard, rock-like material. Prior to solidification, the paste is extruded in layers, creating the desired structures in a 3D printing process. We used Martian regolith simulant JSC-Mars-1A, but the process is not selective towards regolith composition. Samples were exposed to thermal cycles and were mechanically characterised. Reduced-scale demonstrator structures were printed to demonstrate structure fabrication using the developed process.

  13. Bifunctional Au@TiO_2 core–shell nanoparticle films for clean water generation by photocatalysis and solar evaporation

    International Nuclear Information System (INIS)

    Huang, Jian; He, Yurong; Wang, Li; Huang, Yimin; Jiang, Baocheng

    2017-01-01

    Highlights: • Au@TiO_2 core-shell nanoparticles were prepared in this study. • Bifunctional films for photocatalysis and solar evaporation were designed. • The evaporation and photodegradation with core-shell structures were investigated. - Abstract: With water scarcity becoming an increasingly critical issue for modern society, solar seawater desalination represents a promising approach to mitigating water shortage. In addition, solar seawater desalination shows great potential for mitigating the energy crisis due to its high photo-thermal conversion efficiency. However, the increasing contamination of seawater makes it difficult to generate clean water through simple desalination processes. In this work, clean water is generated by a newly designed bifunctional Au@TiO_2 core-shell nanoparticle film with a high photo-thermal conversion efficiency that is capable of photocatalysis and solar evaporation for seawater desalination. Bifunctional films of Au@TiO_2 core-shell nanoparticles with good stability were prepared. It was found that the formation of the core-shell structures played a key role in promoting the photo-thermal conversion efficiency and the evaporation of seawater, while the photocatalytic function demonstrated herein could contribute to the purification of polluted seawater. Furthermore, the film structure can serve to concentrate the NPs for the photo-reaction, as well as heat for water evaporation, improving both the photo-reaction efficiency and photo-thermal conversion efficiency. This efficient approach to solar seawater desalination, which combines evaporation with the photodegradation of pollutants, could help to address the dual issues of water scarcity and water pollution.

  14. Improving design processes through structured reflection : a prototype software tool

    OpenAIRE

    Reymen, I.M.M.J.; Melby, E.

    2001-01-01

    A prototype software tool facilitating the use of a design method supporting structured reflection on design processes is presented. The prototype, called Echo, has been developed to explore the benefits of using a software system to facilitate the use of the design method. Both the prototype software tool and the design method are developed as part of the Ph.D. project of Isabelle Reymen. The goal of the design method is supporting designers with reflection on design processes in a systemati...

  15. A Structural Reliability Business Process Modelling with System Dynamics Simulation

    OpenAIRE

    Lam, C. Y.; Chan, S. L.; Ip, W. H.

    2010-01-01

    Business activity flow analysis enables organizations to manage structured business processes, and can thus help them to improve performance. The six types of business activities identified here (i.e., SOA, SEA, MEA, SPA, MSA and FIA) are correlated and interact with one another, and the decisions from any business activity form feedback loops with previous and succeeding activities, thus allowing the business process to be modelled and simulated. For instance, for any company that is eager t...

  16. [Effect of biochar addition on soil evaporation.

    Science.gov (United States)

    Xu, Jian; Niu, Wen Quan; Zhang, Ming Zhi; Li, Yuan; Lyu, Wang; Li, Kang-Yong; Zou, Xiao-Yang; Liang, Bo-Hui

    2016-11-18

    In order to determine the rational amount of biochar application and its effect on soil hydrological processes in arid area, soil column experiments were conducted in the laboratory using three biochar additions (5%, 10% and 15%) and four different biochar types (devaporation. The results showed that the addition of biochar could change the phreatic water recharge, soil water-holding capacity, capillary water upward movement and soil evaporation obviously. But the effects were different depending on the type of biochar raw material and the size of particle. The phreatic water recharge increased with the increasing amount of biochar addition. The addition of biochar could obviously enlarge the soil water-holding capacity and promote the capillary water upward movement rate. This effect was greater when using the material of bamboo charcoal compared with using wood charcoal, while biochar with small particle size had greater impact than that with big particle size. The biochar could effectively restrain the soil evaporation at a low addition amount (5%). But it definitely promoted the soil evaporation if the addition amount was very high. In arid area, biochar addition in appropriate amount could improve soil water retention capacity.

  17. Improving design processes through structured reflection : a prototype software tool

    NARCIS (Netherlands)

    Reymen, I.M.M.J.; Melby, E.

    2001-01-01

    A prototype software tool facilitating the use of a design method supporting structured reflection on design processes is presented. The prototype, called Echo, has been developed to explore the benefits of using a software system to facilitate the use of the design method. Both the prototype

  18. Combinatorial structures and processing in neural blackboard architectures

    NARCIS (Netherlands)

    van der Velde, Frank; van der Velde, Frank; de Kamps, Marc; Besold, Tarek R.; d'Avila Garcez, Artur; Marcus, Gary F.; Miikkulainen, Risto

    2015-01-01

    We discuss and illustrate Neural Blackboard Architectures (NBAs) as the basis for variable binding and combinatorial processing the brain. We focus on the NBA for sentence structure. NBAs are based on the notion that conceptual representations are in situ, hence cannot be copied or transported.

  19. Buying business services : towards a structured service purchasing process

    NARCIS (Netherlands)

    Valk, van der W.; Rozemeijer, F.A.

    2009-01-01

    Abstract: Purpose – This paper aims to uncover the specific difficulties associated with buying services and proposes a structured purchasing process which can help organisational buyers to overcome the problems associated with services purchasing. Design/methodology/approach – The authors

  20. Some recent work on lattice structures for digital signal processing

    Indian Academy of Sciences (India)

    Digital signal processing (DSP); lattice structures; finite impulse ... fascinated this author for a long time, and for the known non-canonical ...... where M

  1. Review of "Conceptual Structures: Information Processing in Mind and Machine."

    Science.gov (United States)

    Smoliar, Stephen W.

    This review of the book, "Conceptual Structures: Information Processing in Mind and Machine," by John F. Sowa, argues that anyone who plans to get involved with issues of knowledge representation should have at least a passing acquaintance with Sowa's conceptual graphs for a database interface. (Used to model the underlying semantics of…

  2. Effective Organizational Structures and Processes: Addressing Issues of Change

    Science.gov (United States)

    Andrade, Maureen Snow

    2016-01-01

    This chapter describes organizational structures and processes at the institutional and project levels for the development and support of distance learning initiatives. It addresses environmental and stakeholder issues and explores principles and strategies of effective leadership for change creation and management.

  3. Molecular investigation of evaporation of biodroplets containing single-strand DNA on graphene surface.

    Science.gov (United States)

    Akbari, Fahimeh; Foroutan, Masumeh

    2018-02-14

    In this study, the water droplet behaviour of four different types of single-strand DNA with homogeneous base sequence on a graphene substrate during evaporation of the droplet was investigated using molecular dynamics (MD) simulation. The simulation results indicated that the evaporation depended on the DNA sequence. The observed changes can be divided into four parts: (i) vaporization mode, (ii) evaporation flux, (iii) mechanism of single-strand placement on the surface, and (iv) consideration of remaining single strands after evaporation. Our simulation observations indicated different evaporation modes for thymine biodroplets as compared to those for other biodroplets. The evaporation of the thymine biodroplets occurred with an increase in the contact angle, while that of the other biodroplets occur in a constant contact angle mode. Moreover, thymine biodroplets generate the lowest contact line compared to other single strands, and it is always placed far away from the centre of the droplets during evaporation. Investigating variations in the evaporation flux shows that thymine has the highest evaporation flux and guanine has the lowest. Moreover, during initial evaporation, the flux of evaporation increases at the triple point of the biodroplets containing thymine single strands, while it decreases in the other biodroplets. The following observation was obtained from the study of the placement of single strands on the substrate: guanine and thymine interacted slower than other single strands during evaporation with graphene, adenine single strand had a higher folding during evaporation, and guanine single strand showed the lowest end-to-end distance. The investigation of single-strand DNA after evaporation shows that adenine produces the most stable structure at the end of evaporation. In addition, cytosine is the most stretched single-strand DNA due to its lack of internal π-π stacking and hydrogen bonding. Therefore, cytosine single strand is more

  4. Resin infusion of large composite structures modeling and manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Loos, A.C. [Michigan State Univ., Dept. of Mechanical Engineering, East Lansing, MI (United States)

    2006-07-01

    The resin infusion processes resin transfer molding (RTM), resin film infusion (RFI) and vacuum assisted resin transfer molding (VARTM) are cost effective techniques for the fabrication of complex shaped composite structures. The dry fibrous preform is placed in the mold, consolidated, resin impregnated and cured in a single step process. The fibrous performs are often constructed near net shape using highly automated textile processes such as knitting, weaving and braiding. In this paper, the infusion processes RTM, RFI and VARTM are discussed along with the advantages of each technique compared with traditional composite fabrication methods such as prepreg tape lay up and autoclave cure. The large number of processing variables and the complex material behavior during infiltration and cure make experimental optimization of the infusion processes costly and inefficient. Numerical models have been developed which can be used to simulate the resin infusion processes. The model formulation and solution procedures for the VARTM process are presented. A VARTM process simulation of a carbon fiber preform was presented to demonstrate the type of information that can be generated by the model and to compare the model predictions with experimental measurements. Overall, the predicted flow front positions, resin pressures and preform thicknesses agree well with the measured values. The results of the simulation show the potential cost and performance benefits that can be realized by using a simulation model as part of the development process. (au)

  5. Processes, data structures, and apparatuses for representing knowledge

    Science.gov (United States)

    Hohimer, Ryan E [West Richland, WA; Thomson, Judi R [Guelph, CA; Harvey, William J [Richland, WA; Paulson, Patrick R [Pasco, WA; Whiting, Mark A [Richland, WA; Tratz, Stephen C [Richland, WA; Chappell, Alan R [Seattle, WA; Butner, R Scott [Richland, WA

    2011-09-20

    Processes, data structures, and apparatuses to represent knowledge are disclosed. The processes can comprise labeling elements in a knowledge signature according to concepts in an ontology and populating the elements with confidence values. The data structures can comprise knowledge signatures stored on computer-readable media. The knowledge signatures comprise a matrix structure having elements labeled according to concepts in an ontology, wherein the value of the element represents a confidence that the concept is present in an information space. The apparatus can comprise a knowledge representation unit having at least one ontology stored on a computer-readable medium, at least one data-receiving device, and a processor configured to generate knowledge signatures by comparing datasets obtained by the data-receiving devices to the ontologies.

  6. Building micro-soccer-balls with evaporating colloidal fakir drops

    Science.gov (United States)

    Gelderblom, Hanneke; Marín, Álvaro G.; Susarrey-Arce, Arturo; van Housselt, Arie; Lefferts, Leon; Gardeniers, Han; Lohse, Detlef; Snoeijer, Jacco H.

    2013-11-01

    Drop evaporation can be used to self-assemble particles into three-dimensional microstructures on a scale where direct manipulation is impossible. We present a unique method to create highly-ordered colloidal microstructures in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion drops from a special type of superhydrophobic microstructured surface, on which the drop remains in Cassie-Baxter state during the entire evaporative process. The remainders of the drop consist of a massive spherical cluster of the microspheres, with diameters ranging from a few tens up to several hundreds of microns. We present scaling arguments to show how the final particle packing fraction of these balls depends on the drop evaporation dynamics, particle size, and number of particles in the system.

  7. 242-A Evaporator quality assurance plan. Revision 2

    International Nuclear Information System (INIS)

    Basra, T.S.

    1995-01-01

    The purpose of this quality assurance project plan (Plan) is to provide requirements for activities pertaining to sampling, shipping, and analyses associated with candidate feed tank samples for the 242-A Evaporator project. The purpose of the 242-A Evaporator project is to reduce the volume of aqueous waste in the Double Shell Tank (DST) System and will result in considerable savings to the disposal of mixed waste. The 242-A Evaporator feed stream originates from DSTs identified as candidate feed tanks. The 242-A Evaporator reduces the volume of aqueous waste contained in DSTs by boiling off water and sending the condensate (called process condensate) to the Liquid Effluent Retention Facility (LEPF) storage basin where it is stored prior to treatment in the Effluent Treatment Facility (ETF). The objective of this quality assurance project plan is to provide the planning, implementation, and assessment of sample collection and analysis, data issuance, and validation activities for the candidate feed tanks

  8. Environmental isotope profiles and evaporation in shallow water table soils

    International Nuclear Information System (INIS)

    Hussein, M.F.; Froehlich, K.; Nada, A.

    2001-01-01

    Environmental isotope methods have been employed to evaluate the processes of evaporation and soil salinisation in the Nile Delta. Stable isotope profiles (δ 18 O and δ 2 H) from three sites were analysed using a published isothermal model that analyses the steady-state isotopic profile in the unsaturated zone and provides an estimate of the evaporation rate. Evaporation rates estimated by this method at the three sites range between 60 and 98 mm y -1 which translates to an estimate of net water loss of one billion cubic meters per year from fallow soils on the Nile delta. Capillary rise of water through the root zone during the crop growing season is estimated to be three times greater than evaporation rate estimate and a modified water management strategy could be adopted in order to optimize water use and its management on the regional scale. (author)

  9. A New Microstructure Device for Efficient Evaporation of Liquids

    Science.gov (United States)

    Brandner, Juergen J.; Maikowske, Stefan; Vittoriosi, Alice

    Evaporation of liquids is of major interest for many topics in process engineering. One of these is chemical process engineering, where evaporation of liquids and generation of superheated steam is mandatory for numerous processes. Generally, this is performed by use of classical pool boiling and evaporation process equipment. Another possibility is creating mixtures of gases and liquids, combined with a heating of this haze. Both methods provide relatively limited performance. Due to the advantages of microstructure devices especially in chemical process engineering [1] the interest in microstructure evaporators and steam generators have been increased through the last decade. In this publication several microstructure devices used for evaporation and generation of steam as well as superheating will be described. Here, normally electrically powered devices containing micro channels as well as non-channel microstructures are used due to better controllability of the temperature level. Micro channel heat exchangers have been designed, manufactured and tested at the Institute for Micro Process Engineering of the Karlsruhe Institute of Technology for more than 15 years. Starting with the famous Karlsruhe Cube, a cross-flow micro channel heat exchanger of various dimensions, not only conventional heat transfer between liquids or gases have been theoretically and experimentally examined but also phase transition from liquids to gases (evaporation) and condensation of liquids. However, the results obtained with sealed microstructure devices have often been unsatisfying. Thus, to learn more onto the evaporation process itself, an electrically powered device for optical inspection of the microstructures and the processes inside has been designed and manufactured [2]. This was further optimized and improved for better controllability and reliable experiments [3]. Exchangeable metallic micro channel array foils as well as an optical inspection of the evaporation process by

  10. Modeling process-structure-property relationships for additive manufacturing

    Science.gov (United States)

    Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Yu, Cheng; Liu, Zeliang; Lian, Yanping; Wolff, Sarah; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam

    2018-02-01

    This paper presents our latest work on comprehensive modeling of process-structure-property relationships for additive manufacturing (AM) materials, including using data-mining techniques to close the cycle of design-predict-optimize. To illustrate the processstructure relationship, the multi-scale multi-physics process modeling starts from the micro-scale to establish a mechanistic heat source model, to the meso-scale models of individual powder particle evolution, and finally to the macro-scale model to simulate the fabrication process of a complex product. To link structure and properties, a highefficiency mechanistic model, self-consistent clustering analyses, is developed to capture a variety of material response. The model incorporates factors such as voids, phase composition, inclusions, and grain structures, which are the differentiating features of AM metals. Furthermore, we propose data-mining as an effective solution for novel rapid design and optimization, which is motivated by the numerous influencing factors in the AM process. We believe this paper will provide a roadmap to advance AM fundamental understanding and guide the monitoring and advanced diagnostics of AM processing.

  11. Innovation management and performance evaluation: structured process of literature review

    Directory of Open Access Journals (Sweden)

    Julieta Scheidt Dienstmann

    2014-03-01

    Full Text Available This article aims to provide a process for the construction of knowledge demanded by researchers at the initial stage of their work on innovation management. To meet this need, the process adopted was the ProKnow-C (Knowledge Development Process - Constructivist, which proposes the construction of researchers knowledge considering their perceptions on the subject, and the recognition of scientific articles analyzed. The knowledge generated in the researcher means, for this article, knowing what are the main journals, articles, authors and keywords associated with 15 articles with scientific recognition and aligned with the perception of the researcher on innovation management, with focus on results. Through this application, the process ProKnow-C is presented demonstrating how it can be used by researchers to meet their initial demands of building knowledge about innovation management and aims to instill future works  based on structured processes for selecting a theoretical framework in this field of knowledge.

  12. A global optimization method for evaporative cooling systems based on the entransy theory

    International Nuclear Information System (INIS)

    Yuan, Fang; Chen, Qun

    2012-01-01

    Evaporative cooling technique, one of the most widely used methods, is essential to both energy conservation and environment protection. This contribution introduces a global optimization method for indirect evaporative cooling systems with coupled heat and mass transfer processes based on the entransy theory to improve their energy efficiency. First, we classify the irreversible processes in the system into the heat transfer process, the coupled heat and mass transfer process and the mixing process of waters in different branches, where the irreversibility is evaluated by the entransy dissipation. Then through the total system entransy dissipation, we establish the theoretical relationship of the user demands with both the geometrical structures of each heat exchanger and the operating parameters of each fluid, and derive two optimization equation groups focusing on two typical optimization problems. Finally, an indirect evaporative cooling system is taken as an example to illustrate the applications of the newly proposed optimization method. It is concluded that there exists an optimal circulating water flow rate with the minimum total thermal conductance of the system. Furthermore, with different user demands and moist air inlet conditions, it is the global optimization, other than parametric analysis, will obtain the optimal performance of the system. -- Highlights: ► Introduce a global optimization method for evaporative cooling systems. ► Establish the direct relation between user demands and the design parameters. ► Obtain two groups of optimization equations for two typical optimization objectives. ► Solving the equations offers the optimal design parameters for the system. ► Provide the instruction for the design of coupled heat and mass transfer systems.

  13. Effect of interference of capillary length on evaporation at meniscus

    Science.gov (United States)

    Soma, Shu; Kunugi, Tomoaki; Yokomine, Takehiko; Kawara, Zensaku

    2017-11-01

    In this study, the experimental results on the evaporation characteristics of meniscus in various geometrical configurations which enable to vary a perimeter of liquid-vapor interface and a meniscus curvature were obtained, and the main factor in evaporation process was clarified. As the experimental conditions, the perimeter was adjusted from 1mm to 100mm order, and the curvature from the inverse of capillary length, κ( 0.4mm-1) , to about 10mm-1 . Measuring devices for evaporation rate, which consisted of a test section on an electric balance, was set to a reduced pressure environment for making the purified water in the test section evaporate. There is no heater in the test section and system was set to be isolated from outside environment. It was found that the evaporation rate and flux could be organized by the perimeter if the curvature is constant at κ. On the other hand, when the curvature is larger than κ, it was found that the curvature is the dominant factor in the evaporation process. It can be considered that an interference of capillary length is a key to understand these results.

  14. Creation of structured documentation templates using Natural Language Processing techniques.

    Science.gov (United States)

    Kashyap, Vipul; Turchin, Alexander; Morin, Laura; Chang, Frank; Li, Qi; Hongsermeier, Tonya

    2006-01-01

    Structured Clinical Documentation is a fundamental component of the healthcare enterprise, linking both clinical (e.g., electronic health record, clinical decision support) and administrative functions (e.g., evaluation and management coding, billing). One of the challenges in creating good quality documentation templates has been the inability to address specialized clinical disciplines and adapt to local clinical practices. A one-size-fits-all approach leads to poor adoption and inefficiencies in the documentation process. On the other hand, the cost associated with manual generation of documentation templates is significant. Consequently there is a need for at least partial automation of the template generation process. We propose an approach and methodology for the creation of structured documentation templates for diabetes using Natural Language Processing (NLP).

  15. Process to make core-shell structured nanoparticles

    Science.gov (United States)

    Luhrs, Claudia; Phillips, Jonathan; Richard, Monique N

    2014-01-07

    Disclosed is a process for making a composite material that contains core-shell structured nanoparticles. The process includes providing a precursor in the form of a powder a liquid and/or a vapor of a liquid that contains a core material and a shell material, and suspending the precursor in an aerosol gas to produce an aerosol containing the precursor. In addition, the process includes providing a plasma that has a hot zone and passing the aerosol through the hot zone of the plasma. As the aerosol passes through the hot zone of the plasma, at least part of the core material and at least part of the shell material in the aerosol is vaporized. Vapor that contains the core material and the shell material that has been vaporized is removed from the hot zone of the plasma and allowed to condense into core-shell structured nanoparticles.

  16. Dynamics of contact line depinning during droplet evaporation based on thermodynamics.

    Science.gov (United States)

    Yu, Dong In; Kwak, Ho Jae; Doh, Seung Woo; Ahn, Ho Seon; Park, Hyun Sun; Kiyofumi, Moriyama; Kim, Moo Hwan

    2015-02-17

    For several decades, evaporation phenomena have been intensively investigated for a broad range of applications. However, the dynamics of contact line depinning during droplet evaporation has only been inductively inferred on the basis of experimental data and remains unclear. This study focuses on the dynamics of contact line depinning during droplet evaporation based on thermodynamics. Considering the decrease in the Gibbs free energy of a system with different evaporation modes, a theoretical model was developed to estimate the receding contact angle during contact line depinning as a function of surface conditions. Comparison of experimentally measured and theoretically modeled receding contact angles indicated that the dynamics of contact line depinning during droplet evaporation was caused by the most favorable thermodynamic process encountered during constant contact radius (CCR mode) and constant contact angle (CCA mode) evaporation to rapidly reach an equilibrium state during droplet evaporation.

  17. Deposition of single-layer and graded aluminum nitride coatings on vanadium substrates using ion-beam assisted reactive evaporation (ITER task no. ETA-EC-BLR26)

    International Nuclear Information System (INIS)

    Jamarani, F.; Lang, R.; Owles, R.

    1994-06-01

    The objective of the project has been to develop a reactive evaporation process for the fabrication of aluminum nitride coatings on pure vanadium substrates. The aluminum nitride coatings are to be used as electrical insulators on the surfaces of structural materials in contact with liquid metal coolants. (author). 9 refs., 2 tabs., 5 figs

  18. Concurrent growth of InSe wires and In2O3 tulip-like structures in the Au-catalytic vapour-liquid-solid process

    International Nuclear Information System (INIS)

    Taurino, A; Signore, M A

    2015-01-01

    In this work, the concurrent growth of InSe and In 2 O 3 nanostructures, obtained by thermal evaporation of InSe powders on Au-covered Si substrates, has been investigated by scanning and transmission electron microscopy techniques. The vapour-solid and Au catalytic vapour-liquid-solid growth mechanisms, responsible of the simultaneous development of the two different types of nanostructures, i.e. InSe wires and In 2 O 3 tulip-like structures respectively, are discussed in detail. The thermodynamic processes giving rise to the obtained morphologies and materials are explained. (paper)

  19. Concurrent growth of InSe wires and In2O3 tulip-like structures in the Au-catalytic vapour-liquid-solid process

    Science.gov (United States)

    Taurino, A.; Signore, M. A.

    2015-06-01

    In this work, the concurrent growth of InSe and In2O3 nanostructures, obtained by thermal evaporation of InSe powders on Au-covered Si substrates, has been investigated by scanning and transmission electron microscopy techniques. The vapour-solid and Au catalytic vapour-liquid-solid growth mechanisms, responsible of the simultaneous development of the two different types of nanostructures, i.e. InSe wires and In2O3 tulip-like structures respectively, are discussed in detail. The thermodynamic processes giving rise to the obtained morphologies and materials are explained.

  20. Evaporative cycles - in theory and in practise

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, P.M.

    2000-08-01

    The thesis is based on applied research, rather closed to industrial development. The developed simulation model, for pre-design of evaporative gas turbine cycles, has been validated in a 600 kW pilot plant and in rebuilt turbo-charged diesel engines. Besides of the work with the thesis including theoretical modelling and hardware development concerning wet cycles, the work has also resulted in three patents dealing with the technique studied. The main feature of the evaporative cycles is the way the integration between the gas and liquid flows is executed, combined with using low-level heat gathered into the liquid phase which is later used to evaporate the liquid itself in a humidification tower. In this tower, the mass- and heat transfer take place under stable physical laws, and if the tower is properly designed, the distilling effect in the tower will also be high. Today the combined cycle has the best thermal efficiency to generate electricity from fuels. Every new power cycle, including the evaporative cycles, will therefore be compared with power stations based on combined cycles. In evaporative cycles, the steam bottoming cycle of the combined cycles has been eliminated. Instead the 'steam' cycle is integrated into the gas cycle. This action has a favourable effect on thermal efficiency and on NO{sub x} formation in the combustion zone. The major part of this thesis is about the EvGT-project. At Lund University, the major objective of this project was to develop, design, erect and operate the world's first evaporative gas turbine unit. The objective was accomplished in 1999, and in the process of reaching the objective, rather large modelling errors, both thermodynamic and dimensioning of the humidification tower, have been detected in the open literature. It seems as if the pressure dependency of the humidification process has been underestimated in the models used today. The EvGT-pilot plant at Lund University was built and taken into

  1. Effect of nitrogen flow rate on structural, morphological and optical properties of In-rich In{sub x}Al{sub 1−x}N thin films grown by plasma-assisted dual source reactive evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, M., E-mail: alizadeh_kozerash@yahoo.com [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ganesh, V.; Goh, B.T. [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Dee, C.F.; Mohmad, A.R. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia); Rahman, S.A., E-mail: saadah@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-08-15

    Highlights: • In-rich In{sub x}Al{sub 1−x}N films were grown by Plasma-aided reactive evaporation. • Effect of nitrogen flow rate on the films properties was investigated. • The band gap of the films was varied from 1.17 to 0.90 eV. • By increasing N{sub 2} flow rate the In{sub x}Al{sub 1−x}N films tend to turn into amorphous state. • At higher N{sub 2} flow rate agglomeration of the particles is highly enhanced. - Abstract: In-rich In{sub x}Al{sub 1−x}N thin films were deposited on quartz substrate at various nitrogen flow rates by plasma-assisted dual source reactive evaporation technique. The elemental composition, surface morphology, structural and optical properties of the films were investigated by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), Raman spectroscopy, X-ray diffraction (XRD), UV–vis spectrophotometer and photoluminescence (PL) measurements. XPS results revealed that the indium composition (x) of the In{sub x}Al{sub 1−x}N films increases from 0.90 to 0.97 as the nitrogen flow rate is increased from 40 to 100 sccm, respectively. FESEM images of the surface and cross-sectional microstructure of the In{sub x}Al{sub 1−x}N films showed that by increasing the N{sub 2} flow rate, the grown particles are highly agglomerated. Raman and XRD results indicated that by increasing nitrogen flow rate the In-rich In{sub x}Al{sub 1−x}N films tend to turn into amorphous state. It was found that band gap energy of the films are in the range of 0.90–1.17 eV which is desirable for the application of full spectra solar cells.

  2. Designing quantum information processing via structural physical approximation.

    Science.gov (United States)

    Bae, Joonwoo

    2017-10-01

    In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.

  3. Ring and Volcano Structures Formed by a Metal Dipyrromethene Complex

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seung Bae; Hahn, Jae Ryang [Chonbuk National Univ., Jeonju (Korea, Republic of); Miao, Qing; Shin, Jiyoung; Dolphin, David [Univ. of British Columbia, Columbia (Canada)

    2014-06-15

    Dichloromethane liquid droplets containing a cobalt dipyrromethene trimer deposited on a graphite surface were found to form coffee ring, toroid ring, or volcano dot structures due to the redistribution of the solute during solvent evaporation. The shapes and size distributions of the ring structures depended on the drying temperature. The shape differences were attributed to the fact that the solvent evaporation rate controlled the self-assembly process that yielded the coffee stain and pinhole structures.

  4. Selection of power market structure using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Subhes Bhattacharyya; Prasanta Kumar Dey

    2003-01-01

    Selection of a power market structure from the available alternatives is an important activity within an overall power sector reform program. The evaluation criteria for selection are both subjective as well as objective in nature and the selection of alternatives is characterised by their conflicting nature. This study demonstrates a methodology for power market structure selection using the analytic hierarchy process, a multiple attribute decision- making technique, to model the selection methodology with the active participation of relevant stakeholders in a workshop environment. The methodology is applied to a hypothetical case of a State Electricity Board reform in India. (author)

  5. Evaporation Spectrum of Black Holes from a Local Quantum Gravity Perspective.

    Science.gov (United States)

    Barrau, Aurélien

    2016-12-30

    We revisit the hypothesis of a possible line structure in the Hawking evaporation spectrum of black holes. Because of nonperturbative quantum gravity effects, this would take place arbitrarily far away from the Planck mass. We show, based on a speculative but consistent hypothesis, that this naive prediction might in fact hold in the specific context of loop quantum gravity. A small departure from the ideal case is expected for some low-spin transitions and could allow us to distinguish several quantum gravity models. We also show that the effect is not washed out by the dynamics of the process, by the existence of a mass spectrum up to a given width, or by the secondary component induced by the decay of neutral pions emitted during the time-integrated evaporation.

  6. Detecting Difference between Process Models Based on the Refined Process Structure Tree

    Directory of Open Access Journals (Sweden)

    Jing Fan

    2017-01-01

    Full Text Available The development of mobile workflow management systems (mWfMS leads to large number of business process models. In the meantime, the location restriction embedded in mWfMS may result in different process models for a single business process. In order to help users quickly locate the difference and rebuild the process model, detecting the difference between different process models is needed. Existing detection methods either provide a dissimilarity value to represent the difference or use predefined difference template to generate the result, which cannot reflect the entire composition of the difference. Hence, in this paper, we present a new approach to solve this problem. Firstly, we parse the process models to their corresponding refined process structure trees (PSTs, that is, decomposing a process model into a hierarchy of subprocess models. Then we design a method to convert the PST to its corresponding task based process structure tree (TPST. As a consequence, the problem of detecting difference between two process models is transformed to detect difference between their corresponding TPSTs. Finally, we obtain the difference between two TPSTs based on the divide and conquer strategy, where the difference is described by an edit script and we make the cost of the edit script close to minimum. The extensive experimental evaluation shows that our method can meet the real requirements in terms of precision and efficiency.

  7. Comparative study of structural and electro-optical properties of ZnO:Ga films grown by steered cathodic arc plasma evaporation and sputtering on plastic and their application on polymer-based organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chih-Hao, E-mail: dataman888@hotmail.com [R& D Division, Walsin Technology Corporation, Kaohsiung, Taiwan (China); Hsiao, Yu-Jen [National Nano Device Laboratories, National Applied Research Laboratories, Tainan, Taiwan (China); Hwang, Weng-Sing [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2016-08-01

    Ga-doped ZnO (GZO) films with various thicknesses (105–490 nm) were deposited on PET substrates at a low temperature of 90 °C by a steered cathodic arc plasma evaporation (steered CAPE), and a GZO film with a thickness of 400 nm was deposited at 90 °C by a magnetron sputtering (MS) for comparison. The comparative analysis of the microstructure, residual stress, surface morphology, electrical and optical properties, chemical states, and doping efficiency of the films produced by the steered CAPE and MS processes was performed, and the effect of thickness on the CAPE-grown GZO films was investigated in detail. The results showed that the GZO films grown by steered CAPE exhibited higher crystallinity and lower internal stress than those deposited by MS. The transmittance and electrical properties were also enhanced for the steered CAPE-grown films. The figure of merit (Φ = T{sup 10}/R{sub s}, where T is the transmittance and R{sub s} is the sheet resistance in Ω/□). was used to evaluate the performance of the electro-optical properties. The GZO films with a thickness of 400 nm deposited by CAPE had the highest Φ value, 1.94 × 10{sup −2} Ω{sup −1}, a corresponding average visible transmittance of 88.8% and resistivity of 6.29 × 10{sup −4} Ω·cm. In contrast, the Φ value of MS-deposited GZO film with a thickness of 400 nm is only 1.1 × 10{sup −3} Ω{sup −1}. This can be attributed to the increase in crystalline size, [0001] preferred orientation, decrease in stacking faults density and Ar contamination in steered CAPE-grown films, leading to increases in the Hall mobility and carrier density. In addition, the power conversion efficiency (PCE) of organic solar cells was significantly improved by using the CAPE-grown GZO electrode, and the PCE values were 1.2% and 1.7% for the devices with MS-grown and CAPE-grown GZO electrodes, respectively. - Highlights: • ZnO:Ga (GZO) films were grown on PET by steered cathodic arc plasma evaporation (CAPE

  8. Performance of evaporators in high level radioactive chemical waste service

    International Nuclear Information System (INIS)

    Jenkins, C.F.

    1997-01-01

    Chemical processing of nuclear fuels and targets at Savannah River Site resulted in generation of millions of gallons of liquid wastes. The wastes were further processed to reduce volume and allow for extended temporary storage of a more concentrated material. Waste evaporators have been a central point for waste reduction for many years. Currently, the transfer and processing of the concentrated wastes for permanent storage requires dilution and results in generation of significant quantities of additional liquid wastes. A new round of volume reduction is required to fit existing storage capacity and to allow for removal of older vessels from service. Evaporator design, performance and repairs are discussed in this report

  9. A proposal of business processes management (BPM structure and use

    Directory of Open Access Journals (Sweden)

    Rafael Araujo Kluska

    2015-09-01

    Full Text Available The organizational processes, also known as business processes, have became a fundamental structure for the management of the modern organizations. Knowing the work flow of the organization is a necessary condition for the development of continuous improvement processes. The benefits and advantages provided by the use of an approach based on BPM (Business Processes Management are evident. The benefits include improvements in efficiency, quality and flexibility, besides other aspects generating sustainable competitive advantages. There is a wide range of studies on BPM, which display several definitions and elements characterizing the various applications. This work aims to propose a conceptual framework for interconnection between BPM elements, thus providing a better understanding of organizational processes and performance in organizational management environment. As a result, a group of BPM elements is identified and classified in: methodologies, techniques and tools which are a part of or can be efficiently connected to BPM conceptual structure. A framework for conceptual interconnection between those elements is also provided. The results of BPM application are not limited to the search for operational efficiency, but might also be considered as an element to support the organizational management.

  10. Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2017-11-01

    We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.

  11. Thermal management optimization of a thermoelectric-integrated methanol evaporator using a compact CFD modeling approach

    DEFF Research Database (Denmark)

    Xin, Gao; Chen, Min; Snyder, G. Jeffrey

    2013-01-01

    exchange structure. The structure transfers the fuel cell exhaust heat to the evaporation chamber to evaporate the methanol, where TE modules are installed in between to facilitate the heat regulation. In this work, firstly, a numerical study is conducted to determine the working currents and working modes......To better manage the magnitude and the direction of the heat flux in an exchanger-based methanol evaporator of a fuel cell system, thermoelectric (TE) modules can be deployed as TE heat flux regulators (TERs). The performance of the TE-integrated evaporator is strongly influenced by its heat......, and uses a different material property acquisition method based on module manufacturers’ datasheets. Secondly, a simulation study is carried out on the novel evaporator to minimize its thermal resistance and to assess the evaporator pressure drop. The factors studied include: type of the fins of the heat...

  12. The sustainability of LNG evaporation

    NARCIS (Netherlands)

    Stougie, L.; Van der Kooi, H.J.

    2011-01-01

    Numerous LNG (Liquefied Natural Gas) import terminals are under construction to fulfil the growing demand for energy carriers. After storage in tanks, the LNG needs to be heated and evaporated, also called ‘regasified’, to the natural gas needed in households and industry. Several options exist for

  13. Evaporation in relation to hydrology

    NARCIS (Netherlands)

    Wartena, L.; Keijman, J.Q.; Bruijn, H.A.R. de; Bakel, P.J.T. van; Stricker, J.N.M.; Velds, C.A.

    1981-01-01

    In meteorology some topics enjoy particular interest from other disciplines. The interest of hydrologists for the evaporation of water is a case in point, understandably and rightly so. In fact, over the last few decades, hydrology has clearly done more than using meteorological knowledge thus

  14. Micro-evaporation electrolyte concentrator

    NARCIS (Netherlands)

    Timmer, B.H.; van Delft, K.M.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert

    2003-01-01

    The sensitivity of miniaturized chemical analysis systems depends most of the time on the obtainable detection limit. Concentrating the analyte prior to the detection system can enhance the detection limit. In this writing an analyte concentrator is presented that makes use of evaporation to

  15. Evaporation rate of nucleating clusters.

    Science.gov (United States)

    Zapadinsky, Evgeni

    2011-11-21

    The Becker-Döring kinetic scheme is the most frequently used approach to vapor liquid nucleation. In the present study it has been extended so that master equations for all cluster configurations are included into consideration. In the Becker-Döring kinetic scheme the nucleation rate is calculated through comparison of the balanced steady state and unbalanced steady state solutions of the set of kinetic equations. It is usually assumed that the balanced steady state produces equilibrium cluster distribution, and the evaporation rates are identical in the balanced and unbalanced steady state cases. In the present study we have shown that the evaporation rates are not identical in the equilibrium and unbalanced steady state cases. The evaporation rate depends on the number of clusters at the limit of the cluster definition. We have shown that the ratio of the number of n-clusters at the limit of the cluster definition to the total number of n-clusters is different in equilibrium and unbalanced steady state cases. This causes difference in evaporation rates for these cases and results in a correction factor to the nucleation rate. According to rough estimation it is 10(-1) by the order of magnitude and can be lower if carrier gas effectively equilibrates the clusters. The developed approach allows one to refine the correction factor with Monte Carlo and molecular dynamic simulations.

  16. Adding structure to the transition process to advanced mathematical activity

    Science.gov (United States)

    Engelbrecht, Johann

    2010-03-01

    The transition process to advanced mathematical thinking is experienced as traumatic by many students. Experiences that students had of school mathematics differ greatly to what is expected from them at university. Success in school mathematics meant application of different methods to get an answer. Students are not familiar with logical deductive reasoning, required in advanced mathematics. It is necessary to assist students in this transition process, in moving from general to mathematical thinking. In this article some structure is suggested for this transition period. This essay is an argumentative exposition supported by personal experience and international literature. This makes this study theoretical rather than empirical.

  17. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils

    Science.gov (United States)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.

    2012-12-01

    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was

  18. Development of Probabilistic Structural Analysis Integrated with Manufacturing Processes

    Science.gov (United States)

    Pai, Shantaram S.; Nagpal, Vinod K.

    2007-01-01

    An effort has been initiated to integrate manufacturing process simulations with probabilistic structural analyses in order to capture the important impacts of manufacturing uncertainties on component stress levels and life. Two physics-based manufacturing process models (one for powdered metal forging and the other for annular deformation resistance welding) have been linked to the NESSUS structural analysis code. This paper describes the methodology developed to perform this integration including several examples. Although this effort is still underway, particularly for full integration of a probabilistic analysis, the progress to date has been encouraging and a software interface that implements the methodology has been developed. The purpose of this paper is to report this preliminary development.

  19. GLEAM version 3: Global Land Evaporation Datasets and Model

    Science.gov (United States)

    Martens, B.; Miralles, D. G.; Lievens, H.; van der Schalie, R.; de Jeu, R.; Fernandez-Prieto, D.; Verhoest, N.

    2015-12-01

    Terrestrial evaporation links energy, water and carbon cycles over land and is therefore a key variable of the climate system. However, the global-scale magnitude and variability of the flux, and the sensitivity of the underlying physical process to changes in environmental factors, are still poorly understood due to limitations in in situ measurements. As a result, several methods have risen to estimate global patterns of land evaporation from satellite observations. However, these algorithms generally differ in their approach to model evaporation, resulting in large differences in their estimates. One of these methods is GLEAM, the Global Land Evaporation: the Amsterdam Methodology. GLEAM estimates terrestrial evaporation based on daily satellite observations of meteorological variables, vegetation characteristics and soil moisture. Since the publication of the first version of the algorithm (2011), the model has been widely applied to analyse trends in the water cycle and land-atmospheric feedbacks during extreme hydrometeorological events. A third version of the GLEAM global datasets is foreseen by the end of 2015. Given the relevance of having a continuous and reliable record of global-scale evaporation estimates for climate and hydrological research, the establishment of an online data portal to host these data to the public is also foreseen. In this new release of the GLEAM datasets, different components of the model have been updated, with the most significant change being the revision of the data assimilation algorithm. In this presentation, we will highlight the most important changes of the methodology and present three new GLEAM datasets and their validation against in situ observations and an alternative dataset of terrestrial evaporation (ERA-Land). Results of the validation exercise indicate that the magnitude and the spatiotemporal variability of the modelled evaporation agree reasonably well with the estimates of ERA-Land and the in situ

  20. Evaporation of Nanosuspensions on Substrates with Different Hydrophobicity.

    Science.gov (United States)

    Perrin, Lionel; Pajor-Swierzy, Anna; Magdassi, Shlomo; Kamyshny, Alexander; Ortega, Francisco; Rubio, Ramón G

    2018-01-24

    Liquid drop evaporation on surfaces is present in many industrial and medical applications, e.g., printed electronics, spraying of pesticides, DNA mapping, etc. Despite this strong interest, a theoretical description of the dynamic of the evaporation of complex liquid mixtures and nanosuspensions is still lacking. Indeed, one of the aspects that have not been included in the current theoretical descriptions is the competition between the kinetics of evaporation and the adsorption of surfactants and/or particles at the liquid/vapor and liquid/solid interfaces. Materials formed by an electrically isolating solid on which a patterned conducting layer was formed by the deposits left after drop evaporation have been considered as very promising for building electrical circuits on flexible plastic substrates. In this work, we have done an exhaustive study of the evaporation of nanosuspensions of latex and hydrophobized silver nanoparticles on four substrates of different hydrophobicity. The advancing and receding contact angles as well as the time dependence of the volume of the droplets have been measured over a broad range of particle concentrations. Also, mixtures of silver particles and a surfactant, commonly used in industrial printing, have been examined. Furthermore, the adsorption kinetics at both the air/liquid and solid/liquid interfaces have been measured. Whereas the latex particles do not adsorb at the solid/liquid and only slightly reduce the surface tension, the silver particles strongly adsorb at both interfaces. The experimental results of the evaporation process were compared with the predictions of the theory of Semenov et al. (Evaporation of Sessile Water Droplets: Universal Behavior in the Presence of Contact Angle Hysteresis. Colloids Surf. Physicochem. Eng. Asp. 2011, 391 (1-3), 135-144) and showed surprisingly good agreement despite that the theory was developed for pure liquids. The morphology of the deposits left by the droplets after total