WorldWideScience

Sample records for evanescent white dot

  1. Atypical presentation of multiple evanescent white dot syndrome (MEWDS).

    Science.gov (United States)

    Yenerel, Nursal Melda; Kucumen, Beril; Gorgun, Ebru; Dinc, Umut Asli

    2008-01-01

    To present fundus autofluorescence (FAF), indocyanine green angiography (ICGA), and microperimetry (MP) findings of a patient with multiple evanescent white dot syndrome (MEWDS). Observational case report. A 30-year-old woman with blurry vision was referred for evaluation. Fundus examination revealed only foveal granularity. FAF showed hyperautofluorescent spots, although they were not visible clinically. On ICGA, matching areas were hypofluorescent. Microperimetry revealed mean sensitivity decrease. The resolution of the symptoms was followed by disappearance of these spots in FAF and ICGA and increase of mean macular sensitivity in MP. FAF is a noninvasive imaging technique that might help in the differential diagnosis of chorioretinal pathologies.

  2. Multiple evanescent white dot syndrome associated with retinal vasculitis

    Directory of Open Access Journals (Sweden)

    Takahashi A

    2015-09-01

    Full Text Available Akihiro Takahashi, Wataru Saito, Yuki Hashimoto, Susumu Ishida Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan Purpose: A recent study revealed thickening of the inner retinal layers in acute stage of multiple evanescent white dot syndrome (MEWDS; however, the pathogenesis is still unknown. We report two cases with MEWDS whose funduscopy showed obvious retinal vasculitis. Methods: Case reports. Results: Healthy myopic 16- and 27-year-old women were the cases under study. In both cases, funduscopic examination revealed multiple, faint, small, subretinal white dots at the posterior pole to the midperiphery and macular granularity oculus dexter. Retinal vascular sheathing was also observed at midperiphery. Late-phase fluorescein angiography revealed leakages corresponding to the vascular sheathing. Enhanced depth imaging optical coherence tomography revealed the discontinuity of the ellipsoid zone corresponding to the white dots and increased macular choroidal thickness. One month later, these white dots and retinal sheathing spontaneously resolved in both cases. Three months later, impairments of the outer retinal morphology and the visual acuity were restored. Conclusion: These results suggest that retinal vasculitis possibly plays a role in the pathogenesis of thickened inner retinal layers in acute stage of MEWDS. Keywords: enhanced depth imaging optical coherence tomography, choroidal thickness, inner retinal layer, retinal vascular sheathing

  3. [Indocyanine green angiography in "multiple evanescent white dot syndrome" (MEWDS)].

    Science.gov (United States)

    Desarnaulds, A B; Borruat, F X; Herbort, C P; de Courten, C

    1998-05-01

    Multiple evanescent white dot syndrome (MEWDS) is a benign acquired chorioretinal disorder occurring mostly in young adults. Its pathophysiology is unknown. To describe the results of indocyanine green angiography (ICGA) in MEWDS. Four patients with MEWDS were investigated by ICGA. In all cases, ICGA revealed numerous choroidal hypofluorescent lesions that largely outnumbered the lesions visible with either fundoscopy or fluorescein angiography. Three cases showed a blind spot enlargement on perimetry associated with the presence of a large peripapillary hypofluorescent zone on ICGA. Three cases showed macular granularity on fundoscopy correlating with a significant subfoveal hypfluorescent lesion on ICGA. Evolution was always favorable with disappearance of the hypofluorescent choroidal lesions. Our results confirm that MEWDS is primarily a choroidal disorder. The blind spot enlargement and the macular granularity, frequently detected in MEWDS, result from larger peripapillary and subfoveal choroidal lesions.

  4. Fundus Autofluorescence in Multiple Evanescent White Dot Syndrome

    Directory of Open Access Journals (Sweden)

    Fernando Marcondes Penha

    2011-01-01

    Full Text Available A patient complained of photopsia and vision loss in the left eye for two days, with visual acuity of 20/32. Right eye was normal. Funduscopy revealed foveal granularity and gray-white lesions in the posterior pole, mainly temporal to the fovea. The lesions (dots and spots, along with a few other areas surrounding them, showed hyperautofluorescence on autofluorescence imaging. Fluorescein angiogram (FA depicted some early hyperfluorescent dots with late staining. Indocyanine green angiogram (ICGA showed hypofluorescent lesions in a greater number compared with funduscopy, autofluorescence, and FA. Thirty days later, BCVA was 20/20 in both eyes and the complimentary exams were almost normal, despite an ICGA that showed few small hypofluorescent lesions. This case supports the hypothesis that the choroidal involvement occurs primarily in MEWDS, with secondary involvement of the RPE and the neurosensory retina.

  5. HLA typing in patients with multiple evanescent white dot syndrome (MEWDS).

    Science.gov (United States)

    Borruat, F X; Herbort, C P; Spertini, F; Desarnaulds, A B

    1998-03-01

    Multiple evanescent white dot syndrome (MEWDS) is an acquired chorioretinal disorder of unknown etiology. We investigated the possibility that MEWDS might be related to a specific HLA subtyping. Blood was obtained from nine patients affected by MEWDS. HLA-B51 was found in four of these nine patients with MEWDS. There was a 3.7-fold increased frequency of HLA-B51 in patients affected by MEWDS (relative risk 5.86). MEWDS might then be related to the presence of a specific HLA subtype, HLA-B51. However, due to the small sample size, our results need to be confirmed by further testing.

  6. [A case of MEWDS. "The multiple evanescent white-dot syndrome"].

    Science.gov (United States)

    Lefrançois, A; Hamard, H; Corbe, C; Schmitt, A; Badelon, I; Vidal, A

    1989-01-01

    A young white man developed acute bilateral visual loss with no previous general illness. Ophthalmoscopic examination showed multiple small yellow-white lesions scattered throughout the posterior poles and mild periphery fundus. There was also fine granularity of two foveal areas and one optic disc margin was blurred. Fluorescein angiography showed early hyperfluorescence of the lesions and late staining of the retinal pigment epithelium. Electrophysiologic abnormalities were transient, asymmetric, more marked in photopic than in scotopic. The origin could be in retinal bipolar cells. These lesions regressed, with return of normal visual function within several weeks. These clinical findings are different from others acute inflammatory diseases primarily involving retinal pigment epithelium and photoreceptors. This aspect is usually described as "multiple evanescent white dot syndrome". The etiology of this syndrome remains unknown with no evidence of systemic disease. A history of flulike illness is rare.

  7. [Choroidal neovascularization followed in a patient with "Multiple Evanescent White Dot Syndrome" (MEWDS) -- a case report].

    Science.gov (United States)

    Löw, U; Palmowski, A M; Weich, C-M; Ruprecht, K W

    2004-12-01

    Since the description of the "multiple evanescent white dot syndrome" (MEWDS) by Jampol et al, choroiditis has been in the focus of interest. But the classical type of MEWDS was an exceptional case in clinical routine. A 48-year-old female presented to our hospital with a sudden unilateral visual acuity decrease and an extension of the blind spot. Ophthalmoscopy and fluorescein angiography revealed typical multiple grey-white chorioretinal patches of the same stage with lesion areas of about 100 - 200 microm compatible with the diagnose of MEWDS. Although visual acuity increased continuously the patient developed a classical choroidal neovascularization within 4 weeks. She was treated with PDT and visual acuity as well as the ophthalmoscopic diagnosis remained stable. In spite of visual improvement in MEWDS, regular control is recommended. In addition we propose to consider the diagnosis of MEWDS if an enlargement of the blind spot and CNV without lesions of the retinal pigment epithelium are diagnosed.

  8. Choroidal neovascularisation triggered multiple evanescent white dot syndrome (MEWDS) in predisposed eyes.

    Science.gov (United States)

    Mathis, Thibaud; Delaunay, Benoit; Cahuzac, Armelle; Vasseur, Vivien; Mauget-Faÿsse, Martine; Kodjikian, Laurent

    2017-09-28

    Multiple evanescent white dot syndrome (MEWDS) is an inflammatory disease that can be associated with choroidalneovascularisation (CNV). However, few studies in the literature have described the occurrence of MEWDS in association with CNV. This paper discusses whether CNV can trigger MEWDS in a predisposed eye. A retrospective multicentric case series of six eyes in six patients with acute onset of MEWDS and evidence of previous CNV was conducted between January 2015 and January 2017. All patients underwent ophthalmic examination including multimodal imaging at baseline and during follow-up. The mean age was 32.2±12.2 years. The majority of patients were women (5/1). In each case, MEWDS was diagnosed during a recurrence or occurrence of CNV secondary to choriocapillaritis, central serous chorioretinopathy or atrophic scar, presumably due to congenital toxoplasmosis. All patients were treated with intravitreal injections of antivascular endothelial growth factor (anti-VEGF) with good anatomical and functional responses (mean gain of 0.3±0.31 logMAR). The mean duration of follow-up was 13.5±10.65 months. This study highlights a sequence in the development of MEWDS, following the occurrence or recurrence of CNV. CNV may trigger MEWDS, possibly due to the proinflammatory environment created by the retinal tissue surrounding the CNV. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. “En-Face” Spectral-Domain Optical Coherence Tomography Findings in Multiple Evanescent White Dot Syndrome

    Directory of Open Access Journals (Sweden)

    Flore De bats

    2014-01-01

    Full Text Available Purpose. The recent use of “en-face” enhanced-depth imaging spectral-domain optical coherence tomography (EDI SD-OCT helps distinguish the retinal layers involved in the physiopathology of multiple evanescent white dot syndrome (MEWDS. Methods. Four patients presenting with MEWDS underwent a comprehensive ocular examination including C-scan (“en-face” EDI SD-OCT at the initial visit and during follow-up. Results. C-scans combined with the other multimodal imaging enabled the visualization of retinal damage. Acute lesions appeared as diffuse and focal disruptions occurring in the ellipsoid and interdigitation zones. The match between autofluorescence imaging, indocyanine green angiography, and “en-face” OCT helped identify the acute microstructural damages in the outer retina further than the choroid. Follow-up using “en-face” EDI-OCT revealed progressive and complete recovery of the central outer retinal layers. Conclusion. “En-face” EDI SD-OCT identified the site of initial damage in MEWDS as the photoreceptors and the interdigitation layers rather than the choroid. Moreover, “en-face” OCT is helpful in the follow-up of these lesions by being able to show the recovery of the outer retinal layers.

  10. Recurrent focal choroidal excavation following multiple evanescent white dot syndrome (MEWDS) associated with acute idiopathic blind spot enlargement.

    Science.gov (United States)

    Jabbarpoor Bonyadi, Mohammad Hossein; Hassanpour, Kiana; Soheilian, Masoud

    2018-04-01

    To present a recurrent case of conforming focal choroidal excavation (FCE) following multiple evanescent white dot syndrome (MEWDS) in a 25-year-old woman. Following spontaneous MEWDS sings resolution our patient noted a recurrent decrease in vision. Repeated OCT revealed elevation and mild disruption of RPE layer at fovea without previous angiographic MEWDS signs. At this time, short-term systemic steroid therapy was started and visual acuity became normal. Following quiescence of the new-onset phase, the conforming type of FCE located in inferior macula appeared in OCT. In the following next 2 years recurrence of presumptive focal subfoveal choriocapillaritis occurred for three times presenting with blurred vision. During every acute attack, above-mentioned FCE disappeared and returned back again after resolution of presumptive focal choriocapillaritis. This is the first and unique case of recurrent type of FCE following MEWDS. It seems to disappear during active phase of presumptive focal choriocapillaritis and then returns after the eye has become quiescent.

  11. IMAGING WITH MULTIMODAL ADAPTIVE-OPTICS OPTICAL COHERENCE TOMOGRAPHY IN MULTIPLE EVANESCENT WHITE DOT SYNDROME: THE STRUCTURE AND FUNCTIONAL RELATIONSHIP.

    Science.gov (United States)

    Labriola, Leanne T; Legarreta, Andrew D; Legarreta, John E; Nadler, Zach; Gallagher, Denise; Hammer, Daniel X; Ferguson, R Daniel; Iftimia, Nicusor; Wollstein, Gadi; Schuman, Joel S

    2016-01-01

    To elucidate the location of pathological changes in multiple evanescent white dot syndrome (MEWDS) with the use of multimodal adaptive optics (AO) imaging. A 5-year observational case study of a 24-year-old female with recurrent MEWDS. Full examination included history, Snellen chart visual acuity, pupil assessment, intraocular pressures, slit lamp evaluation, dilated fundoscopic exam, imaging with Fourier-domain optical coherence tomography (FD-OCT), blue-light fundus autofluorescence (FAF), fundus photography, fluorescein angiography, and adaptive-optics optical coherence tomography. Three distinct acute episodes of MEWDS occurred during the period of follow-up. Fourier-domain optical coherence tomography and adaptive-optics imaging showed disturbance in the photoreceptor outer segments (PR OS) in the posterior pole with each flare. The degree of disturbance at the photoreceptor level corresponded to size and extent of the visual field changes. All findings were transient with delineation of the photoreceptor recovery from the outer edges of the lesion inward. Hyperautofluorescence was seen during acute flares. Increase in choroidal thickness did occur with each active flare but resolved. Although changes in the choroid and RPE can be observed in MEWDS, Fourier-domain optical coherence tomography, and multimodal adaptive optics imaging localized the visually significant changes seen in this disease at the level of the photoreceptors. These transient retinal changes specifically occur at the level of the inner segment ellipsoid and OS/RPE line. En face optical coherence tomography imaging provides a detailed, yet noninvasive method for following the convalescence of MEWDS and provides insight into the structural and functional relationship of this transient inflammatory retinal disease.

  12. Outer Retinal and Choroidal Evaluation in Multiple Evanescent White Dot Syndrome (MEWDS): An Enhanced Depth Imaging Optical Coherence Tomography Study.

    Science.gov (United States)

    Fiore, Tito; Iaccheri, Barbara; Cerquaglia, Alessio; Lupidi, Marco; Torroni, Giovanni; Fruttini, Daniela; Cagini, Carlo

    2018-01-01

    To perform an analysis of optical coherence tomography (OCT) abnormalities in patients with MEWDS, during the acute and recovery stages, using enhanced depth imaging-OCT (EDI-OCT). A retrospective case series of five patients with MEWDS was included. EDI-OCT imaging was evaluated to detect retinal and choroidal features. In the acute phase, focal impairment of the ellipsoid zone and external limiting membrane, hyperreflective dots in the inner choroid, and full-thickness increase of the choroidal profile were observed in the affected eye; disappearance of these findings and restoration of the choroidal thickness (p = 0.046) was appreciated in the recovery phase. No OCT abnormalities were assessed in the unaffected eye. EDI-OCT revealed transient outer retinal layer changes and inner choroidal hyperreflective dots. A transient increased thickness of the whole choroid was also identified. This might confirm a short-lasting inflammatory involvement of the whole choroidal tissue in the active phase of MEWDS.

  13. Combination of carbon dot and polymer dot phosphors for white light-emitting diodes.

    Science.gov (United States)

    Sun, Chun; Zhang, Yu; Sun, Kai; Reckmeier, Claas; Zhang, Tieqiang; Zhang, XiaoYu; Zhao, Jun; Wu, Changfeng; Yu, William W; Rogach, Andrey L

    2015-07-28

    We realized white light-emitting diodes with high color rendering index (85-96) and widely variable color temperatures (2805-7786 K) by combining three phosphors based on carbon dots and polymer dots, whose solid-state photoluminescence self-quenching was efficiently suppressed within a polyvinyl pyrrolidone matrix. All three phosphors exhibited dominant absorption in the UV spectral region, which ensured the weak reabsorption and no energy transfer crosstalk. The WLEDs showed excellent color stability against the increasing current because of the similar response of the tricolor phosphors to the UV light variation.

  14. Photoelectron Spectroscopy of CdSe Nanocrystals in the Gas Phase: A Direct Measure of the Evanescent Electron Wave Function of Quantum Dots

    Science.gov (United States)

    2013-01-01

    researchers have used ultrafast transient absorption spectros - copy to show that the charge separation rate of Type II core− shell QDs depends on the extent...the first direct measurement of the evanescent electron density of the QD exciton. We use ultrafast two-photon photoelectron spectros - copy (2PPE) to...clusters are well preserved after the aerosol system, as observed using UV − visible spectroscopy (Supporting Information Figure S1). The isolation of the

  15. Fundus autofluorescence imaging of the white dot syndromes.

    Science.gov (United States)

    Yeh, Steven; Forooghian, Farzin; Wong, Wai T; Faia, Lisa J; Cukras, Catherine; Lew, Julie C; Wroblewski, Keith; Weichel, Eric D; Meyerle, Catherine B; Sen, Hatice Nida; Chew, Emily Y; Nussenblatt, Robert B

    2010-01-01

    To characterize the fundus autofluorescence (FAF) findings in patients with white dot syndromes (WDSs). Patients with WDSs underwent ophthalmic examination, fundus photography, fluorescein angiography, and FAF imaging. Patients were categorized as having no, minimal, or predominant foveal hypoautofluorescence. The severity of visual impairment was then correlated with the degree of foveal hypoautofluorescence. Fifty-five eyes of 28 patients with WDSs were evaluated. Visual acuities ranged from 20/12.5 to hand motions. Diagnoses included serpiginous choroidopathy (5 patients), birdshot retinochoroidopathy (10), multifocal choroiditis (8), relentless placoid chorioretinitis (1), presumed tuberculosis-associated serpiginouslike choroidopathy (1), acute posterior multifocal placoid pigment epitheliopathy (1), and acute zonal occult outer retinopathy (2). In active serpiginous choroidopathy, notable hyperautofluorescence in active disease distinguished it from the variegated FAF features of tuberculosis-associated serpiginouslike choroidopathy. The percentage of patients with visual acuity impairment of less than 20/40 differed among eyes with no, minimal, and predominant foveal hypoautofluorescence (P < .001). Patients with predominant foveal hypoautofluorescence demonstrated worse visual acuity than those with minimal or no foveal hypoautofluorescence (both P < .001). Fundus autofluorescence imaging is useful in the evaluation of the WDS. Visual acuity impairment is correlated with foveal hypoautofluorescence. Further studies are needed to evaluate the precise role of FAF imaging in the WDSs.

  16. Structural Control of InP/ZnS Core/Shell Quantum Dots Enables High-quality White LEDs.

    Science.gov (United States)

    Ganesh Kumar, Baskaran; Sadeghi, Sadra; Melikov, Rustamzhon; Mohammadi Aria, Mohammed; Bahmani Jalali, Houman; Ow-Yang, Cleva; Nizamoglu, Sedat

    2018-05-30

    Herein, we demonstrate that the structural and optical control of InP-based quantum dots can lead to high-performance LEDs. Zinc sulphide (ZnS) shells passivate the InP quantum dot core and increase the quantum yield in green-emitting quantum dots by 13-fold and red-emitting quantum dots by 8-fold. The optimised quantum dots are integrated in the liquid-state to eliminate aggregation induced emission quenching and we fabricated white LEDs with warm, neutral, and cool white appearance by the down-conversion mechanism. The quantum dot-functionalized white LEDs achieve luminous efficiency up to 14.7 lm/W and colour-rendering index up to 80. The structural and optical control of InP/ZnS core/shell quantum dots enable 23-fold enhancement in luminous efficiency of white LEDs compared to ones containing only QDs of InP core. © 2018 IOP Publishing Ltd.

  17. Simple process of hybrid white quantum dot/organic light-emitting diodes by using quantum dot plate and fluorescence

    Science.gov (United States)

    Lee, Ho Won; Lee, Ki-Heon; Lee, Jae Woo; Kim, Jong-Hoon; Yang, Heesun; Kim, Young Kwan

    2015-02-01

    In this work, the simple process of hybrid quantum dot (QD)/organic light-emitting diode (OLED) was proposed to apply a white illumination light by using QD plate and organic fluorescence. Conventional blue fluorescent OLEDs were firstly fabricated and then QD plates of various concentrations, which can be controlled of UV-vis absorption and photoluminescence spectrum, were attached under glass substrate of completed blue devices. The suggested process indicates that we could fabricate the white device through very simple process without any deposition of orange or red organic emitters. Therefore, this work would be demonstrated that the potential simple process for white applications can be applied and also can be extended to additional research on light applications.

  18. Electrical aging effect of ZnS based quantum dots for white light-emitting diodes

    Science.gov (United States)

    Kim, Yohan; Ippen, Christian; Greco, Tonino; Jang, Ilwan; Park, Sungkyu; Oh, Min Suk; Han, Chul Jong; Lee, Jeongno; Wedel, Armin; Kim, Jiwan

    2014-03-01

    The present work reports cadmium-free colloidal ZnS:Al quantum dot (QD) based white quantum dot light-emitting diodes (QD-LEDs). The device was fabricated with a structure of ITO/PEDOT:PSS/PVK/QDs/TPBi/LiF/Al using synthesized ZnS:Al QDs which has 393 nm of peak wavelength and sub peaks in visible wavelength. White emission with high color rending index (CRI) was achieved by the combination of blue emission from PVK and ZnS:Al QDs, electroplex emission at the interface between PVK and ZnS:Al QDs, and Al traps/defects emission, which are controlled by electrical aging effect. The characteristic of our device shows the potential for spectrum tunable and Cd-free white QD-LEDs in the near future.

  19. Influence of Gaussian white noise on the frequency-dependent linear polarizability of doped quantum dot

    International Nuclear Information System (INIS)

    Ganguly, Jayanta; Ghosh, Manas

    2014-01-01

    Highlights: • Linear polarizability of quantum dot has been studied. • Quantum dot is doped with a repulsive impurity. • The polarizabilities are frequency-dependent. • Influence of Gaussian white noise has been monitored. • Noise exploited is of additive and multiplicative nature. - Abstract: We investigate the profiles of diagonal components of frequency-dependent linear (α xx and α yy ) optical response of repulsive impurity doped quantum dots. The dopant impurity potential chosen assumes Gaussian form. The study principally puts emphasis on investigating the role of noise on the polarizability components. In view of this we have exploited Gaussian white noise containing additive and multiplicative characteristics (in Stratonovich sense). The frequency-dependent polarizabilities are studied by exposing the doped dot to a periodically oscillating external electric field of given intensity. The oscillation frequency, confinement potentials, dopant location, and above all, the noise characteristics tune the linear polarizability components in a subtle manner. Whereas the additive noise fails to have any impact on the polarizabilities, the multiplicative noise influences them delicately and gives rise to additional interesting features

  20. White light emission from organic-inorganic hererostructure devices by using CdSe quantum dots as emitting layer

    International Nuclear Information System (INIS)

    Tang Aiwei; Teng Feng; Gao Yinhao; Li Dan; Zhao Suling; Liang Chunjun; Wang Yongsheng

    2007-01-01

    In this paper, white light emission was obtained from organic-inorganic heterostructure devices by using CdSe quantum dots as emitting layer, in which CdSe quantum dots were synthesized via a colloidal chemical approach by using CdO and Se powder as precursors. Photoluminescence of CdSe quantum dots demonstrated a white emission with a full wavelength at half maximum (FWHM) of about 200 nm under ambient conditions, and the white emission could be observed in both multilayer device ITO/PEDOT:PSS/CdSe/BCP/Alq 3 /Al and single-layer device: ITO/PEDOT:PSS/CdSe/Al. The broad emission was attributed to the inhomogeneous broadening. The CIE coordinates of the multilayer device were x=0.35 and y=0.40. The white-light-emitting diodes with CdSe quantum dots as the emitting layer are potentially useful in lighting applications

  1. White light emission of carbon dots by creating different emissive traps

    International Nuclear Information System (INIS)

    Joseph, Julin; Anappara, Aji A.

    2016-01-01

    Here we report a facile and rapid synthetic strategy for white light emitting carbon dots (CDs) by creating inhomogeneity in the surface-moieties by carbonizing ethylene diamine tetra acetic acid (EDTA) and ethylene glycol (EG) which are having different functional groups. The aqueous solution of the as-synthesised nanoparticles exhibits broad-band emission at several excitation wavelengths, with CIE parameters in the white gamut. Furthermore, white light emission is demonstrated through remote-phosphor technology, by capping 365 nm UV chip with PMMA, after dispersing the polymer with CDs. The resulting emission from the white-LED reported colour parameters such as CIE (0.34, 0.38), CRI of 84 and CCT of 5078 K.

  2. White light emission of carbon dots by creating different emissive traps

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Julin; Anappara, Aji A., E-mail: aji@nitc.ac.in

    2016-10-15

    Here we report a facile and rapid synthetic strategy for white light emitting carbon dots (CDs) by creating inhomogeneity in the surface-moieties by carbonizing ethylene diamine tetra acetic acid (EDTA) and ethylene glycol (EG) which are having different functional groups. The aqueous solution of the as-synthesised nanoparticles exhibits broad-band emission at several excitation wavelengths, with CIE parameters in the white gamut. Furthermore, white light emission is demonstrated through remote-phosphor technology, by capping 365 nm UV chip with PMMA, after dispersing the polymer with CDs. The resulting emission from the white-LED reported colour parameters such as CIE (0.34, 0.38), CRI of 84 and CCT of 5078 K.

  3. Excitation kinetics of impurity doped quantum dot driven by Gaussian white noise: Interplay with external field

    International Nuclear Information System (INIS)

    Pal, Suvajit; Sinha, Sudarson Sekhar; Ganguly, Jayanta; Ghosh, Manas

    2013-01-01

    Highlights: • The excitation kinetics of impurity doped quantum dot has been investigated. • The dot is subject to Gaussian white noise. • External oscillatory field is also applied. • Noise strength and field intensity fabricate the kinetics. • Role of dopant location has also been analyzed. - Abstract: We investigate the excitation kinetics of a repulsive impurity doped quantum dot initiated by simultaneous application of Gaussian white noise and external sinusoidal field. We have considered both additive and multiplicative noise (in Stratonovich sense). The combined influences of noise strength (ζ) and the field intensity (∊) have been capsuled by invoking their ratio (η). The said ratio and the dopant location have been found to fabricate the kinetics in a delicate way. Moreover, the influences of additive and multiplicative nature of the noise on the excitation kinetics have been observed to be widely different. The investigation reveals emergence of maximization/minimization and saturation in the excitation kinetics as a result of complex interplay between η and the dopant coordinate (r 0 ). The present investigation is believed to provide some useful insights in the functioning of mesoscopic devices where noise plays some significant role

  4. CdSe white quantum dots-based white light-emitting diodes with high color rendering index

    Science.gov (United States)

    Su, Yu-Sheng; Hsiao, Chih-Chun; Chung, Shu-Ru

    2016-09-01

    A white light emission CdSe quantum dots (QDs) can be prepared by chemical route under 180°C. An organic oleic acid (OA) is used to react with CdO to form Cd-OA complex. Hexadecylamine (HDA) and 1-Octadecene (ODE) were used as co-surfactants. By controlling the reaction time, a white light emission CdSe QDs can be obtained after reacts for 3 to 10 min. The luminescence spectra compose two obvious emission peaks and entire visible light ranges from 400 to 650 nm. Based on TEM measurement result, spherical morphologies with particle size 2.39+/-0.27 nm can be obtained. The quantum yields (QYs) of white CdSe QD are between 20 and 60 %, which depends on reaction time. A white CdSe QDs were mixed with UV cured gel (OPAS-226) with weight ratios 50.0 wt. %, and putted the mixture into reflective cup (3020, 13 mil) as convert type. The white LEDs have controllable CIE coordinates and correlated color temperature (CCT). The luminous efficacy of the device is less than 3 lm/W, but the color rendering index (CRI) for all devices are higher than 80. Since the luminous efficacy of hybrid devices has a direct dependence on the external QY of the UV-LED as well, the luminous efficacy can be improved by well dispersion of CdSe QDs in UV gel matrix and using optimized LED chips. Therefore, in this study, we provide a new and simple method to prepare high QY of white CdSe QDs and its have a potential to applicate in solid-state lighting.

  5. Surface defect assisted broad spectra emission from CdSe quantum dots for white LED application

    Science.gov (United States)

    Samuel, Boni; Mathew, S.; Anand, V. R.; Correya, Adrine Antony; Nampoori, V. P. N.; Mujeeb, A.

    2018-02-01

    This paper reports, broadband photoluminescence from CdSe quantum dots (QDs) under the excitation of 403 nm using fluorimeter and 403 nm CW laser excitation. The broad spectrum obtained from the colloidal quantum dots was ranges from 450 nm to 800 nm. The broadness of the spectra was attributed to the merging of band edge and defect driven emissions from the QDs. Six different sizes of particles were prepared via kinetic growth method by using CdO and elemental Se as sources of Cd and Se respectively. The particle sizes were measured from TEM images. The size dependent effect on broad emission was also studied and the defect state emission was found to be predominant in very small QDs. The defect driven emission was also observed to be redshifted, similar to the band edge emission, due to quantum confinement effect. The emission corresponding to different laser power was also studied and a linear relation was obtained. In order to study the colour characteristics of the emission, CIE chromaticity coordinate, CRI and CCT of the prepared samples were measured. It is observed that, these values were tunable by the addition of suitable intensity of blue light from the excitation source to yield white light of various colour temperatures. The broad photoluminescence spectrum of the QDs, were compared with that of a commercially available white LED. It was found that the prepared QDs are good alternatives for the phosphor in phosphor converted white LEDs, to provide good spectral tunability.

  6. Wigner functions for evanescent waves.

    Science.gov (United States)

    Petruccelli, Jonathan C; Tian, Lei; Oh, Se Baek; Barbastathis, George

    2012-09-01

    We propose phase space distributions, based on an extension of the Wigner distribution function, to describe fields of any state of coherence that contain evanescent components emitted into a half-space. The evanescent components of the field are described in an optical phase space of spatial position and complex-valued angle. Behavior of these distributions upon propagation is also considered, where the rapid decay of the evanescent components is associated with the exponential decay of the associated phase space distributions. To demonstrate the structure and behavior of these distributions, we consider the fields generated from total internal reflection of a Gaussian Schell-model beam at a planar interface.

  7. White light emitting device based on single-phase CdS quantum dots

    Science.gov (United States)

    Li, Feng; Nie, Chao; You, Lai; Jin, Xiao; Zhang, Qin; Qin, Yuancheng; Zhao, Feng; Song, Yinglin; Chen, Zhongping; Li, Qinghua

    2018-05-01

    White light emitting diodes (WLEDs) based on quantum dots (QDs) are emerging as robust candidates for white light sources, however they are suffering from the problem of energy loss resulting from the re-absorption and self-absorption among the employed QDs of different peak wavelengths. It still remains a challenging task to construct WLEDs based on single-phase QD emitters. Here, CdS QDs with short synthesis times are introduced to the fabrication of WLEDs. With a short synthesis time, on one hand, CdS QDs with a small diameter with blue emission can be obtained. On the other hand, surface reconstruction barely has time to occur, and the surface is likely defect-ridden, which enables the existence of a broad emission covering the range of green, yellow and red regions. This is essential for the white light emission of CdS QDs, and is very important for WLED applications. The temporal evolution of the PL spectra for CdS QDs was obtained to investigate the influence of growth time on the luminescent properties. The CdS QDs with a growth time of 0.5 min exhibited a colour rendering index (CRI) of 79.5 and a correlated colour temperature (CCT) of 6238 K. With increasing reaction time, the colour coordinates of the CdS QDs will move away from the white light region in the CIE 1931 chromaticity diagram. By integrating the as prepared white light emission CdS QDs with a violet GaN chip, WLEDs were fabricated. The fabricated WLEDs exhibited a CRI of 87.9 and a CCT of 4619 K, which satisfy the demand of general illumination. The luminous flux and the luminous efficiency of the fabricated WLEDs, being less advanced than current commercial white light sources, can be further improved, meaning there is a need for much more in-depth studies on white light emission CdS QDs.

  8. The white dot syndromes Síndromes dos pontos brancos retinianos

    Directory of Open Access Journals (Sweden)

    Raul Nunes Galvarro Vianna

    2007-06-01

    Full Text Available Several entities must be considered when a patient presents with a white dot syndrome. In most cases these can be distinguished from one another based on the appearance or distribution of the lesions, the clinical course, or patient variables such as age, sex, laterality, and functional and image examinations. In this paper we review the distinctive and shared features of the white dot syndromes, highlighting the clinical findings, diagnostic test results, proposed etiologies, treatment, and prognosis.Várias doenças devem ser consideradas quando nos deparamos com paciente com uma entidade clínica incluída no grupo das "síndromes dos pontos brancos retinianos". O diagnóstico diferencial na maioria das vezes é baseado na aparência e/ou na distribuição das lesões, no curso clínico, ou por algumas variáveis relacionadas ao paciente, tais como idade, sexo, lateralidade, bem como por meio de exames funcionais e de imagem. O presente artigo revisa os achados clínicos das doenças que fazem parte do grupo das "síndromes dos pontos brancos retinianos", enfatizando as similaridades e as diferenças entre essas entidades. Os exames complementares, bem como a etiologia, o tratamento e o prognóstico de cada uma delas são descritos e comentados.

  9. Optimal nitrogen and phosphorus codoping carbon dots towards white light-emitting device

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Wang, Yaling; Miao, Yanqin; Yang, Yongzhen, E-mail: yyztyut@126.com, E-mail: liuxuguang@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); He, Yuheng; Liu, Xuguang, E-mail: yyztyut@126.com, E-mail: liuxuguang@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2016-08-22

    Through a one-step fast microwave-assisted approach, nitrogen and phosphorus co-doped carbon dots (N,P-CDs) were synthesized using ammonium citrate (AC) as a carbon source and phosphates as additive reagent. Under the condition of an optimal reaction time of 140 s, the influence of additive with different N and P content on fluorescent performance of N,P-CDs was further explored. It was concluded that high nitrogen content and moderate phosphorus content are necessary for obtaining high quantum yield (QY) N,P-CDs, among which the TAP-CDs (CDs synthesized using ammonium phosphate as additive reagent) show high quantum yield (QY) of 62% and red-green-blue (RGB) spectral composition of 51.67%. Besides, the TAP-CDs exhibit satisfying thermal stability within 180 °C. By virtue of good optical and thermal properties of TAP-CDs, a white light-emitting device (LED) was fabricated by combining ultraviolet chip with TAP-CDs as phosphor. The white LED emits bright warm-white light with the CIE chromaticity coordinate of (0.38, 0.35) and the corresponding color temperature (CCT) of 4450 K, indicating the potential of TAP-CDs phosphor in white LED.

  10. Microwave-assisted one-step synthesis of white light-emitting carbon dot suspensions

    Science.gov (United States)

    Vanessa, Hinterberger; Wenshuo, Wang; Cornelia, Damm; Simon, Wawra; Martin, Thoma; Wolfgang, Peukert

    2018-06-01

    In this contribution, we demonstrate that an aqueous solution with adjustable fluorescent color, including white light emission, can be achieved by a rapid one-step microwave synthesis method resulting in a mixture of blue-emitting carbon dots (CDs) and the yellow-emitting 2,3-diaminophenazine (DAP). Aqueous mixtures of o-phenylene-diamine (oPD) and citric acid (CA) are used as precursors. The resulting product structures are analyzed by FT-IR and NMR spectroscopy and the size of the resulting CDs is determined by atomic force microscopy to be 1.1 ± 0.3 nm. The synthesized solution exhibits two fluorescence emission peaks at 430 and 560 nm, which were found to originate from the CDs and DAP, respectively. The intensity ratio of both fluorescence peaks depends on pH, which is driven by the protonation state of DAP. In consequence, the fluorescence emission color of the CD solution can be tuned precisely and reproducibly from blue to white to yellow by careful control of the pH. Finally, at a pH level of 5.4, at which there is equal blue and yellow emission intensity, a white light emitting solution can be successfully produced in a very fast and simple synthesis procedure.

  11. White emitting CdS quantum dot nanoluminophores hybridized on near-ultraviolet LEDs for high-quality white light generation and tuning

    International Nuclear Information System (INIS)

    Nizamoglu, Sedat; Mutlugun, Evren; Akyuz, Ozgun; Perkgoz, Nihan Kosku; Demir, Hilmi Volkan; Liebscher, Lydia; Sapra, Sameer; Gaponik, Nikolai; Eychmueller, Alexander

    2008-01-01

    To generate white light using semiconductor nanocrystal (NC) quantum dots integrated on light emitting diodes (LEDs), multiple hybrid device parameters (emission wavelengths of the NCs and the excitation platform, order of the NCs with different sizes, amount of the different types of NCs, etc) need to be carefully designed and properly implemented. In this study, we introduce and demonstrate white LEDs based on simple device hybridization using only a single type of white emitting CdS quantum dot nanoluminophores on near-ultraviolet LEDs. Here we present their design, synthesis-growth, fabrication and characterization. With these hybrid devices, we achieve high color rendering index (>70), despite using only a single NC type. Furthermore, we conveniently tune their photometric properties including the chromaticity coordinates, correlated color temperature, and color rendering index with the number of hybridized nanoluminophores in a controlled manner

  12. Design of a High-Power White Light Source with Colloidal Quantum Dots and Non-Rare-Earth Phosphors

    Science.gov (United States)

    Bicanic, Kristopher T.

    This thesis describes the design process of a high-power white light source, using novel phosphor and colloidal quantum dot materials. To incorporate multiple light emitters, we generalized and extended a down-converting layer model. We employed a phosphor mixture comprising of YAG:Ce and K2TiF 6:Mn4+ powders to illustrate the effectiveness of the model. By incorporating experimental photophysical results from the phosphors and colloidal quantum dots, we modeled our system and chose the design suitable for high-power applications. We report a reduction in the correlated color temperature by 600K for phosphor and quantum dot systems, enabling the creation of a warm white light emission at power densities up to 5 kW/cm 2. Furthermore, at this high-power, their emission achieves the digital cinema initiative (DCI) requirements with a luminescence efficacy improvement up to 32% over the stand-alone ceramic YAG:Ce phosphor.

  13. Formulating CdSe quantum dots for white light-emitting diodes with high color rendering index

    International Nuclear Information System (INIS)

    Li, Fei; Li, Wan-Nan; Fu, Shao-Yun; Xiao, Hong-Mei

    2015-01-01

    Generation of white light using CdSe quantum dots (QDs) alone presents exciting possibilities for solid state lighting technology. In this work, Cd(Ac) 2 ·2H 2 O and Na 2 SeSO 3 are used as precursors to synthesize CdSe-QDs with an average diameter ranging from 2.77 to 4.65 nm at the low temperature from 60 to 180 °C. Smaller CdSe-QDs with an average diameter of 2.29 nm are got by an oxidation etching process using H 2 O 2 as oxidant. The structural and optical properties of these QDs are investigated and proper formulation of CdSe QDs with various sizes is carefully designed to achieve white light with a high color rendering index (CRI). It is observed for the first time that the as-prepared white light-emitting diodes from single CdSe-QDs show the Commission Inernationale del’Eclairage coordinate (CIE) of (0.30,0.34) very close to that (0.33,0.33) of pure white light and a high CRI of 84. Owing to these advantages, the as-prepared white light-emitting diodes from a single compound are promising for lighting applications. - Highlights: • CdSe-quantum dots (QDs) with a continuously changing size from 2.31 to 4.74 nm are prepared. • The obtained CdSe-QDs emit lights with tunable colors in the whole visible range. • The obtained mixture sample generates white light with a high color rendering index of 84. • The sample yields white light with the CIE coordinate (0.30, 0.34) very close to that of pure white light

  14. Fiber optic evanescent wave biosensor

    Science.gov (United States)

    Duveneck, Gert L.; Ehrat, Markus; Widmer, H. M.

    1991-09-01

    The role of modern analytical chemistry is not restricted to quality control and environmental surveillance, but has been extended to process control using on-line analytical techniques. Besides industrial applications, highly specific, ultra-sensitive biochemical analysis becomes increasingly important as a diagnostic tool, both in central clinical laboratories and in the doctor's office. Fiber optic sensor technology can fulfill many of the requirements for both types of applications. As an example, the experimental arrangement of a fiber optic sensor for biochemical affinity assays is presented. The evanescent electromagnetic field, associated with a light ray guided in an optical fiber, is used for the excitation of luminescence labels attached to the biomolecules in solution to be analyzed. Due to the small penetration depth of the evanescent field into the medium, the generation of luminescence is restricted to the close proximity of the fiber, where, e.g., the luminescent analyte molecules combine with their affinity partners, which are immobilized on the fiber. Both cw- and pulsed light excitation can be used in evanescent wave sensor technology, enabling the on-line observation of an affinity assay on a macroscopic time scale (seconds and minutes), as well as on a microscopic, molecular time scale (nanoseconds or microseconds).

  15. Evanescent wave assisted nanomaterial coating.

    Science.gov (United States)

    Mondal, Samir K; Pal, Sudipta Sarkar; Kumbhakar, Dharmadas; Tiwari, Umesh; Bhatnagar, Randhir

    2013-08-01

    In this work we present a novel nanomaterial coating technique using evanescent wave (EW). The gradient force in the EW is used as an optical tweezer for tweezing and self-assembling nanoparticles on the source of EW. As a proof of the concept, we have used a laser coupled etched multimode optical fiber, which generates EW for the EW assisted coating. The section-wise etched multimode optical fiber is horizontally and superficially dipped into a silver/gold nanoparticles solution while the laser is switched on. The fiber is left until the solution recedes due to evaporation leaving the fiber in air. The coating time usually takes 40-50 min at room temperature. The scanning electron microscope image shows uniform and thin coating of self-assembled nanoparticles due to EW around the etched section. A coating thickness optical fiber probes and other plasmonic circuits.

  16. Modulation of the photoluminescence in carbon dots through surface modification: from mechanism to white light-emitting diodes

    Science.gov (United States)

    Zhu, Jinyang; Shao, He; Bai, Xue; Zhai, Yue; Zhu, Yongsheng; Chen, Xu; Pan, Gencai; Dong, Biao; Xu, Lin; Zhang, Hanzhuang; Song, Hongwei

    2018-06-01

    Carbon dots (CDs) have emerged as a new type of fluorescent material because of their unique optical advantages, such as high photoluminescence quantum yields (QYs), excellent photo-stability, excitation-dependent emissions, and low toxicity. However, the photoluminescence mechanism for CDs remains unclear, which limits their further practical application. Here, CDs were synthesized via a solvothermal route from citric acid and urea. Through the oxidation and reduction treatment of pristine CDs, the origin of the photoluminescence and the involved mechanism were revealed. We found that the blue/green/red emissions originated from three diverse emitting states, i.e. the intrinsic state, and C=O- and C=N-related surface states, respectively. Based on the as-prepared CDs, a pH sensor depending on the radiometric luminescence detection was developed. Furthermore, we constructed CD/PVP (PVP, polyvinylpyrrolidone) composite films, which exhibited white light emission with photoluminescence QYs of 15.3%. The white light emission with different correlated color temperatures (CCTs), from 4807 K to 3319 K, was obtained by simply changing the amount of PVP solution. Benefiting from the white light-emitting solid-state films, single-component white light-emitting diodes were fabricated with an average color rendering index value (Ra) of 80.0, luminous efficiency of 10.2 lm W‑1, and good working stability, thus indicating a promising potential for practical lighting applications.

  17. The performance of quantum dots-based white light-emitting diodes

    Science.gov (United States)

    Chen, Kuan-Lin; Chung, Shu-Ru

    2017-08-01

    Recently, the investigation of quantum dots (QDs) as a color converter for white light-emitting diodes (WLEDs) application has attracted a great deal of attention. Because the narrow emission wavelength of QDs can be controlled by their particle sizes and compositions, which is facilitated to improve the color gamut of display as well as color rendering index (CRI) and the correlated color temperature (CCT) of WLEDs. In a typical commercially available LCD display, the color gamut is approximately to 75 % which is defined by the National Television System Committee (NTSC). In order to enhance NTSC, the full width at half-maximum (FWHM) of color converter should be less than 30 nm. Therefore, the QDs are the best choice for display application due to the FWHM of QDs is meet the demand of display application. In this study, the hot injection method with one-pot process is used to synthesis of colloidal ternary ZnCdSe green (G-) and red-emission (R-) QDs with a narrow emission wavelength around 537 and 610 nm. By controlling the complex reagents-stearic acid (SA) and lauric acid (LA), high performance of G- and R-QDs can be prepared. The quantum yields (QYs), particle sizes and FWHM for G- and R-QDs are 70, 30 %, 3.2 +/- 0.5, 4.1 +/- 0.5 nm and 25, 26 nm, respectively. In order to explore the performance of QDs-based WLEDs, mixing ratios effect between G-QD and R-QD are studied and the WLED is packed as conformal-type. Different ratios of R-QD and G-QD (1:10, 1:20 and 1:30) are mixed and fill up the 3020 SMD blue-InGaN LED, and named as LED-10, LED-20 and LED-30. After that, UV curable gel is deposited on the top of QD layer to form WLED and named as LED-10*, LED-20* and LED-30*. The results show that the Commission International d'Eclairage (CIE) chromaticity coordinates, color rendering index (CRI), luminous efficacy of LED-10*, LED-20* and LED-30* are (0.27, 0.21), 53, 1.9 lm/W, (0.29, 0.30), 72, 3.3 lm/W and (0.25, 0.34), 45, 6.8 lm/W, respectively. We can find

  18. Varactor-tuned Substrate Integrated Evanescent Filter

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Acar, Öncel; Dong, Yunfeng

    Evanescent mode waveguides allow for more compact microwave component design in comparison to the traditional fundamental mode waveguide technology. Evanescent waveguides can be integrated into a dielectric substrate in order to further reduce the mass and volume. Unfortunately, traditional...... realization methods used in the standard evanescent waveguides are often not directly applicable to substrate integrated waveguide (SIW) technology due to dielectric filling and small height of the waveguide. In this work, one of the realization methods of evanescent waveguides using lumped elements...... is considered. In contrast to other methods described in the literature, it avoids etching split ring resonators in the metal layer of the SIW. The filters presented here use varactors as tuning elements. The varactors (as well as DC decoupling circuits) are mounted on the surface of PCB bringing the lower...

  19. Substrate Integrated Evanescent Filters Employing Coaxial Stubs

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy

    2015-01-01

    Evanescent mode substrate integrated waveguide (SIW) is one of the promising technologies for design of light-weight low-cost microwave components. Traditional realization methods used in the standard evanescent waveguide technology are often not directly applicable to SIW due to dielectric filli...... of the microwave filter are discussed. The approach is useful in applications where a sharp roll-off at the upper stop-band is required....

  20. Evanescent fields of laser written waveguides

    Science.gov (United States)

    Jukić, Dario; Pohl, Thomas; Götte, Jörg B.

    2015-03-01

    We investigate the evanescent field at the surface of laser written waveguides. The waveguides are written by a direct femtosecond laser writing process into fused silica, which is then sanded down to expose the guiding layer. These waveguides support eigenmodes which have an evanescent field reaching into the vacuum above the waveguide. We study the governing wave equations and present solution for the fundamental eigenmodes of the modified waveguides.

  1. Defect induced photoluminescence in MoS2 quantum dots and effect of Eu3+/Tb3+ co-doping towards efficient white light emission

    Science.gov (United States)

    Haldar, Dhrubaa; Ghosh, Arnab; Bose, Saptasree; Mondal, Supriya; Ghorai, Uttam Kumar; Saha, Shyamal K.

    2018-05-01

    Intensive research has been carried out on optical properties of MoS2 quantum dots for versatile applications in photo catalytic, sensing and optoelectronic devices. However, white light generation from MoS2 quantum dots particularly using doping effect is relatively unexplored. Herein we report successful synthesis of Europium (Eu)/Terbium (Tb) co-doped MoS2 quantum dots to achieve white light for potential applications in optoelectronic devices. The dopant ions are introduced into the host lattice to retain the emission colors to cover the entire range of visible light of solar spectrum. Perfect white light (CIE = 0.31, 0.33) with high intensity (quantum yield = 28.29%) is achieved in these rare earth elements co-doped quantum dot system. A new peak is observed in the NIR region which is attributed to the defects present in MoS2 quantum dots. Temperature dependent study has been carried out to understand the origin of this new peak in the NIR region. It is seen that the 'S' defects in the QDs cause the appearance of this peak which shows a blue shift at higher temperature.

  2. Selecting the optimal synthesis parameters of InP/CdxZn1-xSe quantum dots for a hybrid remote phosphor white LED for general lighting applications.

    Science.gov (United States)

    Ryckaert, Jana; Correia, António; Tessier, Mickael D; Dupont, Dorian; Hens, Zeger; Hanselaer, Peter; Meuret, Youri

    2017-11-27

    Quantum dots can be used in white LEDs for lighting applications to fill the spectral gaps in the combined emission spectrum of the blue pumping LED and a broad band phosphor, in order to improve the source color rendering properties. Because quantum dots are low scattering materials, their use can also reduce the amount of backscattered light which can increase the overall efficiency of the white LED. The absorption spectrum and narrow emission spectrum of quantum dots can be easily tuned by altering their synthesis parameters. Due to the re-absorption events between the different luminescent materials and the light interaction with the LED package, determining the optimal quantum dot properties is a highly non-trivial task. In this paper we propose a methodology to select the optimal quantum dot to be combined with a broad band phosphor in order to realize a white LED with optimal luminous efficacy and CRI. The methodology is based on accurate and efficient simulations using the extended adding-doubling approach that take into account all the optical interactions. The method is elaborated for the specific case of a hybrid, remote phosphor white LED with YAG:Ce phosphor in combination with InP/CdxZn 1-x Se type quantum dots. The absorption and emission spectrum of the quantum dots are generated in function of three synthesis parameters (core size, shell size and cadmium fraction) by a semi-empirical 'quantum dot model' to include the continuous tunability of these spectra. The sufficiently fast simulations allow to scan the full parameter space consisting of these synthesis parameters and luminescent material concentrations in terms of CRI and efficacy. A conclusive visualization of the final performance allows to make a well-considered trade-off between these performance parameters. For the hybrid white remote phosphor LED with YAG:Ce and InP/CdxZn 1-x Se quantum dots a CRI Ra = 90 (with R9>50) and an overall efficacy of 110 lm/W is found.

  3. p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111).

    Science.gov (United States)

    Nguyen, H P T; Zhang, S; Cui, K; Han, X; Fathololoumi, S; Couillard, M; Botton, G A; Mi, Z

    2011-05-11

    Full-color, catalyst-free InGaN/GaN dot-in-a-wire light-emitting diodes (LEDs) were monolithically grown on Si(111) by molecular beam epitaxy, with the emission characteristics controlled by the dot properties in a single epitaxial growth step. With the use of p-type modulation doping in the dot-in-a-wire heterostructures, we have demonstrated the most efficient phosphor-free white LEDs ever reported, which exhibit an internal quantum efficiency of ∼56.8%, nearly unaltered CIE chromaticity coordinates with increasing injection current, and virtually zero efficiency droop at current densities up to ∼640 A/cm(2). The remarkable performance is attributed to the superior three-dimensional carrier confinement provided by the electronically coupled dot-in-a-wire heterostructures, the nearly defect- and strain-free GaN nanowires, and the significantly enhanced hole transport due to the p-type modulation doping.

  4. Influence of Gaussian white noise on the frequency-dependent first nonlinear polarizability of doped quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Jayanta [Department of Chemistry, Brahmankhanda Basapara High School, Basapara, Birbhum 731215, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.com [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2014-05-07

    We investigate the profiles of diagonal components of frequency-dependent first nonlinear (β{sub xxx} and β{sub yyy}) optical response of repulsive impurity doped quantum dots. We have assumed a Gaussian function to represent the dopant impurity potential. This study primarily addresses the role of noise on the polarizability components. We have invoked Gaussian white noise consisting of additive and multiplicative characteristics (in Stratonovich sense). The doped system has been subjected to an oscillating electric field of given intensity, and the frequency-dependent first nonlinear polarizabilities are computed. The noise characteristics are manifested in an interesting way in the nonlinear polarizability components. In case of additive noise, the noise strength remains practically ineffective in influencing the optical responses. The situation completely changes with the replacement of additive noise by its multiplicative analog. The replacement enhances the nonlinear optical response dramatically and also causes their maximization at some typical value of noise strength that depends on oscillation frequency.

  5. Red carbon dots-based phosphors for white light-emitting diodes with color rendering index of 92.

    Science.gov (United States)

    Zhai, Yuechen; Wang, Yi; Li, Di; Zhou, Ding; Jing, Pengtao; Shen, Dezhen; Qu, Songnan

    2018-05-29

    Exploration of solid-state efficient red emissive carbon dots (CDs) phosphors is strongly desired for the development of high performance CDs-based white light-emitting diodes (WLEDs). In this work, enhanced red emissive CDs-based phosphors with photoluminescence quantum yields (PLQYs) of 25% were prepared by embedding red emissive CDs (PLQYs of 23%) into polyvinyl pyrrolidone (PVP). Because of the protection of PVP, the phosphors could preserve strong luminescence under long-term UV excitation or being mixed with conventional packaging materials. By applying the red emissive phosphors as the color conversion layer, WLEDs with high color rendering index of 92 and color coordinate of (0.33, 0.33) are fabricated. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Thermal behavior of a quantum dot nanocomposite as a color converting material and its application to white LED

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Ju Yeon; Kim, Kyung Nam; Jeong, Sohee; Han, Chang-Soo, E-mail: cshan@kimm.re.kr [Nano-Mechanical Systems Research division, Korea Institute of Machinery and Materials (KIMM), Daejeon 305343 (Korea, Republic of)

    2010-12-10

    We present a novel nanocomposite, a mixture of a CdSe/CdS/ZnS red quantum dot (QD), an Sr{sub 2}SiO{sub 4}:Eu green phosphor and silicone resin for a color converting material. The temperature rise and the optical characteristics of the nanocomposite due to the addition of the QD have been investigated in terms of QD content ratio and the mixing components. The experimental results suggested that a small addition of QDs generated a large amount of heat during light conversion at the wavelength of QD emission. Considering the temperature rise in a nanocomposite, we applied 0.2 wt% QDs on an InGaN blue LED chip. As a result, we could achieve a white LED device with a high color rendering index of 83.2, a high luminance of 65.86 lm W{sup -1} and a moderate temperature increase of 94 deg. C. The white LED converted by the newly developed QD-phosphor nanocomposite has great potential in future illumination.

  7. Fast wave evanescence in filamentary boundary plasmas

    International Nuclear Information System (INIS)

    Myra, J. R.

    2014-01-01

    Radio frequency waves for heating and current drive of plasmas in tokamaks and other magnetic confinement devices must first traverse the scrape-off-layer (SOL) before they can be put to their intended use. The SOL plasma is strongly turbulent and intermittent in space and time. These turbulent properties of the SOL, which are not routinely taken into account in wave propagation codes, can have an important effect on the coupling of waves through an evanescent SOL or edge plasma region. The effective scale length for fast wave (FW) evanescence in the presence of short-scale field-aligned filamentary plasma turbulence is addressed in this paper. It is shown that although the FW wavelength or evanescent scale length is long compared with the dimensions of the turbulence, the FW does not simply average over the turbulent density; rather, the average is over the exponentiation rate. Implications for practical situations are discussed

  8. Controlling the magic and normal sizes of white CdSe quantum dots

    Science.gov (United States)

    Su, Yu-Sheng; Chung, Shu-Ru

    2017-08-01

    In this study, we have demonstrated a facile chemical route to prepare CdSe QDs with white light emission, and the performance of white CdSe-based white light emitting diode (WLED) is also exploded. An organic oleic acid (OA) is used to form Cd-OA complex first and hexadecylamine (HDA) and 1-octadecene (ODE) is used as surfactants. Meanwhile, by varying the reaction time from 1 s to 60 min, CdSe QDs with white light can be obtained. The result shows that the luminescence spectra compose two obvious emission peaks and entire visible light from 400 to 700 nm, when the reaction time less than 10 min. The wide emission wavelength combine two particle sizes of CdSe, magic and normal, and the magic-CdSe has band-edge and surface-state emission, while normal size only possess band-edge emission. The TEM characterization shows that the two different sizes with diameter of 1.5 nm and 2.7 nm for magic and normal size CdSe QDs can be obtained when the reaction time is 4 min. We can find that the magic size of CdSe is produced when the reaction time is less than 3 min. In the time ranges from 3 to 10 min, two sizes of CdSe QDs are formed, and with QY from 20 to 60 %. Prolong the reaction time to 60 min, only normal size of CdSe QD can be observed due to the Ostwald repining, and its QYs is 8 %. Based on the results we can conclude that the two emission peaks are generated from the coexistence of magic size and normal size CdSe to form the white light QDs, and the QY and emission wavelength of CdSe QDs can be increased with prolonging reaction time. The sample reacts for 2 (QY 30 %), 4 (QY 32 %) and 60 min (QY 8 %) are choosing to mixes with transparent acrylic-based UV curable resin for WLED fabrication. The Commission International d'Eclairage (CIE) chromaticity, color rendering index (CRI), and luminous efficacy for magic, mix, and normal size CdSe are (0.49, 0.44), 81, 1.5 lm/W, (0.35, 0.30), 86, 1.9 lm/W, and (0.39, 0.25), 40, 0.3 lm/W, respectively.

  9. Fabricating off-diagonal components of frequency-dependent linear and nonlinear polarizabilities of doped quantum dots by Gaussian white noise

    International Nuclear Information System (INIS)

    Saha, Surajit; Ganguly, Jayanta; Ghosh, Manas

    2015-01-01

    We make a rigorous exploration of the profiles of off-diagonal components of frequency-dependent linear (α xy , α yx ), first nonlinear (β xyy , β yxx ), and second nonlinear (γ xxyy , γ yyxx ) polarizabilities of quantum dots driven by Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been applied additively and multiplicatively to the system. An external oscillatory electric field has also been applied to the system. Gradual variations of external frequency, dopant location, and noise strength give rise to interesting features of polarizability components. The observations reveal intricate interplay between noise strength and dopant location which designs the polarizability profiles. Moreover, the mode of application of noise also modulates the polarizability components. Interestingly, in case of additive noise the noise strength has no role on polarizabilities whereas multiplicative noise invites greater delicacy in them. The said interplay provides a rather involved framework to attain stable, enhanced, and often maximized output of linear and nonlinear polarizabilities. - Highlights: • Linear and nonlinear polarizabilities of quantum dot are studied. • The polarizability components are off-diagonal and frequency-dependent. • Quantum dot is doped with a repulsive impurity. • Doped system is subject to Gaussian white noise. • Mode of noise application affects polarizabilities

  10. Sensitivity enhancement in evanescent optical waveguidesensors

    NARCIS (Netherlands)

    Veldhuis, G.J.; Parriaux, O.; Hoekstra, Hugo; Lambeck, Paul

    2000-01-01

    It is shown, that the sensitivity of the effective refractive index on the cladding index in evanescent optical waveguide sensors, can be larger than unity. This implies that the attenuation of a guided wave propagating in a waveguide immersed in an absorptive medium can be made larger than that of

  11. Long-term stable stacked CsPbBr3 quantum dot films for highly efficient white light generation in LEDs.

    Science.gov (United States)

    Song, Young Hyun; Yoo, Jin Sun; Kang, Bong Kyun; Choi, Seung Hee; Ji, Eun Kyung; Jung, Hyun Suk; Yoon, Dae Ho

    2016-12-01

    We report highly efficient ethyl cellulose with CsPbBr 3 perovskite QD films for white light generation in LED application. Ethyl cellulose with CsPbBr 3 quantum dots is applied with Sr 2 Si 5 N 8  : Eu 2+ red phosphor on an InGaN blue chip, achieving a highly efficient luminous efficacy of 67.93 lm W -1 under 20 mA current.

  12. Chip-scale white flip-chip light-emitting diode containing indium phosphide/zinc selenide quantum dots

    Science.gov (United States)

    Fan, Bingfeng; Yan, Linchao; Lao, Yuqin; Ma, Yanfei; Chen, Zimin; Ma, Xuejin; Zhuo, Yi; Pei, Yanli; Wang, Gang

    2017-08-01

    A method for preparing a quantum dot (QD)-white light-emitting diode (WLED) is reported. Holes were etched in the SiO2 layer deposited on the sapphire substrate of the flip-chip LED by inductively coupled plasma, and these holes were then filled with QDs. An ultraviolet-curable resin was then spin-coated on top of the QD-containing SiO2 layer, and the resin was cured to act as a protecting layer. The reflective sidewall structure minimized sidelight leakage. The fabrication of the QD-WLED is simple in preparation and compatible with traditional LED processes, which was the minimum size of the WLED chip-scale integrated package. InP/ZnS core-shell QDs were used as the converter in the WLED. A blue light-emitting diode with a flip-chip structure was used as the excitation source. The QD-WLED exhibited color temperatures from 5900 to 6400 K and Commission Internationale De L'Elcairage color coordinates from (0.315, 0.325) to (0.325, 0.317), under drive currents from 100 to 400 mA. The QD-WLED exhibited stable optoelectronic properties.

  13. Structural optimization for remote white light-emitting diodes with quantum dots and phosphor: packaging sequence matters.

    Science.gov (United States)

    Xie, Bin; Chen, Wei; Hao, Junjie; Wu, Dan; Yu, Xingjian; Chen, Yanhua; Hu, Run; Wang, Kai; Luo, Xiaobing

    2016-12-26

    White light-emitting diodes (WLEDs) with quantum dots (QDs) and phosphor have attracted tremendous attentions due to their excellent color rendering ability. In the packaging process, QDs layer and phosphor-silicone layer tend to be separated to reduce the reabsorption losses, and to maintain the stability of QDs surface ligands. This study investigated the packaging sequence between QDs and phosphor on the optical and thermal performances of WLEDs. The output optical power and PL spectra were measured and analyzed, and the temperature fields were simulated and validated experimentally by infrared thermal imager. It was found that when driven by 60 mA, the QDs-on-phosphor type WLEDs achieved luminous efficiency (LE) of 110 lm/W, with color rendering index (CRI) of Ra = 92 and R9 = 80, while the phosphor-on-QDs type WLEDs demonstrated lower LE of 68 lm/W, with Ra = 57 and R9 = 24. Moreover, the QDs-on-phosphor type WLEDs generated less heat than that of another, consequently the highest temperature in the QDs-on-phosphor type was lower than another, and the temperature difference can reach 12.3°C. Therefore, in terms of packaging sequence, the QDs-on-phosphor type is an optimal packaging architecture for higher optical efficiency, better color rendering ability and lower device temperature.

  14. Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes.

    Science.gov (United States)

    Xuan, Tongtong; Yang, Xianfeng; Lou, Sunqi; Huang, Junjian; Liu, Yong; Yu, Jinbo; Li, Huili; Wong, Ka-Leung; Wang, Chengxin; Wang, Jing

    2017-10-19

    Inorganic halide perovskite quantum dots (QDs) suffer from problems related to poor water stability and poor thermal stability. Here we developed a simple strategy to synthesize alkyl phosphate (TDPA) coated CsPbBr 3 QDs by using 1-tetradecylphosphonic acid both as the ligand for the CsPbBr 3 QDs and as the precursor for the formation of alkyl phosphate. These QDs not only retain a high photoluminescence quantum yield (PLQY, 68%) and narrow band emission (FHWM ∼ 22 nm) but also exhibit high stability against water and heat. The relative PL intensity of the QDs was maintained at 75% or 59% after being dispersed in water for 5 h or heated to 375 K (100 °C), respectively. Finally, white light-emitting diodes (WLEDs) with a high luminous efficiency of 63 lm W -1 and a wide color gamut (122% of NTSC) were fabricated by using green-emitting CsPbBr 3 /TDPA QDs and red-emitting K 2 SiF 6 :Mn 4+ phosphors as color converters. The luminous efficiency of the WLEDs remained at 90% after working under a relative humidity (RH) of 60% for 15 h, thereby showing promise for use as backlight devices in LCDs.

  15. On the propagation speed of evanescent modes

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, A.P.L. [State Univ. of Campinas, Campinas (Brazil)]|[Universidad Federal Fluminense (Brazil); Hernandez Figueroa, H.E. [State Univ. of Campinas, Campinas (Brazil); Recami, E. [Istituto Nazionale di Fisica Nucleare, Milan (Italy)]|[Bergamo Univ., Bergamo (Italy). Fac. di Ingegneria]|[State Univ. of Campinas, Campinas (Brazil)

    2000-03-01

    The group velocity of evanescent waves (in undersized waveguides, for instance) was theoretically predicted, and has been experimentally verified, to be superluminal. By contrast, it is known that the precursor speed in vacuum cannot be larger than c. This paper, by computer simulations based on Maxwell equations only, shows the existence of both phenomena and verifies the actual possibility of superluminal group velocities, without violating the so-called (naive) Einstein causality.

  16. On the propagation speed of evanescent modes

    International Nuclear Information System (INIS)

    Barbero, A.P.L.; Hernandez Figueroa, H.E.; Recami, E.

    2000-03-01

    The group velocity of evanescent waves (in undersized waveguides, for instance) was theoretically predicted, and has been experimentally verified, to be superluminal. By contrast, it is known that the precursor speed in vacuum cannot be larger than c. This paper, by computer simulations based on Maxwell equations only, shows the existence of both phenomena and verifies the actual possibility of superluminal group velocities, without violating the so-called (naive) Einstein causality

  17. Zinc and nitrogen ornamented bluish white luminescent carbon dots for engrossing bacteriostatic activity and Fenton based bio-sensor.

    Science.gov (United States)

    Das, Poushali; Ganguly, Sayan; Bose, Madhuparna; Mondal, Subhadip; Choudhary, Sumita; Gangopadhyay, Subhashis; Das, Amit Kumar; Banerjee, Susanta; Das, Narayan Chandra

    2018-07-01

    Carbon dots with heteroatom co-doping associated with consummate luminescence features are of acute interest in diverse applications such as biomolecule markers, chemical sensing, photovoltaic, and trace element detection. Herein, we demonstrate a straightforward, highly efficient hydrothermal dehydration technique to synthesize zinc and nitrogen co-doped multifunctional carbon dots (N, Zn-CDs) with superior quantum yield (50.8%). The luminescence property of the carbon dots can be tuned by regulating precursor ratio and surface oxidation states in the carbon dots. A unique attribution of the as-prepared carbon dots is the high monodispersity and robust excitation-independent emission behavior that is stable in enormously reactive environment and over a wide range of pH. These N, Zn-CDs unveils captivating bacteriostatic activity against gram-negative bacteria Escherichia coli. Furthermore, the excellent luminescence properties of these carbon dots were applied as a platform of sensitive biosensor for the detection of hydrogen peroxide. Under optimized conditions, these N, Zn-CDs reveals high sensitivity over a broad range of concentrations with an ultra-low limit of detection (LOD) indicating their pronounced prospective as a fluorescent probe for chemical sensing. Overall, the experimental outcomes propose that these zero-dimensional nano-dots could be developed as bacteriostatic agents to control and prevent the persistence and spreading of bacterial infections and as a fluorescent probe for hydrogen peroxide detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Optical efficiency enhancement in white organic light-emitting diode display with high color gamut using patterned quantum dot film and long pass filter

    Science.gov (United States)

    Kim, Hyo-Jun; Shin, Min-Ho; Kim, Young-Joo

    2016-08-01

    A new structure for white organic light-emitting diode (OLED) displays with a patterned quantum dot (QD) film and a long pass filter (LPF) was proposed and evaluated to realize both a high color gamut and high optical efficiency. Since optical efficiency is a critical parameter in white OLED displays with a high color gamut, a red or green QD film as a color-converting component and an LPF as a light-recycling component are introduced to be adjusted via the characteristics of a color filter (CF). Compared with a conventional white OLED without both a QD film and the LPF, it was confirmed experimentally that the optical powers of red and green light in a new white OLED display were increased by 54.1 and 24.7% using a 30 wt % red QD film and a 20 wt % green QD film with the LPF, respectively. In addition, the white OLED with both a QD film and the LPF resulted in an increase in the color gamut from 98 to 107% (NTSC x,y ratio) due to the narrow emission linewidth of the QDs.

  19. Controlling reabsorption effect of bi-color CdSe quantum dots-based white light-emitting diodes

    Science.gov (United States)

    Siao, Cyuan-Bin; Chung, Shu-Ru; Wang, Kuan-Wen

    2017-08-01

    The colloidal semiconductor quantum dots (QDs) have the potentials to be used in white light-emitting diode (WLED) as a down-converting component to replace incandescent lamps, because the traditional WLED composed of Y3Al5O12:Ce3+ (YAG:Ce) phosphor lack of red color emissions and shows low color quality. Among various QDs, CdSe has been extensively studied because it possesses attractive characteristics such as high quantum yields (QYs), narrow emission spectral bandwidth, as well as size-tunable optical characteristics. However, in order to enhance the color rendering index (CRI) of WLED, blending materials with different emission wavelengths has been used frequently. Unfortunately, these procedures are complex and time-consuming, and the emission energy of smaller QDs can be reabsorbed by larger QDs, resulting in decreasing the excitation intensity in yellowish-green region. Therefore, in this study, in order to decrease the reabsorption effect and to simplify the procedures, we have demonstrated a facile thermal pyrolyzed route to prepare bicolor CdSe QDs with dual-wavelengths. The emission wavelengths, particle sizes, and QYs of QDs can be tuned from 537/595 to 537/602 nm, 2.59/3.92 to 2.59/4.01 nm, and 27 to 40 %, for GR1 to 3 samples, respectively when the amount of Se precursor is decreased from 1.5 to 0.75 mmol. Meanwhile, the area ratio of green to red (Ag/Ar) in fluorescence spectra is gradually increased, due to the increase in growth rate, and decrease in nuclei formation in red emission. The GR1, GR2, and GR3 QDs are then encapsulated by convert types to form the LED, in which the QDs are deposited on the blue-emitting InGaN LED chip (λem = 450 nm). After encapsulation, the devices properties of Commission International d'Eclairage (CIE) chromaticity and Ag/Ar area ratio are (0.40, 0.24), 0.28/1, (0.40, 0.31), 0.52/1, and (0.40, 0.38), 1.02/1, respectively for GR1, GR2, and GR3. The results show that the green emission intensity are strongly

  20. White light-emitting nanocomposites based on an oxadiazole–carbazole copolymer (POC) and InP/ZnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Annalisa, E-mail: annalisa.bruno@enea.it; Borriello, Carmela, E-mail: carmela.borriello@enea.it; Di Luccio, Tiziana, E-mail: tiziana.diluccio@enea.it; Nenna, Giuseppe [Centro Ricerche Portici, ENEA, UTTP NANO (Italy); Sessa, Lucia [University of Salerno, Department of Pharmacy (Italy); Concilio, Simona [University of Salerno, Department of Industrial Engineering (Italy); Haque, Saif A. [Imperial College London, Chemistry Department (United Kingdom); Minarini, Carla [Centro Ricerche Portici, ENEA, UTTP NANO (Italy)

    2013-11-15

    In this work, we studied energetic and optical proprieties of a polyester-containing oxadiazole and carbazole units that we will indicate as POC. This polymer is characterized by high photoluminescence activity in the blue region of the visible spectrum, making it suitable for the development of efficient white-emitting organic light emission devices. Moreover, POC polymer has been combined with two red emitters InP/ZnS quantum dots (QDs) to obtain nanocomposites with wide emission spectra. The two types of QDs have different absorption wavelengths: 570 nm [InP/ZnS(570)] and 627 nm [InP/ZnS(627)] and were inserted in the polymer at different concentrations. The optical properties of the nanocomposites have been investigated and compared to the ones of the pure polymer. Both spectral and time resolved fluorescence measurements show an efficient energy transfer from the polymer to QDs, resulting in white-emitting nanocomposites.

  1. White light-emitting nanocomposites based on an oxadiazole-carbazole copolymer (POC) and InP/ZnS quantum dots

    Science.gov (United States)

    Bruno, Annalisa; Borriello, Carmela; Di Luccio, Tiziana; Nenna, Giuseppe; Sessa, Lucia; Concilio, Simona; Haque, Saif A.; Minarini, Carla

    2013-11-01

    In this work, we studied energetic and optical proprieties of a polyester-containing oxadiazole and carbazole units that we will indicate as POC. This polymer is characterized by high photoluminescence activity in the blue region of the visible spectrum, making it suitable for the development of efficient white-emitting organic light emission devices. Moreover, POC polymer has been combined with two red emitters InP/ZnS quantum dots (QDs) to obtain nanocomposites with wide emission spectra. The two types of QDs have different absorption wavelengths: 570 nm [InP/ZnS(570)] and 627 nm [InP/ZnS(627)] and were inserted in the polymer at different concentrations. The optical properties of the nanocomposites have been investigated and compared to the ones of the pure polymer. Both spectral and time resolved fluorescence measurements show an efficient energy transfer from the polymer to QDs, resulting in white-emitting nanocomposites.

  2. Cold white light generation through the simultaneous emission from Ce{sup 3+}, Dy{sup 3+} and Mn{sup 2+} in 90Al{sub 2}O{sub 3}{center_dot}2CeCl{sub 3}{center_dot}3DyCl{sub 3}{center_dot}5MnCl{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, W. [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, Mexico, D.F. 09340 (Mexico); Alvarez, E. [Departamento de Fisica, Universidad de Sonora (UNISON), Boulevard Luis Encinas y Rosales s/n, Hermosillo, Sonora 83000 (Mexico); Martinez-Martinez, R.; Yescas-Mendoza, E. [Instituto de Fisica y Matematicas, Universidad Tecnologica de la Mixteca, Carretera a Acatlima Km. 2.5, Huajuapan de Leon, Oaxaca 69000 (Mexico); Camarillo, I. [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, Mexico, D.F. 09340 (Mexico); Caldino, U., E-mail: cald@xanum.uam.mx [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, Mexico, D.F. 09340 (Mexico)

    2012-08-15

    The photoluminescence of a CeCl{sub 3}, DyCl{sub 3} and MnCl{sub 2} doped aluminum oxide film deposited by ultrasonic spray pyrolysis was characterized by excitation, emission and decay time spectroscopy. A nonradiative energy transfer from Ce{sup 3+} to Dy{sup 3+} and Mn{sup 2+} is observed upon UV excitation at 278 nm (peak emission wavelength of AlGaN-based LEDs). Such energy transfer leads to a simultaneous emission of these ions in the blue, green, yellow and red regions, resulting in white light emission with CIE1931 chromaticity coordinates, x=0.34 and y=0.23, which correspond to cold white light with a color temperature of 4900 K. - Highlights: Black-Right-Pointing-Pointer 90Al{sub 2}O{sub 3}{center_dot}2CeCl{sub 3}{center_dot}3DyCl{sub 3}{center_dot}5MnCl{sub 2} thin film (AOCDM) could be prepared by spray pyrolysis. Black-Right-Pointing-Pointer Non-radiative energy transfer from Ce{sup 3+} to Dy{sup 3+} and Mn{sup 2+} takes place in AOCDM. Black-Right-Pointing-Pointer AOCDM (pumped with 278 nm-UV light) can generate 4900 K cold white light.

  3. An Evanescent Field Optical Microscope. Scanning probe Microscopy

    NARCIS (Netherlands)

    van Hulst, N.F.; Segerink, Franciscus B.; Bölger, B.; Bölger, B.; Wickramasinghe, H. Kumar

    1991-01-01

    An Evanescent Field Optical Microscope (EFOM) is presented, which employs frustrated total internal reflection on a highly localized scale by means of a sharp dielectric tip. The coupling of the evanescent field to the sub-micrometer probe as a function of probe-sample distance, angle of incidence

  4. White lighting device from composite films embedded with hydrophilic Cu(In, Ga)S2/ZnS and hydrophobic InP/ZnS quantum dots

    Science.gov (United States)

    Kim, Jong-Hoon; Yang, Heesun

    2014-06-01

    Two types of non-Cd quantum dots (QDs)—In/Ga ratio-varied, green-to-greenish-yellow fluorescence-tuned Cu-In-Ga-S (CIGS) alloy ones, and red-emitting InP ones—are synthesized for use as down-converters in conjunction with a blue light-emitting diode (LED). Among a series of Ga-rich CI1-xGxS/ZnS core/shell QDs (x = 0.7, 0.8, and 0.9), CI0.2G0.8S/ZnS QD is chosen for the hydrophobic-to-hydrophilic surface modification via an in-situ ligand exchange and then embedded in a water-soluble polyvinyl alcohol (PVA). This free-standing composite film is utilized as a down-converter for the fabrication of a remote-type white QD-LED, but the resulting bi-colored device exhibits a cool white light with a limited color rendering index property. To improve white light qualities, another QD-polymer film of hydrophobic red InP/ZnS QD-embedding polyvinylpyrrolidone is sequentially stacked onto the CI0.2G0.8S/ZnS QD-PVA film, producing a unique dual color-emitting, flexible and transparent bilayered composite film. Tri-colored white QD-LED integrated with the bilayered QD film possesses an exceptional color rendering property through reinforcing a red spectral component and balancing a white spectral distribution.

  5. White lighting device from composite films embedded with hydrophilic Cu(In, Ga)S2/ZnS and hydrophobic InP/ZnS quantum dots

    International Nuclear Information System (INIS)

    Kim, Jong-Hoon; Yang, Heesun

    2014-01-01

    Two types of non-Cd quantum dots (QDs)—In/Ga ratio-varied, green-to-greenish-yellow fluorescence-tuned Cu−In−Ga−S (CIGS) alloy ones, and red-emitting InP ones—are synthesized for use as down-converters in conjunction with a blue light-emitting diode (LED). Among a series of Ga-rich CI 1−x G x S/ZnS core/shell QDs (x = 0.7, 0.8, and 0.9), CI 0.2 G 0.8 S/ZnS QD is chosen for the hydrophobic-to-hydrophilic surface modification via an in-situ ligand exchange and then embedded in a water-soluble polyvinyl alcohol (PVA). This free-standing composite film is utilized as a down-converter for the fabrication of a remote-type white QD-LED, but the resulting bi-colored device exhibits a cool white light with a limited color rendering index property. To improve white light qualities, another QD-polymer film of hydrophobic red InP/ZnS QD-embedding polyvinylpyrrolidone is sequentially stacked onto the CI 0.2 G 0.8 S/ZnS QD-PVA film, producing a unique dual color-emitting, flexible and transparent bilayered composite film. Tri-colored white QD-LED integrated with the bilayered QD film possesses an exceptional color rendering property through reinforcing a red spectral component and balancing a white spectral distribution. (papers)

  6. Fabrication of white light-emitting diodes based on UV light-emitting diodes with conjugated polymers-(CdSe/ZnS) quantum dots as hybrid phosphors.

    Science.gov (United States)

    Jung, Hyunchul; Chung, Wonkeun; Lee, Chang Hun; Kim, Sung Hyun

    2012-07-01

    White light-emitting diodes (LEDs) were fabricated using GaN-based 380-nm UV LEDs precoated with the composite of blue-emitting polymer (poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(2-methoxy-5-{2-ethylhexyloxy)-1 ,4-phenylene)]), yellow green-emitting polymer (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1',3}-thiadiazole)]), and 605-nm red-emitting quantum dots (QDs). CdSe cores were obtained by solvothermal route using CdO, Se precursors and ZnS shells were synthesized by using diethylzinc, and hexamethyldisilathiane precursors. The optical properties of CdSe/ZnS QDs were characterized by UV-visible and photoluminescence (PL) spectra. The structural data and composition of the QDs were transmission electron microscopy (TEM), and EDX technique. The quantum yield and size of the QDs were 58.7% and about 6.7 nm, respectively. Three-band white light was generated by hybridizing blue (430 nm), green (535 nm), and red (605 nm) emission. The color-rendering index (CRI) of the device was extremely improved by introducing the QDs. The CIE-1931 chromaticity coordinate, color temperature, and CRI of a white LED at 20 mA were (0.379, 0.368), 3969 K, and 90, respectively.

  7. Evanescent waves in optics an introduction to plasmonics

    CERN Document Server

    Bertolotti, Mario; M Guzman, Angela

    2017-01-01

    This monograph provides an introductory discussion of evanescent waves and plasmons, describes their properties and uses, and shows how they are fundamental when operating with nanoscale optics. Far field optics is not suitable for the design, description, and operation of devices at this nanometre scale. Instead one must work with models based on near-field optics and surface evanescent waves. The new discipline of plasmonics has grown to encompass the generation and application of plasmons both as a travelling excitation in a nanostructure and as a stationary enhancement of the electrical field near metal nanosurfaces. The book begins with a brief review of the basic concepts of electromagnetism, then introduces evanescent waves through reflection and refraction, and shows how they appear in diffraction problems, before discussing the role that they play in optical waveguides and sensors. The application of evanescent waves in super-resolution devices is briefly presented, before plasmons are introduced. Th...

  8. Evanescent magnetic field effects on entropy generation at the onset ...

    Indian Academy of Sciences (India)

    application of evanescent magnetic field not only suppresses the fluctuation of the ..... the Prigogine's theorem of minimum entropy production is unproven. ... consists in a double spiral configuration and viscous boundary layers in close ...

  9. Analytical scanning evanescent microwave microscope and control stage

    Science.gov (United States)

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2009-06-23

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  10. Fiber-optic evanescent-field sensor for attitude measurement

    Science.gov (United States)

    Liu, Yun; Chen, Shimeng; Liu, Zigeng; Guang, Jianye; Peng, Wei

    2017-11-01

    We proposed a new approach to attitude measurement by an evanescent field-based optical fiber sensing device and demonstrated a liquid pendulum. The device consisted of three fiber-optic evanescent-filed sensors which were fabricated by tapered single mode fibers and immersed in liquid. Three fiber Bragg gratings were used to measure the changes in evanescent field. And their reflection peaks were monitored in real time as measurement signals. Because every set of reflection responses corresponded to a unique attitude, the attitude of the device could be measured by the three fiber-optic evanescent-filed sensors. After theoretical analysis, computerized simulation and experimental verification, regular responses were obtained using this device for attitude measurement. The measurement ranges of dihedral angle and direction angle were 0°-50° and 0°-360°. The device is based on cost-effective power-referenced scheme. It can be used in electromagnetic or nuclear radiation environment.

  11. Microwave-assisted aqueous synthesis of transition metal ions doped ZnSe/ZnS core/shell quantum dots with tunable white-light emission

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [Laboratory of Advanced Materials, Fudan University, Shanghai 200438 (China); Chen, Qiuhang; Zhang, Wanlu; Mei, Shiliang; He, Liangjie; Zhu, Jiatao [Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Institute for Electric Light Sources, Fudan University, Shanghai 200433 (China); Chen, Guoping [School of Information Science and Technology, Fudan University, Shanghai 200433 (China); Guo, Ruiqian, E-mail: rqguo@fudan.edu.cn [Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Institute for Electric Light Sources, Fudan University, Shanghai 200433 (China)

    2015-10-01

    Highlights: • ZnSe-based QDs were formed via a microwave-assisted aqueous approach. • The stabilizer, ZnS coats and UV irradiation played a role in the PL enhancement. • Tunable white-light-emitting Mn:ZnSe QDs and Cu,Mn:ZnSe/ZnS QDs were synthesized. • The formation mechanism of Cu,Mn:ZnSe QDs was clarified. • The corresponding CIE color coordinates of different PL spectra were obtained. - Abstract: Synthesis of bright white-light emitting Mn and Cu co-doped ZnSe/ZnS core/shell quantum dots (QDs) (Cu,Mn:ZnSe/ZnS) was reported. Water-soluble ZnSe-based QDs with Mn and Cu doping were prepared using a versatile hot-injection method in aqueous solution with a microwave-assisted approach. Influence of the Se/S ratio, stabilizer, refluxing time and the concentration of Cu/Mn dopant ions on the particle size and photoluminescence (PL) were investigated. The as-prepared QDs in the different stages of growth were characterized by X-ray powder diffractometer (XRD), high-resolution transmission electron microscopy (HRTEM), UV–visible (UV–vis) spectrophotometer, and fluorescence spectrophotometer. It is found that these ZnSe-based QDs synthesized under mild conditions exhibit emission in the range of 390–585 nm. The PL quantum yield (QY) of the as-prepared water-soluble ZnSe QDs can be up to 24.3% after the UV-irradiation treatment. The band-gap emission of ZnSe is effectively restrained through Mn and Cu doping. The refluxing time influences the doping of not only Mn, but also Cu, which leads to the best refluxing time of Mn:ZnSe and the red-shift of the emission of Cu:ZnSe d-dots. Co-doping induced white-light emission (WLE) from Cu,Mn:ZnSe/ZnS core/shell QDs were obtained, which can offer the opportunity for future-generation white-light emitting diodes (LEDs)

  12. Utilization of solvothermally grown InP/ZnS quantum dots as wavelength converters for fabrication of white light-emitting diodes.

    Science.gov (United States)

    Jang, Eun-Pyo; Yang, Heesun

    2013-09-01

    This work reports on a simple solvothermal synthesis of InP/ZnS core/shell quantum dots (QDs) using a much safer and cheaper phosphorus precursor of tris(dimethylamino)phosphine than the most popularly chosen tris(trimethylsilyl)phosphine. The band gap of InP QDs is facilely controlled by varying the solvothermal core growth time (4 vs. 6 h) with a fixed temperature of 150 degrees C, and the successive solvothermal ZnS shelling at 220 degrees C for 6 h results in green- and yellow-emtting InP/ZnS QD with emission quantum yield of 41-42%. The broad size distribution of as-synthesized InP/ZnS QDs, which appears to be inherent in the current solvothermal approach, is improved by a size-selective sorting procedure, and the emission properties of the resulting size-sorted QD fractions are investigated. To produce white emission for general lighting source, a blue light-emitting diode (LED) is combined with non-size-soroted green or yellow QDs as wavelength converters. Furthermore, the QD-LED that includes a blend of green and yellow QDs is fabricated to generate a white lighting source with an enhanced color rendering performance, and its electroluminescent properties are characterized in detail.

  13. A Phosphine-Free Route to Size-Adjustable CdSe and CdSe/CdS Core-Shell Quantum Dots for White-Light-Emitting Diodes.

    Science.gov (United States)

    Zhang, Yugang; Li, Guopeng; Zhang, Ting; Song, Zihang; Wang, Hui; Zhang, Zhongping; Jiang, Yang

    2018-03-01

    The selenium dioxide was used as the precursor to synthesize wide-size-ranged CdSe quantum dots (2.4-5.7 nm) via hot-injection route. The CdSe quantum dots are featured with high crystalline, monodisperse, zinc blende structure and wide emission region (530-635 nm). In order to improve the stability and quantum yield, a phosphine-free single-molecular precursor approach is used to obtain CdSe/CdS core/shell quantum dots. The CdSe/CdS quantum dots are highly fluorescent with quantum yield up to 65%, and persist the good monodispersity and high crystallinity. Moreover, the quantum dots white light-emitting-diodes are fabricated by using the resultant red emission core/shell quantum dots and Y3Al5O12:Ce3+ yellow phosphors as color-conversion layers on a blue InGaN chip. The prepared light-emitting-diodes show good performance with CIE-1931 coordinated of (0.3583, 0.3349), an Ra of 92.9, and a Tc of 4410 K at 20 mA, which indicate that the combination of red-emission QDs and yellow phophors as a promising approach to obtain warm WLEDs with good color rendering.

  14. High color rendering index of remote-type white LEDs with multi-layered quantum dot-phosphor films and short-wavelength pass dichroic filters

    Science.gov (United States)

    Yoon, Hee Chang; Oh, Ji Hye; Do, Young Rag

    2014-09-01

    This paper introduces high color rendering index (CRI) white light-emitting diodes (W-LEDs) coated with red emitting (Sr,Ca)AlSiN3:Eu phosphors and yellowish-green emitting AgIn5S8/ZnS (AIS/ZS) quantum dots (QDs) on glass or a short-wavelength pass dichroic filter (SPDF), which transmit blue wavelength regions and reflect yellow wavelength regions. The red emitting (Sr,Ca)AlSiN3:Eu phosphor film is coated on glass and a SPDF using a screen printing method, and then the yellowish-green emitting AIS/ZS QDs are coated on the red phosphor (Sr,Ca)AlSiN3:Eu film-coated glass and SPDF using the electrospray (e-spray) method.To fabricate the red phosphor film, the optimum amount of phosphor is dispersed in a silicon binder to form a red phosphor paste. The AIS/ZS QDs are mixed with dimethylformamide (DMF), toluene, and poly(methyl methacrylate) (PMMA) for the e-spray coating. The substrates are spin-coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to fabricate a conductive surface. The CRI of the white LEDs is improved through inserting the red phosphor film between the QD layer and the glass substrate. Furthermore, the light intensities of the multi-layered phosphor films are enhanced through changing the glass substrate to the SPDF. The correlated color temperatures (CCTs) vary as a function of the phosphor concentration in the phosphor paste. The optical properties of the yellowish-green AIS/ZS QDs and red (Sr,Ca)AlSiN3:Eu phosphors are characterized using photoluminescence (PL), and the multi-layered QD-phosphor films are measured using electroluminescence (EL) with an InGaN blue LED (λmax = 450 nm) at 60 mA.

  15. Evanescent field infrared spectroscopy using chalcogenide glass fiber

    International Nuclear Information System (INIS)

    Katz Moti

    1992-06-01

    In the last few years a simple and cheap fiber-optics based spectroscopy method was developed for the investigation of liquids, pastes gases and thin layers. The fiber is immersed in the sample, and the investigated material becomes the fiber cladding. the interaction between the guided radiation in the fiber and the specimen is taking place by evanescent field which extends outside the fiber. This work concentrates in the quantitative characterization of the absorption of the evanescent field by the fiber cladding (the specimen). This subject was dealt with only briefly in the earlier works, and the aim of this work is to obtain a comprehensive understanding of this issue. (author)

  16. Transfer function and near-field detection of evanescent waves

    DEFF Research Database (Denmark)

    Radko, Ylia P.; Bozhevolnyi, Sergey I.; Gregersen, Niels

    2006-01-01

    of collection and illumination modes. Making use of a collection near-field microscope with a similar fiber tip illuminated by an evanescent field, we measure the collected power as a function of the field spatial frequency in different polarization configurations. Considering a two-dimensional probe...... for the transfer function, which is derived by introducing an effective pointof (dipolelike) detection inside the probe tip. It is found to be possible to fit reasonably well both the experimental and the simulation data for evanescent field components, implying that the developed approximation of the near......-field transfer function can serve as a simple, rational, and sufficiently reliable means of fiber probe characterization....

  17. White LED based on CaAl2Si2O8:Eu2+ Mn2+ phosphor and CdS/ZnS quantum dots

    Science.gov (United States)

    Shen, Changyu; Zhong, Chuan; Hou, Qianglong; Li, Ke

    2011-02-01

    Core/shell CdS/ZnS quantum dots (QDs) with the emission wavelength of 610nm, was synthesized by thermal deposition using cadmium oxide and selenium as precursors in a hot lauric acid and hexadecylamine trioctylphosphine oxide hybrid. CaAl2Si2O8:Eu2+ Mn2+ phosphor was synthesized by high-temperature solid state reaction at 1290 °C for 2 hours under the H2 reducing atmosphere, and X-ray powder diffraction analysis confirmed the formation of it. It has two emission bands peaking at 420 nm and 580nm originated from the transition 5d to 4f of Eu2+ and 4T1-6A1 of Mn2+, respectively. Blends of CaAl2Si2O8:Eu2+,Mn2+ phosphor and CdS/ZnS QDs exhibited the prominent spectral evolution with an increasing content of QDs. A hybrid white LED, which combines a blue LED with the blend of CaAl2Si2O8:Eu2+ Mn2+ phosphor and QDs with a weight ratio of 2:1, with the CIE coordinate of (0.3183, 0.3036) and CRI of 85 was obtained.

  18. Successive and large-scale synthesis of InP/ZnS quantum dots in a hybrid reactor and their application to white LEDs

    International Nuclear Information System (INIS)

    Kim, Kyungnam; Jeong, Sohee; Woo, Ju Yeon; Han, Chang-Soo

    2012-01-01

    We report successive and large-scale synthesis of InP/ZnS core/shell nanocrystal quantum dots (QDs) using a customized hybrid flow reactor, which is based on serial combination of a batch-type mixer and a flow-type furnace. InP cores and InP/ZnS core/shell QDs were successively synthesized in the hybrid reactor in a simple one-step process. In this reactor, the flow rate of the solutions was typically 1 ml min −1 , 100 times larger than that of conventional microfluidic reactors. In order to synthesize high-quality InP/ZnS QDs, we controlled both the flow rate and the crystal growth temperature. Finally, we obtained high-quality InP/ZnS QDs in colors from bluish green to red, and we demonstrated that these core/shell QDs could be incorporated into white-light-emitting diode (LED) devices to improve color rendering performance. (paper)

  19. Successive and large-scale synthesis of InP/ZnS quantum dots in a hybrid reactor and their application to white LEDs

    Science.gov (United States)

    Kim, Kyungnam; Jeong, Sohee; Woo, Ju Yeon; Han, Chang-Soo

    2012-02-01

    We report successive and large-scale synthesis of InP/ZnS core/shell nanocrystal quantum dots (QDs) using a customized hybrid flow reactor, which is based on serial combination of a batch-type mixer and a flow-type furnace. InP cores and InP/ZnS core/shell QDs were successively synthesized in the hybrid reactor in a simple one-step process. In this reactor, the flow rate of the solutions was typically 1 ml min-1, 100 times larger than that of conventional microfluidic reactors. In order to synthesize high-quality InP/ZnS QDs, we controlled both the flow rate and the crystal growth temperature. Finally, we obtained high-quality InP/ZnS QDs in colors from bluish green to red, and we demonstrated that these core/shell QDs could be incorporated into white-light-emitting diode (LED) devices to improve color rendering performance.

  20. Development of evanescent wave absorbance-based fibre-optic ...

    Indian Academy of Sciences (India)

    potential human health risk and may lead to death in young children and adults ... tive measures for disease outbreak are necessary, because of the recent biothreat, ... optical fibres in chemical sensing and biosensing are reviewed in detail in [12–19]. ... systematic development of these evanescent wave absorbance-based ...

  1. Helicity and evanescent waves. [Energy transport velocity, helicity, Lorentz transformation

    Energy Technology Data Exchange (ETDEWEB)

    Agudin, J L; Platzeck, A M [La Plata Univ. Nacional (Argentina); Albano, J R [Instituto de Astronomia y Fisica del Espacio, Buenos Aires, Argentina

    1978-02-20

    It is shown that the projection of the angular momentum of a circularly polarized electromagnetic evanescent wave along the mean velocity of energy transport (=helicity) can be reverted by a Lorentz transformation, in spite of the fact that this velocity is c.

  2. From the Somigliana waves to the evanescent waves

    Directory of Open Access Journals (Sweden)

    Pietro Caloi

    2010-02-01

    Full Text Available The Rayleigh equation has real coefficients; therefore, also the case of complex conjugated roots may be explained physically. The Author proves that the Somigliana waves may be formed for Poisson ratio values until 0.30543; for gradually less rigid media, they are missing altogether and degenerate into evanescent waves.

  3. Evanescent radiation, quantum mechanics and the Casimir effect

    Science.gov (United States)

    Schatten, Kenneth H.

    1989-01-01

    An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.

  4. Waveguide evanescent field fluorescence microscopy & its application in cell biology

    Science.gov (United States)

    Hassanzadeh, Abdollah

    There are many powerful microscopy technologies available for the investigation of bulk materials as well as for thin film samples. Nevertheless, for imaging an interface, especially live cells on a substrate and ultra thin-films, only Total Internal Reflection Fluorescence (TIRF) microscopy is available. This TIRF microscopy allows imaging without interference of the bulk. Various approaches are employed in fluorescence microscopy applications to restrict the excitation and detection of fluorophores to a thin region of the specimen. Elimination of background fluorescence from outside the focal plane can dramatically improve the signal-to-noise ratio, and consequently, the spatial resolution of the features or events of interest. TIRF microscopy is an evanescent field based microscopy. In this method, fluorescent dyes are only excited within an evanescent field: roughly within 100 nm above a glass coverslip. This will allow imaging surface and interfacial issues of the glass coverslip and an adjacent material. Waveguide evanescent field fluorescence (WEFF) microscopy is a new development for imaging cell-substrate interactions in real time and in vitro. It is an alternative to TIRF microscopy. In this method the light is coupled into a waveguide via an optical grating. The coupled light propagates as a waveguide mode and exhibits an evanescent field on top of the waveguide. This can be used as a surface-bound illumination source to excite fluorophores. This evanescent field serves as an extremely powerful tool for quality control of thin films, to study cell-substrate contacts, and investigating the effect of external agents and drugs on the cell-substrate interaction in real time and in vitro. This new method has been established and optimized to minimize non-uniformity, scattering and photo bleaching issues. Visualizing and quantifying of the cell-substrates and solid thin films have been carried out by WEFF microscopy. The images of the cell-substrate interface

  5. Hypersonic evanescent waves generated with a planar spiral coil.

    Science.gov (United States)

    Stevenson, A C; Araya-Kleinsteuber, B; Sethi, R S; Mehta, H M; Lowe, C R

    2003-09-01

    A planar spiral coil has been used to induce hypersonic evanescent waves in a quartz substrate with the unique ability to focus the acoustic wave down onto the chemical recognition layer. These special sensing conditions were achieved by investigating the application of a radio frequency current to a coaxial waveguide and spiral coil, so that wideband repeating electrical resonance conditions could be established over the MHz to GHz frequency range. At a selected operating frequency of 1.09 GHz, the evanescent wave depth of a quartz crystal hypersonic resonance is reduced to 17 nm, minimising unwanted coupling to the bulk fluid. Verification of the validity of the hypersonic resonance was carried out by characterising the system electrically and acoustically: Impedance calculations of the combined coil and coaxial waveguide demonstrated an excellent fit to the measured data, although above 400 MHz a transition zone was identified where unwanted impedance is parasitic of the coil influence efficiency, so the signal-to-noise ratio is reduced from 3000 to 300. Acoustic quartz crystal resonances at intervals of precisely 13.2138 MHz spacing, from the 6.6 MHz ultrasonic range and onto the desired hypersonic range above 1 GHz, were incrementally detected. Q factor measurements demonstrated that reductions in energy lost from the resonator to the fluid interface were consistent with the anticipated shrinkage of the evanescent wave with increasing operating frequency. Amplitude and frequency reduction in contact with a glucose solution was demonstrated at 1.09 GHz. The complex physical conditions arising at the solid-liquid interface under hypersonic entrainment are discussed with respect to acceleration induced slippage, rupture, longitudinal and shear radiation and multiphase relaxation affects.

  6. Evanescent waves and deaf bands in sonic crystals

    Directory of Open Access Journals (Sweden)

    V. Romero-García

    2011-12-01

    Full Text Available The properties of sonic crystals (SC are theoretically investigated in this work by solving the inverse problem k(ω using the extended plane wave expansion (EPWE. The solution of the resulting eigenvalue problem gives the complex band structure which takes into account both the propagating and the evanescent modes. In this work we show the complete mathematical formulation of the EPWE for SC and the supercell approximation for its use in both a complete SC and a SC with defects. As an example we show a novel interpretation of the deaf bands in a complete SC in good agreement with multiple scattering simulations.

  7. Evanescent-wave proton postaccelerator driven by intense THz pulse

    OpenAIRE

    L. Pálfalvi; J. A. Fülöp; Gy. Tóth; J. Hebling

    2014-01-01

    Hadron therapy motivates research dealing with the production of particle beams with ∼100  MeV/nucleon energy and relative energy fluctuation on the order of 1%. Laser-driven accelerators produce ion beams with only tens of MeV/nucleon energy and an extremely broad spectra. Here, a novel method is proposed for postacceleration and monochromatization of particles, leaving the laser-driven accelerator, by using intense THz pulses. It is based on further developing the idea of using the evanesce...

  8. Evanescent waves and deaf bands in sonic crystals

    Science.gov (United States)

    Romero-García, V.; Garcia-Raffi, L. M.; Sánchez-Pérez, J. V.

    2011-12-01

    The properties of sonic crystals (SC) are theoretically investigated in this work by solving the inverse problem k(ω) using the extended plane wave expansion (EPWE). The solution of the resulting eigenvalue problem gives the complex band structure which takes into account both the propagating and the evanescent modes. In this work we show the complete mathematical formulation of the EPWE for SC and the supercell approximation for its use in both a complete SC and a SC with defects. As an example we show a novel interpretation of the deaf bands in a complete SC in good agreement with multiple scattering simulations.

  9. Moisture and salt monitoring in concrete by evanescent field dielectrometry

    Science.gov (United States)

    Riminesi, C.; Marie-Victoire, E.; Bouichou, M.; Olmi, R.

    2017-01-01

    Monitoring the water content and detecting the presence of soluble salts in concrete is a key issue for its maintenance. Evanescent field dielectrometry, originally developed for the diagnostics of frescoes and mural paintings, is proposed as a tool for monitoring the decay of cement-based materials. A measuring system, based on a scalar network analyzer and a resonant probe, has been realized and tested on concrete samples taken from historical buildings in France or purposely developed in the laboratory. Measurements on water-saturated and oven-dry samples provide the basis for calibrating the instrument for on site monitoring of concrete historical buildings, sculptures and cement-based artifacts.

  10. Fabrication of CuInS2/ZnS quantum dots-based white light-emitting diodes with high color rendering index

    Science.gov (United States)

    Hsiao, Chih-Chun; Su, Yu-Sheng; Chung, Shu-Ru

    2017-09-01

    Among solid-state lighting technology, phosphor-converted white light-emitting diodes (pc-WLEDs) are excellent candidates to replace incandescent lamps for their merit of high energy conservation, long lifetime, high luminous efficiency as well as polarized emissions. Semiconductor quantum dots (QDs) are emerging color tunable emissive light converters. They have shown significant promise as light emitters, as solar cells, and in biological imaging. It has been demonstrated that the pc-WLED devices integrated with red emissive ZnCdSe QDs show improved color rendering index of device. However, cadmium-based QDs have limited future owing to the well-known toxicity. Recently, non-cadmium luminescence materials, i.e. CuInS2-based QDs, are investigated as desirable low toxic alternatives. Particularly, CuInS2-based QDs exhibit very broad emissions spectra with full width at half maximum (FWHM) of 100-120 nm, large Stokes shifts of 200 300 meV and finely-tunable emissions. In order to adjust emission wavelengths and improved quantum yield (QY), CuInS2/ZnS (CIS/ZnS) core/shell structure was introduced. Therefore, CIS/ZnS QDs have been extensively investigated and be used as color converter in solid-state lighting. Synthesis and application of CuInS2/ZnS core/shell QDs are conducted using a hot injection route. CIS/ZnS core/shell QDs with molar ratio of Cu:In equal to 1:4 are prepared. For WLED fabrication, the CIS/ZnS QD is dispersed in toluene first, and then it is blended with transparent acrylic-based UV resin. Subsequently, the commercial green-emitting Lu3Al5O12: Ce3+ (LuAG) phosphors are mixed with QDs-resin mixture. After that, the QDs-phosphors-resin mixtures are put in the oven at 140 °C for 1 h to evaporate the toluene. Subsequently, the homogeneous QDs-phosphors-resin mixture is dropped on the top of a blue LED chip (InGaN). Then, the device is cured by 400 W UV light to form WLED. The emission wavelength of CIS/ZnS QD exhibits yellow region of 552 nm with QY

  11. Effect of energy emission from evanescent electromagnetic wave at scattering by a dielectric structure

    Energy Technology Data Exchange (ETDEWEB)

    Gulyaev, Yu.V. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation); Barabanenkov, Yu.N. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation)]. E-mail: yu.barab@mail.ip.sitek.net; Barabanenkov, M.Yu. [Institute of Microelectronics Technology and High Purity Materials of the Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Nikitov, S.A. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation)

    2005-02-21

    We present an optical theorem for evanescent (near field) electromagnetic wave scattering by a dielectric structure. The derivation is based on the formalism of angular spectrum wave amplitudes. The optical theorem shows that an energy flux at scattering is emitted in the direction of incident evanescent wave decay.

  12. Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes

    International Nuclear Information System (INIS)

    Xie, Zhong-Xiang; Zhang, Yong; Zhang, Li-Fu; Fan, Dian-Yuan

    2017-01-01

    Thermal transport contributed by the torsional phonons in cylindrical nanowires is investigated by using the isotropic elastic continuum theory. The numerical calculations for both the concavity-shaped and convexity-shaped cylindrical structures are made to reveal the role of the evanescent modes. Results show that the evanescent modes play an important role in influencing the thermal transport in such structures. For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, the evanescent modes can suppress the thermal conductance by 6 percent. It is also shown that the influence of the evanescent modes on the thermal conductance is strongly related to the attenuation length of the evanescent modes. A brief analysis of these results is given. - Highlights: • The evanescent modes play an important role in influencing thermal transport contributed by torsional phonons in cylindrical nanowires. • For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, they can suppress the thermal conductance by 6 percent.

  13. Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhong-Xiang [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Yong [Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Li-Fu, E-mail: zhanglifu68@hotmail.com [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Fan, Dian-Yuan [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China)

    2017-05-03

    Thermal transport contributed by the torsional phonons in cylindrical nanowires is investigated by using the isotropic elastic continuum theory. The numerical calculations for both the concavity-shaped and convexity-shaped cylindrical structures are made to reveal the role of the evanescent modes. Results show that the evanescent modes play an important role in influencing the thermal transport in such structures. For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, the evanescent modes can suppress the thermal conductance by 6 percent. It is also shown that the influence of the evanescent modes on the thermal conductance is strongly related to the attenuation length of the evanescent modes. A brief analysis of these results is given. - Highlights: • The evanescent modes play an important role in influencing thermal transport contributed by torsional phonons in cylindrical nanowires. • For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, they can suppress the thermal conductance by 6 percent.

  14. Quantum Dots

    Science.gov (United States)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  15. Dot gain compensation in the blue noise mask

    Science.gov (United States)

    Yao, Meng; Parker, Kevin J.

    1995-04-01

    Frequency modulated (FM) halftoning or 'stochastic screening,' has attracted a great deal of attention in the printing industry in recent years. It has several advantages over conventional halftoning. But one serious problem that arises in FM halftoning is dot gain. One approach to stochastic screening uses a specially constructed halftone screen, the blue noise mask (BNM), to produce an unstructured and visually appealing pattern of halftone dots at any gray level. In this paper, we will present methods to correct dot gain with the BNM. Dot gain is related to the area-to-perimeter ration of printed spots. We can exploit this feature in different ways. At a medium level, a B>NM pattern will have 'connected' as well as 'isolated' dots. Normally, as we build down BNM patterns to lower levels, a specific number of white dots will be replace by black dots. Since connected white dots are more likely to be picked than isolated white dots, this will results in substantial dot gain because of the increasing number of isolated white dots. We show that it is possible to constrain the process of constructing a BNM such that isolated dots are preferentially removes, thus significantly reducing dot gain in a BNM.

  16. Evanescent Wave Fiber Optic Biosensor for Salmonella Detection in Food

    Directory of Open Access Journals (Sweden)

    Arun K. Bhunia

    2009-07-01

    Full Text Available Salmonella enterica is a major food-borne pathogen of world-wide concern. Sensitive and rapid detection methods to assess product safety before retail distribution are highly desirable. Since Salmonella is most commonly associated with poultry products, an evanescent wave fiber-optic assay was developed to detect Salmonella in shell egg and chicken breast and data were compared with a time-resolved fluorescence (TRF assay. Anti-Salmonella polyclonal antibody was immobilized onto the surface of an optical fiber using biotin-avidin interactions to capture Salmonella. Alexa Fluor 647-conjugated antibody (MAb 2F-11 was used as the reporter. Detection occurred when an evanescent wave from a laser (635 nm excited the Alexa Fluor and the fluorescence was measured by a laser-spectrofluorometer at 710 nm. The biosensor was specific for Salmonella and the limit of detection was established to be 103 cfu/mL in pure culture and 104 cfu/mL with egg and chicken breast samples when spiked with 102 cfu/mL after 2–6 h of enrichment. The results indicate that the performance of the fiber-optic sensor is comparable to TRF, and can be completed in less than 8 h, providing an alternative to the current detection methods.

  17. Quantum dots

    International Nuclear Information System (INIS)

    Kouwenhoven, L.; Marcus, C.

    1998-01-01

    Quantum dots are man-made ''droplets'' of charge that can contain anything from a single electron to a collection of several thousand. Their typical dimensions range from nanometres to a few microns, and their size, shape and interactions can be precisely controlled through the use of advanced nanofabrication technology. The physics of quantum dots shows many parallels with the behaviour of naturally occurring quantum systems in atomic and nuclear physics. Indeed, quantum dots exemplify an important trend in condensed-matter physics in which researchers study man-made objects rather than real atoms or nuclei. As in an atom, the energy levels in a quantum dot become quantized due to the confinement of electrons. With quantum dots, however, an experimentalist can scan through the entire periodic table by simply changing a voltage. In this article the authors describe how quantum dots make it possible to explore new physics in regimes that cannot otherwise be accessed in the laboratory. (UK)

  18. On use of radial evanescence remain term in kinematic hardening

    International Nuclear Information System (INIS)

    Geyer, P.

    1995-10-01

    A fine modelling of the material' behaviour can be necessary to study the mechanical strength of nuclear power plant' components under cyclic loads. Ratchetting is one of the last phenomena for which numerical models have to be improved. We discuss in this paper on use of radial evanescence remain term in kinematic hardening to improve the description of ratchetting in biaxial loading tests. It's well known that Chaboche elastoplastic model with two non linear kinematic hardening variables initially proposed by Armstrong and Frederick, usually over-predicts accumulation of ratchetting strain. Burlet and Cailletaud proposed in 1987 a non linear kinematic rule with a radial evanescence remain term. The two models lead to identical formulation for proportional loadings. In the case of a biaxial loading test (primary+secondary loading), Burlet and Cailletaud model leads to accommodation, when Chaboche one's leads to ratchetting with a constant increment of strain. So we can have an under-estimate with the first model and an over-estimate with the second. An easy method to improve the description of ratchetting is to combine the two kinematic rules. Such an idea is already used by Delobelle in his model. With analytical results in the case of tension-torsion tests, we show in a first part of the paper, the interest of radial evanescence remain term in the non linear kinematic rule to describe ratchetting: we give the conditions to get adaptation, accommodation or ratchetting and the value of the strain increment in the last case. In the second part of the paper, we propose to modify the elastoplastic Chaboche model by coupling the two types of hardening by means of two scalar parameters which can be identified independently on biaxial loading tests. Identification of these two parameters returns to speculate on the directions of strain in order to adjust the ratchetting to experimental observations. We use the experimental results on the austenitic steel 316L at room

  19. Study of a coronagraphic mask using evanescent waves.

    Science.gov (United States)

    Buisset, Christophe; Rabbia, Yves; Lepine, Thierry; Alagao, Mary-Angelie; Ducrot, Elsa; Poshyachinda, Saran; Soonthornthum, Boonrucksar

    2017-04-03

    The evanescent wave coronagraph (EvWaCo) is a specific kind of band-limited coronagraph using the frustrated total internal reflection phenomenon to produce the coronagraphic effect (removing starlight from the image plane in order to make the stellar environment detectable). In this paper, we present a theoretical and experimental study of the EvWaCo coronagraphic mask. First, we calculate the theoretical transmission and we show that this mask is partially achromatic. Then, we present the experimental results obtained in unpolarized light at the wavelength λ≈900 nm and relative spectral bandwidth Δλ/λ≈6%. In particular, we show that the coronagraph provides a contrast down to a few 10-6 at an angular distance of about ten Airy radii.

  20. On use of radial evanescence remain term in kinematic hardening

    International Nuclear Information System (INIS)

    Geyer, P.

    1995-01-01

    This paper presents the interest which lies in non-linear kinematic hardening rule with radial evanescence remain term as proposed for modelling multiaxial ratchetting. From analytical calculations in the case of the tension/torsion test, this ratchetting is compared with that proposed by Armstrong and Frederick. A modification is then proposed for Chaboche's elastoplastic model with two non-linear kinematic variables, by coupling the two types of hardening by means of two scalar parameters. Identification of these two parameters returns to speculate on the directions of strain in order to adjust the ratchetting to experimental observations. Using biaxial ratchetting tests on stainless steel 316 L specimens at ambient temperature, it is shown that satisfactory modelling of multiaxial ratchetting is obtained. (author). 4 refs., 5 figs

  1. Entropy Generation in Natural Convection Under an Evanescent Magnetic Field

    International Nuclear Information System (INIS)

    Magherbi, Mourad; El Jery, Atef; Ben Brahim, Ammar

    2009-01-01

    We numerically study the effect of an externally-evanescent magnetic field on total entropy generation in conducting and non-reactive fluid enclosed in a square cavity. The horizontal walls of the enclosure are assumed to be insulated while the vertical walls are kept isothermal. A control volume finite element method is used to solve the conservation equations at Prandtl number of 0.71. The values of relaxation time of the magnetic field are chosen, so that the Lorentz force acts only in the transient state of entropy generation in natural convection. The total entropy generation was calculated for fixed value of irreversibility distribution ratio, different relaxation time varying from 0 to 1/5 and Grashof number equal to 10 5

  2. Evanescent field phase shifting in a silicon nitride waveguide using a coupled silicon slab

    DEFF Research Database (Denmark)

    Jensen, Asger Sellerup; Oxenløwe, Leif Katsuo; Green, William M. J.

    2015-01-01

    An approach for electrical modulation of low-loss silicon nitride waveguides is proposed, using a silicon nitride waveguide evanescently loaded with a thin silicon slab. The thermooptic phase-shift characteristics are investigated in a racetrack resonator configuration....

  3. Evanescent Acoustic Wave Scattering by Targets and Diffraction by Ripples Graduate Traineeship Award in Ocean Acoustics

    National Research Council Canada - National Science Library

    Osterhoudt, Curtis F; Marston, Philip L

    2007-01-01

    .... The purpose of his research was to improve the understanding of the way that acoustic evanescent waves interact with targets buried in sediments in situations encountered in underwater acoustics...

  4. Geometrical optics in the near field: local plane-interface approach with evanescent waves.

    Science.gov (United States)

    Bose, Gaurav; Hyvärinen, Heikki J; Tervo, Jani; Turunen, Jari

    2015-01-12

    We show that geometrical models may provide useful information on light propagation in wavelength-scale structures even if evanescent fields are present. We apply a so-called local plane-wave and local plane-interface methods to study a geometry that resembles a scanning near-field microscope. We show that fair agreement between the geometrical approach and rigorous electromagnetic theory can be achieved in the case where evanescent waves are required to predict any transmission through the structure.

  5. Use of long-term stable CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs.

    Science.gov (United States)

    Di, Xiaoxuan; Hu, Zemin; Jiang, Jutao; He, Meiling; Zhou, Lei; Xiang, Weidong; Liang, Xiaojuan

    2017-10-05

    We report the synthesis of CsPbBr 3 QDs with great stability and high quantum yield in phospho-silicate glass, which was fabricated by using a heat-treatment approach, for white light emitting devices. QD glasses exhibited excellent photo- and thermal stability, and significantly prolonged the lifetime of light emitters under ambient air conditions.

  6. Quantitative Understanding on the Amplitude Decay Characteristic of the Evanescent Electromagnetic Waves Generated by Seismoelectric Conversion

    Science.gov (United States)

    Ren, Hengxin; Huang, Qinghua; Chen, Xiaofei

    2018-03-01

    We conduct numerical simulations and theoretical analyses to quantitatively study the amplitude decay characteristic of the evanescent electromagnetic (EM) waves, which has been neglected in previous studies on the seismoelectric conversion occurring at a porous-porous interface. Time slice snapshots of seismic and EM wave-fields generated by a vertical single force point source in a two-layer porous model show that evanescent EM waves can be induced at a porous-porous interface. The seismic and EM wave-fields computed for a receiver array located in a vertical line nearby the interface are investigated in detail. In addition to the direct and interface-response radiation EM waves, we identify three groups of coseismic EM fields and evanescent EM waves associated with the direct P, refracted SV-P and direct SV waves, respectively. Thereafter, we derive the mathematical expression of the amplitude decay factor of the evanescent EM waves. This mathematical expression is further validated by our numerical simulations. It turns out the amplitude decay of the evanescent EM waves generated by seismoelectric conversion is greatly dependent on the horizontal wavenumber of seismic waves. It is also found the evanescent EM waves have a higher detectability at a lower frequency range. This work provides a better understanding on the EM wave-fields generated by seismoelectric conversion, which probably will help improve the interpretation of the seismoelectric coupling phenomena associated with natural earthquakes or possibly will inspire some new ideas on the application of the seismoelectric coupling effect.

  7. Evanescent field: A potential light-tool for theranostics application

    Science.gov (United States)

    Polley, Nabarun; Singh, Soumendra; Giri, Anupam; Pal, Samir Kumar

    2014-03-01

    A noninvasive or minimally invasive optical approach for theranostics, which would reinforce diagnosis, treatment, and preferably guidance simultaneously, is considered to be major challenge in biomedical instrument design. In the present work, we have developed an evanescent field-based fiber optic strategy for the potential theranostics application in hyperbilirubinemia, an increased concentration of bilirubin in the blood and is a potential cause of permanent brain damage or even death in newborn babies. Potential problem of bilirubin deposition on the hydroxylated fiber surface at physiological pH (7.4), that masks the sensing efficacy and extraction of information of the pigment level, has also been addressed. Removal of bilirubin in a blood-phantom (hemoglobin and human serum albumin) solution from an enhanced level of 77 μM/l (human jaundice >50 μM/l) to ˜30 μM/l (normal level ˜25 μM/l in human) using our strategy has been successfully demonstrated. In a model experiment using chromatography paper as a mimic of biological membrane, we have shown efficient degradation of the bilirubin under continuous monitoring for guidance of immediate/future course of action.

  8. Resistive switching effect in the planar structure of all-printed, flexible and rewritable memory device based on advanced 2D nanocomposite of graphene quantum dots and white graphene flakes

    International Nuclear Information System (INIS)

    Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Kim, Sowon; Choi, Kyung Hyun

    2017-01-01

    Pursuit of the most appropriate materials and fabrication methods is essential for developing a reliable, rewritable and flexible memory device. In this study, we have proposed an advanced 2D nanocomposite of white graphene (hBN) flakes embedded with graphene quantum dots (GQDs) as the functional layer of a flexible memory device owing to their unique electrical, chemical and mechanical properties. Unlike the typical sandwich type structure of a memory device, we developed a cost effective planar structure, to simplify device fabrication and prevent sneak current. The entire device fabrication was carried out using printing technology followed by encapsulation in an atomically thin layer of aluminum oxide (Al 2 O 3 ) for protection against environmental humidity. The proposed memory device exhibited attractive bipolar switching characteristics of high switching ratio, large electrical endurance and enhanced lifetime, without any crosstalk between adjacent memory cells. The as-fabricated device showed excellent durability for several bending cycles at various bending diameters without any degradation in bistable resistive states. The memory mechanism was deduced to be conductive filamentary; this was validated by illustrating the temperature dependence of bistable resistive states. Our obtained results pave the way for the execution of promising 2D material based next generation flexible and non-volatile memory (NVM) applications. (paper)

  9. One-step preparation of long-term stable and flexible CsPbBr3 perovskite quantum dots/ethylene vinyl acetate copolymer composite films for white LEDs.

    Science.gov (United States)

    Li, Yang; Lv, Ying; Guo, Ziquan; Dong, Liubing; Zheng, Jianghui; Chai, Chufen; Chen, Nan; Lu, Yijun; Chen, Chao

    2018-04-19

    CsPbBr3 perovskite quantum dots (PQDs)/ethylene vinyl acetate (EVA) composite films were prepared via a one-step method, based on that both supersaturated recrystallization of CsPbBr3 PQDs and dissolution of EVA were realized in toluene. The prepared films display outstanding green emitting performance with high color purity of 92% and photoluminescence quantum yield of 40.5% at appropriate CsPbBr3 PQD loading. They possess long-term stable luminescent properties in the air and in water, benefiting from the effective protection of CsPbBr3 PQDs by EVA matrix. Besides, the prepared CsPbBr3 PQDs/EVA films are flexible enough to be repeatedly bent for 1000 cycles while keeping unchanged photoluminescence intensity. Optical properties of the CsPbBr3 PQDs/EVA films in white LEDs were also studied by experiments and theoretical simulation. Overall, facile preparation process, good long-term stability and high flexibility allow our green-emitting CsPbBr3 PQDs/EVA films to be applied in lighting applications and flexible displays.

  10. Exploiting evanescent-wave amplification for subwavelength low-contrast particle detection

    Science.gov (United States)

    Roy, S.; Pereira, S. F.; Urbach, H. P.; Wei, Xukang; El Gawhary, O.

    2017-07-01

    The classical problem of subwavelength particle detection on a flat surface is especially challenging when the refractive index of the particle is close to that of the substrate. We demonstrate a method to improve the detection ability several times for such a situation, by enhancing the "forbidden" evanescent waves in the substrate using the principle of super-resolution with evanescent waves amplification. The working mechanism of the system and experimental validation from a design with a thin single dielectric layer is presented. The resulting system is a simple but complete example of evanescent-wave generation, amplification, and the consequent modulation of the far field. This principle can have far reaching impact in the field of particle detection in several applications ranging from contamination control to interferometric scattering microscopy for biological samples.

  11. Fiber optic probe of free electron evanescent fields in the optical frequency range

    Energy Technology Data Exchange (ETDEWEB)

    So, Jin-Kyu, E-mail: js1m10@orc.soton.ac.uk; MacDonald, Kevin F. [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I. [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371 (Singapore)

    2014-05-19

    We introduce an optical fiber platform which can be used to interrogate proximity interactions between free-electron evanescent fields and photonic nanostructures at optical frequencies in a manner similar to that in which optical evanescent fields are sampled using nanoscale aperture probes in scanning near-field microscopy. Conically profiled optical fiber tips functionalized with nano-gratings are employed to couple electron evanescent fields to light via the Smith-Purcell effect. We demonstrate the interrogation of medium energy (30–50 keV) electron fields with a lateral resolution of a few micrometers via the generation and detection of visible/UV radiation in the 700–300 nm (free-space) wavelength range.

  12. Evanescent Wave Absorption Based Fiber Sensor for Measuring Glucose Solution Concentration

    Science.gov (United States)

    Marzuki, Ahmad; Candra Pratiwi, Arni; Suryanti, Venty

    2018-03-01

    An optical fiber sensor based on evanescent wave absorption designed for measuring glucose solution consentration was proposed. The sensor was made to detect absorbance of various wavelength in the glucose solution. The sensing element was fabricated by side polishing of multimode polymer optical fiber to form a D-shape. The sensing element was immersed in different concentration of glucoce solution. As light propagated through the optical fiber, the evanescent wave interacted with the glucose solution. Light was absorbed by the glucose solution. The larger concentration the glucose solution has, the more the evanescent wave was absorbed in particular wavelenght. Here in this paper, light absorbtion as function of glucose concentration was measured as function of wavelength (the color of LED). We have shown that the proposed sensor can demonstrated an increase of light absorption as function of glucose concentration.

  13. Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes

    NARCIS (Netherlands)

    Kim, Jun Wan; Choi, Sun Young; Yeom, Dong-Il; Aravazhi, S.; Pollnau, Markus; Griebner, Uwe; Petrov, Valentin; Rotermund, Fabian

    2013-01-01

    We report Q-switched operation of a planar waveguide laser by evanescent-field interaction with single-walled carbon nanotubes deposited on top of the waveguide. The saturable-absorber-integrated gain medium, which operates based on evanescent-field interaction, enables the realization of a

  14. Evanescent-wave cavity ring-down spectroscopy for enhanced detection of surface binding under flow injection analysis conditions

    NARCIS (Netherlands)

    Van Der Sneppen, L.; Ariese, F.; Gooijer, C.; Ubachs, W.

    2008-01-01

    In evanescent-wave cavity ring-down spectroscopy, one (or more) of the re°ections inside the cavity is a total internal re°ection (TIR) event. Only the evanescent wave associated with this TIR is being used for prob-ing the sample. This technique is therefore highly surface-speci-c and attractive

  15. White Rock

    Science.gov (United States)

    2002-01-01

    't see . . . things like information about what kinds of minerals make up the landforms. Mars scientists once thought, for instance, that these unusual features might be vast hills of salt, the dried up remains of a long-ago, evaporated lake. Not so, said an instrument on the Mars Global Surveyor spacecraft, which revealed that the bright material is probably made up of volcanic ash or windblown dust instead. And talk about a cyclical 'ashes to ashes, dust to dust' story! Particles of this material fell and fell until they built up quite a sedimentary deposit, which was then only eroded away again by the wind over time, leaving the spiky terrain seen today. It looks white, but its apparent brightness arises from the fact that the surrounding material is so dark. Of course, good eyesight always helps in understanding. A camera on Mars Global Surveyor with close-up capabilities revealed that sand dunes are responsible for the smudgy dark material in the bright sediment and around it. But that's not all. The THEMIS camera on the Mars Odyssey spacecraft that took this image reveals that this ashy or dusty deposit once covered a much larger area than it does today. Look yourself for two small dots of white material on the floor of a small crater nearby (center right in this image). They preserve a record that this bright deposit once reached much farther. Since so little of it remains, you can figure that the material probably isn't very hard, and simply blows away. One thing's for sure. No one looking at this image could ever think that Mars is a boring place. With all of its bright and dark contrasts, this picture would be perfect for anyone who loves Ansel Adams and his black-and-white photography.

  16. DOT's CAFE rulemaking analysis.

    Science.gov (United States)

    2013-02-13

    Presentation discusses what DOT needs to consider in setting CAFE standards. How DOT's use of the CAFE Compliance and Effects Modeling System helps to analyze potential CAFE Standards. How DOT might approach the next round of CAFE standards for model...

  17. Evanescent magnetic field effects on entropy generation at the onset ...

    Indian Academy of Sciences (India)

    This paper numerically investigates the effect of an externally evanescent magnetic field on total entropy generation in a fluid enclosed in a square cavity by using a control volume finite element method to solve the conservation equations at Prandtl number of 0·71. The values of relaxation time of the magnetic field are ...

  18. Evanescent Effects Can Alter Ultraviolet Divergences in Quantum Gravity without Physical Consequences

    CERN Document Server

    Bern, Zvi; Chi, Huan-Hang; Davies, Scott; Dixon, Lance; Nohle, Josh

    2015-01-01

    Evanescent operators such as the Gauss-Bonnet term have vanishing perturbative matrix elements in exactly D=4 dimensions. Similarly, evanescent fields do not propagate in D=4; a three-form field is in this class, since it is dual to a cosmological-constant contribution. In this Letter, we show that evanescent operators and fields modify the leading ultraviolet divergence in pure gravity. To analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude and determine the coefficient of the associated (non-evanescent) R^3 counterterm studied long ago by Goroff and Sagnotti. We compare two pairs of theories that are dual in D=4: gravity coupled to nothing or to three-form matter, and gravity coupled to zero-form or to two-form matter. Duff and van Nieuwenhuizen showed that, curiously, the one-loop conformal anomaly --- the coefficient of the Gauss-Bonnet operator --- changes under p-form duality transformations. We concur, and also find that the leading R^3 divergence changes under du...

  19. Near-field imaging of interference pattern of counterpropagating evanescent waves

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Bozhevolnaya, Elena A.

    1999-01-01

    It is generally accepted that measurement of of the contrast of the intensity interference pattern formed by two counterpropagating evanescent waves can be used to characterize the resolving power of a collection near-field microscope. We argue that, if the light collected by a fiber probe propag...... be equal to the contrast of the interference pattern....

  20. Polymer slab waveguides for the optical detection of nanoparticles in evanescent field based biosensors

    NARCIS (Netherlands)

    Teigell Beneitez, N.; Missinne, J.; Schleipen, J.J.H.B.; Orsel, J.G.; Prins, M.W.J.; Steenberge, Van G.; Cartwright, A.N.; Nicolau, D.V.

    2010-01-01

    We present a polymer optical waveguide integration technology for the detection of nanoparticles in an evanescent field based biosensor. In the proposed biosensor concept, super-paramagnetic nanoparticles are used as optical contrast labels. The nanoparticles capture target molecules from a sample

  1. Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Oo, M. K .K.; Han, Y.; Kaňka, Jiří; Sukhishvili, S.; Du, H.

    2010-01-01

    Roč. 35, č. 4 (2010), s. 466-468 ISSN 0146-9592 R&D Projects: GA ČR GA102/08/1719 Institutional research plan: CEZ:AV0Z20670512 Keywords : Photonic crystal fiber * Raman spectroscopy * Fiber-optic evanescent sensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.316, year: 2010

  2. High resolution imaging of dielectric surfaces with an evanescent field optical microscope

    NARCIS (Netherlands)

    van Hulst, N.F.; Segerink, Franciscus B.; Bölger, B.

    1992-01-01

    An evanescent field optical microscope (EFOM) is presented which employs frustrated total internal reflection o­n a localized scale by scanning a dielectric tip in close proximity to a sample surface. High resolution images of dielectric gratings and spheres containing both topographic and

  3. Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Pedersen, Lars H.; Hoiby, Poul E.

    2004-01-01

    We demonstrate highly efficient evanescent-wave detection of fluorophore-labeled biomolecules in aqueous solutions positioned in the air holes of the microstructured part of a photonic crystal fiber. The air-suspended silica structures located between three neighboring air holes in the cladding c...

  4. Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination

    Czech Academy of Sciences Publication Activity Database

    Šiler, Martin; Čižmár, Tomáš; Jonáš, Alexandr; Zemánek, Pavel

    2008-01-01

    Roč. 10, č. 11 (2008), 113010: 1-16 ISSN 1367-2630 R&D Projects: GA MŠk(CZ) LC06007; GA MŠk OC08034 Institutional research plan: CEZ:AV0Z20650511 Keywords : nanoparticle * evanescent field * standing-wave illumination * surface delivery Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.440, year: 2008

  5. A miniaturized oxygen sensor integrated on fiber surface based on evanescent-wave induced fluorescence quenching

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yan [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Tan, Jun; Wang, Chengjie; Zhu, Ying [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Fang, Shenwen [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Wu, Jiayi; Wang, Qing [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Duan, Ming, E-mail: swpua124@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500 (China); School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China)

    2016-11-15

    In this work, a miniaturized sensor was integrated on fiber surface and developed for oxygen determination through evanescent-wave induced fluorescence quenching. The sensor was designed by using light emitting diode (LED) as light source and optical fiber as light transmission element. Tris(2,2′-bipyridyl) ruthenium ([Ru(bpy){sub 3}]{sup 2+}) fluorophore was immobilized in the organically modified silicates (ORMOSILs) film and coated onto the fiber surface. When light propagated by total internal reflection (TIR) in the fiber core, evanescent wave could be produced on the fiber surface and excite [Ru(bpy){sub 3}]{sup 2+} fluorophore to produce fluorescence emission. Then oxygen could be determinated by its quenching effect on the fluorescence and its concentration could be evaluated according to Stern–Volumer model. Through integrating evanescent wave excitation and fluorescence quenching on fiber surface, the sensor was successfully miniaturized and exhibit improved performances of high sensitivity (1.4), excellent repeatability (1.2%) and fast analysis (12 s) for oxygen determination. The sensor provided a newly portable method for in-situ and real-time measurement of oxygen and showed potential for practical oxygen analysis in different application fields. Furthermore, the fabrication of this sensor provides a miniaturized and portable detection platform for species monitoring by simple modular design. - Highlights: • ORMOSILs sensing film immobilized with [Ru(bpy){sub 3}]{sup 2+} fluorophore was coated on fiber surface. • Evanescent wave on the fiber surface was utilized as excitation source to produce fluorescence. • Oxygen was measured based on its quenching effect on evanescent wave-induce fluorescence. • Sensor fabrication was miniaturized by integrating detection and sensing elements on the fiber. • The modular design sensor provides a detection platform for other species monitoring.

  6. Optical trapping of cold neutral atoms using a two-color evanescent light field around a carbon nanotube

    International Nuclear Information System (INIS)

    Nga, Do Thi; Viet, Nguyen Ai; Nga, Dao Thi Thuy; Lan, Nguyen Thi Phuong

    2014-01-01

    We suggest a new schema of trapping cold atoms using a two-color evanescent light field around a carbon nanotube. The two light fields circularly polarized sending through a carbon nanotube generates an evanescent wave around this nanotube. By evanescent effect, the wave decays away from the nanotube producing a set of trapping minima of the total potential in the transverse plane as a ring around the nanotube. This schema allows capture of atoms to a cylindrical shell around the nanotube. We consider some possible boundary conditions leading to the non-trivial bound state solution. Our result will be compared to some recent trapping models and our previous trapping models.

  7. Investigating the sensitivity of PMMA optical fibres for use as an evanescent field absorption sensor in aqueous solutions

    International Nuclear Information System (INIS)

    Lye, P G; Boerkamp, M; Ernest, A; Lamb, D W

    2005-01-01

    Polymethylmethacrylate (PMMA) optical fibres are low-cost polymer fibres that are generally more physically robust than silica fibres, are more flexible, yet like silica fibres have the potential to be used for practical evanescent field absorption sensors in aqueous solutions. However, evanescent field absorption in aqueous solutions is influenced by more than just the specific absorptivity of the solution in question. The physical configuration of the optical fibre itself, as well as surface charge interactions between the fibre and the chromophore in the solution also significantly affects the sensitivity of the fibre to evanescent field absorption. This paper reports on an investigation of numerous physical phenomena that influence evanescent field absorption for PMMA fibres using an aqueous solution of the dye Amidoblack. Parameters investigated included fibre coiling configuration and bend radius, fibre interaction length, and effect of solution pH. Coiled fibres were found to be more sensitive to evanescent field absorption than straight (uncoiled) lengths, and sensitivity was found to increase with a further reduction in bend radius. At high solution pH, the absorption versus solution concentration proved to be linear whereas at low pH the absorption versus concentration relationship exhibited a clear deviation from linearity. The observed nonlinearity at low pH points to the importance of accounting for electrostatic interactions between chromophore and fibre surface when designing a PMMA sensor for evanescent field absorption measurements in aqueous solutions

  8. Holographic View of the Brain Memory Mechanism Based on Evanescent Superluminal Photons

    Directory of Open Access Journals (Sweden)

    Takaaki Musha

    2012-08-01

    Full Text Available D. Pollen and M. Trachtenberg proposed the holographic brain theory to help explain the existence of photographic memories in some people. They suggested that such individuals had more vivid memories because they somehow could access a very large region of their memory holograms. Hameroff suggested in his paper that cylindrical neuronal microtubule cavities, or centrioles, function as waveguides for the evanescent photons for quantum signal processing. The supposition is that microtubular structures of the brain function as a coherent fiber bundle set used to store holographic images, as would a fiber-optic holographic system. In this paper, the author proposes that superluminal photons propagating inside the microtubules via evanescent waves could provide the access needed to record or retrieve a quantum coherent entangled holographic memory.

  9. Compensating for evanescent modes and estimating characteristic impedance in waveguide acoustic impedance measurements

    DEFF Research Database (Denmark)

    Nørgaard, Kren Rahbek; Fernandez Grande, Efren

    2017-01-01

    The ear-canal acoustic impedance and reflectance are useful for assessing conductive hearing disorders and calibrating stimulus levels in situ. However, such probe-based measurements are affected by errors due to the presence of evanescent modes and incorrect estimates or assumptions regarding...... characteristic impedance. This paper proposes a method to compensate for evanescent modes in measurements of acoustic impedance, reflectance, and sound pressure in waveguides, as well as estimating the characteristic impedance immediately in front of the probe. This is achieved by adjusting the characteristic...... impedance and subtracting an acoustic inertance from the measured impedance such that the non-causality in the reflectance is minimized in the frequency domain using the Hilbert transform. The method is thus capable of estimating plane-wave quantities of the sought-for parameters by supplying only...

  10. Graphene based chalcogenide fiber-optic evanescent wave sensor for detection of hemoglobin in human blood

    Science.gov (United States)

    Sharma, Anuj K.; Gupta, Jyoti

    2018-03-01

    Fiber optic evanescent wave sensor with graphene as an absorption-enhancing layer to measure hemoglobin concentration in human blood is proposed. Previous modal functions and experimental results describing the variation of optical constants of human blood with different hemoglobin concentrations in the near-infrared spectral region are considered for sensor design simulation. The sensor's performance is closely analyzed in terms of its absorption coefficient, sensitivity, and detection limit. It is found that the proposed sensor should be operated at longer light wavelength to get more enhanced sensitivity and smaller detection limit. At 1000 nm wavelength, a detection limit of 18 μg/dL and sensitivity of 6.71 × 10-4 per g/dL is achievable with the proposed sensor. The sensitivity is found to be better for larger hemoglobin concentrations. The results are correlated with the evanescent wave penetration depth.

  11. Fano resonance of the ultrasensitve optical force excited by Gaussian evanescent field

    International Nuclear Information System (INIS)

    Yang, Yang; Li, Jiafang; Li, Zhi-Yuan

    2015-01-01

    In this paper, we study the angle-dependent Fano-like optical force spectra of plasmonic Ag nanoparticles, which exhibit extraordinary transformation from Lorentzian resonance to Fano resonance when excited by a Gaussian evanescent wave. We systematically analyze the behavior of this asymmetric scattering induced optical force under different conditions and find that this Fano interference-induced force is ultrasensitive to the excitation wavelength, incident angle and particle size, as well as the core–shell configuration, which could be useful for wavelength- and angle-dependent size-selective optical manipulation. The origin of this Fano resonance is further identified as the interference between the two adjacent-order multipolar plasmonic modes excited in the Ag particle under the excitation of an inhomogeneously distributed evanescent field. (paper)

  12. Mixed Non-Uniform Width / Evanescent Mode Ceramic Resonator Waveguide Filter With Wide Spurious Free Bandwidth

    OpenAIRE

    Afridi, S; Sandhu, M; Hunter, I

    2016-01-01

    This paper presents a method to improve the spurious performance of integrated ceramic waveguide filters. Nonuniform width ceramic waveguide resonator and evanescent mode ceramic resonators are employed together to the resonant frequencies of higher order modes. The proposed designs give 75% improvement in stop band response when compared to uniform width ceramic waveguide filter. Simulated results of two six pole chebyshev filters are presented here with improved stop band performance.

  13. Doppleron resonances in the diffraction of atoms by an evanescent field

    International Nuclear Information System (INIS)

    Murphy, J.E.; Hollenberg, L.C.L.; Smith, A.E.

    1994-01-01

    The diffracted intensities of sodium atoms by a standing evanescent light wave near the three doppleron resonance are calculated using a multi-slice technique. This calculation predicts a sharp dip in the reflected intensity of the specular beam for a detuning slightly below resonance. Such phenomena has been observed experimentally and can be understood using the dressed state picture. 4 refs., 2 tabs., 3 figs

  14. Evanescent Effects can Alter Ultraviolet Divergences in Quantum Gravity without Physical Consequences.

    Science.gov (United States)

    Bern, Zvi; Cheung, Clifford; Chi, Huan-Hang; Davies, Scott; Dixon, Lance; Nohle, Josh

    2015-11-20

    Evanescent operators such as the Gauss-Bonnet term have vanishing perturbative matrix elements in exactly D=4 dimensions. Similarly, evanescent fields do not propagate in D=4; a three-form field is in this class, since it is dual to a cosmological-constant contribution. In this Letter, we show that evanescent operators and fields modify the leading ultraviolet divergence in pure gravity. To analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude and determine the coefficient of the associated (nonevanescent) R^{3} counterterm studied long ago by Goroff and Sagnotti. We compare two pairs of theories that are dual in D=4: gravity coupled to nothing or to three-form matter, and gravity coupled to zero-form or to two-form matter. Duff and van Nieuwenhuizen showed that, curiously, the one-loop trace anomaly-the coefficient of the Gauss-Bonnet operator-changes under p-form duality transformations. We concur and also find that the leading R^{3} divergence changes under duality transformations. Nevertheless, in both cases, the physical renormalized two-loop identical-helicity four-graviton amplitude can be chosen to respect duality. In particular, its renormalization-scale dependence is unaltered.

  15. Compact 3D printed module for fluorescence and label-free imaging using evanescent excitation

    Science.gov (United States)

    Pandey, Vikas; Gupta, Shalini; Elangovan, Ravikrishnan

    2018-01-01

    Total internal reflection fluorescence (TIRF) microscopy is widely used for selective excitation and high-resolution imaging of fluorophores, and more recently label-free nanosized objects, with high vertical confinement near a liquid-solid interface. Traditionally, high numerical aperture objectives (>1.4) are used to simultaneously generate evanescent waves and collect fluorescence emission signals which limits their use to small area imaging (filters to prevent specular reflection within the objective lenses. We have developed a compact 3D module called cTIRF that can generate evanescent waves in microscope glass slides via a planar waveguide illumination. The module can be attached as a fixture to any existing optical microscope, converting it into a TIRF and enabling high signal-to-noise ratio (SNR) fluorescence imaging using any magnification objective. As the incidence optics is perpendicular to the detector, label-free evanescent scattering-based imaging of submicron objects can also be performed without using emission filters. SNR is significantly enhanced in this case as compared to cTIRF alone, as seen through our model experiments performed on latex beads and mammalian cells. Extreme flexibility and the low cost of our approach makes it scalable for limited resource settings.

  16. Multi-sample immunoassay inside optical fiber capillary enabled by evanescent wave detection

    Directory of Open Access Journals (Sweden)

    Chun-Wei Wang

    2016-03-01

    Full Text Available A novel evanescent wave-based (EW microfluidic capillary fiber-optic biosensor (MCFOB has been developed using capillaries as a transducer embedded in a multichannel device to enhance the collection efficiency of the fluorescence signal. The capillary serves dual roles as a waveguide and a container, enabling more straightforward, consistent, and compact biosensor packaging compared to conventional optical fiber biosensors and microfluidic systems. In order to detect multiple samples in one device, the biosensor incorporates a polydimethysiloxane (PDMS multi-channel device, which also serves as cladding for the biosensor. In addition, this biosensor only consumes 10 μl of a sample and does not require hydrofluoric acid etching in the fabrication process. The orientation for signal collection is optimized by comparing the lateral and normal signal directions for detected glyceraldehyde 3-phosphate dehydrogenase (GAPDH. C-reactive protein (CRP is used to validate the MCFOB, and the limit of detection (LOD for CRP in the MCFOB is 1.94 ng/ml (74 pM. Moreover, the real-time measurement is demonstrated to verify that the evanescent wave is the only exciting light source in the MCFOB, which gives the potential for real-time measurement applications. Keywords: C-reactive protein, Capillary, Fiber-optic, Microfluidic, Evanescent wave, Immunoassay

  17. Evanescent wave scattering at off-axis incidence on multiple cylinders located near a surface

    International Nuclear Information System (INIS)

    Lee, Siu-Chun

    2015-01-01

    The scattering characteristics of an infinite cylinder are strongly influenced by the incidence angle relative to its axis. If the incident wave propagates in the plane normal to the axis of the cylinder, the polarization of the scattered wave remains unchanged and the scattered wave propagates in the same plan as the incident wave. At off-axis incidence such that the incident direction makes an oblique angle with the cylinder axis, the scattered wave is depolarized, and its spatial distribution becomes three-dimensional. This paper presents the scattering solution for oblique incidence on multiple parallel cylinders located near a planar interface by an evanescent wave that is generated by total internal reflection of the source wave propagating in the higher refractive index substrate. Hertz potentials are utilized to formulate the interaction of inhomogeneous waves with the cylinders, scattering at the substrate interface, and near field scattering between the cylinders. Analytic formulas are derived for the electromagnetic fields and Poynting vector of scattered radiation in the near-field and their asymptotic forms in the far-field. Numerical examples are shown to illustrate scattering of evanescent wave by multiple cylinders at off-axis incidence. - Highlights: • Developed an exact solution for off-axis incidence on multiple cylinders. • Included depolarization, near-field scattering, and Fresnel effect in theory. • Derived analytic formulas for scattered radiation in the far field. • Illustrated evanescent scattering at off-axis incidence by numerical data

  18. Nonlinear Dot Plots.

    Science.gov (United States)

    Rodrigues, Nils; Weiskopf, Daniel

    2018-01-01

    Conventional dot plots use a constant dot size and are typically applied to show the frequency distribution of small data sets. Unfortunately, they are not designed for a high dynamic range of frequencies. We address this problem by introducing nonlinear dot plots. Adopting the idea of nonlinear scaling from logarithmic bar charts, our plots allow for dots of varying size so that columns with a large number of samples are reduced in height. For the construction of these diagrams, we introduce an efficient two-way sweep algorithm that leads to a dense and symmetrical layout. We compensate aliasing artifacts at high dot densities by a specifically designed low-pass filtering method. Examples of nonlinear dot plots are compared to conventional dot plots as well as linear and logarithmic histograms. Finally, we include feedback from an expert review.

  19. Label-free evanescent microscopy for membrane nano-tomography in living cells.

    Science.gov (United States)

    Bon, Pierre; Barroca, Thomas; Lévèque-Fort, Sandrine; Fort, Emmanuel

    2014-11-01

    We show that through-the-objective evanescent microscopy (epi-EM) is a powerful technique to image membranes in living cells. Readily implementable on a standard inverted microscope, this technique enables full-field and real-time tracking of membrane processes without labeling and thus signal fading. In addition, we demonstrate that the membrane/interface distance can be retrieved with 10 nm precision using a multilayer Fresnel model. We apply this nano-axial tomography of living cell membranes to retrieve quantitative information on membrane invagination dynamics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  20. Evanescent-wave coupled right angled buried waveguide: Applications in carbon nanotube mode-locking

    International Nuclear Information System (INIS)

    Mary, R.; Thomson, R. R.; Kar, A. K.; Brown, G.; Beecher, S. J.; Popa, D.; Sun, Z.; Torrisi, F.; Hasan, T.; Milana, S.; Bonaccorso, F.; Ferrari, A. C.

    2013-01-01

    We present an evanescent-field device based on a right-angled waveguide. This consists of orthogonal waveguides, with their points of intersection lying along an angled facet of the chip. Light guided along one waveguide is incident at the angled dielectric-air facet at an angle exceeding the critical angle, so that the totally internally reflected light is coupled into the second waveguide. By depositing a nanotube film on the angled surface, the chip is then used to mode-lock an Erbium doped fiber ring laser with a repetition rate of 26 MHz, and pulse duration of 800 fs

  1. Gravity mode offset and properties of the evanescent zone in red-giant stars

    Science.gov (United States)

    Hekker, S.; Elsworth, Y.; Angelou, G. C.

    2018-03-01

    Context. The wealth of asteroseismic data for red-giant stars and the precision with which these data have been observed over the last decade calls for investigations to further understand the internal structures of these stars. Aim. The aim of this work is to validate a method to measure the underlying period spacing, coupling term, and mode offset of pure gravity modes that are present in the deep interiors of red-giant stars. We subsequently investigate the physical conditions of the evanescent zone between the gravity mode cavity and the pressure mode cavity. Methods: We implement an alternative mathematical description compared to what is used in the literature to analyse observational data and to extract the underlying physical parameters that determine the frequencies of mixed modes. This description takes the radial order of the modes explicitly into account, which reduces its sensitivity to aliases. Additionally, and for the first time, this method allows us to constrain the gravity mode offset ɛg for red-giant stars. Results: We find that this alternative mathematical description allows us to determine the period spacing ΔΠ and the coupling term q for the dipole modes within a few percent of values found in the literature. Additionally, we find that ɛg varies on a star-by-star basis and should not be kept fixed in the analysis. Furthermore, we find that the coupling factor is logarithmically related to the physical width of the evanescent region normalised by the radius at which the evanescent zone is located. Finally, the local density contrast at the edge of the core of red-giant branch models shows a tentative correlation with the offset ɛg. Conclusions: We are continuing to exploit the full potential of the mixed modes to investigate the internal structures of red-giant stars; in this case we focus on the evanescent zone. It remains, however, important to perform comparisons between observations and models with great care as the methods employed

  2. Influence of evanescent waves on the voxel profile in multipulse multiphoton polymerization nanofabrication

    International Nuclear Information System (INIS)

    Li Wei; Cao Tianxiang; Zhai Zhaohui; Yu Xuanyi; Zhang Xinzheng; Xu Jingjun

    2013-01-01

    The relationship between the profile of the structures obtained by multiphoton polymerization and the optical parameters of nanofabrication systems has been studied theoretically for a multipulse scheme. We find that the profile of sub-wavelength structures is greatly affected by the evanescent waves affect. Not only is the photocured polymer voxel affected by the beam profile, but the beam propagation behavior is influenced by the photocured polymer voxel. This gives us a new view of matter–light interactions in multipulse polymerization process, which is useful to the accurate control of the nanofabrication profile and the selection of new nanofabrication materials. (paper)

  3. Miniature Chemical Sensor Combining Molecular Recognition with Evanescent Wave Cavity Ring-Down Spectroscopy

    International Nuclear Information System (INIS)

    Pipino, Andrew C. R.; Meuse, Curtis W.

    2002-01-01

    To address the chemical sensing needs of DOE, a new class of chemical sensors is being developed that enables qualitative and quantitative, remote, real-time, optical diagnostics of chemical species in hazardous gas, liquid, and semi-solid phases by employing evanescent wave cavity ringdown spectroscopy (EW-CRDS). The sensitivity of EW-CRDS was demonstrated previously under Project No.60231. The objective of this project is to enhance the range of application and selectivity of the technique by combining EW-CRDS with refractive-index-sensitive nanoparticle optics, molecular recognition (MR) chemistry, and by utilizing the polarization-dependence of EW-CRDS. Research Progress and Implications

  4. Nonreciprocal optical tunnelling through evanescently coupled Tamm states in magnetophotonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yun-Tuan [Jiangsu Univ., Zhenjiang (China). School of Computer Science and Telecommunication Engineering; Han, Ling [The Second Military Medical Univ., Shanghai (China). Dept. of Radiation Medicine; Gao, Yong-Feng [Jiangsu Univ., Zhenjiang (China). School of Mechanical Engineering

    2015-07-01

    Evanescently coupled Tamm states are achieved through two magnetophotonic crystals (MPCs) with a pair of coupling prisms. At the wavelengths of coupled Tamm states, a double of nonreciprocal optical tunnelling channels is found through the transmission spectra obtained from a developed transfer matrix method. The nonreciprocal tunnelling wavelength and the interval between two nonreciprocal channels can be adjusted depending on the width of the air gap between two MPCs or the scale invariant of a PC. The nonreciprocal tunnelling is demonstrated through electromagnetic field distribution simulations based on finite element software. Such theoretical results may provide a new method to design tunable optical isolators with a double of channels.

  5. Quantitative measurement of piezoelectric coefficient of thin film using a scanning evanescent microwave microscope.

    Science.gov (United States)

    Zhao, Zhenli; Luo, Zhenlin; Liu, Chihui; Wu, Wenbin; Gao, Chen; Lu, Yalin

    2008-06-01

    This article describes a new approach to quantitatively measure the piezoelectric coefficients of thin films at the microscopic level using a scanning evanescent microwave microscope. This technique can resolve 10 pm deformation caused by the piezoelectric effect and has the advantages of high scanning speed, large scanning area, submicron spatial resolution, and a simultaneous accessibility to many other related properties. Results from the test measurements on the longitudinal piezoelectric coefficient of PZT thin film agree well with those from other techniques listed in literatures.

  6. Reflection and diffraction of atomic de Broglie waves by evanescent laser waves. Bare-state method

    International Nuclear Information System (INIS)

    Feng, Xiaoping; Witte, N.S.; Hollenberg, C.L.; Opat, G.

    1994-01-01

    Two methods are presented for the investigation of the reflection and diffraction of atoms by gratings formed either by standing or travelling evanescent laser waves. Both methods use the bare-state rather than dressed-state picture. One method is based on the Born series, whereas the other is based on the Laplace transformation of the coupled differential equations. The two methods yield the same theoretical expressions for the reflected and diffracted atomic waves in the whole space including the interaction and the asymptotic regions. 1 ref., 1 fig

  7. Propagation of evanescent waves in multimode chalcogenide fiber immersed in an aqueous acetone solution: theory and experiment

    Science.gov (United States)

    Korsakova, S. V.; Romanova, E. A.; Velmuzhov, A. P.; Kotereva, T. V.; Sukhanov, M. V.; Shiryaev, V. S.

    2017-04-01

    Chalcogenide fibers are considered as a base for creation of a fiber-optical platform for the mid-IR evanescent wave spectroscopy. In this work, transmittance of a multimode fiber made of Ge26As17Se25Te32 glass, immersed into an aqueous acetone solution was measured in the range of wavelengths 5 - 9 microns at various concentrations of the solution. A theoretical approach based on electromagnetic theory of optical fibers has been applied for analysis of evanescent modes propagation in the fiber. Attenuation coefficients calculated for each HE1m evanescent mode increase with the mode radial order m. This effect can be used for optimisation of the fiber-optic sensing elements for the mid-IR spectroscopy.

  8. Evanescent wave sensing and absorption analysis of herbal tea floral extracts in the presence of silver metal complexes

    Science.gov (United States)

    Priyamvada, V. C.; Radhakrishnan, P.

    2017-06-01

    Fiber optic evanescent wave sensors are used for studying the absorption properties of biochemical samples. The studies give precise information regarding the actual ingredients of the samples. Recent studies report the corrosion of silver in the presence glucose dissolved in water and heated to a temperature of 70°C. Based on this report evanescent absorption studies are carried out in hibiscus herbal tea floral extracts in the presence of silver metal complexes. These studies can also lead to the evaluation of the purity of the herbal tea extract.

  9. Zero-bias 32 Gb/s evanescently coupled InGaAs/InP UTC-PDs

    Science.gov (United States)

    Sun, Siwei; Liang, Song; Xie, Xiao; Xu, Junjie; Guo, Lu; Zhu, Hongliang; Wang, Wei

    2018-05-01

    We report the design and fabrication of high speed evanescently coupled InGaAs/InP uni-traveling-carrier-photodiodes (UTC-PDs). A self-aligned passive waveguide is integrated with the PDs by a simple fabrication procedure. Open eye diagrams at 32 Gb/s under zero bias are demonstrated for the first time, to the best of our knowledge, from evanescently or edge coupled InP based PDs, which are easier to be integrated with other optical components than surface illuminated PDs. When used for photonic integrated circuits (PICs) applications, our PDs help to lower the electrical cross talk and power consumption of PICs chips.

  10. Advancements in the Field of Quantum Dots

    Science.gov (United States)

    Mishra, Sambeet; Tripathy, Pratyasha; Sinha, Swami Prasad.

    2012-08-01

    Quantum dots are defined as very small semiconductor crystals of size varying from nanometer scale to a few micron i.e. so small that they are considered dimensionless and are capable of showing many chemical properties by virtue of which they tend to be lead at one minute and gold at the second minute.Quantum dots house the electrons just the way the electrons would have been present in an atom, by applying a voltage. And therefore they are very judiciously given the name of being called as the artificial atoms. This application of voltage may also lead to the modification of the chemical nature of the material anytime it is desired, resulting in lead at one minute to gold at the other minute. But this method is quite beyond our reach. A quantum dot is basically a semiconductor of very tiny size and this special phenomenon of quantum dot, causes the band of energies to change into discrete energy levels. Band gaps and the related energy depend on the relationship between the size of the crystal and the exciton radius. The height and energy between different energy levels varies inversely with the size of the quantum dot. The smaller the quantum dot, the higher is the energy possessed by it.There are many applications of the quantum dots e.g. they are very wisely applied to:Light emitting diodes: LEDs eg. White LEDs, Photovoltaic devices: solar cells, Memory elements, Biology : =biosensors, imaging, Lasers, Quantum computation, Flat-panel displays, Photodetectors, Life sciences and so on and so forth.The nanometer sized particles are able to display any chosen colour in the entire ultraviolet visible spectrum through a small change in their size or composition.

  11. Restoration of s-polarized evanescent waves and subwavelength imaging by a single dielectric slab

    International Nuclear Information System (INIS)

    El Gawhary, Omar; Schilder, Nick J; Costa Assafrao, Alberto da; Pereira, Silvania F; Paul Urbach, H

    2012-01-01

    It was predicted a few years ago that a medium with negative index of refraction would allow for perfect imaging. Although no material has been found so far that behaves as a perfect lens, some experiments confirmed the theoretical predictions in the near-field, or quasi-static, regime where the behaviour of a negative index medium can be mimicked by a thin layer of noble metal, such as silver. These results are normally attributed to the excitation of surface plasmons in the metal, which only leads to the restoration of p-polarized evanescent waves. In this work, we show that the restoration of s-polarized evanescent waves and, correspondingly, sub-wavelength imaging by a single dielectric slab are possible. Specifically, we show that at λ = 632 nm a thin layer of GaAs behaves as a superlens for s-polarized waves. Replacing the single-metal slab by a dielectric is not only convenient from a technical point of view, it being much easier to deposit and control the thickness and flatness of dielectric films than metal ones, but also invites us to re-think the connection between surface plasmon excitation and the theory of negative refraction. (paper)

  12. Bloch Modes and Evanescent Modes of Photonic Crystals: Weak Form Solutions Based on Accurate Interface Triangulation

    Directory of Open Access Journals (Sweden)

    Matthias Saba

    2015-01-01

    Full Text Available We propose a new approach to calculate the complex photonic band structure, both purely dispersive and evanescent Bloch modes of a finite range, of arbitrary three-dimensional photonic crystals. Our method, based on a well-established plane wave expansion and the weak form solution of Maxwell’s equations, computes the Fourier components of periodic structures composed of distinct homogeneous material domains from a triangulated mesh representation of the inter-material interfaces; this allows substantially more accurate representations of the geometry of complex photonic crystals than the conventional representation by a cubic voxel grid. Our method works for general two-phase composite materials, consisting of bi-anisotropic materials with tensor-valued dielectric and magnetic permittivities ε and μ and coupling matrices ς. We demonstrate for the Bragg mirror and a simple cubic crystal closely related to the Kelvin foam that relatively small numbers of Fourier components are sufficient to yield good convergence of the eigenvalues, making this method viable, despite its computational complexity. As an application, we use the single gyroid crystal to demonstrate that the consideration of both conventional and evanescent Bloch modes is necessary to predict the key features of the reflectance spectrum by analysis of the band structure, in particular for light incident along the cubic [111] direction.

  13. Miniature chemical sensor combining molecular recognition with evanescent wave cavity ring-down spectroscopy

    International Nuclear Information System (INIS)

    Pipino, Andrew C. R.

    2004-01-01

    A new chemical detection technology has been realized that addresses DOE environmental management needs. The new technology is based on a variant of the sensitive optical absorption technique, cavity ring-down spectroscopy (CRDS). Termed evanescent-wave cavity ring-down spectroscopy (EW-CRDS), the technology employs a miniature solid-state optical resonator having an extremely high Q-factor as the sensing element, where the high-Q is achieved by using ultra-low-attenuation optical materials, ultra-smooth surfaces, and ultra-high reflectivity coatings, as well as low-diffraction-loss designs. At least one total-internal reflection (TIR) mirror is integral to the resonator permitting the concomitant evanescent wave to probe the ambient environment. Several prototypes have been designed, fabricated, characterized, and applied to chemical detection. Moreover, extensions of the sensing concept have been explored to enhance selectivity, sensitivity, and range of application. Operating primarily in the visible and near IR regions, the technology inherently enables remote detection by optical fiber. Producing 11 archival publications, 5 patents, 19 invited talks, 4 conference proceedings, a CRADA, and a patent-license agreement, the project has realized a new chemical detection technology providing >100 times more sensitivity than comparable technologies, while also providing practical advantages

  14. Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kichul; Lee, Young Tack; Choi, Won-Kook; Song, Yong-Won [Center for Opto-electronic Materials and Devices, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Lee, Junsu; Lee, Ju Han [School of Electrical and Computer Engineering, University of Seoul (Korea, Republic of)

    2015-12-15

    Black phosphorus, or BP, has found a lot of applications in recent years including photonics. The most recent studies have shown that the material has an excellent optical nonlinearity useful in many areas, one of which is in saturable absorption for passive mode-locking. A direct interaction scheme for mode-locking, however, has a potential to optically cause permanent damage to the already delicate material. Evanescent field interaction scheme has already been proven to be a useful method to prevent such danger for other 2-dimensional nanomaterials. In this report, we have utilized the evanescent field interaction to demonstrate that the optical nonlinear characteristics of BP is sufficiently strong to use in such an indirect interaction method. The successful demonstration of the passive mode-locking operation has generated pulses with the pulse duration, repetition rate, and time bandwidth product of 2.18 ps, 15.59 MHz, and 0.336, respectively. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. From DOT to Dotty

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    - Module types are interfaces, which can be abstracted. In this talk Martin will present DOT, a particularly simple calculus that can express systems following these principles. DOT has been developed as the foundation of the next version of Scala. He will also report on dotty, a new Scala compiler that implements the constructs of DOT in its core data structures and that uses the lessons learned to drive Scala’s evolution.

  16. Transport in quantum dots

    International Nuclear Information System (INIS)

    Deus, Fernanda; Continetino, Mucio

    2011-01-01

    Full text. In this work we study the time dependent transport in interacting quantum dot. This is a zero-dimensional nano structure system which has quantized electronic states. In our purpose, we are interested in studying such system in a Coulomb blockade regime where a mean-field treatment of the electronic correlations are appropriate. The quantum dot is described by an Anderson type of Hamiltonian where the hybridization term arises from the contact with the leads. We consider a time dependence of both the energy of the localized state in the quantum dot and of the hybridization-like term. These time dependent parameters, under certain conditions, induce a current in the quantum dot even in the absence of difference on the chemical potential of the leads. The approach to this non-equilibrium problem requires the use of a Keldysh formalism. We calculate the non- equilibrium Green's functions and obtain results for the average (equilibrium term) and the non-equilibrium values of the electronic occupation number in the dot. we consider the possibility of a magnetic solution, with different values for the average up and down spins in the quantum dot. Our results allow to obtain, for instance, the tunneling current through the dot. The magnetic nature of the dot, for a certain range of parameters should give rise also to an induced spin current through the dot

  17. Evanescent reverberation

    NARCIS (Netherlands)

    Serra, R.

    2012-01-01

    Abstract—One of the main statistical models for fields in reverberation chambers is the so-called "plane wave integral representation" model of David Hill. However, despite being widely known and used, this model (as stated by D. Hill himself) lacks a rigorous demonstration, especially when

  18. White Ring; White ring

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, H.; Yuzawa, H. [Nikken Sekkei Ltd., Osaka (Japan)

    1998-01-05

    White Ring is a citizen`s gymnasium used for figure skating and short track speed skating games of 18th Winter Olympic Games in 1998. White Ring is composed of a main-arena and a sub-arena. For the main-arena with an area 41mtimes66m, an ice link can be made by disengaging the potable floor and by flowing brine in the bridged polystyrene pipes embedded in the concrete floor. Due to the fortunate groundwater in this site, well water is used for the outside air treatment energy in 63% during heating and in 35% during cooling. Ammonia is used as a cooling medium for refrigerating facility. For the heating of audience area in the large space, heat load from the outside is reduced by enhancing the heat insulation performance of the roof of arena. The audience seats are locally heated using heaters. For the White Ring, high quality environment is realized for games through various functions of the large-scale roof of the large space. Success of the big event was expected. 15 figs., 4 tabs.

  19. Quantum Dots: Theory

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

  20. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    1999-01-01

    Semiconductor quantum dots ("solid state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution of...

  1. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    Semiconductor quantum dots ("solid-state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution of...

  2. Synthesis of quantum dots

    Science.gov (United States)

    McDaniel, Hunter

    2017-10-17

    Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.

  3. Operator mixing in the ɛ -expansion: Scheme and evanescent-operator independence

    Science.gov (United States)

    Di Pietro, Lorenzo; Stamou, Emmanuel

    2018-03-01

    We consider theories with fermionic degrees of freedom that have a fixed point of Wilson-Fisher type in noninteger dimension d =4 -2 ɛ . Due to the presence of evanescent operators, i.e., operators that vanish in integer dimensions, these theories contain families of infinitely many operators that can mix with each other under renormalization. We clarify the dependence of the corresponding anomalous-dimension matrix on the choice of renormalization scheme beyond leading order in ɛ -expansion. In standard choices of scheme, we find that eigenvalues at the fixed point cannot be extracted from a finite-dimensional block. We illustrate in examples a truncation approach to compute the eigenvalues. These are observable scaling dimensions, and, indeed, we find that the dependence on the choice of scheme cancels. As an application, we obtain the IR scaling dimension of four-fermion operators in QED in d =4 -2 ɛ at order O (ɛ2).

  4. Large photon drag effect of intrinsic graphene induced by plasmonic evanescent field

    Science.gov (United States)

    Luo, Ma; Li, Zhibing

    2016-12-01

    A large photon drag effect of the massless Dirac fermions in intrinsic graphene is predicted for a graphene-on-plasmonic-layer system. The surface plasmons in the plasmonic layer enlarge the wave number of the photon hundreds times more than in vacuum. The evanescent field of the surface plasmons generates a directional motion of carriers in the intrinsic graphene because of the large momentum transfer from the surface plasmon to the excited carriers. A model Hamiltonian is developed on the assumption that the in-plane wavelength of the surface plasmons is much smaller than the mean free path of the carriers. The time evolution of the density matrix is solved by perturbation method as well as numerical integration. The nondiagonal density matrix elements with momentum transfer lead to a gauge current, which is an optically driven macroscopic direct current. The dependence of the macroscopic direct current on the incident direction and intensity of the laser field is studied.

  5. Evanescent Properties of Optical Diffraction from 2-Dimensional Hexagonal Photonic Crystals and Their Sensor Applications.

    Science.gov (United States)

    Liao, Yu-Yang; Chen, Yung-Tsan; Chen, Chien-Chun; Huang, Jian-Jang

    2018-04-03

    The sensitivity of traditional diffraction grating sensors is limited by the spatial resolution of the measurement setup. Thus, a large space is required to improve sensor performance. Here, we demonstrate a compact hexagonal photonic crystal (PhC) optical sensor with high sensitivity. PhCs are able to diffract optical beams to various angles in azimuthal space. The critical wavelength that satisfies the phase matching or becomes evanescent was used to benchmark the refractive index of a target analyte applied on a PhC sensor. Using a glucose solution as an example, our sensor demonstrated very high sensitivity and a low limit of detection. This shows that the diffraction mechanism of hexagonal photonic crystals can be used for sensors when compact size is a concern.

  6. Evanescently Coupled Rectangular Microresonators in Silicon-on-Insulator with High Q-Values: Experimental Characterization

    Directory of Open Access Journals (Sweden)

    Manuel Mendez-Astudillo

    2017-04-01

    Full Text Available We report on evanescently coupled rectangular microresonators with dimensions up to 20 × 10 μm2 in silicon-on-insulator in an add-drop filter configuration. The influence of the geometrical parameters of the device was experimentally characterized and a high Q value of 13,000 was demonstrated as well as the multimode optical resonance characteristics in the drop port. We also show a 95% energy transfer between ports when the device is operated in TM-polarization and determine the full symmetry of the device by using an eight-port configuration, allowing the drop waveguide to be placed on any of its sides, providing a way to filter and route optical signals. We used the FDTD method to analyze the device and e-beam lithography and dry etching techniques for fabrication.

  7. Detection of Cadmium Ion by Evanescent Wave Based Chitosan Coated Optical Fiber Sensor

    International Nuclear Information System (INIS)

    Yulianti, I; Edy, S S; Saputra, B A; Aji, M P; Susanto; Kurdi, O

    2017-01-01

    Evanescent wave based-optical fiber sensor to detect cadmium ion is proposed. Chitosan was used by using the dip-coating method. The sensor was fabricated in U-bent shape. U-bent optical sensor at aconcentration of 2ppm and 5ppm had asensitivity of 0.2067 dBm/ppm and -0.7995 dBm/ppm, respectively. At a level of 2ppm - 5ppm, the optical sensor has a linear response with asensitivity of -0.283 dBm/ppm. The sensor takes 9.5 minutes to reach steady stateat aconcentration of 1 ppm. Atalevel of 2ppm - 5ppm, the sensor takes 5 minutes to 10.45 minutes to reach steady state. (paper)

  8. Quantum dot molecules

    CERN Document Server

    Wu, Jiang

    2014-01-01

    This book reviews recent advances in the exciting and rapidly growing field of quantum dot molecules (QDMs). It offers state-of-the-art coverage of novel techniques and connects fundamental physical properties with device design.

  9. Graphene quantum dots

    CERN Document Server

    Güçlü, Alev Devrim; Korkusinski, Marek; Hawrylak, Pawel

    2014-01-01

    This book reflects the current status of theoretical and experimental research of graphene based nanostructures, in particular quantum dots, at a level accessible to young researchers, graduate students, experimentalists and theorists. It presents the current state of research of graphene quantum dots, a single or few monolayer thick islands of graphene. It introduces the reader to the electronic and optical properties of graphite, intercalated graphite and graphene, including Dirac fermions, Berry's phase associated with sublattices and valley degeneracy, covers single particle properties of

  10. Mobility and height detection of particle labels in an optical evanescent wave biosensor with single-label resolution

    Energy Technology Data Exchange (ETDEWEB)

    Van Ommering, Kim; Koets, Marjo; Schleipen, Jean J H B; Prins, Menno W J [Philips Research Laboratories, 5656 AE Eindhoven (Netherlands); Somers, Philip A; Van IJzendoorn, Leo J, E-mail: menno.prins@philips.co [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands)

    2010-04-21

    Particle labels are used in biosensors to detect the presence and concentration of analyte molecules. In this paper we demonstrate an optical technique to measure the mobility and height of bound particle labels on a biosensor surface with single-label resolution. The technique is based on the detection of the particle-induced light scattering in an optical evanescent field. We show that the thermal particle motion in the optical evanescent field leads to intensity fluctuations that can accurately be detected. The technique is demonstrated using 290 bp (99 nm) DNA as an analyte and using polystyrene particles and magnetic particles with diameters between 500 and 1000 nm as labels. The particle intensity histograms show that quantitative height measurements are obtained for particles with uniform optical properties, and the intensity versus position plots reflect the analyte-antibody orientation and the analyte flexibility. The novel optical detection technique will lead to biosensors with very high sensitivity and specificity.

  11. Tuneable light-emitting carbon-dot/polymer flexible films prepared through one-pot synthesis

    Science.gov (United States)

    Bhunia, Susanta Kumar; Nandi, Sukhendu; Shikler, Rafi; Jelinek, Raz

    2016-02-01

    Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies.Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies. Electronic supplementary information (ESI

  12. Possible new class of dense white dwarfs

    International Nuclear Information System (INIS)

    Glendenning, N.K.; Kettner, C.; Weber, F.

    1995-01-01

    If the strange quark matter hypothesis is true, then a new class of white dwarfs can exist whose nuclear material in their deep interiors can have a density as high as the neutron drip density, a few hundred times the density in maximum-mass white dwarfs and 4x10 4 the density in dwarfs of mass, M∼0.6 M circle-dot . Their masses fall in the approximate range 10 -4 to 1 M circle-dot . They are stable against acoustical modes of vibration. A strange quark core stabilizes these stars, which otherwise would have central densities that would place them in the unstable region of the sequence between white dwarfs and neutron stars. copyright 1995 American Institute of Physics

  13. Enhanced transmission via evanescent-to-propagating conversion in metallic nanoslits: role of Rayleigh anomalies

    International Nuclear Information System (INIS)

    Skigin, Diana C; Lester, Marcelo

    2014-01-01

    We analyze the enhanced transmission phenomenon in subwavelength slit structures near a dielectric interface. In particular, we investigate the influence of Rayleigh anomalies in the spectral position as well as in the bandwidth of Fabry–Perot resonances excited on such structures. We consider the cases of propagating and evanescent incidence, i.e., when the metallic structure is illuminated from the dielectric medium side with an incidence angle larger than the critical angle. We show that Rayleigh anomalies strongly interact with Fabry–Perot resonances, and make them deviate from the spectral positions predicted by the infinitely thin slit model. To get physical insight into this problem, we develop a simplified electromagnetic model and show that there is a close correspondence between the transmitted response of the structure and the behavior of certain function that depends on the geometrical and the illumination parameters. Our results suggest that Rayleigh anomalies strongly modify the electromagnetic response of the structure due to the existence of surface waves that modify the coupling condition between the fields inside and outside the slits. Besides, we show that even in absence of Fabry–Perot resonances, it is possible to produce enhanced transmission by taking advantage of the pseudoperiodicity condition of the fields. (paper)

  14. A Preliminary Test for Skin Gas Assessment Using a Porphyrin Based Evanescent Wave Optical Fiber Sensor

    Directory of Open Access Journals (Sweden)

    Roman SELYANCHYN

    2011-02-01

    Full Text Available An evanescent-wave optical fibre sensor modified with tetrakis-(4-sulfophenyl porphine (TSPP and poly(allylamine hydrochloride (PAH bilayers using layer-by-layer (LbL electrostatic self-assembly was tested to measure the gas emitted from human skin. Optical intensity changes at different wavelengths in the transmission spectrum of the porphyrin-based film were induced by the human skin gas and measured as sensor response. Influence of relative humidity, which can be a major interference to sensor response, was thoroughly studied and shown to be significantly different when compared to the influence of skin emanations. Responses of the current optical sensor system could be considered as composite sensor array, where different optical wavelengths act as channels that have selective response to specific volatile compounds. Data obtained from the sensor system was analyzed using principal component analysis (PCA. This approach enabled to distinguish skin odors of different people and their altered physiological conditions after alcohol consumption.

  15. Simulation and analysis of sensitivity for tapered fiber Bragg grating evanescent wave sensor

    Science.gov (United States)

    Xu, Hong-zhi; Lou, Jun; Tan, Yao-cheng; Li, Ben-chong; Huang, Jie; Shen, Wei-min

    2014-12-01

    We have carried out a detailed simulative study of the tapered fiber Bragg grating (TFBG) evanescent wave sensor sensitivity by using 3-D Coupled-Mode Theory method. The method is based on the spectral interrogation mode of operation. We also make numerical simulations to figure out how the uniform waist diameter and the difference of the relative refractive indexes between fiber core and external medium affect the sensitivity of this proposed sensor. The simulation results show that the sensitivity of the tapered fiber Bragg grating will be improved when the diameter of the uniform waist decrease as well as the difference of the relative refractive indexes between fiber core and external medium. And with the fixed uniform waist diameter and tapered length, when the difference of the relative refractive index of fiber core and external medium varies is 0.015RIU, the values of wavelength shift is 5.08nm, the sensitivity of the tapered fiber Bragg grating is 317.5nm/RIU. The sensitivity is higher than that of the common FBG. The results are consistent with theoretical models. The simulation results can supply the guidance for the further experimental study and refractive index sensor design, optimization and application.

  16. Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella

    Science.gov (United States)

    Xiao, Rui; Rong, Zhen; Long, Feng; Liu, Qiqi

    2014-11-01

    A portable evanescent wave fiber biosensor was developed to achieve the rapid and highly sensitive detection of Shigella. In this study, a DNA probe was covalently immobilized onto fiber-optic biosensors that can hybridize with a fluorescently labeled complementary DNA. The sensitivity of detection for synthesized oligonucleotides can reach 10-10 M. The surface of the sensor can be regenerated with 0.5% sodium dodecyl sulfate solution (pH 1.9) for over 30 times without significant deterioration of performance. The total analysis time for a single sample, including the time for measurement and surface regeneration, was less than 6 min. We employed real-time polymerase chain reaction (PCR) and compared the results of both methods to investigate the actual Shigella DNA detection capability of the fiber-optic biosensor. The fiber-optic biosensor could detect as low as 102 colony-forming unit/mL Shigella. This finding was comparable with that by real-time PCR, which suggests that this method is a potential alternative to existing detection methods.

  17. Laminar Natural Convection in Square Enclosure Under an Externally Evanescent Magnetic Field

    International Nuclear Information System (INIS)

    El Jery, Atef; Ben Brahim, Ammar; Magherbi, Mourad

    2009-01-01

    This paper numerically investigates the effect of an externally evanescent magnetic field on flow patterns and heat transfer of fluid in a square cavity. The horizontal walls of the enclosure are assumed to be insulated while the vertical walls are kept isothermal. A control volume finite element method is used to solve the conservation equations at Prandtl number of 0.71. The effect of constant Hartman number on Nusselt number was studied. Validation tests with existing data demonstrate the aptitude of the present method to produce accurate results. The effects of magnetic field inclination angle from 0 degree to 90 degree on streamlines distributions are shown for different values of Hartman number. For Grashof number equal to 10 5 , the values of relaxation time of the magnetic field are chosen, so that the Lorentz force acts only in the transient state of Nusselt number in natural convection. The Nusselt number was calculated for different values of the inverse relaxation time varying from 0 to + ∞. The magnitude and the number of oscillations of the Nusselt number were observed. It has been found that no oscillation was seen at relaxation time equal to 20

  18. Infrared fiber optic evanescent wave spectroscopy: applications in biology and medicine

    Science.gov (United States)

    Afanasyeva, Natalia I.; Bruch, Reinhard F.; Katzir, Abraham

    1999-04-01

    A new powerful and highly sensitive technique for non-invasive biomedical diagnostics in vivo has been developed using Infrared Fiberoptic Evanescent Wave Fourier Transform Spectroscopy (FEW-FTIR). This compact and portable method allows to detect functional chemical groups and bonds via vibrational spectroscopy directly from surfaces including living tissue. Such differences and similarities in molecular structure of tissue and materials can be evaluated online. Operating in the attenuated total reflection (ATR) regime in the middle-infrared (MIR) range, the FEW-FTIR technique provides direct contact between the fiber probe and tissue for non-destructive, non-invasive, fast and remote (few meters) diagnostics and quality control of materials. This method utilizes highly flexible and extremely low loss unclad fibers, for example silver halide fibers. Applications of this method include investigations of normal skin, precancerous and cancerous conditions, monitoring of the process of aging, allergic reactions and radiation damage to the skin. This setup is suitable as well for the detection of the influence of environmental factors (sun, water, pollution, and weather) on skin surfaces. The FEW-FTIR technique is very promising also for fast histological examinations in vitro. In this review, we present recent investigations of skin, breast, lung, stomach, kidney tissues in vivo and ex vivo (during surgery) to define the areas of tumor localization. The main advantages of the FEW-FTIR technique for biomedical, clinical, and environmental applications are discussed.

  19. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, Sumit; Schwingenschlö gl, Udo

    2016-01-01

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  20. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  1. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, Sumit

    2016-12-05

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  2. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers

    Science.gov (United States)

    Du, J.; Zhang, M.; Guo, Z.; Chen, J.; Zhu, X.; Hu, G.; Peng, P.; Zheng, Z.; Zhang, H.

    2017-01-01

    We fabricate ultrasmall phosphorene quantum dots (PQDs) with an average size of 2.6 ± 0.9 nm using a liquid exfoliation method involving ultrasound probe sonication followed by bath sonication. By coupling the as-prepared PQDs with microfiber evanescent light field, the PQD-based saturable absorber (SA) device exhibits ultrafast nonlinear saturable absorption property, with an optical modulation depth of 8.1% at the telecommunication band. With the integration of the all-fiber PQD-based SA, a continuous-wave passively mode-locked erbium-doped (Er-doped) laser cavity delivers stable, self-starting pulses with a pulse duration of 0.88 ps and at the cavity repetition rate of 5.47 MHz. Our results contribute to the growing body of work studying the nonlinear optical properties of ultrasmall PQDs that present new opportunities of this two-dimensional (2D) nanomaterial for future ultrafast photonic technologies. PMID:28211471

  3. A study on high NA and evanescent imaging with polarized illumination

    Science.gov (United States)

    Yang, Seung-Hune

    Simulation techniques are developed for high NA polarized microscopy with Babinet's principle, partial coherence and vector diffraction for non-periodic geometries. A mathematical model for the Babinet approach is developed and interpreted. Simulation results of the Babinet's principle approach are compared with those of Rigorous Coupled Wave Theory (RCWT) for periodic structures to investigate the accuracy of this approach and its limitations. A microscope system using a special solid immersion lens (SIL) is introduced to image Blu-Ray (BD) optical disc samples without removing the protective cover layer. Aberration caused by the cover layer is minimized with a truncated SIL. Sub-surface imaging simulation is achieved by RCWT, partial coherence, vector diffraction and Babinet's Principle. Simulated results are compared with experimental images and atomic force microscopy (AFM) measurement. A technique for obtaining native and induced using a significant amount of evanescent energy is described for a solid immersion lens (SIL) microscope. Characteristics of native and induced polarization images for different object structures and materials are studied in detail. Experiments are conducted with a NA = 1.48 at lambda = 550nm microscope. Near-field images are simulated and analyzed with an RCWT approach. Contrast curve versus object spatial frequency calculations are compared with experimental measurements. Dependencies of contrast versus source polarization angles and air gap for native and induced polarization image profiles are evaluated. By using the relationship between induced polarization and topographical structure, an induced polarization image of an alternating phase shift mask (PSM) is converted into a topographical image, which shows very good agreement with AFM measurement. Images of other material structures include a dielectric grating, chrome-on-glass grating, silicon CPU structure, BD-R and BD-ROM.

  4. Colloidal quantum dot light-emitting devices

    Directory of Open Access Journals (Sweden)

    Vanessa Wood

    2010-07-01

    Full Text Available Colloidal quantum dot light-emitting devices (QD-LEDs have generated considerable interest for applications such as thin film displays with improved color saturation and white lighting with a high color rendering index (CRI. We review the key advantages of using quantum dots (QDs in display and lighting applications, including their color purity, solution processability, and stability. After highlighting the main developments in QD-LED technology in the past 15 years, we describe the three mechanisms for exciting QDs – optical excitation, Förster energy transfer, and direct charge injection – that have been leveraged to create QD-LEDs. We outline the challenges facing QD-LED development, such as QD charging and QD luminescence quenching in QD thin films. We describe how optical downconversion schemes have enabled researchers to overcome these challenges and develop commercial lighting products that incorporate QDs to achieve desirable color temperature and a high CRI while maintaining efficiencies comparable to inorganic white LEDs (>65 lumens per Watt. We conclude by discussing some current directions in QD research that focus on achieving higher efficiency and air-stable QD-LEDs using electrical excitation of the luminescent QDs.

  5. Quantum dots and nanocomposites.

    Science.gov (United States)

    Mansur, Herman Sander

    2010-01-01

    Quantum dots (QDs), also known as semiconducting nanoparticles, are promising zero-dimensional advanced materials because of their nanoscale size and because they can be engineered to suit particular applications such as nonlinear optical devices (NLO), electro-optical devices, and computing applications. QDs can be joined to polymers in order to produce nanocomposites which can be considered a scientific revolution of the 21st century. One of the fastest moving and most exciting interfaces of nanotechnology is the use of QDs in medicine, cell and molecular biology. Recent advances in nanomaterials have produced a new class of markers and probes by conjugating semiconductor QDs with biomolecules that have affinities for binding with selected biological structures. The nanoscale of QDs ensures that they do not scatter light at visible or longer wavelengths, which is important in order to minimize optical losses in practical applications. Moreover, at this scale, quantum confinement and surface effects become very important and therefore manipulation of the dot diameter or modification of its surface allows the properties of the dot to be controlled. Quantum confinement affects the absorption and emission of photons from the dot. Thus, the absorption edge of a material can be tuned by control of the particle size. This paper reviews developments in the myriad of possibilities for the use of semiconductor QDs associated with molecules producing novel hybrid nanocomposite systems for nanomedicine and bioengineering applications.

  6. PREFACE: Quantum Dot 2010

    Science.gov (United States)

    Taylor, Robert A.

    2010-09-01

    These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur

  7. White House

    Science.gov (United States)

    ... content Jump to navigation the WHITE HOUSE President Donald J. Trump Get in Touch Home Briefing Room From the ... For All Americans The Administration The Administration President Donald J. Trump Vice President Mike Pence First Lady Melania Trump ...

  8. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    Science.gov (United States)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was

  9. Evanescent field characterisation for a d-shaped optical fibre using scanning near-field optical microscopy

    International Nuclear Information System (INIS)

    Huntington, S.T.; Nugent, K.A.; Roberts, A.; Mulvaney, P.; Lo, K.M.

    1997-01-01

    Scanning near field optical microscopy is used to measure the evanescent filed and mode profile of a Ge-doped D-shaped optical fibre. The structure of the fibre is determined by differential etching followed by an investigation of the resultant topography with an atomic force microscope. This information is then used to theoretically model the expected behaviour of the fibre and it is shown that the theoretically model the expected behaviour of the fibre and it is shown that the theoretical results are in excellent agreement with the experimentally observed fields

  10. Functionalization of embedded thiol-ene waveguides for evanescent wave induced fluorescence detection in a microfluidic device

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Jensen, Thomas Glasdam; Lafleur, Josiane P.

    2013-01-01

    We demonstrate the use of functional surface groups inherently present on off-stoichiometric thiol−ene polymers, for site-specific immobilization of biomolecules and detection by evanescent wave-induced fluorescence. An optofluidic chip featuring an embedded thiol−ene waveguide was selectively...... functionalized with biotin using photografting. The biotin was used for immobilization of fluorescently labelled streptavidin, and experiments revealed a linear correlation between streptavidin concentration and fluorescent intensity. To further demonstrate the attractiveness of using thiol−ene for optofluidic...

  11. Evanescent-wave and ambient chiral sensing by signal-reversing cavity ringdown polarimetry.

    Science.gov (United States)

    Sofikitis, Dimitris; Bougas, Lykourgos; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Loppinet, Benoit; Rakitzis, T Peter

    2014-10-02

    Detecting and quantifying chirality is important in fields ranging from analytical and biological chemistry to pharmacology and fundamental physics: it can aid drug design and synthesis, contribute to protein structure determination, and help detect parity violation of the weak force. Recent developments employ microwaves, femtosecond pulses, superchiral light or photoionization to determine chirality, yet the most widely used methods remain the traditional methods of measuring circular dichroism and optical rotation. However, these signals are typically very weak against larger time-dependent backgrounds. Cavity-enhanced optical methods can be used to amplify weak signals by passing them repeatedly through an optical cavity, and two-mirror cavities achieving up to 10(5) cavity passes have enabled absorption and birefringence measurements with record sensitivities. But chiral signals cancel when passing back and forth through a cavity, while the ubiquitous spurious linear birefringence background is enhanced. Even when intracavity optics overcome these problems, absolute chirality measurements remain difficult and sometimes impossible. Here we use a pulsed-laser bowtie cavity ringdown polarimeter with counter-propagating beams to enhance chiral signals by a factor equal to the number of cavity passes (typically >10(3)); to suppress the effects of linear birefringence by means of a large induced intracavity Faraday rotation; and to effect rapid signal reversals by reversing the Faraday rotation and subtracting signals from the counter-propagating beams. These features allow absolute chiral signal measurements in environments where background subtraction is not feasible: we determine optical rotation from α-pinene vapour in open air, and from maltodextrin and fructose solutions in the evanescent wave produced by total internal reflection at a prism surface. The limits of the present polarimeter, when using a continuous-wave laser locked to a stable, high

  12. Nanocrystal quantum dots

    CERN Document Server

    Klimov, Victor I

    2010-01-01

    ""Soft"" Chemical Synthesis and Manipulation of Semiconductor Nanocrystals, J.A. Hollingsworth and V.I. Klimov Electronic Structure in Semiconductor Nanocrystals: Optical Experiment, D.J. NorrisFine Structure and Polarization Properties of Band-Edge Excitons in Semiconductor Nanocrystals, A.L. EfrosIntraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots, P. Guyot-Sionnest, M. Shim, and C. WangMultiexciton Phenomena in Semiconductor Nanocrystals, V.I. KlimovOptical Dynamics in Single Semiconductor Quantum Do

  13. Quantum Dot Photonics

    Science.gov (United States)

    Kinnischtzke, Laura A.

    We report on several experiments using single excitons confined to single semiconductor quantum dots (QDs). Electric and magnetic fields have previously been used as experimental knobs to understand and control individual excitons in single quantum dots. We realize new ways of electric field control by changing materials and device geometry in the first two experiments with strain-based InAs QDs. A standard Schottky diode heterostructure is demonstrated with graphene as the Schottky gate material, and its performance is bench-marked against a diode with a standard gate material, semi-transparent nickel-chromium (NiCr). This change of materials increases the photon collection rate by eliminating absorption in the metallic NiCr layer. A second set of experiments investigates the electric field response of QDs as a possible metrology source. A linear voltage potential drop in a plane near the QDs is used to describe how the spatially varying voltage profile is also imparted on the QDs. We demonstrate a procedure to map this voltage profile as a preliminary route towards a full quantum sensor array. Lastly, InAs QDs are explored as potential spin-photon interfaces. We describe how a magnetic field is used to realize a reversible exchange of information between light and matter, including a discussion of the polarization-dependence of the photoluminesence, and how that can be linked to the spin of a resident electron or hole. We present evidence of this in two wavelength regimes for InAs quantum dots, and discuss how an external magnetic field informs the spin physics of these 2-level systems. This thesis concludes with the discovery of a new class of quantum dots. As-yet unidentified defect states in single layer tungsten diselenide (WSe 2 ) are shown to host quantum light emission. We explore the spatial extent of electron confinement and tentatively identify a radiative lifetime of 1 ns for these single photon emitters.

  14. Quantum dot solar cell

    International Nuclear Information System (INIS)

    Ahamefula, U.C.; Sulaiman, M.Y.; Sopian, K.; Ibarahim, Z.; Ibrahim, N.; Alghoul, M.A.; Haw, L.C.; Yahya, M.; Amin, N.; Mat, S.; Ruslan, M.H.

    2009-01-01

    Full text: The much awaited desire of replacing fossil fuel with photovoltaic will remain a fairy tale if the myriad of issues facing solar cell development are marginalized. Foremost in the list is the issue of cost. Silicon has reached a stage where its use on large scale can no longer be lavishly depended upon. The demand for high grade silicon from the microelectronics and solar industries has soared leading to scarcity. New approach has to be sought. Notable is the increased attention on thin films such as cadmium telluride, copper indium gallium diselenide, amorphous silicon, and the not so thin non-crystalline family of silicon. While efforts to address the issues of stability, toxicity and efficiency of these systems are ongoing, another novel approach is quietly making its appearance - quantum dots. Quantum dots seem to be promising candidates for solar cells because of the opportunity to manipulate their energy levels allowing absorption of a wider solar spectrum. Utilization of minute quantity of these nano structures is enough to bring the cost of solar cell down and to ascertain sustainable supply of useful material. The paper outlines the progress that has been made on quantum dot solar cells. (author)

  15. An evanescent wave biosensor--Part I: Fluorescent signal acquisition from step-etched fiber optic probes.

    Science.gov (United States)

    Anderson, G P; Golden, J P; Ligler, F S

    1994-06-01

    A fiber-optic biosensor capable of remote continuous monitoring has recently been designed. To permit sensing at locations separate from the optoelectronic instrumentation, long optical fibers are utilized. An evanescent wave immuno-probe is prepared by removing the cladding near the distal end of the fiber and covalently attaching antibodies to the core. Probes with a radius unaltered from that of the original core inefficiently returned the signal produced upon binding the fluorescent-labelled antigen. To elucidate the limiting factors in signal acquisition, a series of fibers with increasingly reduced probe core radius was examined. The results were consistent with the V-number mismatch, the difference in mode carrying capacity between the clad and unclad fiber, being a critical factor in limiting signal coupling from the fiber probe. However, it was also delineated that conditions which conserve excitation power, such that power in the evanescent wave is optimized, must also be met to obtain a maximal signal. The threshold sensitivity for the optimal step-etched fiber probe was improved by over 20-fold in an immunoassay, although, it was demonstrated that signal acquisition decreased along the probe length, suggesting that a sensor region of uniform radius is not ideal.

  16. Sol-gel based mid-infrared evanescent wave sensors for detection of organophosphate pesticides in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Janotta, Markus; Karlowatz, Manfred; Vogt, Frank; Mizaikoff, Boris

    2003-10-31

    This work demonstrates the application of organically modified sol-gels as recognition layers combined with mid-infrared evanescent wave sensors for in situ detection of nitrated organics in aqueous media. Sol-gels were prepared by acid-catalyzed copolymerization of phenyltrimethoxysilane (PTMOS) and tetramethoxysilane (TMOS) and were spin-coated onto ZnSe attenuated total reflection (ATR) waveguides. These sensors were investigated with respect to their enrichment properties of selected organophosphates, i.e. parathion, fenitrothion and paraoxon, respectively, and their capability of suppressing interfering water background absorptions. Figures of merit are derived from calibration curves determined to assess sensitivity and reproducibility of the applied sensor system. It can be concluded that sol-gel coated infrared optical sensors enable reproducible detection of organophosphates down to the sub-ppm concentration range. Furthermore, measurement of spiked river water samples demonstrates feasibility as remote field sensor system. Once the required sensitivity is achieved, sol-gel based mid-infrared evanescent wave sensors have the potential of being an alternative to commonly applied biosensors for detection of organophosphates in environmental analysis, since they provide superior mechanical and chemical stability during application relevant periods of time.

  17. A disposable evanescent wave fiber optic sensor coated with a molecularly imprinted polymer as a selective fluorescence probe.

    Science.gov (United States)

    Ton, Xuan-Anh; Acha, Victor; Bonomi, Paolo; Tse Sum Bui, Bernadette; Haupt, Karsten

    2015-02-15

    We have developed a disposable evanescent wave fiber optic sensor by coating a molecularly imprinted polymer (MIP) containing a fluorescent signaling group on a 4-cm long polystyrene optical waveguide. The MIP is composed of a naphthalimide-based fluorescent monomer, which shows fluorescence enhancement upon binding with carboxyl-containing molecules. The herbicide 2,4-dichlorophenoxyacetic acid and the mycotoxin citrinin were used as model analytes. The coating of the MIP was either performed ex-situ, by dip-coating the fiber with MIP particles synthesized beforehand, or in-situ by evanescent-wave photopolymerization on the fiber. The sensing element was interrogated with a fiber-coupled spectrofluorimeter. The fiber optic sensor detects targets in the low nM range and exhibits specific and selective recognition over structural analogs and non-related carboxyl-containing molecules. This technology can be extended to other carboxyl-containing analytes, and to a broader spectrum of targets using different fluorescent monomers. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. White Paranoia

    DEFF Research Database (Denmark)

    Jørholt, Eva

    2017-01-01

    Inspired by Alain Robbe-Grillet’s novel La Jalousie (1957), the essay contends that Michael Haneke’s Caché (2005) takes its viewers inside a postcolonial white paranoia which is, arguably, the root cause of the exclusion, segregation and racist discrimination that many immigrants from the former ...

  19. European Whiteness?

    DEFF Research Database (Denmark)

    Blaagaard, Bolette

    2008-01-01

    Born out of the United States’ (U.S.) history of slavery and segregation and intertwined with gender studies and feminism, the field of critical whiteness studies does not fit easily into a European setting and the particular historical context that entails. In order for a field of European...

  20. Core-cladding mode coupling and recoupling in photonic crystal fiber for enhanced overlap of evanescent field using long-period gratings

    Czech Academy of Sciences Publication Activity Database

    He, Z.; Zhu, Y.; Kaňka, Jiří; Du, H.

    2010-01-01

    Roč. 18, č. 2 (2010), s. 507-512 ISSN 1094-4087 R&D Projects: GA ČR GA102/08/1719 Institutional research plan: CEZ:AV0Z20670512 Keywords : Photonic crystal fiber * Long-period grating * Fiber-optic evanescent sensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.749, year: 2010

  1. Silicon quantum dots: surface matters

    Czech Academy of Sciences Publication Activity Database

    Dohnalová, K.; Gregorkiewicz, T.; Kůsová, Kateřina

    2014-01-01

    Roč. 26, č. 17 (2014), 1-28 ISSN 0953-8984 R&D Projects: GA ČR GPP204/12/P235 Institutional support: RVO:68378271 Keywords : silicon quantum dots * quantum dot * surface chemistry * quantum confinement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.346, year: 2014

  2. Phosphorene quantum dots

    Science.gov (United States)

    Vishnoi, Pratap; Mazumder, Madhulika; Barua, Manaswee; Pati, Swapan K.; Rao, C. N. R.

    2018-05-01

    Phosphorene, a two-dimensional material, has been a subject of recent investigations. In the present study, we have prepared blue fluorescent phosphorene quantum dots (PQDs) by liquid phase exfoliation of black phosphorus in two non-polar solvents, toluene and mesitylene. The average particle sizes of PQDs decrease from 5.0 to 1.0 nm on increasing the sonicator power from 150 to 225 W. The photoluminescence spectrum of the PQDs is red-shifted in the 395-470 nm range on increasing the excitation-wavelength from 300 to 480 nm. Electron donor and acceptor molecules quench the photoluminescence, with the acceptors showing more marked effects.

  3. White dots do matter

    DEFF Research Database (Denmark)

    Soeken, Mathias; Thomsen, Michael Kirkedal

    2013-01-01

    The increased effort in recent years towards methods for computer aided design of reversible logic circuits has also lead to research in algorithms for optimising the resulting circuits; both with higher-level data structures and directly on the reversible circuits. To obtain structural patterns...... that can be replaced by a cheaper realisation, many direct algorithms apply so-called moving rules; a simple form of rewrite rules that can only swap gate order. In this paper we first describe the few basic rules that are needed to perform rewriting directly on reversible logic circuits made from general...... as problems based on our rewrite rules. Finally, we outline a path to generalising the rewrite rules by showing their forms for reversible control-gates. This can be used to expand our method to other gates such as the controlled-swap gate or quantum gates....

  4. Printer model for dot-on-dot halftone screens

    Science.gov (United States)

    Balasubramanian, Raja

    1995-04-01

    A printer model is described for dot-on-dot halftone screens. For a given input CMYK signal, the model predicts the resulting spectral reflectance of the printed patch. The model is derived in two steps. First, the C, M, Y, K dot growth functions are determined which relate the input digital value to the actual dot area coverages of the colorants. Next, the reflectance of a patch is predicted as a weighted combination of the reflectances of the four solid C, M, Y, K patches and their various overlays. This approach is analogous to the Neugebauer model, with the random mixing equations being replaced by dot-on-dot mixing equations. A Yule-Neilsen correction factor is incorporated to account for light scattering within the paper. The dot area functions and Yule-Neilsen parameter are chosen to optimize the fit to a set of training data. The model is also extended to a cellular framework, requiring additional measurements. The model is tested with a four color xerographic printer employing a line-on-line halftone screen. CIE L*a*b* errors are obtained between measurements and model predictions. The Yule-Neilsen factor significantly decreases the model error. Accuracy is also increased with the use of a cellular framework.

  5. Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes.

    Science.gov (United States)

    Ruiz-Tórtola, Ángela; Prats-Quílez, Francisco; Gónzalez-Lucas, Daniel; Bañuls, María-José; Maquieira, Ángel; Wheeler, Guy; Dalmay, Tamas; Griol, Amadeu; Hurtado, Juan; Bohlmann, Helge; Götzen, Reiner; García-Rupérez, Jaime

    2018-04-17

    An experimental study of the influence of the conformational change suffered by molecular beacon (MB) probes -upon the biorecognition of nucleic acid target oligonucleotides over evanescent wave photonic sensors- is reported. To this end, high sensitivity photonic sensors based on silicon photonic bandgap (PBG) structures were used, where the MB probes were immobilized via their 5' termination. Those MBs incorporate a biotin moiety close to their 3' termination in order to selectively bind a streptavidin molecule to them. The different photonic sensing responses obtained towards the target oligonucleotide detection, when the streptavidin molecule was bound to the MB probes or not, demonstrate the conformational change suffered by the MB upon hybridization, which promotes the displacement of the streptavidin molecule away from the surface of the photonic sensing structure. Schematic diagram of the PBG sensing structure on which the streptavidin-labeled MB probes were immobilized. This article is protected by copyright. All rights reserved.

  6. Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method.

    Science.gov (United States)

    Aikio, Sanna; Hiltunen, Jussi; Hiitola-Keinänen, Johanna; Hiltunen, Marianne; Kontturi, Ville; Siitonen, Samuli; Puustinen, Jarkko; Karioja, Pentti

    2016-02-08

    Flexible photonic integrated circuit technology is an emerging field expanding the usage possibilities of photonics, particularly in sensor applications, by enabling the realization of conformable devices and introduction of new alternative production methods. Here, we demonstrate that disposable polymeric photonic integrated circuit devices can be produced in lengths of hundreds of meters by ultra-high volume roll-to-roll methods on a flexible carrier. Attenuation properties of hundreds of individual devices were measured confirming that waveguides with good and repeatable performance were fabricated. We also demonstrate the applicability of the devices for the evanescent wave sensing of ambient refractive index. The production of integrated photonic devices using ultra-high volume fabrication, in a similar manner as paper is produced, may inherently expand methods of manufacturing low-cost disposable photonic integrated circuits for a wide range of sensor applications.

  7. Exact solution for the reflection and diffraction of atomic de Broglie waves by a travelling evanescent laser wave

    International Nuclear Information System (INIS)

    Witte, N.S.

    1997-01-01

    The exact solution to the problem of reflection and diffraction of atomic de Broglie waves by a travelling evanescent wave is found starting with a bare-state formulation. The solution for the wavefunctions, the tunnelling losses and the non-adiabatic losses are given exactly in terms of hyper-Bessel functions, and are valid for all detuning and Rabi frequencies, thus generalizing previous approximate methods. Furthermore we give the limiting cases of all amplitudes in the uniform semiclassical limit, which is valid in all regions including near the classical turning points, and in the large and weak coupling cases. Exact results for the zero detuning case are obtained in terms of Bessel functions. We find our uniform semiclassical limit to be closer to the exact result over the full range of parameter values than the previously reported calculations. The current knowledge of hyper-Bessel function properties is reviewed in order to apply this to the physical problems imposed

  8. Calculation of back-reflected intensities of a Na-atom beam by standing evanescent E-M field

    International Nuclear Information System (INIS)

    Murphy, J.; Goodman, P.; Smith, A.

    1992-01-01

    A method is described for the computation of the back-scattered intensities of atomic beams, diffracted from the evanescent field generated outside an optical plate by internal counter-propagating laser beams. The method derives from a procedure developed for the similar but importantly differing problem of Low Energy Electron Diffraction, (Lynch and Smith, 1983). Modifications to that theory required for the present problem bring the equations closer to the RHEED solution proposed by Ichimiya (1983). Results from multi-slicing from the same narrow field depth (2 Aangstroems) in this strong field case show the success and also limitations of the program in its present form. Computation to greater depth in the strong field leads to numerical instabilities due to the incorporation of very large tunnelling terms. This requires the application of boundary conditions at each slice rather than the end of the multi-slice calculation. 7 refs., 3 figs

  9. Zero- and two-dimensional hybrid carbon phosphors for high colorimetric purity white light-emission.

    Science.gov (United States)

    Ding, Yamei; Chang, Qing; Xiu, Fei; Chen, Yingying; Liu, Zhengdong; Ban, Chaoyi; Cheng, Shuai; Liu, Juqing; Huang, Wei

    2018-03-01

    Carbon nanomaterials are promising phosphors for white light emission. A facile single-step synthesis method has been developed to prepare zero- and two-dimensional hybrid carbon phosphors for the first time. Zero-dimensional carbon dots (C-dots) emit bright blue luminescence under 365 nm UV light and two-dimensional nanoplates improve the dispersity and film forming ability of C-dots. As a proof-of-concept application, the as-prepared hybrid carbon phosphors emit bright white luminescence in the solid state, and the phosphor-coated blue LEDs exhibit high colorimetric purity white light-emission with a color coordinate of (0.3308, 0.3312), potentially enabling the successful application of white emitting phosphors in the LED field.

  10. U.S. DOT roadway transportation data business plan (phase 1) : data business plan.

    Science.gov (United States)

    2013-01-01

    In 2010 the FHWA Office of Operations, Office of Transportation Management (HOTM) commissioned the development of a white paper, Data Capture and Management: Needs and Gaps in the Operation and Coordination of U.S. DOT Data Capture and Management Pro...

  11. Graphene based quantum dots.

    Science.gov (United States)

    Zhang, H G; Hu, H; Pan, Y; Mao, J H; Gao, M; Guo, H M; Du, S X; Greber, T; Gao, H-J

    2010-08-04

    Laterally localized electronic states are identified on a single layer of graphene on ruthenium by low temperature scanning tunneling spectroscopy (STS). The individual states are separated by 3 nm and comprise regions of about 90 carbon atoms. This constitutes a highly regular quantum dot-array with molecular precision. It is evidenced by quantum well resonances (QWRs) with energies that relate to the corrugation of the graphene layer. The dI/dV conductance spectra are modeled by a layer height dependent potential-well with a delta-function potential that describes the barrier for electron penetration into graphene. The resulting QWRs are strongest and lowest in energy on the isolated 'hill' regions with a diameter of 2 nm, where the graphene is decoupled from the surface.

  12. Quantum dots, advantages and drawbacks for lighting applications

    International Nuclear Information System (INIS)

    Schmidmayr, D.; Zehetner, J.

    2014-01-01

    At present 19% of the world-wide consumed electricity is used for lighting purposes. Compared e.g. to the well-known incandescent light bulb a modern warm white LED with a similar light quality has a 25 times higher lifetime and operates approximately ten times more efficient. One major component limiting the efficiency is the color conversion material (phosphor). Due to broad emission bandwidths of traditional phosphors energy is wasted. In order to further improve efficiency new robust fluorescent materials which allow selective, narrow band conversion are needed. In this paper we investigate the potential of quantum dots and show that they are able to increase both luminous flux and spectral coverage at the same time. Furthermore we evaluate the optical properties of quantum dot samples under thermal stress and aerial oxygen influence. Photoluminescence intensity degradation as well as a shift of the emission peak wavelength still pose a problem. (authors)

  13. PennDOT : fact book

    Science.gov (United States)

    2008-06-01

    PennDOT was created in 1970 when the former : Department of Highways was merged with transportation related : functions from the Departments of Revenue, : Commerce, Community Affairs and Military Affairs. With : an annual budget of about $5.4 billion...

  14. Quantum dots: Rethinking the electronics

    Energy Technology Data Exchange (ETDEWEB)

    Bishnoi, Dimple [Department of Physics, S. S. Jain Subodh PG College, Jaipur, Rajasthan Pin-302004 (India)

    2016-05-06

    In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including “waste heat” from the sun’s energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate band setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.

  15. DOT Official County Highway Map

    Data.gov (United States)

    Minnesota Department of Natural Resources — The County Highway Map theme is a scanned and rectified version of the original MnDOT County Highway Map Series. The cultural features on some of these maps may be...

  16. Quadra-Quantum Dots and Related Patterns of Quantum Dot Molecules: Basic Nanostructures for Quantum Dot Cellular Automata Application

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2010-10-01

    Full Text Available Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called 'Droplet Epitaxy' has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390'C with a droplet growth rate of 1ML/s. Arsenic flux (7'8'10-6Torr is then exposed for InGaAs crystallization at 200'C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or, which are preferable crystallographic directions of quantum dot alignment in general.

  17. The quantum mechanical description of the dot-dot interaction in ionic colloids

    International Nuclear Information System (INIS)

    Morais, P.C.; Qu, Fanyao

    2007-01-01

    In this study the dot-dot interaction in ionic colloids is systematically investigated by self-consistently solving the coupled Schroedinger and Poisson equations in the frame of finite difference method (FDM). In a first approximation the interacting two-dot system (dimer) is described using the picture of two coupled quantum wells. It was found that the dot-dot interaction changes the colloid characteristic by changing the hopping coefficient (t) and consequently the nanodot surface charge density (σ). The hopping coefficient and the surface charge density were investigated as a function of the dot size and dot-dot distance

  18. Numerical Simulations of Gaseous Disks Generated from Collisional Cascades at the Roche Limits of White Dwarf Stars

    Science.gov (United States)

    Kenyon, Scott J.; Bromley, Benjamin C.

    2017-11-01

    We consider the long-term evolution of gaseous disks fed by the vaporization of small particles produced in a collisional cascade inside the Roche limit of a 0.6 {M}⊙ white dwarf. Adding solids with radius {r}0 at a constant rate {\\dot{M}}0 into a narrow annulus leads to two distinct types of evolution. When {\\dot{M}}0≳ {\\dot{M}}0,{crit}≈ 3× {10}4 {({r}0/1{km})}3.92 {{g}} {{{s}}}-1, the cascade generates a fairly steady accretion disk where the mass transfer rate of gas onto the white dwarf is roughly {\\dot{M}}0 and the mass in gas is {M}g≈ 2.3× {10}22 ({\\dot{M}}0/{10}10 {{g}} {{{s}}}-1) (1500 {{K}}/{T}0) ({10}-3/α ) g, where T 0 is the temperature of the gas near the Roche limit and α is the dimensionless viscosity parameter. If {\\dot{M}}0≲ {\\dot{M}}0,{crit}, the system alternates between high states with large mass transfer rates and low states with negligible accretion. Although either mode of evolution adds significant amounts of metals to the white dwarf photosphere, none of our calculations yield a vertically thin ensemble of solids inside the Roche limit. X-ray observations can place limits on the mass transfer rate and test this model for metallic line white dwarfs.

  19. Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field

    International Nuclear Information System (INIS)

    Luo, Z Q; Wang, J Z; Zhou, M; Xu, H Y; Cai, Z P; Ye, C C

    2012-01-01

    We report on the generation of multiwavelength passively mode-locked pulses in an erbium-doped fiber laser (EDFL) based on the interaction of graphene and fiber-taper evanescent field. Graphene-polymer nanocomposites in aqueous suspension are trapped by the optical evanescent light and deposited on taper region. The graphene-deposited fiber-taper device not only acts as an excellent saturable absorber for mode-locking, but also induces a polarizing effect to form an artificial birefringent filter for multiwavelength selection. By simultaneously exploiting both functions of this device, four-wavelength continuous-wave mode-locking operation of an EDFL is stably initiated with a pulse width of 8.8 ps and a fundamental repetition rate of 8.034 MHz. This is the first time, to our knowledge, the mode-locked EDFL using such a new geometry of graphene-based tapered-fiber saturable absorber has been demonstrated

  20. Electron correlations in quantum dots

    International Nuclear Information System (INIS)

    Tipton, Denver Leonard John

    2001-01-01

    Quantum dot structures confine electrons in a small region of space. Some properties of semiconductor quantum dots, such as the discrete energy levels and shell filling effects visible in addition spectra, have analogies to those of atoms and indeed dots are sometimes referred to as 'artificial atoms'. However, atoms and dots show some fundamental differences due to electron correlations. For real atoms, the kinetic energy of electrons dominates over their mutual Coulomb repulsion energy and for this reason the independent electron approximation works well. For quantum dots the confining potential may be shallower than that of real atoms leading to lower electron densities and a dominance of mutual Coulomb repulsion over kinetic energy. In this strongly correlated regime the independent electron picture leads to qualitatively incorrect results. This thesis concentrates on few-electron quantum dots in the strongly correlated regime both for quasi-one-dimensional and two-dimensional dots in a square confining potential. In this so-called 'Wigner' regime the ground-state electronic charge density is localised near positions of classical electrostatic minima and the interacting electronic spectrum consists of well separated spin multiplets. In the strongly correlated regime the structure of low-energy multiplets is explained by mapping onto lattice models with extended-Hubbard and Heisenberg effective Hamiltonians. The parameters for these effective models are calculated within a Hartree approximation and are shown to reproduce well the exact results obtained by numerical diagonalisation of the full interacting Hamiltonian. Comparison is made between square dots and quantum rings with full rotational symmetry. In the very low-density regime, direct diagonalisation becomes impractical due to excessive computer time for convergence. In this regime a numerical renormalisation group method is applied to one-dimensional dots, enabling effective spin-interactions to be

  1. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.

    Science.gov (United States)

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin

    2017-06-27

    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  2. Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot Surface Passivation.

    Science.gov (United States)

    Carey, Graham H; Levina, Larissa; Comin, Riccardo; Voznyy, Oleksandr; Sargent, Edward H

    2015-06-03

    Through a combination of chemical and mutual dot-to-dot surface passivation, high-quality colloidal quantum dot solids are fabricated. The joint passivation techniques lead to a record diffusion length for colloidal quantum dots of 230 ± 20 nm. The technique is applied to create thick photovoltaic devices that exhibit high current density without losing fill factor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Evanescent wave cavity ring-down spectroscopy (EW-CRDS) as a probe of macromolecule adsorption kinetics at functionalized interfaces.

    Science.gov (United States)

    O'Connell, Michael A; de Cuendias, Anne; Gayet, Florence; Shirley, Ian M; Mackenzie, Stuart R; Haddleton, David M; Unwin, Patrick R

    2012-05-01

    Evanescent wave cavity ring-down spectroscopy (EW-CRDS) has been employed to study the interfacial adsorption kinetics of coumarin-tagged macromolecules onto a range of functionalized planar surfaces. Such studies are valuable in designing polymers for complex systems where the degree of interaction between the polymer and surface needs to be tailored. Three tagged synthetic polymers with different functionalities are examined: poly(acrylic acid) (PAA), poly(3-sulfopropyl methacrylate, potassium salt) (PSPMA), and a mannose-modified glycopolymer. Adsorption transients at the silica/water interface are found to be characteristic for each polymer, and kinetics are deduced from the initial rates. The chemistry of the adsorption interfaces has been varied by, first, manipulation of silica surface chemistry via the bulk pH, followed by surfaces modified by poly(L-glutamic acid) (PGA) and cellulose, giving five chemically different surfaces. Complementary atomic force microscopy (AFM) imaging has been used for additional surface characterization of adsorbed layers and functionalized interfaces to allow adsorption rates to be interpreted more fully. Adsorption rates for PSPMA and the glycopolymer are seen to be highly surface sensitive, with significantly higher rates on cellulose-modified surfaces, whereas PAA shows a much smaller rate dependence on the nature of the adsorption surface.

  4. Large-Time Behavior of Solutions to Vlasov-Poisson-Fokker-Planck Equations: From Evanescent Collisions to Diffusive Limit

    Science.gov (United States)

    Herda, Maxime; Rodrigues, L. Miguel

    2018-03-01

    The present contribution investigates the dynamics generated by the two-dimensional Vlasov-Poisson-Fokker-Planck equation for charged particles in a steady inhomogeneous background of opposite charges. We provide global in time estimates that are uniform with respect to initial data taken in a bounded set of a weighted L^2 space, and where dependencies on the mean-free path τ and the Debye length δ are made explicit. In our analysis the mean free path covers the full range of possible values: from the regime of evanescent collisions τ → ∞ to the strongly collisional regime τ → 0. As a counterpart, the largeness of the Debye length, that enforces a weakly nonlinear regime, is used to close our nonlinear estimates. Accordingly we pay a special attention to relax as much as possible the τ -dependent constraint on δ ensuring exponential decay with explicit τ -dependent rates towards the stationary solution. In the strongly collisional limit τ → 0, we also examine all possible asymptotic regimes selected by a choice of observation time scale. Here also, our emphasis is on strong convergence, uniformity with respect to time and to initial data in bounded sets of a L^2 space. Our proofs rely on a detailed study of the nonlinear elliptic equation defining stationary solutions and a careful tracking and optimization of parameter dependencies of hypocoercive/hypoelliptic estimates.

  5. Development of Embedded Fiber-Optic Evanescent Wave Sensors for Optical Characterization of Graphite Anodes in Lithium-Ion Batteries.

    Science.gov (United States)

    Ghannoum, AbdulRahman; Nieva, Patricia; Yu, Aiping; Khajepour, Amir

    2017-11-29

    The development, fabrication, and embedment of fiber-optic evanescent wave sensors (FOEWSs) to monitor the state of charge (SOC) and the state of health (SOH) of lithium-ion batteries (LIBs) are presented. Etching of FOEWSs is performed using a solution of 40 wt % ammonium fluoride (NH 4 F) and 49 wt % hydrofluoric acid (HF) (6:1), which is found to be superior to an etching solution containing just 49 wt % HF. FOEWSs were characterized using glycerol and found to have the highest sensitivity in a lithium-ion battery when they lose 92% of their transmittance in the presence of glycerol on their sensing region. The physical effect that the FOEWS has on the graphite anode is also investigated and is found to be much more significant in Swagelok cells compared to that in in-house-fabricated pouch cells, mainly due to pressure variation. The FOEWS was found to be most sensitive to the changes in the LIB when it was completely embedded using a slurry of graphite anode material within a pouch cell. The optimized fabrication process of the embedded FOEWS demonstrates the potential of using such sensors commercially for real-time monitoring of the SOC and SOH of LIBs while in operation.

  6. Evaluating a novel application of optical fibre evanescent field absorbance: rapid measurement of red colour in winegrape homogenates

    Science.gov (United States)

    Lye, Peter G.; Bradbury, Ronald; Lamb, David W.

    Silica optical fibres were used to measure colour (mg anthocyanin/g fresh berry weight) in samples of red wine grape homogenates via optical Fibre Evanescent Field Absorbance (FEFA). Colour measurements from 126 samples of grape homogenate were compared against the standard industry spectrophotometric reference method that involves chemical extraction and subsequent optical absorption measurements of clarified samples at 520 nm. FEFA absorbance on homogenates at 520 nm (FEFA520h) was correlated with the industry reference method measurements of colour (R2 = 0.46, n = 126). Using a simple regression equation colour could be predicted with a standard error of cross-validation (SECV) of 0.21 mg/g, with a range of 0.6 to 2.2 mg anthocyanin/g and a standard deviation of 0.33 mg/g. With a Ratio of Performance Deviation (RPD) of 1.6, the technique when utilizing only a single detection wavelength, is not robust enough to apply in a diagnostic sense, however the results do demonstrate the potential of the FEFA method as a fast and low-cost assay of colour in homogenized samples.

  7. Narrative Constructions of Whiteness among White Undergraduates

    Science.gov (United States)

    Foste, Zak

    2017-01-01

    This critical narrative inquiry was guided by two overarching research questions. First, this study examined how white undergraduates interpreted and gave meaning to their white racial identities. This line of inquiry sought to understand how participants made sense of their white racial selves, the self in relation to people of color, and the…

  8. Spin storage in quantum dot ensembles and single quantum dots

    International Nuclear Information System (INIS)

    Heiss, Dominik

    2009-01-01

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T 1 =20 ms at B=4 T and T=1 K. A strong magnetic field dependence T 1 ∝B -5 has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T 1 ∝T -1 . The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T 1 h in the microsecond range, therefore, comparable with

  9. Spin storage in quantum dot ensembles and single quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Dominik

    2009-10-15

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T{sub 1}=20 ms at B=4 T and T=1 K. A strong magnetic field dependence T{sub 1}{proportional_to}B{sup -5} has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T{sub 1}{proportional_to}T{sup -1}. The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T{sub 1}{sup h

  10. Quantum optics with single quantum dot devices

    International Nuclear Information System (INIS)

    Zwiller, Valery; Aichele, Thomas; Benson, Oliver

    2004-01-01

    A single radiative transition in a single-quantum emitter results in the emission of a single photon. Single quantum dots are single-quantum emitters with all the requirements to generate single photons at visible and near-infrared wavelengths. It is also possible to generate more than single photons with single quantum dots. In this paper we show that single quantum dots can be used to generate non-classical states of light, from single photons to photon triplets. Advanced solid state structures can be fabricated with single quantum dots as their active region. We also show results obtained on devices based on single quantum dots

  11. Large quantum dots with small oscillator strength

    DEFF Research Database (Denmark)

    Stobbe, Søren; Schlereth, T.W.; Höfling, S.

    2010-01-01

    We have measured the oscillator strength and quantum efficiency of excitons confined in large InGaAs quantum dots by recording the spontaneous emission decay rate while systematically varying the distance between the quantum dots and a semiconductor-air interface. The size of the quantum dots...... is measured by in-plane transmission electron microscopy and we find average in-plane diameters of 40 nm. We have calculated the oscillator strength of excitons of that size assuming a quantum-dot confinement given by a parabolic in-plane potential and a hard-wall vertical potential and predict a very large...... intermixing inside the quantum dots....

  12. The interaction between d-dot's

    International Nuclear Information System (INIS)

    Hirayama, Masaki; Machida, Masahiko; Koyama, Tomio; Ishida, Takekazu; Kato, Masaru

    2005-01-01

    We investigated the interaction between two square d-dot's. The d-dot is the nano-scaled superconducting composite structure that is made of a d-wave superconducting dot embedded in the s-wave superconducting matrix. In the numerical calculation, using the finite element method, we solved the two-components Ginzburg-Landau equation self-consistently. We obtained two kinds of solutions, which can be considered as ferromagnetic and antiferromagnetic configurations, when two d-dot's are separated parallel and diagonally. Also we discuss the applicability of d-dot's as an artificial spin system where the interactions can be controlled by the fabrication

  13. Erick A. White | NREL

    Science.gov (United States)

    Engineering, Colorado School of Mines, 2011 B.S., Chemical Engineering, University of Colorado at Boulder Research Assistant, Colorado School of Mines, Department of Chemical Engineering, 2006-2011 Field Team Erick A. White Photo of Erick A. White Erick White Chemical Reaction Engineer Erick.White@nrel.gov

  14. Nuclear Spins in Quantum Dots

    NARCIS (Netherlands)

    Erlingsson, S.I.

    2003-01-01

    The main theme of this thesis is the hyperfine interaction between the many lattice nuclear spins and electron spins localized in GaAs quantum dots. This interaction is an intrinsic property of the material. Despite the fact that this interaction is rather weak, it can, as shown in this thesis,

  15. Luminescent Surface Quaternized Carbon Dots

    KAUST Repository

    Bourlinos, Athanasios B.; Zbořil, Radek; Petr, Jan; Bakandritsos, Aristides; Krysmann, Marta; Giannelis, Emmanuel P.

    2012-01-01

    Thermal oxidation of a salt precursor made from the acid base combination of tris(hydroxymethyl)aminomethane and betaine hydrochloride results in light-emitting surface quaternized carbon dots that are water-dispersible, display anion exchange properties, and exhibit uniform size/surface charge. © 2011 American Chemical Society.

  16. Luminescent Surface Quaternized Carbon Dots

    KAUST Repository

    Bourlinos, Athanasios B.

    2012-01-10

    Thermal oxidation of a salt precursor made from the acid base combination of tris(hydroxymethyl)aminomethane and betaine hydrochloride results in light-emitting surface quaternized carbon dots that are water-dispersible, display anion exchange properties, and exhibit uniform size/surface charge. © 2011 American Chemical Society.

  17. DOT strategies versus orbiter strategies

    NARCIS (Netherlands)

    Rutten, R.J.

    2001-01-01

    The Dutch Open Telescope is a high-resolution solar imager coming on-line at La Palma. The definition of the DOT science niche, strategies, and requirements resemble Solar Orbiter considerations and deliberations. I discuss the latter in the light of the former, and claim that multi-line observation

  18. Polymer-coated quantum dots

    NARCIS (Netherlands)

    Tomczak, N.; Liu, Rongrong; Vancso, Gyula J.

    2013-01-01

    Quantum Dots (QDs) are semiconductor nanocrystals with distinct photophysical properties finding applications in biology, biosensing, and optoelectronics. Polymeric coatings of QDs are used primarily to provide long-term colloidal stability to QDs dispersed in solutions and also as a source of

  19. Hyperdense dots mimicking microcalcifications : Mammographic findings

    International Nuclear Information System (INIS)

    Kim, Nam Hyeon; Park, Jeong Mi; Goo, Hyun Woo; Bang, Sun Woo

    1996-01-01

    To differentiate fine hyperdense dots mimicking microcalcifications from true microcalcifications on mammography. Mammograms showing hyperdense dots in ten patients (mean age, 59 years) were evaluated. Two radiologists were asked to differentiate with the naked eye the hyperdense dots seen on ten mammograms and proven microcalcifications seen on ten mammograms. Densitometry was also performed for all lesions and the contrast index was calculated. The shape and distribution of the hyperdense dots were evaluated and enquires were made regarding any history of breast disease and corresponding treatment. Biopsies were performed for two patients with hyperdense dots. Two radiologists made correct diagnoses in 19/20 cases(95%). The contrast index was 0.10-0.88 (mean 0.58) for hyperdense dots and 0.02-0.45 (mean 0.17) for true microcalcifications. The hyperdense dots were finer and homogeneously rounder than the microcalcifications. Distribution of the hyperdense dots was more superficial in subcutaneous fat (seven cases) and subareolar area (six cases). All ten patients with hyperdense dots had history of mastitis and abscesses and had been treated by open drainage (six cases) and/or folk remedy (four cases). In eight patients, herb patches had been attached. Biopsies of hyperdense dots did not show any microcalcification or evidence of malignancy. These hyperdense dots were seen mainly in older patients. Their characteristic density, shape, distribution and clinical history makes differential diagnosis from true microcalcifications easy and could reduce unnecessary diagnostic procedures such as surgical biopsy

  20. Hyperdense dots mimicking microcalcifications : Mammographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam Hyeon; Park, Jeong Mi; Goo, Hyun Woo; Bang, Sun Woo [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    1996-12-01

    To differentiate fine hyperdense dots mimicking microcalcifications from true microcalcifications on mammography. Mammograms showing hyperdense dots in ten patients (mean age, 59 years) were evaluated. Two radiologists were asked to differentiate with the naked eye the hyperdense dots seen on ten mammograms and proven microcalcifications seen on ten mammograms. Densitometry was also performed for all lesions and the contrast index was calculated. The shape and distribution of the hyperdense dots were evaluated and enquires were made regarding any history of breast disease and corresponding treatment. Biopsies were performed for two patients with hyperdense dots. Two radiologists made correct diagnoses in 19/20 cases(95%). The contrast index was 0.10-0.88 (mean 0.58) for hyperdense dots and 0.02-0.45 (mean 0.17) for true microcalcifications. The hyperdense dots were finer and homogeneously rounder than the microcalcifications. Distribution of the hyperdense dots was more superficial in subcutaneous fat (seven cases) and subareolar area (six cases). All ten patients with hyperdense dots had history of mastitis and abscesses and had been treated by open drainage (six cases) and/or folk remedy (four cases). In eight patients, herb patches had been attached. Biopsies of hyperdense dots did not show any microcalcification or evidence of malignancy. These hyperdense dots were seen mainly in older patients. Their characteristic density, shape, distribution and clinical history makes differential diagnosis from true microcalcifications easy and could reduce unnecessary diagnostic procedures such as surgical biopsy.

  1. Deposition of functionalized polymer layers in surface plasmon resonance immunosensors by in-situ polymerization in the evanescent wave field.

    Science.gov (United States)

    Chegel, Vladimir; Whitcombe, Michael J; Turner, Nicholas W; Piletsky, Sergey A

    2009-01-01

    Traditionally, the integration of sensing gel layers in surface plasmon resonance (SPR) is achieved via "bulk" methods, such as precipitation, spin-coating or in-situ polymerization onto the total surface of the sensor chip, combined with covalent attachment of the antibody or receptor to the gel surface. This is wasteful in terms of materials as the sensing only occurs at the point of resonance interrogated by the laser. By isolating the sensing materials (antibodies, enzymes, aptamers, polymers, MIPs, etc.) to this exact spot a more efficient use of these recognition elements will be achieved. Here we present a method for the in-situ formation of polymers, using the energy of the evanescent wave field on the surface of an SPR device, specifically localized at the point of interrogation. Using the photo-initiator couple of methylene blue (sensitizing dye) and sodium p-toluenesulfinate (reducing agent) we polymerized a mixture of N,N-methylene-bis-acrylamide and methacrylic acid in water at the focal point of SPR. No polymerization was seen in solution or at any other sites on the sensor surface. Varying parameters such as monomer concentration and exposure time allowed precise control over the polymer thickness (from 20-200 nm). Standard coupling with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide was used for the immobilization of protein G which was used to bind IgG in a typical biosensor format. This model system demonstrated the characteristic performance for this type of immunosensor, validating our deposition method.

  2. Low-temperature fabrication and characterization of a symmetric hybrid organic–inorganic slab waveguide for evanescent light microscopy

    Science.gov (United States)

    Agnarsson, Björn; Mapar, Mokhtar; Sjöberg, Mattias; Alizadehheidari, Mohammadreza; Höök, Fredrik

    2018-06-01

    Organic and inorganic solid materials form the building blocks for most of today’s high-technological instruments and devices. However, challenges related to dissimilar material properties have hampered the synthesis of thin-film devices comprised of both organic and inorganic films. We here give a detailed description of a carefully optimized processing protocol used for the construction of a three-layered hybrid organic–inorganic waveguide-chip intended for combined scattering and fluorescence evanescent-wave microscopy in aqueous environments using conventional upright microscopes. An inorganic core layer (SiO2 or Si3N4), embedded symmetrically in an organic cladding layer (CYTOP), aids simple, yet efficient in-coupling of light, and since the organic cladding layer is refractive index matched to water, low stray-light (background) scattering of the propagating light is ensured. Another major advantage is that the inorganic core layer makes the chip compatible with multiple well-established surface functionalization schemes that allows for a broad range of applications, including detection of single lipid vesicles, metallic nanoparticles or cells in complex environments, either label-free—by direct detection of scattered light—or by use of fluorescence excitation and emission. Herein, focus is put on a detailed description of the fabrication of the waveguide-chip, together with a fundamental characterization of its optical properties and performance, particularly in comparison with conventional epi illumination. Quantitative analysis of images obtained from both fluorescence and scattering intensities from surface-immobilized polystyrene nanoparticles in suspensions of different concentrations, revealed enhanced signal-to-noise and signal-to-background ratios for the waveguide illumination compared to the epi-illumination.

  3. Modeling of the quantum dot filling and the dark current of quantum dot infrared photodetectors

    International Nuclear Information System (INIS)

    Ameen, Tarek A.; El-Batawy, Yasser M.; Abouelsaood, A. A.

    2014-01-01

    A generalized drift-diffusion model for the calculation of both the quantum dot filling profile and the dark current of quantum dot infrared photodetectors is proposed. The confined electrons inside the quantum dots produce a space-charge potential barrier between the two contacts, which controls the quantum dot filling and limits the dark current in the device. The results of the model reasonably agree with a published experimental work. It is found that increasing either the doping level or the temperature results in an exponential increase of the dark current. The quantum dot filling turns out to be nonuniform, with a dot near the contacts containing more electrons than one in the middle of the device where the dot occupation approximately equals the number of doping atoms per dot, which means that quantum dots away from contacts will be nearly unoccupied if the active region is undoped

  4. Quadra-quantum Dots and Related Patterns of Quantum Dot Molecules:

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2010-10-01

    Full Text Available Abstract Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called ‘‘Droplet Epitaxy” has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390°C with a droplet growth rate of 1ML/s. Arsenic flux (7–8×10-6Torr is then exposed for InGaAs crystallization at 200°C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or , which are preferable crystallographic directions of quantum dot alignment in general.

  5. Entanglement probabilities of polymers: a white noise functional approach

    International Nuclear Information System (INIS)

    Bernido, Christopher C; Carpio-Bernido, M Victoria

    2003-01-01

    The entanglement probabilities for a highly flexible polymer to wind n times around a straight polymer are evaluated using white noise analysis. To introduce the white noise functional approach, the one-dimensional random walk problem is taken as an example. The polymer entanglement scenario, viewed as a random walk on a plane, is then treated and the entanglement probabilities are obtained for a magnetic flux confined along the straight polymer, and a case where an entangled polymer is subjected to the potential V = f-dot(s)θ. In the absence of the magnetic flux and the potential V, the entanglement probabilities reduce to a result obtained by Wiegel

  6. The electronic properties of semiconductor quantum dots

    International Nuclear Information System (INIS)

    Barker, J.A.

    2000-10-01

    This work is an investigation into the electronic behaviour of semiconductor quantum dots, particularly self-assembled quantum dot arrays. Processor-efficient models are developed to describe the electronic structure of dots, deriving analytic formulae for the strain tensor, piezoelectric distribution and diffusion- induced evolution of the confinement potential, for dots of arbitrary initial shape and composition profile. These models are then applied to experimental data. Transitions due to individual quantum dots have a narrow linewidth as a result of their discrete density of states. By contrast, quantum dot arrays exhibit inhomogeneous broadening which is generally attributed to size variations between the individual dots in the ensemble. Interpreting the results of double resonance spectroscopy, it is seen that variation in the indium composition of the nominally InAs dots is also present. This result also explains the otherwise confusing relationship between the spread in the ground-state and excited-state transition energies. Careful analysis shows that, in addition to the variations in size and composition, some other as yet unidentified broadening mechanism must also be present. The influence of rapid thermal annealing on dot electronic structure is also considered, finding that the experimentally observed blue-shift and narrowing of the photoluminescence linewidth may both be explained in terms of normal In/Ga interdiffusion. InAs/GaAs self-assembled quantum dots are commonly assumed to have a pyramidal geometry, so that we would expect the energy separation of the ground-state electron and hole levels in the dot to be largest at a positive applied field. This should also be the case for any dot of uniform composition whose shape tapers inwards from base to top, counter to the results of experimental Stark-shift spectroscopy which show a peak transition energy at a negative applied field. It is demonstrated that this inversion of the ground state

  7. dotNet som multimediaplattform

    OpenAIRE

    Johansson, Glenn

    2008-01-01

    As the speed and complexity of computers have increased so have software and the expectations of users. Software development follows a straightforward evolution where complicated tasks are made easier by better tools; this repeats itself as those tasks in turn are automated. Software mechanics that were seen as revolutionary a decade ago are seen as obvious requirements that no multimedia application can be without. dotNet is the next step in line and makes it easier and faster to build softw...

  8. Optical and Micro-Structural Characterization of MBE Grown Indium Gallium Nitride Polar Quantum Dots

    KAUST Repository

    El Afandy, Rami

    2011-07-07

    properties compared to other nanostructures. Excitation power dependent PL measurements reveal an increase in the excitonic confinements and hence higher quantum efficiencies compared to lower dimensional nanostructures. Finally it is argued that such characteristics allows quantum dots based InGaN structures to become potentially a strong candidate for high quantum efficiency white solid-state light emitting diodes and ultra-violet/blue laser diode operating at room temperature.

  9. Dicke states in multiple quantum dots

    Science.gov (United States)

    Sitek, Anna; Manolescu, Andrei

    2013-10-01

    We present a theoretical study of the collective optical effects which can occur in groups of three and four quantum dots. We define conditions for stable subradiant (dark) states, rapidly decaying super-radiant states, and spontaneous trapping of excitation. Each quantum dot is treated like a two-level system. The quantum dots are, however, realistic, meaning that they may have different transition energies and dipole moments. The dots interact via a short-range coupling which allows excitation transfer across the dots, but conserves the total population of the system. We calculate the time evolution of single-exciton and biexciton states using the Lindblad equation. In the steady state the individual populations of each dot may have permanent oscillations with frequencies given by the energy separation between the subradiant eigenstates.

  10. Hydrogenic impurity in double quantum dots

    International Nuclear Information System (INIS)

    Wang, X.F.

    2007-01-01

    The ground state binding energy and the average interparticle distances for a hydrogenic impurity in double quantum dots with Gaussian confinement potential are studied by the variational method. The probability density of the electron is calculated, too. The dependence of the binding energy on the impurity position is investigated for GaAs quantum dots. The result shows that the binding energy has a minimum as a function of the distance between the two quantum dots when the impurity is located at the center of one quantum dot or at the center of the edge of one quantum dot. When the impurity is located at the center of the two dots, the binding energy decreases monotonically

  11. Sphere and dot product representations of graphs

    NARCIS (Netherlands)

    R.J. Kang (Ross); T. Müller (Tobias)

    2012-01-01

    textabstractA graph $G$ is a $k$-sphere graph if there are $k$-dimensional real vectors $v_1,\\dots,v_n$ such that $ij\\in E(G)$ if and only if the distance between $v_i$ and $v_j$ is at most $1$. A graph $G$ is a $k$-dot product graph if there are $k$-dimensional real vectors $v_1,\\dots,v_n$ such

  12. Reusable split-aptamer-based biosensor for rapid detection of cocaine in serum by using an all-fiber evanescent wave optical biosensing platform.

    Science.gov (United States)

    Tang, Yunfei; Long, Feng; Gu, Chunmei; Wang, Cheng; Han, Shitong; He, Miao

    2016-08-24

    A rapid, facile, and sensitive assay of cocaine in biological fluids is important to prevent illegal abuse of drugs. A two-step structure-switching aptasensor has been developed for cocaine detection based on evanescent wave optical biosensing platform. In the proposed biosensing platform, two tailored aptamer probes were used to construct the molecular structure switching. In the existence of cocaine, two fragments of cocaine aptamer formed a three-way junction quickly, and the fluorophore group of one fragment was effectively quenched by the quencher group of the other one. The tail of the three-way junction hybridized with the cDNA sequences immobilized on the optical fiber biosensor. Fluorescence was excited by evanescent wave, and the fluorescence signal was proportional to cocaine concentration. Cocaine was detected in 450 s (300 s for incubation and 150 s for detection and regeneration) with a limit of detection (LOD) of 165.2 nM. The proposed aptasensor was evaluated in human serum samples, and it exhibited good recovery, precision, and accuracy without complicated sample pretreatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Electronic transport through a quantum dot chain with strong dot-lead coupling

    International Nuclear Information System (INIS)

    Liu, Yu; Zheng, Yisong; Gong, Weijiang; Gao, Wenzhu; Lue, Tianquan

    2007-01-01

    By means of the non-equilibrium Green function technique, the electronic transport through an N-quantum-dot chain is theoretically studied. By calculating the linear conductance spectrum and the local density of states in quantum dots, we find the resonant peaks in the spectra coincides with the eigen-energies of the N-quantum-dot chain when the dot-lead coupling is relatively weak. With the increase of the dot-lead coupling, such a correspondence becomes inaccurate. When the dot-lead coupling exceeds twice the interdot coupling, such a mapping collapses completely. The linear conductance turn to reflect the eigen-energies of the (N-2)- or (N-1)-quantum dot chain instead. The two peripheral quantum dots do not manifest themselves in the linear conductance spectrum. More interestingly, with the further increase of the dot-lead coupling, the system behaves just like an (N-2)- or (N-1)-quantum dot chain in weak dot-lead coupling limit, since the resonant peaks becomes narrower with the increase of dot-lead coupling

  14. Today's DOT and the quest for more accountable organizational structures.

    Science.gov (United States)

    2005-12-01

    This study investigates the impact of DOT organizational structures on effective transportation planning and performance. A review of the 50 state DOT authorizing statutes and DOT organizational charts found minimal differences in organizational stru...

  15. Quantum dots for quantum information technologies

    CERN Document Server

    2017-01-01

    This book highlights the most recent developments in quantum dot spin physics and the generation of deterministic superior non-classical light states with quantum dots. In particular, it addresses single quantum dot spin manipulation, spin-photon entanglement and the generation of single-photon and entangled photon pair states with nearly ideal properties. The role of semiconductor microcavities, nanophotonic interfaces as well as quantum photonic integrated circuits is emphasized. The latest theoretical and experimental studies of phonon-dressed light matter interaction, single-dot lasing and resonance fluorescence in QD cavity systems are also provided. The book is written by the leading experts in the field.

  16. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  17. Millimeter Wave Modulators Using Quantum Dots

    National Research Council Canada - National Science Library

    Prather, Dennis W

    2008-01-01

    In this effort electro-optic modulators for millimeter wave sensing and imaging were developed and demonstrated via design, fabrication, and experimental characterization of multi layer quantum dot...

  18. Spin Switching via Quantum Dot Spin Valves

    Science.gov (United States)

    Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.

    2018-01-01

    We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.

  19. Optical Signatures of Coupled Quantum Dots

    Science.gov (United States)

    Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Korenev, V. L.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.

    2006-02-01

    An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.

  20. White Dwarf Stars

    OpenAIRE

    Kepler, S. O.; Romero, Alejandra Daniela; Pelisoli, Ingrid; Ourique, Gustavo

    2017-01-01

    White dwarf stars are the final stage of most stars, born single or in multiple systems. We discuss the identification, magnetic fields, and mass distribution for white dwarfs detected from spectra obtained by the Sloan Digital Sky Survey up to Data Release 13 in 2016, which lead to the increase in the number of spectroscopically identified white dwarf stars from 5000 to 39000. This number includes only white dwarf stars with log g >= 6.5 stars, i.e., excluding the Extremely Low Mass white dw...

  1. Vectorization of DOT3.5 code

    International Nuclear Information System (INIS)

    Nonomiya, Iwao; Ishiguro, Misako; Tsutsui, Tsuneo

    1990-07-01

    In this report, we describe the vectorization of two-dimensional Sn-method radiation transport code DOT3.5. Vectorized codes are not only the NEA original version developed at ORNL but also the versions improved by JAERI: DOT3.5 FNS version for fusion neutronics analyses, DOT3.5 FER version for fusion reactor design, and ESPRIT module of RADHEAT-V4 code system for radiation shielding and radiation transport analyses. In DOT3.5, input/output processing time amounts to a great part of the elapsed time when a large number of energy groups and/or a large number of spatial mesh points are used in the calculated problem. Therefore, an improvement has been made for the speedup of input/output processing in the DOT3.5 FNS version, and DOT-DD (Double Differential cross section) code. The total speedup ratio of vectorized version to the original scalar one is 1.7∼1.9 for DOT3.5 NEA version, 2.2∼2.3 fro DOT3.5 FNS version, 1.7 for DOT3.5 FER version, and 3.1∼4.4 for RADHEAT-V4, respectively. The elapsed times for improved DOT3.5 FNS version and DOT-DD are reduced to 50∼65% that of the original version by the input/output speedup. In this report, we describe summary of codes, the techniques used for the vectorization and input/output speedup, verification of computed results, and speedup effect. (author)

  2. Low White Blood Cell Count

    Science.gov (United States)

    Symptoms Low white blood cell count By Mayo Clinic Staff A low white blood cell count (leukopenia) is a decrease ... of white blood cell (neutrophil). The definition of low white blood cell count varies from one medical ...

  3. Stark shifting two-electron quantum dot

    International Nuclear Information System (INIS)

    Dineykhan, M.; Zhaugasheva, S.A.; Duysebaeva, K.S.

    2003-01-01

    Advances in modern technology make it possible to create semiconducting nano-structures (quantum dot) in which a finite number of electrons are 'captured' in a bounded volume. A quantum dot is associated with a quantum well formed at the interface, between two finite-size semiconductors owing to different positions of the forbidden gaps on the energy scale in these semiconductors. The possibility of monitoring and controlling the properties of quantum dots attracts considerable attention to these objects, as a new elemental basis for future generations of computers. The quantum-mechanical effects and image potential play a significant role in the description of the formation mechanism quantum dot, and determined the confinement potential in a two-electron quantum dot only for the spherical symmetric case. In the present talk, we considered the formation dynamics of two-electron quantum dot with violation of spherical symmetry. So, we have standard Stark potential. The energy spectrum two-electron quantum dot were calculated. Usually Stark interactions determined the tunneling phenomena between quantum dots

  4. Quantum Dots Coupled to a Superconductor

    DEFF Research Database (Denmark)

    Jellinggaard, Anders Robert

    are tuned electrostatically. This includes tuning the odd occupation of the dot through a quantum phase transition, where it forms a singlet with excitations in the superconductor. We detail the fabrication of these bottom gated devices, which additionally feature ancillary sensor dots connected...

  5. Detecting the chirality for coupled quantum dots

    International Nuclear Information System (INIS)

    Cao Huijuan; Hu Lian

    2008-01-01

    We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots

  6. Optical Properties of Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Perinetti, U.

    2011-01-01

    This thesis presents different optical experiments performed on semiconductor quantum dots. These structures allow to confine a small number of electrons and holes to a tiny region of space, some nm across. The aim of this work was to study the basic properties of different types of quantum dots

  7. Optical anisotropy in vertically coupled quantum dots

    DEFF Research Database (Denmark)

    Yu, Ping; Langbein, Wolfgang Werner; Leosson, Kristjan

    1999-01-01

    We have studied the polarization of surface and edge-emitted photoluminescence (PL) from structures with vertically coupled In0.5Ga0.5As/GaAs quantum dots (QD's) grown by molecular beam epitaxy. The PL polarization is found to be strongly dependent on the number of stacked layers. While single...... number due to increasing dot size....

  8. Thick-shell nanocrystal quantum dots

    Science.gov (United States)

    Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  9. Optical Spectroscopy Of Charged Quantum Dot Molecules

    Science.gov (United States)

    Scheibner, M.; Bracker, A. S.; Stinaff, E. A.; Doty, M. F.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2007-04-01

    Coupling between two closely spaced quantum dots is observed by means of photoluminescence spectroscopy. Hole coupling is realized by rational crystal growth and heterostructure design. We identify molecular resonances of different excitonic charge states, including the important case of a doubly charged quantum dot molecule.

  10. Capture, relaxation and recombination in quantum dots

    NARCIS (Netherlands)

    Sreenivasan, D.

    2008-01-01

    Quantum dots (QDs) have attracted a lot of interest both from application and fundamental physics point of view. A semiconductor quantum dot features discrete atomiclike energy levels, despite the fact that it contains many atoms within its surroundings. The discrete energy levels give rise to very

  11. Biocompatible Quantum Dots for Biological Applications

    Science.gov (United States)

    Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. PMID:21276935

  12. Magnon-driven quantum dot refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan; Huang, Chuankun; Liao, Tianjun; Chen, Jincan, E-mail: jcchen@xmu.edu.cn

    2015-12-18

    Highlights: • A three-terminal quantum dot refrigerator is proposed. • The effects of magnetic field, applied voltage, and polarization are considered. • The region that the system can work as a refrigerator is determined. • Two different magnon-driven quantum dot refrigerators are compared. - Abstract: A new model of refrigerator consisting of a spin-splitting quantum dot coupled with two ferromagnetic reservoirs and a ferromagnetic insulator is proposed. The rate equation is used to calculate the occupation probabilities of the quantum dot. The expressions of the electron and magnon currents are obtained. The region that the system can work in as a refrigerator is determined. The cooling power and coefficient of performance (COP) of the refrigerator are derived. The influences of the magnetic field, applied voltage, and polarization of two leads on the performance are discussed. The performances of two different magnon-driven quantum dot refrigerators are compared.

  13. Multi-Excitonic Quantum Dot Molecules

    Science.gov (United States)

    Scheibner, M.; Stinaff, E. A.; Doty, M. F.; Ware, M. E.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    With the ability to create coupled pairs of quantum dots, the next step towards the realization of semiconductor based quantum information processing devices can be taken. However, so far little knowledge has been gained on these artificial molecules. Our photoluminescence experiments on single InAs/GaAs quantum dot molecules provide the systematics of coupled quantum dots by delineating the spectroscopic features of several key charge configurations in such quantum systems, including X, X^+,X^2+, XX, XX^+ (with X being the neutral exciton). We extract general rules which determine the formation of molecular states of coupled quantum dots. These include the fact that quantum dot molecules provide the possibility to realize various spin configurations and to switch the electron hole exchange interaction on and off by shifting charges inside the molecule. This knowledge will be valuable in developing implementations for quantum information processing.

  14. Multi-step surface functionalization of polyimide based evanescent wave photonic biosensors and application for DNA hybridization by Mach-Zehnder interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Melnik, Eva [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna (Austria); Bruck, Roman [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Hainberger, Rainer, E-mail: rainer.hainberger@ait.ac.at [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Laemmerhofer, Michael, E-mail: michael.laemmerhofer@univie.ac.at [Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna (Austria)

    2011-08-12

    Highlights: {yields} We realize a biosensing platform for polyimide evanescent photonic wave sensors. {yields} We show that the surface functionalization via silanisation and biotinylation followed by streptavidin immobilization do not destroy or damage the thin polyimide film. {yields} A highly dense streptavidin layer enables the immobilisation of biotinylated ligands such as biotinylated ssDNA for the selective measurement of DNA hybridization. - Abstract: The process of surface functionalization involving silanization, biotinylation and streptavidin bonding as platform for biospecific ligand immobilization was optimized for thin film polyimide spin-coated silicon wafers, of which the polyimide film serves as a wave guiding layer in evanescent wave photonic biosensors. This type of optical sensors make great demands on the materials involved as well as on the layer properties, such as the optical quality, the layer thickness and the surface roughness. In this work we realized the binding of a 3-mercaptopropyl trimethoxysilane on an oxygen plasma activated polyimide surface followed by subsequent derivatization of the reactive thiol groups with maleimide-PEG{sub 2}-biotin and immobilization of streptavidin. The progress of the functionalization was monitored by using different fluorescence labels for optimization of the chemical derivatization steps. Further, X-ray photoelectron spectroscopy and atomic force microscopy were utilized for the characterization of the modified surface. These established analytical methods allowed to derive information like chemical composition of the surface, surface coverage with immobilized streptavidin, as well as parameters of the surface roughness. The proposed functionalization protocol furnished a surface density of 144 fmol mm{sup -2} streptavidin with good reproducibility (13.9% RSD, n = 10) and without inflicted damage to the surface. This surface modification was applied to polyimide based Mach-Zehnder interferometer

  15. Stark shift of impurity doped quantum dots: Role of noise

    Science.gov (United States)

    Arif, Sk. Md.; Bera, Aindrila; Ghosh, Anuja; Ghosh, Manas

    2018-02-01

    Present study makes a punctilious investigation of the profiles of Stark shift (SS) of doped GaAs quantum dot (QD) under the supervision of Gaussian white noise. A few physical parameters have been varied and the consequent variations in the SS profiles have been monitored. The said physical parameters comprise of magnetic field, confinement potential, dopant location, dopant potential, noise strength, aluminium concentration (only for AlxGa1-x As alloy QD), position-dependent effective mass (PDEM), position-dependent dielectric screening function (PDDSF), anisotropy, hydrostatic pressure (HP) and temperature. The SS profiles unfurl interesting features that heavily depend upon the particular physical quantity concerned, presence/absence of noise and the manner (additive/multiplicative) noise enters the system. The study highlights feasible means of maximizing SS of doped QD in presence of noise by suitable adjustment of several control parameters. The study deems importance in view of technological applications of QD devices where noise plays some prominent role.

  16. Diseases of white matter

    International Nuclear Information System (INIS)

    Holland, B.A.

    1987-01-01

    The diagnosis of white matter abnormalities was revolutionized by the advent of computed tomography (CT), which provided a noninvasive method of detection and assessment of progression of a variety of white matter processes. However, the inadequacies of CT were recognized early, including its relative insensitivity to small foci of abnormal myelin in the brain when correlated with autopsy findings and its inability to image directly white matter diseases of the spinal cord. Magnetic resonance imaging (MRI), on the other hand, sensitive to the slight difference in tissue composition of normal gray and white matter and to subtle increase in water content associated with myelin disorders, is uniquely suited for the examination of white matter pathology. Its clinical applications include the evaluation of the normal process of myelination in childhood and the various white matter diseases, including disorders of demyelination and dysmyelination

  17. Electron transport in quantum dots

    CERN Document Server

    2003-01-01

    When I was contacted by Kluwer Academic Publishers in the Fall of 200 I, inviting me to edit a volume of papers on the issue of electron transport in quantum dots, I was excited by what I saw as an ideal opportunity to provide an overview of a field of research that has made significant contributions in recent years, both to our understanding of fundamental physics, and to the development of novel nanoelectronic technologies. The need for such a volume seemed to be made more pressing by the fact that few comprehensive reviews of this topic have appeared in the literature, in spite of the vast activity in this area over the course of the last decade or so. With this motivation, I set out to try to compile a volume that would fairly reflect the wide range of opinions that has emerged in the study of electron transport in quantum dots. Indeed, there has been no effort on my part to ensure any consistency between the different chapters, since I would prefer that this volume instead serve as a useful forum for the...

  18. Photoluminescent (PL) or electroluminescent (EL) quantum dots for display, lighting, and photomedicine (Conference Presentation)

    Science.gov (United States)

    Dong, Yajie

    2017-02-01

    Quantum dots (QDs) have gone through a long journey before finding their ways into the display field. This talk will briefly touch on the history before trying to answer several key questions related to QDs applications in display: What are QDs? How are they made? What properties do they have and Why? How can these properties be used to improve color and efficiency of display, in either photoluminescence (PL) or electroluminescence (EL) mode? And what are the remaining challenges for QDs wide adoption in display industry? Lastly, some most recent progresses in our UCF lab at both PL and EL fronts will be highlighted. For PL, a cadmium-free perovskite-polymer composite films with exceptionally narrow emission green peaks (FWHM 20 nm) and good water and thermal stability will be reported. Together with red quantum dots or PFS/KSF phosphors as down-converters for blue LEDs, a white-light source with 95% Rec. 2020 color gamut was demonstrated [1]. For EL, red quantum dot light emitting devices (QLEDs) with record luminance of 165,000 Cd/m2 has been obtained at a current density of 1000 mA/cm2 with a low driving voltage of 5.8 V and CIE coordinates of (0.69, 0.31). [2] The potential of using these QLEDs for light sources for integrated sensing platform [3] or high efficiency, high color quality hybrid white OLED [4] will be discussed. [1] Y. N. Wang, J. He, H. Chen, J. S. Chen, R. D. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S. T. Wu, Y. J. Dong. Ultrastable, Highly Luminescent Organic-Inorganic Perovskite - Polymer Composite Films, Advanced Materials, accepted, (2016). [2] Y. J. Dong, J.M. Caruge, Z. Q. Zhou, C. Hamilton, Z. Popovic, J. Ho, M. Stevenson, G. Liu, V. Bulovic, M. Bawendi, P. T. Kazlas, S. Coe-Sullivan, and J. Steckel Ultra-bright, Highly Efficient, Low Roll-off Inverted Quantum-Dot Light Emitting Devices (QLEDs). SID Symp. Dig. Tech. Pap. 46, 270-273 (2015). [3] J. He, H. Chen, S. T. Wu, and Y. J. Dong, Integrated Sensing Platform Based on Quantum

  19. Toward Automatic Label-Free Whispering Gallery Modes Biodetection with a Quantum Dot-Coated Microsphere Population

    Directory of Open Access Journals (Sweden)

    Boissinot K

    2010-01-01

    Full Text Available Abstract We explore a new calibration-free approach to biodetection based on whispering gallery modes (WGMs without a reference measure and relative shifts. Thus, the requirement to keep track of the sensor position is removed, and a freely moving population of fluorophore-doped polystyrene microspheres can now fulfill this role of sensing resonator. Breaking free from fixed surface-based biosensing promotes adhesion between the microsphere sensors and the analytes since both can now be thoroughly mixed. The 70-nm-wide spectrum of green fluorescent microbeads allows us to monitor over 20 WGMs simultaneously without needing evanescent light coupling into the microspheres, hence enabling remote sensing. Since the exact radius of each microsphere is unknown a priori, it requires algorithmic analyses to obtain a reliable result for the refractive index of a solution. We first test our approach with different solutions of alcohol in water obtaining 3 × 10−4 precision on the refractive index at lower concentrations. Then, the solutions of bacterial spores in water yield clear evidence of biodetection in the statistical analysis of WGMs from 50 microspheres. To extend the fluorescence spectral range of our WGM sensors, we present preliminary results on coating microspheres with CdSe/ZnS quantum dots.

  20. Inter-dot coupling effects on transport through correlated parallel

    Indian Academy of Sciences (India)

    Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur–Buttiker like current formula are shown in terms of internal states ...

  1. Use of analyte-modulated modal power distribution in multimode optical fibers for simultaneous single-wavelength evanescent-wave refractometry and spectrometry.

    Science.gov (United States)

    Potyrailo, R A; Ruddy, V P; Hieftje, G M

    1999-11-01

    A new method is described for the simultaneous determination of absorbance and refractive index of a sample medium. The method is based on measurement of the analyte-modulated modal power distribution (MPD) in a multimode waveguide. In turn, the MPD is quantified by the far-field spatial pattern and intensity of light, i.e., the Fraunhofer diffraction pattern (registered on a CCD camera), that emerges from a multimode optical fiber. Operationally, light that is sent down the fiber interacts with the surrounding analyte-containing medium by means of the evanescent wave at the fiber boundary. The light flux in the propagating beam and the internal reflection angles within the fiber are both affected by optical absorption connected with the analyte and by the refractive index of the analyte-containing medium. In turn, these angles are reflected in the angular divergence of the beam as it leaves the fiber. As a result, the Fraunhofer diffraction pattern of that beam yields two parameters that can, together, be used to deduce refractive index and absorbance. This MPD based detection offers important advantages over traditional evanescent-wave detection strategies which rely on recording only the total transmitted optical power or its lost fraction. First, simultaneous determination of sample refractive index and absorbance is possible at a single probe wavelength. Second, the sensitivity of refractometric and absorption measurements can be controlled simply, either by adjusting the distance between the end face of the fiber and the CCD detector or by monitoring selected modal groups at the fiber output. As a demonstration of these capabilities, several weakly absorbing solutions were examined, with refractive indices in the range from 1.3330 to 1.4553 and with absorption coefficients in the range 0-16 cm-1. The new detection strategy is likely to be important in applications in which sample coloration varies and when it is necessary to compensate for variations in the

  2. Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching

    Science.gov (United States)

    Peng, Kaung-Jay; Wu, Chun-Lung; Lin, Yung-Hsiang; Wang, Hwai-Yung; Cheng, Chih-Hsien; Chi, Yu-Chieh; Lin, Gong-Ru

    2018-01-01

    Using the evanescent-wave saturation effect of hydrogen-free low-temperature synthesized few-layer graphene covered on the cladding region of a side-polished single-mode fiber, a blue pump/infrared probe-based all-optical switch is demonstrated with specific wavelength-dependent probe modulation efficiency. Under the illumination of a blue laser diode at 405 nm, the few-layer graphene exhibits cross-gain modulation at different wavelengths covering the C- and L-bands. At a probe power of 0.5 mW, the L-band switching throughput power variant of 16 μW results in a probe modulation depth of 3.2%. Blue shifting the probe wavelength from 1580 to 1520 nm further enlarges the switching throughput power variant to 24 mW and enhances the probe modulation depth to 5%. Enlarging the probe power from 0.5 to 1 mW further enlarges the switching throughput power variant from 25 to 58 μW to promote its probe modulation depth of up to 5.8% at 1520 nm. In contrast, the probe modulation depth degrades from 5.1% to 1.2% as the pumping power reduces from 85 to 24 mW, which is attributed to the saturable absorption of the few-layer graphene-based evanescent-wave absorber. The modulation depth at wavelength of 1550 nm under a probe power of 1 mW increases from 1.2% to 5.1%, as more carriers can be excited when increasing the blue laser power from 24 to 85 mW, whereas it decreases from 5.1% to 3.3% by increasing the input probe power from 1 to 2 mW to show an easier saturated condition at longer wavelength.

  3. In-situ growth of AuNPs on WS2@U-bent optical fiber for evanescent wave absorption sensor

    Science.gov (United States)

    Zhang, Suzhen; Zhao, Yuefeng; Zhang, Chao; Jiang, Shouzhen; Yang, Cheng; Xiu, Xianwu; Li, Chonghui; Li, Zhen; Zhao, Xiaofei; Man, Baoyuan

    2018-05-01

    The sensitivity of the evanescent wave absorption sensor is always a hot topic which has been attracted researchers' discussion. It is still a challenge for developing the effective sensor to sensitively detect some biochemical molecules solution in a simple and low-cost way. In this paper, an evanescent wave absorption (EWA) sensor has been presented based on the U-bent multimode fiber coated with tungsten disulfide (WS2) film and in-situ growth of gold nanoparticles (AuNPs) for the detection of ethanol solution and sodium chloride (NaCl) solution. Benefitted from the effective light coupling produced between U-bent probe and AuNPs, we attained the optimal size of the AuNPs by changing the reaction time between WS2 and tetrachloroauric acid (HAuCl4). With the AuNPs/WS2@U-bent optical fiber, we discussed the behaviors of EWA sensor, such as sensitivity, reproducibility, fast response-recovery time and stability. The sensitivity (△A/△C) of the proposed AuNPs/WS2@U-bent optical fiber EWA sensor is 0.65 for the detection of the ethanol solution. Besides, the AuNPs/WS2@U-bent optical fiber EWA sensor exhibits high sensitivity in detection of the sodium chloride (NaCl), which can reach 1.5 when the proposed sensor was immersed into NaCl solution. Our work demonstrates that the U-bent optical fiber EWA sensor may have promising applications in testing the solution of concentration.

  4. Theoretical models for asteroseismology of DA white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, P.A. [XTA, MS B220, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1996-09-01

    Because white dwarfs are the most common end state of stellar evolution, determining their internal structure will yield many clues about the final stages of stellar evolution and the physics of matter under extreme conditions. We present the results of our parametric survey of evolutionary models of compositionally stratified white dwarfs with hydrogen surface layers (DA white dwarfs) and provide a comprehensive set of theoretical {ital g}-mode pulsation periods for comparison to observations of pulsating DA white dwarfs. This survey complements the previous survey of helium atmosphere (DB) white dwarf periods of Bradley, Winget, & Wood. We show how to use the periods of low-overtone and/or trapped modes to constrain the internal structure of pulsating DA white dwarfs by utilizing their sensitivity to the total stellar mass and the location of the hydrogen/helium transition zone. We use G117-B15A as an example to demonstrate the potential of our models for asteroseismology; we suggest that G117-B15A has a mass of 0.55 {ital M}{sub {circle_dot}} and a hydrogen layer mass of {approx_equal}1.5{times}10{sup {minus}4} {ital M}{sub {asterisk}}. {copyright} {ital 1996 The American Astronomical Society.}

  5. Metamorphic quantum dots: Quite different nanostructures

    International Nuclear Information System (INIS)

    Seravalli, L.; Frigeri, P.; Nasi, L.; Trevisi, G.; Bocchi, C.

    2010-01-01

    In this work, we present a study of InAs quantum dots deposited on InGaAs metamorphic buffers by molecular beam epitaxy. By comparing morphological, structural, and optical properties of such nanostructures with those of InAs/GaAs quantum dot ones, we were able to evidence characteristics that are typical of metamorphic InAs/InGaAs structures. The more relevant are: the cross-hatched InGaAs surface overgrown by dots, the change in critical coverages for island nucleation and ripening, the nucleation of new defects in the capping layers, and the redshift in the emission energy. The discussion on experimental results allowed us to conclude that metamorphic InAs/InGaAs quantum dots are rather different nanostructures, where attention must be put to some issues not present in InAs/GaAs structures, namely, buffer-related defects, surface morphology, different dislocation mobility, and stacking fault energies. On the other hand, we show that metamorphic quantum dot nanostructures can provide new possibilities of tailoring various properties, such as dot positioning and emission energy, that could be very useful for innovative dot-based devices.

  6. 49 CFR 40.13 - How do DOT drug and alcohol tests relate to non-DOT tests?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false How do DOT drug and alcohol tests relate to non... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Employer Responsibilities § 40.13 How do DOT drug and... non-DOT drug and alcohol testing programs. This prohibition includes the use of the DOT forms with...

  7. Quantum dot devices for optical communications

    DEFF Research Database (Denmark)

    Mørk, Jesper

    2005-01-01

    -low threshold currents and amplifiers with record-high power levels. In this tutorial we will review the basic properties of quantum dots, emphasizing the properties which are important for laser and amplifier applications, as well as devices for all-optical signal processing. The high-speed properties....... The main property of semiconductor quantum dots compared to bulk material or even quantum well structures is the discrete nature of the allowed states, which means that inversion of the medium can be obtained for very low electron densities. This has led to the fabrication of quantum dot lasers with record...

  8. Micromagnetic simulations of submicron cobalt dots

    International Nuclear Information System (INIS)

    Parker, G. J.; Cerjan, C.

    2000-01-01

    Numerical simulations of submicron Co extruded elliptical dots were performed to illustrate the relative importance of different physical parameters on the switching behavior in the easy direction. Shape, size, magnetic moment magnitude, and the magnitude and distribution of the crystalline anisotropicity were varied. The simulation represents magnetostatic, exchange, and crystalline anisotropicity fields on a structured mesh using finite difference techniques. The smooth boundary of the dots is accurately represented by use of the embedded curve boundary method. Agreement with experimental hysteresis measurements of submicron dot arrays is obtained when an appropriate angular distribution of the grain anisotropicity axes is invoked. (c) 2000 American Institute of Physics

  9. Entangled exciton states in quantum dot molecules

    Science.gov (United States)

    Bayer, Manfred

    2002-03-01

    Currently there is strong interest in quantum information processing(See, for example, The Physics of Quantum Information, eds. D. Bouwmeester, A. Ekert and A. Zeilinger (Springer, Berlin, 2000).) in a solid state environment. Many approaches mimic atomic physics concepts in which semiconductor quantum dots are implemented as artificial atoms. An essential building block of a quantum processor is a gate which entangles the states of two quantum bits. Recently a pair of vertically aligned quantum dots has been suggested as optically driven quantum gate(P. Hawrylak, S. Fafard, and Z. R. Wasilewski, Cond. Matter News 7, 16 (1999).)(M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).): The quantum bits are individual carriers either on dot zero or dot one. The different dot indices play the same role as a "spin", therefore we call them "isospin". Quantum mechanical tunneling between the dots rotates the isospin and leads to superposition of these states. The quantum gate is built when two different particles, an electron and a hole, are created optically. The two particles form entangled isospin states. Here we present spectrocsopic studies of single self-assembled InAs/GaAs quantum dot molecules that support the feasibility of this proposal. The evolution of the excitonic recombination spectrum with varying separation between the dots allows us to demonstrate coherent tunneling of carriers across the separating barrier and the formation of entangled exciton states: Due to the coupling between the dots the exciton states show a splitting that increases with decreasing barrier width. For barrier widths below 5 nm it exceeds the thermal energy at room temperature. For a given barrier width, we find only small variations of the tunneling induced splitting demonstrating a good homogeneity within a molecule ensemble. The entanglement may be controlled by application of electromagnetic field. For

  10. Circularly organized quantum dot nanostructures of Ge on Si substrates

    International Nuclear Information System (INIS)

    Cai, Qijia; Chen, Peixuan; Zhong, Zhenyang; Jiang, Zuimin; Lu, Fang; An, Zhenghua

    2009-01-01

    A novel circularly arranged structure of germanium quantum dots has been fabricated by combining techniques including electron beam lithography, wet etching and molecular beam epitaxy. It was observed that both pattern and growth parameters affect the morphology of the quantum dot molecules. Meanwhile, the oxidation mask plays a vital role in the formation of circularly organized quantum dots. The experimental results demonstrate the possibilities of investigating the properties of quantum dot molecules as well as single quantum dots

  11. THE WHITE BLOOD ANCESTOR?

    OpenAIRE

    M.Arulmani; V.R.Hema Latha

    2014-01-01

    This scientific research article focus that “Red colour blood” of human shall be considered as the 3rd generation Blood and the Human on origin shall be considered having white colour Blood. The white colour blood of human Ancestor shall be considered composed of only ions of Photon, Electron, Proton and free from Hydrogen, Carbon, Nitrogen, Ozone.

  12. Racializing white drag.

    Science.gov (United States)

    Rhyne, Ragan

    2004-01-01

    While drag is primarily understood as a performance of gender, other performative categories such as race, class, and sexuality create drag meaning as well. Though other categories of identification are increasingly understood as essential elements of drag by performers of color, whiteness remains an unmarked category in the scholarship on drag performances by white queens. In this paper, I argue that drag by white queens must be understood as a performance of race as well as gender and that codes of gender excess are specifically constructed through the framework of these other axes of identity. This essay asks whether white performance by white queens necessarily reinscribes white supremacy through the performance of an unmarked white femininity, or might drag performance complicate (though not necessarily subvert) categories of race as well as gender? In this essay, I will suggest that camp drag performances, through the deployment of class as a crucial category of performative femininity, might indeed be a key site through which whiteness is denaturalized and its power challenged. Specifically, I will read on camp as a politicized mode of race, class and gender performance, focusing on the intersections of these categories of identity in the drag performance of Divine.

  13. Creating White Australia

    DEFF Research Database (Denmark)

    McLisky, Claire Louise; Carey, Jane

    Vedtagelsen af White Australien som regeringens politik i 1901 viser, at hvidheden var afgørende for den måde, hvorpå den nye nation i Australien blev konstitueret. Og alligevel har historikere i vid udstrækning overset hvidhed i deres studier af Australiens race fortid. 'Creating White Australia...

  14. A 2x2 quantum dot array with controllable inter-dot tunnel couplings

    OpenAIRE

    Mukhopadhyay, Uditendu; Dehollain, Juan Pablo; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven M. K.

    2018-01-01

    The interaction between electrons in arrays of electrostatically defined quantum dots is naturally described by a Fermi-Hubbard Hamiltonian. Moreover, the high degree of tunability of these systems make them a powerful platform to simulate different regimes of the Hubbard model. However, most quantum dot array implementations have been limited to one-dimensional linear arrays. In this letter, we present a square lattice unit cell of 2$\\times$2 quantum dots defined electrostatically in a AlGaA...

  15. [Analysis on workload for hospital DOTS service].

    Science.gov (United States)

    Nagata, Yoko; Urakawa, Minako; Kobayashi, Noriko; Kato, Seiya

    2014-04-01

    A directly observed treatment short course (DOTS) trial was launched in Japan in the late 1990s and targeted patients with social depression at urban areas. Based on these findings, the Ministry of Health, Labour and Welfare established the Japanese DOTS Strategy in 2003, which is a comprehensive support service ensuring the adherence of tuberculosis patients to drug administration. DOTS services are initially provided at the hospital to patients with infectious tuberculosis who are hospitalized according to the Infectious Diseases Control Law. After being discharged from the hospital, the patients are referred to a public health center. However, a survey conducted in 2008 indicated that all the patients do not receive appropriate DOTS services at some hospitals. In the present study, we aimed to evaluate the protocols and workload of DOTS at hospitals that are actively involved in tuberculosis medical practice, including DOTS, to assess whether the hospital DOTS services were adequate. We reviewed a series of articles on hospital DOTS from a Japanese journal on nursing for tuberculosis patients and identified 25 activities regarding the hospital DOTS service. These 25 items were then classified into 3 categories: health education to patients, support for adherence, and coordination with the health center. In total, 20 hospitals that had > 20 authorized tuberculosis beds were selected--while considering the geographical balance, schedule of this survey, etc.--from 33 hospitals where an ex-trainee of the tuberculosis control expert training program in the Research Institute of Tuberculosis (RIT) was working and 20 hospitals that had collaborated with our previous survey on tuberculosis medical facilities. All the staff associated with the DOTS service were asked to record the total working time as well as the time spent for each activity. The data were collected and analyzed at the RIT. The working times for each activity of the DOTS service for nurses, pharmacists

  16. Thermoelectric transport through quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Merker, Lukas Heinrich

    2016-06-30

    In this thesis the thermoelectric properties (electrical conductance, Seebeck coefficient and thermal conductance)of quantum dots described by the Anderson impurity model have been investigated by using the numerical renormalization group (NRG) method. In order to make accurate calculations for thermoelectric properties of quantum impurity systems, a number of recent developments and refinements of the NRG have been implemented. These include the z-averaging and Campo discretization scheme, which enable the evaluation of physical quantities on an arbitrary temperature grid and at large discretization parameter Λ and the full density matrix (FDM) approach, which allows a more accurate calculation of spectral functions and transport coefficients. The implementation of the z-averaging and Campo discretization scheme has been tested within a new method for specific heats of quantum impurities. The accuracy of this new method was established by comparison with the numerical solution of the Bethe-ansatz equations for the Anderson model. The FDM approach was implemented and tested within a new approach to the calculation of impurity contributions to the uniform susceptibilities. Within this method a non-negligible contribution from the ''environmental'' degrees of freedom needs to be taken into account to recover the correct susceptibility, as shown by comparison with the Bethe-ansatz approach. An accurate method to calculate the conductance of a quantum dot is implemented, enabling the extraction of the Fermi liquid scaling coefficients c{sub T} and c{sub B} to high accuracy, being able to verify the results of the renormalized super perturbation theory approach (within its regime of validity). The method was generalized to higher order moments of the local level spectral function. This, as well as reduction of the SU(2) code to the U(1) symmetry, enabled the investigation of the effect of a magnetic field on the thermoelectric properties of quantum

  17. Chiral Responsive Liquid Quantum Dots.

    Science.gov (United States)

    Zhang, Jin; Ma, Junkai; Shi, Fangdan; Tian, Demei; Li, Haibing

    2017-08-01

    How to convert the weak chiral-interaction into the macroscopic properties of materials remains a huge challenge. Here, this study develops highly fluorescent, selectively chiral-responsive liquid quantum dots (liquid QDs) based on the hydrophobic interaction between the chiral chains and the oleic acid-stabilized QDs, which have been designated as (S)-1810-QDs. The fluorescence spectrum and liquidity of thermal control demonstrate the fluorescence properties and the fluidic behavior of (S)-1810-QDs in the solvent-free state. Especially, (S)-1810-QDs exhibit a highly chiral-selective response toward (1R, 2S)-2-amino-1,2-diphenyl ethanol. It is anticipated that this study will facilitate the construction of smart chiral fluidic sensors. More importantly, (S)-1810-QDs can become an attractive material for chiral separation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry

    Science.gov (United States)

    Lüker, S.; Kuhn, T.; Reiter, D. E.

    2017-12-01

    Phonons strongly influence the optical control of semiconductor quantum dots. When modeling the electron-phonon interaction in several theoretical approaches, the quantum dot geometry is approximated by a spherical structure, though typical self-assembled quantum dots are strongly lens-shaped. By explicitly comparing simulations of a spherical and a lens-shaped dot using a well-established correlation expansion approach, we show that, indeed, lens-shaped dots can be exactly mapped to a spherical geometry when studying the phonon influence on the electronic system. We also give a recipe to reproduce spectral densities from more involved dots by rather simple spherical models. On the other hand, breaking the spherical symmetry has a pronounced impact on the spatiotemporal properties of the phonon dynamics. As an example we show that for a lens-shaped quantum dot, the phonon emission is strongly concentrated along the direction of the smallest axis of the dot, which is important for the use of phonons for the communication between different dots.

  19. Coupled influence of noise and damped propagation of impurity on linear and nonlinear polarizabilities of doped quantum dots

    International Nuclear Information System (INIS)

    Ganguly, Jayanta; Ghosh, Manas

    2015-01-01

    Highlights: • Linear and nonlinear polarizabilities of quantum dot are studied. • Quantum dot is doped with a repulsive impurity. • Doped system is subject to Gaussian white noise. • Dopant migrates under damped condition. • Noise-damping coupling affects polarizabilities. - Abstract: We investigate the profiles of diagonal components of static and frequency-dependent linear, first, and second nonlinear polarizabilities of repulsive impurity doped quantum dot. We have considered propagation of dopant within an environment that damps the motion. Simultaneous presence of noise inherent to the system has also been considered. The dopant has a Gaussian potential and noise considered is a Gaussian white noise. The doped system is exposed to an external electric field which could be static or time-dependent. Noise undergoes direct coupling with damping and the noise-damping coupling strength appears to be a crucial parameter that designs the profiles of polarizability components. This happens because the coupling strength modulates the dispersive and asymmetric character of the system. The frequency of external field brings about additional features in the profiles of polarizability components. The present investigation highlights some useful features in the optical properties of doped quantum dots

  20. Spin-state transfer in laterally coupled quantum-dot chains with disorders

    International Nuclear Information System (INIS)

    Yang Song; Bayat, Abolfazl; Bose, Sougato

    2010-01-01

    Quantum dot arrays are a promising medium for transferring quantum information between two distant points without resorting to mobile qubits. Here we study the two most common disorders, namely hyperfine interaction and exchange coupling fluctuations, in quantum dot arrays and their effects on quantum communication through these chains. Our results show that the hyperfine interaction is more destructive than the exchange coupling fluctuations. The average optimal time for communication is not affected by any disorder in the system and our simulations show that antiferromagnetic chains are much more resistive than the ferromagnetic ones against both kind of disorders. Even when time modulation of a coupling and optimal control is employed to improve the transmission, the antiferromagnetic chain performs much better. We have assumed the quasistatic approximation for hyperfine interaction and time-dependent fluctuations in the exchange couplings. Particularly for studying exchange coupling fluctuations we have considered the static disorder, white noise, and 1/f noise.

  1. System and method for making quantum dots

    KAUST Repository

    Bakr, Osman; Pan, Jun; El-Ballouli, Ala'a O.; Knudsen, Kristian Rahbek; Abdelhady, Ahmed L.

    2015-01-01

    Embodiments of the present disclosure provide for methods of making quantum dots (QDs) (passivated or unpassivated) using a continuous flow process, systems for making QDs using a continuous flow process, and the like. In one or more embodiments

  2. MoDOT research peer exchange.

    Science.gov (United States)

    2011-04-01

    The Missouri Department of Transportation hosted a peer exchange on April 11-12, 2011 in Jefferson City, Missouri. Participants included representatives from four state DOTs, The National Academies, USDOT-RITA, FHWA, and both public and private resea...

  3. Electron Transport in Coupled Quantum Dots

    National Research Council Canada - National Science Library

    Antoniadis, D

    1998-01-01

    In the course of the investigation funded by this proposal we fabricated, modeled, and measured a variety of quantum dot structures in order to better understand how such nanostructures might be used for computation...

  4. Synthetic Developments of Nontoxic Quantum Dots.

    Science.gov (United States)

    Das, Adita; Snee, Preston T

    2016-03-03

    Semiconductor nanocrystals, or quantum dots (QDs), are candidates for biological sensing, photovoltaics, and catalysis due to their unique photophysical properties. The most studied QDs are composed of heavy metals like cadmium and lead. However, this engenders concerns over heavy metal toxicity. To address this issue, numerous studies have explored the development of nontoxic (or more accurately less toxic) quantum dots. In this Review, we select three major classes of nontoxic quantum dots composed of carbon, silicon and Group I-III-VI elements and discuss the myriad of synthetic strategies and surface modification methods to synthesize quantum dots composed of these material systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Optical Studies of Single Quantum Dots

    National Research Council Canada - National Science Library

    Gammon, Daniel; Steel, Duncan G

    2002-01-01

    ...: the atomlike entities known as quantum dots (QDs). Measuring 1-100 nm across, QDs are semiconductor structures in which the electron wavefunction is confined in all three dimensions by the potential energy barriers that form the QD's boundaries...

  6. The evolving DOT enterprise : today toward tomorrow.

    Science.gov (United States)

    2013-04-01

    Departments of transportation (DOTs) today are being shaped by a wide range of : factors some of which are directly managed and controlled within the transportation : industry while others are external factors shaping the demand for transportatio...

  7. Alternative energy resources for MoDOT

    Science.gov (United States)

    2011-02-01

    This research investigates environmentally friendly alternative energy sources that could be used by MoDOT in various areas, and develops applicable and sustainable strategies to implement those energy sources.

  8. Colloidal Quantum Dot Photovoltaics: A Path Forward

    KAUST Repository

    Kramer, Illan J.; Sargent, Edward H.

    2011-01-01

    spectrum. CQD materials' ease of processing derives from their synthesis, storage, and processing in solution. Rapid advances have brought colloidal quantum dot photovoltaic solar power conversion efficiencies of 6% in the latest reports. These achievements

  9. The Embeddedness of White Fragility within White Pre-Service Principals' Reflections on White Privilege

    Science.gov (United States)

    Hines, Mack T., III

    2016-01-01

    This study analyzes the prevalence of white fragility within the six white, pre-service principals' online responses to readings about white privilege. Six white, pre-service principals were asked to provide commentary to class readings on the relevance of white privilege to their preparation for future positions as principals. The findings showed…

  10. Silicon Quantum Dots for Quantum Information Processing

    Science.gov (United States)

    2013-11-01

    S. Lai, C. Tahan, A. Morello and A. S. Dzurak, Electron Spin lifetimes in multi-valley sil- icon quantum dots, S3NANO Winter School Few spin solid...lifetimes in multi-valley sil- icon quantum dots, International Workshop on Silicon Quantum Electronics, Grenoble, France, February 2012 (Poster). C...typically plunger gates), PMMA A5 is spun at 5000 rpm for 30 seconds, resulting in a 280 nm resist thickness. The resists are baked for 90 seconds at 180

  11. Exciton in type-II quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Ortega, J; Escorcia, R A [Universidad del Magdalena, A. A. 731, Santa Marta (Colombia); Mikhailov, I D, E-mail: jsierraortega@gmail.co [Universidad Industrial de Santander, A. A. 678, Bucaramanga (Colombia)

    2009-05-01

    We study the quantum-size effect and the influence of the external magnetic field on the exciton ground state energy in the type-II InP quantum disk, lens and pyramid deposited on a wetting layer and embedded in a GaInP matrix. We show that the charge distribution over and below quantum dot and wetting layer induced by trapped exciton strongly depends on the quantum dot morphology and the strength of the magnetic field.

  12. Sol-Gel Chemistry for Carbon Dots.

    Science.gov (United States)

    Malfatti, Luca; Innocenzi, Plinio

    2018-03-14

    Carbon dots are an emerging class of carbon-based nanostructures produced by low-cost raw materials which exhibit a widely-tunable photoluminescence and a high quantum yield. The potential of these nanomaterials as a substitute of semiconductor quantum dots in optoelectronics and biomedicine is very high, however they need a customized chemistry to be integrated in host-guest systems or functionalized in core-shell structures. This review is focused on recent advances of the sol-gel chemistry applied to the C-dots technology. The surface modification, the fine tailoring of the chemical composition and the embedding into a complex nanostructured material are the main targets of combining sol-gel processing with C-dots chemistry. In addition, the synergistic effect of the sol-gel precursor combined with the C-dots contribute to modify the intrinsic chemo-physical properties of the dots, empowering the emission efficiency or enabling the tuning of the photoluminescence over a wide range of the visible spectrum. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Coherent transport through interacting quantum dots

    International Nuclear Information System (INIS)

    Hiltscher, Bastian

    2012-01-01

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  14. Coherent transport through interacting quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hiltscher, Bastian

    2012-10-05

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  15. Quantum-dot-in-perovskite solids

    KAUST Repository

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  16. Semiconductor Quantum Dots with Photoresponsive Ligands.

    Science.gov (United States)

    Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume

    2016-10-01

    Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.

  17. Quantum-dot-in-perovskite solids

    KAUST Repository

    Ning, Zhijun

    2015-07-15

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned \\'dots-in-a-matrix\\' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  18. Hypermedicalization in White Noise.

    Science.gov (United States)

    Benson, Josef

    2015-09-01

    The Nazis hijacked Germany's medical establishment and appropriated medical language to hegemonize their ideology. In White Noise, shifting medical information stifles the public into docility. In Nazi Germany the primacy of language and medical authority magnified the importance of academic doctors. The muddling of identities caused complex insecurities and the need for psychological doubles. In White Noise, Professor Gladney is driven by professional insecurities to enact a double in Murray. Through the manipulation of language and medical overreach the U.S., exemplified in the novel White Noise, has become a hypermedicalized society where the spirit of the Hippocratic Oath has eroded.

  19. High efficient OLED displays prepared with the air-gapped bridges on quantum dot patterns for optical recycling

    OpenAIRE

    Hyo-Jun Kim; Min-Ho Shin; Joo-Suc Kim; Se-Eun Kim; Young-Joo Kim

    2017-01-01

    An optically efficient structure was proposed and fabricated to realize high brightness organic light emitting diode (OLED) displays based on a white OLED prepared with the air-gapped bridges on the quantum dot (QD) patterns. Compared with a conventional white OLED display, in our experiments, the optical intensity of the proposed OLED display shows the enhancement of 58.2% in the red color and 16.8% in the green color after applying the air-gapped bridge structure on QD patterns of 20?wt% co...

  20. On the diameter of dot-critical graphs

    Directory of Open Access Journals (Sweden)

    Doost Ali Mojdeh

    2009-01-01

    Full Text Available A graph G is \\(k\\-dot-critical (totaly \\(k\\-dot-critical if \\(G\\ is dot-critical (totaly dot-critical and the domination number is \\(k\\. In the paper [T. Burtona, D. P. Sumner, Domination dot-critical graphs, Discrete Math, 306 (2006, 11-18] the following question is posed: What are the best bounds for the diameter of a \\(k\\-dot-critical graph and a totally \\(k\\-dot-critical graph \\(G\\ with no critical vertices for \\(k \\geq 4\\? We find the best bound for the diameter of a \\(k\\-dot-critical graph, where \\(k \\in\\{4,5,6\\}\\ and we give a family of \\(k\\-dot-critical graphs (with no critical vertices with sharp diameter \\(2k-3\\ for even \\(k \\geq 4\\.

  1. Quantum measurement of coherent tunneling between quantum dots

    International Nuclear Information System (INIS)

    Wiseman, H. M.; Utami, Dian Wahyu; Sun, He Bi; Milburn, G. J.; Kane, B. E.; Dzurak, A.; Clark, R. G.

    2001-01-01

    We describe the conditional and unconditional dynamics of two coupled quantum dots when one dot is subjected to a measurement of its occupation number by coupling it to a third readout dot via the Coulomb interaction. The readout dot is coupled to source and drain leads under weak bias, and a tunnel current flows through a single bound state when energetically allowed. The occupation of the quantum dot near the readout dot shifts the bound state of the readout dot from a low conducting state to a high conducting state. The measurement is made by continuously monitoring the tunnel current through the readout dot. We show that there is a difference between the time scale for the measurement-induced decoherence between the localized states of the dots, and the time scale on which the system becomes localized due to the measurement

  2. ESCO White Paper

    Science.gov (United States)

    EPA developed this white paper to explore energy performance contracting with Energy Service Companies (ESCOs) and its potential to be a best practice for installing solar thermal water heating systems in the commercial and industrial sector.

  3. Northeast Atlantic blue whiting

    OpenAIRE

    Heino, Mikko

    2010-01-01

    Heino, M. 2010. Northeast Atlantic blue whiting. In Life cycle spatial patterns of small pelagic fish in the Northeast Atlantic, pp. 59-64. Ed by P. Petitgas. ICES Cooperative Research Report 306. ICES, Copenhagen.

  4. White House Communications Agency

    National Research Council Canada - National Science Library

    Gimble, Thomas

    1995-01-01

    ...; and the Deputy Secretary of Defense requested the audit. The Deputy Secretary of Defense emphasized that this review should be as thorough as possible of all White House Communications Agency (WHCA...

  5. Progenitors of white dwarfs

    International Nuclear Information System (INIS)

    Drilling, J.S.; Schoenberner, D.

    1985-01-01

    Direct observational evidence is presented which indicates that the immediate progenitors of white dwarfs are the central stars of planetary nebulae (approximately 70%), other post-AGB objects (approximately 30%), and post-HB objects not massive enough to climb the AGB (approximately 0.3%). The combined birth rate for these objects is in satisfactory agreement with the death rate of main-sequence stars and the birth rate of white dwarfs

  6. Spin interactions in InAs quantum dots and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Doty, M.F.; Ware, M.E.; Stinaff, E.A.; Scheibner, M.; Bracker, A.S.; Ponomarev, I.V.; Badescu, S.C.; Reinecke, T.L.; Gammon, D. [Naval Research Lab, Washington, DC 20375 (United States); Korenev, V.L. [A.F. Ioffe Physical Technical Institute, St. Petersburg 194021 (Russian Federation)

    2006-12-15

    Spin interactions between particles in quantum dots or quantum dot molecules appear as fine structure in the photoluminescence spectra. Using the understanding of exchange interactions that has been developed from single dot spectra, we analyze the spin signatures of coupled quantum dots separated by a wide barrier such that inter-dot interactions are negligible. We find that electron-hole exchange splitting is directly evident. In dots charged with an excess hole, an effective hole-hole interaction can be turned on through tunnel coupling. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Artful and multifaceted applications of carbon dot in biomedicine.

    Science.gov (United States)

    Jaleel, Jumana Abdul; Pramod, K

    2018-01-10

    Carbon dots (C-dots) are luminescent carbon nanomaterial having good biocompatibility and low toxicity. The characteristic fluorescence emission property of C-dots establishes their role in optical imaging. C-dots which are superior to fluorescent dyes and semiconductor quantum dots act as a safer in vivo imaging probe. Apart from their bioimaging application, other applications in biomedicine such as drug delivery, cancer therapy, and gene delivery were studied. In this review, we present multifaceted applications of C-dots along with their synthesis, surface passivation, doping, and toxicity profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Black and white holes

    International Nuclear Information System (INIS)

    Zeldovich, Ya.; Novikov, I.; Starobinskij, A.

    1978-01-01

    The theory is explained of the origination of white holes as a dual phenomenon with regard to the formation of black holes. Theoretically it is possible to derive the white hole by changing the sign of time in solving the general theory of relativity equation implying the black hole. The white hole represents the amount of particles formed in the vicinity of a singularity. For a distant observer, matter composed of these particles expands and the outer boundaries of this matter approach from the inside the gravitational radius Rsub(r). At t>>Rsub(r)/c all radiation or expulsion of matter terminates. For the outside observer the white hole exists for an unlimited length of time. In fact, however, it acquires the properties of a black hole and all processes in it cease. The qualitative difference between a white hole and a black hole is in that a white hole is formed as the result of an inner quantum explosion from the singularity to the gravitational radius and not as the result of a gravitational collapse, i.e., the shrinkage of diluted matter towards the gravitational radius. (J.B.)

  9. Black and white holes

    Energy Technology Data Exchange (ETDEWEB)

    Zeldovich, Ya; Novikov, I; Starobinskii, A

    1978-07-01

    The theory is explained of the origination of white holes as a dual phenomenon with regard to the formation of black holes. Theoretically it is possible to derive the white hole by changing the sign of time in solving the general theory of relativity equation implying the black hole. The white hole represents the amount of particles formed in the vicinity of a singularity. For a distant observer, matter composed of these particles expands and the outer boundaries of this matter approach from the inside the gravitational radius R/sub r/. At t>>R/sub r//c all radiation or expulsion of matter terminates. For the outside observer the white hole exists for an unlimited length of time. In fact, however, it acquires the properties of a black hole and all processes in it cease. The qualitative difference between a white hole and a black hole is in that a white hole is formed as the result of an inner quantum explosion from the singularity to the gravitational radius and not as the result of a gravitational collapse, i.e., the shrinkage of diluted matter towards the gravitational radius.

  10. Submonolayer Quantum Dot Infrared Photodetector

    Science.gov (United States)

    Ting, David Z.; Bandara, Sumith V.; Gunapala, Sarath D.; Chang, Yia-Chang

    2010-01-01

    A method has been developed for inserting submonolayer (SML) quantum dots (QDs) or SML QD stacks, instead of conventional Stranski-Krastanov (S-K) QDs, into the active region of intersubband photodetectors. A typical configuration would be InAs SML QDs embedded in thin layers of GaAs, surrounded by AlGaAs barriers. Here, the GaAs and the AlGaAs have nearly the same lattice constant, while InAs has a larger lattice constant. In QD infrared photodetector, the important quantization directions are in the plane perpendicular to the normal incidence radiation. In-plane quantization is what enables the absorption of normal incidence radiation. The height of the S-K QD controls the positions of the quantized energy levels, but is not critically important to the desired normal incidence absorption properties. The SML QD or SML QD stack configurations give more control of the structure grown, retains normal incidence absorption properties, and decreases the strain build-up to allow thicker active layers for higher quantum efficiency.

  11. Numerical Simulations of Collisional Cascades at the Roche Limits of White Dwarf Stars

    Science.gov (United States)

    Kenyon, Scott J.; Bromley, Benjamin C.

    2017-08-01

    We consider the long-term collisional and dynamical evolution of solid material orbiting in a narrow annulus near the Roche limit of a white dwarf. With orbital velocities of 300 {km} {{{s}}}-1, systems of solids with initial eccentricity e≳ {10}-3 generate a collisional cascade where objects with radii r ≲ 100{--}300 {km} are ground to dust. This process converts 1-100 km asteroids into 1 μm particles in 102-106 yr. Throughout this evolution, the swarm maintains an initially large vertical scale height H. Adding solids at a rate \\dot{M} enables the system to find an equilibrium where the mass in solids is roughly constant. This equilibrium depends on \\dot{M} and {r}0, the radius of the largest solid added to the swarm. When {r}0 ≲ 10 km, this equilibrium is stable. For larger {r}0, the mass oscillates between high and low states; the fraction of time spent in high states ranges from 100% for large \\dot{M} to much less than 1% for small \\dot{M}. During high states, the stellar luminosity reprocessed by the solids is comparable to the excess infrared emission observed in many metallic line white dwarfs.

  12. Photoluminescence of carbon dots from mesoporous silica

    Science.gov (United States)

    Nelson, D. K.; Razbirin, B. S.; Starukhin, A. N.; Eurov, D. A.; Kurdyukov, D. A.; Stovpiaga, E. Yu; Golubev, V. G.

    2016-09-01

    Photophysical properties of carbon dots were investigated under various excitation conditions and over a wide temperature region - from room to liquid helium temperatures. The carbon dots (CDs) were synthesized using mesoporous silica particles as a reactor and (3-aminopropyl)triethoxysilane (APTES) as a precursor. The photoluminescence spectra of CDs exhibit a strong dependence on the excitation wavelength and demonstrate a significant inhomogeneous broadening. Lowering sample temperature reveals the doublet structure of the spectra, which is associated with the vibronic structure of radiative transitions. The vibration energy ∼1200 cm-1 is close to the energy of Csbnd O stretching vibration. Long-lived phosphorescence of carbon dots with its decay time ∼0.2 s at T = 80 K was observed. The fluorescence and phosphorescence spectra are shown to be spectrally separated. The long-lived component of the emission was ascribed to optically forbidden triplet-singlet transitions. The value of the singlet-triplet splitting was found to be about 0.3 eV. Photo-induced polarization of the luminescence of carbon dots was revealed. The degree of the linear polarization is dependent on the wavelengths of both excitation and emitted light. The effect indicates a hidden anisotropy of optical dipole transitions in the dots and demonstrates the loss of the dipole orientation during the electron energy relaxation.

  13. Analysis of MoDOT communication and outreach effectiveness

    Science.gov (United States)

    2008-07-01

    Personal interviews were held with MoDOT personnel to assess MoDOTs current communication practices and existing customer segmentation practices. Focus groups were then held to help gauge the effectiveness of existing communication practices and t...

  14. Coulomb Blockade of Tunnel-Coupled Quantum Dots

    National Research Council Canada - National Science Library

    Golden, John

    1997-01-01

    .... Though classical charging models can explain the Coulomb blockade of an isolated dot, they must be modified to explain the Coulomb blockade of dots coupled through the quantum mechanical tunneling of electrons...

  15. Surface treatment of nanocrystal quantum dots after film deposition

    Science.gov (United States)

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  16. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells

    International Nuclear Information System (INIS)

    Wu, Jiang; Chen, Siming; Seeds, Alwyn; Liu, Huiyun

    2015-01-01

    Nanometre-scale semiconductor devices have been envisioned as next-generation technologies with high integration and functionality. Quantum dots, or the so-called ‘artificial atoms’, exhibit unique properties due to their quantum confinement in all 3D. These unique properties have brought to light the great potential of quantum dots in optoelectronic applications. Numerous efforts worldwide have been devoted to these promising nanomaterials for next-generation optoelectronic devices, such as lasers, photodetectors, amplifiers, and solar cells, with the emphasis on improving performance and functionality. Through the development in optoelectronic devices based on quantum dots over the last two decades, quantum dot devices with exceptional performance surpassing previous devices are evidenced. This review describes recent developments in quantum dot optoelectronic devices over the last few years. The paper will highlight the major progress made in 1.3 μm quantum dot lasers, quantum dot infrared photodetectors, and quantum dot solar cells. (topical review)

  17. Inorganic passivation and doping control in colloidal quantum dot photovoltaics

    KAUST Repository

    Hoogland, Sjoerd H.; Ip, Alex; Thon, Susanna; Voznyy, Oleksandr; Tang, Jiang; Liu, Huan; Zhitomirsky, David; Debnath, Ratan K.; Levina, Larissa; Rollny, Lisa R.; Fischer, Armin H.; Kemp, Kyle W.; Kramer, Illan J.; Ning, Zhijun; Labelle, André J.; Chou, Kang Wei; Amassian, Aram; Sargent, E. H.

    2012-01-01

    We discuss strategies to reduce midgap trap state densities in colloidal quantum dot films and requirements to control doping type and magnitude. We demonstrate that these improvements result in colloidal quantum dot solar cells with certified 7.0% efficiency.

  18. TxDOT administration research : tasks completed in FY2009.

    Science.gov (United States)

    2010-01-01

    Texas Department of Transportation (TxDOT) Project 0-6581-TI, TxDOT Administration : Research, encompasses multiple tasks that explore and support administrative aspects of : transportation research. : The project term began in October 2008 and has b...

  19. Filtering algorithm for dotted interferences

    Energy Technology Data Exchange (ETDEWEB)

    Osterloh, K., E-mail: kurt.osterloh@bam.de [Federal Institute for Materials Research and Testing (BAM), Division VIII.3, Radiological Methods, Unter den Eichen 87, 12205 Berlin (Germany); Buecherl, T.; Lierse von Gostomski, Ch. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie, Walther-Meissner-Str. 3, 85748 Garching (Germany); Zscherpel, U.; Ewert, U. [Federal Institute for Materials Research and Testing (BAM), Division VIII.3, Radiological Methods, Unter den Eichen 87, 12205 Berlin (Germany); Bock, S. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie, Walther-Meissner-Str. 3, 85748 Garching (Germany)

    2011-09-21

    An algorithm has been developed to remove reliably dotted interferences impairing the perceptibility of objects within a radiographic image. This particularly is a major challenge encountered with neutron radiographs collected at the NECTAR facility, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II): the resulting images are dominated by features resembling a snow flurry. These artefacts are caused by scattered neutrons, gamma radiation, cosmic radiation, etc. all hitting the detector CCD directly in spite of a sophisticated shielding. This makes such images rather useless for further direct evaluations. One approach to resolve this problem of these random effects would be to collect a vast number of single images, to combine them appropriately and to process them with common image filtering procedures. However, it has been shown that, e.g. median filtering, depending on the kernel size in the plane and/or the number of single shots to be combined, is either insufficient or tends to blur sharp lined structures. This inevitably makes a visually controlled processing image by image unavoidable. Particularly in tomographic studies, it would be by far too tedious to treat each single projection by this way. Alternatively, it would be not only more comfortable but also in many cases the only reasonable approach to filter a stack of images in a batch procedure to get rid of the disturbing interferences. The algorithm presented here meets all these requirements. It reliably frees the images from the snowy pattern described above without the loss of fine structures and without a general blurring of the image. It consists of an iterative, within a batch procedure parameter free filtering algorithm aiming to eliminate the often complex interfering artefacts while leaving the original information untouched as far as possible.

  20. Filtering algorithm for dotted interferences

    International Nuclear Information System (INIS)

    Osterloh, K.; Buecherl, T.; Lierse von Gostomski, Ch.; Zscherpel, U.; Ewert, U.; Bock, S.

    2011-01-01

    An algorithm has been developed to remove reliably dotted interferences impairing the perceptibility of objects within a radiographic image. This particularly is a major challenge encountered with neutron radiographs collected at the NECTAR facility, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II): the resulting images are dominated by features resembling a snow flurry. These artefacts are caused by scattered neutrons, gamma radiation, cosmic radiation, etc. all hitting the detector CCD directly in spite of a sophisticated shielding. This makes such images rather useless for further direct evaluations. One approach to resolve this problem of these random effects would be to collect a vast number of single images, to combine them appropriately and to process them with common image filtering procedures. However, it has been shown that, e.g. median filtering, depending on the kernel size in the plane and/or the number of single shots to be combined, is either insufficient or tends to blur sharp lined structures. This inevitably makes a visually controlled processing image by image unavoidable. Particularly in tomographic studies, it would be by far too tedious to treat each single projection by this way. Alternatively, it would be not only more comfortable but also in many cases the only reasonable approach to filter a stack of images in a batch procedure to get rid of the disturbing interferences. The algorithm presented here meets all these requirements. It reliably frees the images from the snowy pattern described above without the loss of fine structures and without a general blurring of the image. It consists of an iterative, within a batch procedure parameter free filtering algorithm aiming to eliminate the often complex interfering artefacts while leaving the original information untouched as far as possible.

  1. A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2.

    Science.gov (United States)

    Zhong, Nianbing; Zhao, Mingfu; Zhong, Lianchao; Liao, Qiang; Zhu, Xun; Luo, Binbin; Li, Yishan

    2016-11-15

    In this paper, we present a high-sensitivity polymer fiber-optic evanescent wave (FOEW) sensor with a three-layer structure that includes bottom, inter-, and surface layers in the sensing region. The bottom layer and inter-layer are POFs composed of standard cladding and the core of the plastic optical fiber, and the surface layer is made of dilute Canada balsam in xylene doped with GeO2. We examine the morphology of the doped GeO2, the refractive index and composition of the surface layer and the surface luminous properties of the sensing region. We investigate the effects of the content and morphology of the GeO2 particles on the sensitivity of the FOEW sensors by using glucose solutions. In addition, we examine the response of sensors incubated with staphylococcal protein A plus mouse IgG isotype to goat anti-mouse IgG solutions. Results indicate very good sensitivity of the three-layer FOEW sensor, which showed a 3.91-fold improvement in the detection of the target antibody relative to a conventional sensor with a core-cladding structure, and the novel sensor showed a lower limit of detection of 0.2ng/l and a response time around 320s. The application of this high-sensitivity FOEW sensor can be extended to biodefense, disease diagnosis, biomedical and biochemical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Long-period gratings in photonic crystal fibers operating near the phase-matching turning point for evanescent chemical and biochemical sensing

    Science.gov (United States)

    Kanka, Jiri

    2012-06-01

    Fiber-optic long-period grating (LPG) operating near the dispersion turning point in its phase matching curve (PMC), referred to as a Turn Around Point (TAP) LPG, is known to be extremely sensitive to external parameters. Moreover, in a TAP LPG the phase matching condition can be almost satisfied over large spectral range, yielding a broadband LPG operation. TAP LPGs have been investigated, namely for use as broadband mode convertors and biosensors. So far TAP LPGs have been realized in specially designed or post-processed conventional fibers, not yet in PCFs, which allow a great degree of freedom in engineering the fiber's dispersion properties through the control of the PCF structural parameters. We have developed the design optimization technique for TAP PCF LPGs employing the finite element method for PCF modal analysis in a combination with the Nelder-Mead simplex method for minimizing the objective function based on target-specific PCF properties. Using this tool we have designed TAP PCF LPGs for specified wavelength ranges and refractive indices of medium in the air holes. Possible TAP PCF-LPG operational regimes - dual-resonance, broadband mode conversion and transmitted intensity-based operation - will be demonstrated numerically. Potential and limitations of TAP PCF-LPGs for evanescent chemical and biochemical sensing will be assessed.

  3. Carbon quantum dots and a method of making the same

    Science.gov (United States)

    Zidan, Ragaiy; Teprovich, Joseph A.; Washington, Aaron L.

    2017-08-22

    The present invention is directed to a method of preparing a carbon quantum dot. The carbon quantum dot can be prepared from a carbon precursor, such as a fullerene, and a complex metal hydride. The present invention also discloses a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride and a polymer containing a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride.

  4. Spectroscopy of Charged Quantum Dot Molecules

    Science.gov (United States)

    Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.; Korenev, V. L.

    2006-03-01

    Spins of single charges in quantum dots are attractive for many quantum information and spintronic proposals. Scalable quantum information applications require the ability to entangle and operate on multiple spins in coupled quantum dots (CQDs). To further the understanding of these systems, we present detailed spectroscopic studies of InAs CQDs with control of the discrete electron or hole charging of the system. The optical spectrum reveals a pattern of energy anticrossings and crossings in the photoluminescence as a function of applied electric field. These features can be understood as a superposition of charge and spin configurations of the two dots and represent clear signatures of quantum mechanical coupling. The molecular resonance leading to these anticrossings is achieved at different electric fields for the optically excited (trion) states and the ground (hole) states allowing for the possibility of using the excited states for optically induced coupling of the qubits.

  5. 49 CFR 41.119 - DOT regulated buildings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false DOT regulated buildings. 41.119 Section 41.119 Transportation Office of the Secretary of Transportation SEISMIC SAFETY § 41.119 DOT regulated buildings. (a) Each DOT Operating Administration with responsibility for regulating the structural safety of buildings...

  6. Bright infrared LEDs based on colloidal quantum-dots

    KAUST Repository

    Sun, Liangfeng; Choi, Joshua J.; Stachnik, David; Bartnik, Adam C.; Hyun, Byung-Ryool; Malliaras, George G.; Hanrath, Tobias; Wise, Frank W.

    2013-01-01

    Record-brightness infrared LEDs based on colloidal quantum-dots have been achieved through control of the spacing between adjacent quantum-dots. By tuning the size of quantum-dots, the emission wavelengths can be tuned between 900nm and 1650nm. © 2013 Materials Research Society.

  7. Double quantum dot as a minimal thermoelectric generator

    OpenAIRE

    Donsa, S.; Andergassen, S.; Held, K.

    2014-01-01

    Based on numerical renormalization group calculations, we demonstrate that experimentally realized double quantum dots constitute a minimal thermoelectric generator. In the Kondo regime, one quantum dot acts as an n-type and the other one as a p-type thermoelectric device. Properly connected the double quantum dot provides a miniature power supply utilizing the thermal energy of the environment.

  8. Four-Wave Mixing Spectroscopy of Quantum Dot Molecules

    Science.gov (United States)

    Sitek, A.; Machnikowski, P.

    2007-08-01

    We study theoretically the nonlinear four-wave mixing response of an ensemble of coupled pairs of quantum dots (quantum dot molecules). We discuss the shape of the echo signal depending on the parameters of the ensemble: the statistics of transition energies and the degree of size correlations between the dots forming the molecules.

  9. Coherence and dephasing in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Leosson, K.; Birkedal, Dan

    2003-01-01

    We measured dephasing times in InGaAl/As self-assembled quantum dots at low temperature using degenerate four-wave mixing. At 0K, the coherence time of the quantum dots is lifetime limited, whereas at finite temperatures pure dephasing by exciton-phonon interactions governs the quantum dot...

  10. Optical localization of quantum dots in tapered nanowires

    DEFF Research Database (Denmark)

    Østerkryger, Andreas Dyhl; Gregersen, Niels; Fons, Romain

    2017-01-01

    In this work we have measured the far-field emission patterns of In As quantum dots embedded in a GaAs tapered nanowire and used an open-geometry Fourier modal method for determining the radial position of the quantum dots by computing the far-field emission pattern for different quantum dot...

  11. Circular polarization memory in single Quantum Dots

    International Nuclear Information System (INIS)

    Khatsevich, S.; Poem, E.; Benny, Y.; Marderfeld, I.; Gershoni, D.; Badolato, A.; Petroff, P. M.

    2010-01-01

    Under quasi-resonant circularly polarized optical excitation, charged quantum dots may emit polarized light. We measured various transitions with either positive, negative or no circular-polarization memory. We explain these observations and quantitatively calculate the polarization spectrum. Our model use the full configuration-interaction method, including the electron-hole exchange interaction, for calculating the quantum dot's confined many-carrier states, along with one assumption regarding the spin relaxation of photoexcited carriers: Electrons maintain their initial spin polarization, while holes do not.

  12. Bilayer graphene quantum dot defined by topgates

    Energy Technology Data Exchange (ETDEWEB)

    Müller, André; Kaestner, Bernd; Hohls, Frank; Weimann, Thomas; Pierz, Klaus; Schumacher, Hans W., E-mail: hans.w.schumacher@ptb.de [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

    2014-06-21

    We investigate the application of nanoscale topgates on exfoliated bilayer graphene to define quantum dot devices. At temperatures below 500 mK, the conductance underneath the grounded gates is suppressed, which we attribute to nearest neighbour hopping and strain-induced piezoelectric fields. The gate-layout can thus be used to define resistive regions by tuning into the corresponding temperature range. We use this method to define a quantum dot structure in bilayer graphene showing Coulomb blockade oscillations consistent with the gate layout.

  13. Polymers in Carbon Dots: A Review

    Directory of Open Access Journals (Sweden)

    Yiqun Zhou

    2017-02-01

    Full Text Available Carbon dots (CDs have been widely studied since their discovery in 2004 as a green substitute of the traditional quantum dots due to their excellent photoluminescence (PL and high biocompatibility. Meanwhile, polymers have increasingly become an important component for both synthesis and modification of CDs to provide polymeric matrix and enhance their PL property. Furthermore, critical analysis of composites of CDs and polymers has not been available. Herein, in this review, we summarized the use of polymers in the synthesis and functionalization of CDs, and the applications of these CDs in various fields.

  14. Multicolor fluorescent light-emitting diodes based on cesium lead halide perovskite quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012 (China); Bai, Xue, E-mail: baix@jlu.edu.cn, E-mail: yuzhang@jlu.edu.cn; Sun, Chun; Zhang, Xiaoyu; Zhang, Yu, E-mail: baix@jlu.edu.cn, E-mail: yuzhang@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Zhang, Tieqiang [State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012 (China)

    2016-08-08

    High quantum yield, narrow full width at half-maximum and tunable emission color of perovskite quantum dots (QDs) make this kind of material good prospects for light-emitting diodes (LEDs). However, the relatively poor stability under high temperature and air condition limits the device performance. To overcome this issue, the liquid-type packaging structure in combination with blue LED chip was employed to fabricate the fluorescent perovskite quantum dot-based LEDs. A variety of monochromatic LEDs with green, yellow, reddish-orange, and red emission were fabricated by utilizing the inorganic cesium lead halide perovskite quantum dots as the color-conversion layer, which exhibited the narrow full width at half-maximum (<35 nm), the relatively high luminous efficiency (reaching 75.5 lm/W), and the relatively high external quantum efficiency (14.6%), making it the best-performing perovskite LEDs so far. Compared to the solid state LED device, the liquid-type LED devices exhibited excellent color stability against the various working currents. Furthermore, we demonstrated the potential prospects of all-inorganic perovskite QDs for the liquid-type warm white LEDs.

  15. Multicolor fluorescent light-emitting diodes based on cesium lead halide perovskite quantum dots

    International Nuclear Information System (INIS)

    Wang, Peng; Bai, Xue; Sun, Chun; Zhang, Xiaoyu; Zhang, Yu; Zhang, Tieqiang

    2016-01-01

    High quantum yield, narrow full width at half-maximum and tunable emission color of perovskite quantum dots (QDs) make this kind of material good prospects for light-emitting diodes (LEDs). However, the relatively poor stability under high temperature and air condition limits the device performance. To overcome this issue, the liquid-type packaging structure in combination with blue LED chip was employed to fabricate the fluorescent perovskite quantum dot-based LEDs. A variety of monochromatic LEDs with green, yellow, reddish-orange, and red emission were fabricated by utilizing the inorganic cesium lead halide perovskite quantum dots as the color-conversion layer, which exhibited the narrow full width at half-maximum (<35 nm), the relatively high luminous efficiency (reaching 75.5 lm/W), and the relatively high external quantum efficiency (14.6%), making it the best-performing perovskite LEDs so far. Compared to the solid state LED device, the liquid-type LED devices exhibited excellent color stability against the various working currents. Furthermore, we demonstrated the potential prospects of all-inorganic perovskite QDs for the liquid-type warm white LEDs.

  16. Spectroscopic characteristics of carbon dots (C-dots) derived from carbon fibers and conversion to sulfur-bridged C-dots nanosheets.

    Science.gov (United States)

    Vinci, John C; Ferrer, Ivonne M; Guterry, Nathan W; Colón, Verónica M; Destino, Joel F; Bright, Frank V; Colón, Luis A

    2015-09-01

    We synthesized sub-10 nm carbon nanoparticles (CNPs) consistent with photoluminescent carbon dots (C-dots) from carbon fiber starting material. The production of different C-dots fractions was monitored over seven days. During the course of the reaction, one fraction of C-dots species with relatively high photoluminescence was short-lived, emerging during the first hour of reaction but disappearing after one day of reaction. Isolation of this species during the first hour of the reaction was crucial to obtaining higher-luminescent C-dots species. When the reaction proceeded for one week, the appearance of larger nanostructures was observed over time, with lateral dimensions approaching 200 nm. The experimental evidence suggests that these larger species are formed from small C-dot nanoparticles bridged together by sulfur-based moieties between the C-dot edge groups, as if the C-dots polymerized by cross-linking the edge groups through sulfur bridges. Their size can be tailored by controlling the reaction time. Our results highlight the variety of CNP products, from sub-10 nm C-dots to ~200 nm sulfur-containing carbon nanostructures, that can be produced over time during the oxidation reaction of the graphenic starting material. Our work provides a clear understanding of when to stop the oxidation reaction during the top-down production of C-dots to obtain highly photoluminescent species or a target average particle size.

  17. WHITE COLLAR CRIME - Investigations

    OpenAIRE

    Nyagudi, Nyagudi Musandu

    2014-01-01

    WHITE COLLAR CRIME - Investigations Presentation By  Dr. Nyagudi MusanduForensic Criminologist 2nd International Securityand Safety Conference and Exhibition, 16th April, 2010 a forum hosted by Events Management Solutions at the Sarit Centre, Nairobi, Kenya  

  18. Transport through overlapping states in quantum dots and double dot molecules

    International Nuclear Information System (INIS)

    Berkovits, R.

    2006-01-01

    Full Text: We shall review the transport properties of interacting quantum dots with overlapping orbitals for which the orthodox Coulomb blockade picture no longer holds. We shall concentrate on he conductance through a serial double dot structure for which the inter-dot tunneling is stronger than the tunneling to the leads. When the dots are occupied by 1 or 3 electrons the usual Kondo peak is observed. For the case in which 2 electrons occupy the molecule a singlet is formed. Nevertheless, the conductance in that case has a constant non-zero value, and might even be equal to the maximum conductance of 2e 2 /h for certain values of the molecule parameters. We show that this is the result of the subtle interplay between the symmetric and anti-symmetric orbitals of the molecule caused by interactions and interference

  19. The White Sea, Russia

    Science.gov (United States)

    2002-01-01

    Editor's Note: The caption below, published on May 10, 2001, is incorrect. According to Masha Vorontsova, director of the International Fund for Animal Welfare in Moscow, the situation with the seal pups in the White Sea is normal. There is no disaster and there never was. For more details, refer to the article entitled 'No Danger' on the New Scientist home page. The Earth Observatory regrets the earlier errant report. Original Caption According to the Russian Polar Research Institute for Fisheries and Oceanography, between 250,000 and 300,000 Greenland seal pups face death by starvation over the next two months due to a cruel trick by mother nature. The seals, most of them less than two months old, are trapped on ice sheets that remain locked in the White Sea, located near Archangel in Northern Russia. Typically, during the spring thaw the ice sheets break up and flow with the currents northward into the Barents Sea, the seals' spring feeding grounds. The seal pups hitch a ride on the ice floes, living on their own individual stores of fat until they arrive in the Barents Sea. Their mothers departed for the Barents Sea weeks ago. In a normal year, the seal pups' trip from the White Sea out to the Barents takes about six weeks and the seals have adapted to rely upon this mechanism of mother nature. During their yearly migration, the mother seals usually stay with their pups and feed them until their pelts turn from white to grey--a sign that the pups are mature enough to swim and feed themselves. Unfortunately, this year unusually strong northerly winds created a bottleneck of ice near the mouth of the white sea, thus blocking the flow of ice and trapping the pups. These true-color images of the White Sea were acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. This image, taken May 2, 2000 that there is usually much less ice in the White Sea this time of year as most of it is typically en route to the

  20. Photoluminescence studies of single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1999-01-01

    Semiconductor quantum dots are considered a promising material system for future optical devices and quantum computers. We have studied the low-temperature photoluminescence properties of single InGaAs quantum dots embedded in GaAs. The high spatial resolution required for resolving single dots...... to resolve luminescence lines from individual quantum dots, revealing an atomic-like spectrum of sharp transition lines. A parameter of fundamental importance is the intrinsic linewidth of these transitions. Using high-resolution spectroscopy we have determined the linewidth and investigated its dependence...... on temperature, which gives information about how the exciton confined to the quantum dot interacts with the surrounding lattice....

  1. Kondo and mixed-valence regimes in multilevel quantum dots

    International Nuclear Information System (INIS)

    Chudnovskiy, A. L.; Ulloa, S. E.

    2001-01-01

    We investigate the dependence of the ground state of a multilevel quantum dot on the coupling to an external fermionic system and on the interactions in the dot. As the coupling to the external system increases, the rearrangement of the effective energy levels in the dot signals the transition from the Kondo regime to a mixed-valence (MV) regime. The MV regime in a two-level dot is characterized by an intrinsic mixing of the levels in the dot, resulting in nonperturbative subtunneling and supertunneling phenomena that strongly influence the Kondo effect

  2. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Neetu, E-mail: singh.neetu1985@gmail.com; Kapoor, Avinashi [Department of Electronic Science, University of Delhi South Campus, New Delhi-110 021 (India); Kumar, Vinod [Department of Physics, University of the Free State, Bloemfontein, ZA9300 (South Africa); Mehra, R. M. [School of Engineering and Technology, Sharda University, Greater Noida-201 306, U.P. (India)

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  3. Entangled photons from small quantum dots

    NARCIS (Netherlands)

    Visser, P.M.; Allaart, K.; Lenstra, D.

    2003-01-01

    We discuss level schemes of small quantum-dot turnstiles and their applicability in the production of entanglement in two-photon emission. Due to the large energy splitting of the single-electron levels, only one single-electron level and one single-hole level can be made resonant with the levels in

  4. Coulomb Coupling Between Quantum Dots and Waveguides

    National Research Council Canada - National Science Library

    Porod, Wolfgang

    2000-01-01

    .... We considered both III-V and Si-based semiconductor systems. In later years, the AASERT award supported work on QCA realizations in Coulomb-blockade metal-dot systems, which were successful in demonstrating the basic QCA switching operation...

  5. System and method for making quantum dots

    KAUST Repository

    Bakr, Osman M.

    2015-05-28

    Embodiments of the present disclosure provide for methods of making quantum dots (QDs) (passivated or unpassivated) using a continuous flow process, systems for making QDs using a continuous flow process, and the like. In one or more embodiments, the QDs produced using embodiments of the present disclosure can be used in solar photovoltaic cells, bio-imaging, IR emitters, or LEDs.

  6. Enabling biomedical research with designer quantum dots

    NARCIS (Netherlands)

    Tomczak, N.; Janczewski, D.; Dorokhin, D.V.; Han, M-Y; Vancso, Gyula J.; Navarro, Melba; Planell, Josep A.

    2012-01-01

    Quantum Dots (QDs) are a new class of semiconductor nanoparticulate luminophores, which are actively researched for novel applications in biology and nanomedicine. In this review, the recent progress in the design and applications of QD labels for in vitro and in vivo imaging of cells is presented.

  7. Effect of temperature on quantum dots

    Indian Academy of Sciences (India)

    MAHDI AHMADI BORJI

    2017-07-12

    Jul 12, 2017 ... Effect of temperature on InxGa1−xAs/GaAs quantum dots. MAHDI AHMADI BORJI1, ALI ... Attention should be given to the effects of temperature, ... tion 2 explains the model and method of the numerical simulation. Our results ...

  8. Featured Image: Bright Dots in a Sunspot

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    This image of a sunspot, located in in NOAA AR 12227, was captured in December 2014 by the 0.5-meter Solar Optical Telescope on board the Hinode spacecraft. This image was processed by a team of scientists led by Rahul Yadav (Udaipur Solar Observatory, Physical Research Laboratory Dewali, India) in order to examine the properties of umbral dots: transient, bright features observed in the umbral region (the central, darkest part) of a sunspot. By exploring these dots, Yadav and collaborators learned how their properties relate to the large-scale properties of the sunspots in which they form for instance, how do the number, intensities, or filling factors of dots relate to the size of a sunspots umbra? To find out more about the authors results, check out the article below.Sunspot in NOAA AR 11921. Left: umbralpenumbral boundary. Center: the isolated umbra from the sunspot. Right: The umbra with locations of umbral dots indicated by yellow plus signs. [Adapted from Yadav et al. 2018]CitationRahul Yadav et al 2018 ApJ 855 8. doi:10.3847/1538-4357/aaaeba

  9. Decoherence in Nearly-Isolated Quantum Dots

    DEFF Research Database (Denmark)

    Folk, J.; M. Marcus, C.; Harris jr, J.

    2000-01-01

    Decoherence in nearly-isolated GaAs quantum dots is investigated using the change in average Coulomb blockade peak height upon breaking time-reversal symmetry. The normalized change in average peak height approaches the predicted universal value of 1/4 at temperatures well below the single...

  10. Electron Spins in Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Hanson, R.

    2005-01-01

    This thesis describes a series of experiments aimed at understanding and controlling the behavior of the spin degree of freedom of single electrons, confined in semiconductor quantum dots. This research work is motivated by the prospects of using the electron spin as a quantum bit (qubit), the basic

  11. Resistance to Black Dot in Potato

    Science.gov (United States)

    Black dot fungus can colonize tubers on the surface, in the stolon end, or in a combination of both.On the surface the fungus is prevalent as sclerotia, and in the stolon end the fungus colonizes the vascular tissuesas hyphae. The fungus is introduced to non-infested soils mostly by infected potato ...

  12. Photoluminescence of hybrid quantum dot systems

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav

    2015-01-01

    Roč. 7, č. 4 (2015), 347-349 ISSN 2164-6627 R&D Projects: GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : quantum dots * energy transfer * electron-phonon interaction Subject RIV: BM - Solid Matter Physics ; Magnetism

  13. Many electron effects in semiconductor quantum dots

    Indian Academy of Sciences (India)

    Semiconductor quantum dots (QDs) exhibit shell structures, very similar to atoms. Termed as 'artificial atoms' by some, they are much larger (1 100 nm) than real atoms. One can study a variety of manyelectron effects in them, which are otherwise difficult to observe in a real atom. We have treated these effects within the ...

  14. Integrated photonics using colloidal quantum dots

    Science.gov (United States)

    Menon, Vinod M.; Husaini, Saima; Okoye, Nicky; Valappil, Nikesh V.

    2009-11-01

    Integrated photonic devices were realized using colloidal quantum dot composites such as flexible microcavity laser, microdisk emitters and integrated active-passive waveguides. The microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. Planar photonic devices consisting of vertically coupled microring resonators, microdisk emitters, active-passive integrated waveguide structures and coupled active microdisk resonators were realized using soft lithography, photo-lithography, and electron beam lithography, respectively. The gain medium in all these devices was a composite consisting of quantum dots embedded in SU8 matrix. Finally, the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements was determined. In addition to their specific functionalities, these novel device demonstrations and their development present a low-cost alternative to the traditional photonic device fabrication techniques.

  15. Influence of the quantum dot geometry on p -shell transitions in differently charged quantum dots

    Science.gov (United States)

    Holtkemper, M.; Reiter, D. E.; Kuhn, T.

    2018-02-01

    Absorption spectra of neutral, negatively, and positively charged semiconductor quantum dots are studied theoretically. We provide an overview of the main energetic structure around the p -shell transitions, including the influence of nearby nominally dark states. Based on the envelope function approximation, we treat the four-band Luttinger theory as well as the direct and short-range exchange Coulomb interactions within a configuration interaction approach. The quantum dot confinement is approximated by an anisotropic harmonic potential. We present a detailed investigation of state mixing and correlations mediated by the individual interactions. Differences and similarities between the differently charged quantum dots are highlighted. Especially large differences between negatively and positively charged quantum dots become evident. We present a visualization of energetic shifts and state mixtures due to changes in size, in-plane asymmetry, and aspect ratio. Thereby we provide a better understanding of the experimentally hard to access question of quantum dot geometry effects. Our findings show a method to determine the in-plane asymmetry from photoluminescence excitation spectra. Furthermore, we supply basic knowledge for tailoring the strength of certain state mixtures or the energetic order of particular excited states via changes of the shape of the quantum dot. Such knowledge builds the basis to find the optimal QD geometry for possible applications and experiments using excited states.

  16. Optical properties of quantum-dot-doped liquid scintillators

    International Nuclear Information System (INIS)

    Aberle, C; Winslow, L; Li, J J; Weiss, S

    2013-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO

  17. From quantum dots to quantum circuits

    International Nuclear Information System (INIS)

    Ensslin, K.

    2008-01-01

    Full text: Quantum dots, or artificial atoms, confine charge carriers in three-dimensional islands in a semiconductor environment. Detailed understanding and exquisite control of the charge and spin state of the electrically tunable charge occupancy have been demonstrated over the years. Quantum dots with best quality for transport experiments are usually realized in n-type AlGaAs/GaAs heterostructures. Novel material systems, such as graphene, nanowires and p-type heterostructures offer unexplored parameter regimes in view of spin-orbit interactions, carrier-carrier interactions and hyperfine coupling between electron and nuclear spins, which might be relevant for future spin qubits realized in quantum dots. With more sophisticated nanotechnology it has become possible to fabricate coupled quantum systems where classical and quantum mechanical coupling and back action is experimentally investigated. A narrow constriction, or quantum point contact, in vicinity to a quantum dot has been shown to serve as a minimally invasive sensor of the charge state of the dot. If charge transport through the quantum dot is slow enough (kHz), the charge sensor allows the detection of time-resolved transport through quantum-confined structures. This has allowed us to measure extremely small currents not detectable with conventional electronics. In addition the full statistics of current fluctuations becomes experimentally accessible. This way correlations between electrons which influence the current flow can be analyzed by measuring the noise and higher moments of the distribution of current fluctuations. Mesoscopic conductors driven out of equilibrium can emit photons which may be detected by another nearby quantum system with suitably tuned energy levels. This way an on-chip microwave single photon detector has been realized. In a ring geometry containing a tunable double quantum dot it has been possible to measure the self-interference of individual electrons as they traverse

  18. Simultaneous influence of hydrostatic pressure and temperature on diamagnetic susceptibility of impurity doped quantum dots under the aegis of noise

    International Nuclear Information System (INIS)

    Saha, Surajit; Ganguly, Jayanta; Bera, Aindrila; Ghosh, Manas

    2016-01-01

    Highlights: • Diamagnetic susceptibility (DMS) of doped quantum dot is studied. • Hydrostatic pressure (HP) and temperature (T) affect DMS. • The dot is subjected to Gaussian white noise. • DMS also depends on mode of application of noise. - Abstract: We explore the diamagnetic susceptibility (DMS) of impurity doped quantum dot (QD) in presence of Gaussian white noise and under the combined influence of hydrostatic pressure (HP) and temperature (T). Presence of noise and also its mode of application discernibly affect the DMS profile. Application of HP and T invites greater delicacies in the observed DMS profiles. However, whereas the interplay between T and noise comes out to be extremely sensitive in fabricating the DMS profile, the pressure-noise interplay appears to be not that much noticeable. Under all conditions of temperature and pressure, the presence of multiplicative noise diminishes the value of DMS in comparison with that in presence of its additive analogue. The present study renders a deep insight into the remarkable role played by the interplay between noise, hydrostatic pressure and temperature in controlling the effective confinement imposed on the system which bears unquestionable relevance.

  19. Simultaneous influence of hydrostatic pressure and temperature on diamagnetic susceptibility of impurity doped quantum dots under the aegis of noise

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Surajit [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India); Ganguly, Jayanta [Department of Chemistry, Brahmankhanda Basapara High School, Basapara, Birbhum 731215, West Bengal (India); Bera, Aindrila [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.com [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2016-11-30

    Highlights: • Diamagnetic susceptibility (DMS) of doped quantum dot is studied. • Hydrostatic pressure (HP) and temperature (T) affect DMS. • The dot is subjected to Gaussian white noise. • DMS also depends on mode of application of noise. - Abstract: We explore the diamagnetic susceptibility (DMS) of impurity doped quantum dot (QD) in presence of Gaussian white noise and under the combined influence of hydrostatic pressure (HP) and temperature (T). Presence of noise and also its mode of application discernibly affect the DMS profile. Application of HP and T invites greater delicacies in the observed DMS profiles. However, whereas the interplay between T and noise comes out to be extremely sensitive in fabricating the DMS profile, the pressure-noise interplay appears to be not that much noticeable. Under all conditions of temperature and pressure, the presence of multiplicative noise diminishes the value of DMS in comparison with that in presence of its additive analogue. The present study renders a deep insight into the remarkable role played by the interplay between noise, hydrostatic pressure and temperature in controlling the effective confinement imposed on the system which bears unquestionable relevance.

  20. Combined influence of hydrostatic pressure and temperature on interband emission energy of impurity doped quantum dots in presence of noise

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Aindrila; Ghosh, Manas, E-mail: pcmg77@rediffmail.com

    2016-11-01

    We explore the profiles of interband emission energy (IEE) of impurity doped quantum dots (QDs) under the simultaneous influence of hydrostatic pressure (HP) and temperature (T) and in presence and absence of Gaussian white noise. Noise has been incorporated to the system additively and multiplicatively. In this regard, modulation of IEE by the variation of several other relevant quantities such as electric field, magnetic field, confinement potential, dopant location, dopant potential and aluminium concentration has also been investigated. Gradual alteration of HP and T affects IEE discernibly. Inclusion of noise has been found to enhance or deplete the IEE depending upon its mode of application. Moreover, under given conditions of temperature and pressure, the difference between the impurity-free ground state energy and the binding energy appears to be crucial in determining whether or not the profiles of IEE would resemble that of binding energy. The findings reveal fascinating role played by noise in tailoring the IEE of doped QD system under conspicuous presence of hydrostatic pressure and temperature. - Highlights: • Interband emission energy (IEE) of doped quantum dot is studied. • Hydrostatic pressure (HP) and temperature (T) affect IEE. • The dot is subjected to Gaussian white noise. • Noise amplifies and suppresses IEE depending on particular condition.

  1. Plato: White and Non-white Love

    Directory of Open Access Journals (Sweden)

    Amo Sulaiman

    2009-06-01

    Full Text Available Plato’s dialogues, the Symposium, and Phaedrus, provide a reasonableexplanation of love. G. Vlastos and M. Nussbaum do not share such anopinion. The former contends that Plato’s view of love is about lovingonly a person’s beauty, but not the entire person; thus, it falls short of anappropriate explanation of love. The latter holds that a theory of love should be complete, and that Plato’s one is incomplete on the grounds that it does not account for personal love. These criticisms will be re-evaluated in light of the duality of love (the white and non-white horses—in Phaedrus as well as participants’ views in the Symposium; a re-assessment will weaken the mentioned objections. This paper contends that from the Symposium and Phaedrus, one can have a fruitful understanding of being in love, being out of love, falling inlove, loving for its own sake and being erotically in love. In order to account for these related issues of love it is important to consider Plato’s works in terms of his “official” and “unofficial” views. The former is construed as the doctrine of the lover or loving for its own sake: this is associates with Diotima’s views which are repeated by Socrates. With reference to the latter, it is possible to explain what personal love or being in love, being out of love, falling in love, and being erotically in love involve. Erotic love will be interpreted as an extension of our philosophical conception of love, related to views of love that are mentioned in the Symposium other than Socrates’ report of Diotima’s conceptions. This paper is divided into two parts: the first one will show views of love in the Symposium. That is, being in love, being out of love, falling in love and loving for its own sake will be discussed. In addition, the forementioned criticisms will be re-evaluated. In the second section, we will show that Aristophanes’ speech expresses erotic love, and then Kant’s objections will be

  2. Selection of Quantum Dot Wavelengths for Biomedical Assays and Imaging

    Directory of Open Access Journals (Sweden)

    Yong Taik Lim

    2003-01-01

    Full Text Available Fluorescent semiconductor nanocrystals (quantum dots [QDs] are hypothesized to be excellent contrast agents for biomedical assays and imaging. A unique property of QDs is that their absorbance increases with increasing separation between excitation and emission wavelengths. Much of the enthusiasm for using QDs in vivo stems from this property, since photon yield should be proportional to the integral of the broadband absorption. In this study, we demonstrate that tissue scatter and absorbance can sometimes offset increasing QD absorption at bluer wavelengths, and counteract this potential advantage. By using a previously validated mathematical model, we explored the effects of tissue absorbance, tissue scatter, wavelength dependence of the scatter, water-to- hemoglobin ratio, and tissue thickness on QD performance. We conclude that when embedded in biological fluids and tissues, QD excitation wavelengths will often be quite constrained, and that excitation and emission wavelengths should be selected carefully based on the particular application. Based on our results, we produced near-infrared QDs optimized for imaging surface vasculature with white light excitation and a silicon CCD camera, and used them to image the coronary vasculature in vivo. Taken together, our data should prove useful in designing fluorescent QD contrast agents optimized for specific biomedical applications.

  3. DotFETs: MOSFETs strained by a Single SiGE dot in a Low-Temperature ELA Technology

    OpenAIRE

    Biasotto, C.

    2011-01-01

    The work presented in this thesis was performed in the context of the European Sixth Framework Program FP6 project “Disposable Dot Field Effect Transistor for High Speed Si Integrated Circuits”, referred to as the D-DotFET project. The project had the goal of realizing strain-enhanced mobility in CMOS transistors by transferring strain from a self-assembled germanium dot to the channel of a transistor fabricated above the dot. The initial idea was to dispose of the Ge dot underneath the chann...

  4. The Effect of Fucoidan from the Brown Alga Fucus evanescence on the Activity of α-N-Acetylgalactosaminidase of Human Colon Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Irina Bakunina

    2018-05-01

    Full Text Available α-N-acetylgalactosaminidase (EC 3.2.1.49 (alpha-NaGalase catalyzes the hydrolysis of N-acetamido-2-deoxy-α-d-galactoside residues from non-reducing ends of various complex carbohydrates and glycoconjugates. It is known that human cancer cells express an alpha-NaGalase, which accumulates in the blood plasma of patients. The enzyme deglycosylates the Gc protein-derived macrophage activating factor (GcMAF and inhibits macrophage activity acting as an immunosuppressor. The high specific activity 0.033 ± 0.002 μmol mg−1 min−1 of the enzyme was found in human colon carcinoma cells DLD-1. The alpha-NaGalase of DLD-1 cells was isolated and biochemical characterized. The enzyme exhibits maximum activity at pH 5.2 and temperature 55 °C. The Km is 2.15 mM, Vmax–0.021 μmol min−1 mL−1, kcat–1.55 min−1 and kcat/Km–0.72 min−1 mM−1 at 37 °C, pH 5.2. The effects of fucoidan from the brown alga Fucus evanescence on the activity of alpha-NaGalase in human colon carcinoma DLD-1 cells and on the biosynthesis of this enzyme were investigated. It was shown that fucoidan did not inhibit free alpha-NaGalase, however, it reduced the expression of the enzyme in the DLD-1 cells at IC50 73 ± 4 μg mL−1.

  5. The Effect of Fucoidan from the Brown Alga Fucus evanescence on the Activity of α-N-Acetylgalactosaminidase of Human Colon Carcinoma Cells.

    Science.gov (United States)

    Bakunina, Irina; Chadova, Oksana; Malyarenko, Olesya; Ermakova, Svetlana

    2018-05-10

    α- N -acetylgalactosaminidase (EC 3.2.1.49) (alpha-NaGalase) catalyzes the hydrolysis of N -acetamido-2-deoxy-α-d-galactoside residues from non-reducing ends of various complex carbohydrates and glycoconjugates. It is known that human cancer cells express an alpha-NaGalase, which accumulates in the blood plasma of patients. The enzyme deglycosylates the Gc protein-derived macrophage activating factor (GcMAF) and inhibits macrophage activity acting as an immunosuppressor. The high specific activity 0.033 ± 0.002 μmol mg −1 min −1 of the enzyme was found in human colon carcinoma cells DLD-1. The alpha-NaGalase of DLD-1 cells was isolated and biochemical characterized. The enzyme exhibits maximum activity at pH 5.2 and temperature 55 °C. The K m is 2.15 mM, V max ⁻0.021 μmol min −1 mL −1 , k cat ⁻1.55 min −1 and k cat / K m ⁻0.72 min −1 mM −1 at 37 °C, pH 5.2. The effects of fucoidan from the brown alga Fucus evanescence on the activity of alpha-NaGalase in human colon carcinoma DLD-1 cells and on the biosynthesis of this enzyme were investigated. It was shown that fucoidan did not inhibit free alpha-NaGalase, however, it reduced the expression of the enzyme in the DLD-1 cells at IC 50 73 ± 4 μg mL −1 .

  6. Asteroseismology of White Dwarf Stars

    Science.gov (United States)

    Hansen, Carl J.

    1997-01-01

    The primary purpose of this investigation has been to study various aspects of multimode pulsations in variable white dwarfs. In particular, nonlinear interactions among pulsation modes in white dwarfs (and, to some extent, in other variable stars), analysis of recent observations where such interactions are important, and preliminary work on the effects of crystallization in cool white dwarfs are reported.

  7. Cerebral white matter hypoplasia

    International Nuclear Information System (INIS)

    Dietrich, R.B.; Shields, W.D.; Sankar, R.

    1990-01-01

    This paper demonstrates the MR imaging findings in children with cerebral white matter hypoplasia (CWMH). The MR studies of four children, aged 3-7 y (mean age, 2.3 y) with a diagnosis of CWMH were reviewed. In all cases multiplanar T1-weighted and T2-weighted spin-echo images were obtained. All children had similar histories of severe developmental delay and nonprogressive neurologic deficits despite normal gestational and birth histories. In two cases there was a history of maternal cocaine abuse. Autopsy correlation was available in one child. The MR images of all four children demonstrated diffuse lack of white matter and enlarged ventricles but normal-appearing gray matter. The corpus callosum, although completely formed, was severely thinned. There was no evidence of gliosis or porencephaly, and the distribution of myelin deposition was normal for age in all cases. Autopsy finding in one child correlated exactly with the MR finding

  8. White noise on bialgebras

    CERN Document Server

    Schürmann, Michael

    1993-01-01

    Stochastic processes with independent increments on a group are generalized to the concept of "white noise" on a Hopf algebra or bialgebra. The main purpose of the book is the characterization of these processes as solutions of quantum stochastic differential equations in the sense of R.L. Hudsonand K.R. Parthasarathy. The notes are a contribution to quantum probability but they are also related to classical probability, quantum groups, and operator algebras. The Az ma martingales appear as examples of white noise on a Hopf algebra which is a deformation of the Heisenberg group. The book will be of interest to probabilists and quantum probabilists. Specialists in algebraic structures who are curious about the role of their concepts in probablility theory as well as quantum theory may find the book interesting. The reader should havesome knowledge of functional analysis, operator algebras, and probability theory.

  9. Defence White Paper 2013

    Science.gov (United States)

    2013-01-01

    nurtured, particularly in Australia’s highly competitive labour market. The Government recognises that Defence’s approach to its people must be... satisfaction , increase attraction and retention, improve cost-effectiveness and support the contemporary Total Force employment model. Defence White...improve job satisfaction and thereby increase attraction and retention in areas of critical skill. Recruiting 10.13 To ensure that we have the high

  10. White in architecture

    OpenAIRE

    Hašič, Sabina

    2014-01-01

    Throughout life, human beings are continuously in contact with colours and shapes. Some people are well aware of and understand their influence, while others are not aware or do not pay attention. Our feelings are often associated with certain colours. We tend to paint our living environment in mood-enhancing shades and cover ourselves with our favourite colours and materials. The colour that attracts my emotions is white, therefore I set out to dedicate my research to its nature and to find ...

  11. Decoding white coat hypertension

    Science.gov (United States)

    Bloomfield, Dennis A; Park, Alex

    2017-01-01

    There is arguably no less understood or more intriguing problem in hypertension that the “white coat” condition, the standard concept of which is significantly blood pressure reading obtained by medical personnel of authoritative standing than that obtained by more junior and less authoritative personnel and by the patients themselves. Using hospital-initiated ambulatory blood pressure monitoring, the while effect manifests as initial and ending pressure elevations, and, in treated patients, a low daytime profile. The effect is essentially systolic. Pure diastolic white coat hypertension appears to be exceedingly rare. On the basis of the studies, we believe that the white coat phenomenon is a common, periodic, neuro-endocrine reflex conditioned by anticipation of having the blood pressure taken and the fear of what this measurement may indicate concerning future illness. It does not change with time, or with prolonged association with the physician, particularly with advancing years, it may be superimposed upon essential hypertension, and in patients receiving hypertensive medication, blunting of the nighttime dip, which occurs in about half the patients, may be a compensatory mechanisms, rather than an indication of cardiovascular risk. Rather than the blunted dip, the morning surge or the widened pulse pressure, cardiovascular risk appears to be related to elevation of the average night time pressure. PMID:28352632

  12. White dwarf planets

    Directory of Open Access Journals (Sweden)

    Bonsor Amy

    2013-04-01

    Full Text Available The recognition that planets may survive the late stages of stellar evolution, and the prospects for finding them around White Dwarfs, are growing. We discuss two aspects governing planetary survival through stellar evolution to the White Dwarf stage. First we discuss the case of a single planet, and its survival under the effects of stellar mass loss, radius expansion, and tidal orbital decay as the star evolves along the Asymptotic Giant Branch. We show that, for stars initially of 1 − 5 M⊙, any planets within about 1 − 5 AU will be engulfed, this distance depending on the stellar and planet masses and the planet's eccentricity. Planets engulfed by the star's envelope are unlikely to survive. Hence, planets surviving the Asymptotic Giant Branch phase will probably be found beyond ∼ 2 AU for a 1  M⊙ progenitor and ∼ 10 AU for a 5 M⊙ progenitor. We then discuss the evolution of two-planet systems around evolving stars. As stars lose mass, planet–planet interactions become stronger, and many systems stable on the Main Sequence become destabilised following evolution of the primary. The outcome of such instabilities is typically the ejection of one planet, with the survivor being left on an eccentric orbit. These eccentric planets could in turn be responsible for feeding planetesimals into the neighbourhood of White Dwarfs, causing observed pollution and circumstellar discs.

  13. Hubble's View of Little Blue Dots

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    The recent discovery of a new type of tiny, star-forming galaxy is the latest in a zoo of detections shedding light on our early universe. What can we learn from the unique little blue dots found in archival Hubble data?Peas, Berries, and DotsGreen pea galaxies identified by citizen scientists with Galaxy Zoo. [Richard Nowell Carolin Cardamone]As telescope capabilities improve and we develop increasingly deeper large-scale surveys of our universe, we continue to learn more about small, faraway galaxies. In recent years, increasing sensitivity first enabled the detection of green peas luminous, compact, low-mass (10 billion solar masses; compare this to the Milky Ways 1 trillion solar masses!) galaxies with high rates of star formation.Not long thereafter, we discovered galaxies that form stars similarly rapidly, but are even smaller only 330 million solar masses, spanning less than 3,000 light-years in size. These tiny powerhouses were termed blueberries for their distinctive color.Now, scientists Debra and Bruce Elmegreen (of Vassar College and IBM Research Division, respectively) report the discovery of galaxies that have even higher star formation rates and even lower masses: little blue dots.Exploring Tiny Star FactoriesThe Elmegreens discovered these unique galaxies by exploring archival Hubble data. The Hubble Frontier Fields data consist of deep images of six distant galaxy clusters and the parallel fields next to them. It was in the archival data for two Frontier Field Parallels, those for clusters Abell 2744 and MAS J0416.1-2403, that the authors noticed several galaxies that stand out as tiny, bright, blue objects that are nearly point sources.Top: a few examples of the little blue dots recently identified in two Hubble Frontier Field Parallels. Bottom: stacked images for three different groups of little blue dots. [Elmegreen Elmegreen 2017]The authors performed a search through the two Frontier Field Parallels, discovering a total of 55 little blue dots

  14. Quantum dot-polymer conjugates for stable luminescent displays.

    Science.gov (United States)

    Ghimire, Sushant; Sivadas, Anjaly; Yuyama, Ken-Ichi; Takano, Yuta; Francis, Raju; Biju, Vasudevanpillai

    2018-05-23

    The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix. Here, quantum dots in an aqueous solution are conjugated to the copolymer by a phase transfer reaction. With the stable conjugation of quantum dots to the copolymer, we prevent undesired phase separation between the two and aggregation of quantum dots. Furthermore, the conjugate allows us to prepare transparent thin films in which quantum dots are uniformly distributed at high densities. The CS-g-PS copolymer helps us in not only preserving the photoluminescence properties of quantum dots in the film but also rendering excellent photostability to quantum dots at the ensemble and single particle levels, making the conjugate a promising material for photoluminescence-based devices.

  15. Randomized study of initial treatment with radiationter dot MCNU or radiationter dot MCNUter dot interferon-. beta. for malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Kiya, Katsuzo; Uozumi, Tohru; Kurisu, Kaoru (Hiroshima Univ. (Japan). School of Medicine) (and others)

    1990-02-01

    The efficacy of radiation{center dot}MCNU (MR group) or radiation{center dot}MCNU{center dot}interferon-{beta} (IMR group) for malignant glioma was studied by a randomized trial at numerous medical facilities. MR group was irradiated with 50{approx}60 Gy and intravenously injected with 2 mg/kg of MCNU on the initial day of irradiation and 6 weeks later. IMR group was also given intravenous administration of interferon-{beta} at the dose of 2x10{sup 6}IU/m{sup 2} for 5 serial-days every eight weeks. There was no difference in background between the two groups. The response rate in MR group and IMR group was 44.4% (4/9) and 30.0% (3/10), respectively, showing no significant difference. The resected tumor volume before the start of these regimens seemed to correlate the response to the treatment in both groups. The major toxicity was myelosuppression, especially using MCNU with interferon-{beta}. These results indicated that this combined therapy is effective for malignant glioma, and should be executed further trials and follow up study. (author).

  16. Stark Broadening and White Dwarfs

    Directory of Open Access Journals (Sweden)

    Dimitrijević Milan S.

    2011-12-01

    Full Text Available White dwarf and pre-white dwarfs are the best types of stars for the application of Stark broadening research results in astrophysics, since in the atmospheres of these stars physical conditions are very favorable for this line broadening mechanism - in hot hydrogen-deficient white dwarfs and pre-white dwarfs Teff = 75 000–180 000 K and log g = 5.5–8 [cgs]. Even for much cooler DA and DB white dwarfs with the typical effective temperatures 10 000-20 000 K, Stark broadening is usually the dominant broadening mechanism. In this review, Stark broadening in white dwarf spectra is considered, and the attention is drawn to the STARK-B database (http://stark-b.obspm.fr/, containing the parameters needed for analysis and synthesis of white dwarf spectra, as well as for the collective efforts to develop the Virtual Atomic and Molecular Data Center.

  17. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology.

    Science.gov (United States)

    Zhang, Feng; Zhong, Haizheng; Chen, Cheng; Wu, Xian-gang; Hu, Xiangmin; Huang, Hailong; Han, Junbo; Zou, Bingsuo; Dong, Yuping

    2015-04-28

    Organometal halide perovskites are inexpensive materials with desirable characteristics of color-tunable and narrow-band emissions for lighting and display technology, but they suffer from low photoluminescence quantum yields at low excitation fluencies. Here we developed a ligand-assisted reprecipitation strategy to fabricate brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots with absolute quantum yield up to 70% at room temperature and low excitation fluencies. To illustrate the photoluminescence enhancements in these quantum dots, we conducted comprehensive composition and surface characterizations and determined the time- and temperature-dependent photoluminescence spectra. Comparisons between small-sized CH3NH3PbBr3 quantum dots (average diameter 3.3 nm) and corresponding micrometer-sized bulk particles (2-8 μm) suggest that the intense increased photoluminescence quantum yield originates from the increase of exciton binding energy due to size reduction as well as proper chemical passivations of the Br-rich surface. We further demonstrated wide-color gamut white-light-emitting diodes using green emissive CH3NH3PbBr3 quantum dots and red emissive K2SiF6:Mn(4+) as color converters, providing enhanced color quality for display technology. Moreover, colloidal CH3NH3PbX3 quantum dots are expected to exhibit interesting nanoscale excitonic properties and also have other potential applications in lasers, electroluminescence devices, and optical sensors.

  18. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control

    KAUST Repository

    Sun, Liangfeng; Choi, Joshua J.; Stachnik, David; Bartnik, Adam C.; Hyun, Byung-Ryool; Malliaras, George G.; Hanrath, Tobias; Wise, Frank W.

    2012-01-01

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr '1 m '2) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH 2 groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.© 2012 Macmillan Publishers Limited.

  19. Transport properties of a Kondo dot with a larger side-coupled noninteracting quantum dot

    International Nuclear Information System (INIS)

    Liu, Y S; Fan, X H; Xia, Y J; Yang, X F

    2008-01-01

    We investigate theoretically linear and nonlinear quantum transport through a smaller quantum dot in a Kondo regime connected to two leads in the presence of a larger side-coupled noninteracting quantum dot, without tunneling coupling to the leads. To do this we employ the slave boson mean field theory with the help of the Keldysh Green's function at zero temperature. The numerical results show that the Kondo conductance peak may develop multiple resonance peaks and multiple zero points in the conductance spectrum owing to constructive and destructive quantum interference effects when the energy levels of the large side-coupled noninteracting dot are located in the vicinity of the Fermi level in the leads. As the coupling strength between two quantum dots increases, the tunneling current through the quantum device as a function of gate voltage applied across the two leads is suppressed. The spin-dependent transport properties of two parallel coupled quantum dots connected to two ferromagnetic leads are also investigated. The numerical results show that, for the parallel configuration, the spin current or linear spin differential conductance are enhanced when the polarization strength in the two leads is increased

  20. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.

    Science.gov (United States)

    Sun, Liangfeng; Choi, Joshua J; Stachnik, David; Bartnik, Adam C; Hyun, Byung-Ryool; Malliaras, George G; Hanrath, Tobias; Wise, Frank W

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr(-1) m(-2)) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH(2) groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.

  1. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control

    KAUST Repository

    Sun, Liangfeng

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr \\'1 m \\'2) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH 2 groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.© 2012 Macmillan Publishers Limited.

  2. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... with numerical simulations. Such a high coupling eciency implies that the system can be considered an articial 1D-atom, and we theoretically show that this system can generate strong photon-photon interaction, which is an essential functionality for deterministic optical quantum information processing. We...

  3. Conductance Peaks in Open Quantum Dots

    International Nuclear Information System (INIS)

    Ramos, J. G. G. S.; Bazeia, D.; Hussein, M. S.; Lewenkopf, C. H.

    2011-01-01

    We present a simple measure of the conductance fluctuations in open ballistic chaotic quantum dots, extending the number of maxima method originally proposed for the statistical analysis of compound nuclear reactions. The average number of extreme points (maxima and minima) in the dimensionless conductance T as a function of an arbitrary external parameter Z is directly related to the autocorrelation function of T(Z). The parameter Z can be associated with an applied gate voltage causing shape deformation in quantum dot, an external magnetic field, the Fermi energy, etc. The average density of maxima is found to be Z >=α Z /Z c , where α Z is a universal constant and Z c is the conductance autocorrelation length, which is system specific. The analysis of Z > does not require large statistic samples, providing a quite amenable way to access information about parametric correlations, such as Z c .

  4. Efficient Luminescence from Perovskite Quantum Dot Solids

    KAUST Repository

    Kim, Younghoon; Yassitepe, Emre; Voznyy, Oleksandr; Comin, Riccardo; Walters, Grant; Gong, Xiwen; Kanjanaboos, Pongsakorn; Nogueira, Ana F.; Sargent, Edward H.

    2015-01-01

    © 2015 American Chemical Society. Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  5. Trajectory phases of a quantum dot model

    International Nuclear Information System (INIS)

    Genway, Sam; Hickey, James M; Garrahan, Juan P; Armour, Andrew D

    2014-01-01

    We present a thermodynamic formalism to study the trajectories of charge transport through a quantum dot coupled to two leads in the resonant-level model. We show that a close analogue of equilibrium phase transitions exists for the statistics of transferred charge; by tuning an appropriate ‘counting field’, crossovers to different trajectory phases are possible. Our description reveals a mapping between the statistics of a given device and current measurements over a range of devices with different dot–lead coupling strengths. Furthermore insight into features of the trajectory phases are found by studying the occupation of the dot conditioned on the transported charge between the leads; this is calculated from first principles using a trajectory biased two-point projective measurement scheme. (paper)

  6. Quantum features of semiconductor quantum dots

    International Nuclear Information System (INIS)

    Lozada-Cassou, M.; Dong Shihai; Yu Jiang

    2004-01-01

    The exact solutions of the two-dimensional Schrodinger equation with the position-dependent mass for the square well potential in the semiconductor quantum dots system are obtained. The eigenvalues, which are closely related to the position-dependent masses μ1 and μ2, the potential well depth V0 and the radius of the quantum dots r0, can be calculated from two boundary conditions. We generalize this quantum system to three-dimensional case. The special cases for the angular momentum quantum number l=0, 1, 2 are studied in some detail. We find that the energy levels are proportional to the parameters μ2, V0 and r0 for l=0. The relations between them for l=1, 2 become very complicated. The scattering states of this quantum system are mentioned briefly

  7. Dynamic localization in quantum dots: Analytical theory

    International Nuclear Information System (INIS)

    Basko, D.M.; Skvortsov, M.A.; Kravtsov, V.E.

    2003-02-01

    We analyze the response of a complex quantum-mechanical system (e.g., a quantum dot) to a time-dependent perturbation φ(t). Assuming the dot to be described by random matrix theory for GOE we find the quantum correction to the energy absorption rate as a function of the dephasing time t φ . If φ(t) is a sum of d harmonics with incommensurate frequencies, the correction behaves similarly to that to the conductivity δσ d (t φ ) in the d-dimensional Anderson model of the orthogonal symmetry class. For a generic periodic perturbation the leading quantum correction is absent as in the systems of the unitary symmetry class, unless φ(-t+τ)=φ(t+τ) for some τ, which falls into the quasi-1d orthogonal universality class. (author)

  8. Theory of Charged Quantum Dot Molecules

    Science.gov (United States)

    Ponomarev, I. V.; Scheibner, M.; Stinaff, E. A.; Bracker, A. S.; Doty, M. F.; Ware, M. E.; Gammon, D.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    Recent optical spectroscopy of excitonic molecules in coupled quantum dots (CQDs) tuned by electric field reveal a richer diversity in spectral line patterns than in their single quantum dot counterparts. We developed a theoretical model that allows us to classify energies and intensities of various PL transitions. In this approach the electric field induced resonance tunneling of the electron and hole states occurs at different biases due to the inherent asymmetry of CQDs. The truncated many-body basis configurations for each molecule are constructed from antisymmetrized products of single-particle states, where the electron occupies only one ground state level in single QD and the hole can occupy two lowest levels of CQD system. The Coulomb interaction between particles is treated with perturbation theory. As a result the observed PL spectral lines can be described with a small number of parameters. The theoretical predictions account well for recent experiments.

  9. Strain-tunable quantum dot devices

    International Nuclear Information System (INIS)

    Rastelli, A.; Trotta, R.; Zallo, E.; Atkinson, P.; Magerl, E.; Ding, F.; Plumhof, J.D.; Kumar, S.; Doerr, K.; Schmidt, O.G.

    2011-01-01

    We introduce a new class of quantum dot-based devices, in which the semiconductor structures are integrated on top of piezoelectric actuators. This combination allows on one hand to study in detail the effects produced by variable strains (up to about 0.2%) on the excitonic emission of single quantum dots and on the other to manipulate their electronic- and optical properties to achieve specific requirements. In fact, by combining strain with electric fields we are able to obtain (i) independent control of emission energy and charge-state of a QD, (II) wavelength-tunable single-QD light-emitting diodes and (III) frequency-stabilized sources of single photons at predefined wavelengths. Possible future extensions and applications of this technology will be discussed.

  10. Efficient Luminescence from Perovskite Quantum Dot Solids

    KAUST Repository

    Kim, Younghoon

    2015-11-18

    © 2015 American Chemical Society. Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals\\' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  11. Quantum Dot Devices for Optical Signal Processing

    DEFF Research Database (Denmark)

    Chen, Yaohui

    and the continuum. Additional to the conventional time-domain modeling scheme, a small-signal perturbation analysis has been used to assist the investigation of harmonic modulation properties. The static properties of quantum dot devices, for example high saturation power, have been quantitatively analyzed....... Additional to the static linear amplication properties, we focus on exploring the gain dynamics on the time scale ranging from sub-picosecond to nanosecond. In terms of optical signals that have been investigated, one is the simple sinusoidally modulated optical carrier with a typical modulation frequency....... We also investigate the gain dynamics in the presence of pulsed signals, in particular the steady gain response to a periodic pulse trains with various time periods. Additional to the analysis of high speed patterning free amplication up to 150-200 Gb/s in quantum dot semiconductor optical ampliers...

  12. Magnetic control of dipolaritons in quantum dots

    International Nuclear Information System (INIS)

    Rojas-Arias, J S; Vinck-Posada, H; Rodríguez, B A

    2016-01-01

    Dipolaritons are quasiparticles that arise in coupled quantum wells embedded in a microcavity, they are a superposition of a photon, a direct exciton and an indirect exciton. We propose the existence of dipolaritons in a system of two coupled quantum dots inside a microcavity in direct analogy with the quantum well case and find that, despite some similarities, dipolaritons in quantum dots have different properties and can lead to true dark polariton states. We use a finite system theory to study the effects of the magnetic field on the system, including the emission, and find that it can be used as a control parameter of the properties of excitons and dipolaritons, and the overall magnetic behaviour of the structure. (paper)

  13. The Silicon:Colloidal Quantum Dot Heterojunction

    KAUST Repository

    Masala, Silvia; Adinolfi, Valerio; Sun, Jon Paul; Del Gobbo, Silvano; Voznyy, Oleksandr; Kramer, Illan J.; Hill, Ian G.; Sargent, Edward H.

    2015-01-01

    A heterojunction between crystalline silicon and colloidal quantum dots (CQDs) is realized. A special interface modification is developed to overcome an inherent energetic band mismatch between the two semiconductors, and realize the efficient collection of infrared photocarriers generated in the CQD film. This junction is used to produce a sensitive near infrared photodetector. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Biomedical application of carbon quantum dots

    International Nuclear Information System (INIS)

    Markovic, Z.

    2017-01-01

    In this presentation we will summarize and discuss the possibilities of application of carbon quantum dots (CQD) as agents for PDT. Considering their biocompatibility, photostability and optical properties, CQD seem to be good candidates as a photosensitizer. This lecture critically compares and discusses current state-of the-art use of CQD in PDT. We will analyze structural, morphological and optical properties of these nanomaterials as well as the mechanisms responsible for their photosensition and ROS production. (authors)

  15. Quantum Dots for Molecular Diagnostics of Tumors

    OpenAIRE

    Zdobnova, T.A.; Lebedenko, E.N.; Deyev, S.М.

    2011-01-01

    Semiconductor quantum dots (QDs) are a new class of fluorophores with unique physical and chemical properties, which allow to appreciably expand the possibilities for the current methods of fluorescent imaging and optical diagnostics. Here we discuss the prospects of QD application for molecular diagnostics of tumors ranging from cancer-specific marker detection on microplates to non-invasive tumor imaging in vivo. We also point out the essential problems that require resolution in order to c...

  16. Silicon based quantum dot hybrid qubits

    Science.gov (United States)

    Kim, Dohun

    2015-03-01

    The charge and spin degrees of freedom of an electron constitute natural bases for constructing quantum two level systems, or qubits, in semiconductor quantum dots. The quantum dot charge qubit offers a simple architecture and high-speed operation, but generally suffers from fast dephasing due to strong coupling of the environment to the electron's charge. On the other hand, quantum dot spin qubits have demonstrated long coherence times, but their manipulation is often slower than desired for important future applications. This talk will present experimental progress of a `hybrid' qubit, formed by three electrons in a Si/SiGe double quantum dot, which combines desirable characteristics (speed and coherence) in the past found separately in qubits based on either charge or spin degrees of freedom. Using resonant microwaves, we first discuss qubit operations near the `sweet spot' for charge qubit operation. Along with fast (>GHz) manipulation rates for any rotation axis on the Bloch sphere, we implement two independent tomographic characterization schemes in the charge qubit regime: traditional quantum process tomography (QPT) and gate set tomography (GST). We also present resonant qubit operations of the hybrid qubit performed on the same device, DC pulsed gate operations of which were recently demonstrated. We demonstrate three-axis control and the implementation of dynamic decoupling pulse sequences. Performing QPT on the hybrid qubit, we show that AC gating yields π rotation process fidelities higher than 93% for X-axis and 96% for Z-axis rotations, which demonstrates efficient quantum control of semiconductor qubits using resonant microwaves. We discuss a path forward for achieving fidelities better than the threshold for quantum error correction using surface codes. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), DOE (DE-FG02-03ER46028), and by the Laboratory Directed Research and Development program at Sandia National Laboratories

  17. The Silicon:Colloidal Quantum Dot Heterojunction

    KAUST Repository

    Masala, Silvia

    2015-10-13

    A heterojunction between crystalline silicon and colloidal quantum dots (CQDs) is realized. A special interface modification is developed to overcome an inherent energetic band mismatch between the two semiconductors, and realize the efficient collection of infrared photocarriers generated in the CQD film. This junction is used to produce a sensitive near infrared photodetector. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Research Progress of Photoanodes for Quantum Dot Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    LI Zhi-min

    2017-08-01

    Full Text Available This paper presents the development status and tendency of quantum dot sensitized solar cells. Photoanode research progress and its related technologies are analyzed in detail from the three ways of semiconductor thin films, quantum dot co-sensitization and quantum dot doping, deriving from the approach that the conversion efficiency can be improved by photoanode modification for quantum dot sensitized solar cells. According to the key factors which restrict the cell efficiency, the promising future development of quantum dot sensitized solar cells is proposed,for example,optimizing further the compositions and structures of semiconductor thin films for the photoanodes, exploring new quantum dots with broadband absorption and developing high efficient techniques of interface modification.

  20. Quantum Dots and Their Multimodal Applications: A Review

    Directory of Open Access Journals (Sweden)

    Paul H. Holloway

    2010-03-01

    Full Text Available Semiconducting quantum dots, whose particle sizes are in the nanometer range, have very unusual properties. The quantum dots have band gaps that depend in a complicated fashion upon a number of factors, described in the article. Processing-structure-properties-performance relationships are reviewed for compound semiconducting quantum dots. Various methods for synthesizing these quantum dots are discussed, as well as their resulting properties. Quantum states and confinement of their excitons may shift their optical absorption and emission energies. Such effects are important for tuning their luminescence stimulated by photons (photoluminescence or electric field (electroluminescence. In this article, decoupling of quantum effects on excitation and emission are described, along with the use of quantum dots as sensitizers in phosphors. In addition, we reviewed the multimodal applications of quantum dots, including in electroluminescence device, solar cell and biological imaging.

  1. Central dot sign in entities other than Caroli disease

    International Nuclear Information System (INIS)

    Ahmadi, T.; Itai, Yuji; Minami, Manabu.

    1997-01-01

    The purpose of this study was to describe central dot sign (tiny dots with strong contrast enhancement of the portal vein within dilated hepatic bile ducts on computed tomography) in entities other than Caroli disease, especially in peribiliary cysts with or without autosomal-dominant polycystic kidney disease. Computed tomography in 74 cases of peribiliary cysts and 134 cases of other liver diseases and states possibly showing central dot sign were retrospectively reviewed to examine the central dot sign. In three cases of peribiliary cysts, some part of the liver showed strongly enhanced portal radicles surrounded completely or partially by low-attenuation, enlarged peribiliary cysts, presenting ''central dot sign'' on contrast-enhanced computed tomography. We suggest that in addition to Caroli disease, some other entities and diseases of the liver may demonstrate central dot sign and this sign should not be considered a specific finding of Caroli disease. (author)

  2. Central dot sign in entities other than Caroli disease

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, T.; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Minami, Manabu

    1997-11-01

    The purpose of this study was to describe central dot sign (tiny dots with strong contrast enhancement of the portal vein within dilated hepatic bile ducts on computed tomography) in entities other than Caroli disease, especially in peribiliary cysts with or without autosomal-dominant polycystic kidney disease. Computed tomography in 74 cases of peribiliary cysts and 134 cases of other liver diseases and states possibly showing central dot sign were retrospectively reviewed to examine the central dot sign. In three cases of peribiliary cysts, some part of the liver showed strongly enhanced portal radicles surrounded completely or partially by low-attenuation, enlarged peribiliary cysts, presenting ``central dot sign`` on contrast-enhanced computed tomography. We suggest that in addition to Caroli disease, some other entities and diseases of the liver may demonstrate central dot sign and this sign should not be considered a specific finding of Caroli disease. (author)

  3. Templated self-assembly of SiGe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Dais, Christian

    2009-08-19

    This PhD thesis reports on the fabrication and characterization of exact aligned SiGe quantum dot structures. In general, SiGe quantum dots which nucleate via the Stranski-Krastanov growth mode exhibit broad size dispersion and nucleate randomly on the surface. However, to tap the full potential of SiGe quantum dots it is necessary to control the positioning and size of the dots on a nanometer length, e.g. for electronically addressing of individual dots. This can be realized by so-called templated self-assembly, which combines top-down lithography with bottom-up selfassembly. In this process the lithographically defined pits serve as pre-defined nucleation points for the epitaxially grown quantum dots. In this thesis, extreme ultraviolet interference lithography at a wavelength of e=13.4 nm is employed for prepatterning of the Si substrates. This technique allows the precise and fast fabrication of high-resolution templates with a high degree of reproducibility. The subsequent epitaxial deposition is either performed by molecular beam epitaxy or low-pressure chemical vapour deposition. It is shown that the dot nucleation on pre-patterned substrates depends strongly on the lithography parameters, e.g. size and periodicity of the pits, as well as on the epitaxy parameters, e.g. growth temperature or material coverage. The interrelations are carefully analyzed by means of scanning force microscopy, transmission electron microscopy and X-ray diffraction measurements. Provided that correct template and overgrowth parameters are chosen, perfectly aligned and uniform SiGe quantum dot arrays of different period, size as well as symmetry are created. In particular, the quantum dot arrays with the so far smallest period (35 nm) and smallest size dispersion are fabricated in this thesis. Furthermore, the strain fields of the underlying quantum dots allow the fabrication of vertically aligned quantum dot stacks. Combining lateral and vertical dot alignment results in three

  4. Biocompatible yogurt carbon dots: evaluation of utilization for medical applications

    Science.gov (United States)

    Dinç, Saliha; Kara, Meryem; Demirel Kars, Meltem; Aykül, Fatmanur; Çiçekci, Hacer; Akkuş, Mehmet

    2017-09-01

    In this study, carbon dots (CDs) were produced from yogurt, a fermented milk product, via microwave-assisted process (800 W) in 30 min without using any additional chemical agents. Yogurt CDs had outstanding nitrogen and oxygen ratios. These dots were monodisperse and about 2 nm sized. The toxicological assessments of yogurt carbon dots in human cancer cells and normal epithelial cells and their fluorescence imaging in living cell system were carried out. Yogurt carbon dots had intense fluorescent signal under confocal microscopy and good fluorescence stability in living cell system. The resulting yogurt carbon dots exhibited high biocompatibility up to 7.1 mg/mL CD concentration which may find utilization in medical applications such as cellular tracking, imaging and drug delivery. Yogurt carbon dots have potential to be good diagnostic agents to visualize cancer cells which may be developed as a therapeutic carrier.

  5. The quantum Hall effect in quantum dot systems

    International Nuclear Information System (INIS)

    Beltukov, Y M; Greshnov, A A

    2014-01-01

    It is proposed to use quantum dots in order to increase the temperatures suitable for observation of the integer quantum Hall effect. A simple estimation using Fock-Darwin spectrum of a quantum dot shows that good part of carriers localized in quantum dots generate the intervals of plateaus robust against elevated temperatures. Numerical calculations employing local trigonometric basis and highly efficient kernel polynomial method adopted for computing the Hall conductivity reveal that quantum dots may enhance peak temperature for the effect by an order of magnitude, possibly above 77 K. Requirements to potentials, quality and arrangement of the quantum dots essential for practical realization of such enhancement are indicated. Comparison of our theoretical results with the quantum Hall measurements in InAs quantum dot systems from two experimental groups is also given

  6. Transient Dynamics of Double Quantum Dots Coupled to Two Reservoirs

    Science.gov (United States)

    Fukadai, Takahisa; Sasamoto, Tomohiro

    2018-05-01

    We study the time-dependent properties of double quantum dots coupled to two reservoirs using the nonequilibrium Green function method. For an arbitrary time-dependent bias, we derive an expression for the time-dependent electron density of a dot and several currents, including the current between the dots in the wide-band-limit approximation. For the special case of a constant bias, we calculate the electron density and the currents numerically. As a result, we find that these quantities oscillate and that the number of crests in a single period of the current from a dot changes with the bias voltage. We also obtain an analytical expression for the relaxation time, which expresses how fast the system converges to its steady state. From the expression, we find that the relaxation time becomes constant when the coupling strength between the dots is sufficiently large in comparison with the difference of coupling strength between the dots and the reservoirs.

  7. Using of Quantum Dots in Biology and Medicine.

    Science.gov (United States)

    Pleskova, Svetlana; Mikheeva, Elza; Gornostaeva, Ekaterina

    2018-01-01

    Quantum dots are nanoparticles, which due to their unique physical and chemical (first of all optical) properties, are promising in biology and medicine. There are many ways for quantum dots synthesis, both in the form of nanoislands self-forming on the surfaces, which can be used as single-photon emitters in electronics for storing information, and in the form of colloidal quantum dots for diagnostic and therapeutic purposes in living systems. The paper describes the main methods of quantum dots synthesis and summarizes medical and biological ways of their use. The main emphasis is laid on the ways of quantum dots surface modification. Influence of the size and form of nanoparticles, charge on the surfaces of quantum dots, and cover type on the efficiency of internalization by cells and cell compartments is shown. The main mechanisms of penetration are considered.

  8. Principles of conjugating quantum dots to proteins via carbodiimide chemistry

    International Nuclear Information System (INIS)

    Song Fayi; Chan, Warren C W

    2011-01-01

    The covalent coupling of nanomaterials to bio-recognition molecules is a critical intermediate step in using nanomaterials for biology and medicine. Here we investigate the carbodiimide-mediated conjugation of fluorescent quantum dots to different proteins (e.g., immunoglobulin G, bovine serum albumin, and horseradish peroxidase). To enable these studies, we developed a simple method to isolate quantum dot bioconjugates from unconjugated quantum dots. The results show that the reactant concentrations and protein type will impact the overall number of proteins conjugated onto the surfaces of the quantum dots, homogeneity of the protein–quantum dot conjugate population, quantum efficiency, binding avidity, and enzymatic kinetics. We propose general principles that should be followed for the successful coupling of proteins to quantum dots.

  9. Theory of the Quantum Dot Hybrid Qubit

    Science.gov (United States)

    Friesen, Mark

    2015-03-01

    The quantum dot hybrid qubit, formed from three electrons in two quantum dots, combines the desirable features of charge qubits (fast manipulation) and spin qubits (long coherence times). The hybridized spin and charge states yield a unique energy spectrum with several useful properties, including two different operating regimes that are relatively immune to charge noise due to the presence of optimal working points or ``sweet spots.'' In this talk, I will describe dc and ac-driven gate operations of the quantum dot hybrid qubit. I will analyze improvements in the dephasing that are enabled by the sweet spots, and I will discuss the outlook for quantum hybrid qubits in terms of scalability. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), the USDOD, and the Intelligence Community Postdoctoral Research Fellowship Program. The views and conclusions contained in this presentation are those of the authors and should not be interpreted as representing the official policies or endorsements, either expressed or implied, of the US government.

  10. Quantum Dots for Solar Cell Application

    Science.gov (United States)

    Poudyal, Uma

    Solar energy has been anticipated as the most important and reliable source of renewable energy to address the ever-increasing energy demand. To harvest solar energy efficiently, diverse kinds of solar cells have been studied. Among these, quantum dot sensitized solar cells have been an interesting group of solar cells mainly due to tunable, size-dependent electronic and optical properties of quantum dots. Moreover, doping these quantum dots with transition metal elements such as Mn opens avenue for improved performance of solar cells as well as for spin based technologies. In this dissertation, Mn-doped CdSe QDs (Mn-CdSe) have been synthesized by Successive Ionic Layer Adsorption and Reaction (SILAR) method. They are used in solar cells to study the effect of Mn doping in the performance of solar cells. Incident photon to current-conversion efficiency (IPCE) is used to record the effect of Mn-doping. Intensity modulated photovoltage and photocurrent spectroscopy (IMVS/PS) has been used to study the carrier dynamics in these solar cells. Additionally, the magnetic properties of Mn-CdSe QDs is studied and its possible origin is discussed. Moreover, CdS/CdSe QDs have been used to study the effect of liquid, gel and solid electrolyte in the performance and stability of the solar cells. Using IPCE spectra, the time decay measurements are presented and the possible reactions between the QD and the electrolytes are explained.

  11. ESR investigation of the reactions of glutathione, cysteine and penicillamine thiyl radicals: competitive formation of RSOcenter dot, Rcenter dot, RSSRcenter dot-. , and RSScenter dot

    Energy Technology Data Exchange (ETDEWEB)

    Becker, David; Swarts, Steven; Champagne, Mark; Sevilla, M D

    1988-05-01

    The reactions of cysteine, glutathione and penicillamine thiyl radicals with oxygen and their parent thiols in frozen solutions have been elucidated with e.s.r. The major sulfur radicals observed are: (1) thiyl radicals, RS center dot; (2) disulfide radical anions, RSSR anion radicals; (3) perthiyl radicals, RSS center dot and upon introduction of oxygen; (4) sulfinyl radicals, RSO center dot, where R represents the remainder of the cysteine, glutathione or penicillamine moiety. The radical product observed depends on pH, concentration of thiol, and presence or absence of molecular oxygen. The sulfinyl radical is a ubiquitous intermediate, peroxyl radical attack on thiols may lead to sulfinyl radicals. The authors elaborate the observed reaction sequences that lead to sulfinyl radicals and, using /sup 17/O isotopic substitution studies, demonstrate the oxygen atom in sulfinyl radicals originates from dissolved molecular oxygen. The glutathione radical is found to abstract hydrogen from the ..cap alpha..-carbon position on the cysteine residue of glutathione to form a carbon-centred radical.

  12. The White Rabbit project

    CERN Document Server

    Serrano, J; Gousiou, E; van der Bij, E; Wlostowski, T; Daniluk, G; Lipinski, M

    2013-01-01

    White Rabbit (WR) is a multi-laboratory, multi- company collaboration for the development of a new Ethernet-based technology which ensures sub-nanosecond synchronisation and deterministic data transfer. The project uses an open source paradigm for the development of its hardware, gateware and software components. This article provides an introduction to the technical choices and an explanation of the basic principles underlying WR. It then describes some possible applications and the current status of the project. Finally, it provides insight on current developments and future plans.

  13. Transcending binary logic by gating three coupled quantum dots.

    Science.gov (United States)

    Klein, Michael; Rogge, S; Remacle, F; Levine, R D

    2007-09-01

    Physical considerations supported by numerical solution of the quantum dynamics including electron repulsion show that three weakly coupled quantum dots can robustly execute a complete set of logic gates for computing using three valued inputs and outputs. Input is coded as gating (up, unchanged, or down) of the terminal dots. A nanosecond time scale switching of the gate voltage requires careful numerical propagation of the dynamics. Readout is the charge (0, 1, or 2 electrons) on the central dot.

  14. In situ electron-beam polymerization stabilized quantum dot micelles.

    Science.gov (United States)

    Travert-Branger, Nathalie; Dubois, Fabien; Renault, Jean-Philippe; Pin, Serge; Mahler, Benoit; Gravel, Edmond; Dubertret, Benoit; Doris, Eric

    2011-04-19

    A polymerizable amphiphile polymer containing PEG was synthesized and used to encapsulate quantum dots in micelles. The quantum dot micelles were then polymerized using a "clean" electron beam process that did not require any post-irradiation purification. Fluorescence spectroscopy revealed that the polymerized micelles provided an organic coating that preserved the quantum dot fluorescence better than nonpolymerized micelles, even under harsh conditions. © 2011 American Chemical Society

  15. Spin fine structure of optically excited quantum dot molecules

    Science.gov (United States)

    Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.

    2007-06-01

    The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.

  16. Core–shell quantum dots: Properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, D., E-mail: vasudevand@rediffmail.com [Electrodics and electrocatalysis division, CSIR-CECRI, Karaikudi 630006 (India); Gaddam, Rohit Ranganathan [Amity Institute of Nanotechnology, Amity University, Noida 201301 (India); Trinchi, Adrian; Cole, Ivan [CSIRO Materials Science and Engineering, Clayton South MDC, 3169 (Australia)

    2015-07-05

    Fluorescent quantum dots (QDs) are semiconducting nanocrystals (NCs) that find numerous applications in areas, such as bio labelling, sensors, lasers, light emitting diodes and medicine. Core–shell quantum dots were developed to improve the photoluminescence efficiency of single quantum dots. Capping their surface with organic ligands as well as their extraction into aqueous media enables their use in sensing applications. The current review highlights the importance and applications of core shell quantum dots as well as their surface modifications and applications in the field of medicine and as sensors for chemical and biochemical analysis.

  17. Core–shell quantum dots: Properties and applications

    International Nuclear Information System (INIS)

    Vasudevan, D.; Gaddam, Rohit Ranganathan; Trinchi, Adrian; Cole, Ivan

    2015-01-01

    Fluorescent quantum dots (QDs) are semiconducting nanocrystals (NCs) that find numerous applications in areas, such as bio labelling, sensors, lasers, light emitting diodes and medicine. Core–shell quantum dots were developed to improve the photoluminescence efficiency of single quantum dots. Capping their surface with organic ligands as well as their extraction into aqueous media enables their use in sensing applications. The current review highlights the importance and applications of core shell quantum dots as well as their surface modifications and applications in the field of medicine and as sensors for chemical and biochemical analysis

  18. Two path transport measurements on a triple quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Rogge, Maximilian C.; Haug, Rolf J. [Institut fuer Festkoerperphysik, Leibniz Universitaet Hannover, Appelstr. 2, 30167 Hannover (Germany)

    2008-07-01

    We present a novel triple quantum dot device made with local anodic oxidation on a GaAs/AlGaAs heterostructure. The geometry provides two path transport via a three lead setup with each lead connected to one of the three quantum dots. In addition charge detection is implemented via a quantum point contact. One lead is used as a common source contact, the other two are used as two separate drain contacts with independent current measurement. Thus two paths are formed with two dots in each path. Along both paths serial transport is observed at the triple points of the two corresponding dots. With four side gates a wide tunability is given. Thus the system can be tuned in and out of triple dot resonances. When all three dots come into resonance, quadruple points are formed with simultaneous transport along both paths. The data are analysed in combined two colour plots and compared to the charge detection showing sets of three different lines, one for each dot. This way the two path setup allows to investigate the transition from double dot physics to triple dot physics.

  19. Using a quantum dot system to realize perfect state transfer

    International Nuclear Information System (INIS)

    Li Ji; Wu Shi-Hai; Zhang Wen-Wen; Xi Xiao-Qiang

    2011-01-01

    There are some disadvantages to Nikolopoulos et al.'s protocol [Nikolopoulos G M, Petrosyan D and Lambropoulos P 2004 Europhys. Lett. 65 297] where a quantum dot system is used to realize quantum communication. To overcome these disadvantages, we propose a protocol that uses a quantum dot array to construct a four-qubit spin chain to realize perfect quantum state transfer (PQST). First, we calculate the interaction relation for PQST in the spin chain. Second, we review the interaction between the quantum dots in the Heitler—London approach. Third, we present a detailed program for designing the proper parameters of a quantum dot array to realize PQST. (general)

  20. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    International Nuclear Information System (INIS)

    See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.; Sutanto, Erick; Alleyne, Andrew G.; Cunningham, Brian T.

    2015-01-01

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure

  1. Correlation effects in side-coupled quantum dots

    International Nuclear Information System (INIS)

    Zitko, R; Bonca, J

    2007-01-01

    Using Wilson's numerical renormalization group (NRG) technique, we compute zero-bias conductance and various correlation functions of a double quantum dot (DQD) system. We present different regimes within a phase diagram of the DQD system. By introducing a negative Hubbard U on one of the quantum dots, we simulate the effect of electron-phonon coupling and explore the properties of the coexisting spin and charge Kondo state. In a triple quantum dot (TQD) system, a multi-stage Kondo effect appears where localized moments on quantum dots are screened successively at exponentially distinct Kondo temperatures

  2. Tunable single quantum dot nanocavities for cavity QED experiments

    International Nuclear Information System (INIS)

    Kaniber, M; Laucht, A; Neumann, A; Bichler, M; Amann, M-C; Finley, J J

    2008-01-01

    We present cavity quantum electrodynamics experiments performed on single quantum dots embedded in two-dimensional photonic crystal nanocavities. We begin by describing the structural and optical properties of the quantum dot sample and the photonic crystal nanocavities and compare the experimental results with three-dimensional calculations of the photonic properties. The influence of the tailored photonic environment on the quantum dot spontaneous emission dynamics is studied using spectrally and spatially dependent time-resolved spectroscopy. In ensemble and single dot measurements we show that the photonic crystals strongly enhance the photon extraction efficiency and, therefore, are a promising concept for realizing efficient single-photon sources. Furthermore, we demonstrate single-photon emission from an individual quantum dot that is spectrally detuned from the cavity mode. The need for controlling the spectral dot-cavity detuning is discussed on the basis of shifting either the quantum dot emission via temperature tuning or the cavity mode emission via a thin film deposition technique. Finally, we discuss the recently discovered non-resonant coupling mechanism between quantum dot emission and cavity mode for large detunings which drastically lowers the purity of single-photon emission from dots that are spectrally coupled to nanocavity modes.

  3. Nonequilibrium Electron Transport Through a Quantum Dot from Kubo Formula

    International Nuclear Information System (INIS)

    Lue Rong; Zhang Guangming

    2005-01-01

    Based on the Kubo formula for an electron tunneling junction, we revisit the nonequilibrium transport properties through a quantum dot. Since the Fermi level of the quantum dot is set by the conduction electrons of the leads, we calculate the electron current from the left side by assuming the quantum dot coupled to the right lead as another side of the tunneling junction, and the other way round is used to calculate the current from the right side. By symmetrizing these two currents, an effective local density states on the dot can be obtained, and is discussed at high and low temperatures, respectively.

  4. Top emitting white OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, Patricia; Luessem, Bjoern; Leo, Karl [Technische Universitaet Dresden, Institut fuer Angewandte Photophysik, George-Baehr-Strasse 1, 01069 Dresden (Germany)

    2009-07-01

    Top emitting organic light emitting diodes (TOLEDs) provide a number of interesting opportunities for new applications, such as the opportunity to fabricate ITO-free devices by using opaque substrates. This makes it possible to manufacture low cost OLEDs for signage and lighting applications. A general top emitting device consists of highly reflecting metal contacts as anode and semitransparent cathode, the latter one for better outcouling reasons. In between several organic materials are deposited as charge transporting, blocking, and emission layers. Here, we show a top emitting white organic light emitting diode with silver electrodes arranged in a p-i-n structure with p- and n-doped charge transport layers. The centrical emission layer consists of two phosphorescent (red and green) and one fluorescent (blue) emitter systems separated by an ambipolar interlayer to avoid mutual exciton quenching. By adding an additional dielectric capping layer on top of the device stack, we achieve a reduction of the strong microcavity effects which appear due to the high reflection of both metal electrodes. Therefore, the outcoupled light shows broad and nearly angle-independent emission spectra, which is essential for white light emitting diodes.

  5. The White House saga

    Directory of Open Access Journals (Sweden)

    Daković Nevena

    2015-01-01

    Full Text Available Frank Capra expressed his gratitude to the immigrant dream come true by creating a brilliant cinematic myth about the American political system, presenting it as an 'inherently good' when in the hands of honest and good people. His 'morality fairytales', 'fantasies of good will' imbued with belief in restoration of old-new principles, offer complex reflections on an idealised Americanism of the 1930s which have become the foundation of representations of the American political system. The Capraesque narrative - 'a blend of optimism, humor, patriotism, and, to those who really understand his work, (and darkness, despair, and the need to fight for things you care about...' (Bassinger 1982: 48 - as a combination of all-American values, ordinary people and historical figures, a democracy myth - has been extended by an endless network of intertextual echoes in film and TV production. Following the developmental lines - through political melodrama, melodramatic politics and political soap opera - one will be led from Capra to the series The West Wing (1996 - 2006, House of Cards (2013 - 2015 and Madame Secretary (2014 - ; from the comprehensive Washington Postcard (Mr. Smith Goes to Washington, 1939 to the focal points at the White House; from Capra's comedy to the saga of the fight against terrorism led by the president and both ordinary and trained American citizens (White House Down, 2013, Roland Emmerich.

  6. White dwarfs and revelations

    Science.gov (United States)

    Saltas, Ippocratis D.; Sawicki, Ignacy; Lopes, Ilidio

    2018-05-01

    We use the most recent, complete and independent measurements of masses and radii of white dwarfs in binaries to bound the class of non-trivial modified gravity theories, viable after GW170817/GRB170817, using its effect on the mass-radius relation of the stars. We show that the uncertainty in the latest data is sufficiently small that residual evolutionary effects, most notably the effect of core composition, finite temperature and envelope structure, must now accounted for if correct conclusions about the nature of gravity are to be made. We model corrections resulting from finite temperature and envelopes to a base Hamada-Salpeter cold equation of state and derive consistent bounds on the possible modifications of gravity in the stars' interiors, finding that the parameter quantifying the strength of the modification Y< 0.14 at 95% confidence, an improvement of a factor of three with respect to previous bounds. Finally, our analysis reveals some fundamental degeneracies between the theory of gravity and the precise chemical makeup of white dwarfs.

  7. White piedra in children.

    Science.gov (United States)

    Kiken, David A; Sekaran, Anand; Antaya, Richard J; Davis, Amy; Imaeda, Suguru; Silverberg, Nanette B

    2006-12-01

    White piedra is a fungal infection of the hair shaft caused by species of Trichosporon. Rarely has this infection been reported in the United States. Historically, infected individuals required shaving of their hair to achieve clearance of the infection. We sought to describe 8 cases of Trichosporon scalp infections seen in the northeastern United States. We conducted chart review and prospective evaluation of 7 girls and 1 boy seen in two dermatology practices in New Haven, Conn, and New York, NY. Seven girls, ages 4 to 16 years old, and one 4-year-old boy were determined to have Trichosporon scalp infection, all through culture. Of the 8 children who were available for follow-up, 7 had clearance of their infection with a combination of oral azole antifungal medication and azole antifungal shampoo, without shaving the scalp hair. This was a sample of patients from a localized region of the United States. White piedra is emerging as a commonly seen hair and scalp infection in the northeastern United States. Contrary to prior publications, scalp and hair infection may be successfully treated with a combination of oral azole antifungals and shampoos without shaving the scalp.

  8. Emission switching in carbon dots coated CdTe quantum dots driving by pH dependent hetero-interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Xiao; Wang, Hao; Yi, Qinghua; Wang, Yun; Cong, Shan; Zhao, Jie; Sun, Yinghui; Zou, Guifu, E-mail: zouguifu@suda.edu.cn, E-mail: jiexiong@uestc.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Qian, Zhicheng [School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Huang, Jianwen; Xiong, Jie, E-mail: zouguifu@suda.edu.cn, E-mail: jiexiong@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Luo, Hongmei [Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States)

    2015-11-16

    Due to the different emission mechanism between fluorescent carbon dots and semiconductor quantum dots (QDs), it is of interest to explore the potential emission in hetero-structured carbon dots/semiconducting QDs. Herein, we design carbon dots coated CdTe QDs (CDQDs) and investigate their inherent emission. We demonstrate switchable emission for the hetero-interactions of the CDQDs. Optical analyses indicate electron transfer between the carbon dots and the CdTe QDs. A heterojunction electron process is proposed as the driving mechanism based on N atom protonation of the carbon dots. This work advances our understanding of the interaction mechanism of the heterostructured CDQDs and benefits the future development of optoelectronic nanodevices with new functionalities.

  9. Pulsations in white dwarf stars

    OpenAIRE

    Van Grootel, Valérie; Fontaine, Gilles; Brassard, Pierre; Dupret, Marc-Antoine

    2017-01-01

    I will present a description of the six distinct families of pulsating white dwarfs that are currently known. Pulsations are present at various stages of the evolution (from hot, pre-white dwarfs to cool white dwarfs), at various stellar masses, and for various atmospheric compositions. In all of them, a mechanism linked to opacity changes along the evolution drives the oscillations. The existence of these oscillations offers the opportunity to apply asteroseismology for constraining physics ...

  10. Evaluation of MEWDS-like lesions with fluorescein angiography and its frequency at an ophthalmic emergency department in Rio de Janeiro

    OpenAIRE

    Dias, Lillian Abreu; Morizot, Eduardo H.

    2015-01-01

    ABSTRACTPurpose:To characterize multiple evanescent white dot syndrome (MEWDS)-like lesions as diagnosed by clinical exam and fluorescein angiography (FA) to build an epidemiological profile of this disease and highlight the most common angiographical aspects. It is important to emphasize the existence of this syndrome and improve patients’ information about the natural good course of this disease.Methods:A cross-sectional study including all FA performed from July 2006 to October 2012 (6,111...

  11. Evaluation of MEWDS-like lesions with fluorescein angiography and its frequency at an ophthalmic emergency department in Rio de Janeiro

    OpenAIRE

    Dias,Lillian Abreu; Morizot,Eduardo H.

    2015-01-01

    ABSTRACTPurpose:To characterize multiple evanescent white dot syndrome (MEWDS)-like lesions as diagnosed by clinical exam and fluorescein angiography (FA) to build an epidemiological profile of this disease and highlight the most common angiographical aspects. It is important to emphasize the existence of this syndrome and improve patients’ information about the natural good course of this disease.Methods:A cross-sectional study including all FA performed from July 2006 to October 2012 ...

  12. Effects of Elevated Ozone on Polka Dot Plant (Hypoestes phyllostachya) with Variegated Leaves.

    Science.gov (United States)

    Sui, J X; Wen, M X; Jia, L L; Chen, Y J; Li, C H; Zhang, L

    2017-10-01

    In this study, impacts of O 3 on four cultivars ('Rose', 'Pink', 'Blush' and 'White') of the polka dot plant with variegated leaves were investigated for the first time. Ozone fumigation [(120 ± 20 ppb) for 14 days (8 h day -1 , from 8:30 to 16:30)] resulted in visible foliar injuries, decreased contents of pigments (chlorophyll a and b, and carotenoid), the inhibition of photosynthesis, the increase of quantum yield of non-regulated heat dissipation and fluorescence emission (Y(NO)), and the damage of cell membrane. Elevated O 3 increased the content of anthocyanin (Ant). 'White' showed the highest, and 'Rose' the lowest amount of injured leaf area, indicating that the former was the most sensitive, and the latter the most tolerant to O 3 stress. After O 3 exposure, the highest Ant content was found in 'Rose', followed by 'Pink', 'Blush', and 'White'. Levels of Ant were likely responsible for the different sensitivities to O 3 due to their roles in photoprotection.

  13. White Faculty Transforming Whiteness in the Classroom through Pedagogical Practice

    Science.gov (United States)

    Charbeneau, Jessica

    2015-01-01

    The primary objective of this qualitative study is to present a conceptual framework of pedagogical practices reported by white faculty that serve to challenge the hegemony of whiteness in the university classroom. These transformative teaching practices surfaced through a review of racialized pedagogies discussed in the literature and in…

  14. Silvicultural guide for northern white-cedar (eastern white cedar)

    Science.gov (United States)

    Emmanuelle Boulfroy; Eric Forget; Philip V. Hofmeyer; Laura S. Kenefic; Catherine Larouche; Guy Lessard; Jean-Martin Lussier; Fred Pinto; Jean-Claude Ruel; Aaron. Weiskittel

    2012-01-01

    Northern white-cedar (eastern white cedar; Thuja occidentalis L.) is an important tree species in the northeastern United States and adjacent Canada, occurring both in pure stands and as a minor species in mixed stands of hardwoods or other softwoods. Yet practitioners have little and often contradictory information about cedar ecology and...

  15. White Dwarf Stars

    Science.gov (United States)

    1999-01-01

    Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope has uncovered the oldest burned-out stars in our Milky Way Galaxy, giving astronomers a fresh reading on the age of the universe. Located in the globular cluster M4, these small, burned-out stars -- called white dwarfs -- are about 12 to 13 billion years old. By adding the one billion years it took the cluster to form after the Big Bang, astronomers found that the age of the white dwarfs agrees with previous estimates that the universe is 13 to 14 billion years old. The images, including some taken by Hubble's Wide Field and Planetary Camera 2, are available online at http://oposite.stsci.edu/pubinfo/pr/2002/10/ or http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's .9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope. The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles indicate the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars. Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the oldest stars puts astronomers within

  16. White matter lesion progression

    DEFF Research Database (Denmark)

    Hofer, Edith; Cavalieri, Margherita; Bis, Joshua C

    2015-01-01

    10 cohorts. To assess the relative contribution of genetic factors to progression of WML, we compared in 7 cohorts risk models including demographics, vascular risk factors plus single-nucleotide polymorphisms that have been shown to be associated cross-sectionally with WML in the current......BACKGROUND AND PURPOSE: White matter lesion (WML) progression on magnetic resonance imaging is related to cognitive decline and stroke, but its determinants besides baseline WML burden are largely unknown. Here, we estimated heritability of WML progression, and sought common genetic variants...... associated with WML progression in elderly participants from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. METHODS: Heritability of WML progression was calculated in the Framingham Heart Study. The genome-wide association study included 7773 elderly participants from...

  17. ILC Higgs White Paper

    CERN Document Server

    Asner, D.M.; Calancha, C.; Fujii, K.; Graf, N.; Haber, H.E.; Ishikawa, A.; Kanemura, S.; Kawada, S.; Kurata, M.; Miyamoto, A.; Neal, H.; Ono, H.; Potter, C.; Strube, J.; Suehara, T.; Tanabe, T.; Tian, J.; Tsumura, J.; Watanuki, S.; Weiglein, G.; Yagyu, K.; Yokoya, H.

    2013-01-01

    The ILC Higgs White Paper is a review of Higgs Boson theory and experiment at the International Linear Collider (ILC). Theory topics include the Standard Model Higgs, the two-Higgs doublet model, alternative approaches to electroweak symmetry breaking, and precision goals for Higgs boson experiments. Experimental topics include the measurement of the Higgs cross section times branching ratio for various Higgs decay modes at ILC center of mass energies of 250, 500, and 1000 GeV, and the extraction of Higgs couplings and the total Higgs width from these measurements. Luminosity scenarios based on the ILC TDR machine design are used throughout. The gamma-gamma collider option at the ILC is also discussed.

  18. Continuous dimensions and evanescent couplings

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.

    1975-01-01

    Analytical solutions for the wave equation in many dimensional calculation, are given. The difference for even or odd number of dimensions is shown. The simplest cases of the lowest order divergent diagrams (self-energy, vacuum polarization) are discussed. Causal solution of Klein-Gordon equation is used [pt

  19. Evanescent Waves Nuclear Magnetic Resonance

    DEFF Research Database (Denmark)

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order...

  20. Evanescent spectroscopy - theory and experiment

    OpenAIRE

    Karabchevsky, Alina

    2014-01-01

    Outline1 Introduction2 Literature Overview3 Photonic-Plasmonic WaveguideStructureModellingTheory4 ResultsOptical TransmittanceLoss of Fundamental Mode in a Gold RegionOptical Surface Intensity5 NIR Spectroscopy - Experiment6 Conclusions7 Acknowledgements

  1. Controlling the aspect ratio of quantum dots: from columnar dots to quantum rods

    NARCIS (Netherlands)

    Li, L.; Patriarche, G.; Chauvin, N.J.G.; Ridha, P.; Rossetti, M.; Andrzejewski, J.; Sek, G.; Misiewicz, J.; Fiore, A.

    2008-01-01

    We demonstrate the feasibility and flexibility of artificial shape engineering of epitaxial semiconductor nanostructures. Novel nanostructures including InGaAs quantum rods (QRs), nanocandles, and quantum dots (QDs)-in-rods were realized on a GaAs substrate. They were formed by depositing a

  2. Hybrid passivated colloidal quantum dot solids

    KAUST Repository

    Ip, Alex

    2012-07-29

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.

  3. Hybrid passivated colloidal quantum dot solids

    KAUST Repository

    Ip, Alex; Thon, Susanna; Hoogland, Sjoerd H.; Voznyy, Oleksandr; Zhitomirsky, David; Debnath, Ratan K.; Levina, Larissa; Rollny, Lisa R.; Carey, Graham H.; Fischer, Armin H.; Kemp, Kyle W.; Kramer, Illan J.; Ning, Zhijun; Labelle, André J.; Chou, Kang Wei; Amassian, Aram; Sargent, E. H.

    2012-01-01

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.

  4. year Review of Patients on DOTS in Delta State, Nigeria

    African Journals Online (AJOL)

    UNIBEN

    1Department of Community Medicine, Delta State University Teaching ... Therapy Short-course (DOTS), DOTS plus, and the Stop TB Strategy. ... Methods: In this descriptive records review of years 2011-2015, existing data ... Treatment success rate improved from 68.3% in ..... exploration and social interventions to curb it.

  5. Electron Energy Level Statistics in Graphene Quantum Dots

    NARCIS (Netherlands)

    De Raedt, H.; Katsnellson, M. I.; Katsnelson, M.I.

    2008-01-01

    Motivated by recent experimental observations of size quantization of electron energy levels in graphene quantum dots [7] we investigate the level statistics in the simplest tight-binding model for different dot shapes by computer simulation. The results are in a reasonable agreement with the

  6. Quantum-dot cluster-state computing with encoded qubits

    International Nuclear Information System (INIS)

    Weinstein, Yaakov S.; Hellberg, C. Stephen; Levy, Jeremy

    2005-01-01

    A class of architectures is advanced for cluster-state quantum computation using quantum dots. These architectures include using single and multiple dots as logical qubits. Special attention is given to supercoherent qubits introduced by Bacon et al. [Phys. Rev. Lett. 87, 247902 (2001)] for which we discuss the effects of various errors and present a means of error protection

  7. INTERACTIONS BETWEEN MODULATED LUMINANCE PATTERNS AND RANDOM-DOT PATTERNS

    NARCIS (Netherlands)

    CORNELISSEN, FW; KOOIJMAN, AC

    1994-01-01

    It has been suggested that density modulated random-dot patterns can be used to study higher order pattern vision [Van Meeteren and Barlow (1981) Vision Research, 21, 765-777]. The high contrast dots of which the pattern is composed, are assumed to be reliably transduced-and transmitted by the lower

  8. Exciton binding energy in a pyramidal quantum dot

    Indian Academy of Sciences (India)

    A ANITHA

    2018-03-27

    Mar 27, 2018 ... screening function on exciton binding energy in a pyramid-shaped quantum dot of ... tures may generate unique properties and they show .... where Ee is the ground-state energy of the electron in ... Figure 1. The geometry of the pyramidal quantum dot. base and H is the height of the pyramid which is taken.

  9. Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg

    deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...

  10. Teaching Beginning Chemistry Students Simple Lewis Dot Structures

    Science.gov (United States)

    Nassiff, Peter; Czerwinski, Wendy A.

    2015-01-01

    Students beginning their initial study of chemistry often have a difficult time mastering simple Lewis dot structures. Textbooks show students how to manipulate Lewis structures by moving valence electron dots around the chemical structure so each atom has an octet or duet. However, an easier method of teaching Lewis structures for simple…

  11. Electron transport and coherence in semiconductor quantum dots and rings

    NARCIS (Netherlands)

    Van der Wiel, W.G.

    2002-01-01

    A number of experiments on electron transport and coherence in semiconductor vertical and lateral quantum dots and semiconductor rings is described. Quantum dots are often referred to as "artificial atoms", because of their similarities with real atoms. Examples of such atom-like properties that

  12. Andreev molecules in semiconductor nanowire double quantum dots.

    Science.gov (United States)

    Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M

    2017-09-19

    Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

  13. Stark effect and polarizability of graphene quantum dots

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm

    2017-01-01

    The properties of graphene quantum dots can be manipulated via lateral electric fields. Treating electrons in such structures as confined massless Dirac fermions, we derive an analytical expression for the quadratic Stark shift valid for arbitrary angular momentum and quantum dot size. Moreover, we...

  14. Laterally coupled jellium-like two-dimensional quantum dots

    NARCIS (Netherlands)

    Markvoort, Albert. J.; Hilbers, P.A.J.; Pino, R.

    2003-01-01

    Many studies have been performed to describe quantum dots using a parabolic confining potential. However, infinite potentials are unphysical and lead to problems when describing laterally coupled quantum dots. We propose the use of the parabolic potential of a homogeneous density distribution within

  15. Fast synthesize ZnO quantum dots via ultrasonic method.

    Science.gov (United States)

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Electroluminescent Cu-doped CdS quantum dots

    NARCIS (Netherlands)

    Stouwdam, J.W.; Janssen, R.A.J.

    2009-01-01

    Incorporating Cu-doped CdS quantum dots into a polymer host produces efficient light-emitting diodes. The Cu dopant creates a trap level that aligns with the valence band of the host, enabling the direct injection of holes into the quantum dots, which act as emitters. At low current densities, the

  17. Imaging vasculature and lymphatic flow in mice using quantum dots

    DEFF Research Database (Denmark)

    Ballou, Byron; Ernst, Lauren A.; Andreko, Susan

    2009-01-01

    Quantum dots are ideal probes for fluorescent imaging of vascular and lymphatic tissues. On injection into appropriate sites, red- and near-infrared-emitting quantum dots provide excellent definition of vasculature, lymphoid organs, and lymph nodes draining both normal tissues and tumors. We detail...

  18. Fractional decay of quantum dots in photonic crystals

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Koenderink, Femius; Lodahl, Peter

    2008-01-01

    We define a practical measure for the degree of fractional decay and establish conditions for the effect to be observable for quantum dots in photonic crystals exhibiting absorptive losses.......We define a practical measure for the degree of fractional decay and establish conditions for the effect to be observable for quantum dots in photonic crystals exhibiting absorptive losses....

  19. X-ray scattering from periodic arrays of quantum dots

    International Nuclear Information System (INIS)

    Holy, V; Stangl, J; Lechner, R T; Springholz, G

    2008-01-01

    Three-dimensional periodic arrays of self-organized quantum dots in semiconductor multilayers are investigated by high-resolution x-ray scattering. We demonstrate that the statistical parameters of the dot array can be determined directly from the scattering data without performing a numerical simulation of the scattered intensity.

  20. High-resolution photoluminescence studies of single semiconductor quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    Semiconductor quantum dots, especially those formed by self-organized growth, are considered a promising material system for future optical devices [1] and the optical properties of quantum dot ensembles have been investigated in detail over the past years. Recently, considerable interest has...

  1. Polarized electrons, trions, and nuclei in charged quantum dots

    Science.gov (United States)

    Bracker, A. S.; Tischler, J. G.; Korenev, V. L.; Gammon, D.

    2003-07-01

    We have investigated spin polarization in GaAs quantum dots. Excitons and trions are polarized directly by optical excitation and studied through polarization of photoluminescence. Electrons and nuclei are polarized indirectly through subsequent relaxation processes. Polarized electrons are identified by the Hanle effect for exciton and trion photoluminescence, while polarized nuclei are identified through the Overhauser effect in individual charged quantum dots.

  2. MnDOT Library strategic plan : final report.

    Science.gov (United States)

    2017-06-01

    MnDOTs Senior Leadership asked MnDOT Library to develop a Strategic Plan that identifies and reviews the challenges facing the Library over the next five years to better address the evolving needs of the department and users. The strategic plan is...

  3. Electronic properties of assemblies of zno quantum dots

    NARCIS (Netherlands)

    Roest, Aarnoud Laurens

    2003-01-01

    Electron transport in an assembly of ZnO quantum dots has been studied using an electrochemically gated transistor. The electron mobility shows a step-wise increase as a function of the electron occupation per quantum dot. When the occupation number is below two, transport occurs by tunnelling

  4. Green Dot Public Schools. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2018

    2018-01-01

    "Green Dot Public Schools" is a nonprofit organization that operates more than 20 public charter middle and high schools in California, Tennessee, and Washington. The "Green Dot Public Schools" model emphasizes high quality teaching, strong school leadership, a curriculum that prepares students for college, and partnerships…

  5. Phonon-assisted decoherence and tunneling in quantum dot molecules

    DEFF Research Database (Denmark)

    Grodecka-Grad, Anna; Foerstner, Jens

    2011-01-01

    processes with relevant acoustic phonons. We show that the relaxation is dominated by phonon-assisted electron tunneling between constituent quantum dots and occurs on a picosecond time scale. The dependence of the time evolution of the quantum dot occupation probabilities on the energy mismatch between...

  6. Optical properties of a tip-induced quantum dot

    NARCIS (Netherlands)

    Kemerink, M.; Sauthoff, K.; Koenraad, P.M.; Gerritsen, J.W.; Kempen, van H.; Fomin, V.M.; Wolter, J.H.; Devreese, J.T.; Miura, N.; Ando, T.

    2001-01-01

    We have performed optical spectroscopy measurements on an STM-tip-induced quantum dot. The dominant confinement in the (hole) quantum dot is in the direction parallel to the tip axis. Electron confinement is achieved by a sub-surface AlGaAs barrier. Current dependent measurements indicate that

  7. Electroluminescence spectra of an STM-tip-induced quantum dot

    NARCIS (Netherlands)

    Croitoru, M.D.; Gladilin, V.N.; Fomin, V.; Devreese, J.T.; Kemerink, M.; Koenraad, P.M.; Sauthoff, K.; Wolter, J.H.; Long, A.R.; Davies, J.H.

    2003-01-01

    We analyse the electroluminescence measurements performed on a STM-tipImduced quantum dot in a GaAs layer. Positions of electroluminescence peaks, attributed to the electron-hole recombination in the quantum dot, are very sensitive to the electron tunnelling current even in the case when the current

  8. White coat hypertension in pediatrics.

    Science.gov (United States)

    Jurko, Alexander; Minarik, Milan; Jurko, Tomas; Tonhajzerova, Ingrid

    2016-01-15

    The article summarizes current information on blood pressure changes in children during clinic visit. White coat as a general dressing of physicians and health care personnel has been widely accepted at the end of the 19th century. Two problems can be associated with the use of white coat: white coat phenomenon and white coat hypertension. Children often attribute pain and other unpleasant experience to the white coat and refuse afterwards cooperation with examinations. Definition of white coat hypertension in the literature is not uniform. It has been defined as elevated blood pressure in the hospital or clinic with normal blood pressure at home measured during the day by ambulatory blood pressure monitoring system. White coat effect is defined as temporary increase in blood pressure before and during visit in the clinic, regardless what the average daily ambulatory blood pressure values are. Clinical importance of white coat hypertension is mainly because of higher risk for cardiovascular accidents that are dependent on end organ damage (heart, vessels, kidney). Current data do not allow any clear recommendations for the treatment. Pharmacological therapy is usually started in the presence of hypertrophic left ventricle, changes in intimal/medial wall thickness of carotic arteries, microalbuminuria and other cardiovascular risk factors. Nonpharmacological therapy is less controversial and certainly more appropriate. Patients have to change their life style, need to eliminate as much cardiovascular risk factors as possible and sustain a regular blood pressure monitoring.

  9. Axion cooling of white dwarfs

    OpenAIRE

    Isern, J.; Catalan, S.; Garcia--Berro, E.; Salaris, M.; Torres, S.

    2013-01-01

    The evolution of white dwarfs is a simple gravothermal process. This process can be tested in two ways, through the luminosity function of these stars and through the secular variation of the period of pulsation of those stars that are variable. Here we show how the mass of the axion can be constrained using the white dwarf luminosity function.

  10. Optical appearance of white holes

    International Nuclear Information System (INIS)

    Lake, K.; Roeder, R.C.

    1978-01-01

    The detailed optical properties of white holes are examined within the framework of geometrical optics. It is shown that the appearance of the objects most likely to be observed at late times is in fact determined by their early histories. These ccalculations indicate that one cannot invoke the simple concept of a stable white hole as a ''natural'' explanation of highly energetic astrophysical phenomena

  11. Correlation effects in superconducting quantum dot systems

    Science.gov (United States)

    Pokorný, Vladislav; Žonda, Martin

    2018-05-01

    We study the effect of electron correlations on a system consisting of a single-level quantum dot with local Coulomb interaction attached to two superconducting leads. We use the single-impurity Anderson model with BCS superconducting baths to study the interplay between the proximity induced electron pairing and the local Coulomb interaction. We show how to solve the model using the continuous-time hybridization-expansion quantum Monte Carlo method. The results obtained for experimentally relevant parameters are compared with results of self-consistent second order perturbation theory as well as with the numerical renormalization group method.

  12. Quantum dot loaded immunomicelles for tumor imaging

    Directory of Open Access Journals (Sweden)

    Levchenko Tatyana

    2010-10-01

    Full Text Available Abstract Background Optical imaging is a promising method for the detection of tumors in animals, with speed and minimal invasiveness. We have previously developed a lipid coated quantum dot system that doubles the fluorescence of PEG-grafted quantum dots at half the dose. Here, we describe a tumor-targeted near infrared imaging agent composed of cancer-specific monoclonal anti-nucleosome antibody 2C5, coupled to quantum dot (QD-containing polymeric micelles, prepared from a polyethylene glycol/phosphatidylethanolamine (PEG-PE conjugate. Its production is simple and involves no special equipment. Its imaging potential is great since the fluorescence intensity in the tumor is twofold that of non-targeted QD-loaded PEG-PE micelles at one hour after injection. Methods Para-nitrophenol-containing (5% PEG-PE quantum dot micelles were produced by the thin layer method. Following hydration, 2C5 antibody was attached to the PEG-PE micelles and the QD-micelles were purified using dialysis. 4T1 breast tumors were inoculated subcutaneously in the flank of the animals. A lung pseudometastatic B16F10 melanoma model was developed using tail vein injection. The contrast agents were injected via the tail vein and mice were depilated, anesthetized and imaged on a Kodak Image Station. Images were taken at one, two, and four hours and analyzed using a methodology that produces normalized signal-to-noise data. This allowed for the comparison between different subjects and time points. For the pseudometastatic model, lungs were removed and imaged ex vivo at one and twenty four hours. Results The contrast agent signal intensity at the tumor was double that of the passively targeted QD-micelles with equally fast and sharply contrasted images. With the side views of the animals only tumor is visible, while in the dorsal view internal organs including liver and kidney are visible. Ex vivo results demonstrated that the agent detects melanoma nodes in a lung

  13. Quantum Dots for Molecular Diagnostics of Tumors

    Science.gov (United States)

    Zdobnova, T.A.; Lebedenko, E.N.; Deyev, S.М.

    2011-01-01

    Semiconductor quantum dots (QDs) are a new class of fluorophores with unique physical and chemical properties, which allow to appreciably expand the possibilities for the current methods of fluorescent imaging and optical diagnostics. Here we discuss the prospects of QD application for molecular diagnostics of tumors ranging from cancer-specific marker detection on microplates to non-invasive tumor imagingin vivo. We also point out the essential problems that require resolution in order to clinically promote QD, and we indicate innovative approaches to oncology which are implementable using QD. PMID:22649672

  14. DOT-7A packaging test procedure

    International Nuclear Information System (INIS)

    Kelly, D.L.

    1995-01-01

    This test procedure documents the steps involved with performance testing of Department of Transportation Specification 7A (DOT-7A) Type A packages. It includes description of the performance tests, the personnel involved, appropriate safety considerations, and the procedures to be followed while performing the tests. Westinghouse Hanford Company (WHC) is conducting the evaluation and testing discussed herein for the Department of Energy-Headquarters, Division of Quality Verification and Transportation Safety (EH-321). Please note that this report is not in WHC format. This report is being submitted through the Engineering Documentation System so that it may be used for reference and information purposes

  15. Near-field strong coupling of single quantum dots.

    Science.gov (United States)

    Groß, Heiko; Hamm, Joachim M; Tufarelli, Tommaso; Hess, Ortwin; Hecht, Bert

    2018-03-01

    Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.

  16. Numerical simulation of optical feedback on a quantum dot lasers

    Energy Technology Data Exchange (ETDEWEB)

    Al-Khursan, Amin H., E-mail: ameen_2all@yahoo.com [Thi-Qar University, Nassiriya Nanotechnology Research Laboratory (NNRL), Science College (Iraq); Ghalib, Basim Abdullattif [Babylon University, Laser Physics Department, Science College for Women (Iraq); Al-Obaidi, Sabri J. [Al-Mustansiriyah University, Physics Department, Science College (Iraq)

    2012-02-15

    We use multi-population rate equations model to study feedback oscillations in the quantum dot laser. This model takes into account all peculiar characteristics in the quantum dots such as inhomogeneous broadening of the gain spectrum, the presence of the excited states on the quantum dot and the non-confined states due to the presence of wetting layer and the barrier. The contribution of quantum dot groups, which cannot follow by other models, is simulated. The results obtained from this model show the feedback oscillations, the periodic oscillations which evolves to chaos at higher injection current of higher feedback levels. The frequency fluctuation is attributed mainly to wetting layer with a considerable contribution from excited states. The simulation shows that is must be not using simple rate equation models to express quantum dots working at excited state transition.

  17. Electric and Magnetic Interaction between Quantum Dots and Light

    DEFF Research Database (Denmark)

    Tighineanu, Petru

    argue that there is ample room for improving the oscillator strength with prospects for approaching the ultra-strong-coupling regime of cavity quantum electrodynamics with optical photons. These outstanding gures of merit render interface-uctuation quantum dots excellent candidates for use in cavity...... quantum electrodynamics and quantum-information science. We investigate exciton localization in droplet-epitaxy quantum dots by conducting spectral and time-resolved measurements. We nd small excitons despite the large physical size of dropletepitaxy quantum dots, which is attributed to material inter......The present thesis reports research on the optical properties of quantum dots by developing new theories and conducting optical measurements. We demonstrate experimentally singlephoton superradiance in interface-uctuation quantum dots by recording the temporal decay dynamics in conjunction...

  18. Transport through a vibrating quantum dot: Polaronic effects

    International Nuclear Information System (INIS)

    Koch, T; Alvermann, A; Fehske, H; Loos, J; Bishop, A R

    2010-01-01

    We present a Green's function based treatment of the effects of electron-phonon coupling on transport through a molecular quantum dot in the quantum limit. Thereby we combine an incomplete variational Lang-Firsov approach with a perturbative calculation of the electron-phonon self energy in the framework of generalised Matsubara Green functions and a Landauer-type transport description. Calculating the ground-state energy, the dot single-particle spectral function and the linear conductance at finite carrier density, we study the low-temperature transport properties of the vibrating quantum dot sandwiched between metallic leads in the whole electron-phonon coupling strength regime. We discuss corrections to the concept of an anti-adiabatic dot polaron and show how a deformable quantum dot can act as a molecular switch.

  19. Spin current through quantum-dot spin valves

    International Nuclear Information System (INIS)

    Wang, J; Xing, D Y

    2006-01-01

    We report a theoretical study of the influence of the Coulomb interaction on the equilibrium spin current in a quantum-dot spin valve, in which the quantum dot described by the Anderson impurity model is coupled to two ferromagnetic leads with noncollinear magnetizations. In the Kondo regime, electrons transmit through the quantum dot via higher-order virtual processes, in which the spin of either lead electrons or a localized electron on the quantum dot may reverse. It is found that the magnitude of the spin current decreases with increasing Coulomb interactions due to spin flip effects on the dot. However, the spatial direction of the spin current remains unchanged; it is determined only by the exchange coupling between two noncollinear magnetizations

  20. Exciton dephasing in single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    The homogeneous linewidth of excitonic transitions is a parameter of fundamental physical importance. In self-assembled quantum dot systems, a strong inhomogeneous broadening due to dot size fluctuations masks the homogeneous linewidth associated with transitions between individual states....... The homogeneous and inhomogeneous broadening of InGaAs quantum dot luminescence is of central importance for the potential application of this material system in optoelectronic devices. Recent measurements of MOCVD-grown InAs/InGaAs quantum dots indicate a large homogeneous broadening at room temperature due...... to fast dephasing. We present an investigation of the low-temperature homogeneous linewidth of individual PL lines from MBE-grown In0.5Ga0.5As/GaAs quantum dots....