WorldWideScience

Sample records for evanescent cell sensors

  1. Sensitivity Analysis Of Evanescent Fiber Optic Sensors

    Science.gov (United States)

    Wang, Jinyu; Christensen, Douglas A.; Brynda, E.; Andrade, Joseph D.; Ives, Jeffrey T.; Lin, Jinnan

    1989-06-01

    Evanescent fiber optic sensors are being developed for remote in situ immunoassay. The single reflection total internal reflection fluorescence (TIRF) geometry can serve as a well-defined model against which evanescent waveguide devices can be compared and evaluated. This paper addresses the problem of optimizing the sensitivity of an evanescent fiber optic sensor (EFOS). Two aspects are discussed: (1) the modes of exciting laser light in the fiber have an effect on the sensor efficiency and signal-to-noise ratio; (2) in a fiber biosensor, there is generally a protein layer attached to the core surface; the thickness of the layer is at least 5nm. If the refractive index of the protein layer can be made equal to the refractive index of the core, we can get a new fiber waveguide in which the core also contains the protein layer. The fluorescent emission sources are thus inside the core region and generate the highest signal collection efficiency. We also discuss the situation when the refractive index of the protein layer is larger or smaller than that of the optical fiber core.

  2. Fiber-optic evanescent-field sensor for attitude measurement

    Science.gov (United States)

    Liu, Yun; Chen, Shimeng; Liu, Zigeng; Guang, Jianye; Peng, Wei

    2017-11-01

    We proposed a new approach to attitude measurement by an evanescent field-based optical fiber sensing device and demonstrated a liquid pendulum. The device consisted of three fiber-optic evanescent-filed sensors which were fabricated by tapered single mode fibers and immersed in liquid. Three fiber Bragg gratings were used to measure the changes in evanescent field. And their reflection peaks were monitored in real time as measurement signals. Because every set of reflection responses corresponded to a unique attitude, the attitude of the device could be measured by the three fiber-optic evanescent-filed sensors. After theoretical analysis, computerized simulation and experimental verification, regular responses were obtained using this device for attitude measurement. The measurement ranges of dihedral angle and direction angle were 0°–50° and 0°–360°. The device is based on cost-effective power-referenced scheme. It can be used in electromagnetic or nuclear radiation environment.

  3. Temperature-independent polymer optical fiber evanescent wave sensor

    Science.gov (United States)

    Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Zhao, Mingfu; Huang, Yun; Chen, Rong

    2015-06-01

    Although the numerous advantages of polymer optical fibers have been exploited in the fields of sensors and telecommunications, such fibers still experience a critical problem: the temperature dependency. Therefore, we explored the temperature-independent operation of a polymer fiber-optic evanescent wave sensor immersed in distilled water. We investigated variations in the surface morphology, deformation trajectory, refractive index, and weight of the fiber-sensing region with varying water temperature. We also examined the spectral transmission and transmitted light intensity of fibers subjected to a heating-cooling treatment. We observed that the light-transmission modes and sensitivity of the sensor were affected by changes in the surface morphology, diameter, and refractive index of the sensing region caused by changes in temperature. The transmitted light intensity of the sensor was maintained at a constant level after five cycles of the heating-cooling treatment, after which the fibers exhibited a smooth surface, low refractive index, and large fiber diameter. Consequently, we utilized the heating-cooling-treated fiber to realize a temperature-independent, U-shaped polymer fiber-optic evanescent wave sensor. The temperature independence was evaluated using glucose solutions in the range of 10 to 70 °C. The fabricated sensor showed significant temperature independence and high degree of consistency in measuring solutions.

  4. Planar Optical Sensors and Evanescent Wave Effects

    Science.gov (United States)

    Burke, Conor S.; Stránik, Ondrej; McEvoy, Helen M.; MacCraith, Brian D.

    Recent developments in microsystems technology have led to the widespread application of microfabrication techniques for the production of sensor platforms. These techniques have had a major impact on the development of so-called "Lab-on-a-Chip" devices. The major application areas for theses devices are biomedical diagnostics, industrial process monitoring, environmental monitoring, drug discovery, and defence. In the context of biomedical diagnostic applications, for example, such devices are intended to provide quantitative chemical or biochemical information on samples such as blood, sweat and saliva while using minimal sample volume.

  5. Chemical detection demonstrated using an evanescent wave graphene optical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Maliakal, Ashok; Reith, Leslie; Cabot, Steve [LGS Innovations, 15 Vreeland Rd., Florham Park, New Jersey 07932 (United States)

    2016-04-11

    Graphene devices have been constructed on silicon mirrors, and the graphene is optically probed through an evanescent wave interaction in an attenuated total reflectance configuration using an infrared spectrometer. The graphene is electrically biased in order to tune its optical properties. Exposure of the device to the chemicals iodine and ammonia causes observable and reversible changes to graphene's optical absorption spectra in the mid to near infrared range which can be utilized for the purpose of sensing. Electrical current measurements through the graphene are made simultaneously with optical measurements allowing for simultaneous sensing using two separate detection modalities. Our current results reveal sub-ppm detection limits for iodine and approximately 100 ppm detection limits for ammonia. We have also demonstrated that this approach will work at 1.55 μm, which opens up the possibility for graphene optical sensors that leverage commercial telecom light sources.

  6. Fiber optic evanescent wave (FOEW) microbial sensor for dental application

    Science.gov (United States)

    Kishen, Anil; John, M. S.; Chen, Jun-Wei; Lim, Chu S.; Hu, Xiao; Asundi, Anand K.

    2001-10-01

    In this work a new approach based on the fiber Optic Evanescent Wave (FOEW) Spectroscopy is developed for the effective determination of dental caries activity in human saliva. The biosensor design utilized the exponentially decaying wave that extends to the lower index region of the optical fiber's core-cladding interface. In order to achieve this, a short length of the cladding is removed and the fiber core surface is coated with a porous glass medium using sol-gel technique. The acidogenic profile resulting from the Streptococcus mutans activity in the human saliva is monitored using an indicator, which was encapsulated within the porous coating. These investigations display the potential benefits of FOEW based microbial sensor to monitor caries activity in human saliva.

  7. A microvolume molecularly imprinted polymer modified fiber-optic evanescent wave sensor for bisphenol A determination.

    Science.gov (United States)

    Xiong, Yan; Ye, Zhongbin; Xu, Jing; Liu, Yucheng; Zhang, Hanyin

    2014-04-01

    A fiber-optic evanescent wave sensor for bisphenol A (BPA) determination based on a molecularly imprinted polymer (MIP)-modified fiber column was developed. MIP film immobilized with BPA was synthesized on the fiber column, and the sensor was then constructed by inserting the optical fiber prepared into a transparent capillary. A microchannel (about 2.0 μL) formed between the fiber and the capillary acted as a flow cell. BPA can be selectively adsorbed online by the MIP film and excited to produce fluorescence by the evanescent wave produced on the fiber core surface. The conditions for BPA enrichment, elution, and fluorescence detection are discussed in detail. The analytical measurements were made at 276 nm/306 nm (λ(ex)/λ(em)), and linearity of 3 × 10(-9)-5 × 10(-6) g mL(-1) BPA, a limit of detection of 1.7 × 10(-9) g mL(-1) BPA (3σ), and a relative standard deviation of 2.4% (n = 5) were obtained. The sensor selectivity and MIP binding measurement were also evaluated. The results indicated that the selectivity and sensitivity of the proposed fiber-optic sensor could be greatly improved by using MIP as a recognition and enrichment element. Further, by modification of the sensing and detection elements on the optical fiber, the proposed sensor showed the advantages of easy fabrication and low cost. The novel sensor configuration provided a platform for monitoring other species by simply changing the light source and sensing elements. The sensor presented has been successfully applied to determine BPA released from plastic products treated at different temperatures.

  8. Biochemical sensing application based on optical fiber evanescent wave sensor

    Science.gov (United States)

    Lv, Xiaoyi; Mo, Jiaqing; Xu, Liang; Jia, Zhenhong

    2015-08-01

    We have designed a novel evanescent field fiber optic biosensors with porous silicon dioxide cladding. The pore size of porous silicon dioxide cladding is about 100 nm in diameter. Biological molecules were immobilized to the porous silicon dioxide cladding used APTES and glutaraldehyde. Refractive index of cladding used Bruggemann's effective medium theory. We carried out simulations of changing in light intensity in optical fiber before and after chemical coupling of biomolecules. This novel optical fiber evanescent wave biosensor has a great potential in clinical chemistry for rapid and convenient determination of biological molecule.

  9. Determination of bacterial activity by use of an evanescent-wave fiber-optic sensor

    Science.gov (United States)

    John, M. Shelly; Kishen, Anil; Sing, Lim Chu; Asundi, Anand

    2002-12-01

    A novel technique based on fiber-optic evanescent-wave spectroscopy is proposed for the detection of bacterial activity in human saliva. The sensor determines the specific concentration of Streptococcus mutans in saliva, which is a major causative factor in dental caries. In this design, one prepares the fiber-optic bacterial sensor by replacing a portion of the cladding region of a multimode fiber with a dye-encapsulated xerogel, using the solgel technique. The exponential decay of the evanescent wave at the core-cladding interface of a multimode fiber is utilized for the determination of bacterial activity in saliva. The acidogenic profile of Streptococcus mutans is estimated by use of evanescent-wave absorption spectra at various levels of bacterial activity.

  10. Nanotomography of Cell Surfaces with Evanescent Fields

    Directory of Open Access Journals (Sweden)

    Michael Wagner

    2008-01-01

    Full Text Available The technique of variable-angle total internal reflection fluorescence microscopy (TIRFM and its application to nanotomography of cell surfaces are described. Present applications include (1 3D imaging of chromosomes in their metaphase to demonstrate axial resolution in the nanometre range, (2 measurements of cell-substrate topology, which upon cholesterol depletion shows some loosening of cell-substrate contacts, and (3 measurements of cell topology upon photodynamic therapy (PDT, which demonstrate cell swelling and maintenance of focal contacts. The potential of the method for in vitro diagnostics, but also some requirements and limitations are discussed.

  11. Flow injection small-volume fiber-optic pH sensor based on evanescent wave excitation and fluorescence determination.

    Science.gov (United States)

    Xiong, Yan; Huang, Ying; Ye, Zhongbin; Guan, Yafeng

    2011-05-01

    A small-volume fiber-optic pH sensor (FOEWS) based on evanescent wave excitation is developed and evaluated. The sensor is simply fabricated by inserting a decladded optical fiber into a transparent capillary tube. A microchannel between the optical fiber and the capillary inner wall was formed and acted as flow cell for solution flowing through. The pH-sensitive fluorophore of fluorescein can be excited by the evanescent wave field produced on the fiber core surface to produce emission fluorescence. pH value was then sensed by its enhancing effect on the emission fluorescence intensity. The response range of the sensor is from pH 2.09 to pH 8.85 and the linear range is from pH 3.25 to 8.85. The proposed sensor has a small detection volume of 2.5 μL and a short response time of 8 s. It has been applied to measure pH values of real water samples and was in good agreement with the results obtained by commercial pH meter. © Springer Science+Business Media, LLC 2010

  12. Evanescent-wave Infrared Optical Fiber Gas Sensor

    Science.gov (United States)

    Wang, Yiding; Wang, Di; Zhong, Hong-Jie; Zhang, Zhiguo

    2000-03-01

    We propose the treatment of amblyopia using yellow-green laser diodes.There are amblyopia children in excess of fifty million in the world.Because the causative agent of amblyopia hasn't been well understood,only roughly considered to be concerned with visual sense cell,optic nerve network and function of nerve center,no appropriate treatment is found up to date.The vision of person is determined by the center hollow region of retina,where there are three kinds of cone cell.The corresponding peak wavelength in absorption spectrum locates 447nm(blue light),532nm (green light)and 565nm(yellow light), respectively.When stimulated by white light, excited degree of three kinds of cone cell are identical,or yellow-green light,to which person eye is most sensitive, will significantly takes effects.Therefore the yellow-green laser diode is suitable for treating amblyopia. The weak laser,namely laser power less than mW order of magnitude,shows curative by stimulating bion tissue.When stimulating light power density is less than 0.001W/cm,the compounding speed of nucleic acid DNA is significantly increased.The growth rate of cell,activity of enzyme,content of hemoglobin and the growth of blood vessel,are all increased.However,it's key to control the dose of light.When the dose transcend some value,a inhibition will occur.The little dose of weak laser treatment can be accumulated with a parabolic characteristics,that is the weak laser generate bion response stengthening gradually versus time.Then it will weaken gradually after the peak.When the treatment duration is longer than a certain time,a inhibition also takes place.A suggested theraphy is characterized by little dose and short treatment course. In a conclusion, the yellow-green laser diode should be used for the treatment of amblyopia.The little dose and short treatment couse are to be adopted.

  13. High-sensitivity four-layer polymer fiber-optic evanescent wave sensor.

    Science.gov (United States)

    Xin, Xin; Zhong, Nianbing; Liao, Qiang; Cen, Yanyan; Wu, Ruohua; Wang, Zhengkun

    2017-05-15

    We present a novel four-layer structure consisting of bottom, second, third, and surface layers in the sensing region, for a D-shaped step-index fiber-optic evanescent wave (FOEW) sensor. To reduce the background noise, the surface of the longitudinal section in the D-shaped region is coated with a light-absorbing film. We check the morphologies of the second and surface layers, examine the refractive indices (RIs) of the third and surface layers, and analyze the composition of the surface layer. We also investigate the effects of the thicknesses and RIs of the third and surface layers and the LA film on the light transmission and sensitivity of the FOEW sensors. The results highlight the very good sensitivity of the proposed FOEW sensor with a four-layer structure, which reached -0.077 (μg/l)(-1) in the detection of the target antibody; the sensitivity of the novel FOEW sensor was 7.60 and 1.52 times better than that of a conventional sensor with a core-cladding structure and an FOEW sensor with a three-layer structure doped with GeO2. The applications of this high-sensitivity FOEW sensor can be extended to biodefense, disease diagnosis, and biomedical and biochemical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effects of surface roughness on optical properties and sensitivity of fiber-optic evanescent wave sensors.

    Science.gov (United States)

    Zhong, Nianbing; Zhu, Xun; Liao, Qiang; Wang, Yongzhong; Chen, Rong; Sun, Yahui

    2013-06-10

    The effects of surface roughness on the light transmission properties and sensitivity of fiber-optic evanescent wave sensors are investigated. A simple method of increasing the sensitivity based on the surface roughness (pit depth δ and diameter Δ) and incident angle U(i) of light rays on the fiber input end is proposed. We discovered that as 2δ/Δ increases, the transmitted light intensity decreases, but the sensitivity initially increases and then decreases. In sensors containing fibers of various roughnesses, the sensitivity to glucose solutions reached -11.7 mW/riu at 2δ/Δ=0.32 and increased further to -15.3 mW/riu with proper adjustment of U(i).

  15. Evanescent field Sensors Based on Tantalum Pentoxide Waveguides – A Review

    OpenAIRE

    Christian Hoffmann; Gerd Sulz; Kerstin Oehse; Katrin Schmitt

    2008-01-01

    Evanescent field sensors based on waveguide surfaces play an important rolewhere high sensitivity is required. Particularly tantalum pentoxide (Ta2O5) is a suitablematerial for thin-film waveguides due to its high refractive index and low attenuation.Many label-free biosensor systems such as grating couplers and interferometric sensors aswell as fluorescence-based systems benefit from this waveguide material leading toextremely high sensitivity. Some biosensor systems based on Ta2O5 waveguide...

  16. Development of Embedded Fiber-Optic Evanescent Wave Sensors for Optical Characterization of Graphite Anodes in Lithium-Ion Batteries.

    Science.gov (United States)

    Ghannoum, AbdulRahman; Nieva, Patricia; Yu, Aiping; Khajepour, Amir

    2017-11-29

    The development, fabrication, and embedment of fiber-optic evanescent wave sensors (FOEWSs) to monitor the state of charge (SOC) and the state of health (SOH) of lithium-ion batteries (LIBs) are presented. Etching of FOEWSs is performed using a solution of 40 wt % ammonium fluoride (NH4F) and 49 wt % hydrofluoric acid (HF) (6:1), which is found to be superior to an etching solution containing just 49 wt % HF. FOEWSs were characterized using glycerol and found to have the highest sensitivity in a lithium-ion battery when they lose 92% of their transmittance in the presence of glycerol on their sensing region. The physical effect that the FOEWS has on the graphite anode is also investigated and is found to be much more significant in Swagelok cells compared to that in in-house-fabricated pouch cells, mainly due to pressure variation. The FOEWS was found to be most sensitive to the changes in the LIB when it was completely embedded using a slurry of graphite anode material within a pouch cell. The optimized fabrication process of the embedded FOEWS demonstrates the potential of using such sensors commercially for real-time monitoring of the SOC and SOH of LIBs while in operation.

  17. Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film

    Science.gov (United States)

    Qiu, Hengwei; Gao, Saisai; Chen, Peixi; Li, Zhen; Liu, Xiaoyun; Zhang, Chao; Xu, Yuanyuan; Jiang, Shouzhen; Yang, Cheng; Huo, Yanyan; Yue, Weiwei

    2016-05-01

    An evanescent wave absorption (EWA) sensor based on tapered multimode fiber (TMMF) coated with monolayer graphene film for the detection of double-stranded DNA (DS-DNA) is investigated in this work. The TMMF is a silica multimode fiber (nominally at 62.5 μm), which was tapered to symmetric taper with waist diameters of ~30 μm and total length of ~3 mm. Monolayer graphene film was grown on a copper foil via chemical vapor deposition (CVD) technology and transferred onto skinless tapered fiber core via dry transfer technology. All the components of the sensor are coupled together by fusion splicer in order to eliminate the external disturbance. DS-DNA is created by the assembly of two relatively complemented oligonucleotides. The measurements are obtained by using a spectrometer in the optical wavelength range of 400-900 nm. With the increase of DS-DNA concentration, the output light intensity (OPLI) arisen an obvious attenuation. Importantly, the absorbance (A) and the DS-DNA concentrations shown a reasonable linear variation in a wide range of 5-400 μM. Through a series of comparison, the accuracy of TMMF sensor with graphene (G-TMMF) is much better than that without graphene (TMMF), which can be attributed to the molecular enrichment of graphene by π-π stacking.

  18. Fiber-optic evanescent-field laser sensor for in-situ gas diagnostics.

    Science.gov (United States)

    Willer, Ulrike; Scheel, Dirk; Kostjucenko, Irina; Bohling, Christian; Schade, Wolfgang; Faber, Eckhard

    2002-09-01

    A compact, rugged and portable fiber-optic evanescent-field laser sensor is developed for the detection of gaseous species in harsh environments such as volcano fumaroles or industrial combustion of glass furnaces. The sensor consists of an optical multi-mode fused silica fiber with jacket and cladding removed and the bare fiber core in direct contact with the surrounding molecules. The beam of a single-mode DFB diode laser with an emission wavelength centered at 1.5705 microm is coupled into the fiber. At the other end of the fiber an infrared detector is used to record the transmitted infrared laser light intensity. Due to the frustrated total reflection (FTR) and the attenuated total reflection (ATR) the laser intensity is attenuated when passing through the fiber. The FTR is related to a change of the index of refraction while the latter one is related to a change of the absorption coefficient. While tuning the DFB laser wavelength across absorption lines of molecules surrounding the fiber a spectral intensity profile is measured. Voigt functions are fitted to the recorded intensity profiles to estimate relative molecule concentrations. In this paper results from first field measurements at the volcano site 'Solfatara' in Italy are reported that use such a sensor device for simultaneous detection of H2S, CO2 and H2O directly in the gas stream of a volcano fumarole.

  19. Optical waveguides formed by silver ion exchange in Schott SG11 glass for waveguide evanescent field fluorescence microscopy: evanescent images of HEK293 cells.

    Science.gov (United States)

    Hassanzadeh, Abdollah; Nitsche, Michael; Armstrong, Souzan; Nabavi, Noushin; Harrison, Rene; Dixon, S Jeffrey; Langbein, Uwe; Mittler, Silvia

    2010-01-01

    Planar glass waveguides with a specific number of modes were fabricated by Ag(+)-Na(+) exchange in Schott SG11 glass. The effective refractive indices were determined using m-line spectroscopy in both s- and p-polarization. By using the reversed Wentzel-Kramers-Brillouin approximation, the index profiles were described by a nonlinear diffusion equation. The diffusion coefficients for Ag(+) were established, as well as the penetration depth of the evanescent field in an aqueous environment for the different modes. The integrals of \\E\\(2) fields for the evanescent-guided fields were investigated. These are important when evanescent fields are used for illumination in interface microscopy, an alternative method to total internal reflection fluorescence (TIRF) microscopy. The photoluminescent behavior of the waveguides was investigated as a function of ion exchange time and excitation wavelengths. Comparable images were obtained of fluorescently labeled HEK293 cells using TIRF microscopy and waveguide evanescent field fluorescence microscopy. Imaging was performed using HEK293 cells, delivering similar images and information.

  20. Development of dithizone based fibre optic evanescent wave sensor for heavy metal ion detection in aqueous environments

    Science.gov (United States)

    Bhavsar, K.; Prabhu, R.; Pollard, P.

    2013-06-01

    Detection of highly toxic heavy metal ions requires rapid, simple, sensitive and selective detection methods in the environment. Optical fibre based sensing facilitates the remote, continuous and in-situ detection approaches in the environment. Herein, we report the development of a dithizone based fibre optic sensor with a simple procedure to detect heavy metal ions in the aqueous environment using an evanescent wave sensing approach. The chromogenic ligand dithizone and its spectral specificity with metal ions has been elaborated in this work.

  1. Evanescent field Sensors Based on Tantalum Pentoxide Waveguides – A Review

    Directory of Open Access Journals (Sweden)

    Christian Hoffmann

    2008-01-01

    Full Text Available Evanescent field sensors based on waveguide surfaces play an important rolewhere high sensitivity is required. Particularly tantalum pentoxide (Ta2O5 is a suitablematerial for thin-film waveguides due to its high refractive index and low attenuation.Many label-free biosensor systems such as grating couplers and interferometric sensors aswell as fluorescence-based systems benefit from this waveguide material leading toextremely high sensitivity. Some biosensor systems based on Ta2O5 waveguides alreadytook the step into commercialization. This report reviews the various detection systems interms of limit of detection, the applications, and the suitable surface chemistry.

  2. Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Pedersen, Lars H.; Hoiby, Poul E.

    2004-01-01

    We demonstrate highly efficient evanescent-wave detection of fluorophore-labeled biomolecules in aqueous solutions positioned in the air holes of the microstructured part of a photonic crystal fiber. The air-suspended silica structures located between three neighboring air holes in the cladding...

  3. Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method.

    Science.gov (United States)

    Aikio, Sanna; Hiltunen, Jussi; Hiitola-Keinänen, Johanna; Hiltunen, Marianne; Kontturi, Ville; Siitonen, Samuli; Puustinen, Jarkko; Karioja, Pentti

    2016-02-08

    Flexible photonic integrated circuit technology is an emerging field expanding the usage possibilities of photonics, particularly in sensor applications, by enabling the realization of conformable devices and introduction of new alternative production methods. Here, we demonstrate that disposable polymeric photonic integrated circuit devices can be produced in lengths of hundreds of meters by ultra-high volume roll-to-roll methods on a flexible carrier. Attenuation properties of hundreds of individual devices were measured confirming that waveguides with good and repeatable performance were fabricated. We also demonstrate the applicability of the devices for the evanescent wave sensing of ambient refractive index. The production of integrated photonic devices using ultra-high volume fabrication, in a similar manner as paper is produced, may inherently expand methods of manufacturing low-cost disposable photonic integrated circuits for a wide range of sensor applications.

  4. ZnO nanowires for the modification of evanescence-field sensors and the development of novel solar cells; ZnO-Nanodraehte zur Modifizierung von Evaneszenzfeldsensoren und der Entwicklung neuartiger Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, Susanne

    2008-10-02

    The photoluminescence of single structures and the nanowire ensemble were analyzed and compared. This pursued in dependence on the excitation density and the sample temperature. The excitonic emission contributes essentially to the near-band-edge photoluminescence. The ZnO nanowire ensemble exhibits a laser threshold of 500 kW/cm{sup 2} at room temperature. To the photoluminescence spectra the single exciton processes were assigned. The wave-guiding properties were practically detected by means of optical microscopy and micromanipulation. While the main topic of this thesis lied in the analysis of the optical properties of the ZnO nanowires in the last part the implementation of nanostructures in hybrid solar cells was discussed and first results of the characterization of the material complex of p-conducting polymer (Clevios P) and ZnO nanowires presented.

  5. Evanescent field microscopy techniques for studying dynamics at the surface of living cells

    Science.gov (United States)

    Sund, Susan E.

    This thesis presents two distinct optical microscopy techniques for applications in cell biophysics: (a)the extension to living cells of an established technique, total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP) for the first time in imaging mode; and (b)the novel development of polarized total internal reflection fluorescence (p- TIRF) to study membrane orientation in living cells. Although reversible chemistry is crucial to dynamical processes in living cells, relatively little is known about the relevant chemical kinetic rates in vivo. TIR/FRAP, an established technique which can measure reversible biomolecular kinetic rates at surfaces, is extended here to measure kinetic parameters of microinjected rhodamine actin at the cytofacial surface of the plasma membrane of living cultured smooth muscle cells. For the first time, spatial imaging (with a CCD camera) is used in conjunction with TIR/FRAP. TIR/FRAP imaging allows production of spatially resolved images of kinetic data, and calculation of correlation distances, cell-wide gradients, and kinetic parameter dependence on initial fluorescence intensity. In living cells, membrane curvature occurs both in easily imaged large scale morphological features, and also in less visualizable submicroscopic regions of activity such as endocytosis, exocytosis, and cell surface ruffling. A fluorescence microscopic method, p-TIRF, is introduced here to visualize such regions. The method is based on fluorescence of the oriented membrane probe diI- C18-(3) (diI) excited by evanescent field light polarized either perpendicular or parallel to the plane of the substrate coverslip. The excitation efficiency from each polarization depends on the membrane orientation, and thus the ratio of the observed fluorescence excited by these two polarizations vividly shows regions of microscopic and submicroscopic curvature of the membrane. A theoretical background of the technique and experimental verifications

  6. Fiber optic NIR evanescent wave absorption sensor systems for in-situ monitoring of hydrocarbon compounds in waste and ground water

    Science.gov (United States)

    Buerck, Jochen; Denter, P.; Mensch, M.; Kraemer, K.; Scholz, Michael

    1999-02-01

    In situ measurements with the prototype of a portable fiber- optic sensor system for the monitoring of nonpolar hydrocarbons (HC) in ground water or industrial waste water are presented. This sensor system can be used for quantitative in situ analysis of pollutants such as aromatic solvents, fuels, mineral oils or chlorinated HCs in a broad concentration range from around 200 (mu) g(DOT) L-1 up to a few 100 mg(DOT) L-1. The sensing principle is based on solid phase extraction of analyte molecules into a hydrophobic silicone cladding of a quartz glass optical fiber and the direct absorptiometric measurement of the extracted species in the polymer through the evanescent wave. The sensor can be connected via all-silica fibers with a length of up to 100 m to a filter photometer developed at the IFIA, thus allowing even remote analysis in monitoring wells. This instrument provides a sum concentration signal of the extracted organic compounds by measuring the integral absorption at the C-H overtone bands in the near-infrared spectral range. In situ measurements with the sensor system were performed in a ground water circulation well at the VEGAS research facility (Universitat Stuttgart). Here, the sensor proved to trace the HC sum concentration of xylene isomers in process water pumped from the well to a stripper column. In further experiments the sensor was combined with an oil sampling device and was tested with simulated waste waters of a commercial vehicle plant contaminated with different types of mineral oil. In this case the sensor system was able to detect the presence of mineral oil films floating on water or oil-in-water emulsions with concentrations greater than 20 ppm (v/v) within a few minutes.

  7. Axial Super-resolution Evanescent Wave Tomography

    CERN Document Server

    Pendharker, Sarang; Newman, Ward; Ogg, Stephen; Nazemifard, Neda; Jacob, Zubin

    2016-01-01

    Optical tomographic reconstruction of a 3D nanoscale specimen is hindered by the axial diffraction limit, which is 2-3 times worse than the focal plane resolution. We propose and experimentally demonstrate an axial super-resolution evanescent wave tomography (AxSET) method that enables the use of regular evanescent wave microscopes like Total Internal Reflection Fluorescence Microscope (TIRF) beyond surface imaging, and achieve tomographic reconstruction with axial super-resolution. Our proposed method based on Fourier reconstruction achieves axial super-resolution by extracting information from multiple sets of three-dimensional fluorescence images when the sample is illuminated by an evanescent wave. We propose a procedure to extract super-resolution features from the incremental penetration of an evanescent wave and support our theory by 1D (along the optical axis) and 3D simulations. We validate our claims by experimentally demonstrating tomographic reconstruction of microtubules in HeLa cells with an axi...

  8. Sensitivity enhancement in evanescent optical waveguidesensors

    NARCIS (Netherlands)

    Veldhuis, G.J.; Parriaux, O.; Hoekstra, Hugo; Lambeck, Paul

    2000-01-01

    It is shown, that the sensitivity of the effective refractive index on the cladding index in evanescent optical waveguide sensors, can be larger than unity. This implies that the attenuation of a guided wave propagating in a waveguide immersed in an absorptive medium can be made larger than that of

  9. Evanescent gravitational mass

    OpenAIRE

    Bel, Lluis

    2009-01-01

    A simple and {\\it innocent} modification of Poisson's equation leads to a modified Newtonnian theory of gravitation where a localized and {\\it positive} energy density of the gravitational field contributes to its own source. The result is that the total {\\it active gravitational mass} of a compact object is the sum of its {\\it proper mass} and an {\\it evanescent gravitational mass} which is a mass equivalent to the gravitational energy.

  10. Evanescent waves in optics an introduction to plasmonics

    CERN Document Server

    Bertolotti, Mario; M Guzman, Angela

    2017-01-01

    This monograph provides an introductory discussion of evanescent waves and plasmons, describes their properties and uses, and shows how they are fundamental when operating with nanoscale optics. Far field optics is not suitable for the design, description, and operation of devices at this nanometre scale. Instead one must work with models based on near-field optics and surface evanescent waves. The new discipline of plasmonics has grown to encompass the generation and application of plasmons both as a travelling excitation in a nanostructure and as a stationary enhancement of the electrical field near metal nanosurfaces. The book begins with a brief review of the basic concepts of electromagnetism, then introduces evanescent waves through reflection and refraction, and shows how they appear in diffraction problems, before discussing the role that they play in optical waveguides and sensors. The application of evanescent waves in super-resolution devices is briefly presented, before plasmons are introduced. Th...

  11. Evanescent escape from the dielectric ellipse

    Energy Technology Data Exchange (ETDEWEB)

    Creagh, Stephen C; White, Michael M, E-mail: stephen.creagh@nottingham.ac.u [School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2010-11-19

    The evanescent wave outside a whispering gallery mode of an elliptic dielectric cavity is described using the extension to complex phase space of the underlying family of rays. Evanescent waves outside dielectric cavities supporting whispering gallery modes are of practical importance in applications such as microlasers, wavelength filters and sensors. The elliptical case is interesting because it shares key topological features with generically deformed nonintegrable resonators but allows all the required ray data to be computed explicitly. This is in contrast to generic perturbations where natural boundaries can prevent direct computation of the required ray data for arbitrarily small deformations. It is found that while natural boundaries do intervene in the elliptical case, they do so at higher order in the short-wavelength approximations and only for sufficiently large deformations. Before natural boundaries intervene, complex WKB methods provide a good description of emission patterns.

  12. Evanescent interferometric lithography.

    Science.gov (United States)

    Blaikie, R J; McNab, S J

    2001-04-01

    Simulation results are presented to illustrate the main features of what we believe is a new photolithographic technique, evanescent interferometric lithography (EIL). The technique exploits interference between resonantly enhanced, evanescently decaying diffracted orders to create a frequency-doubled intensity pattern in the near field of a metallic diffraction grating. It is shown that the intensity in a grating's near field can be enhanced significantly compared with conventional interferometric lithography. Contrast in the interference pattern is also increased, owing to a reduction in the zeroth-order transmission near resonance. The pattern's depth of field reduces as the wavelength is increased beyond cutoff of the first-order diffracted components, and results are presented showing the trade-offs that can be made between depth of field and intensity enhancement. Examples are given for a 270-nm-period grating embedded in material with refractive index n = 1.6 and illuminated with wavelengths near 450 nm. Under these conditions it is predicted that high-intensity, high-contrast patterns with 135-nm period can be formed in photoresists more than 50 nm thick.

  13. Polymer photonic crystal dye lasers as label free evanescent cell sensors

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Lopacinska, Joanna M.; Jakobsen, Mogens Havsteen

    2009-01-01

    . The lasers are fabricated by combined nanoimprint and photolithography (CNP) in Ormocore hybrid polymer doped with the laser dye Pyrromethene 597. The lasers emit in the chip plane at a wavelength around 595 nm when pumped with 5 ns pulses from a compact frequency doubled Nd:YAG laser. We investigate...

  14. Glycan profiling analysis using evanescent-field fluorescence-assisted lectin array: Importance of sugar recognition for cellular uptake of exosomes from mesenchymal stem cells.

    Science.gov (United States)

    Shimoda, Asako; Tahara, Yoshiro; Sawada, Shin-Ichi; Sasaki, Yoshihiro; Akiyoshi, Kazunari

    2017-09-23

    Studies involving the functional analysis of exosomal contents including proteins, DNA, and RNA have been reported. Most membrane proteins and lipids are glycosylated, which controls their physical properties and functions, but little is known about glycans on exosomes owing to the difficulty of analysing them. To shed light on these issues, we collected exosomes from mesenchymal stem cells (MSCs) derived from human adipose tissue for glycan profiling using evanescent-field fluorescence-assisted lectin array as well as analysis of their uptake in vivo. Initial analyses showed that the mean diameter of the collected exosomes was 178 nm and they presented with typical exosomal and MSC markers. Regarding the glycan profiling, exosomes interacted more strongly than the membrane of the original MSCs did with a range of lectins, especially sialic acid-binding lectins. The findings also showed that cellular exosome uptake involved recognition by HeLa cell-surface-bound sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs). Confirming this siglec-related uptake, in vivo experiments involving subcutaneous injection of the fluorescently labelled exosomes into mice showed their transport into lymph nodes and internalization by antigen-presenting cells, particularly those expressing CD11b. Closer analysis revealed the colocalization of the exosomes with siglecs, indicating their involvement in the uptake. These findings provide us with an improved understanding of the importance of exosomal transport and targeting in relation to glycans on exosomal surfaces, potentially enabling us to standardize exosomes when using them for therapeutic purposes. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Polymer photonic crystal dye lasers as optofluidic cell sensors

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Lopacinska, Joanna M.; Jakobsen, Mogens Havsteen

    2009-01-01

    Dye doped hybrid polymer lasers are implemented as label free evanescent field biosensors for detection of cells. It is demonstrated that although the coverage is irregular and the cells extend over several lattice constants, the emission wavelength depends linearly on the fraction of the surface...

  16. Evanescent Waveguide Sensors for Biomedical Applications

    NARCIS (Netherlands)

    Purniawan, A.

    2014-01-01

    The American Cancer Society reported that the major public health problem is cancer. Based on the report, colonic cancer is the major cancer type in the digestive system. In addition, the percentage of death rate due to this cancer is 50%. Surgery to remove the part of the colon infected by the

  17. Combined evanescent-wave excitation and supercritical-angle fluorescence detection improves optical sectioning

    CERN Document Server

    Brunstein, Maia; Tourain, Christophe; Oheim, Martin

    2013-01-01

    Evanescent-wave microscopy achieves sub-diffraction axial sectioning by confining fluorescence excitation to a thin layer close to the cell/substrate interface. How thin this light sheet exactly is, however, is often unknown. Particularly in the popular objective-type total internal reflection fluorescence microscopy (TIRFM) configuration large deviations from the expected exponential intensity decay of the evanescent wave have been reported. Propagating, i.e., non-evanescent, excitation light diminishes the optical sectioning effect, reduces contrast and renders the quantification of TIRFM images uncertain. Here, we use a combination of azimuthal- and polar-angle beam scanning, dark-field scatter imaging, and atomic force microscopy to identify the sources of this unwanted background fluorescence excitation. We identify stray light originating from the microscope optics and the objective lens itself as the major sources of background, with minor contributions due to evanescent-wave scattering at the reflecti...

  18. Counting cells with a low-cost integrated microfluidics-waveguide sensor

    Science.gov (United States)

    Garcia, Daniel; Ghansah, Isaac; LeBlanc, John; Butte, Manish J.

    2012-01-01

    The capability to count cells from biofluids at low cost has important diagnostic implications in resource-poor settings. Many approaches have been developed to address this important need, and while most envision a low per-test cost, the detector instrument can be quite expensive. In this report, we present a novel device that enables low-cost and rapid counting of cells from a drop of blood. We demonstrate a shallow, buried, planar waveguide fabricated by ion exchange in glass that underlies a microfluidic structure for capturing cells. Laser light transmitted through the waveguide was attenuated by the number of metal nanoparticles tagged to the cells because of the interaction of the metal particles with the evanescent field of the waveguide. Calibration of the sensor using bead-tagged lymphocytes captured from human blood showed that the sensor could semi-quantitatively count as few as 100 cells/µL of blood. This technology enables the enumeration of specifically captured cells, allowing for a point-of-care, hand-held device for fast and affordable cell counting in screening, remote, or resource-poor settings. PMID:22454696

  19. Guard Cell and Tropomyosin Inspired Chemical Sensor

    Directory of Open Access Journals (Sweden)

    Jacquelyn K.S. Nagel

    2013-10-01

    Full Text Available Sensors are an integral part of many engineered products and systems. Biological inspiration has the potential to improve current sensor designs as well as inspire innovative ones. This paper presents the design of an innovative, biologically-inspired chemical sensor that performs “up-front” processing through mechanical means. Inspiration from the physiology (function of the guard cell coupled with the morphology (form and physiology of tropomyosin resulted in two concept variants for the chemical sensor. Applications of the sensor design include environmental monitoring of harmful gases, and a non-invasive approach to detect illnesses including diabetes, liver disease, and cancer on the breath.

  20. Sensor Development for PEM Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Steve Magee; Richard Gehman

    2005-07-12

    This document reports on the work done by Honeywell Sensing and Control to investigate the feasibility of modifying low cost Commercial Sensors for use inside a PEM Fuel Cell environment. Both stationary and automotive systems were considered. The target environment is hotter (100 C) than the typical commercial sensor maximum of 70 C. It is also far more humid (100% RH condensing) than the more typical 95% RH non-condensing at 40 C (4% RH maximum at 100 C). The work focused on four types of sensors, Temperature, Pressure, Air Flow and Relative Humidity. Initial design goals were established using a market research technique called Market Driven Product Definition (MDPD). A series of interviews were conducted with various users and system designers in their facilities. The interviewing team was trained in data taking and analysis per the MDPD process. The final result was a prioritized and weighted list of both requirements and desires for each sensor. Work proceeded on concept development for the 4 types of sensors. At the same time, users were developing the actual fuel cell systems and gaining knowledge and experience in the use of sensors and controls systems. This resulted in changes to requirements and desires that were not anticipated during the MDPD process. The concepts developed met all the predicted requirements. At the completion of concept development for the Pressure Sensor, it was determined that the Fuel Cell developers were happy with off-the-shelf automotive pressure sensors. Thus, there was no incentive to bring a new Fuel Cell Specific Pressure Sensor into production. Work was therefore suspended. After the experience with the Pressure Sensor, the requirements for a Temperature Sensor were reviewed and a similar situation applied. Commercially available temperature sensors were adequate and cost effective and so the program was not continued from the Concept into the Design Phase.

  1. Evanescent-coupling fiber optic pollution monitoring system using etched D-shape E-core fiber

    Science.gov (United States)

    Lee, Shing M.; Yang, Changjie; Pan, Wei P.

    1996-12-01

    Surface contamination of insulators in high voltage transmission and distribution systems may lead to troublesome flashovers which interrupt service. Insulator contamination may be monitored using direct measurement of equivalent salt deposit density (ESDD), which directly relates to the flashover voltage. A fiber-optic evanescent- coupling fiber-optic ESDD monitor is presented. The use of a piece of D-shape E-core fiber as sensor head can provide a sensitive and large area ESDD monitoring system. We have demonstrated the use of D-shape fiber in monitoring ESDD on insulator surfaces. A simple process has been developed to precisely etch the D-fiber. The polarimetric and evanescent loss sensors have been investigated. The evanescent loss sensor is particularly suitable for in-situ ESDD monitoring in power transmission lines and substations.

  2. Biophotonics sensor acclimatization to stem cells environment

    Science.gov (United States)

    Mohamad Shahimin, Mukhzeer

    2017-11-01

    The ability to discriminate, characterise and purify biological cells from heterogeneous population of cells is fundamental to numerous prognosis and diagnosis applications; often forming the basis for current and emerging clinical protocols in stem cell therapy. Current sorting approaches exploit differences in cell density, specific immunologic targets, or receptor-ligand interactions to isolate particular cells. Identification of novel properties by which different cell types may be discerned and of new ways for their selective manipulation are clearly fundamental components for improving sorting methodologies. Biophotonics sensor developed by our team are potentially capable of discriminating cells according to their refractive index (which is highly dependable on the organelles inside the cell), size (indicator to cell stage) and shape (in certain cases as an indicator to cell type). The sensor, which already discriminate particles efficiently, is modified to acclimatize into biological environment, especially for stem cell applications.

  3. Evanescent Wave Fiber Optic Biosensor for Salmonella Detection in Food

    Directory of Open Access Journals (Sweden)

    Arun K. Bhunia

    2009-07-01

    Full Text Available Salmonella enterica is a major food-borne pathogen of world-wide concern. Sensitive and rapid detection methods to assess product safety before retail distribution are highly desirable. Since Salmonella is most commonly associated with poultry products, an evanescent wave fiber-optic assay was developed to detect Salmonella in shell egg and chicken breast and data were compared with a time-resolved fluorescence (TRF assay. Anti-Salmonella polyclonal antibody was immobilized onto the surface of an optical fiber using biotin-avidin interactions to capture Salmonella. Alexa Fluor 647-conjugated antibody (MAb 2F-11 was used as the reporter. Detection occurred when an evanescent wave from a laser (635 nm excited the Alexa Fluor and the fluorescence was measured by a laser-spectrofluorometer at 710 nm. The biosensor was specific for Salmonella and the limit of detection was established to be 103 cfu/mL in pure culture and 104 cfu/mL with egg and chicken breast samples when spiked with 102 cfu/mL after 2–6 h of enrichment. The results indicate that the performance of the fiber-optic sensor is comparable to TRF, and can be completed in less than 8 h, providing an alternative to the current detection methods.

  4. Bottle microresonator with actively stabilized evanescent coupling

    NARCIS (Netherlands)

    Junge, C.; Nickel, S.; O'Shea, D.; Rauschenbeutel, A.

    2011-01-01

    The evanescent coupling of light between a whispering-gallery-mode bottle microresonator and a subwavelength-diameter coupling fiber is actively stabilized by means of the Pound-Drever-Hall technique. We demonstrate the stabilization of a critically coupled resonator with a control bandwidth of 0.1

  5. Non-linear evanescent-field imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oheim, Martin [Laboratory of Neurophysiology and New Microscopies, CNRS FRE 2500, INSERM U 603, Ecole Superieure de Physique et Chimie Industrielles (ESPCI), 10 rue Vauquelin, F-75005 Paris (France); Schapper, Florian [Freie Universitaet Berlin, Institut fuer Experimentalphysik, Arbeitsgruppe Wolf, Arnimallee 14, D-14195 Berlin (Germany)

    2005-05-21

    Total internal reflection fluorescence (TIRF), a general term that embraces any spectroscopic or microscopic technique based on the evanescent field created by TIR of light, is further establishing itself as an important tool for studying near-surface phenomena. Impingement of a femtosecond-pulsed infrared beam on a reflecting interface creates the conditions for 'macroscopic' evanescent-field two-photon fluorescence excitation. The two-photon fluorescence excitation volume is confined by both the non-linearity of the multi-photon process and the spatial inhomogeneity of the evanescent field. The absence of scattered excitation resulting in a low background and the possibility of simultaneous multi-colour fluorescence excitation should make non-linear evanescent-field excitation particularly attractive for quantitative single-molecule observation and ultra-sensitive screening assays. In this topical review, we survey the requirements, present the current results and explore the potential of this novel non-linear microscopy. (topical review)

  6. Measuring nanolayer profiles of various materials by evanescent light technique.

    Science.gov (United States)

    Mirchin, Nina; Apter, Boris; Lapsker, Igor; Fogel, V; Gorodetsky, Uri; Popescu, Simona A; Peled, Aaron; Popescu-Pelin, Gianina; Dorcioman, Gabriela; Duta, Liviu; Popescu, Andrei; Mihailescu, Ion N

    2012-03-01

    The evanescent light photon extraction efficiency of insulator, semiconductor and conductor amorphous nanolayers deposited on glass waveguides was evaluated from Differential Evanescent Light Intensity measurements. The Differential Evanescent Light Intensity technique uses the evanescent field scattered by the deposited nanolayer, enabling nanometer thickness profiling due to the high inherent dark background contrast. The results show that the effective evanescent photon penetration depth increases from metal to semiconductor and then to insulating layers, establishing thus the effective photon-material interaction length for the various materials classes.

  7. Metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, Nina

    This work concerns planar optical waveguide sensors for biosensing applications, with the focus on deep-probe sensing for micron-scale biological objects like bacteria and whole cells. In the last two decades planar metal-clad waveguides have been brieflyintroduced in the literature applied...... for various biosensing applications, however a thorough study of the sensor configurations has not been presented, but is the main subject of this thesis. Optical sensors are generally well suited for bio-sensing asthey show high sensitivity and give an immediate response for minute changes in the refractive...... index of a sample, due to the high sensitivity of optical bio-sensors detection of non-labeled biological objects can be performed. The majority of opticalsensors presented in the literature and commercially available optical sensors are based on evanescent wave sensing, however most of these sensors...

  8. Metamaterial Sensors

    Directory of Open Access Journals (Sweden)

    Jing Jing Yang

    2013-01-01

    Full Text Available Metamaterials have attracted a great deal of attention due to their intriguing properties, as well as the large potential applications for designing functional devices. In this paper, we review the current status of metamaterial sensors, with an emphasis on the evanescent wave amplification and the accompanying local field enhancement characteristics. Examples of the sensors are given to illustrate the principle and the performance of the metamaterial sensor. The paper concludes with an optimistic outlook regarding the future of metamaterial sensor.

  9. Influence of evanescent wave on birefringent microplates

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Hanson, Steen Grüner; Maksimyak, P. P.

    2017-01-01

    manifestations of optical forces, including the helicity-independent force caused by the transverse helicity-independent spin or vertical spin of a diagonally polarized wave, which was not observed and exploited up to recently. The main finding of our study consists in a direct experimental demonstration...... of the physical existence and mechanical action of this recently discovered extraordinary transverse component of the spin here arising in an evanescent light wave due to the total internal reflection of a linearly polarized probing beam with azimuthal angle 45(circle) at the interface between the birefringent...... plate and air, which is oriented perpendicularly to the wavevector of an evanescent wave and localized over the boundary of the transparent media with polarization-dependent refraction indices. (C) 2017 Optical Society of America...

  10. Substrate Integrated Evanescent Filters Employing Coaxial Stubs

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy

    2015-01-01

    is designed, fabricated, and tested. The filter exhibits a transmission zero due to the implemented stubs. The problem of evanescent mode filter analysis is formulated in terms of conventional network concepts. This formulation is then used for modelling of the filters. Strategies to further miniaturization...... and small height of the waveguide. In this work, one of the realization methods of evanescent mode waveguides using a single layer substrate is considered. The method is based on the use of coaxial stubs as capacitive susceptances externally connected to a SIW. A microwave filter based on these principles...... of the microwave filter are discussed. The approach is useful in applications where a sharp roll-off at the upper stop-band is required....

  11. On the propagation speed of evanescent modes

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, A.P.L. [State Univ. of Campinas, Campinas (Brazil)]|[Universidad Federal Fluminense (Brazil); Hernandez Figueroa, H.E. [State Univ. of Campinas, Campinas (Brazil); Recami, E. [Istituto Nazionale di Fisica Nucleare, Milan (Italy)]|[Bergamo Univ., Bergamo (Italy). Fac. di Ingegneria]|[State Univ. of Campinas, Campinas (Brazil)

    2000-03-01

    The group velocity of evanescent waves (in undersized waveguides, for instance) was theoretically predicted, and has been experimentally verified, to be superluminal. By contrast, it is known that the precursor speed in vacuum cannot be larger than c. This paper, by computer simulations based on Maxwell equations only, shows the existence of both phenomena and verifies the actual possibility of superluminal group velocities, without violating the so-called (naive) Einstein causality.

  12. Bottle microresonator with actively stabilized evanescent coupling

    CERN Document Server

    Junge, C; O'Shea, D; Rauschenbeutel, A

    2011-01-01

    The evanescent coupling of light between a whispering-gallery-mode bottle microresonator and a sub-wavelength-diameter coupling fiber is actively stabilized by means of a Pound-Drever-Hall technique. We demonstrate the stabilization of a critically coupled resonator with a control bandwidth of 0.1 Hz, yielding a residual transmission of (9 \\pm 3) \\times 10^-3 for more than an hour. Simultaneously, the frequency of the resonator mode is actively stabilized.

  13. Evanescent excitation and emission in fluorescence microscopy.

    Science.gov (United States)

    Axelrod, Daniel

    2013-04-02

    Evanescent light-light that does not propagate but instead decays in intensity over a subwavelength distance-appears in both excitation (as in total internal reflection) and emission (as in near-field imaging) forms in fluorescence microscopy. This review describes the physical connection between these two forms as a consequence of geometrical squeezing of wavefronts, and describes newly established or speculative applications and combinations of the two. In particular, each can be used in analogous ways to produce surface-selective images, to examine the thickness and refractive index of films (such as lipid multilayers or protein layers) on solid supports, and to measure the absolute distance of a fluorophore to a surface. In combination, the two forms can further increase selectivity and reduce background scattering in surface images. The polarization properties of each lead to more sensitive and accurate measures of fluorophore orientation and membrane micromorphology. The phase properties of the evanescent excitation lead to a method of creating a submicroscopic area of total internal reflection illumination or enhanced-resolution structured illumination. Analogously, the phase properties of evanescent emission lead to a method of producing a smaller point spread function, in a technique called virtual supercritical angle fluorescence. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Evanescent wave sensing and absorption analysis of herbal tea floral extracts in the presence of silver metal complexes

    Science.gov (United States)

    Priyamvada, V. C.; Radhakrishnan, P.

    2017-06-01

    Fiber optic evanescent wave sensors are used for studying the absorption properties of biochemical samples. The studies give precise information regarding the actual ingredients of the samples. Recent studies report the corrosion of silver in the presence glucose dissolved in water and heated to a temperature of 70°C. Based on this report evanescent absorption studies are carried out in hibiscus herbal tea floral extracts in the presence of silver metal complexes. These studies can also lead to the evaluation of the purity of the herbal tea extract.

  15. Cell Metabolism Monitoring with MEMS Sensor

    Science.gov (United States)

    Nakabeppu, Osamu; Sakayori, Junichi

    Cells and living tissue slightly but always generate metabolic heat as long as they are alive. Thus, biological activity can be measured through the observation of metabolic heat, which has been developed as “bio-calorimetry”. On the other hand, further improvements in thermal sensing ability can be expected with use of the MEMS (Micro Electro Mechanical System) technology. The purpose of this study is to develop the monitoring technique of the metabolic heat of cells in as small number as possible with the MEMS technology. If the monitoring technique of metabolism of a few cells or even a single cell is made available, it plays very important rolls in bio- and medical- engineering, pharmaceutical sciences, and so on. In this study, a bio-calorimeter with a MEMS thermopile sensor was made, and its performance and metabolism monitoring of Yeast were tested. The thermopile sensor consisted of 350 thin film thermocouples of Cr and Ni strips of 20 μm width on a 150 μm thick glass plate. The thermopile sensor composed a calorimetric cell as a bottom plate with thick aluminum frame. The calorimetric cell was placed in a triple thermostatic chamber which employs a proportional control with a Peltier device and PID control with heater. The calorimeter showed a sensitivity of 0.62 V/W under the condition of including culture solution, time constant of the calorimetric cell of 90 sec, and a noise equivalent power of 60 nW, which corresponds to metabolic heat of 3 × 103 cells of Yeast. In the growth experiments of Yeast, growth thermograms for 105˜107 cells can be measured with reasonable generation times. It was demonstrated that the detectable number of Yeast cells of the MEMS calorimeter is much smaller than that for the traditional bio-calorimeter.

  16. Integrated optical NIR-evanescent wave absorbance sensorfor chemical analysis.

    Science.gov (United States)

    Bürck, J; Zimmermann, B; Mayer, J; Ache, H J

    1996-01-01

    A new, long-path integrated optical (IO) sensor for the detection of non-polar organic substances is described. The sensing layer deposited on a planar multimode IO structure is built by a suitable silicone polymer with lower refractive index (RI). It acts as a hydrophobic matrix for the reversible enrichment of non-polar organic contaminants from water or air. Light from the near-infrared (NIR) range is coupled into the planar structure and the evanescent wave part of the light field penetrating into the silicone layer interacts with the enriched organic species. As a result, light is absorbed at the characteristic frequencies of the corresponding C-H, N-H or O-H overtone and combination band vibrations of the analytes. To perform evanescent field absorbance (EFA) measurements, the arc-shaped strip waveguide structure of 172 mm interaction length was adapted to a tungsten-halogen lamp and an InGaAs diode array spectrograph over gradient index fibers. Dimethyl-co-methly(phenyl)polysiloxanes with varying degrees of phenylation were prepared and used as sensitive coating materials for the IO structure. Light attenuation in the arc-shaped waveguides is high and typical insertion losses in the range of 14-18 dB were obtained. When the coated sensors were brought in contact with aqueous samples, the light transmission decreases, which is due to the formation of H(2)O micro-emulsions in the silicone superstrates. Nevertheless, after reaching constant light transmissions, absorbance spectra of aqueous trichloroethene samples were successfully collected. For gas measurements, where water cross sensitivity problems are absent, the sensitivity of the IO device for trichloroethene was tested as a function of the RI of the silicone superstrate. The slope of the TCE calibration function increases by a factor of 10 by using a poly(methylphenylsiloxane) layer with a RI of 1.449 instead of poly(dimethylsiloxane) (RI: 1.41). A comparison of the IO-EFA and an earlier developed fiber

  17. Wireless sensors powered by microbial fuel cells.

    Science.gov (United States)

    Shantaram, Avinash; Beyenal, Haluk; Raajan, Raaja; Veluchamy, Angathevar; Lewandowski, Zbigniew

    2005-07-01

    Monitoring parameters characterizing water quality, such as temperature, pH, and concentrations of heavy metals in natural waters, is often followed by transmitting the data to remote receivers using telemetry systems. Such systems are commonly powered by batteries, which can be inconvenient at times because batteries have a limited lifetime and must be recharged or replaced periodically to ensure that sufficient energy is available to power the electronics. To avoid these inconveniences, a microbial fuel cell was designed to power electrochemical sensors and small telemetry systems to transmit the data acquired by the sensors to remote receivers. The microbial fuel cell was combined with low-power, high-efficiency electronic circuitry providing a stable power source for wireless data transmission. To generate enough power for the telemetry system, energy produced by the microbial fuel cell was stored in a capacitor and used in short bursts when needed. Since commercial electronic circuits require a minimum 3.3 V input and our cell was able to deliver a maximum of 2.1 V, a DC-DC converter was used to boost the potential. The DC-DC converter powered a transmitter, which gathered the data from the sensor and transmitted it wirelessly to a remote receiver. To demonstrate the utility of the system, temporal variations in temperature were measured, and the data were wirelessly transmitted to a remote receiver.

  18. An Evanescent Field Optical Microscope. Scanning probe Microscopy

    NARCIS (Netherlands)

    van Hulst, N.F.; Segerink, Franciscus B.; Bölger, B.; Bölger, B.; Wickramasinghe, H. Kumar

    1991-01-01

    An Evanescent Field Optical Microscope (EFOM) is presented, which employs frustrated total internal reflection on a highly localized scale by means of a sharp dielectric tip. The coupling of the evanescent field to the sub-micrometer probe as a function of probe-sample distance, angle of incidence

  19. Development of evanescent wave absorbance-based fibre-optic ...

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... Evanescent wave biosensor; U-bent fibre-optic probe; fibre-optic biosensor; evanescent wave absorbance; gold nanoparticles localized SPR biosensor; ... Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076, India; Department of Biosciences and Bioengineering, Indian Institute ...

  20. Varactor-tuned Substrate Integrated Evanescent Filter

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Acar, Öncel; Dong, Yunfeng

    Evanescent mode waveguides allow for more compact microwave component design in comparison to the traditional fundamental mode waveguide technology. Evanescent waveguides can be integrated into a dielectric substrate in order to further reduce the mass and volume. Unfortunately, traditional reali......, fabricated and tested in order to validate the developed filter models as well as the implemented realization method. The filter structure as well as its tuning are shown in Figure 1....... is considered. In contrast to other methods described in the literature, it avoids etching split ring resonators in the metal layer of the SIW. The filters presented here use varactors as tuning elements. The varactors (as well as DC decoupling circuits) are mounted on the surface of PCB bringing the lower...... metal layer of the waveguide to the top layer with metalized via holes. The present filters are analyzed using models based on impedance matrix representation. The developed models allow computationally efficient and relatively accurate prediction of the filter behavior in a wide frequency range (at...

  1. The fabrication of polymer-based evanescent optical waveguide for biosensing

    Science.gov (United States)

    Kwon, S. W.; Yang, W. S.; Lee, H. M.; Kim, W. K.; Son, G. S.; Yoon, D. H.; Lee, S.-D.; Lee, H.-Y.

    2009-03-01

    A polymer waveguide was fabricated to amplify the evanescent optical field for biosensing. The structure of waveguide was designed to propagate a normal single mode at the input and output regions for low loss beam coupling and propagation. A sensing region was formed in the middle of the waveguide to activate the evanescent mode and to induce high birefringence by depositing a thin dielectric film with a high refractive index on a single mode waveguide. A polymer waveguide with the dimensions of 7 μm-width and 2.5 μm-thickness was fabricated by photolithography and dry-etching. The active region of the TiO 2 thin film was fabricated with the dimensions of 20 mm-length, 20 nm-thickness and 2 mm-tapered tail. A polarimetric interference technique was used to evaluate the evanescent waveguide biosensor, and biomaterial such as glycerol was tested. The sensitivity of the sensor increased with increasing TiO 2 film thickness. For the fabricated waveguide with a 20 nm-thick TiO 2 film, the measured index change to the lead phase variation of 2 π was 1.8 × 10 -4.

  2. Analytical scanning evanescent microwave microscope and control stage

    Science.gov (United States)

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2009-06-23

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  3. TIRF microscopy evanescent field calibration using tilted fluorescent microtubules.

    Science.gov (United States)

    Gell, C; Berndt, M; Enderlein, J; Diez, S

    2009-04-01

    Total internal reflection fluorescence microscopy has become a powerful tool to study the dynamics of sub-cellular structures and single molecules near substrate surfaces. However, the penetration depth of the evanescent field, that is, the distance at which the excitation intensity has exponentially decayed to 1/e, is often left undetermined. This presents a limit on the spatial information about the imaged structures. Here, we present a novel method to quantitatively characterize the illumination in total internal reflection fluorescence microscopy using tilted, fluorescently labelled, microtubules. We find that the evanescent field is well described by a single exponential function, with a penetration depth close to theoretically predicted values. The use of in vitro reconstituted microtubules as nanoscale probes results in a minimal perturbation of the evanescent field; excitation light scattering is eliminated and the refractive index of the sample environment is unchanged. The presented method has the potential to provide a generic tool for in situ calibration of the evanescent field.

  4. Slab waveguide with air core layer and anisotropic left-handed material claddings as a sensor

    National Research Council Canada - National Science Library

    Taya, S A

    2014-01-01

    .... Different from the waveguide mode sensors and surface plasmon resonance sensors in which the analyte is placed in the evanescent field region, the proposed sensor contains the sample in the core...

  5. Fluorometer with a quartz-rod waveguide-integrating sphere configuration to measure evanescent-field luminescence

    Science.gov (United States)

    A fluorometer was designed to measure evanescent-field luminescence. A quartz-rod waveguide (d = 2 mm) was installed coaxally inside a cylindrical flow-through cell (id = 2.3 mm, od = 6.3 mm, l = 116 mm). An excitation beam from a UV LED or a miniature xenon flashlamp was focused by a ball lens and ...

  6. Recent developments of genetically encoded optical sensors for cell biology.

    Science.gov (United States)

    Bolbat, Andrey; Schultz, Carsten

    2017-01-01

    Optical sensors are powerful tools for live cell research as they permit to follow the location, concentration changes or activities of key cellular players such as lipids, ions and enzymes. Most of the current sensor probes are based on fluorescence which provides great spatial and temporal precision provided that high-end microscopy is used and that the timescale of the event of interest fits the response time of the sensor. Many of the sensors developed in the past 20 years are genetically encoded. There is a diversity of designs leading to simple or sometimes complicated applications for the use in live cells. Genetically encoded sensors began to emerge after the discovery of fluorescent proteins, engineering of their improved optical properties and the manipulation of their structure through application of circular permutation. In this review, we will describe a variety of genetically encoded biosensor concepts, including those for intensiometric and ratiometric sensors based on single fluorescent proteins, Forster resonance energy transfer-based sensors, sensors utilising bioluminescence, sensors using self-labelling SNAP- and CLIP-tags, and finally tetracysteine-based sensors. We focus on the newer developments and discuss the current approaches and techniques for design and application. This will demonstrate the power of using optical sensors in cell biology and will help opening the field to more systematic applications in the future. © 2016 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  7. Compact 3D printed module for fluorescence and label-free imaging using evanescent excitation

    Science.gov (United States)

    Pandey, Vikas; Gupta, Shalini; Elangovan, Ravikrishnan

    2018-01-01

    Total internal reflection fluorescence (TIRF) microscopy is widely used for selective excitation and high-resolution imaging of fluorophores, and more recently label-free nanosized objects, with high vertical confinement near a liquid–solid interface. Traditionally, high numerical aperture objectives (>1.4) are used to simultaneously generate evanescent waves and collect fluorescence emission signals which limits their use to small area imaging (3D module called cTIRF that can generate evanescent waves in microscope glass slides via a planar waveguide illumination. The module can be attached as a fixture to any existing optical microscope, converting it into a TIRF and enabling high signal-to-noise ratio (SNR) fluorescence imaging using any magnification objective. As the incidence optics is perpendicular to the detector, label-free evanescent scattering-based imaging of submicron objects can also be performed without using emission filters. SNR is significantly enhanced in this case as compared to cTIRF alone, as seen through our model experiments performed on latex beads and mammalian cells. Extreme flexibility and the low cost of our approach makes it scalable for limited resource settings.

  8. Perfluorinated Plastic Optical Fiber Tapers for Evanescent Wave Sensing

    Directory of Open Access Journals (Sweden)

    Romeo Bernini

    2009-12-01

    Full Text Available In this work we describe the fabrication and the characterization of perfluorinated plastic-cladded optical fiber tapers. The heat-and-pull procedure has been used to fabricate symmetric tapers. Devices with different taper ratio have been produced and the repeatability of the process has been verified. The very low refractive indexes of the core-cladding perfluorinated polymers (n = 1.35–1.34 permit a strong enhancement of the evanescent wave power fraction in aqueous environments (n = 1.33, making them very attractive for evanescent wave sensing. The tapers have been characterized carrying out evanescent field absorbance measurements with different concentrations of methylene blue in water and fluorescence collection measurements in an aqueous solution containing Cy5 dye. A good sensitivity, tightly related to the low refractive index of the core-cladding materials and the geometrical profile, has been shown.

  9. Evanescent wave induced fluorescence. A tool for quantitative interfacial analysis

    CERN Document Server

    Byrne, C D

    2000-01-01

    Time-resolved angle-resolved evanescent wave induced fluorescence spectroscopy (EWIFS) has been used, for the first time, to determine interfacial concentration distributions of molecular species. Theoretical calculations demonstrate that in dynamic systems the non-radiative fluorescence decay coefficients of molecular species are effected only in a minor way by the presence of a dielectric interface. Consequently, measurements of interfacial fluorescence decay times are used to probe variations in molecular fluorescence quantum efficiencies, caused by the presence of an interface. The understanding of these variations is combined with angle-resolved evanescent wave theory. Examination of derived theoretical models using simulated data demonstrates that angle-resolved EWIFS is capable of measuring interfacial interactions on a nanometer scale. An evanescent wave induced fluorescence spectrometer is designed and fabricated to allow the measurement of the time-integrated and time-resolved interfacial emission. ...

  10. A composite microcavity of diamond nanopillar and deformed silica microsphere with enhanced evanescent decay length

    National Research Council Canada - National Science Library

    Barbour, Russell J; Dinyari, Khodadad N; Wang, Hailin

    2010-01-01

    .... With the enhanced evanescent coupling, WGMs can in principle couple to NV centers that are 100 to 200 nm beneath the diamond pillar surface, providing a promising avenue for exploring evanescently...

  11. Superluminal propagation of evanescent modes as a quantum effect

    Energy Technology Data Exchange (ETDEWEB)

    Xion, C.D. [School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); He, B. [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10021 (United States); Wang, Z.Y.

    2008-05-15

    Contrary to mechanical waves, the two-slit interference experiment of single photons shows that the behavior of classical electromagnetic waves corresponds to the quantum mechanical one of single photons, which is also different from the quantum-field-theory behavior such as the creations and annihilations of photons, the vacuum fluctuations, etc. Owing to a purely quantum effect, quantum tunneling particles including tunneling photons (evanescent modes) can propagate over a spacelike interval. With this picture we conclude that the superluminality of evanescent modes is a quantum mechanical rather than a classical phenomenon. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  12. Dynamics of evanescent matter waves in negative-index media

    Science.gov (United States)

    Hamamda, M.; Bocvarski, V.; Perales, F.; Baudon, J.; Dutier, G.; Mainos, C.; Boustimi, M.; Ducloy, M.

    2010-11-01

    Semi-evanescent and evanescent matter waves produced by an atom wave packet impinging on a repulsive barrier can be back-refracted and reconstructed by the application of negative-index 'comoving' potential pulses. One shows that those collapses and revivals generate a matter wave confined on both sides of the barrier border ('surface matter wave') and should be observable via the retardation of atom reflection from the barrier interface. This property, joined to the possibility recently demonstrated of inducing negative refraction of atom waves, makes such potentials a matter-wave counterpart of negative-index materials or 'meta materials' well known in light optics.

  13. Evanescent wave mirror for cold atoms—A quasi-resonant case

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Bartoszek-Bober, Dobroslawa; Dohnalik, Tomasz

    2013-01-01

    The measurements of the inelastic photon scattering in the optical dipole mirror created by a quasi-resonant evanescent wave are presented. The momentum transfer between an evanescent wave and cold atoms accompanying the atom reflection are discussed for a single and double evanescent wave...

  14. Monitoring of yeast cell concentration using a micromachined impedance sensor

    NARCIS (Netherlands)

    Krommenhoek, E.E.; Gardeniers, Johannes G.E.; Bomer, Johan G.; van den Berg, Albert; Li, X.; Ottens, M.; van der Wielen, L.A.M.; van Dedem, G.W.K.; van Leeuwen, M.; van Gulik, W.M.; Heijnen, J.J.

    2005-01-01

    The paper describes the design, modelling and experimental characterization of a micromachined impedance sensor for on-line monitoring of the viable yeast cell concentration (biomass) in a miniaturized cell assay. Measurements in a Saccharomyces cerevisiae cell culture show that the permittivity of

  15. Monitoring of yeast cell concentration using a micromachnined impedance sensor

    NARCIS (Netherlands)

    Krommenhoek, E.E.; Gardeniers, Johannes G.E.; Bomer, Johan G.; van den Berg, Albert; Li, X.; Li, X.; Ottens, M.; van der Wielen, L.A.M.; van Dedem, G.W.K.; van Leeuwen, M.; van Gulik, W.M.; Heijnen, J.J.

    2006-01-01

    This paper describes the design, modeling and experimental characterization of a micromachined impedance sensor for on-line monitoring of the viable yeast cell concentration (biomass) in a miniaturized cell assay. Measurements in Saccharomyces cerevisiae cell culture show that the characteristic

  16. Application of the Sensor Selection Approach in Polymer Electrolyte Membrane Fuel Cell Prognostics and Health Management

    Directory of Open Access Journals (Sweden)

    Lei Mao

    2017-09-01

    Full Text Available In this paper, the sensor selection approach is investigated with the aim of using fewer sensors to provide reliable fuel cell diagnostic and prognostic results. The sensitivity of sensors is firstly calculated with a developed fuel cell model. With sensor sensitivities to different fuel cell failure modes, the available sensors can be ranked. A sensor selection algorithm is used in the analysis, which considers both sensor sensitivity to fuel cell performance and resistance to noise. The performance of the selected sensors in polymer electrolyte membrane (PEM fuel cell prognostics is also evaluated with an adaptive neuro-fuzzy inference system (ANFIS, and results show that the fuel cell voltage can be predicted with good quality using the selected sensors. Furthermore, a fuel cell test is performed to investigate the effectiveness of selected sensors in fuel cell fault diagnosis. From the results, different fuel cell states can be distinguished with good quality using the selected sensors.

  17. Infrared Evanescent-Absorption Spectroscopy with Chalcogenide Glass-Fibers

    OpenAIRE

    Sanghera, J S; Kung, F H; Pureza, P. C.; Nguyen, V Q; Miklos, R. E.; Aggarwal, I D

    1994-01-01

    We have used telluride glass fibers fabricated in house to measure the evanescent-absorption spectra of water, methanol, ethanol, isopropanol, acetone, ethanoic acid, hexane, and chloroform. Furthermore, detection limits of less than 2 vol. % solute were obtained for mixtures of water and methanol, ethanol, isopropanol, acetone, and ethanoic acid. Techniques to reduce the detection limits are discussed.

  18. Enhancement of evanescent waves inside media with extreme optical anisotropy

    OpenAIRE

    Belov, Pavel A.; Zhao, Yan; Hao, Yang; Parini, Clive

    2008-01-01

    Significant enhancement of evanescent spatial harmonics inside the slabs of media with extreme optical anisotropy is revealed. This phenomenon results from the pumping of standing waves and has the feature of being weakly sensitive to the material losses. Such characteristics may enable subwavelength imaging at considerable distances away from the objects.

  19. From the Somigliana waves to the evanescent waves

    Directory of Open Access Journals (Sweden)

    Pietro Caloi

    2010-02-01

    Full Text Available The Rayleigh equation has real coefficients; therefore, also the case of complex conjugated roots may be explained physically. The Author proves that the Somigliana waves may be formed for Poisson ratio values until 0.30543; for gradually less rigid media, they are missing altogether and degenerate into evanescent waves.

  20. Fabrication and evaluation of evanescent wave absorption based polyaniline-cladding modified fiber optic urea biosensor

    Science.gov (United States)

    Botewad, S. N.; Pahurkar, V. G.; Muley, G. G.

    2018-01-01

    The fabrication and study of cladding modified intrinsic fiber optic urea biosensor has been reported in the present investigation. A simple cladding modification technique was used to construct the sensor by uncladding the small portion from optical fiber. Further bare core was decorated by supportive porous, chemically and optically sensitive matrix material polyaniline (PANI) as an active cladding for enzyme residency. Enzyme-urease (Urs) was cross-linked on the active cladding region via glutaraldehyde solution. Confirmation of the prepared PANI in proper form determined by ultraviolet-visible and Fourier transform infrared spectroscopic techniques. X-ray diffraction technique was employed for nature and compatibility examination of PANI. Sensor parameters such as sensitivity, selectivity, stability and lower detection limit have been analyzed by absorption variation study in evanescent wave field. The response of prepared sensor was studied towards urea in the wide concentration range 100 nM-100 mM and confirmed its lowest detection limit as 100 nM. The stability of sensor was found 28 days with little variation in response. The fabricated sensor has not shown any response towards interference species like glucose, ascorbic acid, L-alanine, L-arginine and their combination with urea solution and hence found selective for urea solution only.

  1. Galvanic Cell Type Sensor for Soil Moisture Analysis.

    Science.gov (United States)

    Gaikwad, Pramod; Devendrachari, Mruthyunjayachari Chattanahalli; Thimmappa, Ravikumar; Paswan, Bhuneshwar; Raja Kottaichamy, Alagar; Makri Nimbegondi Kotresh, Harish; Thotiyl, Musthafa Ottakam

    2015-07-21

    Here we report the first potentiometric sensor for soil moisture analysis by bringing in the concept of Galvanic cells wherein the redox energies of Al and conducting polyaniline are exploited to design a battery type sensor. The sensor consists of only simple architectural components, and as such they are inexpensive and lightweight, making it suitable for on-site analysis. The sensing mechanism is proved to be identical to a battery type discharge reaction wherein polyaniline redox energy changes from the conducting to the nonconducting state with a resulting voltage shift in the presence of soil moisture. Unlike the state of the art soil moisture sensors, a signal derived from the proposed moisture sensor is probe size independent, as it is potentiometric in nature and, hence, can be fabricated in any shape or size and can provide a consistent output signal under the strong aberration conditions often encountered in soil moisture analysis. The sensor is regenerable by treating with 1 M HCl and can be used for multiple analysis with little read out hysteresis. Further, a portable sensor is fabricated which can provide warning signals to the end user when the moisture levels in the soil go below critically low levels, thereby functioning as a smart device. As the sensor is inexpensive, portable, and potentiometric, it opens up avenues for developing effective and energy efficient irrigation strategies, understanding the heat and water transfer at the atmosphere-land interface, understanding soil mechanics, forecasting the risk of natural calamities, and so on.

  2. Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities

    Science.gov (United States)

    Avino, S.; Giorgini, A.; Salza, M.; Fabian, M.; Gagliardi, G.; De Natale, P.

    2013-05-01

    We demonstrate evanescent-wave fiber cavity-enhanced spectroscopy in the liquid phase using a near-infrared frequency comb. Exploiting strong fiber-dispersion effects, we show that liquid absorption spectra can be recorded without any external dispersive element. The fiber cavity is used both as sensor and spectrometer. The resonance modes are frequency locked to the comb teeth while the cavity photon lifetime is measured over 155 nm, from 1515 nm to 1670 nm, where absorption bands of liquid polyamines are detected as a proof of concept. Our fiber spectrometer lends itself to in situ, real-time chemical analysis in environmental monitoring, biomedical assays, and micro-opto-fluidic systems.

  3. Sensors and signal transduction pathways in vertebrate cell volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else K; Pedersen, Stine F

    2006-01-01

    The ability to control cell volume is fundamental for proper cell function. This review highlights recent advances in the understanding of the complex sequences of events by which acute cell volume perturbation alters the activity of osmolyte transport proteins in cells from vertebrate organisms...... will be discussed. In contrast to the simple pathway of osmosensing in yeast, cells from vertebrate organisms appear to exhibit multiple volume sensing systems, the specific mechanism(s) activated being cell type- and stimulus-dependent. Candidate sensors include integrins and growth factor receptors, while other...

  4. Evanescent wave fluorescence biosensors: Advances of the last decade

    Science.gov (United States)

    Taitt, Chris Rowe; Anderson, George P.; Ligler, Frances S.

    2015-01-01

    Biosensor development has been a highly dynamic field of research and has progressed rapidly over the past two decades. The advances have accompanied the breakthroughs in molecular biology, nanomaterial sciences, and most importantly computers and electronics. The subfield of evanescent wave fluorescence biosensors has also matured dramatically during this time. Fundamentally, this review builds on our earlier 2005 review. While a brief mention of seminal early work will be included, this current review will focus on new technological developments as well as technology commercialized in just the last decade. Evanescent wave biosensors have found a wide array applications ranging from clinical diagnostics to biodefense to food testing; advances in those applications and more are described herein. PMID:26232145

  5. Photonic Integration on the Hybrid Silicon Evanescent Device Platform

    Directory of Open Access Journals (Sweden)

    Hyundai Park

    2008-01-01

    Full Text Available This paper reviews the recent progress of hybrid silicon evanescent devices. The hybrid silicon evanescent device structure consists of III-V epitaxial layers transferred to silicon waveguides through a low-temperature wafer bonding process to achieve optical gain, absorption, and modulation efficiently on a silicon photonics platform. The low-temperature wafer bonding process enables fusion of two different material systems without degradation of material quality and is scalable to wafer-level bonding. Lasers, amplifiers, photodetectors, and modulators have been demonstrated with this hybrid structure and integration of these individual components for improved optical functionality is also presented. This approach provides a unique way to build photonic active devices on silicon and should allow application of silicon photonic integrated circuits to optical telecommunication and optical interconnects.

  6. Dynamics of evanescent matter waves in negative-index media

    Energy Technology Data Exchange (ETDEWEB)

    Hamamda, M; Bocvarski, V; Perales, F; Baudon, J; Dutier, G; Mainos, C; Boustimi, M; Ducloy, M, E-mail: jacques.baudon@univ-paris13.f [Laboratoire de Physique des Lasers, CNRS-UMR 7538, Universite Paris 13, 99 Av. J B Clement, 93430-Villetaneuse (France)

    2010-11-14

    Semi-evanescent and evanescent matter waves produced by an atom wave packet impinging on a repulsive barrier can be back-refracted and reconstructed by the application of negative-index 'comoving' potential pulses. One shows that those collapses and revivals generate a matter wave confined on both sides of the barrier border ('surface matter wave') and should be observable via the retardation of atom reflection from the barrier interface. This property, joined to the possibility recently demonstrated of inducing negative refraction of atom waves, makes such potentials a matter-wave counterpart of negative-index materials or 'meta materials' well known in light optics.

  7. Transfer function and near-field detection of evanescent waves

    DEFF Research Database (Denmark)

    Radko, Ylia P.; Bozhevolnyi, Sergey I.; Gregersen, Niels

    2006-01-01

    for the transfer function, which is derived by introducing an effective pointof (dipolelike) detection inside the probe tip. It is found to be possible to fit reasonably well both the experimental and the simulation data for evanescent field components, implying that the developed approximation of the near-field...... of collection and illumination modes. Making use of a collection near-field microscope with a similar fiber tip illuminated by an evanescent field, we measure the collected power as a function of the field spatial frequency in different polarization configurations. Considering a two-dimensional probe...... configuration, numerical simulations of detection efficiency based on the eigenmode expansion technique are carried out for different tip apex angles. The detection roll-off for high spatial frequencies observed in the experiment and obtained during the simulations is fitted using a simple expression...

  8. Human Blood Cell Sensing with Platinum Black Electroplated Impedance Sensor

    OpenAIRE

    Zheng, Siyang; Nandra, Mandheerej S.; Tai, Yu-Chong

    2007-01-01

    AC impedance sensing is an important method for biological cell analysis in flow cytometry. For micro impedance cell sensors, downsizing electrodes increases the double layer impedance of the metal-electrolyte interface, thus leaves no sensing zone in frequency domain and reduces the sensitivity significantly. We proposed using platinum black electroplated electrodes to solve the problem. In this paper, using this technique we demonstrated human blood cell sensing with high signal to noise ra...

  9. A Single-Cell Electronic Sensor of Toxins

    Science.gov (United States)

    Stupin, D. D.

    2017-11-01

    Here we propose a simple label-free bio-electronic toxin detector based on nondestructive impedance spectroscopy (IS) method with a single living cell as a sensing element. The toxins distort cell membrane, which significantly affects on the impedance level of an electrode, which covered by a cell. This effect could be used for toxin detection. We believe that our bio-sensor will open a new roadmap in water purity purposes and will save many a one lives.

  10. Advances on Optical Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Luciano Mescia

    2013-12-01

    Full Text Available In this review paper some recent advances on optical fiber sensors are reported. In particular, fiber Bragg grating (FBG, long period gratings (LPGs, evanescent field and hollow core optical fiber sensors are mentioned. Examples of recent optical fiber sensors for the measurement of strain, temperature, displacement, air flow, pressure, liquid-level, magnetic field, and the determination of methadone, hydrocarbons, ethanol, and sucrose are briefly described.

  11. A novel microbial fuel cell sensor with biocathode sensing element.

    Science.gov (United States)

    Jiang, Yong; Liang, Peng; Liu, Panpan; Wang, Donglin; Miao, Bo; Huang, Xia

    2017-08-15

    The traditional microbial fuel cell (MFC) sensor with bioanode as sensing element delivers limited sensitivity to toxicity monitoring, restricted application to only anaerobic and organic rich water body, and increased potential fault warning to the combined shock of organic matter/toxicity. In this study, the biocathode for oxygen reduction reaction was employed for the first time as the sensing element in MFC sensor for toxicity monitoring. The results shown that the sensitivity of MFC sensor with biocathode sensing element (7.4±2.0 to 67.5±4.0mA%-1cm-2) was much greater than that showed by bioanode sensing element (3.4±1.5 to 5.5±0.7mA%-1cm-2). The biocathode sensing element achieved the lowest detection limit reported to date using MFC sensor for formaldehyde detection (0.0005%), while the bioanode was more applicable for higher concentration (>0.0025%). There was a quicker response of biocathode sensing element with the increase of conductivity and dissolved oxygen (DO). The biocathode sensing element made the MFC sensor directly applied to clean water body monitoring, e.g., drinking water and reclaimed water, without the amending of background organic matter, and it also decreased the warning failure when challenged by a combined shock of organic matter/toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Evanescent-wave mirror for ultracold diatomic polar molecules.

    Science.gov (United States)

    Kallush, S; Segev, B; Côté, R

    2005-10-14

    We describe the interaction of an ultracold diatomic polar molecule with an evanescent-wave mirror. Several features of this system are explored, such as the coupling between internal rovibrational states of the molecule and the laser field. Numerical simulations show quantum reflection and state selection under attainable physical conditions. Such molecular optics components will facilitate the manipulation and trapping of ultracold molecules, and might serve in future applications in several fields, e.g., as devices to filter and select a state for ultracold chemistry, to measure extremely low temperatures of molecules, or to manipulate states for quantum information processing.

  13. Scattering of Evanescent Acoustic Waves by Regular and Irregular Objects

    Science.gov (United States)

    2006-12-01

    simulated bottom. This system of liquids is more suitable for long-term indoor use than the vegetable-oil/ glycerin system used in related studies by a...published [ 18,19]. X. Reference List for the Main Report [1] C. F. Osterhoudt, Ph. D. Thesis (in preparation). [2] P. L. Marston, Annual Report for...evanescent waves incident on targets in a simulated sediment," to be presented at the December 2006 ASA meeting. [9] C. F. Osterhoudt, Ph.D. thesis in

  14. S-matrix formulation of mesoscopic systems and evanescent modes.

    Science.gov (United States)

    Chowdhury, Sheelan Sengupta; Deo, P Singha; Jayannavar, A M; Manninen, M

    2010-01-13

    Validity of the Landauer-Buttiker formalism for studying linear transport in mesoscopic systems is well established theoretically as well as experimentally. Akkermans et al (1991 Phys. Rev. Lett. 66 76) have shown that the formalism can be extended to study thermodynamic properties like persistent currents. This extension was verified for simple one-dimensional systems. We study the applicability of Akkermans et al' s formula for quasi-one-dimensional systems with several conducting channels. In the case that all modes are propagating the formula is still valid but in the case of evanescent modes it requires reinterpretation.

  15. Evanescent waves and deaf bands in sonic crystals

    Directory of Open Access Journals (Sweden)

    V. Romero-García

    2011-12-01

    Full Text Available The properties of sonic crystals (SC are theoretically investigated in this work by solving the inverse problem k(ω using the extended plane wave expansion (EPWE. The solution of the resulting eigenvalue problem gives the complex band structure which takes into account both the propagating and the evanescent modes. In this work we show the complete mathematical formulation of the EPWE for SC and the supercell approximation for its use in both a complete SC and a SC with defects. As an example we show a novel interpretation of the deaf bands in a complete SC in good agreement with multiple scattering simulations.

  16. Molecular force sensors to measure stress in cells

    Science.gov (United States)

    Prabhune, Meenakshi; Rehfeldt, Florian; Schmidt, Christoph F.

    2017-06-01

    Molecularly generated forces are essential for most activities of biological cells, but also for the maintenance of steady state or homeostasis. To quantitatively understand cellular dynamics in migration, division, or mechanically guided differentiation, it will be important to exactly measure stress fields within the cell and the extracellular matrix. Traction force microscopy and related techniques have been established to determine the stress transmitted from adherent cells to their substrates. However, different approaches are needed to directly assess the stress generated inside the cell. This has recently led to the development of novel molecular force sensors. In this topical review, we briefly mention methods used to measure cell-external forces, and then summarize and explain different designs for the measurement of cell-internal forces with their respective advantages and disadvantages.

  17. Influence of dsDNA fragment length on particle binding in an evanescent field biosensing system.

    Science.gov (United States)

    Koets, Marjo; van Ommering, Kim; Wang, Liqin; Testori, Emilie; Evers, Toon H; Prins, Menno W J

    2014-04-07

    Particle labels are widely used in affinity-based biosensing due to the high detection signal per label, the high stability, and the convenient biofunctionalization of particles. In this paper we address the question how the time-course of particle binding and the resulting signals depend on the length of captured target molecules. As a model system we used fragments of dsDNA with lengths of 105 bp (36 nm), 290 bp (99 nm) and 590 bp (201 nm), detected in an evanescent-field optomagnetic biosensing system. On both ends the fragments were provided with small-molecule tags to allow binding of the fragments to protein-coated particles and to the capture molecules at the sensor surface. For isolated single particles bound to the surface, we observe that the optical scattering signal per particle depends only weakly on the fragment length, which we attribute to the pivoting motion that allows the particles to get closer to the surface. Our data show a strong influence of the fragment length on the particle binding: the binding rate of particles to the sensor surface is an order of magnitude higher for the longest dsDNA fragments compared to the smallest fragment studied in this paper. We attribute the enhanced binding rate to the length and motional freedom of the fragments. These results generate a new dimension for the design of assays and systems in particle-based biosensing.

  18. Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhong-Xiang [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Yong [Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Li-Fu, E-mail: zhanglifu68@hotmail.com [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Fan, Dian-Yuan [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China)

    2017-05-03

    Thermal transport contributed by the torsional phonons in cylindrical nanowires is investigated by using the isotropic elastic continuum theory. The numerical calculations for both the concavity-shaped and convexity-shaped cylindrical structures are made to reveal the role of the evanescent modes. Results show that the evanescent modes play an important role in influencing the thermal transport in such structures. For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, the evanescent modes can suppress the thermal conductance by 6 percent. It is also shown that the influence of the evanescent modes on the thermal conductance is strongly related to the attenuation length of the evanescent modes. A brief analysis of these results is given. - Highlights: • The evanescent modes play an important role in influencing thermal transport contributed by torsional phonons in cylindrical nanowires. • For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, they can suppress the thermal conductance by 6 percent.

  19. Evanescent ergosurfaces and ambipolar hyperkähler metrics

    Energy Technology Data Exchange (ETDEWEB)

    Niehoff, Benjamin E.; Reall, Harvey S. [DAMTP, Centre for Mathematical Sciences, University of Cambridge,Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2016-04-20

    A supersymmetric solution of 5d supergravity may admit an ‘evanescent ergosurface’: a timelike hypersurface such that the canonical Killing vector field is timelike everywhere except on this hypersurface. The hyperkähler ‘base space’ of such a solution is ‘ambipolar’, changing signature from (+ + + +) to (− − − −) across a hypersurface. In this paper, we determine how the hyperkähler structure must degenerate at the hypersurface in order for the 5d solution to remain smooth. This leads us to a definition of an ambipolar hyperkähler manifold which generalizes the recently-defined notion of a ‘folded’ hyperkähler manifold. We prove that such manifolds can be constructed from ‘initial’ data prescribed on the hypersurface. We present an ‘initial value’ construction of supersymmetric solutions of 5d supergravity, in which such solutions are determined by data prescribed on a timelike hypersurface, both for the generic case and for the case of an evanescent ergosurface.

  20. Optical theorem for electromagnetic field scattering by dielectric structures and energy emission from the evanescent wave.

    Science.gov (United States)

    Gulyaev, Yu V; Barabanenkov, Yu N; Barabanenkov, M Yu; Nikitov, S A

    2005-08-01

    We present an optical theorem for evanescent (near field) electromagnetic wave scattering by a dielectric structure. The derivation is based on the formalism of angular spectrum wave amplitudes and block scattering matrix. The optical theorem shows that an energy flux is emitted in the direction of the evanescent wave decay upon scattering. The energy emission effect from an evanescent wave is illustrated in two examples of evanescent wave scattering, first, by the electrical dipole and, second, one-dimensional grating with line-like rulings. Within the latter example, we show that an emitted energy flux upon evanescent wave scattering can travel through a dielectric structure even if the structure has a forbidden gap in the transmission spectrum of incident propagating waves.

  1. Carbon nanotubes based methanol sensor for fuel cells application.

    Science.gov (United States)

    Kim, D W; Lee, J S; Lee, G S; Overzet, L; Kozlov, M; Aliev, A E; Park, Y W; Yang, D J

    2006-11-01

    An electrochemical sensor is built using vertically grown multi-walled carbon nanotubes (MWNTs) micro-array to detect methanol concentration in water. This study is done for the potential use of the array as methanol sensor for portable units of direct methanol fuel cells (DMFCs). Platinum (Pt) nanoparticles electro-deposited CNTs (Pt/CNTs) electrode shows high sensitivity in the measurement of methanol concentration in water with cyclic voltammetry (CV) measurement at room temperature. Further investigation has also been undertaken to measure the concentration by changing the amount of the mixture of methanol and formic acid in water. We compared the performance of our micro array sensor built with Pt/CNTs electrodes versus that of Pt wire electrode using CV measurement. We found that our Pt/CNTs array sensor shows high sensitivity and detects methanol concentrations in the range of 0.04 M to 0.10 M. In addition, we found that co-use of formic acid as electrolyte enables us to measure up to 1.0 M methanol concentration.

  2. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  3. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  4. Evanescent channels and scattering in cylindrical nanowire heterostructures

    Science.gov (United States)

    Racec, P. N.; Racec, E. R.; Neidhardt, H.

    2009-04-01

    We investigate the scattering phenomena produced by a general finite-range nonseparable potential in a multichannel two-probe cylindrical nanowire heterostructure. The multichannel current scattering matrix is efficiently computed using the R -matrix formalism extended for cylindrical coordinates. Considering the contribution of the evanescent channels to the scattering matrix, we are able to put in evidence the specific dips in the tunneling coefficient in the case of an attractive potential. The cylindrical symmetry cancels the “selection rules” known for Cartesian coordinates. If the attractive potential is superposed over a nonuniform potential along the nanowire then resonant transmission peaks appear. We can characterize them quantitatively through the poles of the current scattering matrix. Detailed maps of the localization probability density sustain the physical interpretation of the resonances (dips and peaks). Our formalism is applied to a variety of model systems such as a quantum dot, a core/shell quantum ring, or a double barrier embedded into the nanocylinder.

  5. Evanescent-wave proton postaccelerator driven by intense THz pulse

    Directory of Open Access Journals (Sweden)

    L. Pálfalvi

    2014-03-01

    Full Text Available Hadron therapy motivates research dealing with the production of particle beams with ∼100  MeV/nucleon energy and relative energy fluctuation on the order of 1%. Laser-driven accelerators produce ion beams with only tens of MeV/nucleon energy and an extremely broad spectra. Here, a novel method is proposed for postacceleration and monochromatization of particles, leaving the laser-driven accelerator, by using intense THz pulses. It is based on further developing the idea of using the evanescent field of electromagnetic waves between a pair of dielectric crystals. Simple model calculations show that the energy of a proton bunch can be increased from 40 to 56 MeV in five stages and its initially broad energy distribution can be significantly narrowed down.

  6. Synthetic Cell-Based Sensors with Programmed Selectivity and Sensitivity.

    Science.gov (United States)

    Bernard, Elvis; Wang, Baojun

    2017-01-01

    Bacteria live in an ever changing environment and, to adapt their physiology, they have to sense the changes. Our current understanding of the mechanisms and elements involved in the detection and processing of these environmental signals grant us access to an array of genetic components able to process such information. As engineers can use different electronic components to build a circuit, we can rewire the cellular components to create digital logic and analogue gene circuits that will program cell behaviour in a designed manner in response to a specific stimulus. Here we present the methods and protocols for designing and implementing synthetic cell-based biosensors that use engineered genetic logic and analogue amplifying circuits to significantly increase selectivity and sensitivity, for example, for heavy metal ions in an aqueous environment. The approach is modular and can be readily applied to improving the sensing limit and performance of a range of microbial cell-based sensors to meet their real world detection requirement.

  7. Photonic crystal cavities for resonant evanescent field trapping of single bacteria

    Science.gov (United States)

    van Leest, Thijs; Heldens, Jeroen; van der Gaag, Bram; Caro, Jaap

    2012-06-01

    In monitoring the quality of drinking water with respect to the presence of hazardous bacteria there is a strong need for on-line sensors that allow quick identification of bacterium species at low cost. In this respect, the combination of photonics and microfluidics is promising for lab-on-a-chip sensing of these contaminants. Photonic crystal slabs have proven to form a versatile platform for controlling the flow of light and creating resonant cavities on a wavelength scale. The goal of our research is to use photonic crystal cavities for optical trapping of microorganisms in water, exploiting the enhanced evanescent field of the cavity mode. We optimize the H0, H1 and L3 cavities for optical trapping of bacteria in water, by reducing out-of-plane losses and taking into account the trapping-induced resonance shift and the in-plane coupling with photonic crystal waveguides. The cavities are fabricated on silicon-on-insulator material, using e-beam lithography and dry etching. A fluidic channel is created on top of the photonic crystal using dry film resist techniques. Transmission measurements show clear resonances for the cavities in water. In the present state of our research, we demonstrate optical trapping of 1 μm diameter polystyrene beads for the three cavities, with estimated trapping forces on the order of 0.7 pN.

  8. Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella

    Science.gov (United States)

    Xiao, Rui; Rong, Zhen; Long, Feng; Liu, Qiqi

    2014-11-01

    A portable evanescent wave fiber biosensor was developed to achieve the rapid and highly sensitive detection of Shigella. In this study, a DNA probe was covalently immobilized onto fiber-optic biosensors that can hybridize with a fluorescently labeled complementary DNA. The sensitivity of detection for synthesized oligonucleotides can reach 10-10 M. The surface of the sensor can be regenerated with 0.5% sodium dodecyl sulfate solution (pH 1.9) for over 30 times without significant deterioration of performance. The total analysis time for a single sample, including the time for measurement and surface regeneration, was less than 6 min. We employed real-time polymerase chain reaction (PCR) and compared the results of both methods to investigate the actual Shigella DNA detection capability of the fiber-optic biosensor. The fiber-optic biosensor could detect as low as 102 colony-forming unit/mL Shigella. This finding was comparable with that by real-time PCR, which suggests that this method is a potential alternative to existing detection methods.

  9. Nanoprofiles evaluation of ZnO thin films by an evanescent light method.

    Science.gov (United States)

    Mirchin, Nina; Peled, Aaron; Duta, Liviu; Popescu, Andrei C; Dorcioman, Gabriela; Mihailescu, Ion N

    2013-10-01

    The extraction efficiency of evanescent light from ZnO nanolayers and their thickness profiles in the range of (1-105) nm was evaluated by a new microscopy technique, differential evanescent light intensity imaging method. It is based on capturing the evanescent light scattered by the layer of the material deposited on glass substrates. The analyzed ZnO films were obtained by pulsed laser deposition at 27°C and 100°C, using a nanosecond UV laser source. Copyright © 2013 Wiley Periodicals, Inc.

  10. Silicon-based microfabricated microbial fuel cell toxicity sensor.

    Science.gov (United States)

    Dávila, D; Esquivel, J P; Sabaté, N; Mas, J

    2011-01-15

    Microbial fuel cells (MFCs) have been used for several years as biosensors for measuring environmental parameters such as biochemical oxygen demand and water toxicity. The present study is focused on the detection of toxic matter using a novel silicon-based MFC. Like other existing toxicity sensors based on MFCs, this device is capable of detecting the variation on the current produced by the cell when toxic compounds are present in the medium. The MFC approach presented in this work aims to obtain a simple, compact and planar device for its further application as a biosensor in the design and fabrication of equipment for toxicity monitoring. It consists on a proton exchange membrane placed between two microfabricated silicon plates that act as current collectors. An array of square 80 μm × 80 μm vertical channels, 300 μm deep, have been defined trough the plates over an area of 6 mm × 6 mm. The final testing assembly incorporates two perspex pieces positioned onto the plates as reservoirs with a working volume of 144 μL per compartment. The operation of the microdevice as a direct electron transfer MFC has been validated by comparing its performance against a larger scale MFC, run under the same conditions. The device has been tested as a toxicity sensor by setting it at a fixed current while monitoring changes in the output power. A drop in the power production is observed when a toxic compound is added to the anode compartment. The compact design of the device makes it suitable for its incorporation into measurement equipment either as an individual device or as an array of sensors for high throughput processing. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Effect of sensor systems for cow management on milk production, somatic cell count, and reproduction.

    Science.gov (United States)

    Steeneveld, W; Vernooij, J C M; Hogeveen, H

    2015-06-01

    To improve management on dairy herds, sensor systems have been developed that can measure physiological, behavioral, and production indicators on individual cows. It is not known whether using sensor systems also improves measures of health and production in dairy herds. The objective of this study was to investigate the effect of using sensor systems on measures of health and production in dairy herds. Data of 414 Dutch dairy farms with (n=152) and without (n=262) sensor systems were available. For these herds, information on milk production per cow, days to first service, first calving age, and somatic cell count (SCC) was provided for the years 2003 to 2013. Moreover, year of investment in sensor systems was available. For every farm year, we determined whether that year was before or after the year of investment in sensor systems on farms with an automatic milking system (AMS) or a conventional milking system (CMS), or whether it was a year on a farm that never invested in sensor systems. Separate statistical analyses were performed to determine the effect of sensor systems for mastitis detection (color, SCC, electrical conductivity, and lactate dehydrogenase sensors), estrus detection for dairy cows, estrus detection for young stock, and other sensor systems (weighing platform, rumination time sensor, fat and protein sensor, temperature sensor, milk temperature sensor, urea sensor, β-hydroxybutyrate sensor, and other sensor systems). The AMS farms had a higher average SCC (by 12,000 cells/mL) after sensor investment, and CMS farms with a mastitis detection system had a lower average SCC (by 10,000 cells/mL) in the years after sensor investment. Having sensor systems was associated with a higher average production per cow on AMS farms, and with a lower average production per cow on CMS farms in the years after investment. The most likely reason for this lower milk production after investment was that on 96% of CMS farms, the sensor system investment occurred

  12. Possibility of high performance quantum computation by superluminal evanescent photons in living systems.

    Science.gov (United States)

    Musha, Takaaki

    2009-06-01

    Penrose and Hameroff have suggested that microtubules in living systems function as quantum computers by utilizing evanescent photons. On the basis of the theorem that the evanescent photon is a superluminal particle, the possibility of high performance computation in living systems has been studied. From the theoretical analysis, it is shown that the biological brain can achieve large quantum bits computation compared with the conventional processors at room temperature.

  13. Evanescent field phase shifting in a silicon nitride waveguide using a coupled silicon slab

    DEFF Research Database (Denmark)

    Jensen, Asger Sellerup; Oxenløwe, Leif Katsuo; Green, William M. J.

    2015-01-01

    An approach for electrical modulation of low-loss silicon nitride waveguides is proposed, using a silicon nitride waveguide evanescently loaded with a thin silicon slab. The thermooptic phase-shift characteristics are investigated in a racetrack resonator configuration.......An approach for electrical modulation of low-loss silicon nitride waveguides is proposed, using a silicon nitride waveguide evanescently loaded with a thin silicon slab. The thermooptic phase-shift characteristics are investigated in a racetrack resonator configuration....

  14. Resonant energy transfer under the influence of the evanescent field from the metal.

    Science.gov (United States)

    Poudel, Amrit; Chen, Xin; Ratner, Mark A

    2017-06-28

    We present a quantum framework based on a density matrix of a dimer system to investigate the quantum dynamics of excitation energy transfer (EET) in the presence of the evanescent field from the metal and the phonon bath. Due to the spatial correlation of the electric field in the vicinity of the metal, the spectral density of the evanescent field is similar to that of a shared phonon bath. However, the EET dynamics under the influence of the evanescent field is an open and a new problem. Here we use a thin metallic film to investigate the effect of the evanescent field on the excitation energy transfer in a dimer system based on a density matrix approach. Our results indicate that a thin metallic film enhances the energy transfer rate at the expense of absorbing energy during the process. Since the spectral density of the evanescent field is affected by the geometry of the medium and the distance of a dimer system from the medium, our results demonstrate the possibility to tune EET based on material geometry and distances. Our model also serves as an expansion to quantum heat engine models and provides a framework to investigate the EET in light harvesting molecular networks under the influence of the evanescent field.

  15. Resonant energy transfer under the influence of the evanescent field from the metal

    Science.gov (United States)

    Poudel, Amrit; Chen, Xin; Ratner, Mark A.

    2017-06-01

    We present a quantum framework based on a density matrix of a dimer system to investigate the quantum dynamics of excitation energy transfer (EET) in the presence of the evanescent field from the metal and the phonon bath. Due to the spatial correlation of the electric field in the vicinity of the metal, the spectral density of the evanescent field is similar to that of a shared phonon bath. However, the EET dynamics under the influence of the evanescent field is an open and a new problem. Here we use a thin metallic film to investigate the effect of the evanescent field on the excitation energy transfer in a dimer system based on a density matrix approach. Our results indicate that a thin metallic film enhances the energy transfer rate at the expense of absorbing energy during the process. Since the spectral density of the evanescent field is affected by the geometry of the medium and the distance of a dimer system from the medium, our results demonstrate the possibility to tune EET based on material geometry and distances. Our model also serves as an expansion to quantum heat engine models and provides a framework to investigate the EET in light harvesting molecular networks under the influence of the evanescent field.

  16. Cell-based capacitance sensor for analysis of EGFR expression on cell membrane

    Science.gov (United States)

    Shin, Dong-Myeong; Shin, Yong-Cheol; Ha, Ji Hye; Lee, Jong-Ho; Han, Dong-Wook; Kim, Jong-Man; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2013-02-01

    Cancer cells have many kinds of cancer biomarkers. Among them, the epidermal growth factor (EGF) receptors can show a possibility for a cancer marker because the over-expression of EGF receptor is related with fibrous, colorectal, cervical and gastric tumorigenesis. We fabricated the capacitance sensor with a gap area of 50 μm × 200 μm by using photolithography and lift-off method. Using the capacitance sensor, we investigated the time dependent capacitance changes of different kinds of fibrous cells, such as HT1080 fibrosarcoma, L-929 fibroblast cell line and nHDF dermal fibroblast primary cell. We found that when we put the EGF, the capacitance decreased due to the immobilization of EGF to EGF receptor on the cell membrane. The quantitative determination of EGF receptor level for various fibrous cells was carried out and the results showed good correlation with conventional method. Based on our results, we suggest that the capacitance sensor can measure the expression level of the EGF receptor on cell membrane and be a good candidate as a cancer diagnosis.

  17. Evanescent-wave Johnson noise in small devices

    Science.gov (United States)

    Premakumar, Vickram N.; Vavilov, Maxim G.; Joynt, Robert

    2018-01-01

    In many quantum computer architectures, the qubits are in close proximity to metallic device elements. The fluctuating currents in the metal give rise to noisy electromagnetic fields that leak out into the surrounding region. These fields are known as evanescent-wave Johnson noise. The noise can decohere the qubits. We review and update the general theory of this effect for charge qubits subject to electric noise and for spin and magnetic qubits subject to magnetic noise. A mapping of the quantum-mechanical problem onto a problem in classical electrodynamics simplifies the calculations. The focus is on relatively simple geometries in which analytical calculations can be done. Results are presented for the local noise spectral density in the vicinity of cylindrical conductors such as small antennae, noise from objects that can be treated as dipoles, and noise correlation functions for several geometries. We summarize the current state of the comparison of theory with experimental results on decoherence times of qubits. Emphasis is placed on qualitative understanding of the basic concepts and phenomena.

  18. Systematic transfer of prokaryotic sensors and circuits to mammalian cells.

    Science.gov (United States)

    Stanton, Brynne C; Siciliano, Velia; Ghodasara, Amar; Wroblewska, Liliana; Clancy, Kevin; Trefzer, Axel C; Chesnut, Jonathan D; Weiss, Ron; Voigt, Christopher A

    2014-12-19

    Prokaryotic regulatory proteins respond to diverse signals and represent a rich resource for building synthetic sensors and circuits. The TetR family contains >10(5) members that use a simple mechanism to respond to stimuli and bind distinct DNA operators. We present a platform that enables the transfer of these regulators to mammalian cells, which is demonstrated using human embryonic kidney (HEK293) and Chinese hamster ovary (CHO) cells. The repressors are modified to include nuclear localization signals (NLS) and responsive promoters are built by incorporating multiple operators. Activators are also constructed by modifying the protein to include a VP16 domain. Together, this approach yields 15 new regulators that demonstrate 19- to 551-fold induction and retain both the low levels of crosstalk in DNA binding specificity observed between the parent regulators in Escherichia coli, as well as their dynamic range of activity. By taking advantage of the DAPG small molecule sensing mediated by the PhlF repressor, we introduce a new inducible system with 50-fold induction and a threshold of 0.9 μM DAPG, which is comparable to the classic Dox-induced TetR system. A set of NOT gates is constructed from the new repressors and their response function quantified. Finally, the Dox- and DAPG- inducible systems and two new activators are used to build a synthetic enhancer (fuzzy AND gate), requiring the coordination of 5 transcription factors organized into two layers. This work introduces a generic approach for the development of mammalian genetic sensors and circuits to populate a toolbox that can be applied to diverse applications from biomanufacturing to living therapeutics.

  19. Endocytosis and vacuolar degradation of the yeast cell surface glucose sensors Rgt2 and Snf3.

    Science.gov (United States)

    Roy, Adhiraj; Kim, Jeong-Ho

    2014-03-07

    Sensing and signaling the presence of extracellular glucose is crucial for the yeast Saccharomyces cerevisiae because of its fermentative metabolism, characterized by high glucose flux through glycolysis. The yeast senses glucose through the cell surface glucose sensors Rgt2 and Snf3, which serve as glucose receptors that generate the signal for induction of genes involved in glucose uptake and metabolism. Rgt2 and Snf3 detect high and low glucose concentrations, respectively, perhaps because of their different affinities for glucose. Here, we provide evidence that cell surface levels of glucose sensors are regulated by ubiquitination and degradation. The glucose sensors are removed from the plasma membrane through endocytosis and targeted to the vacuole for degradation upon glucose depletion. The turnover of the glucose sensors is inhibited in endocytosis defective mutants, and the sensor proteins with a mutation at their putative ubiquitin-acceptor lysine residues are resistant to degradation. Of note, the low affinity glucose sensor Rgt2 remains stable only in high glucose grown cells, and the high affinity glucose sensor Snf3 is stable only in cells grown in low glucose. In addition, constitutively active, signaling forms of glucose sensors do not undergo endocytosis, whereas signaling defective sensors are constitutively targeted for degradation, suggesting that the stability of the glucose sensors may be associated with their ability to sense glucose. Therefore, our findings demonstrate that the amount of glucose available dictates the cell surface levels of the glucose sensors and that the regulation of glucose sensors by glucose concentration may enable yeast cells to maintain glucose sensing activity at the cell surface over a wide range of glucose concentrations.

  20. Cell-bionics: tools for real-time sensor processing.

    Science.gov (United States)

    Toumazou, Chris; Cass, Tony

    2007-08-29

    The accurate monitoring of the physiological status of cells, tissues and whole organisms demands a new generation of devices capable of providing accurate data in real time with minimal perturbation of the system being measured. To deliver on the promise of cell-bionics advances over the past decade in miniaturization, analogue signal processing, low-power electronics, materials science and protein engineering need to be brought together. In this paper we summarize recent advances in our research that is moving us in this direction. Two areas in particular are highlighted: the exploitation of the physical properties inherent in semiconductor devices to perform very low power on chip signal processing and the use of gene technology to tailor proteins for sensor applications. In the context of engineered tissues, cell-bionics could offer the ability to monitor the precise physiological state of the construct, both during 'manufacture' and post-implantation. Monitoring during manufacture, particularly by embedded devices, would offer quality assurance of the materials components and the fabrication process. Post-implantation monitoring would reveal changes in the underlying physiology as a result of the tissue construct adapting to its new environment.

  1. White blood cell counting on smartphone paper electrochemical sensor.

    Science.gov (United States)

    Wang, Xinhao; Lin, Guohong; Cui, Guangzhe; Zhou, Xiangfei; Liu, Gang Logan

    2017-04-15

    White blood cell (WBC) analysis provides rich information in rapid diagnosis of acute bacterial and viral infections as well as chronic disease management. For patients with immune deficiency or leukemia WBC should be persistently monitored. Current WBC counting method relies on bulky instrument and trained personnel and is time consuming. Rapid, low-cost and portable solution is in highly demand for point of care test. Here we demonstrate a label-free smartphone based electrochemical WBC counting device on microporous paper with patterned gold microelectrodes. WBC separated from whole blood was trapped by the paper with microelectrodes. WBC trapped on the paper leads to the ion diffusion blockage on microelectrodes, therefore cell concentration is determined by peak current on the microelectrodes measured by a differential pulse voltammeter and the quantitative results are collected by a smartphone wirelessly within 1min. We are able to rapidly quantify WBC concentrations covering the common physiological and pathological range (200-20000μL-1) with only 10μL sample and high repeatability as low as 10% in CoV (Coefficient of Variation). The unique smartphone paper electrochemical sensor ensures fast cell quantification to achieve rapid and low-cost WBC analysis at the point-of-care under resource limited conditions. Copyright © 2016. Published by Elsevier B.V.

  2. Spatio-Temporally Adaptive Waiting Time for Cell Phone Sensor Networks

    OpenAIRE

    Deepthi Chander; Bhushan Jagyasi; Desai, U. B.; Merchant, S N

    2011-01-01

    In cell phone sensor networks (CpSN), sensor-embedded cell phones communicate sensor data using Near Field Communication outlets such as Wi-Fi or Bluetooth. This paper considers a query dissemination application of CpSN, where sensor data belonging to a certain time window [ts,min, ts,max] is needed from a region of interest. Existing approaches, such as ADAPT, use adaptive broadcast ranges at the Wireless Access Point (WAP) for query dissemination. This paper proposes the adaptation of waiti...

  3. Current-Induced Transistor Sensorics with Electrogenic Cells

    Directory of Open Access Journals (Sweden)

    Peter Fromherz

    2016-04-01

    Full Text Available The concepts of transistor recording of electroactive cells are considered, when the response is determined by a current-induced voltage in the electrolyte due to cellular activity. The relationship to traditional transistor recording, with an interface-induced response due to interactions with the open gate oxide, is addressed. For the geometry of a cell-substrate junction, the theory of a planar core-coat conductor is described with a one-compartment approximation. The fast electrical relaxation of the junction and the slow change of ion concentrations are pointed out. On that basis, various recording situations are considered and documented by experiments. For voltage-gated ion channels under voltage clamp, the effects of a changing extracellular ion concentration and the enhancement/depletion of ion conductances in the adherent membrane are addressed. Inhomogeneous ion conductances are crucial for transistor recording of neuronal action potentials. For a propagating action potential, the effects of an axon-substrate junction and the surrounding volume conductor are distinguished. Finally, a receptor-transistor-sensor is described, where the inhomogeneity of a ligand–activated ion conductance is achieved by diffusion of the agonist and inactivation of the conductance. Problems with regard to a development of reliable biosensors are mentioned.

  4. Multi-Sensor Arrays for Online Monitoring of Cell Dynamics in in vitro Studies with Choroid Plexus Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Soledad García Gómez de las Heras

    2012-02-01

    Full Text Available Sensors and multi-sensor arrays are the basis of new technologies for the non-label monitoring of cell activity. In this paper we show that choroid plexus cells can be cultured on silicon chips and that sensors register in real time changes in their activity, constituting an interesting experimental paradigm for cell biology and medical research. To validate the signals recorded (metabolism = peri-cellular acidification, oxygen consumption = respiration; impedance = adhesion, cell shape and motility we performed experiments with compounds that act in a well-known way on cells, influencing these parameters. Our in vitro model demonstrates the advantages of multi-sensor arrays in assessment and experimental characterization of dynamic cellular events—in this case in choroid plexus functions, however with applicability to other cell types as well.

  5. Concept for a solid-state multi-parameter sensor system for cell-culture monitoring

    OpenAIRE

    Baecker, M.; Beging, S.; Biselli, M.; Poghossian, A.; Wang, J.; Zang, W.; Wagner, Patrick; Schoening, M. J.

    2009-01-01

    In this study. a concept for a silicon-based modular solid-state sensor system for inline multi-parameter monitoring of cell-culture fermentation processes is presented. The envisaged multi-parameter sensor system consists of two identical sensor modules and is intended for continuous quantification of up to five (bio-)chemical and physical parameters, namely, glucose and glutamine concentration, pH value, electrolyte conductivity and temperature by applying different transducer principles an...

  6. Exploiting evanescent-wave amplification for subwavelength low-contrast particle detection

    Science.gov (United States)

    Roy, S.; Pereira, S. F.; Urbach, H. P.; Wei, Xukang; El Gawhary, O.

    2017-07-01

    The classical problem of subwavelength particle detection on a flat surface is especially challenging when the refractive index of the particle is close to that of the substrate. We demonstrate a method to improve the detection ability several times for such a situation, by enhancing the "forbidden" evanescent waves in the substrate using the principle of super-resolution with evanescent waves amplification. The working mechanism of the system and experimental validation from a design with a thin single dielectric layer is presented. The resulting system is a simple but complete example of evanescent-wave generation, amplification, and the consequent modulation of the far field. This principle can have far reaching impact in the field of particle detection in several applications ranging from contamination control to interferometric scattering microscopy for biological samples.

  7. Selective particle trapping and optical binding in the evanescent field of an optical nanofiber

    CERN Document Server

    Frawley, Mary C; Truong, Viet Giang; Sergides, Marios; Chormaic, Síle Nic

    2014-01-01

    The evanescent field of an optical nanofiber presents a versatile interface for the manipulation of micron-scale particles in dispersion. Here, we present a detailed study of the optical binding interactions of a pair of 3.13 $\\mu$m SiO$_2$ particles in the nanofiber evanescent field. Preferred equilibrium positions for the spheres as a function of nanofiber diameter and sphere size are discussed. We demonstrated optical propulsion and self-arrangement of chains of one to seven 3.13 $\\mu$m SiO$_2$ particles; this effect is associated with optical binding via simulated trends of multiple scattering effects. Incorporating an optical nanofiber into an optical tweezers setup facilitated the individual and collective introduction of selected particles to the nanofiber evanescent field for experiments. Computational simulations provide insight into the dynamics behind the observed behavior.

  8. Detection of surface-plasmon evanescent fields using a metallic probe tip covered with fluorescence

    CERN Document Server

    Wakamatsu, T; Shinbo, K; Kato, K; Kaneko, F

    1999-01-01

    A new experimental system has been constructed to detect evanescent fields of metal surface plasmons (SPs) using a metallic probe tip covered with fluorescence cadmium sulfide (CdS). The evanescent fields of the SPs sensitive to the metal interfaces were observed as fluorescent light from CdS on the tip. No additional lock-in detection technique with a vibrating probe tip is necessary in the system, in spite of the scattered light enhanced by SP due to the surface roughness. The fluorescent light measured for the Al film sample shows exponential decay with distance from the sample surface, indicating that the SP evanescent fields are detected with our apparatus. (10 refs).

  9. High-content analysis of single cells directly assembled on CMOS sensor based on color imaging.

    Science.gov (United States)

    Tanaka, Tsuyoshi; Saeki, Tatsuya; Sunaga, Yoshihiko; Matsunaga, Tadashi

    2010-12-15

    A complementary metal oxide semiconductor (CMOS) image sensor was applied to high-content analysis of single cells which were assembled closely or directly onto the CMOS sensor surface. The direct assembling of cell groups on CMOS sensor surface allows large-field (6.66 mm×5.32 mm in entire active area of CMOS sensor) imaging within a second. Trypan blue-stained and non-stained cells in the same field area on the CMOS sensor were successfully distinguished as white- and blue-colored images under white LED light irradiation. Furthermore, the chemiluminescent signals of each cell were successfully visualized as blue-colored images on CMOS sensor only when HeLa cells were placed directly on the micro-lens array of the CMOS sensor. Our proposed approach will be a promising technique for real-time and high-content analysis of single cells in a large-field area based on color imaging. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Ratiometric Array of Conjugated Polymers-Fluorescent Protein Provides a Robust Mammalian Cell Sensor.

    Science.gov (United States)

    Rana, Subinoy; Elci, S Gokhan; Mout, Rubul; Singla, Arvind K; Yazdani, Mahdieh; Bender, Markus; Bajaj, Avinash; Saha, Krishnendu; Bunz, Uwe H F; Jirik, Frank R; Rotello, Vincent M

    2016-04-06

    Supramolecular complexes of a family of positively charged conjugated polymers (CPs) and green fluorescent protein (GFP) create a fluorescence resonance energy transfer (FRET)-based ratiometric biosensor array. Selective multivalent interactions of the CPs with mammalian cell surfaces caused differential change in FRET signals, providing a fingerprint signature for each cell type. The resulting fluorescence signatures allowed the identification of 16 different cell types and discrimination between healthy, cancerous, and metastatic cells, with the same genetic background. While the CP-GFP sensor array completely differentiated between the cell types, only partial classification was achieved for the CPs alone, validating the effectiveness of the ratiometric sensor. The utility of the biosensor was further demonstrated in the detection of blinded unknown samples, where 121 of 128 samples were correctly identified. Notably, this selectivity-based sensor stratified diverse cell types in minutes, using only 2000 cells, without requiring specific biomarkers or cell labeling.

  11. Development of Load Cell Using Fiber Brags Grating Sensors and Differential Method for Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Hyun [Seoul National University of Technology, Seoul (Korea, Republic of)

    2009-08-15

    Emerging fiber optic sensor technologies have shown great potential to overcome the difficulties associated with conventional sensors. Fiber optic sensors are immune to EM noise and electric shock and thus can be used in explosion-prone areas. Several kinds of fiber optic sensors have been developed over the last two decades to take advantage of these merits. There have also been many field applications of fiber optic sensors for structural health monitoring as NDT/HDE. However, very few sensors, particularly a load cell have been successfully commercialized. This Paper Presents a load cell using fiber Bra99 gra1ing (FBG) sensors. The shape of the load cell is a link type, and three FBG sensors are used for measuring strains at three different points. Especially, these strains are processed with a differential method in order to exclude common mode noise such as temperature. Moreover, the sensitivity, the linearity and the resolution of the load cell were successfully verified from the experiment of tension test.

  12. Software sensors as a tool for optimization of animal-cell cultures

    NARCIS (Netherlands)

    Dorresteijn, R.C.

    1997-01-01

    In this thesis software sensors are introduced that predict the biomass activity and the concentrations of glucose, glutamine, lactic acid, and ammonium on line, The software sensors for biomass activity, glucose and lactic acid can be applied for any type of animal cell that is grown in a

  13. Self-organising sensor web using cell-fate optimisation

    CSIR Research Space (South Africa)

    Van Zyl, TL

    2009-07-01

    Full Text Available The Sensor Web as an open complex adaptive system exhibits many characteristics that are common to self organising systems. One of the characteristics of the Sensor Web is that of self-adaptivity in a changing environment. The changing environment...

  14. Staying alive! Sensors used for monitoring cell health in bioreactors.

    Science.gov (United States)

    O'Mara, P; Farrell, A; Bones, J; Twomey, K

    2018-01-01

    Current and next generation sensors such as pH, dissolved oxygen (dO) and temperature sensors that will help drive the use of single-use bioreactors in industry are reviewed. The current trend in bioreactor use is shifting from the traditional fixed bioreactors to the use of single-use bioreactors (SUBs). However as the shift in paradigm occurs there is now a greater need for sensor technology to play 'catch up' with the innovation of bioreactor technology. Many of the sensors still in use today rely on technology created in the 1960's such as the Clark-type dissolved oxygen sensor or glass pH electrodes. This is due to the strict requirements of sensors to monitor bioprocesses resulting in the use of traditional well understood methods, making it difficult to incorporate new sensor technology into industry. A number of advances in sensor technology have been achieved in recent years, a few of these advances and future research will also be discussed in this review. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Novel cell-based odorant sensor elements based on insect odorant receptors.

    Science.gov (United States)

    Mitsuno, Hidefumi; Sakurai, Takeshi; Namiki, Shigehiro; Mitsuhashi, Hiroyuki; Kanzaki, Ryohei

    2015-03-15

    Development of cell-based odorant sensor elements combined not only high degree of sensitivity and selectivity but also long-term stability is crucial for their practical applications. Here we report the development of a novel cell-based odorant sensor element that sensitively and selectively detects odorants and displays increased fluorescent intensities over a long period of time. Our odorant sensor elements, based on Sf21 cell lines expressing insect odorant receptors, are sensitive to the level of several tens of parts per billion in solution, can selectively distinguish between different types of odorants based on the odorant selectivity intrinsic to the expressed receptors, and have response times of approximately 13s. Specifically, with the use of Sf21 cells and insect odorant receptors, we demonstrated that the established cell lines stably expressing insect odorant receptors are able to detect odorants with consistent responsiveness for at least 2 months, thus exceeding the short life-span normally associated with cell-based sensors. We also demonstrated the development of a compact odorant sensor chip by integrating the established insect cell lines into a microfluidic chip. The methodology we established in this study, in conjunction with the large repertoire of insect odorant receptors, will aid in the development of practical cell-based odorant sensors for various applications, including food administration and health management. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes

    NARCIS (Netherlands)

    Kim, Jun Wan; Choi, Sun Young; Yeom, Dong-Il; Aravazhi, S.; Pollnau, Markus; Griebner, Uwe; Petrov, Valentin; Rotermund, Fabian

    2013-01-01

    We report Q-switched operation of a planar waveguide laser by evanescent-field interaction with single-walled carbon nanotubes deposited on top of the waveguide. The saturable-absorber-integrated gain medium, which operates based on evanescent-field interaction, enables the realization of a

  17. Study on the propagation mechanism of evanescent waves in one-dimensional periodic photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: chenying@ysu.edu.cn [Hebei Province Key Laboratory of Test/Measurement Technology and Instrument, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004 (China); Shi, Jia; Liu, Teng; Dong, Jing [Hebei Province Key Laboratory of Test/Measurement Technology and Instrument, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhu, Qiguang; Chen, Weidong [Key Laboratory of Special Fiber and Fiber Sensor of Hebei Province, School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2015-10-02

    Based on the evanescent waves theory, the formation condition and propagation mechanism of evanescent waves in one-dimensional periodic photonic crystal are studied. When the incident light travels through the periodic photonic crystal at a certain angle, the optical resonance will occur in the optically denser medium, and a unique photonic local feature will occur in photonic bandgap. Furthermore, the influences on transmission performance by the photonic crystal parameters are discussed respectively. The simulation results show that the structure mentioned above can achieve the performance of high transmission and high Q value, which can provide theoretical references for photonic crystal multi-channel filters.

  18. Multiplexed Cell-Based Sensors for Assessing the Impact of Engineered Systems and Methods on Cell Health.

    Science.gov (United States)

    Varma, Sarvesh; Fendyur, Anna; Box, Andrew; Voldman, Joel

    2017-04-18

    Bioinstrumentation engineers have long been creating platforms to study cell health and disease. It becomes necessary to ensure that such cell-probing tools do not themselves harm cells through complex stressors resulting from their design or operational conditions. Here, we present multiplexed cell-based sensors to simultaneously quantify stress induced by diverse mechanisms such as shear stress, DNA damage, and heat shock. Our sensors do not require additional reagents and can be conveniently quantified by flow cytometry and real-time imaging. Successful adaptation of our sensors by external users enabled systematic assessment of multiple flow sorters, alongside their operational parameters using the same cells and preparation. Our results provide insight into "gentle" and stressful sorting parameters that had not been quantified previously. Overall, this work presents a facile and quantitative approach to investigate multifactorial cell-stress emergent from diverse bioinstrumentation, which can be utilized to discover design and operation conditions ideal for cell health.

  19. Online Soft Sensor of Humidity in PEM Fuel Cell Based on Dynamic Partial Least Squares

    Directory of Open Access Journals (Sweden)

    Rong Long

    2013-01-01

    Full Text Available Online monitoring humidity in the proton exchange membrane (PEM fuel cell is an important issue in maintaining proper membrane humidity. The cost and size of existing sensors for monitoring humidity are prohibitive for online measurements. Online prediction of humidity using readily available measured data would be beneficial to water management. In this paper, a novel soft sensor method based on dynamic partial least squares (DPLS regression is proposed and applied to humidity prediction in PEM fuel cell. In order to obtain data of humidity and test the feasibility of the proposed DPLS-based soft sensor a hardware-in-the-loop (HIL test system is constructed. The time lag of the DPLS-based soft sensor is selected as 30 by comparing the root-mean-square error in different time lag. The performance of the proposed DPLS-based soft sensor is demonstrated by experimental results.

  20. Online soft sensor of humidity in PEM fuel cell based on dynamic partial least squares.

    Science.gov (United States)

    Long, Rong; Chen, Qihong; Zhang, Liyan; Ma, Longhua; Quan, Shuhai

    2013-01-01

    Online monitoring humidity in the proton exchange membrane (PEM) fuel cell is an important issue in maintaining proper membrane humidity. The cost and size of existing sensors for monitoring humidity are prohibitive for online measurements. Online prediction of humidity using readily available measured data would be beneficial to water management. In this paper, a novel soft sensor method based on dynamic partial least squares (DPLS) regression is proposed and applied to humidity prediction in PEM fuel cell. In order to obtain data of humidity and test the feasibility of the proposed DPLS-based soft sensor a hardware-in-the-loop (HIL) test system is constructed. The time lag of the DPLS-based soft sensor is selected as 30 by comparing the root-mean-square error in different time lag. The performance of the proposed DPLS-based soft sensor is demonstrated by experimental results.

  1. Evaluation of a Multi-Parameter Sensor for Automated, Continuous Cell Culture Monitoring in Bioreactors

    Science.gov (United States)

    Pappas, D.; Jeevarajan, A.; Anderson, M. M.

    2004-01-01

    Compact and automated sensors are desired for assessing the health of cell cultures in biotechnology experiments in microgravity. Measurement of cell culture medium allows for the optirn.jzation of culture conditions on orbit to maximize cell growth and minimize unnecessary exchange of medium. While several discrete sensors exist to measure culture health, a multi-parameter sensor would simplify the experimental apparatus. One such sensor, the Paratrend 7, consists of three optical fibers for measuring pH, dissolved oxygen (p02), dissolved carbon dioxide (pC02) , and a thermocouple to measure temperature. The sensor bundle was designed for intra-arterial placement in clinical patients, and potentially can be used in NASA's Space Shuttle and International Space Station biotechnology program bioreactors. Methods: A Paratrend 7 sensor was placed at the outlet of a rotating-wall perfused vessel bioreactor system inoculated with BHK-21 (baby hamster kidney) cells. Cell culture medium (GTSF-2, composed of 40% minimum essential medium, 60% L-15 Leibovitz medium) was manually measured using a bench top blood gas analyzer (BGA, Ciba-Corning). Results: A Paratrend 7 sensor was used over a long-term (>120 day) cell culture experiment. The sensor was able to track changes in cell medium pH, p02, and pC02 due to the consumption of nutrients by the BHK-21. When compared to manually obtained BGA measurements, the sensor had good agreement for pH, p02, and pC02 with bias [and precision] of 0.02 [0.15], 1 mm Hg [18 mm Hg], and -4.0 mm Hg [8.0 mm Hg] respectively. The Paratrend oxygen sensor was recalibrated (offset) periodically due to drift. The bias for the raw (no offset or recalibration) oxygen measurements was 42 mm Hg [38 mm Hg]. The measured response (rise) time of the sensor was 20 +/- 4s for pH, 81 +/- 53s for pC02, 51 +/- 20s for p02. For long-term cell culture measurements, these response times are more than adequate. Based on these findings , the Paratrend sensor could

  2. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network

    OpenAIRE

    Daxing Zhang; Yingmin Zhu; Witold Pedrycz; Yongxian Guo

    2016-01-01

    Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, ...

  3. Alloy catalysts for fuel cell-based alcohol sensors

    Science.gov (United States)

    Ghavidel, Mohammadreza Zamanzad

    Direct ethanol fuel cells (DEFCs) are attractive from both economic and environmental standpoints for generating renewable energy and powering vehicles and portable electronic devices. There is a great interest recently in developing DEFC systems. The cost and performance of the DEFCs are mainly controlled by the Pt-base catalysts used at each electrode. In addition to energy conversion, DEFC technology is commonly employed in the fuel-cell based breath alcohol sensors (BrAS). BrAS is a device commonly used to measure blood alcohol concentration (BAC) and enforce drinking and driving laws. The BrAS is non-invasive and has a fast respond time. However, one of the most important drawback of the commercially available BrAS is the very high loading of Pt employed. One well-known and cost effective method to reduce the Pt loading is developing Pt-alloy catalysts. Recent studies have shown that Pt-transition metal alloy catalysts enhanced the electroactivity while decreasing the required loadings of the Pt catalysts. In this thesis, carbon supported Pt-Mn and Pt-Cu electrocatalysts were synthesized by different methods and the effects of heat treatment and structural modification on the ethanol oxidation reaction (EOR) activity, oxygen reduction reaction (ORR) activity and durability of these samples were thoroughly studied. Finally, the selected Pt-Mn and Pt-Cu samples with the highest EOR activity were examined in a prototype BrAS system and compared to the Pt/C and Pt 3Sn/C commercial electrocatalysts. Studies on the Pt-Mn catalysts produced with and without additives indicate that adding trisodium citrate (SC) to the impregnation solution improved the particle dispersion, decreased particle sizes and reduced the time required for heat treatment. Further studies show that the optimum weight ratio of SC to the metal loading in the impregnation solution was 2:1 and optimum results achieved at pH lower than 4. In addition, powder X-ray diffraction (XRD) analyses indicate

  4. Evanescent Effects Can Alter Ultraviolet Divergences in Quantum Gravity without Physical Consequences

    CERN Document Server

    Bern, Zvi; Chi, Huan-Hang; Davies, Scott; Dixon, Lance; Nohle, Josh

    2015-01-01

    Evanescent operators such as the Gauss-Bonnet term have vanishing perturbative matrix elements in exactly D=4 dimensions. Similarly, evanescent fields do not propagate in D=4; a three-form field is in this class, since it is dual to a cosmological-constant contribution. In this Letter, we show that evanescent operators and fields modify the leading ultraviolet divergence in pure gravity. To analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude and determine the coefficient of the associated (non-evanescent) R^3 counterterm studied long ago by Goroff and Sagnotti. We compare two pairs of theories that are dual in D=4: gravity coupled to nothing or to three-form matter, and gravity coupled to zero-form or to two-form matter. Duff and van Nieuwenhuizen showed that, curiously, the one-loop conformal anomaly --- the coefficient of the Gauss-Bonnet operator --- changes under p-form duality transformations. We concur, and also find that the leading R^3 divergence changes under du...

  5. Near-field imaging of interference pattern of counterpropagating evanescent waves

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Bozhevolnaya, Elena A.

    1999-01-01

    It is generally accepted that measurement of of the contrast of the intensity interference pattern formed by two counterpropagating evanescent waves can be used to characterize the resolving power of a collection near-field microscope. We argue that, if the light collected by a fiber probe...

  6. High resolution imaging of dielectric surfaces with an evanescent field optical microscope

    NARCIS (Netherlands)

    van Hulst, N.F.; Segerink, Franciscus B.; Bölger, B.

    1992-01-01

    An evanescent field optical microscope (EFOM) is presented which employs frustrated total internal reflection o­n a localized scale by scanning a dielectric tip in close proximity to a sample surface. High resolution images of dielectric gratings and spheres containing both topographic and

  7. Analysis and modeling of ducted and evanescent gravity waves observed in the Hawaiian airglow

    Directory of Open Access Journals (Sweden)

    D. B. Simkhada

    2009-08-01

    Full Text Available Short-period gravity waves of especially-small horizontal scale have been observed in the Maui, Hawaii airglow. Typical small-scale gravity wave events have been investigated, and intrinsic wave propagation characteristics have been calculated from simultaneous meteor radar wind measurements. Here we report specific cases where wave structure is significantly determined by the local wind structure, and where wave characteristics are consistent with ducted or evanescent waves throughout the mesopause region. Two of the documented events, exhibiting similar airglow signatures but dramatically different propagation conditions, are selected for simple numerical modeling case studies. First, a Doppler-ducted wave trapped within relatively weak wind flow is examined. Model results confirm that the wave is propagating in the 85–95 km region, trapped weakly by evanescence above and below. Second, an evanescent wave in strong wind flow is examined. Model results suggest an opposite case from the first case study, where the wave is instead trapped above or below the mesopause region, with strong evanescence arising in the 85–95 km airglow region. Distinct differences between the characteristics of these visibly-similar wave events demonstrate the need for simultaneous observations of mesopause winds to properly assess local propagation conditions.

  8. Multi-step surface functionalization of polyimide based evanescent wave photonic biosensors and application for DNA hybridization by Mach-Zehnder interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Melnik, Eva [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna (Austria); Bruck, Roman [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Hainberger, Rainer, E-mail: rainer.hainberger@ait.ac.at [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Laemmerhofer, Michael, E-mail: michael.laemmerhofer@univie.ac.at [Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna (Austria)

    2011-08-12

    Highlights: {yields} We realize a biosensing platform for polyimide evanescent photonic wave sensors. {yields} We show that the surface functionalization via silanisation and biotinylation followed by streptavidin immobilization do not destroy or damage the thin polyimide film. {yields} A highly dense streptavidin layer enables the immobilisation of biotinylated ligands such as biotinylated ssDNA for the selective measurement of DNA hybridization. - Abstract: The process of surface functionalization involving silanization, biotinylation and streptavidin bonding as platform for biospecific ligand immobilization was optimized for thin film polyimide spin-coated silicon wafers, of which the polyimide film serves as a wave guiding layer in evanescent wave photonic biosensors. This type of optical sensors make great demands on the materials involved as well as on the layer properties, such as the optical quality, the layer thickness and the surface roughness. In this work we realized the binding of a 3-mercaptopropyl trimethoxysilane on an oxygen plasma activated polyimide surface followed by subsequent derivatization of the reactive thiol groups with maleimide-PEG{sub 2}-biotin and immobilization of streptavidin. The progress of the functionalization was monitored by using different fluorescence labels for optimization of the chemical derivatization steps. Further, X-ray photoelectron spectroscopy and atomic force microscopy were utilized for the characterization of the modified surface. These established analytical methods allowed to derive information like chemical composition of the surface, surface coverage with immobilized streptavidin, as well as parameters of the surface roughness. The proposed functionalization protocol furnished a surface density of 144 fmol mm{sup -2} streptavidin with good reproducibility (13.9% RSD, n = 10) and without inflicted damage to the surface. This surface modification was applied to polyimide based Mach-Zehnder interferometer

  9. Development of micro fuel cells for autonomous sensors; Entwicklung von Mikrobrennstoffzellen fuer autarke Sensoren

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Robert; Wagner, Stefan; Reichl, Herbert [Fraunhofer Institut fuer Zuverlaessigkeit und Mikrointegration, Berlin (Germany); Hoeppner, Katrin [Fraunhofer Institut fuer Zuverlaessigkeit und Mikrointegration, Berlin (Germany); Technische Univ. Berlin (Germany)

    2009-07-01

    Meanwhile numerous energy autarkic sensors and other applications in the power range between 1 and ca. 40 Watts are powered with fuel cells. The mayor players are direct methanol fuel dells and polymer electrolyte membrane (PEM) fuel cells which are supplied with pressurized hydrogen. In out-door applications fuel cells are often combined with photo-voltaic modules. The paper will also give an overview of portable fuel cells. Small PEM fuel cells in the power range between 1 mW and 1 Watt are developed at Fraunhofer IZM. Hydrogen for theses systems is generated on-demand based on chemical hydrides and galvanic Zn cells. Small passive fuel cells and more sophisticated active systems with MEMS peripherals are under development. The applicability of fuel cells for autarkic sensors is investigated by compar-ing micro fuel cells with primary batteries. (orig.)

  10. Real-Time Monitoring of Pseudomonas Aeruginosa Concentration Using a Novel Electromagnetic Sensors Microfluidic Cell Structure.

    Science.gov (United States)

    Blakey, Richard; Nakouti, Ismini; Korostynska, Olga; Mason, Alex; Al-Shamma'a, Ahmed

    2013-12-01

    This study demonstrates an electromagnetic wave-based sensor embedded within a fluidic cell for the purposes of quantifying Pseudomonas aeruginosa in real time, which implies it could be applied for provision of point-of-care diagnostics. The sensors operates through the interaction of the electromagnetic field with the analyte flowing through the fluidic system, and via the sensor head which has a specifically designed planar pattern to maximize the sensor sensitivity for the given bacteria type. The sensor is demonstrated to respond linearly (R(2) = 0.9942) to OD(550) 25 × 10(-3) - 1.0 bacteria concentration through changing resonant frequency and peak quality factor. This innovative approach is expected to contribute to better provision of healthcare services, minimizing the need for hospital visits through real-time point-of-care diagnostics as opposed to lengthy laboratory assays.

  11. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: Focusing on impact of anodic biofilm on sensor applicability

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2011-01-01

    A sensor, based on a submersible microbial fuel cell (SUMFC), was developed for in situ monitoring of microbial activity and biochemical oxygen demand (BOD) in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Fresh anode was req...

  12. Fabrication and characterization of artificial hair cell sensor based on MWCNT-PDMS composite

    Science.gov (United States)

    Kim, Chi Yeon; Lee, Hyun Sup; Cho, Yo Han; Joh, Cheeyoung; Choi, Pyung; Park, Seong Jin

    2011-06-01

    The aim of this work is to design and fabricate a flow sensor using an artificial hair cell (AHC) inspired by biological hair cells of fish. The sensor consists of a single cilium structure with high aspect ratio and a mechanoreceptor using force sensitive resistor (FSR). The cilium structure is designed for capturing a drag force with direction due to flow field around the sensor and the mechanoreceptor is designed for sensing the drag force with direction from the cilium structure and converting it into an electric signal. The mechanoreceptor has a symmetric four electrodes to sense the drag force and its direction. To fabricate the single cilium structure with high aspect ratio, we have proposed a new design concept using a separated micro mold system (SMS) fabricated by the LIGA process. For a successful replication of the cilium structure, we used the hot embossing process with the help of a double-sided mold system. We used a composite of multiwall carbon nanotube and polydimethylsiloxane (MWCNT-PDMS). The performance of the mechanoreceptors was measured by a computer-controlled nanoindenter. We carried out several experiments with the sensor in the different flow rate and direction using the experimental test apparatus. To calibrate the sensor and calculate the velocity with direction based the signal from the sensor, we analyzed the coupled phenomena between flow field and the cilium structure to calculate the deflection of the cilium structure and the drag force applying to the cilium structure due to the flow field around sensor.

  13. A FRET sensor enables quantitative measurements of membrane charges in live cells.

    Science.gov (United States)

    Ma, Yuanqing; Yamamoto, Yui; Nicovich, Philip R; Goyette, Jesse; Rossy, Jérémie; Gooding, J Justin; Gaus, Katharina

    2017-04-01

    Membrane charge has a critical role in protein trafficking and signaling. However, quantification of the effective electrostatic potential of cellular membranes has remained challenging. We developed a fluorescence membrane charge sensor (MCS) that reports changes in the membrane charge of live cells via Förster resonance energy transfer (FRET). MCS is permanently attached to the inner leaflet of the plasma membrane and shows a linear, reversible and fast response to changes of the electrostatic potential. The sensor can monitor a wide range of cellular treatments that alter the electrostatic potential, such as incorporation and redistribution of charged lipids and alterations in cytosolic ion concentration. Applying the sensor to T cell biology, we used it to identify charged membrane domains in the immunological synapse. Further, we found that electrostatic interactions prevented spontaneous phosphorylation of the T cell receptor and contributed to the formation of signaling clusters in T cells.

  14. Pericellular oxygen monitoring with integrated sensor chips for reproducible cell culture experiments.

    Science.gov (United States)

    Kieninger, J; Aravindalochanan, K; Sandvik, J A; Pettersen, E O; Urban, G A

    2014-04-01

    Here we present an application, in two tumour cell lines, based on the Sensing Cell Culture Flask system as a cell culture monitoring tool for pericellular oxygen sensing. T-47D (human breast cancer) and T98G (human brain cancer) cells were cultured either in atmospheric air or in a glove-box set at 4% oxygen, in both cases with 5% CO2 in the gas phase. Pericellular oxygen tension was measured with the help of an integrated sensor chip comprising oxygen sensor arrays. Obtained results illustrate variation of pericellular oxygen tension in attached cells covered by stagnant medium. Independent of incubation conditions, low pericellular oxygen concentration levels, usually associated with hypoxia, were found in dense cell cultures. Respiration alone brought pericellular oxygen concentration down to levels which could activate hypoxia-sensing regulatory processes in cultures believed to be aerobic. Cells in culture believed to experience conditions of mild hypoxia may, in reality, experience severe hypoxia. This would lead to incorrect assumptions and suggests that pericellular oxygen concentration readings are of great importance to obtain reproducible results when dealing with hypoxic and normoxic (aerobic) incubation conditions. The Sensing Cell Culture Flask system allows continuous monitoring of pericellular oxygen concentration with outstanding long-term stability and no need for recalibration during cell culture experiments. The sensor is integrated into the flask bottom, thus in direct contact with attached cells. No additional equipment needs to be inserted into the flask during culturing. Transparency of the electrochemical sensor chip allows optical inspection of cells attached on top of the sensor. © 2014 John Wiley & Sons Ltd.

  15. Local complex permittivity measurements of porcine skin tissue in the frequency range from 1 GHz to 15 GHz by evanescent microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kleismit, Richard A; Kozlowski, Gregory; Foy, Brent D [Department of Physics, Wright State University, 3640 Col. Glenn Hwy, Dayton, OH 45435-0001 (United States); Hull, Barbara E [Department of Biological Sciences, Wright State University, 3640 Col. Glenn Hwy, Dayton, OH 45435-0001 (United States); Kazimierczuk, Marian [Department of Electrical Engineering, Wright State University, 3640 Col. Glenn Hwy, Dayton, OH 45435-0001 (United States)], E-mail: richard.kleismit@wright.edu

    2009-02-07

    The near-field evanescent microwave microscope is based on a coaxial transmission line resonator with a silver plated tungsten tip protruding through an end-wall aperture. The sensor is used to measure the local dielectric properties of porcine skin in the frequency range from 1 GHz to 15 GHz. The dielectric property of the skin within the near field of the tip frustrates the electric field and measurably changes the transmission line's resonant frequency and quality factor (Q). The shift of the resonator's frequency and Q is measured as a function of tip-sample separation, and a quantitative relationship between the real and imaginary parts of the local dielectric constant using the method of images is established. The associated changes in quality factor image scans of subsurface tissue structure and dielectric properties of skin surface lesions are presented.

  16. Label-free, real-time monitoring of IgE-mediated mast cell activation on microelectronic cell sensor arrays.

    Science.gov (United States)

    Abassi, Yama A; Jackson, Jo Ann; Zhu, Jenny; O'Connell, James; Wang, Xiaobo; Xu, Xiao

    2004-09-01

    Immunoglobulin E (IgE)-mediated mast cell activation is involved in the immediate phase of allergic reactions and plays a central role in the onslaught and persistence of allergic diseases. IgE-mediated mast cell activation includes two important events: cell sensitization resulting from IgE binding to Fc (FcepsilonRI) receptor and cell activation triggered by allergen-mediated oligomerization of membrane-bound IgE. Real-time monitoring of these events is needed to dissect the molecular mechanisms underlying IgE-mediated mast cell activation. Existing technologies are limited to label-based end-point assay formats, which detect either early signaling or final phase of mast cell activation. We describe a microelectronic cell sensor-based technology allowing dynamic monitoring of IgE-mediated mast cell sensitization and activation in real-time without any labeling steps. RBL-2H3 mast cells were cultured onto the surface of microelectronic cell sensor arrays integrated into the bottom of microtiter plates, which record electric properties, such as impedance between cell membrane and sensor surface. In the presence of the allergen, dinitrophenyl (DNP)-bovine serum albumin (BSA), anti-DNP IgE-sensitized cells were activated within 5 min and the entire activation process was quantitatively and continuously recorded. Impedance measurements correlate with morphological dynamics and mediator release as measured by beta-hexosaminidase activity, and can be blocked by pharmacological agents, inhibiting IgE-mediated signaling. The assay on microelectronic cell sensor arrays can be scaled up for high-throughput screening of pharmacological inhibitors of IgE-mediated mast cell activation and other cell-based receptor-ligand assays.

  17. Cytosolic DNA Sensor Upregulation Accompanies DNA Electrotransfer in B16.F10 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Katarina Znidar

    2016-01-01

    Full Text Available In several preclinical tumor models, antitumor effects occur after intratumoral electroporation, also known as electrotransfer, of plasmid DNA devoid of a therapeutic gene. In mouse melanomas, these effects are preceded by significant elevation of several proinflammatory cytokines. These observations implicate the binding and activation of intracellular DNA-specific pattern recognition receptors or DNA sensors in response to DNA electrotransfer. In tumors, IFNβ mRNA and protein levels significantly increased. The mRNAs of several DNA sensors were detected, and DAI, DDX60, and p204 tended to be upregulated. These effects were accompanied with reduced tumor growth and increased tumor necrosis. In B16.F10 cells in culture, IFNβ mRNA and protein levels were significantly upregulated. The mRNAs for several DNA sensors were present in these cells; DNA-dependent activator of interferon regulatory factor (DAI, DEAD (Asp-Glu-Ala-Asp box polypeptide 60 (DDX60, and p204 were significantly upregulated while DDX60 protein levels were coordinately upregulated. Upregulation of DNA sensors in tumors could be masked by the lower transfection efficiency compared to in vitro or to dilution by other tumor cell types. Mirroring the observation of tumor necrosis, cells underwent a significant DNA concentration-dependent decrease in proliferation and survival. Taken together, these results indicate that DNA electrotransfer may cause the upregulation of several intracellular DNA sensors in B16.F10 cells, inducing effects in vitro and potentially in vivo.

  18. Thermal microphotonic sensor and sensor array

    Science.gov (United States)

    Watts, Michael R [Albuquerque, NM; Shaw, Michael J [Tijeras, NM; Nielson, Gregory N [Albuquerque, NM; Lentine, Anthony L [Albuquerque, NM

    2010-02-23

    A thermal microphotonic sensor is disclosed for detecting infrared radiation using heat generated by the infrared radiation to shift the resonant frequency of an optical resonator (e.g. a ring resonator) to which the heat is coupled. The shift in the resonant frequency can be determined from light in an optical waveguide which is evanescently coupled to the optical resonator. An infrared absorber can be provided on the optical waveguide either as a coating or as a plate to aid in absorption of the infrared radiation. In some cases, a vertical resonant cavity can be formed about the infrared absorber to further increase the absorption of the infrared radiation. The sensor can be formed as a single device, or as an array for imaging the infrared radiation.

  19. Dye sensitized photovoltaic miniaturized solar cells, used as optical sensors for line of sight detection

    Science.gov (United States)

    Cesar, Cortes Torres Carlos; Sampei, Kota; Miho, Ogawa; Masataka, Ozawa; Norihisa, Miki

    2014-11-01

    Dye sensitized photovoltaic devices have been studied as transparent and low-cost solar cells. Our group have miniaturized the cells and used them as transparent optical sensors. This paper reports the design and fabrication of the cells and avoids the cross talk among cells, which was found recently and such effect provokes hardware instability. We use these optical sensors as an eye tracking device. The sensor array detects the difference in the intensity of light reflected from the pupil and the sclera and then determines the pupil position. Each sensor consists of two electrodes and electrolyte; hence our device conformed by only four semi-circular shaped sensors on eyeglasses can detect the view angle in both horizontal and vertical directions. Manufacturing process gives us freedom to easily re-arrange, add or remove sensors. In our prior work we had good performance in stand-alone configuration. We used specialized equipment from National Instruments for our measurements. However we found that: A cell is not 100% independent from the others, is affected by the absence or presence of light at the neighbour cells. When our device is connected to other electronic devices (for data processing), all cells have the same voltage among them; therefore, all cells behave the same way when any of them is affected by light. The root cause is, due to all sensors were interconnected via a micro channel and filled with electrolyte, due to its conductive properties, electrolyte does neither need electrodes nor physical paths to conduct electricity, so it creates a liquid wire between sensors, hence the gap between them become inexistent, consequently when our device is connected to other electronic devices, due to this unique channel and by sharing a common electronic ground, this connection provokes the voltage to be the same among all sensors in the array. Our device becomes four separate voltage lines in a parallel circuit. The device was also in short circuit provoked

  20. Visualization of glutamine transporter activities in living cells using genetically encoded glutamine sensors.

    Directory of Open Access Journals (Sweden)

    Katrin Gruenwald

    Full Text Available Glutamine plays a central role in the metabolism of critical biological molecules such as amino acids, proteins, neurotransmitters, and glutathione. Since glutamine metabolism is regulated through multiple enzymes and transporters, the cellular glutamine concentration is expected to be temporally dynamic. Moreover, differentiation in glutamine metabolism between cell types in the same tissue (e.g. neuronal and glial cells is often crucial for the proper function of the tissue as a whole, yet assessing cell-type specific activities of transporters and enzymes in such heterogenic tissue by physical fractionation is extremely challenging. Therefore, a method of reporting glutamine dynamics at the cellular level is highly desirable. Genetically encoded sensors can be targeted to a specific cell type, hence addressing this knowledge gap. Here we report the development of Föster Resonance Energy Transfer (FRET glutamine sensors based on improved cyan and yellow fluorescent proteins, monomeric Teal Fluorescent Protein (mTFP1 and venus. These sensors were found to be specific to glutamine, and stable to pH-changes within a physiological range. Using cos7 cells expressing the human glutamine transporter ASCT2 as a model, we demonstrate that the properties of the glutamine transporter can easily be analyzed with these sensors. The range of glutamine concentration change in a given cell can also be estimated using sensors with different affinities. Moreover, the mTFP1-venus FRET pair can be duplexed with another FRET pair, mAmetrine and tdTomato, opening up the possibility for real-time imaging of another molecule. These novel glutamine sensors will be useful tools to analyze specificities of glutamine metabolism at the single-cell level.

  1. The acoustic sensor for rapid analysis of bacterial cells in the conductive suspensions.

    Science.gov (United States)

    Borodina, I A; Zaitsev, B D; Guliy, O; Teplykh, A A; Shikhabudinov, A M

    2017-11-01

    The possibility of using the acoustic sensor on the basis of a two-channel delay line for rapid analysis of bacterial cells in the conductive suspensions was investigated. The dependencies of change in phase and insertion loss of output signal of the sensor on conductivity of buffer solution with various concentrations of cells due to a specific interaction "bacterial cells - mini-antibodies" for electrically open and electrically shorted channels of delay line were measured. It has been found that these changes have the most values for the electrically open channel. It has been also shown that the sensor rapidly responds to the specific interaction and the time stabilization of the phase and insertion loss of output signal is less than 10min. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Fiber loop ringdown humidity sensor.

    Science.gov (United States)

    Alali, Haifa; Wang, Chuji

    2016-11-01

    An optical fiber relative humidity (RH) sensor based on the evanescent field-fiber loop ringdown (EF-FLRD) technique is demonstrated. The sensor was placed inside a chamber that provides a humidity reference and is monitored by a humidity meter. The presence of moisture in the chamber changes the refractive index of the medium; thus the ringdown time changes due to a change in the EF scattering loss induced in the sensor head. The sensor demonstrated a fast response (∼1  s), high sensitivity, and excellent reproducibility and reversibly. The EF-FLRD sensor can measure RH in a wide dynamic range of 4% to 100% at a constant temperature of 20±1°C.

  3. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    OpenAIRE

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates o...

  4. Enhancement of Resonant Energy Transfer Due to an Evanescent Wave from the Metal

    Energy Technology Data Exchange (ETDEWEB)

    Poudel, Amrit [Department; Chen, Xin [Center of Nanomaterials; Ratner, Mark A. [Department

    2016-02-29

    The high density of evanescent modes in the vicinity of a metal leads to enhancement of the near-field Förster resonant energy transfer (FRET) rate. We present a classical approach to calculate the FRET rate based on the dyadic Green’s function of an arbitrary dielectric environment and consider the nonlocal limit of material permittivity in the case of the metallic half-space and thin film. In a dimer system, we find that the FRET rate is enhanced due to shared evanescent photon modes bridging a donor and an acceptor. Furthermore, a general expression for the FRET rate for multimer systems is derived. The presence of a dielectric environment and the path interference effect enhance the transfer rate, depending on the combination of distance and geometry.

  5. Holographic View of the Brain Memory Mechanism Based on Evanescent Superluminal Photons

    Directory of Open Access Journals (Sweden)

    Takaaki Musha

    2012-08-01

    Full Text Available D. Pollen and M. Trachtenberg proposed the holographic brain theory to help explain the existence of photographic memories in some people. They suggested that such individuals had more vivid memories because they somehow could access a very large region of their memory holograms. Hameroff suggested in his paper that cylindrical neuronal microtubule cavities, or centrioles, function as waveguides for the evanescent photons for quantum signal processing. The supposition is that microtubular structures of the brain function as a coherent fiber bundle set used to store holographic images, as would a fiber-optic holographic system. In this paper, the author proposes that superluminal photons propagating inside the microtubules via evanescent waves could provide the access needed to record or retrieve a quantum coherent entangled holographic memory.

  6. Gas detection with evanescent-wave quartz-enhanced photoacoustic spectroscopy

    Science.gov (United States)

    Cao, Yingchun; Jin, Wei; Ho, Hoi Lut

    2012-02-01

    Evanescent-wave gas sensing with tapered optical fibers (TOFs) and quartz-enhanced photoacoustic spectroscopy (QEPAS) is reported. The evanescent field of TOFs with diameter down to sub-wavelength is utilized for photoacoustic excitation in photoacoustic spectroscopy. A quartz tuning fork (QTF) with resonant frequency about ~32.75 kHz is used to detect the generated pressure wave. A normalized noise equivalent absorption coefficient of 1.5×10-6 cm-1 W/√Hz is achieved for acetylene detection with a fiber taper with a waist diameter of 1.1 μm. It is found that QEPAS with TOFs of sub-wavelength diameters exhibit comparable sensitivities with open path QEPAS but with additional advantages of lower insertion loss, easier alignment, and multiplexing capability.

  7. Novel aspects of extracellular adenosine dynamics revealed by adenosine sensor cells

    Directory of Open Access Journals (Sweden)

    Kunihiko Yamashiro

    2017-01-01

    Full Text Available Adenosine modulates diverse physiological and pathological processes in the brain, including neuronal activities, blood flow, and inflammation. However, the mechanisms underlying the dynamics of extracellular adenosine are not fully understood. We have recently developed a novel biosensor, called an adenosine sensor cell, and we have characterized the neuronal and astrocytic pathways for elevating extracellular adenosine. In this review, the physiological implications and therapeutic potential of the pathways revealed by the adenosine sensor cells are discussed. We propose that the multiple pathways regulating extracellular adenosine allow for the diverse functions of this neuromodulator, and their malfunctions cause various neurological and psychiatric disorders.

  8. Graphene-oxide-coated interferometric optical microfiber ethanol vapor sensor.

    Science.gov (United States)

    Zhang, Jingle; Fu, Haiwei; Ding, Jijun; Zhang, Min; Zhu, Yi

    2017-11-01

    A graphene-oxide-coated interferometric microfiber-sensor-based polarization-maintaining optical fiber is proposed for highly sensitive detecting for ethanol vapor concentration at room temperature in this paper. The strong sensing capability of the sensor to detect the concentration of ethanol vapor is demonstrated, taking advantage of the evanescent field enhancement and gas absorption of a graphene-oxide-coated microfiber. The transmission spectrum of the sensor varies with concentrations of ethanol vapor, and the redshift of the transmission spectrum has been analyzed for the concentration range from 0 to 80 ppm with sensitivity as high as 0.138 nm/ppm. The coated graphene oxide layer induces the evanescent field enhancement and gas selective adsorption, which improves sensitivity and selectivity of the microfiber gas sensor for ethanol vapor detection.

  9. Simple algorithm for partial wave expansion of plasmonic and evanescent fields.

    Science.gov (United States)

    Yu, Xinning; Ye, Qian; Chen, Huajin; Liu, Shiyang; Lin, Zhifang

    2017-02-20

    Based on an expansion formula for unit dyadic in terms of the vector spherical wave functions, we derive explicit partial wave coefficients for a complex wave vector field that is characterized by a single wave vector with three Cartesian components being arbitrarily constant complex except subject to lossless background constraint and thus includes evanescent waves and simple plasmonic fields as its two special cases. A recurrence method is then proposed to evaluate the partial wave expansion coefficients numerically up to arbitrary order of expansion, offering an efficient tool for the scattering of generic electromagnetic fields that can be modelled by a superposition of the complex wave vector fields such as the evanescent and plasmonic waves. Our approach is validated by analytically working out the integration in the conventional, more cumbersome, projection approach. Comparison of optical forces on a particle in evanescent and plasmonic fields with previous results shows perfect agreement, thereby further corroborating our approach. As examples of its application, we calculate optical force and torque exerting on particles residing in a plasmonic field, with large particle size where the conventional projection method based on the direct numerical integration is unadapted due to the difficulty in convergence. It is found that the direction of optical torque stays parallel to the direction of spin of optical field for some field polarizations and changes for some other polarizations, as the particle radius R varies.

  10. Comments on Musha's theorem that an evanescent photon in the microtubule is a superluminal particle.

    Science.gov (United States)

    Hari, Syamala D

    2014-07-01

    Takaaki Musha's research of high performance quantum computation in living systems is motivated by the theories of Penrose and Hameroff that microtubules in the brain function as quantum computers, and by those of Jibu and Yasue that the quantum states of microtubules depend upon boson condensates of evanescent photons. His work is based on the assumption that the evanescent photons described by Jibu et al. are superluminal and that they are tachyons defined and discussed by well-known physicists such as Sudarshan, Feinberg and Recami. Musha gives a brief justification for the assumption and sometimes calls it a theorem. However, the assumption is not valid because Jibu et al. stated that the evanescent photons have transmission speed smaller than that of light and that their mass is real and momentum is imaginary whereas a tachyon's mass is imaginary and momentum is real. We show here that Musha's proof of the "theorem" has errors and hence his theorem/assumption is not valid. This article is not meant to further discuss any biological aspects of the brain but only to comment on the consistency of the quantum-physical aspects of earlier work by Musha et al. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Signatures of evanescent transport in ballistic suspended graphene-superconductor junctions

    Science.gov (United States)

    Kumaravadivel, Piranavan; Du, Xu

    2016-04-01

    In Dirac materials, the low energy excitations behave like ultra-relativistic massless particles with linear energy dispersion. A particularly intriguing phenomenon arises with the intrinsic charge transport behavior at the Dirac point where the charge density approaches zero. In graphene, a 2-D Dirac fermion gas system, it was predicted that charge transport near the Dirac point is carried by evanescent modes, resulting in unconventional “pseudo-diffusive” charge transport even in the absence of disorder. In the past decade, experimental observation of this phenomenon remained challenging due to the presence of strong disorder in graphene devices which limits the accessibility of the low carrier density regime close enough to the Dirac point. Here we report transport measurements on ballistic suspended graphene-Niobium Josephson weak links that demonstrate a transition from ballistic to pseudo-diffusive like evanescent transport below a carrier density of ~1010 cm-2. Approaching the Dirac point, the sub-harmonic gap structures due to multiple Andreev reflections display a strong Fermi energy-dependence and become increasingly pronounced, while the normalized excess current through the superconductor-graphene interface decreases sharply. Our observations are in qualitative agreement with the long standing theoretical prediction for the emergence of evanescent transport mediated pseudo-diffusive transport in graphene.

  12. Sensor Needs and Requirements for Fuel Cells and CIDI/SIDI Engines

    Energy Technology Data Exchange (ETDEWEB)

    Glass, R.S.

    2000-03-01

    To reduce U.S. dependence on imported oil, improve urban air quality, and decrease greenhouse gas emissions, the Department of Energy (DOE) is developing advanced vehicle technologies and fuels. Enabling technologies for fuel cell power systems and direct-injection engines are being developed by DOE through the Partnership for a New Generation of Vehicles (PNGV), a government-industry collaboration to produce vehicles having up to three times the fuel economy of conventional mid-size automobiles. Sensors have been identified as a research and development need for both fuel cell and direct-injection systems, because current sensor technologies do not adequately meet requirements. Sensors are needed for emission control, for passenger safety and comfort, to increase system lifetime, and for system performance enhancement through feedback and control. These proceedings document the results of a workshop to define sensor requirements for proton exchange membrane (PEM) fuel cell systems and direct-injection engines for automotive applications. The recommendations from this workshop will be incorporated into the multi-year R&D plan of the DOE Office of Advanced Automotive Technologies. The objectives of the workshop were to: define the requirements for sensors; establish R&D priorities; identify the technical targets and technical barriers; and facilitate collaborations among participants. The recommendations from this workshop will be incorporated into the multi-year R&D plan of the DOE Office of Advanced Automotive Technologies.

  13. A Sensitive Sensor Cell Line for the Detection of Oxidative Stress Responses in Cultured Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Ute Hofmann

    2014-06-01

    Full Text Available In the progress of allergic and irritant contact dermatitis, chemicals that cause the generation of reactive oxygen species trigger a heat shock response in keratinocytes. In this study, an optical sensor cell line based on cultured human keratinocytes (HaCaT cells expressing green fluorescent protein (GFP under the control of the stress-inducible HSP70B’ promoter were constructed. Exposure of HaCaT sensor cells to 25 µM cadmium, a model substance for oxidative stress induction, provoked a 1.7-fold increase in total glutathione and a ~300-fold induction of transcript level of the gene coding for heat shock protein HSP70B’. An extract of Arnica montana flowers resulted in a strong induction of the HSP70B’ gene and a pronounced decrease of total glutathione in keratinocytes. The HSP70B’ promoter-based sensor cells conveniently detected cadmium-induced stress using GFP fluorescence as read-out with a limit of detection of 6 µM cadmium. In addition the sensor cells responded to exposure of cells to A. montana extract with induction of GFP fluorescence. Thus, the HaCaT sensor cells provide a means for the automated detection of the compromised redox status of keratinocytes as an early indicator of the development of human skin disorders and could be applied for the prediction of skin irritation in more complex in vitro 3D human skin models and in the development of micro-total analysis systems (µTAS that may be utilized in dermatology, toxicology, pharmacology and drug screenings.

  14. Mass sensors with mechanical traps for weighing single cells in different fluids.

    Science.gov (United States)

    Weng, Yaochung; Delgado, Francisco Feijó; Son, Sungmin; Burg, Thomas P; Wasserman, Steven C; Manalis, Scott R

    2011-12-21

    We present two methods by which single cells can be mechanically trapped and continuously monitored within the suspended microchannel resonator (SMR) mass sensor. Since the fluid surrounding the trapped cell can be quickly and completely replaced on demand, our methods are well suited for measuring changes in cell size and growth in response to drugs or other chemical stimuli. We validate our methods by measuring the density of single polystyrene beads and Saccharomyces cerevisiae yeast cells with a precision of approximately 10(-3) g cm(-3), and by monitoring the growth of single mouse lymphoblast cells before and after drug treatment.

  15. A Stretchable Electrochemical Sensor for Inducing and Monitoring Cell Mechanotransduction in Real Time.

    Science.gov (United States)

    Liu, Yan-Ling; Qin, Yu; Jin, Zi-He; Hu, Xue-Bo; Chen, Miao-Miao; Liu, Rong; Amatore, Christian; Huang, Wei-Hua

    2017-08-01

    Existing methods offer little direct and real-time information about stretch-triggered biochemical responses during cell mechanotransduction. A novel stretchable electrochemical sensor is reported that takes advantage of a hierarchical percolation network of carbon nanotubes and gold nanotubes (CNT-AuNT). This hybrid nanostructure provides the sensor with excellent time-reproducible mechanical and electrochemical performances while granting very good cellular compatibility, making it perfectly apt to induce and monitor simultaneously transient biochemical signals. This is validated by monitoring stretch-induced transient release of small signaling molecules by both endothelial and epithelial cells cultured on this sensor and submitted to stretching strains of different intensities. This work demonstrates that the hybrid CNT-AuNT platform offers a versatile and highly sensitive way to characterize and quantify short-time mechanotransduction responses. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Polymer photonic crystal dye lasers as optofluidic cell sensors

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Lopacinska, Joanna M.; Jakobsen, Mogens Havsteen

    2009-01-01

    Hybrid polymer photonic crystal band-edge lasers are chemically activated to covalently bind bio-molecules or for HeLa cell attachment using an anthraquinone (AQ) UV activated photolinker. The lasers change emission wavelength linearly with inhomogeneous cell coverage....

  17. Microbial fuel cells as power supply of a low-power temperature sensor

    Science.gov (United States)

    Khaled, Firas; Ondel, Olivier; Allard, Bruno

    2016-02-01

    Microbial fuel cells (MFCs) show great promise as a concomitant process for water treatment and as renewable energy sources for environmental sensors. The small energy produced by MFCs and the low output voltage limit the applications of MFCs. Specific converter topologies are required to step-up the output voltage of a MFC. A Power Management Unit (PMU) is proposed for operation at low input voltage and at very low power in a completely autonomous way to capture energy from MFCs with the highest possible efficiency. The application of sensors for monitoring systems in remote locations is an important approach. MFCs could be an alternative energy source in this case. Powering a sensor with MFCs may prove the fact that wastewater may be partly turned into renewable energy for realistic applications. The Power Management Unit is demonstrated for 3.6 V output voltage at 1 mW continuous power, based on a low-cost 0.7-L MFC. A temperature sensor may operate continuously on 2-MFCs in continuous flow mode. A flyback converter under discontinuous conduction mode is also tested to power the sensor. One continuously fed MFC was able to efficiently and continuously power the sensor.

  18. Construction, imaging, and analysis of FRET-based tension sensors in living cells.

    Science.gov (United States)

    LaCroix, Andrew S; Rothenberg, Katheryn E; Berginski, Matthew E; Urs, Aarti N; Hoffman, Brenton D

    2015-01-01

    Due to an increased appreciation for the importance of mechanical stimuli in many biological contexts, an interest in measuring the forces experienced by specific proteins in living cells has recently emerged. The development and use of Förster resonance energy transfer (FRET)-based molecular tension sensors has enabled these types of studies and led to important insights into the mechanisms those cells utilize to probe and respond to the mechanical nature of their surrounding environment. The process for creating and utilizing FRET-based tension sensors can be divided into three main parts: construction, imaging, and analysis. First we review several methods for the construction of genetically encoded FRET-based tension sensors, including restriction enzyme-based methods as well as the more recently developed overlap extension or Gibson Assembly protocols. Next, we discuss the intricacies associated with imaging tension sensors, including optimizing imaging parameters as well as common techniques for estimating artifacts within standard imaging systems. Then, we detail the analysis of such data and describe how to extract useful information from a FRET experiment. Finally, we provide a discussion on identifying and correcting common artifacts in the imaging of FRET-based tension sensors. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including early detection of cancers

    Science.gov (United States)

    Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Shively, John E [Arcadia, CA; Li, Lin [Monrovia, CA

    2009-06-02

    An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  20. Design and Operation of an Electrochemical Methanol Concentration Sensor for Direct Methanol Fuel Cell Systems

    Science.gov (United States)

    Narayanan, S. R.; Valdez, T. I.; Chun, W.

    2000-01-01

    The development of a 150-Watt packaged power source based on liquid feed direct methanol fuel cells is being pursued currently at the Jet propulsion Laboratory for defense applications. In our studies we find that the concentration of methanol in the fuel circulation loop affects the electrical performance and efficiency the direct methanol fuel cell systems significantly. The practical operation of direct methanol fuel cell systems, therefore, requires accurate monitoring and control of methanol concentration. The present paper reports on the principle and demonstration of an in-house developed electrochemical sensor suitable for direct methanol fuel cell systems.

  1. Microfiber optical sensors: a review.

    Science.gov (United States)

    Lou, Jingyi; Wang, Yipei; Tong, Limin

    2014-03-25

    With diameter close to or below the wavelength of guided light and high index contrast between the fiber core and the surrounding, an optical microfiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, evanescent fields and waveguide dispersion. Among various microfiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, fast response, high flexibility and low optical power consumption. Here we review recent progress in microfiber optical sensors regarding their fabrication, waveguide properties and sensing applications. Typical microfiber-based sensing structures, including biconical tapers, optical gratings, circular cavities, Mach-Zehnder interferometers and functionally coated/doped microfibers, are summarized. Categorized by sensing structures, microfiber optical sensors for refractive index, concentration, temperature, humidity, strain and current measurement in gas or liquid environments are reviewed. Finally, we conclude with an outlook for challenges and opportunities of microfiber optical sensors.

  2. Microfiber Optical Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Jingyi Lou

    2014-03-01

    Full Text Available With diameter close to or below the wavelength of guided light and high index contrast between the fiber core and the surrounding, an optical microfiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, evanescent fields and waveguide dispersion. Among various microfiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, fast response, high flexibility and low optical power consumption. Here we review recent progress in microfiber optical sensors regarding their fabrication, waveguide properties and sensing applications. Typical microfiber-based sensing structures, including biconical tapers, optical gratings, circular cavities, Mach-Zehnder interferometers and functionally coated/doped microfibers, are summarized. Categorized by sensing structures, microfiber optical sensors for refractive index, concentration, temperature, humidity, strain and current measurement in gas or liquid environments are reviewed. Finally, we conclude with an outlook for challenges and opportunities of microfiber optical sensors.

  3. Reusable Floating-Electrode Sensor for Real-Time Electrophysiological Monitoring of Nonadherent Cells

    Science.gov (United States)

    Pham Ba, Viet Anh; Ta, Van-Thao; Park, Juhun; Park, Eun Jin; Hong, Seunghun

    2015-03-01

    We herein report the development of a reusable floating-electrode sensor (FES) based on aligned single-walled carbon nanotubes, which allowed quantitatively monitoring the electrophysiological responses from nonadherent cells. The FES was used to measure the real-time responses of normal lung cells and small-cell lung cancer (SCLC) cells to the addition of nicotine. The SCLC cells exhibited rather large electrophysiological responses to nicotine compared to normal cells, which was attributed to the overexpressed nicotinic acetylcholine receptors (nAChRs) in the SCLC cells. Importantly, using only a single device could measure repeatedly the responses of multiple individual cells to various drugs, enabling statistically meaningful measurements without errors from the device-to-device variations of the sensor characteristics. As results, that the treatment with drugs such as genistin or daidzein reduced Ca2+ influx in SCLC cells was found. Moreover, tamoxifen, has been known as an anti-estrogen compound, was found to only partly block the binding of daidzein to nAChRs. Our FES can be a promising tool for various biomedical applications such as drug screening and therapy monitoring.

  4. Electrical characterization of single cells using polysilicon wire ion sensor in an isolation window.

    Science.gov (United States)

    Wu, You-Lin; Hsu, Po-Yen; Hsu, Chung-Ping; Wang, Chih-Cheng; Lee, Li-Wen; Lin, Jing-Jenn

    2011-10-01

    A polysilicon wire (PSW) sensor can detect the H(+) ion density (pH value) of the medium coated on its surface, and different cells produce different extracellular acidification and hence different H(+) ion densities. Based on this, we used a PSW sensor in combination with a mold-cast polydimethylsiloxane (PDMS) isolation window to detect the adhesion, apoptosis and extracellular acidification of single normal cells and single cancer cells. Single living human normal cells WI38, MRC5, and BEAS-2B as well as non-small-cell lung cancer (NSCLC) cells A549, H1299, and CH27 were cultivated separately inside the isolation window. The current flowing through the PSW channel was measured. From the PSW channel current change as a function of time, we determined the cell adhesion time by observing the time required for the current change to saturate, since a stable extracellular ion density was established after the cells were completely adhered to the PSW surface. The apoptosis of cells can also be determined when the channel current change drops to zero. We found that all the NSCLC cells had a higher channel current change and hence a lower pH value than the normal cells anytime after they were seeded. The corresponding average pH values were 5.86 for A549, 6.00 for H1299, 6.20 for CH27, 6.90 for BEAS-2B, 6.96for MRC5, and 7.02 for WI38, respectively, after the cells were completely adhered to the PSW surface. Our results show that NSCLC cells have a stronger cell-substrate adhesion and a higher extracellular acidification rate than normal cells.

  5. Zinc oxide nanoparticle-doped nanoporous solgel fiber as a humidity sensor with enhanced sensitivity and large linear dynamic range.

    Science.gov (United States)

    Aneesh, R; Khijwania, Sunil K

    2013-08-01

    An all-optical humidity sensor based on direct and exhaustive guided-mode attenuation in an in-house developed zinc oxide (ZnO) nanoparticle-immobilized bare solgel fiber is reported. The main objective of the present work is to enhance the sensitivity considerably while realizing a throughout linear response over a wide dynamic range. The developed sensor is characterized and performance characteristics of the sensor are compared with an optical fiber humidity sensor employing an evanescent wave absorption scheme in a straight and uniform probe, with ZnO nanoparticles-immobilized solgel film as humidity sensing cladding. Sensor response is observed to be linear over a wide dynamic range of 5%-95% relative humidity (RH). The observed linear sensitivity is 0.0103/% RH, which is ~9 times higher than the sensor employing the evanescent wave absorption scheme. In addition, sensor response is observed to be very fast, highly reversible, and repeatable.

  6. Distributed multiple-anodes benthic microbial fuel cell as reliable power source for subsea sensors

    Science.gov (United States)

    Liu, Bingchuan; Weinstein, Alyssa; Kolln, Michael; Garrett, Caleb; Wang, Lei; Bagtzoglou, Amvrossios; Karra, Udayarka; Li, Yan; Li, Baikun

    2015-07-01

    A new type distributed benthic microbial fuel cell (MFC) (DBMFC) consisting of 18 MFC arrays was developed to enhance the robustness and stability of the power source for subsea sensor networks. A power management system (PMS) was integrated into the DBMFC system to boost the power output for two temperature sensors. The PMS was specifically designed with 18 charge pumps capable of simultaneously harvesting energy from 6 MFC units (18 anodes total) in the DBMFC system. The pilot scale DBMFC (total sediment volume: 1 m3) with continuous ocean water supply showed that the power outputs of individual MFC units were affected by the organic carbon and nitrogen contents in the sediment pore water. The MFC units with higher power output resulted in faster charging/discharging rate of the PMS supercapacitor. Manual disconnection of anodes from the PMS was conducted to simulate the anode malfunction caused by bioturbation. Fewer functional anodes (e.g. 12 out of 18 anodes were disconnected) slowed the charging/discharging rate of the PMS supercapacitor but still supported the PMS to regularly power two sensors. This scale-up DBMFC/PMS/sensor study demonstrated that multiple MFC units with multiple PMS substantially enhanced the stability and robustness of power supply to subsea sensors.

  7. Real-time Bacterial Detection by Single Cell Based Sensors UsingSynchrotron FTIR Spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Bertozzi,Carolyn; Zhang, Miqin

    2005-08-10

    Microarrays of single macrophage cell based sensors weredeveloped and demonstrated for real time bacterium detection bysynchrotron FTIR microscopy. The cells were patterned on gold-SiO2substrates via a surface engineering technique by which the goldelectrodes were immobilized with fibronectin to mediate cell adhesion andthe silicon oxide background were passivated with PEG to resist proteinadsorption and cell adhesion. Cellular morphology and IR spectra ofsingle, double, and triple cells on gold electrodes exposed tolipopolysaccharide (LPS) of different concentrations were compared toreveal the detection capabilities of these biosensors. The single-cellbased sensors were found to generate the most significant IR wave numbervariation and thus provide the highest detection sensitivity. Changes inmorphology and IR spectrum for single cells exposed to LPS were found tobe time- and concentration-dependent and correlated with each other verywell. FTIR spectra from single cell arrays of gold electrodes withsurface area of 25 mu-m2, 100 mu-m2, and 400 mu-m2 were acquired usingboth synchrotron and conventional FTIR spectromicroscopes to study thesensitivity of detection. The results indicated that the developedsingle-cell platform can be used with conventional FTIRspectromicroscopy. This technique provides real-time, label-free, andrapid bacterial detection, and may allow for statistic and highthroughput analyses, and portability.

  8. Large-scale characterization of silicon nitride-based evanescent couplers at 532nm wavelength

    Science.gov (United States)

    Claes, Tom; Jansen, Roelof; Neutens, Pieter; Du Bois, Bert; Helin, Philippe; Severi, Simone; Van Dorpe, Pol; Deshpande, Paru; Rottenberg, Xavier

    2014-05-01

    Recently, the photonics community has a renewed attention for silicon nitride.1-3 When deposited at temperatures below 650K with plasma-enhanced chemical vapor deposition (PECVD),4 it enables photonic circuits fabricated on-top of standard complementary metaloxidesemiconductor (CMOS) electronics. Silicon nitride is moreover transparent to wavelengths that are visible to the human eye and detectable with available silicon detectors, thus offering a photonics platform for a range of applications that is not accessible with the popular silicon-on-insulator platform. However, first-time-right design of large-scale circuits for demanding specifications requires reliable models of the basic photonic building blocks, like evanescent couplers (Figure 1), components that couple power between multiple waveguides. While these models typically exist for the silicon-on-insulator platform, they still lack maturity for the emerging silicon nitride platform. Therefore, we meticulously studied silicon nitride-based evanescent couplers fabricated in our 200mm-wafer facility. We produced the structures in a silicon nitride film deposited with low-temperature PECVD, and patterned it using optical lithography at a wavelength of 193nm and reactive ion etching. We measured the performance of as much as 250 different designs at 532nm wavelength, a central wavelength in the visible range for which laser sources are widespread. For each design, we measured the progressive transmission of up-to 10 cascaded identical couplers (Figure 2(a)), yielding very accurate figures for the coupling factor (Figure 2(b)). This paper presents the trends extracted from this vast data set (Figure 3), and elaborates on the impact of the couplers bend radius and gap on its coupling factors (Figure 4 and Figure 5). We think that the large- scale characterization of evanescent couplers presented in this paper, in excellent agreement with the simulated performance of the devices, forms the basis for a component

  9. Evaluating fluid flow and thermal effects for fuel cell humidity sensor design

    OpenAIRE

    Reitz, S.; Wilde, A.; Bretschneider, J.; Sager, K.; Richter, G.; Woschech, S.

    2010-01-01

    Modern fuel cells require high relative humidity (RH) of about 90% of the reactant gases hydrogen and oxygen/air in a temperature range of 70°C-90°C for optimum efficiency. Especially RH must be kept within tight tolerances, as condensed water would reduce effective area of the fuel cell electrodes, while lower humidity would dry out the fuel cell's membrane and lead to permanent damage. Humidity sensors should enable effective measurement and control of the reactants' relative humidity. Howe...

  10. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Daxing Zhang

    2016-05-01

    Full Text Available Microbial fuel cells (MFCs are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs.

  11. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network.

    Science.gov (United States)

    Zhang, Daxing; Zhu, Yingmin; Pedrycz, Witold; Guo, Yongxian

    2016-05-18

    Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs.

  12. Tracing of shading effect on underachieving SPV cell of an SPV grid using wireless sensor network

    Directory of Open Access Journals (Sweden)

    Vivek Kaundal

    2015-09-01

    Full Text Available The environmental and economic merits of converting solar energy into electricity via photovoltaic cells have led to its enormous growth in this sector. Besides material and design parameters, there are many other factors which locally affect Photovoltaic cell like partial shading, humidity, dust, bird droppings, air velocity etc. However, the effect due to a single solar photo voltaic cell being connected to a serial or parallel network (to form a grid has never been deliberated extensively. In this paper a system design that will detect the underperforming panel in the entire grid is proposed and validated. All the Photo voltaic panels in a grid are connected with current sensors, which are connected to microcontrollers and these microcontrollers are locally connected with the wireless sensor network. With the help of wireless sensor network, grid monitoring for individual panel has been achieved for the first time with proposed system. The grid and control room is also connected wirelessly which enables the engineer monitoring the grid to meticulously locate the individual solar photovoltaic cell which is underachieving and solve the issue pertaining the same. The proposed system design has been validated with the help of data obtained with Centre for Wind Energy Technology (CWET, Govt. of India.”.

  13. Enhanced Viability of Endothelial Colony Forming Cells in Fibrin Microbeads for Sensor Vascularization

    Directory of Open Access Journals (Sweden)

    Jarel K. Gandhi

    2015-09-01

    Full Text Available Enhanced vascularization at sensor interfaces can improve long-term function. Fibrin, a natural polymer, has shown promise as a biomaterial for sensor coating due to its ability to sustain endothelial cell growth and promote local vascularization. However, the culture of cells, particularly endothelial cells (EC, within 3D scaffolds for more than a few days is challenging due to rapid loss of EC viability. In this manuscript, a robust method for developing fibrin microbead scaffolds for long-term culture of encapsulated ECs is described. Fibrin microbeads are formed using sodium alginate as a structural template. The size, swelling and structural properties of the microbeads were varied with needle gauge and composition and concentration of the pre-gel solution. Endothelial colony-forming cells (ECFCs were suspended in the fibrin beads and cultured within a perfusion bioreactor system. The perfusion bioreactor enhanced ECFCs viability and genome stability in fibrin beads relative to static culture. Perfusion bioreactors enable 3D culture of ECs within fibrin beads for potential application as a sensor coating.

  14. Simultaneous measurement of sensor-protein dynamics and motility of a single cell by on-chip microcultivation system

    Directory of Open Access Journals (Sweden)

    Kawagishi Ikuro

    2004-04-01

    Full Text Available Abstract Measurement of the correlation between sensor-protein expression, motility and environmental change is important for understanding the adaptation process of cells during their change of generation. We have developed a novel assay exploiting the on-chip cultivation system, which enabled us to observe the change of the localization of expressed sensor-protein and the motility for generations. Localization of the aspartate sensitive sensor protein at two poles in Escherichia coli decreased quickly after the aspartate was added into the cultivation medium. However, it took more than three generations for recovering the localization after the removal of aspartate from the medium. Moreover, the tumbling frequency was strongly related to the localization of the sensor protein in a cell. The results indicate that the change of the spatial localization of sensor protein, which was inherited for more than three generations, may contribute to cells, motility as the inheritable information.

  15. Live cell refractometry based on non-SPR microparticle sensor.

    Science.gov (United States)

    Liu, Chang; Chen, David D Y; Yu, Lirong; Luo, Yong

    2013-06-01

    Unlike the nanoparticles with surface plasmon resonance, the optical response of polystyrene microparticles (PSMPs) is insensitive to the chemical components of the surrounding medium under the wavelength-dependent differential interference contrast microscopy. This fact is exploited for the measurement of the refractive index of cytoplasm in this study. PSMPs of 400 nm in diameter were loaded into the cell to contact cytoplasm seamlessly, and the refractive index information of cytoplasm could be extracted by differential interference contrast microscopy operated at 420 nm illumination wavelength through the contrast analysis of PSMPs images. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Dispersive optomechanical coupling between a SiN nanomechanical oscillator and evanescent fields of a silica optical resonator

    Science.gov (United States)

    Dong, Chunhua; Htay Oo, Thein; Fiore, Victor; Wang, Hailin

    2013-03-01

    Tensile stressed SiN nanostrings can feature a picogram effective mass and a mechanical Q-factor exceeding a million. These remarkable nanomechanical oscillators can be dispersively-coupled to an ultra-high finesse optical microresonator via its evanescent field. This composite optomechanical system can potentially lead to a cooperativity that far exceeds that of monolithic optomechanical resonators. Here, we report an experimental study coupling a SiN nanostring to evanescent fields of a whispering gallery mode (WGM) in a silica microsphere. The slight deformation of the microsphere enables us to use free-space optical excitation to probe the optomechanical coupling. The dispersive coupling between a nanostring and the evanescent field of a WGM is generally expected to lead to a red shift in the resonance frequency of the WGM. Our experiments, however, reveal a blue frequency shift of the WGM. Detailed experimental studies and possible physical mechanisms for the blue shift will be presented.

  17. Simulation and fabrication of a mechano-optical sensor for nano-displacements

    NARCIS (Netherlands)

    Pham Van So, P.V.S.; Kauppinen, L.J.; Dijkstra, Mindert; van Wolferen, Hendricus A.G.M.; de Ridder, R.M.; Hoekstra, Hugo

    We present the simulation and fabrication of a novel and highly sensitive mechano-optical sensor for nano-displacements, based on microcantilevers suspended above a Si3N4 grated waveguide (GWG). The presence of a dielectric object, in this case a suspended cantilever, in the evanescent field region

  18. Photocatalytically Renewable Micro-electrochemical Sensor for Real-Time Monitoring of Cells.

    Science.gov (United States)

    Xu, Jia-Quan; Liu, Yan-Ling; Wang, Qian; Duo, Huan-Huan; Zhang, Xin-Wei; Li, Yu-Tao; Huang, Wei-Hua

    2015-11-23

    Electrode fouling and passivation is a substantial and inevitable limitation in electrochemical biosensing, and it is a great challenge to efficiently remove the contaminant without changing the surface structure and electrochemical performance. Herein, we propose a versatile and efficient strategy based on photocatalytic cleaning to construct renewable electrochemical sensors for cell analysis. This kind of sensor was fabricated by controllable assembly of reduced graphene oxide (RGO) and TiO2 to form a sandwiching RGO@TiO2 structure, followed by deposition of Au nanoparticles (NPs) onto the RGO shell. The Au NPs-RGO composite shell provides high electrochemical performance. Meanwhile, the encapsulated TiO2 ensures an excellent photocatalytic cleaning property. Application of this renewable microsensor for detection of nitric oxide (NO) release from cells demonstrates the great potential of this strategy in electrode regeneration and biosensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Method of detecting defects in ion exchange membranes of electrochemical cells by chemochromic sensors

    Science.gov (United States)

    Brooker, Robert Paul; Mohajeri, Nahid

    2016-01-05

    A method of detecting defects in membranes such as ion exchange membranes of electrochemical cells. The electrochemical cell includes an assembly having an anode side and a cathode side with the ion exchange membrane in between. In a configuration step a chemochromic sensor is placed above the cathode and flow isolation hardware lateral to the ion exchange membrane which prevents a flow of hydrogen (H.sub.2) between the cathode and anode side. The anode side is exposed to a first reactant fluid including hydrogen. The chemochromic sensor is examined after the exposing for a color change. A color change evidences the ion exchange membrane has at least one defect that permits H.sub.2 transmission therethrough.

  20. Calibration method for carbon dioxide sensors to investigate direct methanol fuel cell efficiency

    Science.gov (United States)

    Stähler, M.; Burdzik, A.

    2014-09-01

    Methanol crossover is a process in direct methanol fuel cells which causes significant reduction of cell efficiency. Methanol permeates through the membrane electrode assembly and reacts at the cathode with oxygen to form carbon dioxide. This process is undesirable because it does not generate electric energy, but rather only increases heat production. Different procedures have been used for the investigation of this crossover. One method uses the detection of carbon dioxide in the exhaust gas of the cathode by means of a carbon dioxide sensor. This technique is inexpensive and enables real-time measurements but its disadvantage is the low accuracy. This paper demonstrates a simple method to generate gas mixtures for the calibration of the sensor in order to increase the accuracy. The advantages of this technique consist in the fact that only the existing devices of a direct methanol fuel cell test rig are needed and that the operator can adjust the carbon dioxide concentration for the calibration process. This is important for dealing with nonlinearities of the sensor. A detailed error analysis accompanies the experiments. At the end it is shown that the accuracy of the determined Faraday efficiency can be improved by using the presented calibration technique.

  1. Simultaneous live cell imaging using dual FRET sensors with a single excitation light.

    Directory of Open Access Journals (Sweden)

    Yusuke Niino

    Full Text Available Fluorescence resonance energy transfer (FRET between fluorescent proteins is a powerful tool for visualization of signal transduction in living cells, and recently, some strategies for imaging of dual FRET pairs in a single cell have been reported. However, these necessitate alteration of excitation light between two different wavelengths to avoid the spectral overlap, resulting in sequential detection with a lag time. Thus, to follow fast signal dynamics or signal changes in highly motile cells, a single-excitation dual-FRET method should be required. Here we reported this by using four-color imaging with a single excitation light and subsequent linear unmixing to distinguish fluorescent proteins. We constructed new FRET sensors with Sapphire/RFP to combine with CFP/YFP, and accomplished simultaneous imaging of cAMP and cGMP in single cells. We confirmed that signal amplitude of our dual FRET measurement is comparable to of conventional single FRET measurement. Finally, we demonstrated to monitor both intracellular Ca(2+ and cAMP in highly motile cardiac myocytes. To cancel out artifacts caused by the movement of the cell, this method expands the applicability of the combined use of dual FRET sensors for cell samples with high motility.

  2. Quantitative electrophysiological monitoring of anti-histamine drug effects on live cells via reusable sensor platforms.

    Science.gov (United States)

    Pham Ba, Viet Anh; Cho, Dong-Guk; Kim, Daesan; Yoo, Haneul; Ta, Van-Thao; Hong, Seunghun

    2017-08-15

    We demonstrated the quantitative electrophysiological monitoring of histamine and anti-histamine drug effects on live cells via reusable sensor platforms based on carbon nanotube transistors. This method enabled us to monitor the real-time electrophysiological responses of a single HeLa cell to histamine with different concentrations. The measured electrophysiological responses were attributed to the activity of histamine type 1 receptors on a HeLa cell membrane by histamine. Furthermore, the effects of anti-histamine drugs such as cetirizine or chlorphenamine on the electrophysiological activities of HeLa cells were also evaluated quantitatively. Significantly, we utilized only a single device to monitor the responses of multiple HeLa cells to each drug, which allowed us to quantitatively analyze the antihistamine drug effects on live cells without errors from the device-to-device variation in device characteristics. Such quantitative evaluation capability of our method would promise versatile applications such as drug screening and nanoscale bio sensor researches. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Fluorescent and Bioluminescent Cell-Based Sensors: Strategies for Their Preservation

    Science.gov (United States)

    Date, Amol; Pasini, Patrizia; Daunert, Sylvia

    Luminescent whole-cell biosensing systems have been developed for a variety of analytes of environmental, clinical, and biological interest. These analytical tools allow for sensitive, rapid, simple, and inexpensive quantitative detection of target analytes. Furthermore, they can be designed to be nonspecific, semispecific, or highly specific/selective. A notable feature of such sensing systems employing living cells is that they provide information on the analyte bioavailability and activity. These characteristics, along with their suitability to miniaturization, make cell-based sensors ideal for field applications. However, a major limitation to on-site use is their "shelf-life." To address this problem, various methods for preservation of sensing cells have been reported, including freeze-drying, immobilization in different types of matrices, and formation of spores. Among these, the use of spores emerged as a promising strategy for long-term storage of whole-cell sensing systems at room temperature as well as in extreme environmental conditions.

  4. Multi-sample immunoassay inside optical fiber capillary enabled by evanescent wave detection

    Directory of Open Access Journals (Sweden)

    Chun-Wei Wang

    2016-03-01

    Full Text Available A novel evanescent wave-based (EW microfluidic capillary fiber-optic biosensor (MCFOB has been developed using capillaries as a transducer embedded in a multichannel device to enhance the collection efficiency of the fluorescence signal. The capillary serves dual roles as a waveguide and a container, enabling more straightforward, consistent, and compact biosensor packaging compared to conventional optical fiber biosensors and microfluidic systems. In order to detect multiple samples in one device, the biosensor incorporates a polydimethysiloxane (PDMS multi-channel device, which also serves as cladding for the biosensor. In addition, this biosensor only consumes 10 μl of a sample and does not require hydrofluoric acid etching in the fabrication process. The orientation for signal collection is optimized by comparing the lateral and normal signal directions for detected glyceraldehyde 3-phosphate dehydrogenase (GAPDH. C-reactive protein (CRP is used to validate the MCFOB, and the limit of detection (LOD for CRP in the MCFOB is 1.94 ng/ml (74 pM. Moreover, the real-time measurement is demonstrated to verify that the evanescent wave is the only exciting light source in the MCFOB, which gives the potential for real-time measurement applications.

  5. Propagating and evanescent properties of double-point defects in sonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Garcia, V; Sanchez-Perez, J V [Centro de tecnologIas fisicas: Acustica, Materiales y Astrofisica, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Garcia-Raffi, L M, E-mail: virogar1@mat.upv.e [Instituto Universitario de Matematica Pura y Aplicada, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2010-08-15

    Complex band structures and multiple scattering theory have been used in this paper to analyze the overlapping of the evanescent waves localized in point defects in sonic crystals (SCs). The extended plane wave expansion (EPWE) with supercell approximation gives the imaginary part of the Bloch vectors that produces the decay of the localized modes inside the periodic system. Double cavities can present a coupling between the evanescent modes localized in the defect, showing a symmetric or antisymmetric mode. When point defects are close, the complex band structures reveal a splitting of the frequencies of the localized modes. Both the real part and the imaginary values of k of the localized modes in the cavities present different values for each localized mode, which gives different properties for each mode. The novel measurements, in very good agreement with analytical data, show experimental evidence of the symmetric and antisymmetric localized modes for a double-point defect in SCs. The investigation of the localization phenomena and the coupling between defects in periodic systems has fundamental importance in both pure and applied physics.

  6. Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells

    Energy Technology Data Exchange (ETDEWEB)

    Plotnikov, Yuri, E-mail: plotnikov@ge.com; Karp, Jason, E-mail: plotnikov@ge.com; Knobloch, Aaron, E-mail: plotnikov@ge.com; Kapusta, Chris, E-mail: plotnikov@ge.com; Lin, David, E-mail: plotnikov@ge.com [GE Global Research, One Research Circle, Niskayuna, NY (United States)

    2015-03-31

    In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of tests have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.

  7. Quantitative high-resolution sensing of DNA hybridization using magnetic tweezers with evanescent illumination

    Science.gov (United States)

    Oliver, Piercen M.; Park, Jin Seon; Vezenov, Dmitri

    2011-02-01

    We applied the combined approach of evanescent nanometry and force spectroscopy using magnetic tweezers to quantify the degree of hybridization of a single synthetic single-stranded DNA oligomer to a resolution approaching a single-base. In this setup, the 200 nucleotide long DNA was covalently attached to the surface of an optically transparent solid support at one end and to the surface of a superparamagnetic fluorescent microsphere (force probe) at the other end. The force was applied to the probes using an electromagnet. The end-to-end molecular distance (i.e. out-of-image-plane position of the force probe) was determined from the intensity of the probe fluorescence image observed with total-internal reflectance microscopy. An equation of state for single stranded DNA molecules under tension (extensible freely jointed chain) was used to derive the penetration depth of the evanescent field and to calibrate the magnetic properties of the force probes. The parameters of the magnetic response of the force probes obtained from the equation of state remained constant when changing the penetration depth, indicating a robust calibration procedure. The results of such a calibration were also confirmed using independently measured probe-surface distances for probes mounted onto cantilevers of an atomic force microscope. Upon hybridization of the complementary 50 nucleotide-long oligomer to the surface-bound 200-mer, the changes in the force-distance curves were consistent with the quantitative conversion of 25% of the original single-stranded DNA to its double-stranded form, which was modeled as an elastic rod. The method presented here for quantifying the hybridization state of the single DNA molecules has potential for determining the degree of hybridization of individual molecules in a single molecule array with high accuracy.We applied the combined approach of evanescent nanometry and force spectroscopy using magnetic tweezers to quantify the degree of hybridization

  8. Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor.

    Science.gov (United States)

    Tantama, Mathew; Hung, Yin Pun; Yellen, Gary

    2011-07-06

    Intracellular pH affects protein structure and function, and proton gradients underlie the function of organelles such as lysosomes and mitochondria. We engineered a genetically encoded pH sensor by mutagenesis of the red fluorescent protein mKeima, providing a new tool to image intracellular pH in live cells. This sensor, named pHRed, is the first ratiometric, single-protein red fluorescent sensor of pH. Fluorescence emission of pHRed peaks at 610 nm while exhibiting dual excitation peaks at 440 and 585 nm that can be used for ratiometric imaging. The intensity ratio responds with an apparent pK(a) of 6.6 and a >10-fold dynamic range. Furthermore, pHRed has a pH-responsive fluorescence lifetime that changes by ~0.4 ns over physiological pH values and can be monitored with single-wavelength two-photon excitation. After characterizing the sensor, we tested pHRed's ability to monitor intracellular pH by imaging energy-dependent changes in cytosolic and mitochondrial pH.

  9. Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis.

    Science.gov (United States)

    Israelsson, Maria; Siegel, Robert S; Young, Jared; Hashimoto, Mimi; Iba, Koh; Schroeder, Julian I

    2006-12-01

    Stomatal pores in the epidermis of plants enable gas exchange between plants and the atmosphere, a process vital to plant life. Pairs of specialized guard cells surround and control stomatal apertures. Stomatal closing is induced by abscisic acid (ABA) and elevated CO(2) concentrations. Recent advances have been made in understanding ABA signaling and in characterizing CO(2) transduction mechanisms and CO(2) signaling mutants. In addition, models of Ca(2+)-dependent and Ca(2+)-independent signaling in guard cells have been developed and a new hypothesis has been formed in which physiological stimuli are proposed to prime Ca(2+) sensors, thus enabling specificity in Ca(2+)-dependent signal transduction.

  10. Singlet Oxygen Sensor Green: Photochemical Behavior in Solution and in a Mammalian Cell

    DEFF Research Database (Denmark)

    Gollmer, Anita; Arnbjerg, Jacob; Blaikie, Frances Helen

    2011-01-01

    The development of efficient and selective luminescent probes for reactive oxygen species, particularly for singlet molecular oxygen, is currently of great importance. In this study, the photochemical behavior of Singlet Oxygen Sensor Green® (SOSG), a commercially available fluorescent probe...... of the reaction between SOSG and singlet oxygen is, itself, an efficient singlet oxygen photosensitizer. Second, SOSG appears to efficiently bind to proteins which, in turn, can influence uptake by a cell as well as behavior in the cell. As such, incorrect use of SOSG can yield misleading data on yields...

  11. Optimization of a whole-cell biocatalyst by employing genetically encoded product sensors inside nanolitre reactors

    Science.gov (United States)

    Meyer, Andreas; Pellaux, René; Potot, Sébastien; Becker, Katja; Hohmann, Hans-Peter; Panke, Sven; Held, Martin

    2015-08-01

    Microcompartmentalization offers a high-throughput method for screening large numbers of biocatalysts generated from genetic libraries. Here we present a microcompartmentalization protocol for benchmarking the performance of whole-cell biocatalysts. Gel capsules served as nanolitre reactors (nLRs) for the cultivation and analysis of a library of Bacillus subtilis biocatalysts. The B. subtilis cells, which were co-confined with E. coli sensor cells inside the nLRs, converted the starting material cellobiose into the industrial product vitamin B2. Product formation triggered a sequence of reactions in the sensor cells: (1) conversion of B2 into flavin mononucleotide (FMN), (2) binding of FMN by a RNA riboswitch and (3) self-cleavage of RNA, which resulted in (4) the synthesis of a green fluorescent protein (GFP). The intensity of GFP fluorescence was then used to isolate B. subtilis variants that convert cellobiose into vitamin B2 with elevated efficiency. The underlying design principles of the assay are general and enable the development of similar protocols, which ultimately will speed up the optimization of whole-cell biocatalysts.

  12. Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis

    Science.gov (United States)

    Córdoba, Ainara López; Ali, Tayyibah; Shevchuk, Andrew; Takahashi, Yasufumi; Novak, Pavel; Edwards, Christopher; Lab, Max; Gopal, Sahana; Chiappini, Ciro; Anand, Uma; Magnani, Luca; Coombes, R. Charles; Gorelik, Julia; Matsue, Tomokazu; Schuhmann, Wolfgang; Klenerman, David; Sviderskaya, Elena V.; Korchev, Yuri

    2016-01-01

    Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements. PMID:26816294

  13. Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis.

    Science.gov (United States)

    Zhang, Yanjun; Clausmeyer, Jan; Babakinejad, Babak; Córdoba, Ainara López; Ali, Tayyibah; Shevchuk, Andrew; Takahashi, Yasufumi; Novak, Pavel; Edwards, Christopher; Lab, Max; Gopal, Sahana; Chiappini, Ciro; Anand, Uma; Magnani, Luca; Coombes, R Charles; Gorelik, Julia; Matsue, Tomokazu; Schuhmann, Wolfgang; Klenerman, David; Sviderskaya, Elena V; Korchev, Yuri

    2016-03-22

    Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements.

  14. Evaluation of the Paratrend Multi-Analyte Sensor for Potential Utilization in Long-Duration Automated Cell Culture Monitoring

    Science.gov (United States)

    Hwang, Emma Y.; Pappas, Dimitri; Jeevarajan, Antony S.; Anderson, Melody M.

    2004-01-01

    BACKGROUND: Compact and automated sensors are desired for assessing the health of cell cultures in biotechnology experiments. While several single-analyte sensors exist to measure culture health, a multi-analyte sensor would simplify the cell culture system. One such multi-analyte sensor, the Paratrend 7 manufactured by Diametrics Medical, consists of three optical fibers for measuring pH, dissolved carbon dioxide (pCO(2)), dissolved oxygen (pO(2)), and a thermocouple to measure temperature. The sensor bundle was designed for intra-vascular measurements in clinical settings, and can be used in bioreactors operated both on the ground and in NASA's Space Shuttle and International Space Station (ISS) experiments. METHODS: A Paratrend 7 sensor was placed at the outlet of a bioreactor inoculated with BHK-21 (baby hamster kidney) cells. The pH, pCO(2), pO(2), and temperature data were transferred continuously to an external computer. Cell culture medium, manually extracted from the bioreactor through a sampling port, was also assayed using a bench top blood gas analyzer (BGA). RESULTS: Two Paratrend 7 sensors were used over a single cell culture experiment (64 days). When compared to the manually obtained BGA samples, the sensor had good agreement for pH, pCO(2), and pO(2) with bias (and precision) 0.005(0.024), 8.0 mmHg (4.4 mmHg), and 11 mmHg (17 mmHg), respectively for the first two sensors. A third Paratrend sensor (operated for 141 days) had similar agreement (0.02+/-0.15 for pH, -4+/-8 mm Hg for pCO(2), and 24+/-18 mmHg for pO(2)). CONCLUSION: The resulting biases and precisions are com- parable to Paratrend sensor clinical results. Although the pO(2) differences may be acceptable for clinically relevant measurement ranges, the O(2) sensor in this bundle may not be reliable enough for the ranges of pO(2) in these cell culture studies without periodic calibration.

  15. Use of a gas-sensor array for detecting volatile organic compounds (VOC) in chemically induced cells.

    Science.gov (United States)

    Pasini, Patrizia; Powar, Nilesh; Gutierrez-Osuna, Ricardo; Daunert, Sylvia; Roda, Aldo

    2004-01-01

    An application of gas sensors for rapid bioanalysis is presented. An array of temperature-modulated semiconductor sensors was used to characterize the headspace above a cell culture. Recombinant Saccharomyces cerevisiae yeast cells, able to respond to 17 beta-estradiol by producing a reporter protein, were used as a model system. Yeast cells had the DNA sequence of the human estrogen receptor stably integrated into the genome, and contained expression plasmids carrying estrogen-responsive sequences and the reporter gene lac-Z, encoding the enzyme beta-galactosidase. The sensor-response profiles showed small but noticeable discrimination between cell samples induced with 17 beta-estradiol and non-induced cell samples. The sensor array was capable of detecting changes in the volatile organic compound composition of the headspace above the cultured cells, which can be associated with metabolic changes induced by a chemical compound. This finding suggests the possibility of using cross-selective gas-sensor arrays for analysis of drugs or bioactive molecules through their interaction with cell systems, with the advantage of providing information on their bioavailability.

  16. Spectral characterization of yeast cells with an epitaxy-based UV-Vis optical sensor.

    Science.gov (United States)

    Bercu, M; Zhou, X; Lee, A C; Poenar, D P; Heng, C K; Tan, S N

    2006-06-01

    The optical spectra of yeast cells in phosphate buffer saline (PBS) were analyzed with an optical UV-vis sensor based on a shallow p(+)n junction realized in a low doped n-type epitaxial silicon layer grown on a strongly doped n(+) substrate. The presence of the n/n(+) interface allows a significantly enhanced sensitivity, due to an increased collection of carriers photogenerated both by short and large wavelengths in the range 250...800 nm. In our experiments the optical absorption of yeast cells was investigated in the wavelength range 250...500 nm as a function of the cells concentration in PBS in the range of 6 x 10(6)-2 x 10(8) cells/ml. The main absorption peaks were found at 310, 350, 400 and 427 nm, respectively. A significant red shift of the wide absorption band at 427 nm has been observed when increasing cell concentration. This red shift behaviour was nonlinear, with saturation observed for yeast concentrations larger than 5 x 10(7) cells/ml. The half-peak bandwidth of this peak also showed a most significant nonlinear variation. These findings suggest that monitoring the parameters of the absorption band at 427 nm versus cells concentration could be used, e.g. using a dedicated integrated spectrometric microsystem, for fast quantitative measurements of yeast cell concentrations in various bio-samples, with possible applications in the food industry.

  17. Near-infrared fundus autofluorescence in multiple evanescent white-dot syndrome.

    Science.gov (United States)

    Battaglia Parodi, Maurizio; Iacono, Pierluigi; Falcomatà, Bruno; Bolognesi, Gianluigi; Bandello, Francesco

    2015-01-01

    To report the near-infrared fundus autofluorescence (NIR-FAF) pattern in 2 cases of multiple evanescent white-dot syndrome (MEWDS). Three consecutive patients with MEWDS underwent a complete ophthalmologic examination, including color photograph, blue-light fundus autofluorescence, NIR-FAF, fluorescein angiography, and indocyanine green angiography (ICGA). Main outcome measure was the identification of NIR-FAF pattern. Fluorescein angiography showed patchy hyperfluorescence of the whitish dots. Indocyanine green angiography showed hypofluorescent spots throughout the examination. Blue-light fundus autofluorescence disclosed a speckled pattern without extension to the foveal area, whereas NIR-AF showed several hypoautofluorescent lesions involving also the fovea, which corresponded to the whitish dots visible on biomicroscopy and to the hypofluorescent lesions detectable on ICGA. Near-infrared fundus autofluorescence is characterized by hypoautofluorescent spots corresponding to the inflammatory lesions typical of MEWDS and can be considered as a valuable noninvasive technique to diagnose and monitor patients with MEWDS.

  18. Detection of C-reactive protein in evanescent wave field using microparticle-tracking velocimetry.

    Science.gov (United States)

    Fan, Yu-Jui; Sheen, Horn-Jiunn; Liu, Yi-Hsing; Tsai, Jing-Fa; Wu, Tzu-Heng; Wu, Kuang-Chong; Lin, Shiming

    2010-09-07

    A new technique is developed to measure the nanoparticles' brownian motions by employing microparticle-tracking velocimetry (micro-PTV) in evanescent wave field, which can provide high signal-to-noise ratio images for analyzing nanoparticles' movements. This method enables real-time detection of C-reactive proteins (CRPs) during the rapid interaction between CRPs and anti-CRP-coated nanobeads as CRP concentrations are related to the nanobeads' brownian velocity in the equilibrium state. The smallest observable nanobeads with 185 nm were utilized in this experiment to detect CRP concentrations as low as 0.1 microg/mL even in a high-viscosity solution. Further, the dissociation constant, K(D), can be evaluated based on the experimental results.

  19. Optomechanical Transduction and Characterization of a Silica Microsphere Pendulum via Evanescent Light

    CERN Document Server

    Madugani, Ramgopal; Ward, Jonathan M; Le, Vu H; Chormaic, Síle Nic

    2015-01-01

    Transduction of the motion of a micron- or nano-sized object to an optical signal is essential for optomechanical systems. Here, we study the optical response of a cantilever-like, silica, microsphere pendulum, evanescently coupled to a ?ber taper. In this system, the optical coupling element also acts as the mechanical motion transducer and the pendulum's oscillations modulate the optical whispering gallery modes (WGMs) both dispersively and dissipatively. This unique mechanism leads to an experimentally-observable, asymmetric response function of the transduction spectrum. This phenomenon is explained by using coupled mode theory with Fourier transforms. The optomechanical transduction and its relation to the external coupling gap is experimentally investigated in depth and shows good agreement with the theory. A deep understanding of this mechanism is necessary in order to explore cooling and trapping of a micropendulum system.

  20. Evanescent optical trapping of nanoscale particles using slotted tapered optical fibres

    CERN Document Server

    Daly, Mark; Chormaic, Síle Nic

    2016-01-01

    While conventional optical trapping techniques can trap objects with submicron dimensions, the underlying limits imposed by the diffraction of light generally restrict their use to larger, or higher refractive index particles. As the index and diameter decrease, the trapping difficulty rapidly increases; hence, the power requirements for stable trapping become so large as to quickly denature the trapped objects in such diffraction-limited systems. Here, we present an evanescent field-based device capable of confining low index nanoscale particles using modest optical powers as low as 1.2 mW, with additional applications in the field of cold atom trapping. Our experiment uses a nanostructured optical micro-nanofibre to trap 200 nm, low-index, fluorescent particles within the structured region, thereby overcoming diffraction limitations. We analyse the trapping potential of this device both experimentally and theoretically, and show how strong optical traps are achieved with low input powers.

  1. Naphthalene diimides as red fluorescent pH sensors for functional cell imaging.

    Science.gov (United States)

    Doria, Filippo; Folini, Marco; Grande, Vincenzo; Cimino-Reale, Graziella; Zaffaroni, Nadia; Freccero, Mauro

    2015-01-14

    A small library of hydrosoluble naphthalene diimides (NDIs) was designed and synthesized, as cell permeable pH "turned-on" fluorescent sensors, for cellular applications. The NDIs exhibit a non-emitting twisted intramolecular charge transfer (TICT) state, which has been described by a DFT computational investigation. These NDIs do not emit as a free base, but they become strong emitters when protonated. Switching of the red emission was achieved in the pH window 2.5-6, tuning steric and electronic features of the amine moiety. The least acidic protonated NDI (pKa 5.1), was investigated in normal and cancer cells. Its selective redistribution in cancer cells from acidic vesicular organelles to the cytoplasm and the nucleus describes an effective application of these NDIs as a valuable functional tool.

  2. Semi-automated, occupationally safe immunofluorescence microtip sensor for rapid detection of Mycobacterium cells in sputum.

    Directory of Open Access Journals (Sweden)

    Shinnosuke Inoue

    Full Text Available An occupationally safe (biosafe sputum liquefaction protocol was developed for use with a semi-automated antibody-based microtip immunofluorescence sensor. The protocol effectively liquefied sputum and inactivated microorganisms including Mycobacterium tuberculosis, while preserving the antibody-binding activity of Mycobacterium cell surface antigens. Sputum was treated with a synergistic chemical-thermal protocol that included moderate concentrations of NaOH and detergent at 60°C for 5 to 10 min. Samples spiked with M. tuberculosis complex cells showed approximately 10(6-fold inactivation of the pathogen after treatment. Antibody binding was retained post-treatment, as determined by analysis with a microtip immunosensor. The sensor correctly distinguished between Mycobacterium species and other cell types naturally present in biosafe-treated sputum, with a detection limit of 100 CFU/mL for M. tuberculosis, in a 30-minute sample-to-result process. The microtip device was also semi-automated and shown to be compatible with low-cost, LED-powered fluorescence microscopy. The device and biosafe sputum liquefaction method opens the door to rapid detection of tuberculosis in settings with limited laboratory infrastructure.

  3. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System.

    Science.gov (United States)

    Zheng, Qi; Xiong, Lei; Mo, Bing; Lu, Weihong; Kim, Suki; Wang, Zhenyu

    2015-09-11

    Microbial fuel cells (MFCs) are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS) is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology.

  4. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System

    Directory of Open Access Journals (Sweden)

    Qi Zheng

    2015-09-01

    Full Text Available Microbial fuel cells (MFCs are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology.

  5. Modelling the influence of noise of the image sensor for blood cells recognition in computer microscopy

    Science.gov (United States)

    Nikitaev, V. G.; Nagornov, O. V.; Pronichev, A. N.; Polyakov, E. V.; Dmitrieva, V. V.

    2017-12-01

    The first stage of diagnostics of blood cancer is the analysis of blood smears. The application of decision-making support systems would reduce the subjectivity of the diagnostic process and avoid errors, resulting in often irreversible changes in the patient's condition. In this regard, the solution of this problem requires the use of modern technology. One of the tools of the program classification of blood cells are texture features, and the task of finding informative among them is promising. The paper investigates the effect of noise of the image sensor to informative texture features with application of methods of mathematical modelling.

  6. YAP and TAZ in epithelial stem cells: A sensor for cell polarity, mechanical forces and tissue damage.

    Science.gov (United States)

    Elbediwy, Ahmed; Vincent-Mistiaen, Zoé I; Thompson, Barry J

    2016-07-01

    The YAP/TAZ family of transcriptional co-activators drives cell proliferation in epithelial tissues and cancers. Yet, how YAP and TAZ are physiologically regulated remains unclear. Here we review recent reports that YAP and TAZ act primarily as sensors of epithelial cell polarity, being inhibited when cells differentiate an apical membrane domain, and being activated when cells contact the extracellular matrix via their basal membrane domain. Apical signalling occurs via the canonical Crumbs/CRB-Hippo/MST-Warts/LATS kinase cascade to phosphorylate and inhibit YAP/TAZ. Basal signalling occurs via Integrins and Src family kinases to phosphorylate and activate YAP/TAZ. Thus, YAP/TAZ is localised to the nucleus in basal stem/progenitor cells and cytoplasm in differentiated squamous cells or columnar cells. In addition, other signals such as mechanical forces, tissue damage and possibly receptor tyrosine kinases (RTKs) can influence MST-LATS or Src family kinase activity to modulate YAP/TAZ activity. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.

  7. Fabrication of thermal microphotonic sensors and sensor arrays

    Science.gov (United States)

    Shaw, Michael J.; Watts, Michael R.; Nielson, Gregory N.

    2010-10-26

    A thermal microphotonic sensor is fabricated on a silicon substrate by etching an opening and a trench into the substrate, and then filling in the opening and trench with silicon oxide which can be deposited or formed by thermally oxidizing a portion of the silicon substrate surrounding the opening and trench. The silicon oxide forms a support post for an optical resonator which is subsequently formed from a layer of silicon nitride, and also forms a base for an optical waveguide formed from the silicon nitride layer. Part of the silicon substrate can be selectively etched away to elevate the waveguide and resonator. The thermal microphotonic sensor, which is useful to detect infrared radiation via a change in the evanescent coupling of light between the waveguide and resonator, can be formed as a single device or as an array.

  8. Enhancing cell and gene therapy manufacture through the application of advanced fluorescent optical sensors (Review).

    Science.gov (United States)

    Harrison, Richard P; Chauhan, Veeren M

    2017-12-15

    Cell and gene therapies (CGTs) are examples of future therapeutics that can be used to cure or alleviate the symptoms of disease, by repairing damaged tissue or reprogramming defective genetic information. However, despite the recent advancements in clinical trial outcomes, the path to wide-scale adoption of CGTs remains challenging, such that the emergence of a "blockbuster" therapy has so far proved elusive. Manufacturing solutions for these therapies require the application of scalable and replicable cell manufacturing techniques, which differ markedly from the existing pharmaceutical incumbent. Attempts to adopt this pharmaceutical model for CGT manufacture have largely proved unsuccessful. The most significant challenges facing CGT manufacturing are process analytical testing and quality control. These procedures would greatly benefit from improved sensory technologies that allow direct measurement of critical quality attributes, such as pH, oxygen, lactate and glucose. In turn, this would make manufacturing more robust, replicable and standardized. In this review, the present-day state and prospects of CGT manufacturing are discussed. In particular, the authors highlight the role of fluorescent optical sensors, focusing on their strengths and weaknesses, for CGT manufacture. The review concludes by discussing how the integration of CGT manufacture and fluorescent optical sensors could augment future bioprocessing approaches.

  9. A miniature porous aluminum oxide-based flow-cell for online water quality monitoring using bacterial sensor cells.

    Science.gov (United States)

    Yagur-Kroll, Sharon; Schreuder, Erik; Ingham, Colin J; Heideman, René; Rosen, Rachel; Belkin, Shimshon

    2015-02-15

    The use of live bacterial reporters as sensing entities in whole-cell biosensors allows the investigation of the biological effects of a tested sample, as well as the bioavailability of its components. Here we present a proof of concept for a new design for online continuous water monitoring flow-cell biosensor, incorporating recombinant reporter bacteria, engineered to generate an optical signal (fluorescent or bioluminescent) in the presence of the target compound(s). At the heart of the flow-cell is a disposable chip made of porous aluminum oxide (PAO), which retains the sensor microorganisms on its rigid planar surface, while its high porosity allows an undisturbed access both to the sample and to essential nutrients. The ability of the bacterial reporters to detect model toxic chemicals was first demonstrated using a "naked" PAO chip placed on solid agar, and later in a chip encased in a specially designed flow-through configuration which enables continuous on-line monitoring. The applicability of the PAO chip to simultaneous online detection of diverse groups of chemicals was demonstrated by the incorporation of a 6-member sensor array into the flow-through chip. The selective response of the array was also confirmed in spiked municipal wastewater effluents. Sensing activity was retained by the bacteria after 12-weeks storage of freeze-dried biochips, demonstrating the biochip potential as a simple minimal maintenance "plug-in" cartridge. This low-cost and easy to handle PAO-based flow-cell biosensor may serve as a basis for a future platform for water quality monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Transcriptional Regulation of Glucose Sensors in Pancreatic β-Cells and Liver: An Update

    Directory of Open Access Journals (Sweden)

    Jin-Sik Bae

    2010-05-01

    Full Text Available Pancreatic β-cells and the liver play a key role in glucose homeostasis. After a meal or in a state of hyperglycemia, glucose is transported into the β-cells or hepatocytes where it is metabolized. In the β-cells, glucose is metabolized to increase the ATP:ADP ratio, resulting in the secretion of insulin stored in the vesicle. In the hepatocytes, glucose is metabolized to CO2, fatty acids or stored as glycogen. In these cells, solute carrier family 2 (SLC2A2 and glucokinase play a key role in sensing and uptaking glucose. Dysfunction of these proteins results in the hyperglycemia which is one of the characteristics of type 2 diabetes mellitus (T2DM. Thus, studies on the molecular mechanisms of their transcriptional regulations are important in understanding pathogenesis and combating T2DM. In this paper, we will review a recent update on the progress of gene regulation of glucose sensors in the liver and β-cells.

  11. Cell-Based Sensor System Using L6 Cells for Broad Band Continuous Pollutant Monitoring in Aquatic Environments

    Directory of Open Access Journals (Sweden)

    Evamaria Stütz

    2012-03-01

    Full Text Available Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism, oxygen consumption (respiration and impedance (morphology of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water was tested with monolayers of L6 cells (rat myoblasts. The cytotoxicity or cellular effects induced by inorganic ions (Ni2+ and Cu2+ can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity.

  12. Cell-based sensor system using L6 cells for broad band continuous pollutant monitoring in aquatic environments.

    Science.gov (United States)

    Kubisch, Rebekka; Bohrn, Ulrich; Fleischer, Maximilian; Stütz, Evamaria

    2012-01-01

    Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism), oxygen consumption (respiration) and impedance (morphology) of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts). The cytotoxicity or cellular effects induced by inorganic ions (Ni(2+) and Cu(2+)) can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity.

  13. Long-term continuous monitoring of dissolved oxygen in cell culture medium for perfused bioreactors using optical oxygen sensors.

    Science.gov (United States)

    Gao, Frank G; Jeevarajan, Antony S; Anderson, Melody M

    2004-05-20

    For long-term growth of mammalian cells in perfused bioreactors, it is essential to monitor the concentration of dissolved oxygen (DO) present in the culture medium to ascertain the health of the cells. An optical oxygen sensor based on dynamic fluorescent quenching was developed for long-term continuous measurement of DO for NASA-designed rotating perfused bioreactors. Tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) chloride is employed as the fluorescent dye indicator. A pulsed, blue LED was chosen as the excitation light source. The sensor can be sterilized using an autoclave. The sensors were tested in a perfused rotating bioreactor supporting a BHK-21 (baby hamster kidney) cell culture over one 28-day, one 43-day, and one 180-day cell runs. The sensors were initially calibrated in sterile phosphate-buffered saline (PBS) against a blood-gas analyzer (BGA), and then used continuously during the entire cell culture without recalibration. In the 180-day cell run, two oxygen sensors were employed; one interfaced at the outlet of the bioreactor and the other at the inlet of the bioreactor. The DO concentrations determined by both sensors were compared with those sampled and measured regularly with the BGA reference. The sensor outputs were found to correlate well with the BGA data throughout the experiment using a single calibration, where the DO of the culture medium varied between 25 and 60 mm Hg at the bioreactor outlet and 80-116 mm Hg at the bioreactor inlet. During all 180 days of culture, the precision and the bias were +/-5.1 mm Hg and -3.8 mm Hg at the bioreactor outlet, and +/- 19 mm Hg and -18 mm Hg at inlet. The sensor dynamic range is between 0 and 200 mm Hg and the response time is less than 1 minute. The resolution of the sensor is 0.1 mm Hg at 50 mm Hg, and 0.25 mm Hg at 130 mm Hg. Copyright 2004 Wiley Periodicals, Inc.

  14. Carbazole-azine based fluorescence 'off-on' sensor for selective detection of Cu2+ and its live cell imaging.

    Science.gov (United States)

    Christopher Leslee, Denzil Britto; Karuppannan, Sekar; Vengaian, Karmegam Muthu; Gandhi, Sivaraman; Subramanian, Singaravadivel

    2017-11-01

    A new carbazole-azine based fluorescent sensor was synthesized and characterized. The selectivity of the sensor for Cu2+ over other counter ions in a dimethyl sulfoxide/H2 O mixture was shown through enhancement in fluorescence - an off to on transformation. The specificity of the probe towards Cu2+ was evident in ultraviolet/visible, fluorescence, Fourier transform infrared and mass studies. Application of the probe in the cell imaging and cytotoxicity of living cells is illustrated. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Stationary Schrödinger equation in the semi-classical limit: numerical coupling of oscillatory and evanescent regions.

    Science.gov (United States)

    Arnold, Anton; Negulescu, Claudia

    2018-01-01

    This paper is concerned with a 1D Schrödinger scattering problem involving both oscillatory and evanescent regimes, separated by jump discontinuities in the potential function, to avoid "turning points". We derive a non-overlapping domain decomposition method to split the original problem into sub-problems on these regions, both for the continuous and afterwards for the discrete problem. Further, a hybrid WKB-based numerical method is designed for its efficient and accurate solution in the semi-classical limit: a WKB-marching method for the oscillatory regions and a FEM with WKB-basis functions in the evanescent regions. We provide a complete error analysis of this hybrid method and illustrate our convergence results by numerical tests.

  16. Optical response of magnetic fluorescent microspheres used for force spectroscopy in the evanescent field.

    Science.gov (United States)

    Bijamov, Alex; Shubitidze, Fridon; Oliver, Piercen M; Vezenov, Dmitri V

    2010-07-20

    Force spectroscopy based on magnetic tweezers is a powerful technique for manipulating single biomolecules and studying their interactions. The resolution in magnetic probe displacement, however, needs to be commensurate with molecular sizes. To achieve the desirable sensitivity in tracking displacements of the magnetic probe, some recent approaches have combined magnetic tweezers with total internal reflection fluorescence microscopy. In this situation, a typical force probe is a polymer microsphere containing two types of optically active components: a pure absorber (magnetic nanoparticles for providing the pulling force) and a luminophore (semiconducting nanoparticles or organic dyes for fluorescent imaging). To assess the system's capability fully with regard to tracking the position of the force probe with subnanometer accuracy, we developed a body-of-revolution formulation of the method of auxiliary sources (BOR-MAS) to simulate the absorption, scattering, and fluorescence of microscopic spheres in an evanescent electromagnetic field. The theoretical formulation uses the axial symmetry of the system to reduce the dimensionality of the modeling problem and produces excellent agreement with the reported experimental data on forward scattering intensity. Using the BOR-MAS numerical model, we investigated the probe detection sensitivity for a high numerical aperture objective. The analysis of both backscattering and fluorescence observation modes shows that the total intensity of the bead image decays exponentially with the distance from the surface (or the length of a biomolecule). Our investigations demonstrate that the decay lengths of observable optical power are smaller than the penetration depth of the unperturbed excitation evanescent wave. In addition, our numerical modeling results illustrate that the expected sensitivity for the decay length changes with the angle of incidence, tracking the theoretical penetration depth for a two-media model, and is

  17. A nano-microstructured artificial-hair-cell-type sensor based on topologically graded 3D carbon nanotube bundles.

    Science.gov (United States)

    Yilmazoglu, O; Yadav, S; Cicek, D; Schneider, J J

    2016-09-09

    A design for a unique artificial-hair-cell-type sensor (AHCTS) based entirely on 3D-structured, vertically aligned carbon nanotube (CNT) bundles is introduced. Standard microfabrication techniques were used for the straightforward micro-nano integration of vertically aligned carbon nanotube arrays composed of low-layer multi-walled CNTs (two to six layers). The mechanical properties of the carbon nanotube bundles were intensively characterized with regard to various substrates and CNT morphology, e.g. bundle height. The CNT bundles display excellent flexibility and mechanical stability for lateral bending, showing high tear resistance. The integrated 3D CNT sensor can detect three-dimensional forces using the deflection or compression of a central CNT bundle which changes the contact resistance to the shorter neighboring bundles. The complete sensor system can be fabricated using a single chemical vapor deposition (CVD) process step. Moreover, sophisticated external contacts to the surroundings are not necessary for signal detection. No additional sensors or external bias for signal detection are required. This simplifies the miniaturization and the integration of these nanostructures for future microsystem set-ups. The new nanostructured sensor system exhibits an average sensitivity of 2100 ppm in the linear regime with the relative resistance change per micron (ppm μm(-1)) of the individual CNT bundle tip deflection. Furthermore, experiments have shown highly sensitive piezoresistive behavior with an electrical resistance decrease of up to ∼11% at 50 μm mechanical deflection. The detection sensitivity is as low as 1 μm of deflection, and thus highly comparable with the tactile hair sensors of insects, having typical thresholds on the order of 30-50 μm. The AHCTS can easily be adapted and applied as a flow, tactile or acceleration sensor as well as a vibration sensor. Potential applications of the latter might come up in artificial cochlear systems. In

  18. 2D ratiometric fluorescent pH sensor for tracking of cells proliferation and metabolism.

    Science.gov (United States)

    Ma, Jun; Ding, Changqin; Zhou, Jie; Tian, Yang

    2015-08-15

    Extracellular pH plays a vital role no matter in physiological or pathological studies. In this work, a hydrogel, CD@Nile-FITC@Gel (Gel sensor), entrapping the ratiometric fluorescent probe CD@Nile-FITC was developed. The Gel sensor was successfully used for real-time extracellular pH monitoring. In the case of CD@Nile-FITC, pH-sensitive fluorescent dye fluorescein isothiocyanate (FITC) was chosen as the response signal for H(+) and Nile blue chloride (Nile) as the reference signal. The developed fluorescent probe exhibited high selectivity for pH over other metal ions and amino acids. Meanwhile, the carbon-dots-based inorganic-organic probe demonstrated excellent photostability against long-term light illumination. In order to study the extracellular pH change in processes of cell proliferation and metabolism, CD@Nile-FITC probe was entrapped in sodium alginate gel and consequently formed CD@Nile-FITC@Gel. The MTT assay showed low cytotoxicity of the Gel and the pH titration indicated that it could monitor the pH fluctuations linearly and rapidly within the pH range of 6.0-9.0, which is valuable for physiological pH determination. As expected, the real-time bioimaging of the probe was successfully achieved. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip

    Directory of Open Access Journals (Sweden)

    Sebastian M. Bonk

    2015-07-01

    Full Text Available We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1 were used as a model system. Thin-film platinum (Pt sensors for respiration (amperometric oxygen electrode, acidification (potentiometric pH electrodes and cell adhesion (interdigitated-electrodes structures, IDES allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4. Thin Si3N4 layers (20 nm or 60 nm were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm2. Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated. Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions.

  20. The Modification of Fuel Cell-Based Breath Alcohol Sensor Materials to Improve Water Retention of Sensing Performance

    Science.gov (United States)

    Allan, Jesse

    Fuel cell based breath alcohol sensors (BrASs) are one of the most important tools used by law enforcement today. The ability to screen potentially intoxicated subjects with the ease, speed, and flexibility the BrAS can provide is unmatched by any other device of its kind. While these devices are used globally, they all suffer from a common deficiency: reliance on water. The ability of the fuel cell sensor to manage water content is one of the greatest fundamental challenges facing this technology today. In order to evaluate the fuel cell sensor device, a methodology was required that would allow in-house sensor testing to be coupled with a diagnostic testing method to not only test materials sensing performance, but also determine why a sensor behaved how it did. To do this, a next-generation fuel cell was designed specifically for sensor testing along with a test station that allowed for rapid response and sensor characteristics of a given material. The fuel cell was designed to allow in-situ testing of a membrane electrode assembly (MEA) of interest using cyclic voltammetry and electrochemical impedance spectroscopy. The in-house design was validated against a commercial cell to provide feedback on how materials in the in-house cell would behave in a commercial designed unit. The results showed that our cell with a commercial MEA behaved identically to a commercial cell with the same MEA. Following validation of our cell, common membrane materials were investigated to identify their suitability in a senor role. The materials chosen were designed for power generating devices, so they provided a benchmark to identify which properties would be important for sensor operation. It was found that while the Nafion membrane and sulfonated poly (ether ether ketone) did show performance increases over the commercial MEA, the thin characteristics of these membranes limited performance in drier conditions. From these results, it was determined that thicker membrane materials

  1. Measurement of in-plane elasticity of live cell layers using a pressure sensor embedded microfluidic device

    Science.gov (United States)

    Lin, Chien-Han; Wang, Chien-Kai; Chen, Yu-An; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung

    2016-01-01

    In various physiological activities, cells experience stresses along their in-plane direction when facing substrate deformation. Capability of continuous monitoring elasticity of live cell layers during a period is highly desired to investigate cell property variation during various transformations under normal or disease states. This paper reports time-lapsed measurement of live cell layer in-plane elasticity using a pressure sensor embedded microfluidic device. The sensor converts pressure-induced deformation of a flexible membrane to electrical signals. When cells are cultured on top of the membrane, flexural rigidity of the composite membrane increases and further changes the output electrical signals. In the experiments, human embryonic lung fibroblast (MRC-5) cells are cultured and analyzed to estimate the in-plane elasticity. In addition, the cells are treated with a growth factor to simulate lung fibrosis to study the effects of cell transformation on the elasticity variation. For comparison, elasticity measurement on the cells by atomic force microscopy (AFM) is also performed. The experimental results confirm highly anisotropic configuration and material properties of cells. Furthermore, the in-plane elasticity can be monitored during the cell transformation after the growth factor stimulation. Consequently, the developed microfluidic device provides a powerful tool to study physical properties of cells for fundamental biophysics and biomedical researches. PMID:27812019

  2. Self-referencing SPR-biosensors based on penetration difference of evanescent waves.

    Science.gov (United States)

    Nizamov, Shavkat; Mirsky, Vladimir M

    2011-10-15

    SPR based biosensors register binding of analytes to the surface with immobilized receptors by measuring changes of the refractive index near this surface. An important task in the improvement of this measurement technology is a separation of signals, corresponding to the changes in the chemosensitive layer, from undesired contributions of bulk phase, for example, due to fluctuations of temperature, concentrations of solutes, pressure. The wavelength of the incident light influences strongly the penetration depth of the corresponding evanescent wave. This dependence was exploited here for compensation of the contribution of the bulk refractive index. It was performed using differential SPR measurements at two wavelengths with differing penetration depths. Theoretical analysis and numerical optimization of the suggested approach, named a Penetration Difference Self-Referencing SPR (PDSR-SPR), were performed. Experimental test was performed using 658 and 980 nm laser diodes. Over 20 times suppression of variations of bulk refractive index with magnitude up to 1000 μRIU was observed. Finally, PDSR-SPR approach was applied for monitoring of antibodies binding to the immobilized antigens. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Ammonia sensor based on QEPAS with HC-PBF as reference cell

    Science.gov (United States)

    Jiang, Meng; Feng, Qiaoling; Wang, Congying; Wei, Yufeng; Wang, Xuefeng; Liang, Tongli

    2015-08-01

    Quartz-enhanced photoacoustic spectroscopy (QEPAS) sensors involves with many desirable features, such as being small and portable, with fast continuous in situ measurements possible. In QEPAS systems, reference cells filled with gas mixtures for wavelength locking and calibration are used to improve the precision and stability of the trace gas concentration measurement. For this study, a 5 m length hollow core photonic bandgap fiber (HC-PBF) splicing with single mode fibers at two ends was manufactured as reference cell, which has long absorption path, low transmission loss and easy connectivity. Hollow cores under high pressure (3.0 × 105 Pa) were filled with a certified mixture of ammonia and nitrogen gas to reach equilibrium rapidly. The experiment results indicated that absorption spectra of reference cell with a low loss QEPAS. A normalized noise equivalent absorption coefficient (NNEA) of 1.18×10-7 cm-1W/√Hz was obtained at room temperature and pressure of 760 Torr. This results in a minimum detection limit of 3.6ppm for noise equivalent concentration within a 1s lock in integration time.

  4. Fast responsive fluorescence turn-on sensor for Cu{sup 2+} and its application in live cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiaoliang, E-mail: wangjiaoliang@126.com [College of Chemistry and Environment Engineering, Hunan City University, Yiyang 413000 (China); Li Hao; Long Liping; Xiao Guqing; Xie Dan [College of Chemistry and Environment Engineering, Hunan City University, Yiyang 413000 (China)

    2012-09-15

    A new effective fluorescent sensor based on rhodamine was synthesized, which was induced by Cu{sup 2+} in aqueous media to produce turn-on fluorescence. The new sensor 1 exhibited good selectivity for Cu{sup 2+} over other heavy and transition metal (HTM) ions in H{sub 2}O/CH{sub 3}CN(7:3, v/v). Upon addition of Cu{sup 2+}, a remarkable color change from colorless to pink was easily observed by the naked eye, and the dramatic fluorescence turn-on was corroborated. Furthermore, kinetic assay indicates that sensor 1 could be used for real-time tracking of Cu{sup 2+} in cells and organisms. In addition, the turn-on fluorescent change upon the addition of Cu{sup 2+} was also applied in bioimaging. - Highlights: Black-Right-Pointing-Pointer A new effective fluorescent sensor based on rhodamine was developed to detect Cu{sup 2+}. Black-Right-Pointing-Pointer The sensor exhibited fast response, good selectivity at physiological pH condition. Black-Right-Pointing-Pointer The sensor was an effective intracellular Cu{sup 2+} ion imaging agent.

  5. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine

    Science.gov (United States)

    Srivastava, Amit K.; Kadayakkara, Deepak K.; Bar-Shir, Amnon; Gilad, Assaf A.; McMahon, Michael T.; Bulte, Jeff W. M.

    2015-01-01

    The field of molecular and cellular imaging allows molecules and cells to be visualized in vivo non-invasively. It has uses not only as a research tool but in clinical settings as well, for example in monitoring cell-based regenerative therapies, in which cells are transplanted to replace degenerating or damaged tissues, or to restore a physiological function. The success of such cell-based therapies depends on several critical issues, including the route and accuracy of cell transplantation, the fate of cells after transplantation, and the interaction of engrafted cells with the host microenvironment. To assess these issues, it is necessary to monitor transplanted cells non-invasively in real-time. Magnetic resonance imaging (MRI) is a tool uniquely suited to this task, given its ability to image deep inside tissue with high temporal resolution and sensitivity. Extraordinary efforts have recently been made to improve cellular MRI as applied to regenerative medicine, by developing more advanced contrast agents for use as probes and sensors. These advances enable the non-invasive monitoring of cell fate and, more recently, that of the different cellular functions of living cells, such as their enzymatic activity and gene expression, as well as their time point of cell death. We present here a review of recent advancements in the development of these probes and sensors, and of their functioning, applications and limitations. PMID:26035841

  6. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine.

    Science.gov (United States)

    Srivastava, Amit K; Kadayakkara, Deepak K; Bar-Shir, Amnon; Gilad, Assaf A; McMahon, Michael T; Bulte, Jeff W M

    2015-04-01

    The field of molecular and cellular imaging allows molecules and cells to be visualized in vivo non-invasively. It has uses not only as a research tool but in clinical settings as well, for example in monitoring cell-based regenerative therapies, in which cells are transplanted to replace degenerating or damaged tissues, or to restore a physiological function. The success of such cell-based therapies depends on several critical issues, including the route and accuracy of cell transplantation, the fate of cells after transplantation, and the interaction of engrafted cells with the host microenvironment. To assess these issues, it is necessary to monitor transplanted cells non-invasively in real-time. Magnetic resonance imaging (MRI) is a tool uniquely suited to this task, given its ability to image deep inside tissue with high temporal resolution and sensitivity. Extraordinary efforts have recently been made to improve cellular MRI as applied to regenerative medicine, by developing more advanced contrast agents for use as probes and sensors. These advances enable the non-invasive monitoring of cell fate and, more recently, that of the different cellular functions of living cells, such as their enzymatic activity and gene expression, as well as their time point of cell death. We present here a review of recent advancements in the development of these probes and sensors, and of their functioning, applications and limitations. © 2015. Published by The Company of Biologists Ltd.

  7. Bioelectrochemical signal monitoring of in-vitro cultured cells by means of an automated microsystem based on solid state sensor-array.

    Science.gov (United States)

    Lorenzelli, Leandro; Margesin, Benno; Martinoia, Sergio; Tedesco, M T; Valle, Maurizio

    2003-05-01

    In the last decade, fundamental advances in whole cell based sensors and microsystems have established the extracellular acidification rate monitoring of cell cultures as an important indicator of the global cellular metabolism. Innovative approaches adopting advanced integrated sensor array-based microsystems represent an emerging technique with numerous biomedical applications. This paper reports a cell-based microsystem, for multisite monitoring of the physiological state of cell populations. The functional components of the microsystem are an ion sensitive field effect transistor (ISFET) array-based sensor chip and a CMOS integrated circuit for signal conditioning and sensor signal multiplexing. In order to validate the microsystem capabilities for in-vitro toxicity screening applications, preliminary experimental measurements with Cheratinocytes, and CHO cells are presented. Variations in the acidification rate, imputable to the inhibitory effect of the drug on the metabolic cell activity have been monitored and cell viability during long term measurements has been also demonstrated.

  8. Tools for water quality monitoring and mapping using paper-based sensors and cell phones.

    Science.gov (United States)

    Sicard, Clémence; Glen, Chad; Aubie, Brandon; Wallace, Dan; Jahanshahi-Anbuhi, Sana; Pennings, Kevin; Daigger, Glen T; Pelton, Robert; Brennan, John D; Filipe, Carlos D M

    2015-03-01

    In this paper we describe a combination of paper-based sensors and a novel smart-phone application for on-site quantification of colorimetric readouts as an ultra-low cost solution to monitoring water quality. The system utilizes a paper-based analytical device (μPAD) that produces a colorimetric signal that is dependent on the concentration of a specific target; a cell phone equipped with a camera for capturing images of two μPADs - one tested with a water sample and the other tested with clean water that is used as a control; and an on-site image processing app that uses a novel algorithm for quantifying color intensity and relating this to contaminant concentration. The cell phone app utilizes a pixel counting algorithm that performs with less bias and user subjectivity than the typically used lab-based software, ImageJ. The use of a test and control strip reduces bias from variations in ambient lighting, making it possible to acquire and process images on-site. The cell phone is also able to GPS tag the location of the test, and transmit results to a newly developed website, WaterMap.ca, that displays the quantitative results from the water samples on a map. We demonstrate our approach using a previously developed μPAD that detects the presence of organophosphate pesticides based on the inhibition of immobilized acetylcholinesterase by these contaminants. The objective of this paper is to highlight the importance and potential of developing and integrated monitoring system consisting of μPADs, cell-phones and a centralized web portal for low-cost monitoring environmental contaminants at a large-scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A rapid MZI-IDA sensor system for EGFR mutation testing in non-small cell lung cancer (NSCLC).

    Science.gov (United States)

    Liu, Qing; Lim, Swee Yin; Soo, Ross A; Park, Mi Kyoung; Shin, Yong

    2015-12-15

    Epidermal growth factor receptor (EGFR) is a non-small-cell lung cancer biomarker, based on which several near-patient-testing methods have been developed and applied to predict treatment response on individual patients. Existing methods for detection of EGFR mutation are costly, labor-intensive and time-consuming. In this paper, we report a novel EGFR mutation testing system, which is based on Mach-Zehnder Interferometer (MZI) sensor and isothermal solid-phase DNA amplification (IDA) technique, called MZI-IDA sensor system. The system can deliver results within 30 min and shows high sensitivity to detect trace amounts of genomic DNA (IDA sensor system is proved to be capable of fast and accurate detection of the L858R mutation of EGFR gene in clinical samples. This may greatly help the clinicians develop an appropriate treatment plan. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Bioelectrical impedimetric sensor for single cell analysis based on nanoroughened quartz substrate; suitable for cancer therapeutic purposes.

    Science.gov (United States)

    Gharooni, Milad; Abdolahad, Mohammad

    2017-08-05

    Single cells analysis has been interested in recent decade. Apart from scientific benefits to achieve new biological phenomena in cell study, many diagnostic and therapeutic protocols in non-communicable diseases were introduced by single cell analysis. Moreover, non-invasive methods to maintain the investigated cell for time dependent monitoring has been widely studied because of its importance in some crucial cases such as drug resistance in cancer. Bioelectrical monitoring is one of such methods Although the procedures reported based on electrical probing might not induce cell disruption, indirect connection between recording electrodes and cell membrane (mostly in microfluidic approaches) reduced the quality of response and limited the precision of the results. Here, a bioelectronic sensor for monitoring the effect of anticancer drugs on single breast cancer cells was fabricated based on nano-roughened gold electrodes on a quartz substrate applied direct contacts to cell membrane. Whole of the surface except a microcircle surrounded the sensing region was passivated by overbaked photoresist layer. Cells were dropped on the sensor without the assistance of any micropipette or microfluidic systems and just individual regions for attachment of one cell has been opened on the sensing region arrays. MCF-7 cancer cells were time tracked under the effect of Paclitaxel and Mebendazole anti-tubulin drugs in low and high doses. Inducing non regulated depolymerization and polymerization in tubulin structures of the single cancer cells were monitored by the electrical signals recorded before and after drug treatment. Electrical responses of single cells to their incubation with drugs completely reflected their vitality and biological states which were confirmed by confocal imaging. This is one of the first investigation on bioelectrical monitoring of single cell's resistance to anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Wearable Sensor System Powered by a Biofuel Cell for Detection of Lactate Levels in Sweat (Postprint)

    Science.gov (United States)

    2016-05-04

    lactate dehydrogenase; energy harvester (EH); micropotentiostat (MP) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF...Band-Aid like RFID sensor patches and temporary tattoo-based sensors have been developed for electrolyte and lactate sensing in sweat as part of on...2008. ISABEL’08. First International Symposium on. 2008. IEEE. 27. D. P. Rose et al., “Adhesive RFID sensor patch for monitoring of sweat electrolytes

  12. SirT1--a sensor for monitoring self-renewal and aging process in retinal stem cells.

    Science.gov (United States)

    Peng, Chi-Hsien; Chang, Yuh-Lih; Kao, Chung-Lan; Tseng, Ling-Ming; Wu, Chih-Chia; Chen, Yu-Chih; Tsai, Ching-Yao; Woung, Lin-Chung; Liu, Jorn-Hon; Chiou, Shih-Hwa; Chen, Shih-Jen

    2010-01-01

    Retinal stem cells bear potency of proliferation, self-renewal, and differentiation into many retinal cells. Utilizing appropriate sensors one can effectively detect the self-renewal and aging process abilities. Silencing information regulator (SirT1), a member of the sirtuin family, is a NAD-dependent histone deacetylase and an essential mediator for longevity in normal cells by calorie restriction. We firstly investigate the SirT1 mRNA expression in retinal stem cells from rats and 19 human eyes of different ages. Results revealed that SirT1 expression was significantly decreased in in vivo aged eyes, associated with poor self-renewal abilities. Additionally, SirT1 mRNA levels were dose-dependently increased in resveratrol- treated retinal stem cells. The expression of SirT1 on oxidative stress-induced damage was significantly decreased, negatively correlated with the level of intracellular reactive oxygen species production. Treatment with resveratrol could effectively further reduce oxidative stress induced by H(2)O(2) treatment in retinal stem cells. Importantly, the anti-oxidant effects of resveratrol in H(2)O(2)-treated retinal stem cells were significantly abolished by knockdown of SirT1 expression (sh-SirT1). SirT1 expression provides a feasible sensor in assessing self-renewal and aging process in retinal stem cells. Resveratrol can prevent reactive oxygen species-induced damages via increased retinal SirT1 expression.

  13. SirT1—A Sensor for Monitoring Self-Renewal and Aging Process in Retinal Stem Cells

    Directory of Open Access Journals (Sweden)

    Chi-Hsien Peng

    2010-06-01

    Full Text Available Retinal stem cells bear potency of proliferation, self-renewal, and differentiation into many retinal cells. Utilizing appropriate sensors one can effectively detect the self-renewal and aging process abilities. Silencing information regulator (SirT1, a member of the sirtuin family, is a NAD-dependent histone deacetylase and an essential mediator for longevity in normal cells by calorie restriction. We firstly investigate the SirT1 mRNA expression in retinal stem cells from rats and 19 human eyes of different ages. Results revealed that SirT1 expression was significantly decreased in in vivo aged eyes, associated with poor self-renewal abilities. Additionally, SirT1 mRNA levels were dose-dependently increased in resveratrol- treated retinal stem cells. The expression of SirT1 on oxidative stress-induced damage was significantly decreased, negatively correlated with the level of intracellular reactive oxygen species production. Treatment with resveratrol could effectively further reduce oxidative stress induced by H2O2 treatment in retinal stem cells. Importantly, the anti-oxidant effects of resveratrol in H2O2-treated retinal stem cells were significantly abolished by knockdown of SirT1 expression (sh-SirT1. SirT1 expression provides a feasible sensor in assessing self-renewal and aging process in retinal stem cells. Resveratrol can prevent reactive oxygen species-induced damages via increased retinal SirT1 expression.

  14. Analytical study of planar waveguide sensor with a metamaterial guiding layer

    Science.gov (United States)

    Upadhyay, Anurag; Prajapati, Yogendra Kumar; Tripathi, Rajeev

    2017-12-01

    Sensitivities of three-layer and four-layer planar waveguide sensors having metamaterial as guiding layer are analyzed for p-polarization of incident light and compared with existing results. Proposed sensors show improved cover layer sensitivity for each case of the cover layer refractive index. Also, proposed sensors demonstrate improved adlayer sensitivity for different values of adlayer thickness and adlayer refractive indices. It is observed that metamaterial has increased the evanescent field due to the unconventional nature of it, by which values of cover layer sensitivity as well as adlayer sensitivity are enhanced.

  15. Nanoparticle-based and bioengineered probes and sensors to detect physiological and pathological biomarkers in neural cells

    Directory of Open Access Journals (Sweden)

    Dusica eMaysinger

    2015-12-01

    Full Text Available Nanotechnology, a rapidly evolving field, provides simple and practical tools to investigate the nervous system in health and disease. Among these tools are nanoparticle-based probes and sensors that detect biochemical and physiological properties of neurons and glia, and generate signals proportionate to physical, chemical, and/or electrical changes in these cells. In this context, quantum dots (QDs, carbon-based structures (C-dots, graphene and nanodiamonds and gold nanoparticles are the most commonly used nanostructures. They can detect and measure enzymatic activities of proteases (metalloproteinases, caspases, ions, metabolites, and other biomolecules under physiological or pathological conditions in neural cells. Here, we provide some examples of nanoparticle-based and genetically engineered probes and sensors that are used to reveal changes in protease activities and calcium ion concentrations. Although significant progress in developing these tools has been made for probing neural cells, several challenges remain. We review many common hurdles in sensor development, while highlighting certain advances. In the end, we propose some future directions and ideas for developing practical tools for neural cell investigations, based on the maxim Measure what is measurable, and make measurable what is not so (Galileo Galilei.

  16. Nanoparticle-Based and Bioengineered Probes and Sensors to Detect Physiological and Pathological Biomarkers in Neural Cells.

    Science.gov (United States)

    Maysinger, Dusica; Ji, Jeff; Hutter, Eliza; Cooper, Elis

    2015-01-01

    Nanotechnology, a rapidly evolving field, provides simple and practical tools to investigate the nervous system in health and disease. Among these tools are nanoparticle-based probes and sensors that detect biochemical and physiological properties of neurons and glia, and generate signals proportionate to physical, chemical, and/or electrical changes in these cells. In this context, quantum dots (QDs), carbon-based structures (C-dots, grapheme, and nanodiamonds) and gold nanoparticles are the most commonly used nanostructures. They can detect and measure enzymatic activities of proteases (metalloproteinases, caspases), ions, metabolites, and other biomolecules under physiological or pathological conditions in neural cells. Here, we provide some examples of nanoparticle-based and genetically engineered probes and sensors that are used to reveal changes in protease activities and calcium ion concentrations. Although significant progress in developing these tools has been made for probing neural cells, several challenges remain. We review many common hurdles in sensor development, while highlighting certain advances. In the end, we propose some future directions and ideas for developing practical tools for neural cell investigations, based on the maxim "Measure what is measurable, and make measurable what is not so" (Galileo Galilei).

  17. Primary cilia are sensors of electrical field stimulation to induce osteogenesis of human adipose-derived stem cells.

    Science.gov (United States)

    Cai, Shaobo; Bodle, Josephine C; Mathieu, Pattie S; Amos, Alison; Hamouda, Mehdi; Bernacki, Susan; McCarty, Greg; Loboa, Elizabeth G

    2017-01-01

    In this study, we report for the first time that the primary cilium acts as a crucial sensor for electrical field stimulation (EFS)-enhanced osteogenic response in osteoprogenitor cells. In addition, primary cilia seem to functionally modulate effects of EFS-induced cellular calcium oscillations. Primary cilia are organelles that have recently been implicated to play a crucial sensor role for many mechanical and chemical stimuli on stem cells. Here, we investigate the role of primary cilia in EFS-enhanced osteogenic response of human adipose-derived stem cells (hASCs) by knocking down 2 primary cilia structural proteins, polycystin-1 and intraflagellar protein-88. Our results indicate that structurally integrated primary cilia are required for detection of electrical field signals in hASCs. Furthermore, by measuring changes of cytoplasmic calcium concentration in hASCs during EFS, our findings also suggest that primary cilia may potentially function as a crucial calcium-signaling nexus in hASCs during EFS.-Cai, S., Bodle, J. C., Mathieu, P. S., Amos, A., Hamouda, M., Bernacki, S., McCarty, G., Loboa, E. G. Primary cilia are sensors of electrical field stimulation to induce osteogenesis of human adipose-derived stem cells. © FASEB.

  18. Functionalization of embedded thiol-ene waveguides for evanescent wave induced fluorescence detection in a microfluidic device

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Jensen, Thomas Glasdam; Lafleur, Josiane P.

    2013-01-01

    We demonstrate the use of functional surface groups inherently present on off-stoichiometric thiol−ene polymers, for site-specific immobilization of biomolecules and detection by evanescent wave-induced fluorescence. An optofluidic chip featuring an embedded thiol−ene waveguide was selectively...... functionalized with biotin using photografting. The biotin was used for immobilization of fluorescently labelled streptavidin, and experiments revealed a linear correlation between streptavidin concentration and fluorescent intensity. To further demonstrate the attractiveness of using thiol−ene for optofluidic...... devices, the optical properties of thiol−ene was evaluated by determining the transparency and refractive index of the cured polymer....

  19. Functionalization of embedded thiol-ene waveguides for evanescent wave-induced fluorescence detection in a microfluidic device

    DEFF Research Database (Denmark)

    Feidenhans, Nikolaj A.; Jensen, Thomas Glasdam; Lafleur, Josiane P.

    2013-01-01

    We demonstrate the use of functional surface groups inherently present on off-stoichiometric thiol-ene polymers, for site-specific immobilization of biomolecules and detection by evanescent wave-induced fluorescence. An optofluidic chip featuring an embedded thiol-ene waveguide was selectively...... functionalized with biotin using photografting. The biotin was used for immobilization of fluorescently labelled streptavidin, and experiments revealed a linear correlation between streptavidin concentration and fluorescent intensity. To further demonstrate the attractiveness of using thiol-ene for optofluidic...... devices, the optical properties of thiol-ene was evaluated by determining the transparency and refractive index of the cured polymer....

  20. Evanescent field interaction of tapered fiber with graphene oxide in generation of wide-bandwidth mode-locked pulses

    Science.gov (United States)

    Ahmad, H.; Faruki, M. J.; Razak, M. Z. A.; Tiu, Z. C.; Ismail, M. F.

    2017-02-01

    Pulses with picosecond pulse widths are highly desired for high precision laser applications. A mode-locked pulse laser utilizing evanescent field interaction of a tapered fiber with graphene oxide (GO) is demonstrated. A homemade fabrication stage was used to fabricate the tapered fiber using systematic flame brushing and a GO solution was used to coat the microfiber using optical deposition technique. Pulse trains with a pulse width of 3.46 ps, a 3 dB optical bandwidth of 11.82 nm and a repetition rate of 920 kHz were obtained. The system has substantial potential for many crucial medical, communication, bio processing, military, and industrial applications.

  1. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    Science.gov (United States)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was

  2. Effect of sensor systems for cow management on milk production, somatic cell count, and reproduction

    NARCIS (Netherlands)

    Steeneveld, W.; Vernooij, J.C.M.; Hogeveen, H.

    2015-01-01

    To improve management on dairy herds, sensor systems have been developed that can measure physiological, behavioral, and production indicators on individual cows. It is not known whether using sensor systems also improves measures of health and production in dairy herds. The objective of this study

  3. Effect of sensor systems for cow management on milk production, somatic cell count and reproduction

    NARCIS (Netherlands)

    Steeneveld, W.; Vernooij, J.C.M.; Hogeveen, H.

    2015-01-01

    To improve management on dairy herds, sensor systems have been developed that can measure physiological, behavioral, and production indicators on individual cows. It is not known whether using sensor systems also improves measures of health and production in dairy herds. The objective of this study

  4. Microbial nar-GFP cell sensors reveal oxygen limitations in highly agitated and aerated laboratory-scale fermentors

    Directory of Open Access Journals (Sweden)

    Rao Govind

    2009-01-01

    Full Text Available Abstract Background Small-scale microbial fermentations are often assumed to be homogeneous, and oxygen limitation due to inadequate micromixing is often overlooked as a potential problem. To assess the relative degree of micromixing, and hence propensity for oxygen limitation, a new cellular oxygen sensor has been developed. The oxygen responsive E. coli nitrate reductase (nar promoter was used to construct an oxygen reporter plasmid (pNar-GFPuv which allows cell-based reporting of oxygen limitation. Because there are greater than 109 cells in a fermentor, one can outfit a vessel with more than 109 sensors. Our concept was tested in high density, lab-scale (5 L, fed-batch, E. coli fermentations operated with varied mixing efficiency – one verses four impellers. Results In both cases, bioreactors were maintained identically at greater than 80% dissolved oxygen (DO during batch phase and at approximately 20% DO during fed-batch phase. Trends for glucose consumption, biomass and DO showed nearly identical behavior. However, fermentations with only one impeller showed significantly higher GFPuv expression than those with four, indicating a higher degree of fluid segregation sufficient for cellular oxygen deprivation. As the characteristic time for GFPuv expression (approx 90 min. is much larger than that for mixing (approx 10 s, increased specific fluorescence represents an averaged effect of oxygen limitation over time and by natural extension, over space. Conclusion Thus, the pNar-GFPuv plasmid enabled bioreactor-wide oxygen sensing in that bacterial cells served as individual recirculating sensors integrating their responses over space and time. We envision cell-based oxygen sensors may find utility in a wide variety of bioprocessing applications.

  5. Real time monitoring of the effects of Heparan Sulfate Proteoglycan (HSPG) and surface charge on the cell adhesion process using thickness shear mode (TSM) sensor.

    Science.gov (United States)

    Ergezen, E; Hong, S; Barbee, K A; Lec, R

    2007-04-15

    The effects of Heparan Sulfate Proteoglycan (HSPG) and surface charge on the cellular interactions of the cell membrane with different substrates to determine the kinetics of cell adhesion was studied using thickness shear mode (TSM) sensor. The TSM sensor was operated at its first, third, fifth and seventh harmonics. Since the penetration depth of the shear wave decreases with increases in frequency, the multi-resonance operation of the TSM sensor was used to monitor the changes in the kinetics of the cell-substrate interaction at different distances from the sensor surface. During the sedimentation and the initial attachment of the cells on the sensor surface, the changes in the sensor resonant frequency and the magnitude response were monitored. First, HSPGs were partially digested with the enzyme Heparinase III to evaluate the effect of HSPG on the cell adhesion process. The results indicated that HSPG did not have any effect on the kinetics of the initial attachment, but it did reduce the strength of steady-state cell adhesion. Next, we investigated the effect of the electrostatic interactions of the cell membrane with the substrate on the cell adhesion. In this case, the sensor surface was coated with positively charged Poly-D-Lysine (PDL). It was observed that electrostatic interaction of the negatively charged cell membrane with the PDL surface promoted the initial cell adhesion but did not support long-term cell adhesion. The multi-resonant TSM technique was shown to be a very promising method for monitoring specific interfacial effects involving in cell adhesion process in real-time.

  6. Inhibition of charge recombination for enhanced dye-sensitized solar cells and self-powered UV sensors by surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Liang, E-mail: chuliang@njupt.edu.cn [Advanced Energy Technology Center, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Wuhan National Laboratory for Optoelectronics (WNLO)-School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074 (China); Qin, Zhengfei; Liu, Wei [School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Ma, Xin’guo, E-mail: maxg2013@sohu.com [Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068 (China)

    2016-12-15

    Graphical abstract: Inhibition of charge recombination was utilized to prolong electrode lifetime in dye-sensitized solar cells (DSSCs) and self-powered UV sensors based on TiO{sub 2}-modified SnO{sub 2} photoelectrodes. The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the electron lifetime was significantly prolonged in DSSCs after TiO{sub 2} modification. And in self-powered UV sensors, the sensitivity and response time were enhanced. - Highlights: • The surface modification to inhibit charge recombination was utilized in photovoltaic devices. • Inhibition of charge recombination can prolong electrode lifetime in photovoltaic devices. • Enhanced DSSCs and self-powered UV sensors based on SnO{sub 2} photoelectrodes were obtained by TiO{sub 2} modification. - Abstract: The surface modification to inhibit charge recombination was utilized in dye-sensitized solar cells (DSSCs) and self-powered ultraviolet (UV) sensors based on SnO{sub 2} hierarchical microspheres by TiO{sub 2} modification. For DSSCs with SnO{sub 2} photoelectrodes modified by TiO{sub 2}, the power conversion efficiency (PCE) was improved from 1.40% to 4.15% under standard AM 1.5G illumination (100 mW/cm{sup 2}). The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the charge recombination was effectively inhibited, resulting in long electron lifetime. For UV sensors with SnO{sub 2} photoelectrodes modified by TiO{sub 2} layer, the self-powered property was more obvious, and the sensitivity and response time were enhanced from 91 to 6229 and 0.15 s to 0.055 s, respectively. The surface modification can engineer the interface energy to inhibit charge recombination, which is a desirable approach to improve the performance of photoelectric nanodevice.

  7. Development of Sensor Cells Using NF-κB Pathway Activation for Detection of Nanoparticle-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Akiyoshi Taniguchi

    2011-07-01

    Full Text Available The increasing use of nanomaterials in consumer and industrial products has aroused concerns regarding their fate in biological systems. An effective detection method to evaluate the safety of bio-nanomaterials is therefore very important. Titanium dioxide (TiO2, which is manufactured worldwide in large quantities for use in a wide range of applications, including pigment and cosmetic manufacturing, was once thought to be an inert material, but recently, more and more studies have indicated that TiO2 nanoparticles (TiO2 NPs can cause inflammation and be harmful to humans by causing lung and brain problems. In order to evaluate the safety of TiO2 NPs for the environment and for humans, sensor cells for inflammation detection were developed, and these were transfected with the Toll-like receptor 4 (TLR4 gene and Nuclear Factor Kappa B (NF-κB reporter gene. NF-κB as a primary cause of inflammation has received a lot of attention, and it can be activated by a wide variety of external stimuli. Our data show that TiO2 NPs-induced inflammation can be detected by our sensor cells through NF-κB pathway activation. This may lead to our sensor cells being used for bio-nanomaterial safety evaluation.

  8. Development of sensor cells using NF-κB pathway activation for detection of nanoparticle-induced inflammation.

    Science.gov (United States)

    Chen, Peng; Migita, Satoshi; Kanehira, Koki; Sonezaki, Shuji; Taniguchi, Akiyoshi

    2011-01-01

    The increasing use of nanomaterials in consumer and industrial products has aroused concerns regarding their fate in biological systems. An effective detection method to evaluate the safety of bio-nanomaterials is therefore very important. Titanium dioxide (TiO(2)), which is manufactured worldwide in large quantities for use in a wide range of applications, including pigment and cosmetic manufacturing, was once thought to be an inert material, but recently, more and more studies have indicated that TiO(2) nanoparticles (TiO(2) NPs) can cause inflammation and be harmful to humans by causing lung and brain problems. In order to evaluate the safety of TiO(2) NPs for the environment and for humans, sensor cells for inflammation detection were developed, and these were transfected with the Toll-like receptor 4 (TLR4) gene and Nuclear Factor Kappa B (NF-κB) reporter gene. NF-κB as a primary cause of inflammation has received a lot of attention, and it can be activated by a wide variety of external stimuli. Our data show that TiO(2) NPs-induced inflammation can be detected by our sensor cells through NF-κB pathway activation. This may lead to our sensor cells being used for bio-nanomaterial safety evaluation.

  9. Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor

    Directory of Open Access Journals (Sweden)

    Jordan S. Leyton-Mange

    2014-02-01

    Full Text Available In addition to their promise in regenerative medicine, pluripotent stem cells have proved to be faithful models of many human diseases. In particular, patient-specific stem cell-derived cardiomyocytes recapitulate key features of several life-threatening cardiac arrhythmia syndromes. For both modeling and regenerative approaches, phenotyping of stem cell-derived tissues is critical. Cellular phenotyping has largely relied upon expression of lineage markers rather than physiologic attributes. This is especially true for cardiomyocytes, in part because electrophysiological recordings are labor intensive. Likewise, most optical voltage indicators suffer from phototoxicity, which damages cells and degrades signal quality. Here we present the use of a genetically encoded fluorescent voltage indicator, ArcLight, which we demonstrate can faithfully report transmembrane potentials in human stem cell-derived cardiomyocytes. We demonstrate the application of this fluorescent sensor in high-throughput, serial phenotyping of differentiating cardiomyocyte populations and in screening for drug-induced cardiotoxicity.

  10. Enhancing Signal Output and Avoiding BOD/Toxicity Combined Shock Interference by Operating a Microbial Fuel Cell Sensor with an Optimized Background Concentration of Organic Matter

    National Research Council Canada - National Science Library

    Jiang, Yong; Liang, Peng; Liu, Panpan; Bian, Yanhong; Miao, Bo; Sun, Xueliang; Zhang, Helan; Huang, Xia

    2016-01-01

    .... Among the available analysis methods, the microbial fuel cell (MFC) sensor has recently been used as a sustainable and on-line electrochemical microbial biosensor for biochemical oxygen demand (BOD...

  11. Survival probability of an immobile target in a sea of evanescent diffusive or subdiffusive traps: a fractional equation approach.

    Science.gov (United States)

    Abad, E; Yuste, S B; Lindenberg, Katja

    2012-12-01

    We calculate the survival probability of an immobile target surrounded by a sea of uncorrelated diffusive or subdiffusive evanescent traps (i.e., traps that disappear in the course of their motion). Our calculation is based on a fractional reaction-subdiffusion equation derived from a continuous time random walk model of the system. Contrary to an earlier method valid only in one dimension (d=1), the equation is applicable in any Euclidean dimension d and elucidates the interplay between anomalous subdiffusive transport, the irreversible evanescence reaction, and the dimension in which both the traps and the target are embedded. Explicit results for the survival probability of the target are obtained for a density ρ(t) of traps which decays (i) exponentially and (ii) as a power law. In the former case, the target has a finite asymptotic survival probability in all integer dimensions, whereas in the latter case there are several regimes where the values of the decay exponent for ρ(t) and the anomalous diffusion exponent of the traps determine whether or not the target has a chance of eternal survival in one, two, and three dimensions.

  12. A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications.

    Science.gov (United States)

    Islam, Mohammad Tariqul; Islam, Md Moinul; Samsuzzaman, Md; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah

    2015-05-20

    This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR < 2) covering the frequency bands from 3.1 GHz to more than 15 GHz with a maximum gain of 6.57 dBi. High fidelity factor and gain, smooth surface-current distribution and nearly omni-directional radiation patterns with low cross-polarization confirm that the proposed negative index UWB antenna is a promising entrant in the field of microwave imaging sensors.

  13. A Microring Resonator Based Negative Permeability Metamaterial Sensor

    Directory of Open Access Journals (Sweden)

    Yao-Zhong Lan

    2011-08-01

    Full Text Available Metamaterials are artificial multifunctional materials that acquire their material properties from their structure, rather than inheriting them directly from the materials they are composed of, and they may provide novel tools to significantly enhance the sensitivity and resolution of sensors. In this paper, we derive the dispersion relation of a cylindrical dielectric waveguide loaded on a negative permeability metamaterial (NPM layer, and compute the resonant frequencies and electric field distribution of the corresponding Whispering-Gallery-Modes (WGMs. The theoretical resonant frequency and electric field distribution results are in good agreement with the full wave simulation results. We show that the NPM sensor based on a microring resonator possesses higher sensitivity than the traditional microring sensor since with the evanescent wave amplification and the increase of NPM layer thickness, the sensitivity will be greatly increased. This may open a door for designing sensors with specified sensitivity.

  14. A sensor kinase recognizing the cell-cell signal BDSF (cis-2-dodecenoic acid) regulates virulence in Burkholderia cenocepacia

    DEFF Research Database (Denmark)

    McCarthy, Y.; Yang, Liang; Twomey, K.B.

    2010-01-01

    P>Burkholderia cenocepacia is an opportunistic human pathogen that uses cis-2-dodecenoic acid (BDSF) as a quorum-sensing signal to control expression of virulence factors. BDSF is a signal molecule of the diffusible signal factor (DSF) family that was first described in the plant pathogen...... with an input domain unrelated to that of RpfC, the DSF sensor found in xanthomonads. Transcriptome profiling established the scope of the BDSF regulon and demonstrated that the sensor controls expression of a subset of these genes. A chimeric sensor kinase in which the input domain of BCAM0227 replaced...

  15. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things.

    Science.gov (United States)

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-09-18

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified.

  16. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things

    Directory of Open Access Journals (Sweden)

    Lusheng Wang

    2015-09-01

    Full Text Available With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI. In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG, forming a congestion game with ICI (CGI and a congestion game with capacity (CGC. For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE. Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell is profoundly revealed, and the collapse points are identified.

  17. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things

    Science.gov (United States)

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-01-01

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified. PMID:26393617

  18. Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps.

    Science.gov (United States)

    Scherzer, Sönke; Böhm, Jennifer; Krol, Elzbieta; Shabala, Lana; Kreuzer, Ines; Larisch, Christina; Bemm, Felix; Al-Rasheid, Khaled A S; Shabala, Sergey; Rennenberg, Heinz; Neher, Erwin; Hedrich, Rainer

    2015-06-09

    The Darwin plant Dionaea muscipula is able to grow on mineral-poor soil, because it gains essential nutrients from captured animal prey. Given that no nutrients remain in the trap when it opens after the consumption of an animal meal, we here asked the question of how Dionaea sequesters prey-derived potassium. We show that prey capture triggers expression of a K(+) uptake system in the Venus flytrap. In search of K(+) transporters endowed with adequate properties for this role, we screened a Dionaea expressed sequence tag (EST) database and identified DmKT1 and DmHAK5 as candidates. On insect and touch hormone stimulation, the number of transcripts of these transporters increased in flytraps. After cRNA injection of K(+)-transporter genes into Xenopus oocytes, however, both putative K(+) transporters remained silent. Assuming that calcium sensor kinases are regulating Arabidopsis K(+) transporter 1 (AKT1), we coexpressed the putative K(+) transporters with a large set of kinases and identified the CBL9-CIPK23 pair as the major activating complex for both transporters in Dionaea K(+) uptake. DmKT1 was found to be a K(+)-selective channel of voltage-dependent high capacity and low affinity, whereas DmHAK5 was identified as the first, to our knowledge, proton-driven, high-affinity potassium transporter with weak selectivity. When the Venus flytrap is processing its prey, the gland cell membrane potential is maintained around -120 mV, and the apoplast is acidified to pH 3. These conditions in the green stomach formed by the closed flytrap allow DmKT1 and DmHAK5 to acquire prey-derived K(+), reducing its concentration from millimolar levels down to trace levels.

  19. Ammonia and ammonium hydroxide sensors for ammonia/water absorption machines: Literature review and data compilation

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, N.C. Jr.; McDonald, C.E.; Cuta, J.M.; Cuta, F.M.; Olsen, K.B.

    1995-05-01

    This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose of this work was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. PNL researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation, sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH{sub 4}{sup +}). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.

  20. A HaloTag-based multi-color fluorogenic sensor visualizes and quantifies proteome stress in live cells using solvatochromic and molecular rotor-based fluorophores.

    Science.gov (United States)

    Liu, Yu; Miao, Kun; Li, Yinghao; Fares, Matthew; Chen, Shuyuan; Zhang, Xin

    2018-02-23

    Protein homeostasis, or proteostasis, is essential for cellular fitness and viability. Many environmental factors compromise proteostasis, induce global proteome stress, and cause diseases. Proteome stress sensor is a powerful tool to dissect the mechanism of cellular stress and find therapeutics that ameliorate these diseases. In this work, we present a multi-color HaloTag-based sensor (named AgHalo) to visualize and quantify proteome stresses in live cells. The current AgHalo sensor is equipped with three fluorogenic probes that turn on fluorescence when the sensor forms either soluble oligomers or insoluble aggregates upon exposure to stress conditions, both in vitro and in cellulo. Further, AgHalo probes can be combined with commercially available always-fluorescent HaloTag ligands to enable two-color imaging, allowing for direct visualization of the AgHalo sensor both before and after subjecting cells to stress conditions. Finally, pulse-chase experiments can be carried out to discern changes in cellular proteome in live cells by first forming the AgHalo conjugate and then either applying or removing stress at any desired time point. In summary, the AgHalo sensor can be used to visualize and quantify proteome stress in live cells, a task that is difficult to accomplish using previous always-fluorescent methods. This sensor should be suited to evaluate cellular proteostasis under various exogenous stresses, including chemical toxins, drugs, and environmental factors.

  1. The glucose metabolite methylglyoxal inhibits expression of the glucose transporter genes by inactivating the cell surface glucose sensors Rgt2 and Snf3 in yeast.

    Science.gov (United States)

    Roy, Adhiraj; Hashmi, Salman; Li, Zerui; Dement, Angela D; Cho, Kyu Hong; Kim, Jeong-Ho

    2016-03-01

    Methylglyoxal (MG) is a cytotoxic by-product of glycolysis. MG has inhibitory effect on the growth of cells ranging from microorganisms to higher eukaryotes, but its molecular targets are largely unknown. The yeast cell-surface glucose sensors Rgt2 and Snf3 function as glucose receptors that sense extracellular glucose and generate a signal for induction of expression of genes encoding glucose transporters (HXTs). Here we provide evidence that these glucose sensors are primary targets of MG in yeast. MG inhibits the growth of glucose-fermenting yeast cells by inducing endocytosis and degradation of the glucose sensors. However, the glucose sensors with mutations at their putative ubiquitin-acceptor lysine residues are resistant to MG-induced degradation. These results suggest that the glucose sensors are inactivated through ubiquitin-mediated endocytosis and degraded in the presence of MG. In addition, the inhibitory effect of MG on the glucose sensors is greatly enhanced in cells lacking Glo1, a key component of the MG detoxification system. Thus the stability of these glucose sensors seems to be critically regulated by intracellular MG levels. Taken together, these findings suggest that MG attenuates glycolysis by promoting degradation of the cell-surface glucose sensors and thus identify MG as a potential glycolytic inhibitor. © 2016 Roy, Hashmi, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Direct laser writing for nanoporous liquid core laser sensors

    DEFF Research Database (Denmark)

    Grossmann, Tobias; Christiansen, Mads Brøkner; Peterson, Jeffrey

    2012-01-01

    We report the fabrication of nanoporous liquid core lasers via direct laser writing based on two-photon absorption in combination with thiolene-chemistry. As gain medium Rhodamine 6G was embedded in the nanoporous polybutadiene matrix. The lasing devices with thresholds of 19 µJ/mm2 were measured...... to have bulk refractive index sensitivities of 169 nm/RIU at a laser wavelength of 600 nm, demonstrating strongly increased overlap of the modes with the analyte in comparison to solid state evanescent wave sensors....

  3. Evaluation of therapeutic effects of natural killer (NK) cell-based immunotherapy in mice using in vivo apoptosis bioimaging with a caspase-3 sensor.

    Science.gov (United States)

    Lee, Ho Won; Singh, Thoudam Debraj; Lee, Sang-Woo; Ha, Jeoung-Hee; Rehemtulla, Alnawaz; Ahn, Byeong-Cheol; Jeon, Young Hyun; Lee, Jaetae

    2014-07-01

    Natural killer (NK) cell-based immunotherapy is a promising strategy for cancer treatment, and caspase-3 is an important effector molecule in NK cell-mediated apoptosis in cancers. Here, we evaluated the antitumor effects of NK cell-based immunotherapy by serial noninvasive imaging of apoptosis using a caspase-3 sensor in mice with human glioma xenografts. Human glioma cells expressing both a caspase-3 sensor as a surrogate marker for caspase-3 activation and Renilla luciferase (Rluc) as a surrogate marker for cell viability were established and referred to as D54-CR cells. Human NK92 cells were used as effector cells. Treatment with NK92 cells resulted in a time- and effector number-dependent increase in bioluminescence imaging (BLI) activity of the caspase-3 sensor in D54-CR cells in vitro. Caspase-3 activation by NK92 treatment was blocked by Z-VAD treatment in D54-CR cells. Transfusion of NK92 cells induced an increase of the BLI signal by caspase-3 activation in a dose- and time-dependent manner in D54-CR tumor-bearing mice but not in PBS-treated mice. Accordingly, sequential BLI with the Rluc reporter gene revealed marked retardation of tumor growth in the NK92-treatment group but not in the PBS-treatment group. These data suggest that noninvasive imaging of apoptosis with a caspase-3 sensor can be used as an effective tool for evaluation of therapeutic efficacy as well as for optimization of NK cell-based immunotherapy.-Lee, H. W., Singh, T. D., Lee, S.-W., Ha, J.-H., Rehemtulla, A., Ahn, B.-C., Jeon, Y.-H., Lee, J. Evaluation of therapeutic effects of natural killer (NK) cell-based immunotherapy in mice using in vivo apoptosis bioimaging with a caspase-3 sensor. © FASEB.

  4. Sensitivity and directionality of lipid bilayer mechanotransduction studied using a revised, highly durable membrane-based hair cell sensor

    Science.gov (United States)

    Tamaddoni, Nima; Freeman, Eric C.; Sarles, Stephen A.

    2015-06-01

    A bioinspired, membrane-based hair cell sensor consists of a planar lipid bilayer formed between two lipid-coated water droplets that connect to an artificial hair. This assembly enables motion of the hair caused by mechanical stimuli to vibrate the bilayer and produce a capacitive current. In this work, the mechanoelectrical transduction mechanism and sensing performance is experimentally characterized for a more-durable, revised hair cell embodiment that includes a cantilevered hair rooted firmly in the surrounding solid substrate. Specifically, this study demonstrates that the revised membrane-based hair cell sensor produces higher time rates of change in capacitance (0.8-6.0 nF s-1) in response to airflow across the hair compared to the original sensor (45-60 pF s-1) that did not feature a cantilevered hair. The 10-fold to 100-fold increase in the time rate change of capacitance corresponds to greater membrane bending and, thus, higher sensing currents. Membranes in the revised sensor exhibit changes in area due to bending on the order of 0.2-2.0%, versus 0.02% for the original sensor. Experiments also reveal that the bilayer displays highest sensitivity to mechanical perturbations normal to the plane of the bilayer, a membrane can transduce hair motion at frequencies below the hair’s characteristic frequency, and bilayers formed between polymerized hydrogel volumes exhibit a higher sensing currents than those formed between liquid aqueous volumes. Finally, measurements of sensitivity (5-35 pA m-1 s-1) and minimum (4.0-0.6 m s-1) and maximum (28-13 m s-1) sensing thresholds to airflow are performed for the first time, and we observe maximum electrical power (˜65 pW) in the membrane occurs for combinations of slower airflow and higher voltage. These results highlight that along with the dimensions of the hair and the compositions of the aqueous volumes, sensing performance can be tuned with applied voltage.

  5. Monitoring Intracellular pH Change with a Genetically Encoded and Ratiometric Luminescence Sensor in Yeast and Mammalian Cells.

    Science.gov (United States)

    Zhang, Yunfei; Robertson, J Brian; Xie, Qiguang; Johnson, Carl Hirschie

    2016-01-01

    "pHlash" is a novel bioluminescence-based pH sensor for measuring intracellular pH, which is developed based on Bioluminescence Resonance Energy Transfer (BRET). pHlash is a fusion protein between a mutant of Renilla luciferase (RLuc) and a Venus fluorophore. The spectral emission of purified pHlash protein exhibits pH dependence in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification. In this chapter, we describe an in vitro characterization of pHlash, and also in vivo assays including in yeast cells and in HeLa cells using pHlash as a cytoplasmic pH indicator.

  6. Portabilidade, evanescências e rubricas: discussões em torno da literatura digital na sala de aula

    Directory of Open Access Journals (Sweden)

    Corrêa, Alamir Aquino

    2016-07-01

    Full Text Available This paper addresses three issues affecting the attempt to teach digital literary texts in the classroom by observing their implications for pedagogical practice in the preparation of future teachers. The integrity of the digital object and its reception, which I call portability, is discussed through the modes of engagement with the text and its unlikely or difficult reproducibility as an aesthetic experience in the classroom. In the case of evanescence, both the access to the aesthetic experience and the study as criticism become problematic due to obstacles like geo-referencing, copyright issues, object transience, and obsolescence of software and hardware. Finally, the guidelines for the reading experience not only organize but also impose a priori limits to the perception of the literary object.

  7. An Electromagnetic Sensor with a Metamaterial Lens for Nondestructive Evaluation of Composite Materials

    Directory of Open Access Journals (Sweden)

    Adriana Savin

    2015-07-01

    Full Text Available This paper proposes the study and implementation of a sensor with a metamaterial (MM lens in electromagnetic nondestructive evaluation (eNDE. Thus, the use of a new type of MM, named Conical Swiss Rolls (CSR has been proposed. These structures can serve as electromagnetic flux concentrators in the radiofrequency range. As a direct application, plates of composite materials with carbon fibers woven as reinforcement and polyphenylene sulphide as matrix with delaminations due to low energy impacts were examined. The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz polarized electromagnetic field. The MM lens allows the transmission and intensification of evanescent waves. The characteristics of carbon fibers woven structure became visible and delaminations are clearly emphasized. The flaws can be localized with spatial resolution better than λ/2000.

  8. Model-based cell number quantification using online single-oxygen sensor data for tissue engineering perfusion bioreactors.

    Science.gov (United States)

    Lambrechts, T; Papantoniou, I; Sonnaert, M; Schrooten, J; Aerts, J-M

    2014-10-01

    Online and non-invasive quantification of critical tissue engineering (TE) construct quality attributes in TE bioreactors is indispensable for the cost-effective up-scaling and automation of cellular construct manufacturing. However, appropriate monitoring techniques for cellular constructs in bioreactors are still lacking. This study presents a generic and robust approach to determine cell number and metabolic activity of cell-based TE constructs in perfusion bioreactors based on single oxygen sensor data in dynamic perfusion conditions. A data-based mechanistic modeling technique was used that is able to correlate the number of cells within the scaffold (R(2)  = 0.80) and the metabolic activity of the cells (R(2)  = 0.82) to the dynamics of the oxygen response to step changes in the perfusion rate. This generic non-destructive measurement technique is effective for a large range of cells, from as low as 1.0 × 10(5) cells to potentially multiple millions of cells, and can open-up new possibilities for effective bioprocess monitoring. © 2014 Wiley Periodicals, Inc.

  9. Metabolic Study of Cancer Cells Using a pH Sensitive Hydrogel Nanofiber Light Addressable Potentiometric Sensor.

    Science.gov (United States)

    Shaibani, Parmiss Mojir; Etayash, Hashem; Naicker, Selvaraj; Kaur, Kamaljit; Thundat, Thomas

    2017-01-27

    We report a simple, fast, and cost-effective approach that measures cancer cell metabolism and their response to anticancer drugs in real time. Using a Light Addressable Potentiometric Sensor integrated with pH sensitive hydrogel nanofibers (NF-LAPS), we detect localized changes in pH of the media as cancer cells consume glucose and release lactate. NF-LAPS shows a sensitivity response of 74 mV/pH for cancer cells. Cancer cells (MDA MB231) showed a response of ∼0.4 unit change in pH compared to virtually no change observed for normal cells (MCF10A). We also observed a drop in pH for the multidrug-resistant cancer cells (MDA-MB-435MDR) in the presence of doxorubicin. However, inhibition of the metabolic enzymes such as hexokinase and lactate dehydrogenase-A suggested an improvement in the efficacy of doxorubicin by decreasing the level of acidification. This approach, based on extracellular acidification, enhances our understanding of cancer cell metabolic modes and their response to chemotherapies, which will help in the development of better treatments, including choice of drugs and dosages.

  10. A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chang

    2011-01-01

    Full Text Available In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS. These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it.

  11. A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    Science.gov (United States)

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it. PMID:22319361

  12. Graphene-Based Long-Period Fiber Grating Surface Plasmon Resonance Sensor for High-Sensitivity Gas Sensing

    Directory of Open Access Journals (Sweden)

    Wei Wei

    2016-12-01

    Full Text Available A graphene-based long-period fiber grating (LPFG surface plasmon resonance (SPR sensor is proposed. A monolayer of graphene is coated onto the Ag film surface of the LPFG SPR sensor, which increases the intensity of the evanescent field on the surface of the fiber and thereby enhances the interaction between the SPR wave and molecules. Such features significantly improve the sensitivity of the sensor. The experimental results demonstrate that the sensitivity of the graphene-based LPFG SPR sensor can reach 0.344 nm%−1 for methane, which is improved 2.96 and 1.31 times with respect to the traditional LPFG sensor and Ag-coated LPFG SPR sensor, respectively. Meanwhile, the graphene-based LPFG SPR sensor exhibits excellent response characteristics and repeatability. Such a SPR sensing scheme offers a promising platform to achieve high sensitivity for gas-sensing applications.

  13. All-polymer whispering gallery mode sensor system.

    Science.gov (United States)

    Petermann, Ann Britt; Varkentin, Arthur; Roth, Bernhard; Morgner, Uwe; Meinhardt-Wollweber, Merve

    2016-03-21

    Sensors based on whispering gallery modes have been extensively investigated with respect to their possible application as physical or biological sensors. Instead of using a single resonator, we use an all polymer resonator array as sensing element. A tunable narrowband laser is coupled into a PMMA plate serving as an optical wave guide. PMMA spheres are placed in the evanescent field on the surface of the plate. Due to small size variations, some spheres are in resonance at a given wavelength while others are not. We show that this device is well suited for the determination of an unknown wavelength or for temperature measurements. Moreover, we discuss several general aspects of the sensor concept such as the number and size of sensing elements which are necessary for a correct measurement result, or the maximum acceptable linewidth of the laser.

  14. Fingerprint sensor using a polymer dispersed liquid crystal holographic lens.

    Science.gov (United States)

    Jie, Ying; Jihong, Zheng

    2010-09-01

    We used a polymer dispersed liquid crystal material holographic lens in a fingerprint sensor, which reduced the total size of the sensor and improved image quality. The beam carrying fingerprint information was diffracted by the holographic lens and converged onto the complementary metal-oxide semiconductor image sensor directly, which omitted the traditional lens or fiber taper. The phenomenon that the image quality is poor when the finger is too dry or wet was explained based on the evanescent wave theory. The total size of the device was 50 mm x 25 mm x 30 mm. The fingerprint image had a contrast of 250:1 and a resolution of 800 dots/in.

  15. A highly sensitive, single selective, fluorescent sensor for Al{sup 3+} detection and its application in living cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xing-Pei [Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Sun, Shao-bo; Li, Ying-dong [Institute of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000 (China); Zhi, Li-hua [Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Wu, Wei-na, E-mail: wuwn08@hpu.edu.cn [Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Wang, Yuan, E-mail: wangyuan08@hpu.edu.cn [Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China)

    2014-11-15

    A new o-aminophenol-based fluorogenic chemosensor methyl 3,5-bis((E)-(2-hydroxyphenylimino)methyl)-4-hydroxybenzoate 1 have been synthesized by Schiff base condensation of methyl 3,5-diformyl-4-hydroxybenzoate with o-aminophenol, which exhibits high selectivity and sensitivity toward Al{sup 3+}. Fluorescence titration studies of receptors 1 with different metal cations in CH{sub 3}OH medium showed highly selective and sensitive towards Al{sup 3+} ions even in the presence of other commonly coexisting metal ions. The detection limit of Al{sup 3+} ions is at the parts per billion level. Interestingly, the Al(III) complex of 1 offered a large Stokes shift (>120 nm), which can miximize the selfquenching effect. In addition, possible utilization of this receptor as bio-imaging fluorescent probe to detect Al{sup 3+} in human cervical HeLa cancer cell lines was also investigated by confocal fluorescence microscopy. - Highlights: • A new Schiff base chemosensor is reported. • The sensor for Al{sup 3+} offers large Stokes shift. • The detection limit of Al{sup 3+} in CH{sub 3}OH solution is at the parts per billion level. • The utilization of sensor for the monitoring of Al{sup 3+} levels in living cells was examined.

  16. Wireless Sensor Network Powered by a Terrestrial Microbial Fuel Cell as a Sustainable Land Monitoring Energy System

    Directory of Open Access Journals (Sweden)

    Andrea Pietrelli

    2014-10-01

    Full Text Available This work aims at investigating the possibility of a wireless sensor network powered by an energy harvesting technology, such as a microbial fuel cell (MFC. An MFC is a bioreactor that transforms energy stored in chemical bonds of organic compounds into electrical energy. This process takes place through catalytic reactions of microorganisms under anaerobic conditions. An anode chamber together with a cathode chamber composes a conventional MFC reactor. The protons generated in the anode chamber are then transferred into the cathode chamber through a proton exchange membrane (PEM. A possible option is to use the soil itself as the membrane. In this case, we are referring to, more properly, a terrestrial microbial fuel cell (TMFC. This research examines the sustainability of a wireless sensor network powered by TMFC for land monitoring and precision agriculture. Acting on several factors, such as pH, temperature, humidity and type of soil used, we obtained minimum performance requirements in terms of the output power of the TMFC. In order to identify some of the different network node configurations and to compare the resulting performance, we investigated the energy consumption of the core components of a node, e.g., the transceiver and microcontroller, looking for the best performance.

  17. G Protein-selective GPCR Conformations Measured Using FRET Sensors in a Live Cell Suspension Fluorometer Assay.

    Science.gov (United States)

    Semack, Ansley; Malik, Rabia U; Sivaramakrishnan, Sivaraj

    2016-09-10

    Fӧrster resonance energy transfer (FRET)-based studies have become increasingly common in the investigation of GPCR signaling. Our research group developed an intra-molecular FRET sensor to detect the interaction between Gα subunits and GPCRs in live cells following agonist stimulation. Here, we detail the protocol for detecting changes in FRET between the β2-adrenergic receptor and the Gαs C-terminus peptide upon treatment with 100 µM isoproterenol hydrochloride as previously characterized(1). Our FRET sensor is a single polypeptide consisting serially of a full-length GPCR, a FRET acceptor fluorophore (mCitrine), an ER/K SPASM (systematic protein affinity strength modulation) linker, a FRET donor fluorophore (mCerulean), and a Gα C-terminal peptide. This protocol will detail cell preparation, transfection conditions, equipment setup, assay execution, and data analysis. This experimental design detects small changes in FRET indicative of protein-protein interactions, and can also be used to compare the strength of interaction across ligands and GPCR-G protein pairings. To enhance the signal-to-noise in our measurements, this protocol requires heightened precision in all steps, and is presented here to enable reproducible execution.

  18. Hafnium dioxide as a dielectric for highly-sensitive waveguide-coupled surface plasmon resonance sensors

    Directory of Open Access Journals (Sweden)

    Kunal Tiwari

    2016-04-01

    Full Text Available Hafnium dioxide has been recognized as an excellent dielectric for microelectronics. However, its usefulness for the surface plasmon based sensors has not yet been tested. Here we investigate its usefulness for waveguide-coupled bi-metallic surface plasmon resonance sensors. Several Ag/HfO2/Au multilayer structure sensors were fabricated and evaluated by optical measurements and computer simulations. The resulting data establish correlations between the growth parameters and sensor performance. The sensor sensitivity to refractive index of analytes is determined to be S n = ∂ θ SPR ∂ n ≥ 4 7 0 . The sensitivity data are supported by simulations, which also predict 314 nm for the evanescent field decay length in air.

  19. Time-dependent metabolic activity and adhesion of human osteoblast-like cells on sensor chips with a plasma polymer nanolayer.

    Science.gov (United States)

    Rebl, Henrike; Finke, Birgit; Schroeder, Karsten; Nebe, J Barbara

    2010-10-01

    To improve orthopedic implant ingrowth, knowledge of the effect of chemical surface modifications on vital cell function in vitro is of importance. Early in our investigations we recognized that amino groups, positively charged via plasma polymerized allylamine, increased cell growth and the actin-filament formation in the initial cell-material contact phase. To gain insight into continuous vital cell behavior on this plasma polymer layer, here we present the metabolic activity of osteoblasts and their time-dependent adhesion using the sensor chip technology. We demonstrate a new method for continuous 24 hour-measurements with vital human osteoblast-like cells (MG-63, ATCC) on sensor chips (Bionas® SC 1000) modified with plasma polymerized allylamine (PPAAm). The PPAAm film deposited on the chip is a cross-linked, strongly fixed plasma polymer with relatively high amino functionality and well defined chemical surface composition. We assessed continuous cell adhesion and the metabolic activity, i.e., oxygen consumption and acidification. We determined that adhesion of vital cells on PPAAm is not only enhanced shortly (1 h) after cell seeding but remained continuously higher for 24 h, which is significant. This nanometer-thin PPAAm layer did not change the overall metabolic activity of MG-63 cells during 24 h. This tool--using adhesion and metabolic sensor chips--appears to be a suitable method for the recognition of vital cell physiology in biocompatibility measurements of plasma chemical treated surfaces.

  20. Study of the Interaction of Trastuzumab and SKOV3 Epithelial Cancer Cells Using a Quartz Crystal Microbalance Sensor

    Science.gov (United States)

    Elmlund, Louise; Käck, Camilla; Aastrup, Teodor; Nicholls, Ian A.

    2015-01-01

    Analytical methods founded upon whole cell-based assays are of importance in early stage drug development and in fundamental studies of biomolecular recognition. Here we have studied the binding of the monoclonal antibody trastuzumab to human epidermal growth factor receptor 2 (HER2) on human ovary adenocarcinoma epithelial cancer cells (SKOV3) using quartz crystal microbalance (QCM) technology. An optimized procedure for immobilizing the cells on the chip surface was established with respect to fixation procedure and seeding density. Trastuzumab binding to the cell decorated sensor surface was studied, revealing a mean dissociation constant, KD, value of 7 ± 1 nM (standard error of the mean). This study provides a new perspective on the affinity of the antibody-receptor complex presented a more natural context compared to purified receptors. These results demonstrate the potential for using whole cell-based QCM assay in drug development, the screening of HER2 selective antibody-based drug candidates, and for the study of biomolecular recognition. This real time, label free approach for studying interactions with target receptors present in their natural environment afforded sensitive and detailed kinetic information about the binding of the analyte to the target. PMID:25763651

  1. Glucose Dependency of the Metabolic Pathway of HEK 293 Cells Measured by a Flow-through Type pH/CO2 Sensor System Using ISFETs

    Science.gov (United States)

    Yamada, Akira; Mohri, Satoshi; Nakamura, Michihiro; Naruse, Keiji

    Our group previously reported the application of a flow-through type pH/CO2 sensor system designed to evaluate the metabolic activity of cultured cells. The sensor system consists of two ion-sensitive field effect transistors (ISFETs), an ISFET to measure the total pH change and an ISFET enclosed within a gas-permeable silicone tube to measure the pH change attributable to CO2. In that study, we used the system to quantitatively analyze metabolic switching induced by glucose concentration changes in three cultured cell types (bovine arterial endothelium cell (BAEC), human umbilical vein endothelium cell (HUVEC), and rat cardiomuscle cell (RCMC)), and to measure the production rates of total carbonate and free lactic acid in the cultured cells. In every cell type examined, a decrease in the glucose concentration led to an increase in total carbonate, a product of cellular respiration, and a decrease of free lactic acid, a product of glycolysis. There were very significant differences among the cell types, however, in the glucose concentrations at the metabolic switching points. We postulated that the cell has a unique switching point on the metabolic pathway from glycolysis to respiration. In this paper we use our sensor system to evaluate the metabolic switching of human embryonic kidney 293 cells triggered by glucose concentration changes. The superior metabolic pathway switched from glycolysis to respiration when the glucose concentration decreased to about 2 mM. This result was very similar to that obtained in our earlier experiments on HUVECs, but far different from our results on the other two cells types, BAECs and RCMCs. This sensor system will be useful for analyzing cellular metabolism for many applications and will yield novel information on different cell types.

  2. Real-time monitoring of methanol concentration using a shear horizontal surface acoustic wave sensor for direct methanol fuel cell without reference liquid measurement

    Science.gov (United States)

    Tada, Kyosuke; Nozawa, Takuya; Kondoh, Jun

    2017-07-01

    In recent years, there has been an increasing demand for sensors that continuously measure liquid concentrations and detect abnormalities in liquid environments. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied for the continuous monitoring of liquid concentrations. As the SH-SAW sensor functions using the relative measurement method, it normally needs a reference at each measurement. However, if the sensor is installed in a liquid flow cell, it is difficult to measure a reference liquid. Therefore, it is important to establish an estimation method for liquid concentrations using the SH-SAW sensor without requiring a reference measurement. In this study, the SH-SAW sensor is installed in a direct methanol fuel cell to monitor the methanol concentration. The estimated concentration is compared with a conventional density meter. Moreover, the effect of formic acid is examined. When the fuel temperature is higher than 70 °C, it is necessary to consider the influence of liquid conductivity. Here, an estimation method for these cases is also proposed.

  3. Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells

    Science.gov (United States)

    Sharma, Rachna; Varun Agrawal, Ved; Sharma, Pradeep; Varshney, R.; Sinha, R. K.; Malhotra, B. D.

    2012-04-01

    We report results of the studies relating to development of an aptamer-based electrochemical biosensor for detection of human lung adenocarcinoma A549 cells. The aminated 85-mer DNA aptamer probe specific for the A549 cells has been covalently immobilized onto silane self assembled monolayer (SAM) onto ITO surface using glutaraldehyde as the crosslinker. The results of cyclic voltammetry and differential pulse voltammetry studies reveal that the aptamer functionalized bioelectrode can specifically detect lung cancer cells in the concentration range of 103 to 107 cells/ml with detection limit of 103 cells/ml within 60 s. The specificity studies of the bioelectrode have been carried out with control KB cells. No significant change in response is observed for control KB cells as compared to that of the A549 target cells.

  4. Load-cell based characterization system for a "Violin-Mode" shadow-sensor in advanced LIGO suspensions

    Science.gov (United States)

    Lockerbie, N. A.; Tokmakov, K. V.

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which 40 kg test-mass/mirrors are each suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation and a rectangular silicon photodiode detector, which, together, were to bracket the fibre under test. The aim was to detect transverse Violin-Mode resonances in the suspension fibres. Part of the testing procedure involved tensioning a silica fibre sample and translating it transversely through the illuminating NIR beam, so as to measure the DC responsivity of the detection system to fibre displacement. However, an equally important part of the procedure, reported here, was to keep the fibre under test stationary within the beam, whilst trying to detect low-level AC Violin-Mode resonances excited on the fibre, in order to confirm the primary function of the sensor. Therefore, a tensioning system, incorporating a load-cell readout, was built into the test fibre's holder. The fibre then was excited by a signal generator, audio power amplifier, and distant loudspeaker, and clear resonances were detected. A theory for the expected fundamental resonant frequency as a function of fibre tension was developed and is reported here, and this theory was found to match closely with the detected resonant frequencies as they varied with tension. Consequently, the resonances seen were identified as being proper Violin-Mode fundamental resonances of the fibre, and the operation of the Violin-Mode detection system was validated.

  5. Load-cell based characterization system for a “Violin-Mode” shadow-sensor in advanced LIGO suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Lockerbie, N. A.; Tokmakov, K. V. [SUPA (Scottish Universities Physics Alliance) Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG (United Kingdom)

    2016-07-15

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which 40 kg test-mass/mirrors are each suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation and a rectangular silicon photodiode detector, which, together, were to bracket the fibre under test. The aim was to detect transverse Violin-Mode resonances in the suspension fibres. Part of the testing procedure involved tensioning a silica fibre sample and translating it transversely through the illuminating NIR beam, so as to measure the DC responsivity of the detection system to fibre displacement. However, an equally important part of the procedure, reported here, was to keep the fibre under test stationary within the beam, whilst trying to detect low-level AC Violin-Mode resonances excited on the fibre, in order to confirm the primary function of the sensor. Therefore, a tensioning system, incorporating a load-cell readout, was built into the test fibre’s holder. The fibre then was excited by a signal generator, audio power amplifier, and distant loudspeaker, and clear resonances were detected. A theory for the expected fundamental resonant frequency as a function of fibre tension was developed and is reported here, and this theory was found to match closely with the detected resonant frequencies as they varied with tension. Consequently, the resonances seen were identified as being proper Violin-Mode fundamental resonances of the fibre, and the operation of the Violin-Mode detection system was validated.

  6. Superluminal advanced transmission of X waves undergoing frustrated total internal reflection: the evanescent fields and the Goos-Hänchen effect.

    Science.gov (United States)

    Shaarawi, Amr M; Tawfik, Bassem H; Besieris, Ioannis M

    2002-10-01

    A study of X waves undergoing frustrated total internal reflection at a planar slab is provided. This is achieved by choosing the spectral plane wave components of the incident X wave to fall on the upper interface at angles greater than the critical angle. Thus, evanescent fields are generated in the slab and the peak of the field tunneling through the slab appears to be transmitted at a superluminal speed. Furthermore, it is shown that for deep barrier penetration, the peak of the transmitted field emerges from the rear interface of the slab before the incident peak reaches the front interface. To understand this advanced transmission of the peak of the pulse, a detailed study of the behavior of the evanescent fields in the barrier region is undertaken. The difference in tunneling behavior between deep and shallow barrier penetrations is shown to be influenced by the sense of the Goos-Hänchen shift.

  7. Nonlinear force dependence on optically bound arrays of micro-particles trapped in the evanescent fields of fundamental and higher order microfibre modes

    CERN Document Server

    Maimaiti, Aili; Truong, Viet Giang; Ritsch, Helmut; Chormaic, Sile Nic

    2016-01-01

    Particles trapped in the evanescent field of an ultrathin optical fibre interact over very long distances via multiple scattering of the fibre-guided fields. In ultrathin fibres that support higher order modes these interactions are stronger and exhibit qualitatively new behaviour due to the coupling of different fibre modes, which have different propagation wave vectors, by the particles. Here, we study one dimensional longitudinal optical binding interactions of chains of 3 {\\mu}m polystyrene spheres under the influence of the evanescent fields of a two-mode microfibre. The observation of long-range interactions, self-ordering and speed variation of particle chains reveals strong optical binding effects between the particles, which can be well modelled by a tritter scattering-matrix approach. The optical forces, optical binding interactions and the velocity of bounded particle chains are calculated using this method. Results show good agreement with finite element numerical simulations. Experimental data an...

  8. Covalent Attachment of Carbohydrate Derivatives to an Evanescent Wave Fiber Bragg Grating Biosensor

    Directory of Open Access Journals (Sweden)

    Christopher J. Stanford

    2009-01-01

    Full Text Available A carbohydrate-based biosensor was prepared by functionalization of the surface of an etched fiber Bragg grating with a glucopyranosyl-siloxane conjugate. Functionalization of the surface with the conjugate resulted in a Bragg grating shift of 24 pm. This shift in the refractive index is consistent with a theoretical shift calculated assuming monolayer coverage of the glucose conjugate on the sensor. The resulting functionalized fiber was shown to interact selectively with concanavalin A (Con A, a glucose binding protein (lectin. Exposure of the glucose-functionalized fiber to peanut agglutinin, a galactosebinding lectin, did not result in a change of the refractive index corresponding to a binding event.

  9. Sensitivity analysis of steering-wheel gas sensor against diverse core air hole sizes and core materials in terahertz wave band

    Science.gov (United States)

    Ramachandran, A.; Babu, P. Ramesh; Senthilnathan, K.

    2017-11-01

    We design a photonic crystal fiber (PCF) based gas sensor, which works based on evanescent field, by introducing a steering-wheel shape of large noncircular air-hole structure in the cladding region. Further, using the full-vectorial finite element method (FEM), we compute the relative sensitivities of the proposed sensor as 83% and 91% when the operating frequencies are 1THz and 0.5THz, respectively. The proposed sensor is suitable for detecting any kind of chemical and biological gases.

  10. Multiterminal single-molecule-graphene-nanoribbon junctions with the thermoelectric figure of merit optimized via evanescent mode transport and gate voltage

    DEFF Research Database (Denmark)

    Saha, K.K.; Markussen, Troels; Thygesen, Kristian Sommer

    2011-01-01

    We propose thermoelectric devices where a single molecule is connected to two metallic zigzag graphene nanoribbons (ZGNRs) via highly transparent contacts that allow the injection of evanescent wave functions from ZGNRs. Their overlap generates a peak in the electronic transmission that is largely.......5 at room temperature and 0.5 Green's function formalism for multiterminal devices, we show how the transmission resonance can be manipulated by the voltage applied to a third ZGNR top-gate electrode...

  11. Detection of pathogen Escherichia coli O157:H7 AT 70 cells/mL using antibody-immobilized biconical tapered fiber sensors.

    Science.gov (United States)

    Rijal, Kishan; Leung, Angela; Shankar, P Mohana; Mutharasan, Raj

    2005-12-15

    Optical fibers (core diameter 8 microm, cladding diameter 125 microm) was tapered to a waist diameter in the range of 8-12 microm, and then a monoclonal antibody to the pathogen, Escherichia coli O157:H7 was covalently bonded to the surface of the tapered region. Using 470 nm light, the taper was exposed to various concentrations (7 x 10(7), 7 x 10(5), 7 x 10(3), and 70 cells/mL) of the pathogen, and the sensor showed changes in transmitted light as the antigen attached to the antibody on the taper surface. The response was equal and opposite when the pathogen was released from the surface using a low pH buffer. The magnitude of the change was inversely proportional to the concentration of the pathogen. The sensor showed good sensitivity at as low a concentration as 70 cells/mL. The antibody-immobilized taper sensor was also exposed to a mixture of the pathogen and a non-pathogenic variant (JM101) at 0%, 50% and 70% by concentration. The sensor showed good selectivity to the pathogenic antigen. A first order attachment kinetic model is proposed to quantify the rate of attachment of pathogen to the sensor surface. The kinetic rate constant (k) of E. coli O157:H7 to the fiber was found to vary in the range of (2.5-6.1) x 10(-9) min(-1) (cells/mL)(-1).

  12. Use of Multi-Functional Flexible Micro-Sensors for in situ Measurement of Temperature, Voltage and Fuel Flow in a Proton Exchange Membrane Fuel Cell

    Science.gov (United States)

    Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju

    2010-01-01

    Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased. PMID:22163545

  13. A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals.

    Science.gov (United States)

    Chen, Peng; Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Zhu, Dan; Zhong, Yuan; Cui, Yiping

    2014-10-01

    p-Aminothiophenol (pATP) functionalized multi-walled carbon nanotubes (MWCNTs) have been demonstrated as an efficient pH sensor for living cells. The proposed sensor employs gold/silver core-shell nanoparticles (Au@Ag NPs) functionalized MWCNTs hybrid structure as the surface-enhanced Raman scattering (SERS) substrate and pATP molecules as the SERS reporters, which possess a pH-dependent SERS performance. By using MWCNTs as the substrate to be in a state of aggregation, the pH sensing range could be extended to pH 3.0∼14.0, which is much wider than that using unaggregated Au@Ag NPs without MWCNTs. Furthermore, the pH-sensitive performance was well retained in living cells with a low cytotoxicity. The developed SERS-active MWCNTs-based nanocomposite is expected to be an efficient intracellular pH sensor for bio-applications.

  14. Imaging Lysosomal pH Alteration in Stressed Cells with a Sensitive Ratiometric Fluorescence Sensor.

    Science.gov (United States)

    Xue, Zhongwei; Zhao, Hu; Liu, Jian; Han, Jiahuai; Han, Shoufa

    2017-03-24

    The organelle-specific pH is crucial for cell homeostasis. Aberrant pH of lysosomes has been manifested in myriad diseases. To probe lysosome responses to cell stress, we herein report the detection of lysosomal pH changes with a dual colored probe (CM-ROX), featuring a coumarin domain with "always-on" blue fluorescence and a rhodamine-lactam domain activatable to lysosomal acidity to give red fluorescence. With sensitive ratiometric signals upon subtle pH changes, CM-ROX enables discernment of lysosomal pH changes in cells undergoing autophagy, cell death, and viral infection.

  15. The discrete dipole approximation with surface interaction for evanescent wave-based characterization of nanostructures on a surface with validation against experimental results

    Science.gov (United States)

    Short, Mitchell R.

    Nanotechnology has become so widely used it can be found in every aspect of life, from cell-phones and computers, to cars, and even athletic socks. As it permeates so many markets, the need for supplemental technologies has also increased. One such needed technology is in the area of nanoscale characterization. Current imaging methods are advanced; however, they do not have the capabilities to characterize the size, shape, composition, and arrangement of nanostructures and nanoparticles in a real-time, unobtrusive manner. The Polarized-Surface-Wave-Scattering system (PSWSS) is a method being researched at the University of Utah that can provide such characterization, although in order for the PSWSS to function accurately through inversion techniques, a predictive forward model must be developed and validated. This work explores the discrete dipole approximation with surface interaction (DDA-SI), an open source MATLAB toolbox, as a predictive model to calculate electromagnetic scattering by objects on a surface illuminated by an evanescent wave generated by total internal reflection (TIR). Far-field scattering predictions via DDA-SI are validated against scaled microwave experimental results for two objects on a surface: a sphere with a diameter of lambda/1.92 and a cube with a side length of lambda/1.785, where lambda refers to the wavelength. A good agreement between experiments and simulations is observed, especially when modified Fresnel reflection coefficients are employed by DDA-SI. Programs to calculate the amplitude scattering matrix and Mueller matrix elements have been also been created. Additionally, the sensitivity of four Mueller matrix elements (M11, M12, M21, and M22) to the particle size, material (gold and silver), shape (sphere and cube), and interparticle spacing, is analyzed. It is found that these four elements are sensitive to changes in shape and interparticle spacing, whereas prove insufficient to difference in material and sizes smaller than

  16. Mechanical characterization of protein L in the low-force regime by electromagnetic tweezers/evanescent nanometry.

    Science.gov (United States)

    Liu, Ruchuan; Garcia-Manyes, Sergi; Sarkar, Atom; Badilla, Carmen L; Fernández, Julio M

    2009-05-06

    Mechanical manipulation at the single molecule level of proteins exhibiting mechanical stability poses a technical challenge that has been almost exclusively approached by atomic force microscopy (AFM) techniques. However, due to mechanical drift limitations, AFM techniques are restricted to experimental recordings that last less than a minute in the high-force regime. Here we demonstrate a novel combination of electromagnetic tweezers and evanescent nanometry that readily captures the forced unfolding trajectories of protein L at pulling forces as low as 10-15 pN. Using this approach, we monitor unfolding and refolding cycles of the same polyprotein for a period of time longer than 30 min. From such long-lasting recordings, we obtain ensemble averages of unfolding step sizes and rates that are consistent with single-molecule AFM data obtained at higher stretching forces. The unfolding kinetics of protein L at low stretching forces confirms and extends the observations that the mechanical unfolding rate is exponentially dependent on the pulling force within a wide range of stretching forces spanning from 13 pN up to 120 pN. Our experiments demonstrate a novel approach for the mechanical manipulation of single proteins for extended periods of time in the low-force regime.

  17. Multichannel tunable filter properties of 1D magnetized ternary plasma photonic crystal in the presence of evanescent wave

    Science.gov (United States)

    Awasthi, Suneet Kumar; Panda, Ranjita; Shiveshwari, Laxmi

    2017-07-01

    The multichannel tunable filter properties of one-dimensional ternary plasma photonic crystal composed of magnetized plasma and lossless dielectric have been theoretically investigated using transfer matrix method in the microwave region. The proposed filters possess 2N - 2 comb-like sharp resonant peaks also called transmission channels for N > 1 in transmission spectra in the absence and presence of an external magnetic field. Due to the coupling between evanescent waves and propagating modes in plasma and dielectric layers, respectively, 2N - 2 transmission channels are found without the addition of any defect, enabling the structure to work as a multichannel filter. Next, the filter properties can be made tunable by the application of an external magnetic field, i.e., channel frequency can either be red or blue shifted depending upon the orientation of an external magnetic field. The number of channels and their positions can also be modulated by changing the number of periods (N) and the incident angle (θo), respectively, for both transverse electric (TE) and transverse magnetic (TM) modes besides other parameters such as plasma collision frequency, thickness of the plasma layer, plasma frequency, etc.

  18. High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction.

    Science.gov (United States)

    Li, Xiaohui; Yu, Xuechao; Sun, Zhipei; Yan, Zhiyu; Sun, Biao; Cheng, Yuanbing; Yu, Xia; Zhang, Ying; Wang, Qi Jie

    2015-11-16

    Mid-infrared ultrafast fiber lasers are valuable for various applications, including chemical and biomedical sensing, material processing and military applications. Here, we report all-fiber high-power graphene mode-locked Tm/Ho co-doped fiber laser at long wavelength with evanescent field interaction. Ultrafast pulses up to 7.8 MHz are generated at a center wavelength of 1879.4 nm, with a pulse width of 4.7 ps. A graphene absorber integrated with a side-polished fiber can increase the damage threshold significantly. Harmonics mode-locking can be obtained till to the 21(th) harmonics at a pump power of above 500 mW. By using one stage amplifier in the anomalous dispersion regime, the laser can be amplified up to 450 mW and the narrowest pulse duration of 1.4 ps can be obtained simultaneously. Our work paves the way to graphene Tm/Ho co-doped mode-locked all-fiber master oscillator power amplifiers as potentially efficient and economic laser sources for high-power laser applications, such as special material processing and nonlinear optical studies.

  19. Mode-locked, 1.94-μm, all-fiberized laser using WS₂ based evanescent field interaction.

    Science.gov (United States)

    Jung, Minwan; Lee, Junsu; Park, June; Koo, Joonhoi; Jhon, Young Min; Lee, Ju Han

    2015-07-27

    We demonstrate the use of an all-fiberized, mode-locked 1.94 μm laser with a saturable absorption device based on a tungsten disulfide (WS2)-deposited side-polished fiber. The WS2 particles were prepared via liquid phase exfoliation (LPE) without centrifugation. A series of measurements including Raman spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the prepared particles had thick nanostructures of more than 5 layers. The prepared saturable absorption device used the evanescent field interaction mechanism between the oscillating beam and WS2 particles and its modulation depth was measured to be ~10.9% at a wavelength of 1925 nm. Incorporating the WS2-based saturable absorption device into a thulium-holmium co-doped fiber ring cavity, stable mode-locked pulses with a temporal width of ~1.3 ps at a repetition rate of 34.8 MHz were readily obtained at a wavelength of 1941 nm. The results of this experiment confirm that WS2 can be used as an effective broadband saturable absorption material that is suitable to passively generate pulses at 2 μm wavelengths.

  20. Recurrent focal choroidal excavation following multiple evanescent white dot syndrome (MEWDS) associated with acute idiopathic blind spot enlargement.

    Science.gov (United States)

    Jabbarpoor Bonyadi, Mohammad Hossein; Hassanpour, Kiana; Soheilian, Masoud

    2017-04-03

    To present a recurrent case of conforming focal choroidal excavation (FCE) following multiple evanescent white dot syndrome (MEWDS) in a 25-year-old woman. Following spontaneous MEWDS sings resolution our patient noted a recurrent decrease in vision. Repeated OCT revealed elevation and mild disruption of RPE layer at fovea without previous angiographic MEWDS signs. At this time, short-term systemic steroid therapy was started and visual acuity became normal. Following quiescence of the new-onset phase, the conforming type of FCE located in inferior macula appeared in OCT. In the following next 2 years recurrence of presumptive focal subfoveal choriocapillaritis occurred for three times presenting with blurred vision. During every acute attack, above-mentioned FCE disappeared and returned back again after resolution of presumptive focal choriocapillaritis. This is the first and unique case of recurrent type of FCE following MEWDS. It seems to disappear during active phase of presumptive focal choriocapillaritis and then returns after the eye has become quiescent.

  1. Evaluating a novel application of optical fibre evanescent field absorbance: rapid measurement of red colour in winegrape homogenates

    Science.gov (United States)

    Lye, Peter G.; Bradbury, Ronald; Lamb, David W.

    Silica optical fibres were used to measure colour (mg anthocyanin/g fresh berry weight) in samples of red wine grape homogenates via optical Fibre Evanescent Field Absorbance (FEFA). Colour measurements from 126 samples of grape homogenate were compared against the standard industry spectrophotometric reference method that involves chemical extraction and subsequent optical absorption measurements of clarified samples at 520 nm. FEFA absorbance on homogenates at 520 nm (FEFA520h) was correlated with the industry reference method measurements of colour (R2 = 0.46, n = 126). Using a simple regression equation colour could be predicted with a standard error of cross-validation (SECV) of 0.21 mg/g, with a range of 0.6 to 2.2 mg anthocyanin/g and a standard deviation of 0.33 mg/g. With a Ratio of Performance Deviation (RPD) of 1.6, the technique when utilizing only a single detection wavelength, is not robust enough to apply in a diagnostic sense, however the results do demonstrate the potential of the FEFA method as a fast and low-cost assay of colour in homogenized samples.

  2. Laser intensity modulated real time monitoring cell growth sensor for bioprocess applications

    Science.gov (United States)

    Kishore, P.; Babu, P. Ravindra; Devi, V. Rama; Maunika, T.; Soujanya, P.; Kishore, P. V. N.; Dinakar, D.

    2016-04-01

    This article proposes an optical method for monitoring the growth of Escherichia coli in Luria Bertani medium and Saccharomyces cereviciae in YPD. Suitable light is selected which on interaction with the analyte under consideration, gets adsorption / scattered. Required electronic circuitry is designed to drive the laser source and to detect the intensity of light using Photo-detector. All these components are embedded and arranged in a proper way and monitored the growth of the microbs in real time. The sensors results are compared with standard techniques such as colorimeter, Nephelometer and hemocytometer. The experimental results are in good agreement with the existed techniques and well suitable for real time monitoring applications of the growth of the microbs.

  3. Novel localized surface plasmon resonance based optical fiber sensor

    Science.gov (United States)

    Muri, Harald Ian D. I.; Hjelme, Dag R.

    2016-03-01

    Over the last decade various optical fiber sensing schemes have been proposed based on local surface plasmon resonance (LSPR). LSPR are interacting with the evanescent field from light propagating in the fiber core or by interacting with the light at the fiber end face. Sensor designs utilizing the fiber end face is strongly preferred from a manufacturing point of view. However, the different techniques available to immobilize metallic nanostructures on the fiber end face for LSPR sensing is limited to essentially a monolayer, either by photolithographic structuring of metal film, thermal nucleation of metal film, or by random immobilization of nanoparticles (NP). In this paper, we report on a novel LSPR based optical fiber sensor architecture. The sensor is prepared by immobilizing gold NP's in a hydrogel droplet polymerized on the fiber end face. This design has several advantages over earlier designs. It dramatically increase the number of NP's available for sensing, it offers precise control over the NP density, and the NPs are position in a true 3D aqueous environment. The sensor design is also compatible with low cost manufacturing. The sensor design can measure volumetric changes in a stimuli-responsive hydrogel or measure binding to receptors on the NP surface. It can also be used as a two-parameter sensor by utilizing both effects. We present results from proof-of-concept experiments demonstrating a pH sensor based on LSPR sensing in a poly(acrylamide-co-acrylic acid) hydrogel embedding gold nanoparticles.

  4. Planetary Surface Measuring Arrangement According to the Principles of the Onsager Matrix Transports: Complexity and Integrated Simultaneous Sensor Cell-System

    Science.gov (United States)

    Bérczi, Sz.; Vizi, P. G.; Hudoba, Gy.; Schiller, I.; Róka, A.; Gyollai, I.

    2017-11-01

    A cell mosaic arrangement (an array) is constructed according to Onsager matrix type sensor units (for 3 of μ1-μ2, T1-T2, P1-P2, U1-U2) for a complex simultaneous measuring of local field parameters at the locality of space probe model Hunveyor.

  5. Intimal smooth muscle cells are a source but not a sensor of anti-inflammatory CYP450 derived oxylipins

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Scott [Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU (United Kingdom); Edin, Matthew L.; Lih, Fred B. [Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC 27709 (United States); Davies, Michael [Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU (United Kingdom); Yaqoob, Muhammad M. [Barts and the London, Queen Mary University, Charterhouse Square, London EC1M 6BQ (United Kingdom); Hammock, Bruce D. [Department of Entomology and Comprehensive Cancer Center, University of California, Davies, CA 95616-8584 (United States); Gilroy, Derek [University College London, University Street, London (United Kingdom); Zeldin, Darryl C. [Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC 27709 (United States); Bishop-Bailey, David, E-mail: dbishopbailey@rvc.ac.uk [Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU (United Kingdom)

    2015-08-07

    Vascular pathologies are associated with changes in the presence and expression of morphologically distinct vascular smooth muscle cells. In particular, in complex human vascular lesions and models of disease in pigs and rodents, an intimal smooth muscle cell (iSMC) which exhibits a stable epithelioid or rhomboid phenotype in culture is often found to be present in high numbers, and may represent the reemergence of a distinct developmental vascular smooth muscle cell phenotype. The CYP450-oxylipin - soluble epoxide hydrolase (sEH) pathway is currently of great interest in targeting for cardiovascular disease. sEH inhibitors limit the development of hypertension, diabetes, atherosclerosis and aneurysm formation in animal models. We have investigated the expression of CYP450-oxylipin-sEH pathway enzymes and their metabolites in paired intimal (iSMC) and medial (mSMC) cells isolated from rat aorta. iSMC basally released significantly larger amounts of epoxy-oxylipin CYP450 products from eicosapentaenoic acid > docosahexaenoic acid > arachidonic acid > linoleic acid, and expressed higher levels of CYP2C12, CYP2B1, but not CYP2J mRNA compared to mSMC. When stimulated with the pro-inflammatory TLR4 ligand LPS, epoxy-oxylipin production did not change greatly in iSMC. In contrast, LPS induced epoxy-oxylipin products in mSMC and induced CYP2J4. iSMC and mSMC express sEH which metabolizes primary epoxy-oxylipins to their dihydroxy-counterparts. The sEH inhibitors TPPU or AUDA inhibited LPS-induced NFκB activation and iNOS induction in mSMC, but had no effect on NFκB nuclear localization or inducible nitric oxide synthase in iSMC; effects which were recapitulated in part by addition of authentic epoxy-oxylipins. iSMCs are a rich source but not a sensor of anti-inflammatory epoxy-oxylipins. Complex lesions that contain high levels of iSMCs may be more resistant to the protective effects of sEH inhibitors. - Highlights: • We examined oxylipin production in different

  6. High-performance humidity sensor based on a polyvinyl alcohol-coated photonic crystal cavity.

    Science.gov (United States)

    Zhao, Chenyang; Yuan, Qingchen; Fang, Liang; Gan, Xuetao; Zhao, Jianlin

    2016-12-01

    We demonstrate a high-performance relative humidity (RH) sensor by coating a photonic crystal (PC) cavity with polyvinyl alcohol (PVA). Because a PC cavity's evanescent field strongly interacts with the coated moisture-sensitive PVA film, the resonant wavelength is modified remarkably under varying RH levels ranging from 30% to 90%. In a PC cavity coated with a 720 nm thick PVA, the sensor exhibits a linear spectrum sensitivity exceeding 129 pm/%RH over 40-90%RH, and the power interrogation presents a high sensitivity as 0.77 dB/%RH. The resolvable humidity variation could be much less than 0.1%RH. Relying on the sub-micron thick PVA, the sensor promises a response time less than 300 ms and good repeatability. The dependence of the sensor performances on the PVA thickness is studied as well, indicating a tradeoff between the sensing dynamic range and the response time.

  7. Bifacial PV cell with reflector for stand-alone mast for sensor powering purposes

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    Reflectors to bifacial PV-cells are simulated and prototyped in this work. The aim is to optimize the reflector to specific latitudes, and particularly northern latitudes. Specifically, by using minimum semiconductor the reflector must be able to deliver the electrical power required at minimum...... the condition of solar travel above the horizon, worst weather condition etc. We will test a bifacial PV-cell with a retroreflector, and compare the output with simulations combined with local solar data....

  8. Fungus-Specific CD4 T Cells as Specific Sensors for Identification of Pulmonary Fungal Infections.

    Science.gov (United States)

    Scheffold, Alexander; Schwarz, Carsten; Bacher, Petra

    2018-02-01

    Patients with cystic fibrosis (CF) suffer from chronic lung infections, caused by bacterial, viral or fungal pathogens, which determine morbidity and mortality. The contribution of individual pathogens to chronic disease and acute lung exacerbations is often difficult to determine due to the complex composition of the lung microbiome in CF. In particular, the relevance of fungal pathogens in CF airways remains poorly understood due to limitations of current diagnostics to identify the presence of fungal pathogens and to resolve the individual host-pathogen interaction status. T-lymphocytes play an essential role in host defense against pathogens, but also in inappropriate immune reactions such as allergies. They have the capacity to specifically recognize and discriminate the different pathogens and orchestrate a diverse array of effector functions. Thus, the analysis of the fungus-specific T cell status of an individual can in principle provide detailed information about the identity of the fungal pathogen(s) encountered and the actual fungus-host interaction status. This may allow to classify patients, according to appropriate (protective) or inappropriate (pathology-associated) immune reactions against individual fungal pathogens. However, T cell-based diagnostics are currently not part of the clinical routine. The identification and characterization of fungus-specific T cells in health and disease for diagnostic purposes are associated with significant challenges. Recent technological developments in the field of fungus-specific T helper cell detection provide new insights in the host T cell-fungus interaction. In this review, we will discuss basic principles and the potential of T cell-based diagnostics, as well as the perspectives and further needs for use of T cells for improved clinical diagnostics of fungal diseases.

  9. Novel thin layer flow-cell screen-printed graphene electrode for enzymatic sensors.

    Science.gov (United States)

    Kanso, Hussein; González García, María Begoña; Llano, Laura Fernández; Ma, Su; Ludwig, Roland; Fanjul Bolado, Pablo; Santos, David Hernández

    2017-07-15

    A new Screen-printed electrodes (SPE) integrated in one channel flow-cell was developed. The one channel flow-cell is attached and directly changeable with electrode. In the new flow-cell the injection is done through an "in-line luer injection port" which can be less aggressive than wall-jet flow cell for a biological recognition element immobilized on the surface of the electrode. The sample volume can be easily controlled by the operator through a syringe. In this novel thin layer flow-cell screen-printed electrodes, the working electrode was modified with graphene materials, and an enhancement of electroactive area to 388% over a standard electrode was found. This new configuration was applied to study the entrapped cellobiose dehydrogenase from the ascomycete Corynascus thermophilus (CtCDH) in a photocrosslinkable PVA-based polymer. The calibration curve of lactose using optimized parameters shows a wide linear measurement ranges between 0.25 and 5mM. A good operational stability of the CtCDH-PVA-modified graphene electrode is obtained, which keeps the same initial activity during 8h and exhibits a good storage stability with a decrease of only 9% in analytical response after 3 months storage at 4◦C. Copyright © 2016. Published by Elsevier B.V.

  10. [Advance in the bioavailability monitoring of heavy metal based on microbial whole-cell sensor].

    Science.gov (United States)

    Hou, Qi-Hui; Ma, An-Shou; Zhuang, Xiu-Liang; Zhuang, Guo-Qiang

    2013-01-01

    Microbial whole-cell biosensor is an excellent tool to assess the bioavailability of heavy metal in soil and water. However, the traditional physicochemical instruments are applied to detect the total metal. Furthermore, microbial whole-cell biosensor is simple, rapid and economical in manipulating, and is thus a highly qualified candidate for emergency detection of pollution incidents. The biological component of microbial whole-cell biosensor mostly consists of metalloregulatory proteins and reporter genes. In detail, metalloregulatory proteins mainly include the MerR family, ArsR family and RS family, and reporter genes mainly include gfp, lux and luc. Metalloregulatory protein and reporter gene are related to the sensitivity, specificity and properties in monitoring. The bioavailability of heavy metals is alterable under different conditions, influenced by pH, chelate and detection methods and so on. Increasing the accumulation of intracellular heavy metal, modifying the metalloregulatory proteins and optimizing the detecting conditions are important for improving the sensitivity, specificity and accuracy of the microbial whole-cell biosensor. The future direction of microbial whole-cell biosensor is to realize the monitoring of pollutions in situ and on line.

  11. Migratory dermal dendritic cells act as rapid sensors of protozoan parasites.

    Directory of Open Access Journals (Sweden)

    Lai Guan Ng

    2008-11-01

    Full Text Available Dendritic cells (DC, including those of the skin, act as sentinels for intruding microorganisms. In the epidermis, DC (termed Langerhans cells, LC are sessile and screen their microenvironment through occasional movements of their dendrites. The spatio-temporal orchestration of antigen encounter by dermal DC (DDC is not known. Since these cells are thought to be instrumental in the initiation of immune responses during infection, we investigated their behavior directly within their natural microenvironment using intravital two-photon microscopy. Surprisingly, we found that, under homeostatic conditions, DDC were highly motile, continuously crawling through the interstitial space in a Galpha(i protein-coupled receptor-dependent manner. However, within minutes after intradermal delivery of the protozoan parasite Leishmania major, DDC became immobile and incorporated multiple parasites into cytosolic vacuoles. Parasite uptake occurred through the extension of long, highly dynamic pseudopods capable of tracking and engulfing parasites. This was then followed by rapid dendrite retraction towards the cell body. DDC were proficient at discriminating between parasites and inert particles, and parasite uptake was independent of the presence of neutrophils. Together, our study has visualized the dynamics and microenvironmental context of parasite encounter by an innate immune cell subset during the initiation of the immune response. Our results uncover a unique migratory tissue surveillance program of DDC that ensures the rapid detection of pathogens.

  12. Modular fluorescence complementation sensors for live cell detection of epigenetic signals at endogenous genomic sites.

    Science.gov (United States)

    Lungu, Cristiana; Pinter, Sabine; Broche, Julian; Rathert, Philipp; Jeltsch, Albert

    2017-09-21

    Investigation of the fundamental role of epigenetic processes requires methods for the locus-specific detection of epigenetic modifications in living cells. Here, we address this urgent demand by developing four modular fluorescence complementation-based epigenetic biosensors for live-cell microscopy applications. These tools combine engineered DNA-binding proteins with domains recognizing defined epigenetic marks, both fused to non-fluorescent fragments of a fluorescent protein. The presence of the epigenetic mark at the target DNA sequence leads to the reconstitution of a functional fluorophore. With this approach, we could for the first time directly detect DNA methylation and histone 3 lysine 9 trimethylation at endogenous genomic sites in live cells and follow dynamic changes in these marks upon drug treatment, induction of epigenetic enzymes and during the cell cycle. We anticipate that this versatile technology will improve our understanding of how specific epigenetic signatures are set, erased and maintained during embryonic development or disease onset.Tools for imaging epigenetic modifications can shed light on the regulation of epigenetic processes. Here, the authors present a fluorescence complementation approach for detection of DNA and histone methylation at endogenous genomic sites allowing following of dynamic changes of these marks by live-cell microscopy.

  13. A non-invasive fluorescence-based oxygen sensor and platform for studying cell responses to metabolic agents in real-time

    Science.gov (United States)

    Buchapudi, Koutilya Reddy

    A fluorescence-based sensor in a transverse flow/stop measurement platform has been developed to determine real-time changes in oxygen consumption rates for cell metabolic studies. The oxygen sensitive fluorophore platinum octaethylporphyrin was embedded in a cellulose acetate matrix and affixed to a fiber optic bundle, which provided for transmission of the excitation and emission wavelengths of the film. The fiber optic bundle was sealed in a sensor head that can be used in standard 24-well plates common to research labs. The utility of the sensor and sensing platform were determined by measuring the changes in oxygen consumption rates of Candida albicans during 90/30 s flow/stop cycles. Exposure of these cells to metabolic antagonists and an enhancer showed the expected decrease and increase in oxygen consumption rates in real time. The applicability of the platform to biological studies is illustrated by determination of synergistic activities between antifungal drugs and fluoride exposure in Candida albicans. The robustness of the fluorophore film is demonstrated by perfusion with different media and analyte conditions in the absence of cells. For stop cycle time intervals less than 1 minute the sensor exhibited a rapid and fairly linear change in fluorescence intensity to changing oxygen concentrations in the measurement chamber. Flow cycle fluorescence intensities were used as a baseline correction for treating the stop cycle fluorescence peaks.

  14. Nitrogen-rich functional groups carbon nanoparticles based fluorescent pH sensor with broad-range responding for environmental and live cells applications.

    Science.gov (United States)

    Shi, Bingfang; Su, Yubin; Zhang, Liangliang; Liu, Rongjun; Huang, Mengjiao; Zhao, Shulin

    2016-08-15

    A nitrogen-rich functional groups carbon nanoparticles (N-CNs) based fluorescent pH sensor with a broad-range responding was prepared by one-pot hydrothermal treatment of melamine and triethanolamine. The as-prepared N-CNs exhibited excellent photoluminesence properties with an absolute quantum yield (QY) of 11.0%. Furthermore, the N-CNs possessed a broad-range pH response. The linear pH response range was 3.0 to 12.0, which is much wider than that of previously reported fluorescent pH sensors. The possible mechanism for the pH-sensitive response of the N-CNs was ascribed to photoinduced electron transfer (PET). Cell toxicity experiment showed that the as-prepared N-CNs exhibited low cytotoxicity and excellent biocompatibility with the cell viabilities of more than 87%. The proposed N-CNs-based pH sensor was used for pH monitoring of environmental water samples, and pH fluorescence imaging of live T24 cells. The N-CNs is promising as a convenient and general fluorescent pH sensor for environmental monitoring and bioimaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Effects of inoculation sources on the enrichment and performance of anode bacterial consortia in sensor typed microbial fuel cells

    Directory of Open Access Journals (Sweden)

    Phuong Tran

    2016-01-01

    Full Text Available Microbial fuel cells are a recently emerging technology that promises a number of applications in energy recovery, environmental treatment and monitoring. In this study, we investigated the effect of inoculating sources on the enrichment of electrochemically active bacterial consortia in sensor-typed microbial fuel cells (MFCs. Several MFCs were constructed, operated with modified artificial wastewater and inoculated with different microbial sources from natural soil, natural mud, activated sludge, wastewater and a mixture of those sources. After enrichment, the MFCs inoculated with the natural soil source generated higher and more stable currents (0.53±0.03 mA, in comparisons with the MFCs inoculated with the other sources. The results from denaturing gradient gel electrophoresis (DGGE showed that there were significant changes in bacterial composition from the original inocula to the enriched consortia. Even more interestingly, Pseudomonas sp. was found dominant in the natural soil source and also in the corresponding enriched consortium. The interactions between Pseudomonas sp. and other species in such a community are probably the key for the effective and stable performance of the MFCs.

  16. Factors affecting the performance of a single-chamber microbial fuel cell-type biological oxygen demand sensor.

    Science.gov (United States)

    Yang, Gai-Xiu; Sun, Yong-Ming; Kong, Xiao-Ying; Zhen, Feng; Li, Ying; Li, Lian-Hua; Lei, Ting-Zhou; Yuan, Zhen-Hong; Chen, Guan-Yi

    2013-01-01

    Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to degrade organic matter or sludge present in wastewater (WW), and thereby generate electricity. We developed a simple, low-cost single-chamber microbial fuel cell (SCMFC)-type biochemical oxygen demand (BOD) sensor using carbon felt (anode) and activated sludge, and demonstrated its feasibility in the construction of a real-time BOD measurement system. Further, the effects of anodic pH and organic concentration on SCMFC performance were examined, and the correlation between BOD concentration and its response time was analyzed. Our results demonstrated that the SCMFC exhibited a stable voltage after 132 min following the addition of synthetic WW (BOD concentration: 200 mg/L). Notably, the response signal increased with an increase in BOD concentration (range: 5-200 mg/L) and was found to be directly proportional to the substrate concentration. However, at higher BOD concentrations (>120 mg/L) the response signal remained unaltered. Furthermore, we optimized the SCMFC using synthetic WW, and tested it with real WW. Upon feeding real WW, the BOD values exhibited a standard deviation from 2.08 to 8.3% when compared to the standard BOD5 method, thus demonstrating the practical applicability of the developed system to real treatment effluents.

  17. Electrical output of bryophyte microbial fuel cell systems is sufficient to power a radio or an environmental sensor

    Science.gov (United States)

    Dennis, Ross J.; Felder, Fabienne; Cooper, Matt B.; Royles, Jessica; Harrison, Susan T. L.; Smith, Alison G.; Howe, Christopher J.

    2016-01-01

    Plant microbial fuel cells are a recently developed technology that exploits photosynthesis in vascular plants by harnessing solar energy and generating electrical power. In this study, the model moss species Physcomitrella patens, and other environmental samples of mosses, have been used to develop a non-vascular bryophyte microbial fuel cell (bryoMFC). A novel three-dimensional anodic matrix was successfully created and characterized and was further tested in a bryoMFC to determine the capacity of mosses to generate electrical power. The importance of anodophilic microorganisms in the bryoMFC was also determined. It was found that the non-sterile bryoMFCs operated with P. patens delivered over an order of magnitude higher peak power output (2.6 ± 0.6 µW m−2) than bryoMFCs kept in near-sterile conditions (0.2 ± 0.1 µW m−2). These results confirm the importance of the microbial populations for delivering electrons to the anode in a bryoMFC. When the bryoMFCs were operated with environmental samples of moss (non-sterile) the peak power output reached 6.7 ± 0.6 mW m−2. The bryoMFCs operated with environmental samples of moss were able to power a commercial radio receiver or an environmental sensor (LCD desktop weather station). PMID:27853542

  18. A gut feeling for obesity: 7TM sensors on enteroendocrine cells

    DEFF Research Database (Denmark)

    Engelstoft, Maja Storm; Egerod, Kristoffer L; Holst, Birgitte

    2008-01-01

    Enteroendocrine cells, which secrete peptide hormones in response to sensation of food and gut microbiota products, can now be genetically tagged, isolated, cultured, and characterized for expression of the elusive chemosensors, as shown in publications in PNAS (Samuel et al., 2008) and in this i......Enteroendocrine cells, which secrete peptide hormones in response to sensation of food and gut microbiota products, can now be genetically tagged, isolated, cultured, and characterized for expression of the elusive chemosensors, as shown in publications in PNAS (Samuel et al., 2008...

  19. Transcriptional profiling of human breast cancer cells cultured under microgravity conditions revealed the key role of genetic gravity sensors previously detected in Drosophila melanogaster

    Science.gov (United States)

    Valdivia-Silva, Julio E.; Lavan, David; Diego Orihuela-Tacuri, M.; Sanabria, Gabriela

    2016-07-01

    Currently, studies in Drosophila melanogaster has shown emerging evidence that microgravity stimuli can be detected at the genetic level. Analysis of the transcriptome in the pupal stage of the fruit flies under microgravity conditions versus ground controls has suggested the presence of a few candidate genes as "gravity sensors" which are experimentally validated. Additionally, several studies have shown that microgravity causes inhibitory effects in different types of cancer cells, although the genes involved and responsible for these effects are still unknown. Here, we demonstrate that the genes suggested as the sensors of gravitational waves in Drosophila melanogaster and their human counterpart (orthologous genes) are highly involved in carcinogenesis, proliferation, anti-apoptotic signals, invasiveness, and metastatic potential of breast cancer cell tumors. The transcriptome analyses suggested that the observed inhibitory effect in cancer cells could be due to changes in the genetic expression of these candidates. These results encourage the possibility of new therapeutic targets managed together and not in isolation.

  20. IMAGING WITH MULTIMODAL ADAPTIVE-OPTICS OPTICAL COHERENCE TOMOGRAPHY IN MULTIPLE EVANESCENT WHITE DOT SYNDROME: THE STRUCTURE AND FUNCTIONAL RELATIONSHIP.

    Science.gov (United States)

    Labriola, Leanne T; Legarreta, Andrew D; Legarreta, John E; Nadler, Zach; Gallagher, Denise; Hammer, Daniel X; Ferguson, R Daniel; Iftimia, Nicusor; Wollstein, Gadi; Schuman, Joel S

    2016-01-01

    To elucidate the location of pathological changes in multiple evanescent white dot syndrome (MEWDS) with the use of multimodal adaptive optics (AO) imaging. A 5-year observational case study of a 24-year-old female with recurrent MEWDS. Full examination included history, Snellen chart visual acuity, pupil assessment, intraocular pressures, slit lamp evaluation, dilated fundoscopic exam, imaging with Fourier-domain optical coherence tomography (FD-OCT), blue-light fundus autofluorescence (FAF), fundus photography, fluorescein angiography, and adaptive-optics optical coherence tomography. Three distinct acute episodes of MEWDS occurred during the period of follow-up. Fourier-domain optical coherence tomography and adaptive-optics imaging showed disturbance in the photoreceptor outer segments (PR OS) in the posterior pole with each flare. The degree of disturbance at the photoreceptor level corresponded to size and extent of the visual field changes. All findings were transient with delineation of the photoreceptor recovery from the outer edges of the lesion inward. Hyperautofluorescence was seen during acute flares. Increase in choroidal thickness did occur with each active flare but resolved. Although changes in the choroid and RPE can be observed in MEWDS, Fourier-domain optical coherence tomography, and multimodal adaptive optics imaging localized the visually significant changes seen in this disease at the level of the photoreceptors. These transient retinal changes specifically occur at the level of the inner segment ellipsoid and OS/RPE line. En face optical coherence tomography imaging provides a detailed, yet noninvasive method for following the convalescence of MEWDS and provides insight into the structural and functional relationship of this transient inflammatory retinal disease.

  1. RNA sensors enable human mast cell anti-viral chemokine production and IFN-mediated protection in response to antibody-enhanced dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Michael G Brown

    Full Text Available Dengue hemorrhagic fever and/or dengue shock syndrome represent the most serious pathophysiological manifestations of human dengue virus infection. Despite intensive research, the mechanisms and important cellular players that contribute to dengue disease are unclear. Mast cells are tissue-resident innate immune cells that play a sentinel cell role in host protection against infectious agents via pathogen-recognition receptors by producing potent mediators that modulate inflammation, cell recruitment and normal vascular homeostasis. Most importantly, mast cells are susceptible to antibody-enhanced dengue virus infection and respond with selective cytokine and chemokine responses. In order to obtain a global view of dengue virus-induced gene regulation in mast cells, primary human cord blood-derived mast cells (CBMCs and the KU812 and HMC-1 mast cell lines were infected with dengue virus in the presence of dengue-immune sera and their responses were evaluated at the mRNA and protein levels. Mast cells responded to antibody-enhanced dengue virus infection or polyinosiniċpolycytidylic acid treatment with the production of type I interferons and the rapid and potent production of chemokines including CCL4, CCL5 and CXCL10. Multiple interferon-stimulated genes were also upregulated as well as mRNA and protein for the RNA sensors PKR, RIG-I and MDA5. Dengue virus-induced chemokine production by KU812 cells was significantly modulated by siRNA knockdown of RIG-I and PKR, in a negative and positive manner, respectively. Pretreatment of fresh KU812 cells with supernatants from dengue virus-infected mast cells provided protection from subsequent infection with dengue virus in a type I interferon-dependent manner. These findings support a role for tissue-resident mast cells in the early detection of antibody-enhanced dengue virus infection via RNA sensors, the protection of neighbouring cells through interferon production and the potential recruitment of

  2. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under

  3. Ultrasensitive refractive index sensor based on twin-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Town, Graham E.; Bang, Ole

    We have theoretically investigated twin-core all-solid photonic bandgap fibers (PBGFs) for evanescent wave sensing of refractive index within one single microfluidic analyte channel centered between the two cores. The sensor can achieve ultrahigh sensitivity by detecting the change in transmission....... We find novel features in the sensing characteristics: the sensitivity is higher at the short wavelength edge of a bandgap than at the long wavelength edge, the effective index of the odd supermode (nodd) is more sensitive to ambient refractive index change compared with that of the even supermode...

  4. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System

    OpenAIRE

    Qi Zheng; Lei Xiong; Bing Mo; Weihong Lu; Suki Kim; Zhenyu Wang

    2015-01-01

    Microbial fuel cells (MFCs) are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS) is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an ind...

  5. Bifacial PV cell with reflector for stand-alone mast for sensor powering purposes

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2017-01-01

    Reflectors to bifacial PV-cells are simulated and prototyped in this work. The aim is to optimize the reflector to specific latitudes, and particularly northern latitudes. Specifically, by using minimum semiconductor area the reflector must be able to deliver the electrical power required at the ...... at the condition of minimum solar travel above the horizon, worst weather condition etc. We will test a bifacial PV-module with a retroreflector, and compare the output with simulations combined with local solar data....

  6. Surface Embedded Metal Oxide Sensors (SEMOS)

    DEFF Research Database (Denmark)

    Jespersen, Jesper Lebæk; Talat Ali, Syed; Pleth Nielsen, Lars

    SEMOS is a joint project between Aalborg University, Danish Technological Institute and Danish Technical University in which micro temperature sensors and metal oxide-based gas sensors are developed and tested in a simulated fuel cell environment as well as in actual working fuel cells. Initially......, sensors for measuring the temperatures in an operating HT-PEM (High Temperature-Proton Exchange Membrane) fuel cell are developed for detecting in-plane temperature variations. 5 different tracks for embedded thermal sensors are investigated. The fuel cell MEA (Membrane Electrode Assembly) is quite...... complex and sensors are not easily implemented in the construction. Hence sensor interface and sensor position must therefore be chosen carefully in order to make the sensors as non-intrusive as possible. Metal Oxide Sensors (MOX) for measuring H2, O2 and CO concentration in a fuel cell environment...

  7. Microfabricated magnetic structures for future medicine: from sensors to cell actuators

    Science.gov (United States)

    Vitol, Elina A; Novosad, Valentyn; Rozhkova, Elena A

    2013-01-01

    In this review, we discuss the prospective medical application of magnetic carriers microfabricated by top-down techniques. Physical methods allow the fabrication of a variety of magnetic structures with tightly controlled magnetic properties and geometry, which makes them very attractive for a cost-efficient mass-production in the fast growing field of nanomedicine. Stand-alone fabricated particles along with integrated devices combining lithographically defined magnetic structures and synthesized magnetic tags will be considered. Applications of microfabricated multifunctional magnetic structures for future medicinal purposes range from ultrasensitive in vitro diagnostic bioassays, DNA sequencing and microfluidic cell sorting to magnetomechanical actuation, cargo delivery, contrast enhancement and heating therapy. PMID:23148542

  8. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha, E-mail: sangeetha@annauniv.edu

    2014-03-01

    Graphical abstract: - Highlights: • Sulfonated poly ether ether ketone (SPEEK) membrane in SCMFC used to determine the BOD. • The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm. • This sensing range was 62.5% higher than that of Nafion{sup ®}. • SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}. • Nafion{sup ®} shows high anodic internal resistance (67 Ω) than the SPEEK (39 Ω). - Abstract: The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion{sup ®}. The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}, resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  9. Solution-assisted ultrafast transfer of graphene-based thin films for solar cells and humidity sensors.

    Science.gov (United States)

    Sun, Jiawei; Xie, Xiao; Bi, Hengchang; Jia, Haiyang; Zhu, Chongyang; Wan, Neng; Huang, Jianqiu; Nie, Meng; Li, Dan; Sun, Litao

    2017-03-01

    Vacuum filtration enables the fabrication of large-area graphene-based membranes (GBMs), possessing a smoother surface than that by spray, spin coating or drop casting. However, due to the strong interaction with substrates, the separation of thin GBMs from the filter is problematic. Conventional stamping separation/transfer of graphene oxide (GO) thin films requires another substrate and pressing for >10 h, which may damage the delicate structure of the transfer substrates. Other methods require GO to be reduced on filters before separation, thus limiting the reduction methods. Inspired by a coagulation bath that enables rapid formation of ultrastrong GO fibers, we present an ultrafast (solar cells, it showed higher (8.58%) power conversion efficiency than its spin-(7.71%) and spray-coated (8.07%) counterparts. It also showed promising performance in capacitive humidity sensors. The capacitance varied by three orders of magnitude in the range of the relative humidity of 15%-95%. Therefore the strategy realizes an ultrafast and high-quality film production which is suitable for various applications.

  10. Solution-assisted ultrafast transfer of graphene-based thin films for solar cells and humidity sensors

    Science.gov (United States)

    Sun, Jiawei; Xie, Xiao; Bi, Hengchang; Jia, Haiyang; Zhu, Chongyang; Wan, Neng; Huang, Jianqiu; Nie, Meng; Li, Dan; Sun, Litao

    2017-03-01

    Vacuum filtration enables the fabrication of large-area graphene-based membranes (GBMs), possessing a smoother surface than that by spray, spin coating or drop casting. However, due to the strong interaction with substrates, the separation of thin GBMs from the filter is problematic. Conventional stamping separation/transfer of graphene oxide (GO) thin films requires another substrate and pressing for >10 h, which may damage the delicate structure of the transfer substrates. Other methods require GO to be reduced on filters before separation, thus limiting the reduction methods. Inspired by a coagulation bath that enables rapid formation of ultrastrong GO fibers, we present an ultrafast (solar cells, it showed higher (8.58%) power conversion efficiency than its spin-(7.71%) and spray-coated (8.07%) counterparts. It also showed promising performance in capacitive humidity sensors. The capacitance varied by three orders of magnitude in the range of the relative humidity of 15%-95%. Therefore the strategy realizes an ultrafast and high-quality film production which is suitable for various applications.

  11. In Situ Search for Extraterrestrial Life: A Microbial Fuel Cell-Based Sensor for the Detection of Photosynthetic Metabolism.

    Science.gov (United States)

    Figueredo, Federico; Cortón, Eduardo; Abrevaya, Ximena C

    2015-09-01

    Microbial fuel cells (MFCs) are bioelectrochemical systems (BES) capable of harvesting electrons from redox reactions involved in metabolism. In a previous work, we used chemoorganoheterotrophic microorganisms from the three domains of life-Bacteria, Archaea, and Eukarya-to demonstrate that these BES could be applied to the in situ detection of extraterrestrial life. Since metabolism can be considered a common signature of life "as we know it," we extended in this study the ability to use MFCs as sensors for photolithoautotrophic metabolisms. To achieve this goal, two different photosynthetic microorganisms were used: the microalgae Parachlorella kessleri and the cyanobacterium Nostoc sp. MFCs were loaded with nonsterilized samples, sterilized samples, or sterilized culture medium of both microorganisms. Electric potential measurements were recorded for each group in single experiments or in continuum during light-dark cycles, and power and current densities were calculated. Our results indicate that the highest power and current density values were achieved when metabolically active microorganisms were present in the anode of the MFC. Moreover, when continuous measurements were performed during light-dark cycles, it was possible to see a positive response to light. Therefore, these BES could be used not only to detect chemoorganoheterotrophic metabolisms but also photolithoautotrophic metabolisms, in particular those involving oxygenic photosynthesis. Additionally, the positive response to light when using these BES could be employed to distinguish photosynthetic from nonphotosynthetic microorganisms in a sample.

  12. FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca²⁺ dynamics.

    Science.gov (United States)

    Krebs, Melanie; Held, Katrin; Binder, Andreas; Hashimoto, Kenji; Den Herder, Griet; Parniske, Martin; Kudla, Jörg; Schumacher, Karin

    2012-01-01

    Temporally and spatially defined calcium signatures are integral parts of numerous signalling pathways. Monitoring calcium dynamics with high spatial and temporal resolution is therefore critically important to understand how this ubiquitous second messenger can control diverse cellular responses. Yellow cameleons (YCs) are fluorescence resonance energy transfer (FRET)-based genetically encoded Ca(2+) -sensors that provide a powerful tool to monitor the spatio-temporal dynamics of Ca(2+) fluxes. Here we present an advanced set of vectors and transgenic lines for live cell Ca(2+) imaging in plants. Transgene silencing mediated by the cauliflower mosaic virus (CaMV) 35S promoter has severely limited the application of nanosensors for ions and metabolites and we have thus used the UBQ10 promoter from Arabidopsis and show here that this results in constitutive and stable expression of YCs in transgenic plants. To improve the spatial resolution, our vector repertoire includes versions of YCs that can be targeted to defined locations. Using this toolkit, we identified temporally distinct responses to external ATP at the plasma membrane, in the cytosol and in the nucleus of neighbouring root cells. Moreover analysis of Ca(2+) dynamics in Lotus japonicus revealed distinct Nod factor induced Ca(2+) spiking patterns in the nucleus and the cytosol. Consequently, the constructs and transgenic lines introduced here enable a detailed analysis of Ca(2+) dynamics in different cellular compartments and in different plant species and will foster novel approaches to decipher the temporal and spatial characteristics of calcium signatures. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  13. Electrical impedance sensor for quantitative monitoring of infection processes on HCT-8 cells by the waterborne parasite Cryptosporidium.

    Science.gov (United States)

    Dibao-Dina, Alfred; Follet, Jérôme; Ibrahim, Mouhamad; Vlandas, Alexis; Senez, Vincent

    2015-04-15

    Cryptosporidium is the main origin of worldwide waterborne epidemic outbreaks caused by protozoan parasites. Its resilience to water chemical treatments and the absence of therapy led to consider it as a reference pathogen to assess water quality and as a possible bioterrorism agent. We here show that an electrical impedance-based device is able to get insights on Cryptosporidium development on a cell culture and to quantify sample infectivity. HCT-8 cells were grown to confluency on Interdigitated Microelectrode Arrays (IMA's) during 76h and then infected by Cryptosporidium parvum during 60h. The impedimetric response was measured at frequencies ranging from 100Hz to 1MHz and a 7min sampling period. As the infection progresses the impedance signal shows a reproducible distinct succession of peaks at 12h post infection (PI), 23h PI and 31h PI and local minima at 9h PI, 19h PI and 28h PI. An equivalent circuit modeling-based approach indicates that these features are mostly originated from paracellular pathway modifications due to host-parasite interactions. Furthermore, our data present for the first time a real-time monitoring of early parasitic stage development with alternating zoite and meront predominances, observed respectively at peaks and local minima in the impedimetric signal. Finally, by quantifying the magnitude of the impedimetric response, we demonstrate this device can also be used as an infectivity sensor as early as 12h PI thus being at least 6 times faster than other state of the art techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Graphene hybrids: Synthesis strategies and applications in sensors and sensitized solar cells

    Science.gov (United States)

    Badhulika, Sushmee; Terse-Thakoor, Trupti; Chaves Villarreal, Claudia; Mulchandani, Ashok

    2015-06-01

    Graphene exhibits unique 2-D structural, chemical and electronic properties that lead to its many potential applications. In order to expand the scope of its usage, graphene hybrids which combine the synergetic properties of graphene along with metals/ metal oxides and other nanostructured materials have been synthesized and are a widely emerging field of research. This review presents an overview of the recent progress made in the field of graphene hybrid architectures with a focus on the synthesis of graphene-carbon nanotube (G-CNT), graphene-semiconductor nanomaterial (G-SNM) and graphene-metal nanomaterial (G-MNM) hybrids. It attempts to identify the bottlenecks involved and outlines future directions for development and comprehensively summarizes their applications in the field of sensing and sensitized solar cells.

  15. Doped Overoxidized Polypyrrole Microelectrodes as Sensors for the Detection of Dopamine Released from Cell Populations

    DEFF Research Database (Denmark)

    Sasso, Luigi; Heiskanen, Arto; Diazzi, Francesco

    2013-01-01

    A surface modification of interdigitated gold microelectrodes (IDEs) with a doped polypyrrole (PPy) film for detection of dopamine released from populations of differentiated PC12 cells is presented. A thin PPy layer was potentiostatically electropolymerized from an 10 aqueous pyrrole solution onto...... electrode surfaces. The conducting polymer film was doped during electropolymerization by introducing counter ions in the monomer solution. Several counter ions were tested and the resulting electrode modifications were characterized electrochemically to find the optimal dopant that increases sensitivity...... in dopamine detection. Overoxidation of the PPy films was shown to contribute to a significant enhancement in sensitivity to dopamine. The changes caused by overoxidation in the electrochemical behavior and electrode morphology were investigated using cyclic voltammetry and SEM as well as AFM, respectively...

  16. Graphene hybrids: Synthesis strategies and applications in sensors and sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Sushmee eBadhulika

    2015-06-01

    Full Text Available Graphene exhibits unique 2-D structural, chemical and electronic properties that lead to its many potential applications. In order to expand the scope of its usage, graphene hybrids which combine the synergetic properties of graphene along with metals/ metal oxides and other nanostructured materials have been synthesized and are a widely emerging field of research. This review presents an overview of the recent progress made in the field of graphene hybrid architectures with a focus on the synthesis of graphene-carbon nanotube (G-CNT, graphene-semiconductor nanomaterial (G-SNM and graphene-metal nanomaterial (G-MNM hybrids. It attempts to identify the bottlenecks involved and outlines future directions for development and comprehensively summarizes their applications in the field of sensing and sensitized solar cells.

  17. Graphene hybrids: synthesis strategies and applications in sensors and sensitized solar cells

    Science.gov (United States)

    Badhulika, Sushmee; Terse-Thakoor, Trupti; Villarreal, Claudia; Mulchandani, Ashok

    2015-01-01

    Graphene exhibits unique 2-D structural, chemical, and electronic properties that lead to its many potential applications. In order to expand the scope of its usage, graphene hybrids which combine the synergetic properties of graphene along with metals/metal oxides and other nanostructured materials have been synthesized and are a widely emerging field of research. This review presents an overview of the recent progress made in the field of graphene hybrid architectures with a focus on the synthesis of graphene-carbon nanotube (G-CNT), graphene-semiconductor nanomaterial (G-SNM), and graphene-metal nanomaterial (G-MNM) hybrids. It attempts to identify the bottlenecks involved and outlines future directions for development and comprehensively summarizes their applications in the field of sensing and sensitized solar cells. PMID:26176007

  18. Graphene hybrids: synthesis strategies and applications in sensors and sensitized solar cells.

    Science.gov (United States)

    Badhulika, Sushmee; Terse-Thakoor, Trupti; Villarreal, Claudia; Mulchandani, Ashok

    2015-01-01

    Graphene exhibits unique 2-D structural, chemical, and electronic properties that lead to its many potential applications. In order to expand the scope of its usage, graphene hybrids which combine the synergetic properties of graphene along with metals/metal oxides and other nanostructured materials have been synthesized and are a widely emerging field of research. This review presents an overview of the recent progress made in the field of graphene hybrid architectures with a focus on the synthesis of graphene-carbon nanotube (G-CNT), graphene-semiconductor nanomaterial (G-SNM), and graphene-metal nanomaterial (G-MNM) hybrids. It attempts to identify the bottlenecks involved and outlines future directions for development and comprehensively summarizes their applications in the field of sensing and sensitized solar cells.

  19. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor.

    Science.gov (United States)

    Sood, Chetan; Marin, Mariana; Mason, Caleb S; Melikyan, Gregory B

    2016-01-01

    HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.

  20. Absorption-Modulated Crossed-Optical Fiber-Sensor Platform for Measurements in Liquid Environments and Flow Streams

    Directory of Open Access Journals (Sweden)

    Paul E. Henning

    2017-01-01

    Full Text Available A new evanescent-wave fiber sensor is described that utilizes absorption-modulated luminescence (AML in combination with a crossed-fiber sensor platform. The luminescence signals of two crossed-fiber reference regions, placed on opposite sides of the stretch of fiber supporting the absorbance sensor, monitor the optical intensity in the fiber core. Evanescent absorption of the sensor reduces a portion of the excitation light and modulates the luminescence of the second reference region. The attenuation is determined from the luminescence intensity of both reference regions similar to the Beer-Lambert Law. The AML-Crossed-Fiber technique was demonstrated using the absorbance of the Zn(II-PAN2 complex at 555 nm. A linear response was obtained over a zinc(II concentration range of 0 to 20 μM (approximately 0 to 1.3 ppm. A nonlinear response was observed at higher zinc(II concentrations and was attributed to depletion of higher-order modes in the fiber. This was corroborated by the measured induced repopulation of these modes.

  1. Online, In-Situ Monitoring Combustion Turbines Using Wireless Passive Ceramic Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xun [Univ. of Central Florida, Orlando, FL (United States). Dept. of Electrical Engineering and Computer Science; An, Linan [Univ. of Central Florida, Orlando, FL (United States). Dept. of Materials Science and Engineering; Xu, Chengying [Univ. of Central Florida, Orlando, FL (United States). Dept. of Mechanical and Aerospace Engineering

    2013-06-30

    The overall objective of this project is to develop high-temperature wireless passive ceramic sensors for online, real-time monitoring combustion turbines. During this project period, we have successfully demonstrated temperature sensors up to 1300°C and pressure sensors up to 800°C. The temperature sensor is based on a high-Q-factor dielectric resonator and the pressure sensor utilizes the evanescent-mode cavity to realize a pressure-sensitive high-Q-factor resonator. Both sensors are efficiently integrated with a compact antenna. These sensors are wirelessly interrogated. The resonant frequency change corresponding to either temperature or pressure can be identified using a time-domain gating technique. The sensors realized in this project can survive harsh environments characterized by high temperatures (>1000°C) and corrosive gases, owing to the excellent material properties of polymer-derived ceramics (PDCs) developed at University of Central Florida. It is anticipated that this work will significantly advance the capability of high-temperature sensor technologies and be of a great benefit to turbine industry and their customers.

  2. Endoplasmic Reticulum Stress Sensor IRE1α Enhances IL-23 Expression by Human Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Saioa Márquez

    2017-06-01

    Full Text Available Human monocyte-derived dendritic cells (DCs exposed to pathogen-associated molecular patterns (PAMPs undergo bioenergetic changes that influence the immune response. We found that stimulation with PAMPs enhanced glycolysis in DCs, whereas oxidative phosphorylation remained unaltered. Glucose starvation and the hexokinase inhibitor 2-deoxy-d-glucose (2-DG modulated cytokine expression in stimulated DCs. Strikingly, IL23A was markedly induced upon 2-DG treatment, but not during glucose deprivation. Since 2-DG can also rapidly inhibit protein N-glycosylation, we postulated that this compound could induce IL-23 in DCs via activation of the endoplasmic reticulum (ER stress response. Indeed, stimulation of DCs with PAMPs in the presence of 2-DG robustly activated inositol-requiring protein 1α (IRE1α signaling and to a lesser extent the PERK arm of the unfolded protein response. Additional ER stressors such as tunicamycin and thapsigargin also promoted IL-23 expression by PAMP-stimulated DCs. Pharmacological, biochemical, and genetic analyses using conditional knockout mice revealed that IL-23 induction in ER stressed DCs stimulated with PAMPs was IRE1α/X-box binding protein 1-dependent upon zymosan stimulation. Interestingly, we further evidenced PERK-mediated and CAAT/enhancer-binding protein β-dependent trans-activation of IL23A upon lipopolysaccharide treatment. Our findings uncover that the ER stress response can potently modulate cytokine expression in PAMP-stimulated human DCs.

  3. [Development of a low-cost single chamber microbial fuel cell type BOD sensor].

    Science.gov (United States)

    Wu, Feng; Liu, Zhi; Zhou, Ben; Zhou, Shun-gui; Rao, Li-qun; Wang, Yue-qiang

    2010-07-01

    The principle of the detector is based on the effect of microbial toxicity of water sample on the electricity generation in microbial fuel cell (MFC). The performance of the MFC-type biotoxicity detector was evaluated with the synthetic water containing heavy metals of Cd2+ and Cu2+. The experimental results demonstrated that: (1) relative to the conventional methods, the MFC-type detector is easy to operate, and suitable for on-line measurements with high sensitivity; (2) it only requires 4 h to complete measurements, and can get ready for next measurement within 4 h; (3) there is a significant linear correlation between the concentration of toxic metal(s) and inhibition ratios in Coulombic yields of MFC. As the IC20 (concentration causing 20% inhibition) of Cd2+, Cu2+ and mixed metals (Cd2+ and Cu2+) were 0.6, 0.8 and 0.25 mg/L, the regression coefficients were shown to be 0.9960, 0.9744 and 0.9907.

  4. Microbial fuel-cell-based toxicity sensor for fast monitoring of acidic toxicity.

    Science.gov (United States)

    Shen, Yu J; Lefebvre, Olivier; Tan, Zi; Ng, How Y

    2012-01-01

    Wastewater may contain various potential toxicants. A microbial fuel cell (MFC) is a device in which bacteria convert the chemical energy into electricity. If a toxic event occurs, microbial activity is inhibited and thus the power output of the MFC decreases. Therefore, an MFC could serve as an early toxicity warning device. A real-time biomonitoring system was developed using MFCs to detect the inflow of toxic substances into wastewater treatment systems. After the MFCs reached steady state, a toxic incident was created by adding HCl into the wastewater to alter its pH. Consequently, a rapid decrease in voltage was observed immediately, followed by a subsequent recovery. The optimal MFC design was a single-chamber air cathode MFC, where the anode and cathode were separated by a Selemion proton exchange membrane. Under an external resistance of 5 Ω, the maximum power averaged 0.23 ± 0.023 mW with domestic wastewater. The optimized MFC showed high sensitivity and fast recovery when exposed to the acidic toxic event. When the hydraulic retention time was decreased from 22 to 3.5 min, sensitivity of the MFC increased substantially. Finally, the extent of inhibition observed was found to be related to the toxicity level, suggesting that a dosage-response relationship exists.

  5. Renewable and Ultralong Nanoelectrochemical Sensor: Nanoskiving Fabrication and Application for Monitoring Cell Release.

    Science.gov (United States)

    Qiu, Wanling; Xu, Muzhen; Li, Ruixin; Liu, Xiaomeng; Zhang, Meining

    2016-01-19

    Nanoscaled electrode has been attracting increasing attention because of striking fundamentals and practical applications. Usually, the nanoscaled electrode is fabricated by manual or photo or electron-beam lithography, which is not easy to reproducibly fabricate with simple equipment. In this paper, a cost-effective method, nanoskiving, is developed to fabricate an ultralong nanowire electrode (ULNE). The ULNE is reproducibly obtained by simply sectioning a sandwich epoxy block with a Au film. The width of ULNE could be down to nanometer dependence on the thickness of the Au film, while the length could reach to the millimeter. Thus, the created Au ULNE shows steady-state microamperometric current, characteristic of the nanoelectrode array attributed to its macroscopic length and nanoscaled width without considering the overlap of the diffusion layer of the neighboring nanoelectrode. The electrodeposited Pt/Au ULNE displays unusual electrocatalytic performance toward both the oxidation and reduction of hydrogen peroxide and, as a nanosensor, gives rise to high sensitivity and selectivity of monitoring hydrogen peroxide released from cells stimulated by ascorbic acid.

  6. Fiber optic sensors IV; Proceedings of the Third European Congress on Optics, The Hague, Netherlands, Mar. 13, 14, 1990

    Science.gov (United States)

    Kersten, Ralf T. (Editor)

    1990-01-01

    Recent advances in fiber-optic sensor (FOS) technology are examined in reviews and reports. Sections are devoted to components for FOSs, special fibers for FOSs, interferometry, FOS applications, and sensing principles and influence. Particular attention is given to solder glass sealing technology for FOS packaging, the design of optical-fiber current sensors, pressure and temperature effects on beat length in highly birefringent optical fibers, a pressure FOS based on vibrating-quartz-crystal technology, remote sensing of flammable gases using a fluoride-fiber evanescent probe, a displacement sensor with electronically scanned white-light interferometer, the use of multimode laser diodes in low-coherence coupled-cavity interferometry, electronic speckle interferometry compensated for environmentally induced phase noise, a dual-resolution noncontact vibration and displacement sensor based on a two-wavelength source, and fiber optics in composite materials.

  7. Microbial O2- and H2O2-electrode sensors for alcohol assays based on the use of permeabilized mutant yeast cells as the sensitive bioelements.

    Science.gov (United States)

    Gonchar, M V; Maidan, M M; Moroz, O M; Woodward, J R; Sibirny, A A

    1998-10-15

    Two types of alcohol-specific microbial/electrochemical biosensors have been developed using specially constructed mutant cells of the methylotrophic yeast Hansenula polymorpha. The cells were immobilized in a calcium alginate gel, and placed between two membranes on the surface of oxygen or hydrogen peroxide-electrodes. The O2 electrode based biosensor contained mutant cells with strongly elevated alcohol oxidase activity. The peroxide electrode based biosensor consisted of catalase-defective mutant cells which produce hydrogen peroxide in the presence of alcohol. Both types of mutant cells were used in permeabilized form in order to release some components of the cellular respiration system, thus increasing the selectivity of the cellular respiration response to alcohol (cell/O2-biosensor) Permeabilization also increased sensitivity of the signal and shortened the response time (cell/H2O2-biosensor). Cell/O2 biosensors were linear up to 1.2 mM for ethanol and 0.35 mM for methanol, cell/H2O2 biosensors were linear up to 4.0 mM for ethanol, and 1.2 mM for methanol. Results were reproducible, sample pretreatment was not required, and the sensors exhibited good operational and storage stability. The use of sucrose, dulcitol or inositol during the preparation of the sensors resulted in increased stability of cells during their liophilization and storage in the dried state. Both biosensors had similar selectivity towards alcohols in the order of methanol (100%), ethanol (21%), and formaldehyde (12%). No signal was observed with glucose or glycerol as substrates.

  8. Optofluidic sensor engineering towards plutonium concentration measurements

    Science.gov (United States)

    Allenet, T.; Geoffray, F.; Bucci, D.; Guillerme, L.; Canto, F.; Bouchard, A.; Broquin, J.-E.

    2017-02-01

    Research in nuclear safety and fuel reprocessing has led to a surging need for novel chemical analysis tools with reduced analyte and effluent volumes. Recent technological advances for the elaboration and packaging of glass optofluidic co - integrated sensors have opened up the way for said analysis in harsh environments. We discuss a sensor engineering approach for the construction of an integrated absorption spectrometer with an ion-exchange core. Pu(VI) oxidation state exhibits a major absorption peak at a wavelength of 831 nm with a molar absorption coefficient of 545 L.mol-1.cm-1. An evanescent waveguiding sensing structure that allows guided fluid/light interaction is investigated in order to provide absorption spectroscopy measurements. The work presented consists of optical simulations as well as experimental measurements. Waveguide engineering with respects to modal transmission, field/fluid interaction coefficient Γ and device losses is presented. The simulations are carried out by computing ion-exchanged waveguide refractive index distribution and using it in mode solver software. Device optical characterization and bench tests are carried out to verify approach viability. First device measurements of a neodymium absorption peak in nuclear manipulation conditions are displayed.

  9. Sensor networks

    NARCIS (Netherlands)

    Chatterjea, Supriyo; Thurston, J.; Kininmonth, S.; Havinga, Paul J.M.

    2006-01-01

    This article describes the details of a sensor network that is currently being deployed at the Great Barrier Reef in Australia. The sensor network allows scientists to retrieve sensor data that has a high spatial and temporal resolution. We give an overview of the energy-efficient data aggregation

  10. Attention Sensor

    NARCIS (Netherlands)

    Börner, Dirk; Kalz, Marco; Specht, Marcus

    2014-01-01

    This software sketch was used in the context of an experiment for the PhD project “Ambient Learning Displays”. The sketch comprises a custom-built attention sensor. The sensor measured (during the experiment) whether a participant looked at and thus attended a public display. The sensor was built

  11. Zinc oxide nanoparticle based optical fiber humidity sensor having linear response throughout a large dynamic range.

    Science.gov (United States)

    Aneesh, R; Khijwania, Sunil K

    2011-09-20

    The main objective of the present work is to develop an optical fiber relative humidity (RH) sensor having a linear response throughout over the widest possible dynamic range. We report an optical fiber RH sensor based on the evanescent wave absorption spectroscopy that fulfills this objective. The fiber sensor employs a specific nanoparticle (zinc oxide) doped sol-gel nanostructured sensing film of optimum thickness, synthesized over a short length of a centrally decladded straight and uniform optical fiber. A detailed experimental investigation is carried out to analyze the sensor response/characteristics. Fiber sensor response is observed to be linear throughout the dynamic range as wide as 4% to 96% RH. The observed linear sensitivity for the fiber sensor is 0.0012 RH(-1). The average response time of the reported sensor is observed to be as short as 0.06 s during the humidification. In addition, the sensor exhibited a very good degree of reversibility and extremely high reliability as well as repeatability.

  12. CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell

    Science.gov (United States)

    Krzempek, Karol; Jahjah, Mohammad; Lewicki, Rafał; Stefański, Przemysław; So, Stephen; Thomazy, David; Tittel, Frank K.

    2013-09-01

    The development of a continuous wave, thermoelectrically cooled (TEC), distributed feedback diode laser-based spectroscopic trace-gas sensor for ultra-sensitive and selective ethane (C2H6) concentration measurements is reported. The sensor platform used tunable diode laser absorption spectroscopy (TDLAS) and wavelength modulation spectroscopy as the detection technique. TDLAS was performed using an ultra-compact 57.6 m effective optical path length innovative spherical multipass cell capable of 459 passes between two mirrors separated by 12.5 cm and optimized for the 2.5-4 μm range TEC mercury-cadmium-telluride detector. For an interference-free C2H6 absorption line located at 2,976.8 cm-1, a 1 σ minimum detection limit of 740 pptv with a 1 s lock-in amplifier time constant was achieved.

  13. A New Generation of FRET Sensors for Robust Measurement of Gαi1, Gαi2 and Gαi3 Activation Kinetics in Single Cells.

    Directory of Open Access Journals (Sweden)

    Jakobus van Unen

    Full Text Available G-protein coupled receptors (GPCRs can activate a heterotrimeric G-protein complex with subsecond kinetics. Genetically encoded biosensors based on Förster resonance energy transfer (FRET are ideally suited for the study of such fast signaling events in single living cells. Here we report on the construction and characterization of three FRET biosensors for the measurement of Gαi1, Gαi2 and Gαi3 activation. To enable quantitative long-term imaging of FRET biosensors with high dynamic range, fluorescent proteins with enhanced photophysical properties are required. Therefore, we use the currently brightest and most photostable CFP variant, mTurquoise2, as donor fused to Gαi subunit, and cp173Venus fused to the Gγ2 subunit as acceptor. The Gαi FRET biosensors constructs are expressed together with Gβ1 from a single plasmid, providing preferred relative expression levels with reduced variation in mammalian cells. The Gαi FRET sensors showed a robust response to activation of endogenous or over-expressed alpha-2A-adrenergic receptors, which was inhibited by pertussis toxin. Moreover, we observed activation of the Gαi FRET sensor in single cells upon stimulation of several GPCRs, including the LPA2, M3 and BK2 receptor. Furthermore, we show that the sensors are well suited to extract kinetic parameters from fast measurements in the millisecond time range. This new generation of FRET biosensors for Gαi1, Gαi2 and Gαi3 activation will be valuable for live-cell measurements that probe Gαi activation.

  14. A New Generation of FRET Sensors for Robust Measurement of Gαi1, Gαi2 and Gαi3 Activation Kinetics in Single Cells.

    Science.gov (United States)

    van Unen, Jakobus; Stumpf, Anette D; Schmid, Benedikt; Reinhard, Nathalie R; Hordijk, Peter L; Hoffmann, Carsten; Gadella, Theodorus W J; Goedhart, Joachim

    2016-01-01

    G-protein coupled receptors (GPCRs) can activate a heterotrimeric G-protein complex with subsecond kinetics. Genetically encoded biosensors based on Förster resonance energy transfer (FRET) are ideally suited for the study of such fast signaling events in single living cells. Here we report on the construction and characterization of three FRET biosensors for the measurement of Gαi1, Gαi2 and Gαi3 activation. To enable quantitative long-term imaging of FRET biosensors with high dynamic range, fluorescent proteins with enhanced photophysical properties are required. Therefore, we use the currently brightest and most photostable CFP variant, mTurquoise2, as donor fused to Gαi subunit, and cp173Venus fused to the Gγ2 subunit as acceptor. The Gαi FRET biosensors constructs are expressed together with Gβ1 from a single plasmid, providing preferred relative expression levels with reduced variation in mammalian cells. The Gαi FRET sensors showed a robust response to activation of endogenous or over-expressed alpha-2A-adrenergic receptors, which was inhibited by pertussis toxin. Moreover, we observed activation of the Gαi FRET sensor in single cells upon stimulation of several GPCRs, including the LPA2, M3 and BK2 receptor. Furthermore, we show that the sensors are well suited to extract kinetic parameters from fast measurements in the millisecond time range. This new generation of FRET biosensors for Gαi1, Gαi2 and Gαi3 activation will be valuable for live-cell measurements that probe Gαi activation.

  15. Smart sensors

    Science.gov (United States)

    Corsi, Carlo

    2006-08-01

    The term "Smart Sensors" refer to sensors which contain both sensing and signal processing capabilities with objectives ranging from simple viewing to sophisticated remote sensing, surveillance, search/track, weapon guidance, robotics, perceptronics and intelligence applications. In a broad sense, they include any sensor systems covering the whole electromagnetic spectrum: this paper deals specifically with a new class of smart sensors in infrared spectral bands whose developments started some years ago, when it was recognized that the rapid advances of "very large scale integration" (VLSI) processor technology and mosaic infrared detector array technology could be combined to develop new generations of infrared smart sensor systems with much improved performance. So, sophisticated signal processing operations have been developed for these new systems by integrating microcomputers and other VLSI signal processors within or next to the sensor arrays on the same focal plane avoiding complex computing located far away from the sensors. Recently this approach is achieving higher goals by a new and revolutionary sensors concept which introduce inside the sensor some of the basic function of living eyes, such as dynamic stare, dishomogenity compensation, spatial and temporal filtering. New objectives and requirements of these new focal plane processors are presented for this type of new infrared smart sensor systems. This paper is concerned with the processing techniques for only the front end of the focal plane processing, namely, the enhancement of target-to-noise ratio by background clutter suppression and the improvement in target detection by "smart" and pattern correlation threshold.

  16. Enhancing Signal Output and Avoiding BOD/Toxicity Combined Shock Interference by Operating a Microbial Fuel Cell Sensor with an Optimized Background Concentration of Organic Matter.

    Science.gov (United States)

    Jiang, Yong; Liang, Peng; Liu, Panpan; Bian, Yanhong; Miao, Bo; Sun, Xueliang; Zhang, Helan; Huang, Xia

    2016-08-24

    In the monitoring of pollutants in an aquatic environment, it is important to preserve water quality safety. Among the available analysis methods, the microbial fuel cell (MFC) sensor has recently been used as a sustainable and on-line electrochemical microbial biosensor for biochemical oxygen demand (BOD) and toxicity, respectively. However, the effect of the background organic matter concentration on toxicity monitoring when using an MFC sensor is not clear and there is no effective strategy available to avoid the signal interference by the combined shock of BOD and toxicity. Thus, the signal interference by the combined shock of BOD and toxicity was systematically studied in this experiment. The background organic matter concentration was optimized in this study and it should be fixed at a high level of oversaturation for maximizing the signal output when the current change (ΔI) is selected to correlate with the concentration of a toxic agent. When the inhibition ratio (IR) is selected, on the other hand, it should be fixed as low as possible near the detection limit for maximizing the signal output. At least two MFC sensors operated with high and low organic matter concentrations and a response chart generated from pre-experiment data were both required to make qualitative distinctions of the four types of combined shock caused by a sudden change in BOD and toxicity.

  17. Enhancing the response of microbial fuel cell based toxicity sensors to Cu(II) with the applying of flow-through electrodes and controlled anode potentials.

    Science.gov (United States)

    Jiang, Yong; Liang, Peng; Zhang, Changyong; Bian, Yanhong; Yang, Xufei; Huang, Xia; Girguis, Peter R

    2015-08-01

    The application of microbial fuel cell (MFC)-based toxicity sensors to real-world water monitoring is partly impeded by the limited sensitivity. To address this limitation, this study optimized the flow configurations and the control modes. Results revealed that the sensitivity increased by ∼15-41times with the applying of a flow-through anode, compared to those with a flow-by anode. The sensors operated in the controlled anode potential (CP) mode delivered better sensitivity than those operated in the constant external resistance (ER) mode over a broad range of anode potentials from -0.41V to +0.1V. Electrodeposition of Cu(II) was found to bias the toxicity measurement at low anode potentials. The optimal anode potential was approximately -0.15V, at which the sensor achieved an unbiased measurement of toxicity and the highest sensitivity. This value was greater than those required for electrodeposition while smaller than those for power overshoot. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Enhancing Signal Output and Avoiding BOD/Toxicity Combined Shock Interference by Operating a Microbial Fuel Cell Sensor with an Optimized Background Concentration of Organic Matter

    Directory of Open Access Journals (Sweden)

    Yong Jiang

    2016-08-01

    Full Text Available In the monitoring of pollutants in an aquatic environment, it is important to preserve water quality safety. Among the available analysis methods, the microbial fuel cell (MFC sensor has recently been used as a sustainable and on-line electrochemical microbial biosensor for biochemical oxygen demand (BOD and toxicity, respectively. However, the effect of the background organic matter concentration on toxicity monitoring when using an MFC sensor is not clear and there is no effective strategy available to avoid the signal interference by the combined shock of BOD and toxicity. Thus, the signal interference by the combined shock of BOD and toxicity was systematically studied in this experiment. The background organic matter concentration was optimized in this study and it should be fixed at a high level of oversaturation for maximizing the signal output when the current change (ΔI is selected to correlate with the concentration of a toxic agent. When the inhibition ratio (IR is selected, on the other hand, it should be fixed as low as possible near the detection limit for maximizing the signal output. At least two MFC sensors operated with high and low organic matter concentrations and a response chart generated from pre-experiment data were both required to make qualitative distinctions of the four types of combined shock caused by a sudden change in BOD and toxicity.

  19. VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell

    Science.gov (United States)

    Chen, J.; Hangauer, A.; Strzoda, R.; Amann, M.-C.

    2011-02-01

    A compact and calibration-free carbon monoxide sensor approach utilizing the wide current-tunability of 2.3 μm VCSELs is reported. A separate reference cell is avoided by filling the reference gas (methane) in the photodetector housing. By applying bandwidth optimized wide/narrow wavelength scan concept, inherent wavelength scale calibration and self-monitoring of the sensor are realized, with which the laser aging process is also under control. An efficient linear least-squares curve fit using an analytical signal model for the narrow scan spectrum is done, utilizing the knowledge of the absolute wavelength scale and also the estimated WMS modulation amplitude obtained from the wide scan. The scan width of the narrow spectrum is optimized aiming at the maximum signal to noise ratio on the determined CO concentration. These concepts are universal and can be utilized for optical sensing of other gases as well and the sensor was tested under diverse applications e.g. fire detection and combustion optimization.

  20. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  1. Use of analyte-modulated modal power distribution in multimode optical fibers for simultaneous single-wavelength evanescent-wave refractometry and spectrometry.

    Science.gov (United States)

    Potyrailo, R A; Ruddy, V P; Hieftje, G M

    1999-11-01

    A new method is described for the simultaneous determination of absorbance and refractive index of a sample medium. The method is based on measurement of the analyte-modulated modal power distribution (MPD) in a multimode waveguide. In turn, the MPD is quantified by the far-field spatial pattern and intensity of light, i.e., the Fraunhofer diffraction pattern (registered on a CCD camera), that emerges from a multimode optical fiber. Operationally, light that is sent down the fiber interacts with the surrounding analyte-containing medium by means of the evanescent wave at the fiber boundary. The light flux in the propagating beam and the internal reflection angles within the fiber are both affected by optical absorption connected with the analyte and by the refractive index of the analyte-containing medium. In turn, these angles are reflected in the angular divergence of the beam as it leaves the fiber. As a result, the Fraunhofer diffraction pattern of that beam yields two parameters that can, together, be used to deduce refractive index and absorbance. This MPD based detection offers important advantages over traditional evanescent-wave detection strategies which rely on recording only the total transmitted optical power or its lost fraction. First, simultaneous determination of sample refractive index and absorbance is possible at a single probe wavelength. Second, the sensitivity of refractometric and absorption measurements can be controlled simply, either by adjusting the distance between the end face of the fiber and the CCD detector or by monitoring selected modal groups at the fiber output. As a demonstration of these capabilities, several weakly absorbing solutions were examined, with refractive indices in the range from 1.3330 to 1.4553 and with absorption coefficients in the range 0-16 cm-1. The new detection strategy is likely to be important in applications in which sample coloration varies and when it is necessary to compensate for variations in the

  2. Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching

    Science.gov (United States)

    Peng, Kaung-Jay; Wu, Chun-Lung; Lin, Yung-Hsiang; Wang, Hwai-Yung; Cheng, Chih-Hsien; Chi, Yu-Chieh; Lin, Gong-Ru

    2018-01-01

    Using the evanescent-wave saturation effect of hydrogen-free low-temperature synthesized few-layer graphene covered on the cladding region of a side-polished single-mode fiber, a blue pump/infrared probe-based all-optical switch is demonstrated with specific wavelength-dependent probe modulation efficiency. Under the illumination of a blue laser diode at 405 nm, the few-layer graphene exhibits cross-gain modulation at different wavelengths covering the C- and L-bands. At a probe power of 0.5 mW, the L-band switching throughput power variant of 16 μW results in a probe modulation depth of 3.2%. Blue shifting the probe wavelength from 1580 to 1520 nm further enlarges the switching throughput power variant to 24 mW and enhances the probe modulation depth to 5%. Enlarging the probe power from 0.5 to 1 mW further enlarges the switching throughput power variant from 25 to 58 μW to promote its probe modulation depth of up to 5.8% at 1520 nm. In contrast, the probe modulation depth degrades from 5.1% to 1.2% as the pumping power reduces from 85 to 24 mW, which is attributed to the saturable absorption of the few-layer graphene-based evanescent-wave absorber. The modulation depth at wavelength of 1550 nm under a probe power of 1 mW increases from 1.2% to 5.1%, as more carriers can be excited when increasing the blue laser power from 24 to 85 mW, whereas it decreases from 5.1% to 3.3% by increasing the input probe power from 1 to 2 mW to show an easier saturated condition at longer wavelength.

  3. The mid-IR silicon photonics sensor platform (Conference Presentation)

    Science.gov (United States)

    Kimerling, Lionel; Hu, Juejun; Agarwal, Anuradha M.

    2017-02-01

    Advances in integrated silicon photonics are enabling highly connected sensor networks that offer sensitivity, selectivity and pattern recognition. Cost, performance and the evolution path of the so-called `Internet of Things' will gate the proliferation of these networks. The wavelength spectral range of 3-8um, commonly known as the mid-IR, is critical to specificity for sensors that identify materials by detection of local vibrational modes, reflectivity and thermal emission. For ubiquitous sensing applications in this regime, the sensors must move from premium to commodity level manufacturing volumes and cost. Scaling performance/cost is critically dependent on establishing a minimum set of platform attributes for point, wearable, and physical sensing. Optical sensors are ideal for non-invasive applications. Optical sensor device physics involves evanescent or intra-cavity structures for applied to concentration, interrogation and photo-catalysis functions. The ultimate utility of a platform is dependent on sample delivery/presentation modalities; system reset, recalibration and maintenance capabilities; and sensitivity and selectivity performance. The attributes and performance of a unified Glass-on-Silicon platform has shown good prospects for heterogeneous integration on materials and devices using a low cost process flow. Integrated, single mode, silicon photonic platforms offer significant performance and cost advantages, but they require discovery and qualification of new materials and process integration schemes for the mid-IR. Waveguide integrated light sources based on rare earth dopants and Ge-pumped frequency combs have promise. Optical resonators and waveguide spirals can enhance sensitivity. PbTe materials are among the best choices for a standard, waveguide integrated photodetector. Chalcogenide glasses are capable of transmitting mid-IR signals with high transparency. Integrated sensor case studies of i) high sensitivity analyte detection in

  4. Titanium dioxide nanoparticle based optical fiber humidity sensor with linear response and enhanced sensitivity.

    Science.gov (United States)

    Aneesh, R; Khijwania, Sunil K

    2012-04-20

    An optical fiber humidity sensor employing an in-house scaled TiO2-nanoparticle doped nanostructured thin film as the fiber sensing cladding and evanescent wave absorption is reported. The main objective of the present work is to achieve a throughout-linear sensor response with high sensitivity, possibly over a wide dynamic range using the simplest possible sensor geometry. In order to realize this, first, the nanostructured sensing film is synthesized over a short length of a centrally decladded straight and uniform optical fiber and then a comprehensive experimental investigation is carried out to optimize the design configuration/parameters of the nanostructured sensing film and to achieve the best possible sensor response. Much improved sensitivity of 27.1 mV/%RH is observed for the optimized sensor along with a throughout-linear sensor response over a dynamic range as wide as 24% to 95%RH with an average response time of 0.01 s for humidification and 0.06 s for desiccation. In addition, the sensor exhibits a very good degree of reversibility and repeatability.

  5. Miniature refractive index fiber sensor based on silica micro-tube and Au micro-sphere

    Science.gov (United States)

    Lv, Riqing; Li, Jin; Hu, Haifeng; Yao, Chengbao

    2017-10-01

    We demonstrated the refractive index sensing characteristics of a miniature fiber sensor composited by silica-hollow-tube (SHT) and Au-micro-sphere (AmS). The high sensitivity is obtained due to the evanescent field effect existing in the SHT with the inner diameter of ∼2.3 μm and the surface plasmon resonance effect excited on the surface of AmS with the diameter of ∼2 μm. Experimental results indicate that this sensor can continuously measure the glucose concentration in range of 0-60% with a good linearity. The high detection sensitivity up to 8.33 μmol/L (47.33 mW/RIU) enables its ability in determining the glucose concentration in either blood or body fluids. Furthermore, the tiny structure is promise to be integrated into the microchip or other injectable structures, and monitor the glucose concentration in real-time.

  6. Optical waveguide BTX gas sensor based on polyacrylate resin thin film.

    Science.gov (United States)

    Kadir, Razak; Yimit, Abliz; Ablat, Hayrensa; Mahmut, Mamtimin; Itoh, Kiminori

    2009-07-01

    An optical sensor sensitive to BTX has been developed by spin coating a thin film of polyacrylate resin onto a tin- diffused glass optical waveguide. A pair of prism coupler was employed for optical coupling matched with diiodomethane (CH2l2). The guided wave transmits in waveguide layer and passes through the film as an evanescent wave. Polyacrylate film has a strong capacity of absorbing oil gases. The film is stable in N2 but benzene exposure at room temperature can result in rapid and reversible changes of transmittance (7) and refractive index (n1) of this film. It has been demonstrated that the sensor containing a 10 mm boardand about a hundred nanometers thick resin film can detect lower than 8 ppm BTX.

  7. Enhancement of Spatial Resolution Using a Metamaterial Sensor in Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Adriana Savin

    2015-11-01

    Full Text Available The current stage of non-destructive evaluation techniques imposes the development of new electromagnetic methods that are based on high spatial resolution and increased sensitivity. Printed circuit boards, integrated circuit boards, composite materials with polymeric matrix containing conductive fibers, as well as some types of biosensors are devices of interest in using such evaluation methods. In order to achieve high performance, the work frequencies must be either radiofrequencies or microwaves. At these frequencies, at the dielectric/conductor interface, plasmon polaritons can appear, propagating between conductive regions as evanescent waves. Detection of these waves, containing required information, can be done using sensors with metamaterial lenses. We propose in this paper the enhancement of the spatial resolution using electromagnetic methods, which can be accomplished in this case using evanescent waves that appear in the current study in slits of materials such as the spaces between carbon fibers in Carbon Fibers Reinforced Plastics or in materials of interest in the nondestructive evaluation field with industrial applications, where microscopic cracks are present. We propose herein a unique design of the metamaterials for use in nondestructive evaluation based on Conical Swiss Rolls configurations, which assure the robust concentration/focusing of the incident electromagnetic waves (practically impossible to be focused using classical materials, as well as the robust manipulation of evanescent waves. Applying this testing method, spatial resolution of approximately λ/2000 can be achieved. This testing method can be successfully applied in a variety of applications of paramount importance such as defect/damage detection in materials used in a variety of industrial applications, such as automotive and aviation technologies.

  8. Aptamer Sensors

    OpenAIRE

    Marrazza, Giovanna

    2017-01-01

    In the last years, great progress has been accomplished in the development of aptamer sensors with different transducers. In order to improve the sensitivity of these biosensors, several methodologies have been employed. In this Special Issue, the state of art and the future trends in the field of aptamer sensors have been explored.

  9. Soldier sensor

    Science.gov (United States)

    Kossives, Dean P.

    2010-04-01

    A new sensor system, whose functionality is not reliant on mass spectrometric or ionization methods, is combined with a substrate technology which allows for separately optimized control circuits and standardized advanced sensors in a simple packaging methodology to foster an entirely new generation of modular optical sensors. These sensors will be based on biologic and chromic compounds. The compounds will utilize reversible reaction chemistry to enable self cleaning. The detector's operation is based on simple changes in absorbance, reflectance, color, or other optical properties. The time to saturation of the sensor will determine the relative concentration in the air. A detection scheme based on these properties will function in high background levels and also be able to pick up low level concentrations as well.

  10. Pathogen Sensors

    Directory of Open Access Journals (Sweden)

    Joseph Irudayaraj

    2009-10-01

    Full Text Available The development of sensors for detecting foodborne pathogens has been motivated by the need to produce safe foods and to provide better healthcare. However, in the more recent times, these needs have been expanded to encompass issues relating to biosecurity, detection of plant and soil pathogens, microbial communities, and the environment. The range of technologies that currently flood the sensor market encompass PCR and microarray-based methods, an assortment of optical sensors (including bioluminescence and fluorescence, in addition to biosensor-based approaches that include piezoelectric, potentiometric, amperometric, and conductometric sensors to name a few. More recently, nanosensors have come into limelight, as a more sensitive and portable alternative, with some commercial success. However, key issues affecting the sensor community is the lack of standardization of the testing protocols and portability, among other desirable elements, which include timeliness, cost-effectiveness, user-friendliness, sensitivity and specificity. [...

  11. A highly sensitive and selective turn-on fluorogenic and colorimetric sensor based on pyrene-functionalized magnetic nanoparticles for Hg2+ detection and cell imaging.

    Science.gov (United States)

    Chen, Ling; Zheng, Baozhan; Guo, Yong; Du, Juan; Xiao, Dan; Bo, Lin

    2013-12-15

    In this paper, a colorimetric and "turn-on" fluorescent sensor (Py-Si-Fe3O4@SiO2 NPs) for Hg(2+) detection was designed with pyrene derivative covalently grafted onto the surface of magnetic core/shell Fe3O4@SiO2 nanoparticles using the silanol hydrolysis approach. The Py-Si-Fe3O4@SiO2 inorganic-organic hybrid material was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray power diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and fluorescence emission. The results of fluorescence spectra showed that the resultant multifunctional nanoparticles exhibited selective turn-on type fluorescence enhancement with Hg(2+). In addition, the presence of magnetic Fe3O4 nanoparticles in the sensor Py-Si-Fe3O4@SiO2 NPs would also facilitate the magnetic separation of Hg(2+)-Py-Si-Fe3O4@SiO2 from the solution. The as-prepared chemosensor was also successfully applied to detect Hg(2+) in environmental water samples and serum sample. Results from confocal laser scanning microscopy experiments demonstrated that this chemosensor was cell permeable and can be used as a fluorescent probe for monitoring Hg(2+) in living cells. © 2013 Elsevier B.V. All rights reserved.

  12. Room-Temperature Surface Modification of Cu Nanowires and Their Applications in Transparent Electrodes, SERS-Based Sensors, and Organic Solar Cells.

    Science.gov (United States)

    Wang, Xiao; Wang, Ranran; Zhai, Haitao; Shen, Xi; Wang, Tao; Shi, Liangjing; Yu, Richeng; Sun, Jing

    2016-10-26

    Cu nanowires (Copper nanowires) have attracted lots of attention recently due to their potential applications in transparent electrodes, surface enhanced Raman scattering (SERS) based sensors, and solar cells. However, as the surface composition and morphology of Cu nanowires severely influence the performance of the devices based on them, facile surface modification methods need to be developed. Herein, we propose a room-temperature, time-saving aqueous solution method, through which clean Cu nanowires with small Ag nanoparticles decorating around them could be achieved. The unique "sesame candy bar" structure of Cu nanowires brought about significant enhancement on the electrical, optical, and mechanical performances of Cu nanowire networks. Transparent electrodes with ideal opto-electrical performance (47 Ω sq(-1) @ 89.1% T) and high antioxidation, antithermal, and electrical stability were fabricated. Stretchable electrodes based on the modified Cu nanowire networks showed superior stretch-ability and cyclic stability. SERS sensors and organic solar cells based on Cu nanowire networks exhibited high performance due to the enhanced surface plasmonic coupling and light scattering effect. We believe that the method will shed light on the large-scale fabrication and application of Cu nanowire based devices.

  13. Assessment of Wearable Sensor Technologies for Biosurveillance

    Science.gov (United States)

    2014-11-01

    temperature and light detectors to analyze blood oxygen levels Vibrating Smart Tattoos Nokia Magnetic tattoo that vibrates with your cell...include: textile -based wearable sensors, epidermal tattoos, DNA and protein sensors, forensic detection of explosives, remote environmental sensing... magnetic field around the eye, the disposable device is intend for wear over a 24 hour period. Assessment of Wearable Sensor Technologies for

  14. GOOSE: Semantic search on Internet connected sensors

    NARCIS (Netherlands)

    Schutte, K.; Bomhof, F.W.; Burghouts, G.J.; Diggelen, J. van; Hiemstra, P.; Hof, J. van 't; Kraaij, W.; Pasman, K.H.W.; Smith, A.J.E.; Versloot, C.A.; Wit, J.J. de

    2013-01-01

    More and more sensors are getting Internet connected. Examples are cameras on cell phones, CCTV cameras for traffic control as well as dedicated security and defense sensor systems. Due to the steadily increasing data volume, human exploitation of all this sensor data is impossible for effective

  15. Piezoceramic Sensors

    CERN Document Server

    Sharapov, Valeriy

    2011-01-01

    This book presents the latest and complete information about various types of piezosensors. A sensor is a converter of the measured physical size to an electric signal. Piezoelectric transducers and sensors are based on piezoelectric effects. They have proven to be versatile tools for the measurement of various processes. They are used for quality assurance, process control and for research and development in many different industries. In each area of application specific requirements to the parameters of transducers and sensors are developed. This book presents the fundamentals, technical des

  16. Analysis of endocytic pathways in Drosophila cells reveals a conserved role for GBF1 in internalization via GEECs.

    Directory of Open Access Journals (Sweden)

    Gagan D Gupta

    Full Text Available In mammalian cells, endocytosis of the fluid phase and glycosylphosphatidylinositol-anchored proteins (GPI-APs forms GEECs (GPI-AP enriched early endosomal compartments via an Arf1- and Cdc42-mediated, dynamin independent mechanism. Here we use four different fluorescently labeled probes and several markers in combination with quantitative kinetic assays, RNA interference and high resolution imaging to delineate major endocytic routes in Drosophila cultured cells. We find that the hallmarks of the pinocytic GEEC pathway are conserved in Drosophila and identify garz, the fly ortholog of the GTP exchange factor GBF1, as a novel component of this pathway. Live confocal and TIRF imaging reveals that a fraction of GBF1 GFP dynamically associates with ABD RFP (a sensor for activated Arf1 present on nascent pinosomes. Correspondingly, a GTP exchange mutant of GBF1 has altered ABD RFP localization in the evanescent field and is impaired in fluid phase uptake. Furthermore, GBF1 activation is required for the GEEC pathway even in the presence of Brefeldin A, implying that, like Arf1, it has a role in endocytosis that is separable from its role in secretion.

  17. Integrated SU-8 photonic gas sensors based on PANI polymer devices: Comparison between metrological parameters

    Science.gov (United States)

    Airoudj, A.; Bêche, B.; Debarnot, D.; Gaviot, E.; Poncin-Epaillard, F.

    2009-10-01

    In this work, we have designed and developed three families of integrated photonic sensors for ammonia detection. These photonic sensors are integrated onto single-mode TE 0-TM 0 SU-8 polymer planar waveguides and based on a polyaniline (PANI) sensitive polymer material. The first family relies on the deposit of a PANI-polymethyl methacrylate (PMMA) composite sensitive layer on a given SU-8 waveguide. The second family relies on a PMMA passive layer deposited on the SU-8 waveguide before applying the PANI sensitive layer on the PMMA passive layer. The third family takes advantage of a PANI layer deposited by plasma technique directly onto the SU-8 waveguide. The working principle of such sensors is based on the optical intensity modulation induced within the single-mode waveguide owing to the interaction between the evanescent field and the sensitive layer. The sensing proprieties of these integrated photonic sensors to ammonia gas at room temperature were characterized and the comparison between these different families of photonic sensors is presented. Experimental results show that the sensor based on new plasma-PANI as sensitive layer has the better metrological parameters.

  18. [Sensors for Measuring Taste and Smell].

    Science.gov (United States)

    Toko, Kiyoshi

    2017-05-01

    Gustatory and olfactory senses receive chemical substances at the biological membranes of taste and olfactory cells, respectively. The present review article describes electronic tongue (taste sensor) and electronic nose (odor sensor) developed based on biomimetic technology. A taste sensor is now commercially sold and utilized in pharmaceutical and food companies across the world. An electronic nose with high sensitivity was also commercialized in Japan. These sensors provide novel methods for analyzing chemical substances instead of using conventional tools.

  19. Battery system with temperature sensors

    Science.gov (United States)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  20. State Estimation of the Time-Varying and Spatially Localized Concentration of Signal Molecules from the Stochastic Adsorption Dynamics on the Carbon Nanotube-Based Sensors and Its Application to Tumor Cell Detection.

    Science.gov (United States)

    Jang, Hong; Lee, Jay H; Braatz, Richard D

    2015-01-01

    This paper addresses a problem of estimating time-varying, local concentrations of signal molecules with a carbon-nanotube (CNT)-based sensor array system, which sends signals triggered by monomolecular adsorption/desorption events of proximate molecules on the surfaces of the sensors. Such sensors work on nano-scale phenomena and show inherently stochastic non-Gaussian behavior, which is best represented by the chemical master equation (CME) describing the time evolution of the probabilities for all the possible number of adsorbed molecules. In the CME, the adsorption rate on each sensor is linearly proportional to the local concentration in the bulk phase. State estimators are proposed for these types of sensors that fully address their stochastic nature. For CNT-based sensors motivated by tumor cell detection, the particle filter, which is nonparametric and can handle non-Gaussian distributions, is compared to a Kalman filter that approximates the underlying distributions by Gaussians. In addition, the second-order generalized pseudo Bayesian estimation (GPB2) algorithm and the Markov chain Monte Carlo (MCMC) algorithm are incorporated into KF and PF respectively, for detecting latent drift in the concentration affected by different states of a cell.

  1. State Estimation of the Time-Varying and Spatially Localized Concentration of Signal Molecules from the Stochastic Adsorption Dynamics on the Carbon Nanotube-Based Sensors and Its Application to Tumor Cell Detection.

    Directory of Open Access Journals (Sweden)

    Hong Jang

    Full Text Available This paper addresses a problem of estimating time-varying, local concentrations of signal molecules with a carbon-nanotube (CNT-based sensor array system, which sends signals triggered by monomolecular adsorption/desorption events of proximate molecules on the surfaces of the sensors. Such sensors work on nano-scale phenomena and show inherently stochastic non-Gaussian behavior, which is best represented by the chemical master equation (CME describing the time evolution of the probabilities for all the possible number of adsorbed molecules. In the CME, the adsorption rate on each sensor is linearly proportional to the local concentration in the bulk phase. State estimators are proposed for these types of sensors that fully address their stochastic nature. For CNT-based sensors motivated by tumor cell detection, the particle filter, which is nonparametric and can handle non-Gaussian distributions, is compared to a Kalman filter that approximates the underlying distributions by Gaussians. In addition, the second-order generalized pseudo Bayesian estimation (GPB2 algorithm and the Markov chain Monte Carlo (MCMC algorithm are incorporated into KF and PF respectively, for detecting latent drift in the concentration affected by different states of a cell.

  2. Vibrissa Sensor

    Science.gov (United States)

    2016-09-30

    Docket No. 300119 1 of 11 VIBRISSA SENSOR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and used by...REFERENCE TO OTHER PATENT APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The present invention provides a...vibrissa in two dimensions. SUMMARY OF THE INVENTION [0010] Accordingly, it is an object of the present invention to provide a sensor capable of

  3. Quantifying water flow within aquatic ecosystems using load cell sensors: a profile of currents experienced by coral reef organisms around Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Johansen, Jacob L

    2014-01-01

    Current velocity in aquatic environments has major implications for the diversity, abundance and ecology of aquatic organisms, but quantifying these currents has proven difficult. This study utilises a simple and inexpensive instrument (reef system around Lizard Island (Great Barrier Reef, Australia) at a spatial and temporal scale relevant to the ecology of individual benthos and fish. The instrument uses load-cell sensors to provide a correlation between sensor output and ambient current velocity of 99%. Each instrument is able to continuously record current velocities to >500 cms⁻¹ and wave frequency to >100 Hz over several weeks. Sensor data are registered and processed at 16 MHz and 10 bit resolution, with a measuring precision of 0.06±0.04%, and accuracy of 0.51±0.65% (mean ±S.D.). Each instrument is also pressure rated to 120 m and shear stresses ≤20 kNm⁻² allowing deployment in harsh environments. The instrument was deployed across 27 coral reef sites covering the crest (3 m), mid-slope (6 m) and deep-slope (9 m depth) of habitats directly exposed, oblique or sheltered from prevailing winds. Measurements demonstrate that currents over the reef slope and crest varies immensely depending on depth and exposure: currents differ up to 9-fold within habitats only separated by 3 m depth and 15-fold between exposed, oblique and sheltered habitats. Comparisons to ambient weather conditions reveal that currents around Lizard Island are largely wind driven. Zero to 22.5 knot winds correspond directly to currents of 0 to >82 cms⁻¹, while tidal currents rarely exceed 5.5 cms⁻¹. Rather, current velocity increases exponentially as a function of wave height (0 to 1.6 m) and frequency (0.54 to 0.20 Hz), emphasizing the enormous effect of wind and waves on organisms in these shallow coral reef habitats.

  4. A dual transcriptional reporter and CDK-activity sensor marks cell cycle entry and progression in C. elegans

    NARCIS (Netherlands)

    Van Rijnberk, Lotte M.; Van Der Horst, Suzanne E M; Van Den Heuvel, Sander; Ruijtenberg, Suzan

    2017-01-01

    Development, tissue homeostasis and tumor suppression depend critically on the correct regulation of cell division. Central in the cell division process is the decision whether to enter the next cell cycle and commit to going through the S and M phases, or to remain temporarily or permanently

  5. Capacitive proximity sensor

    Science.gov (United States)

    Kronberg, James W.

    1994-01-01

    A proximity sensor based on a closed field circuit. The circuit comprises a ring oscillator using a symmetrical array of plates that creates an oscillating displacement current. The displacement current varies as a function of the proximity of objects to the plate array. Preferably the plates are in the form of a group of three pair of symmetric plates having a common center, arranged in a hexagonal pattern with opposing plates linked as a pair. The sensor produces logic level pulses suitable for interfacing with a computer or process controller. The proximity sensor can be incorporated into a load cell, a differential pressure gauge, or a device for measuring the consistency of a characteristic of a material where a variation in the consistency causes the dielectric constant of the material to change.

  6. ZnO-Based Microfluidic pH Sensor: A Versatile Approach for Quick Recognition of Circulating Tumor Cells in Blood.

    Science.gov (United States)

    Mani, Ganesh Kumar; Morohoshi, Madoka; Yasoda, Yutaka; Yokoyama, Sho; Kimura, Hiroshi; Tsuchiya, Kazuyoshi

    2017-02-15

    The present study is concerned about the development of highly sensitive and stable microfluidic pH sensor for possible identification of circulating tumor cells (CTCs) in blood. The precise pH measurements between silver-silver chloride (Ag/AgCl) reference electrode and zinc oxide (ZnO) working electrode have been investigated in the microfluidic device. Since there is a direct link between pH and cancer cells, the developed device is one of the valuable tools to examine circulating tumor cells (CTCs) in blood. The ZnO-based working electrode was deposited by radio frequency (rf) sputtering technique. The potential voltage difference between the working and reference electrodes (Ag/AgCl) is evaluated on the microfluidic device. The ideal Nernstian response of -43.71165 mV/pH was achieved along with high stability and quick response time. Finally, to evaluate the real time capability of the developed microfluidic device, in vitro testing was done with A549, A7r5, and MDCK cells.

  7. Application of an Online-Biomass Sensor in an Optical Multisensory Platform Prototype for Growth Monitoring of Biotechnical Relevant Microorganism and Cell Lines in Single-Use Shake Flasks

    Directory of Open Access Journals (Sweden)

    Christian Ude

    2014-09-01

    Full Text Available In the context of this work we evaluated a multisensory, noninvasive prototype platform for shake flask cultivations by monitoring three basic parameters (pH, pO2 and biomass. The focus lies on the evaluation of the biomass sensor based on backward light scattering. The application spectrum was expanded to four new organisms in addition to E. coli K12 and S. cerevisiae [1]. It could be shown that the sensor is appropriate for a wide range of standard microorganisms, e.g., L. zeae, K. pastoris, A. niger and CHO-K1. The biomass sensor signal could successfully be correlated and calibrated with well-known measurement methods like OD600, cell dry weight (CDW and cell concentration. Logarithmic and Bleasdale-Nelder derived functions were adequate for data fitting. Measurements at low cell concentrations proved to be critical in terms of a high signal to noise ratio, but the integration of a custom made light shade in the shake flask improved these measurements significantly. This sensor based measurement method has a high potential to initiate a new generation of online bioprocess monitoring. Metabolic studies will particularly benefit from the multisensory data acquisition. The sensor is already used in labscale experiments for shake flask cultivations.

  8. Application of an online-biomass sensor in an optical multisensory platform prototype for growth monitoring of biotechnical relevant microorganism and cell lines in single-use shake flasks.

    Science.gov (United States)

    Ude, Christian; Schmidt-Hager, Jörg; Findeis, Michael; John, Gernot Thomas; Scheper, Thomas; Beutel, Sascha

    2014-09-17

    In the context of this work we evaluated a multisensory, noninvasive prototype platform for shake flask cultivations by monitoring three basic parameters (pH, pO2 and biomass). The focus lies on the evaluation of the biomass sensor based on backward light scattering. The application spectrum was expanded to four new organisms in addition to E. coli K12 and S. cerevisiae [1]. It could be shown that the sensor is appropriate for a wide range of standard microorganisms, e.g., L. zeae, K. pastoris, A. niger and CHO-K1. The biomass sensor signal could successfully be correlated and calibrated with well-known measurement methods like OD600, cell dry weight (CDW) and cell concentration. Logarithmic and Bleasdale-Nelder derived functions were adequate for data fitting. Measurements at low cell concentrations proved to be critical in terms of a high signal to noise ratio, but the integration of a custom made light shade in the shake flask improved these measurements significantly. This sensor based measurement method has a high potential to initiate a new generation of online bioprocess monitoring. Metabolic studies will particularly benefit from the multisensory data acquisition. The sensor is already used in labscale experiments for shake flask cultivations.

  9. Enhancement of chitosan-graphene oxide SPR sensor with a multi-metallic layers of Au–Ag–Au nanostructure for lead(II) ion detection

    Energy Technology Data Exchange (ETDEWEB)

    Kamaruddin, Nur Hasiba [Department of Electric, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Bakar, Ahmad Ashrif A., E-mail: ashrif@ukm.edu.my [Department of Electric, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yaacob, Mohd Hanif; Mahdi, Mohd Adzir [Wireless and Photonic Network Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Zan, Mohd Saiful Dzulkefly [Department of Electric, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Shaari, Sahbudin [Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2016-01-15

    Highlights: • Tri-metallic Au–Ag–Au CS-GO SPR sensor was fabricated for the first time. • The tri-metallic nanostructure provided an enhanced evanescent field. • Successful functionalization of the CS-GO sensing layer. • Superior performance for lead(II) ion detection. - Abstract: We demonstrate the enhancement of surface plasmon resonance (SPR) technique by implementing a multi-metallic layers of Au–Ag–Au nanostructure in the chitosan-graphene oxide (CS-GO) SPR sensor for lead(II) ion detection. The performance of the sensor is analyzed via SPR measurements, from which the sensitivity, signal-to-noise ratio and repeatability are determined. The nanostructure layers are characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). We showed that the proposed structure has increased the shift in the SPR angle up to 3.5° within the range of 0.1–1 ppm due to the enhanced evanescent field at the sensing layer-analyte interface. This sensor also exhibits great repeatability which benefits from the stable multi-metallic nanostructure. The SNR value of 0.92 for 5 ppm lead(II) ion solution and reasonable linearity range up to that concentration shows that the tri-metallic CS-GO SPR sensor gives a good response towards the lead(II) ion solution. The CS-GO SPR sensor is also sensitive to at least a 10{sup −5} change in the refractive index. The results prove that our proposed tri-metallic CS-GO SPR sensor demonstrates a strong performance and reliability for lead(II) ion detection in accordance with the standardized lead safety level for wastewater.

  10. Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations.

    Science.gov (United States)

    Yan, Aidong; Huang, Sheng; Li, Shuo; Chen, Rongzhang; Ohodnicki, Paul; Buric, Michael; Lee, Shiwoo; Li, Ming-Jun; Chen, Kevin P

    2017-08-24

    This paper reports a technique to enhance the magnitude and high-temperature stability of Rayleigh back-scattering signals in silica fibers for distributed sensing applications. With femtosecond laser radiation, more than 40-dB enhancement of Rayleigh backscattering signal was generated in silica fibers using 300-nJ laser pulses at 250 kHz repetition rate. The laser-induced Rayleigh scattering defects were found to be stable from the room temperature to 800 °C in hydrogen gas. The Rayleigh scatter at high temperatures was correlated to the formation and modification of nanogratings in the fiber core. Using optical fibers with enhanced Rayleigh backscattering profiles as distributed temperature sensors, we demonstrated real-time monitoring of solid oxide fuel cell (SOFC) operations with 5-mm spatial resolution at 800 °C. Information gathered by these fiber sensor tools can be used to verify simulation results or operated in a process-control system to improve the operational efficiency and longevity of SOFC-based energy generation systems.

  11. Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2.

    Science.gov (United States)

    Shirmanova, Marina V; Druzhkova, Irina N; Lukina, Maria M; Matlashov, Mikhail E; Belousov, Vsevolod V; Snopova, Ludmila B; Prodanetz, Natalia N; Dudenkova, Varvara V; Lukyanov, Sergey A; Zagaynova, Elena V

    2015-09-01

    Measuring intracellular pH (pHi) in tumors is essential for the monitoring of cancer progression and the response of cancer cells to various treatments. The purpose of the study was to develop a method for pHi mapping in living cancer cells in vitro and in tumors in vivo, using the novel genetically encoded indicator, SypHer2. A HeLa Kyoto cell line stably expressing SypHer2 in the cytoplasm was used, to perform ratiometric (dual excitation) imaging of the probe in cell culture, in 3D tumor spheroids and in tumor xenografts in living mice. Using SypHer2, pHi was demonstrated to be 7.34±0.11 in monolayer HeLa cells in vitro under standard cultivation conditions. An increasing pHi gradient from the center to the periphery of the spheroids was displayed. We obtained fluorescence ratio maps for HeLa tumors in vivo and ex vivo. Comparison of the map with the pathomorphology and with hypoxia staining of the tumors revealed a correspondence of the zones with higher pHi to the necrotic and hypoxic areas. Our results demonstrate that pHi imaging with the genetically encoded pHi indicator, SypHer2, can be a valuable tool for evaluating tumor progression in xenograft models. We have demonstrated, for the first time, the possibility of using the genetically encoded sensor SypHer2 for ratiometric pH imaging in cancer cells in vitro and in tumors in vivo. SypHer2 shows great promise as an instrument for pHi monitoring able to provide high accuracy and spatiotemporal resolution. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. ON-LINE MONITORING OF BIOMASS CONCENTRATION BASED ON A CAPACITANCE SENSOR: ASSESSING THE METHODOLOGY FOR DIFFERENT BACTERIA AND YEAST HIGH CELL DENSITY FED-BATCH CULTURES

    Directory of Open Access Journals (Sweden)

    A. C. L. Horta

    2015-12-01

    Full Text Available Abstract The performance of an in-situ capacitance sensor for on-line monitoring of biomass concentration was evaluated for some of the most important microorganisms in the biotechnology industry: Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Bacillus megaterium. A total of 33 batch and fed-batch cultures were carried out in a bench-scale bioreactor and biomass formation trends were followed by dielectric measurements during the growth phase as well as the induction phase, for 5 recombinant E. coli strains. Permittivity measurements and viable cellular concentrations presented a linear correlation for all the studied conditions. In addition, the permittivity signal was further used for inference of the cellular growth rate. The estimated specific growth rates mirrored the main trends of the metabolic states of the different cells and they can be further used for setting-up control strategies in fed-batch cultures.

  13. Structurally tuned benzo[h]chromene derivative as Pb{sup 2+} selective ‘turn-on’ fluorescence sensor for living cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Sougata; Rani Koner, Rik; Kumar, Sunil [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi-175001, H.P (India); Mathew, Jomon [Schulich Faculty of Chemistry and the Lise Meitner Minerva Center for Computational Quantum Chemistry, Technion-Israel Institute of Technology, Haifa (Israel); Roy, Anindita [Department of Microbiology, MUC Women’s College, Burdwan, West Bengal (India); Kanti Mukhopadhyay, Subhra [Department of Microbiology, Burdwan University, Burdwan, West Bengal (India); Nandi, Chayan K., E-mail: chayan@iitmandi.ac.in [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi-175001, H.P (India); Ghosh, Subrata, E-mail: subrata@iitmandi.ac.in [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi-175001, H.P (India)

    2013-11-15

    A benzo[h]chromene derivative, 2-amino-4-phenyl-4H-benzo[h]chromene-3-carbonitrile 1, has been utilized as ‘Turn On’ fluorescence chemosensor for the selective detection of Pb{sup 2+}. The title compound 1 was synthesized in one step using a multicomponent condensation reaction (MCR), and characterized using various spectroscopic techniques. The selectivity was tested over a range of 17 different metal and non-metal ions. Compound 1 was found to be weak fluorescent (Φ{sub 1}=0.06) because of photoinduced electron transfer (PET). The presence of 2 equiv of Pb{sup 2+} showed a significant increase in fluorescence quantum yield (Φ{sub 1−Pb{sup 2}{sup +}}=0.132). A change in weak blue emission of 1 to a glowing green emission along with a prominent red shift (26 nm) in emission band was observed upon addition of Pb{sup 2+} to a methanolic solution of 1. The complexation of 1 with Pb{sup 2+} was proved by mass spectroscopy and NMR studies. Some of our experimental findings have been supported by theoretical studies. Compound 1 was found to be easily permeable to living cells without causing any harm and ultimately was used to detect effectively Pb{sup 2+} in living system. -- Highlights: • Benzo[h]chromene derivative (1) as fluorogenic chemosensor for Pb{sup 2+}. • One-step synthesis of the sensor using multicomponent condensation reaction. • The sensor follows a ‘turn-on’ mechanism through CHEF. • 1–Pb{sup 2+} complex was characterized by various spectroscopic techniques. • The probe can detect Pb{sup 2+} in living cells.

  14. Comparison of three types of fibre optic hydrogen sensors within the frame of CryoFOS project

    Science.gov (United States)

    Guemes, J. Alfredo; Pintado, J. M.; Frovel, M.; Olmo, E.; Obst, A.

    2005-05-01

    Three different sensors for hydrogen detection have been built and tested within a research project for the European Space Agency. One type is a FBG coated with a palladium layer, detecting the hydrogen by metal hindrance, the strains transmitted to the grating by shear. It works only as a detector and can not quantify the H2 percentage in a gas mixture. A main drawback, common with all palladium based sensors, was a strong temperature dependence, which makes its response time too large at low temperatures. The other two types were intensity based sensors; one of them was a micromirror, with a palladium thin layer at the cleaved end, detecting changes in the backreflected light. The other one as a tapered fibre coated also with palladium; hydrogen will change the refractive index of the palladium, and consequently the amount of losses in the evanescent wave. A trade-off analysis of sensor performances was done, comparing reproducibility, repetitiveness, robustness, multiplexability, response time and cost. FBG sensor was found to be the most reliable sensor among the optical fibres sensors considered, and the preferred one for space applications.

  15. All-fiber mode-locked laser via short single-wall carbon nanotubes interacting with evanescent wave in photonic crystal fiber.

    Science.gov (United States)

    Li, Yujia; Gao, Lei; Huang, Wei; Gao, Cong; Liu, Min; Zhu, Tao

    2016-10-03

    We report an all-fiber passively mode-locked laser based on a saturable absorber fabricated by filling short single-wall carbon nanotubes into cladding holes of grapefruit-type photonic crystal fiber. The single-wall carbon nanotube is insensitive to polarization of light for its one-dimensional structure, which suppresses the polarization dependence loss. Carbon nanotubes interact with photonic crystal fiber with ultra-weak evanescent field, which enhances the damage threshold of the saturable absorber and improves the operating stability. In our experiment, conventional soliton with a pulse duration of 1.003 ps and center wavelength of 1566.36 nm under a pump power of 240 mW is generated in a compact erbium-doped fiber laser cavity with net anomalous dispersion of -0.4102 ps2. The signal to noise ratio of the fundamental frequency component is ~80 dB. The maximum average output power of the mode-locked laser reaches 9.56 mW under a pump power of 360 mW. The output power can be further improved by a higher pump power.

  16. All fiber-optic ultra-sensitive temperature sensor using few-layer MoS2 coated D-shaped fiber

    Science.gov (United States)

    Mohanraj, J.; Velmurugan, V.; Sathiyan, S.; Sivabalan, S.

    2018-01-01

    We experimentally demonstrate a novel all fiber-optic temperature sensor using Molybdenum disulfide (MoS2) nanosheets coated D-shaped fiber (DSF). The DSF exhibits a strong evanescent field interaction with the MoS2 nanosheets which in turn has good optical absorption that results in very high sensitivity. In addition, a few layer MoS2 exhibit high thermal conductivity and therefore highly suitable for temperature sensing. The proposed all fiber temperature sensor was investigated in the temperature range of 26 °C - 83 °C and achieved a maximum optical output power variation of 7 dB. Further, the experimental results show an ultrahigh sensitivity of 0.1211 dB/∘C, a linear correlation coefficient of 99.6 % and a better precision of 0.04 °C. Therefore, the proposed fiber-optic sensor is capable of measuring dynamic temperatures in a harsh environment.

  17. Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane.

    Directory of Open Access Journals (Sweden)

    Viviane Devauges

    Full Text Available We present a novel imaging system combining total internal reflection fluorescence (TIRF microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor.

  18. Steady-State Acceptor Fluorescence Anisotropy Imaging under Evanescent Excitation for Visualisation of FRET at the Plasma Membrane

    Science.gov (United States)

    Devauges, Viviane; Matthews, Daniel R.; Aluko, Justin; Nedbal, Jakub; Levitt, James A.; Poland, Simon P.; Coban, Oana; Weitsman, Gregory; Monypenny, James; Ng, Tony; Ameer-Beg, Simon M.

    2014-01-01

    We present a novel imaging system combining total internal reflection fluorescence (TIRF) microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET) imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor. PMID:25360776

  19. Location Dependency and Antenna/Body/Sensor-Lead Interaction Effects in a Cell-Phone Based GSM 1800 Telemedicine Link

    National Research Council Canada - National Science Library

    Troulis, S

    2001-01-01

    The error-free requirement of today's cell-phone based telemedicine systems demands investigations into the potential causes of service degradation, Measuring the Received Signal Strength Indication (RSSI...

  20. Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure

    KAUST Repository

    Mosqueira, Diogo

    2014-03-25

    Stem cell responsiveness to extracellular matrix (ECM) composition and mechanical cues has been the subject of a number of investigations so far, yet the molecular mechanisms underlying stem cell mechano-biology still need full clarification. Here we demonstrate that the paralog proteins YAP and TAZ exert a crucial role in adult cardiac progenitor cell mechano-sensing and fate decision. Cardiac progenitors respond to dynamic modifications in substrate rigidity and nanopattern by promptly changing YAP/TAZ intracellular localization. We identify a novel activity of YAP and TAZ in the regulation of tubulogenesis in 3D environments and highlight a role for YAP/TAZ in cardiac progenitor proliferation and differentiation. Furthermore, we show that YAP/TAZ expression is triggered in the heart cells located at the infarct border zone. Our results suggest a fundamental role for the YAP/TAZ axis in the response of resident progenitor cells to the modifications in microenvironment nanostructure and mechanics, thereby contributing to the maintenance of myocardial homeostasis in the adult heart. These proteins are indicated as potential targets to control cardiac progenitor cell fate by materials design. © 2014 American Chemical Society.

  1. The ATLAS Silicon Pixel Sensors

    CERN Document Server

    Alam, M S; Einsweiler, K F; Emes, J; Gilchriese, M G D; Joshi, A; Kleinfelder, S A; Marchesini, R; McCormack, F; Milgrome, O; Palaio, N; Pengg, F; Richardson, J; Zizka, G; Ackers, M; Andreazza, A; Comes, G; Fischer, P; Keil, M; Klasen, V; Kühl, T; Meuser, S; Ockenfels, W; Raith, B; Treis, J; Wermes, N; Gössling, C; Hügging, F G; Wüstenfeld, J; Wunstorf, R; Barberis, D; Beccherle, R; Darbo, G; Gagliardi, G; Gemme, C; Morettini, P; Musico, P; Osculati, B; Parodi, F; Rossi, L; Blanquart, L; Breugnon, P; Calvet, D; Clemens, J-C; Delpierre, P A; Hallewell, G D; Laugier, D; Mouthuy, T; Rozanov, A; Valin, I; Aleppo, M; Caccia, M; Ragusa, F; Troncon, C; Lutz, Gerhard; Richter, R H; Rohe, T; Brandl, A; Gorfine, G; Hoeferkamp, M; Seidel, SC; Boyd, GR; Skubic, P L; Sícho, P; Tomasek, L; Vrba, V; Holder, M; Ziolkowski, M; D'Auria, S; del Papa, C; Charles, E; Fasching, D; Becks, K H; Lenzen, G; Linder, C

    2001-01-01

    Prototype sensors for the ATLAS silicon pixel detector have been developed. The design of the sensors is guided by the need to operate them in the severe LHC radiation environment at up to several hundred volts while maintaining a good signal-to-noise ratio, small cell size, and minimal multiple scattering. The ability to be operated under full bias for electrical characterization prior to the attachment of the readout integrated circuit electronics is also desired.

  2. Optical fibre microwire sensors

    OpenAIRE

    Brambilla, G.; Belal, Mohammad; Jung, Y.; Song, Z.; Xu, F.; Newson, T.P.; Richardson, D.J.

    2011-01-01

    This paper reviews sensing applications of optical fibre microwires and nanowires. In addition to the usual benefits of sensors based on optical fibres, these sensors are extremely compact and have fast response speeds. In this review sensors will be grouped in three categories according to their morphology: linear sensors, resonant sensors and tip sensors. While linear and resonant sensors mainly exploit the fraction of power propagating outside the microwire physical boundary, tip sensors t...

  3. V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kazuma; Saito, Mayu; Nagashima, Makiko; Kojima, Ai; Nishinoaki, Show [Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan); Toshima, Junko Y., E-mail: yama_jun@aoni.waseda.jp [Faculty of Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480 (Japan); Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan); Toshima, Jiro, E-mail: jtosiscb@rs.noda.tus.ac.jp [Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan); Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan)

    2014-01-10

    Highlights: •A targeted genome screen identified 5 gene groups affecting Wsc1p recycling. •V-ATPase-dependent luminal acidification is required for Wsc1p recycling. •Activity of V-ATPase might be required for cargo recognition by the retromer complex. -- Abstract: Wsc1p is a major cell wall sensor protein localized at the polarized cell surface. The localization of Wsc1p is maintained by endocytosis and recycling from endosomes back to the cell surface, but changes to the vacuole when cells are subjected to heat stress. Exploiting this unique property of Wsc1p, we screened for yeast single-gene deletion mutants exhibiting defects in Wsc1p trafficking. By expressing 3GFP-tagged Wsc1p in mutants with deleted genes whose function is related to intracellular trafficking, we identified 5 gene groups affecting Wsc1p trafficking, impaired respectively in endocytic internalization, multivesicular body sorting, the GARP complex, endosomal maturation/vacuolar fusion, and V-ATPase. Interestingly, deletion of the VPH1 gene, encoding the V{sub o} subunit of vacuolar-type H{sup +}-ATPase (V-ATPase), led to mis-localization of Wsc1p from the plasma membrane to the vacuole. In addition, disruption of other V-ATPase subunits (vma mutants) also caused defects of Wsc1p trafficking and vacuolar acidification similar to those seen in the vph1Δ mutant. Moreover, we found that deletion of the VPS26 gene, encoding a subunit of the retromer complex, also caused a defect in Wsc1p recycling and mis-localization of Wsc1p to the vacuole. These findings clarified the previously unidentified Wsc1p recycling pathway and requirement of V-ATPase-dependent luminal acidification for Wsc1p recycling.

  4. Evaluating Inhibition of the Epidermal Growth Factor (EGF-Induced Response of Mutant MCF10A Cells with an Acoustic Sensor

    Directory of Open Access Journals (Sweden)

    Jun Xi

    2012-11-01

    Full Text Available Many cancer treatments rely on inhibition of epidermal growth factor (EGF-induced cellular responses. Evaluating drug effects on such responses becomes critical to the development of new cancer therapeutics. In this report, we have employed a label-free acoustic sensor, the quartz crystal microbalance with dissipation monitoring (QCM-D, to track the EGF-induced response of mutant MCF10A cells under various inhibitory conditions. We have identified a complex cell de-adhesion process, which can be distinctly altered by inhibitors of signaling pathways and cytoskeleton formation in a dose-dependent manner. The dose dependencies of the inhibitors provide IC50 values which are in strong agreement with the values reported in the literature, demonstrating the sensitivity and reliability of the QCM-D as a screening tool. Using immunofluorescence imaging, we have also verified the quantitative relationship between the ΔD-response (change in energy dissipation factor and the level of focal adhesions quantified with the areal density of immunostained vinculin under those inhibitory conditions. Such a correlation suggests that the dynamic restructuring of focal adhesions can be assessed based on the time-dependent change in ΔD-response. Overall, this report has shown that the QCM-D has the potential to become an effective sensing platform for screening therapeutic agents that target signaling and cytoskeletal proteins.

  5. Nuclear DNA sensor IFI16 as circulating protein in autoimmune diseases is a signal of damage that impairs endothelial cells through high-affinity membrane binding.

    Directory of Open Access Journals (Sweden)

    Francesca Gugliesi

    Full Text Available IFI16, a nuclear pathogenic DNA sensor induced by several pro-inflammatory cytokines, is a multifaceted protein with various functions. It is also a target for autoantibodies as specific antibodies have been demonstrated in the sera of patients affected by systemic autoimmune diseases. Following transfection of virus-derived DNA, or treatment with UVB, IFI16 delocalizes from the nucleus to the cytoplasm and is then eventually released into the extracellular milieu. In this study, using an in-house capture enzyme-linked immunsorbent assay we demonstrate that significant levels of IFI16 protein can also exist as circulating form in the sera of autoimmune patients. We also show that the rIFI16 protein, when added in-vitro to endothelial cells, does not affect cell viability, but severely limits their tubulogenesis and transwell migration activities. These inhibitory effects are fully reversed in the presence of anti-IFI16 N-terminal antibodies, indicating that its extracellular activity resides within the N-terminus. It was further demonstrated that endogenous IFI16 released by apoptotic cells bind neighboring cells in a co-culture. Immunofluorescence assays revealed existence of high-affinity binding sites on the plasma membrane of endothelial cells. Free recombinant IFI16 binds these sites on HUVEC with dissociation constant of 2.7 nM, radioiodinated and unlabeled IFI16 compete for binding sites, with inhibition constant (Ki of 14.43 nM and half maximal inhibitory concentration (IC50 of 67.88 nM; these data allow us to estimate the presence of 250,000 to 450,000 specific binding sites per cell. Corroborating the results from functional assays, this binding could be completely inhibited using anti-IFI16 N-terminal antibody, but not with an antibody raised against the IFI16 C-terminal. Altogether, these data demonstrate that IFI16 may exist as circulating protein in the sera of autoimmune patients which binds endothelial cells causing damage

  6. Hyaluronic Acid Immobilized Polyacrylamide Nanoparticle Sensors for CD44 Receptor Targeting and pH Measurement in Cells

    DEFF Research Database (Denmark)

    Sun, Honghao; Benjaminsen, Rikke Vicki; Almdal, Kristoffer

    2012-01-01

    Our ability to design receptor-targeted nanocarriers aimed at drug release after endocytosis is limited by the current knowledge of intracellular nanoparticle (NP) trafficking. It is not clear if NP size, surface chemistry, and/or targeting of cell surface receptors changes the intracellular fate......H distribution profile in cells was measured for nanosensors with HA, cationic, and noncharged NP surface coatings giving a clear indication of the intracellular pH environment that the different NPs experience after internalization. The pH profile of cationic nanosensors in comparison to HA conjugated...

  7. Micrometer-Scale Magnetic-Resonance-Coupled Radio-Frequency Identification and Transceivers for Wireless Sensors in Cells

    Science.gov (United States)

    Hu, Xiaolin; Aggarwal, Kamal; Yang, Mimi X.; Parizi, Kokab B.; Xu, Xiaoqing; Akin, Demir; Poon, Ada S. Y.; Wong, H.-S. Philip

    2017-07-01

    We report the design, analysis, and characterization of a three-inductor radio-frequency identification (RFID) and transceiver system for potential applications in individual cell tracking and monitoring. The RFID diameter is 22 μ m and can be naturally internalized by living cells. Using magnetic resonance coupling, the system shows resonance shifts when the RFID is present and also when the RFID loading capacitance changes. It operates at 60 GHz with a high signal magnitude up to -50 dB and a sensitivity of 0.2. This miniaturized RFID with a high signal magnitude is a promising step toward continuous, real-time monitoring of activities at cellular levels.

  8. Battery management system with distributed wireless sensors

    Science.gov (United States)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2016-02-23

    A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.

  9. PDMAA Hydrogel Coated U-Bend Humidity Sensor Suited for Mass-Production.

    Science.gov (United States)

    Kelb, Christian; Körner, Martin; Prucker, Oswald; Rühe, Jürgen; Reithmeier, Eduard; Roth, Bernhard

    2017-03-04

    We present a full-polymer respiratory monitoring device suited for application in environments with strong magnetic fields (e.g., during an MRI measurement). The sensor is based on the well-known evanescent field method and consists of a 1 mm plastic optical fiber with a bent region where the cladding is removed and the fiber is coated with poly-dimethylacrylamide (PDMAA). The combination of materials allows for a mass-production of the device by spray-coating and enables integration in disposable medical devices like oxygen masks, which we demonstrate here. We also present results of the application of an autocorrelation-based algorithm for respiratory frequency determination that is relevant for real applications of the device.

  10. PDMAA Hydrogel Coated U-Bend Humidity Sensor Suited for Mass-Production

    Directory of Open Access Journals (Sweden)

    Christian Kelb

    2017-03-01

    Full Text Available We present a full-polymer respiratory monitoring device suited for application in environments with strong magnetic fields (e.g., during an MRI measurement. The sensor is based on the well-known evanescent field method and consists of a 1 mm plastic optical fiber with a bent region where the cladding is removed and the fiber is coated with poly-dimethylacrylamide (PDMAA. The combination of materials allows for a mass-production of the device by spray-coating and enables integration in disposable medical devices like oxygen masks, which we demonstrate here. We also present results of the application of an autocorrelation-based algorithm for respiratory frequency determination that is relevant for real applications of the device.

  11. Spectral analysis of semiconductor-based surface plasmon resonance sensors for infrared-gas sensing

    Science.gov (United States)

    Ghosh, S.; Ray, M.

    2015-06-01

    In present analysis a semiconductor-based surface plasmon resonance structure using Gr-IV materials (Silicon and Germanium) has been analyzed in spectral interrogation mode which can be used for efficient environmental monitoring and Infrared (IR) gas-sensing purposes. The Silicon-Germanium (Si-Ge) combination structure is able to confine an extremely high evanescent field in the sensing region due to their extraordinary high refractive indices (RI). Higher concentration of optical field in the sensing area provides enhanced spectral sensitivity for infrared gas-sensing. Better detection accuracy and adequate dynamic range are other additional advantages offered by such semiconductor-based surface plasmon resonance (SPR) configurations. Analysis of the SPR structure has also been carried out in terms of detection accuracy, figure of merit and Q-factor of the gas-sensor.

  12. Bradykinin B2 Receptors of dendritic cells, acting as sensors of kinins proteolytically released by Trypanosoma cruzi, are critical for the development of protective type-1 responses.

    Directory of Open Access Journals (Sweden)

    Ana Carolina Monteiro

    2007-11-01

    Full Text Available Although the concept that dendritic cells (DCs recognize pathogens through the engagement of Toll-like receptors is widely accepted, we recently suggested that immature DCs might sense kinin-releasing strains of Trypanosoma cruzi through the triggering of G-protein-coupled bradykinin B2 receptors (B2R. Here we report that C57BL/6.B2R-/- mice infected intraperitoneally with T. cruzi display higher parasitemia and mortality rates as compared to B2R+/+ mice. qRT-PCR revealed a 5-fold increase in T. cruzi DNA (14 d post-infection [p.i.] in B2R-/- heart, while spleen parasitism was negligible in both mice strains. Analysis of recall responses (14 d p.i. showed high and comparable frequencies of IFN-gamma-producing CD4+ and CD8+ T cells in the spleen of B2R-/- and wild-type mice. However, production of IFN-gamma by effector T cells isolated from B2R-/- heart was significantly reduced as compared with wild-type mice. As the infection continued, wild-type mice presented IFN-gamma-producing (CD4+CD44+ and CD8+CD44+ T cells both in the spleen and heart while B2R-/- mice showed negligible frequencies of such activated T cells. Furthermore, the collapse of type-1 immune responses in B2R-/- mice was linked to upregulated secretion of IL-17 and TNF-alpha by antigen-responsive CD4+ T cells. In vitro analysis of tissue culture trypomastigote interaction with splenic CD11c+ DCs indicated that DC maturation (IL-12, CD40, and CD86 is controlled by the kinin/B2R pathway. Further, systemic injection of trypomastigotes induced IL-12 production by CD11c+ DCs isolated from B2R+/+ spleen, but not by DCs from B2R-/- mice. Notably, adoptive transfer of B2R+/+ CD11c+ DCs (intravenously into B2R-/- mice rendered them resistant to acute challenge, rescued development of type-1 immunity, and repressed TH17 responses. Collectively, our results demonstrate that activation of B2R, a DC sensor of endogenous maturation signals, is critically required for development of acquired

  13. Corrosion sensor

    Science.gov (United States)

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  14. Pressure sensor

    Science.gov (United States)

    Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.

    2015-09-29

    Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  15. Packaging sensing cells in spores for long-term preservation of sensors: a tool for biomedical and environmental analysis.

    Science.gov (United States)

    Date, Amol; Pasini, Patrizia; Sangal, Abhishek; Daunert, Sylvia

    2010-07-15

    Whole-cell sensing systems have successfully been employed for detection of various biologically and environmentally important analytes. A limitation to their use for on-field analysis is the paucity of preservation methods for long-term storage and transport. For that, we have previously developed spore-based genetically engineered whole-cell sensing systems that are able not only to maintain the activity of the sensing cells but also to preserve it for long periods of time in normal and extreme environmental conditions. Herein, we have employed these spore-based sensing systems for analysis of real samples, such as blood serum and freshwater. Spores were able to germinate in the presence of the sample matrix, and the minimum time required for the spores to germinate and generate vegetative sensing cells able to elicit a measurable response to target analytes resulted to be around 2 h. Of the two spore-based sensing systems selected to detect model analytes in real samples, one was able to detect arsenic concentrations as low as 1 x 10(-7) M in freshwater and serum samples, and the other one could sense down to 1 x 10(-6) M of zinc in serum. The analysis of human serum samples from healthy subjects for their zinc content proved the viability of spore-based sensing systems. The complete assays, including spore germination and analyte detection, were performed in 2.5 h or less for arsenic and zinc. Furthermore, the assay is inexpensive and simple to carry out and offers unique advantages for the incorporation of the spore-based sensing systems into portable analytical platforms, such as microfluidic devices, to be employed for on-site analysis.

  16. Miniature Chemical Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Andrew C. R. Pipino

    2004-12-13

    A new chemical detection technology has been realized that addresses DOE environmental management needs. The new technology is based on a variant of the sensitive optical absorption technique, cavity ring-down spectroscopy (CRDS). Termed evanescent-wave cavity ring-down spectroscopy (EW-CRDS), the technology employs a miniature solid-state optical resonator having an extremely high Q-factor as the sensing element, where the high-Q is achieved by using ultra-low-attenuation optical materials, ultra-smooth surfaces, and ultra-high reflectivity coatings, as well as low-diffraction-loss designs. At least one total-internal reflection (TIR) mirror is integral to the resonator permitting the concomitant evanescent wave to probe the ambient environment. Several prototypes have been designed, fabricated, characterized, and applied to chemical detection. Moreover, extensions of the sensing concept have been explored to enhance selectivity, sensitivity, and range of application. Operating primarily in the visible and near IR regions, the technology inherently enables remote detection by optical fiber. Producing 11 archival publications, 5 patents, 19 invited talks, 4 conference proceedings, a CRADA, and a patent-license agreement, the project has realized a new chemical detection technology providing >100 times more sensitivity than comparable technologies, while also providing practical advantages.

  17. Fibre optic sensor for the detection of adulterant traces in coconut oil

    Science.gov (United States)

    Sheeba, M.; Rajesh, M.; Vallabhan, C. P. G.; Nampoori, V. P. N.; Radhakrishnan, P.

    2005-11-01

    The design and development of a fibre optic evanescent wave refractometer for the detection of trace amounts of paraffin oil and palm oil in coconut oil is presented. This sensor is based on a side-polished plastic optical fibre. At the sensing region, the cladding and a small portion of the core are removed and the fibre nicely polished. The sensing region is fabricated in such a manner that it sits perfectly within a bent mould. This bending of the sensing region enhances its sensitivity. The oil mixture of different mix ratios is introduced into the sensing region and we observed a sharp decrease in the output intensity. The observed variation in the intensity is found to be linear and the detection limit is 2% (by volume) paraffin oil/palm oil in coconut oil. The resolution of this refractometric sensor is of the order of 10-3. Since coconut oil is consumed in large volumes as edible oil in south India, this fibre optic sensor finds great relevance for the detection of adulterants such as paraffin oil or palm oil which are readily miscible in coconut oil. The advantage of this type of sensor is that it is inexpensive and easy to set up. Another attraction of the side-polished fibre is that only a very small amount of analyte is needed and its response time is only 7 s.

  18. Time-resolved cell culture assay analyser (TReCCA Analyser) for the analysis of on-line data: data integration--sensor correction--time-resolved IC50 determination.

    Science.gov (United States)

    Lochead, Julia; Schessner, Julia; Werner, Tobias; Wölfl, Stefan

    2015-01-01

    Time-resolved cell culture assays circumvent the need to set arbitrary end-points and reveal the dynamics of quality controlled experiments. However, they lead to the generation of large data sets, which can represent a complexity barrier to their use. We therefore developed the Time-Resolved Cell Culture Assay (TReCCA) Analyser program to perform standard cell assay analyses efficiently and make sophisticated in-depth analyses easily available. The functions of the program include data normalising and averaging, as well as smoothing and slope calculation, pin-pointing exact change time points. A time-resolved IC50/EC50 calculation provides a better understanding of drug toxicity over time and a more accurate drug to drug comparison. Finally the logarithmic sensor recalibration function, for sensors with an exponential calibration curve, homogenises the sensor output and enables the detection of low-scale changes. To illustrate the capabilities of the TReCCA Analyser, we performed on-line monitoring of dissolved oxygen in the culture media of the breast cancer cell line MCF-7 treated with different concentrations of the anti-cancer drug Cisplatin. The TReCCA Analyser is freely available at www.uni-heidelberg.de/fakultaeten/biowissenschaften/ipmb/biologie/woelfl/Research.html. By introducing the program, we hope to encourage more systematic use of time-resolved assays and lead researchers to fully exploit their data.

  19. [Construction and properties of a microbial whole-cell sensor CB10 for the bioavailability detection of Cr6+].

    Science.gov (United States)

    Hou, Qi-Hui; Ma, An-Zhou; Zhuang, Xu-Liang; Zhuang, Guo-Qiang

    2013-03-01

    A microbial whole-cell biosensor CB10 for the bioavailability assessing of Cr6+ was constructed by molecular biotechnology. The regulatory gene and promoter of CB10 was from the chromium resistance system of plasmid pMOL28 from Cupriavidus metallidurans CH34, and the reporter gene of CB10 was luc which was derived from Photinus pyralis. Finally, its response characteristic was discussed under different incubation conditions e. g. pH and temperature. The results showed that a microbial whole-cell biosensor CB10 had been successfully constructed which could respond to Cr6+ within 30 min, with a LOD for Cr6+ of 2 micromol x L(-1). When the incubation concentration of Cr6+ was between 20 micromol x L(-1) and 200 micromol x L(-1), the luc activity of the CB10 biosensor was in linear correlation with the concentration of Cr6+. When the concentration of heavy metal was in the range of 10-50 micromol x L(-1), the response of CB10 was relatively more specific. Moreover, high concentrations of Pb2+, Mn2+ and Sb2+ could also induce CB10. By analyzing the response characteristic of CB10 biosensor, we could draw the conclusion that 15-30 degrees C and pH 4-7 were appropriate for CB10, and 30 degrees C and pH 7 were the optimal conditions for the incubation of the CB10 biosensor. The microbial whole-cell biosensor CB10 for the detection of Cr6+ was fast-responding, specific, sensitive and stable under various conditions. In prospective, it could be used in the fast detection of Cr6+ in water and assessment of the bioavailability of Cr6+ in soil.

  20. Optical planar waveguide for cell counting

    Science.gov (United States)

    LeBlanc, John; Mueller, Andrew J.; Prinz, Adrian; Butte, Manish J.

    2012-01-01

    Low cost counting of cells has medical applications in screening, military medicine, disaster medicine, and rural healthcare. In this report, we present a shallow, buried, planar waveguide fabricated by potassium ion exchange in glass that enables low-cost and rapid counting of metal-tagged objects that lie in the evanescent field of the waveguide. Laser light transmitted through the waveguide was attenuated proportionately to the presence of metal-coated microstructures fabricated from photoresist. This technology enables the low-cost enumeration of cells from blood, urine, or other biofluids.

  1. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  2. Phosphatidylinositol 4-kinase serves as a metabolic sensor and regulates priming of secretory granules in pancreatic beta cells

    DEFF Research Database (Denmark)

    Olsen, Hervør L; Hoy, Marianne; Zhang, Wei

    2003-01-01

    Insulin secretion is controlled by the beta cell's metabolic state, and the ability of the secretory granules to undergo exocytosis increases during glucose stimulation in a membrane potential-independent fashion. Here, we demonstrate that exocytosis of insulin-containing secretory granules depends...... on phosphatidylinositol 4-kinase (PI 4-kinase) activity and that inhibition of this enzyme suppresses glucose-stimulated insulin secretion. Intracellular application of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] stimulated exocytosis by promoting the priming of secretory...... granules for release and increasing the number of granules residing in a readily releasable pool. Reducing the cytoplasmic ADP concentration in a way mimicking the effects of glucose stimulation activated PI 4-kinase and increased exocytosis whereas changes of the ATP concentration in the physiological...

  3. Role of CrRLK1L Cell Wall Sensors HERCULES1 and 2, THESEUS1, and FERONIA in Growth Adaptation Triggered by Heavy Metals and Trace Elements

    Directory of Open Access Journals (Sweden)

    Julia Richter

    2017-09-01

    . No other CrRLK1L mutant exhibited this phenotype except of the THE1:GFP overexpressor on Ni suggesting that THE1 might be involved in Ni induced and hypocotyl specific RALF signaling and growth regulating pathway. Overall, our findings establish a molecular link between metal ion stress, growth and the cell wall integrity sensors of the CrRLK1L family.

  4. On-axis pulsed laser deposition of hybrid perovskite films for solar cell and broadband photo-sensor applications

    Science.gov (United States)

    Bansode, Umesh; Ogale, Satishchandra

    2017-04-01

    High quality hybrid perovskite films are grown by the pulsed laser deposition (PLD) process through target stoichiometry and gas ambient control in the commonly used on-axis geometry which is compatible with PLD of other materials such as metal oxides. The use of an off-stoichiometric target and a momentum softening gas mixture of argon and hydrogen (90%:10%) is shown to yield dense films in the on-axis geometry with excellent stoichiometry and optical quality. The band gap can be easily tuned from 1.6 to 2.3 eV with either mixed halide composite target or successive depositions of inter-diffusing MAPbBr3 and MAPbI3 layers. A photosensor based on PLD grown MAPbI3 is shown to render impressive performance over the broad range of wavelengths from 375 to 800 nm at a voltage of 5 V bias. A planar heterojunction solar cell based on the dry-processed on-axis PLD grown film exhibits a champion conversion efficiency of 10.9%. A heterostructure comprising in situ pulsed laser deposited Cu2O (p-type) followed by the hybrid perovskite film shows a rectifying characteristic and photoresponse.

  5. Sensors for Entertainment.

    Science.gov (United States)

    Lamberti, Fabrizio; Sanna, Andrea; Rokne, Jon

    2016-07-15

    Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on "Sensors for Entertainment", developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.

  6. Flow injection microbial trichloroethylene sensor.

    Science.gov (United States)

    Han, Tae-Sung; Sasaki, Satoshi; Yano, Kazuyoshi; Ikebukuro, Kazunori; Kitayama, Atsushi; Nagamune, Teruyuki; Karube, Isao

    2002-05-16

    A flow type microbial biosensor for direct measurement of trichloroethylene (TCE) was developed. The unique features of this novel microbial sensor were the use of the TCE degrading bacterium Pseudomonas aeruginosa JI104, the electrical detection of the chloride ion released by microbial degradation, and flow cell made of glass. Glass cell was used in order to suppress adsorption of TCE and made a closed reaction cell. Vaporization of TCE during the measurement was prevented using closed flow cell. The performance of the sensor was evaluated from following aspects; such as pH of the carrier solution, amount of the immobilized microbe, flow rate and injection volume. The sensor signals were linearly proportional to the concentration of TCE in the range from 0.03 to 2 mgl(-1), which is suitable for the determination of suspected samples to be drinkable water or not. The sensor performance was checked on the real sample, and this system showed good response in ground water, indicating its applicability for the on line monitoring at TCE contaminated areas or hazardous sites.

  7. Wireless sensor platform

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    2017-08-08

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  8. Multiple Ca2+ sensors in secretion

    DEFF Research Database (Denmark)

    Walter, Alexander M; Groffen, Alexander J; Sørensen, Jakob Balslev

    2011-01-01

    Regulated neurotransmitter secretion depends on Ca(2+) sensors, C2 domain proteins that associate with phospholipids and soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) complexes to trigger release upon Ca(2+) binding. Ca(2+) sensors are thought to prevent spontaneous...... fusion at rest (clamping) and to promote fusion upon Ca(2+) activation. At least eight, often coexpressed, Ca(2+) sensors have been identified in mammals. Accumulating evidence suggests that multiple Ca(2+) sensors interact, rather than work autonomously, to produce the complex secretory response...... observed in neurons and secretory cells. In this review, we present several working models to describe how different sensors might be arranged to mediate synchronous, asynchronous and spontaneous neurotransmitter release. We discuss the scenario that different Ca(2+) sensors typically act on one shared...

  9. Sustainable coastal sensor networks: technologies and challenges

    Science.gov (United States)

    Carapezza, Edward M.; Butman, Jerry; Babb, Ivar; Bucklin, Ann

    2008-04-01

    This paper describes a distributed sensor network for a coastal maritime security system. This concept incorporates a network of small passive and active multi-phenomenological unattended sensors and shore based optical sensors to detect, classify, and track submerged threat objects approaching high value coastal assets, such as ports, harbors, residential, commercial, and military facilities and areas. The network of unattended, in-water sensors perform the initial detection, classification, and coarse tracking and then queues shore based optical laser radar sensors. These shore-based sensors perform a queued sector search to develop a refined track on the submerged threat objects that were initially detected by the unattended sensor network. Potential threat objects include swimmers, small unmanned underwater vehicles (UUV's), small submarines, and submerged barges. All of these threats have the potential to transport threat objects such as explosives, chemical, biological, radiological, and nuclear materials. Reliable systems with low false alarm rates (FAR) are proposed. Tens to hundreds of low cost passive sensors are proposed to be deployed conjunctively with several active acoustic and optical sensors in threat and facility dependant patterns to maximize the detection, tracking and classification of submerged threat objects. The integrated command and control system and novel microbial fuel cells to power these sensor networks are also described.

  10. A Nafion -based co-planar electrode amperometric sensor for ...

    Indian Academy of Sciences (India)

    Administrator

    example a fuel-cell type ethanol sensor. 7 and a. Nafion. ®. -covered microelectrode methanol sensor. 8 can be mentioned here. Commercially available amperometric gas sensors usually involve a metallised gas-permeable porous material in contact with an internal electrolyte (see for example, the early refs 9, 10).

  11. Aminoquinoline based highly sensitive fluorescent sensor for lead(II) and aluminum(III) and its application in live cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Thangaraj; Sivaraman, Gandhi [School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India); Mahesh, Ayyavu, E-mail: mahesh.a06@gmail.com [School of Biological Sciences, Madurai Kamaraj University, Madurai 625021 (India); Chellappa, Duraisamy, E-mail: dcmku123@gmail.com [School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India)

    2015-01-01

    Highlights: • Aminoquinoline derivative was synthesized and used to recognize Pb{sup 2+}/Al{sup 3+}. • ANQ was high sensitive, selective and turn-on sensor for Pb{sup 2+}/Al{sup 3+}. • The Pb{sup 2+} detection limit (2.08 × 10{sup −9} mol L{sup −1}) is reported. • This fluorescence change was further supported by DFT/TD-DFT calculations. • The probe is applied successfully for recognizing intracellular Pb{sup 2+}/Al{sup 3+} within living cells. - Abstract: We have synthesized a new probe 5-((anthracen-9-ylmethylene) amino)quinolin-10-ol (ANQ) based on anthracene platform. The probe was tested for its sensing behavior toward heavy metal ions Hg{sup 2+}, Pb{sup 2+}, light metal Al{sup 3+} ion, alkali, alkaline earth, and transition metal ions by UV–visible and fluorescent techniques in ACN/H{sub 2}O mixture buffered with HEPES (pH 7.4). It shows high selectivity toward sensing Pb{sup 2+}/Al{sup 3+} metal ions. Importantly, 10-fold and 5- fold fluorescence enhancement at 429 nm was observed for probe upon complexation with Pb{sup 2+} and Al{sup 3+} ions, respectively. This fluorescence enhancement is attributable to the prevention of photoinduced electron transfer. The photonic studies indicate that the probe can be adopted as a sensitive fluorescent chemosensor for Pb{sup 2+} and Al{sup 3+} ions.

  12. Chalcogenide glass sensors for bio-molecule detection

    Science.gov (United States)

    Lucas, Pierre; Coleman, Garrett J.; Cantoni, Christopher; Jiang, Shibin; Luo, Tao; Bureau, Bruno; Boussard-Pledel, Catherine; Troles, Johann; Yang, Zhiyong

    2017-02-01

    Chalcogenide glasses constitute the only class of materials that remain fully amorphous while exhibiting broad optical transparency over the full infrared region from 2-20 microns. As such, they can be shaped into complex optical elements while retaining a clear optical window that encompass the vibrational signals of virtually any molecules. Chalcogenide glasses are therefore ideal materials for designing biological and chemical sensors based on vibrational spectroscopy. In this paper we review the properties of these glasses and the corresponding design of optical elements for bio-chemical sensing. Amorphous chalcogenides offer a very wide compositional landscape that permit to tune their physical properties to match specific demands for the production of optical devices. This includes tailoring the infrared window over specific ranges of wavelength such as the long-wave infrared region to capture important vibrational signal including the "signature region" of micro-organisms or the bending mode of CO2 molecules. Additionally, compositional engineering enables tuning the viscosity-temperature dependence of the glass melt in order to control the rheological properties that are fundamental to the production of glass elements. Indeed, exquisite control of the viscosity is key to the fabrication process of many optical elements such as fiber drawing, lens molding, surface embossing or reflow of microresonators. Optimal control of these properties then enables the design and fabrication of optimized infrared sensors such as Fiber Evanescent Wave Spectroscopy (FEWS) sensors, Whispering Gallery Modes (WGM) micro-resonator sensors, nanostructured surfaces for integrated optics and surface-enhanced processes, or lens molding for focused collection of infrared signals. Many of these sensor designs can be adapted to collect and monitor the vibrational signal of live microorganisms to study their metabolism in controlled environmental conditions. Further materials

  13. Evanescent Waves Nuclear Magnetic Resonance

    DEFF Research Database (Denmark)

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order...

  14. Gas Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Zainab Yunusa

    2014-04-01

    Full Text Available In this paper a review of different technologies for gas sensors is presented. The different types of gas sensors technologies including catalytic gas sensor, electrochemical gas sensors, thermal conductivity gas sensor, optical gas sensor and acoustic gas sensor are discussed together with their principle of operation. The Surface Acoustic Wave Gas Sensor technology is discussed in greater detail. The advantages and disadvantages of each sensor technology are also highlighted. All these technologies have been used for several decades for the development of highly sensitive and responsive gas sensors for the detection of flammable and hazardous gases. However, for improved sensitivity and selectivity for these sensors, future trends and outlook for researchers are suggested in the conclusion of this article.

  15. Development of steady state magnetic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Shigemitsu; Nakayama, Takahide [Hitachi Ltd., Tokyo (Japan); Nagashima, Akira; Kasai, Satoshi

    1998-12-01

    A prototype of new mechanical sensor based on the steady state electromagnetic force (J x B force) measurement has been developed and tested. The mechanical force sensor is a new type of the magnetic sensor which is available for frequencies smaller than 0.1 Hz. The prototype of the mechanical sensor has been examined, and the following results were obtained; (1) A signal was proportional to simulated force in the load cell tests. (2) A signal drift concerning the temperature was reproducible over the range of the ITER environment. (3) A signal was proportional to the magnetic field in the steady state magnetic field measurement tests. (4) A load cell linearity error did not increase significantly after irradiation of 7.2 x 10{sup 6} Gy. These results indicate that the mechanical sensor will provide the practical feasibility in the long time magnetic field measurement. (author)

  16. A modular optical sensor

    Science.gov (United States)

    Conklin, John Albert

    This dissertation presents the design of a modular, fiber-optic sensor and the results obtained from testing the modular sensor. The modular fiber-optic sensor is constructed in such manner that the sensor diaphragm can be replaced with different configurations to detect numerous physical phenomena. Additionally, different fiber-optic detection systems can be attached to the sensor. Initially, the modular sensor was developed to be used by university of students to investigate realistic optical sensors and detection systems to prepare for advance studies of micro-optical mechanical systems (MOMS). The design accomplishes this by doing two things. First, the design significantly lowers the costs associated with studying optical sensors by modularizing the sensor design. Second, the sensor broadens the number of physical phenomena that students can apply optical sensing techniques to in a fiber optics sensor course. The dissertation is divided into seven chapters covering the historical development of fiber-optic sensors, a theoretical overview of fiber-optic sensors, the design, fabrication, and the testing of the modular sensor developed in the course of this work. Chapter 1 discusses, in detail, how this dissertation is organized and states the purpose of the dissertation. Chapter 2 presents an historical overview of the development of optical fibers, optical pressure sensors, and fibers, optical pressure sensors, and optical microphones. Chapter 3 reviews the theory of multi-fiber optic detection systems, optical microphones, and pressure sensors. Chapter 4 presents the design details of the modular, optical sensor. Chapter 5 delves into how the modular sensor is fabricated and how the detection systems are constructed. Chapter 6 presents the data collected from the microphone and pressure sensor configurations of the modular sensor. Finally, Chapter 7 discusses the data collected and draws conclusions about the design based on the data collected. Chapter 7 also

  17. Enhancement of chitosan-graphene oxide SPR sensor with a multi-metallic layers of Au-Ag-Au nanostructure for lead(II) ion detection

    Science.gov (United States)

    Kamaruddin, Nur Hasiba; Bakar, Ahmad Ashrif A.; Yaacob, Mohd Hanif; Mahdi, Mohd Adzir; Zan, Mohd Saiful Dzulkefly; Shaari, Sahbudin

    2016-01-01

    We demonstrate the enhancement of surface plasmon resonance (SPR) technique by implementing a multi-metallic layers of Au-Ag-Au nanostructure in the chitosan-graphene oxide (CS-GO) SPR sensor for lead(II) ion detection. The performance of the sensor is analyzed via SPR measurements, from which the sensitivity, signal-to-noise ratio and repeatability are determined. The nanostructure layers are characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). We showed that the proposed structure has increased the shift in the SPR angle up to 3.5° within the range of 0.1-1 ppm due to the enhanced evanescent field at the sensing layer-analyte interface. This sensor also exhibits great repeatability which benefits from the stable multi-metallic nanostructure. The SNR value of 0.92 for 5 ppm lead(II) ion solution and reasonable linearity range up to that concentration shows that the tri-metallic CS-GO SPR sensor gives a good response towards the lead(II) ion solution. The CS-GO SPR sensor is also sensitive to at least a 10-5 change in the refractive index. The results prove that our proposed tri-metallic CS-GO SPR sensor demonstrates a strong performance and reliability for lead(II) ion detection in accordance with the standardized lead safety level for wastewater.

  18. EDITORIAL: Humidity sensors Humidity sensors

    Science.gov (United States)

    Regtien, Paul P. L.

    2012-01-01

    produced at relatively low cost. Therefore, they find wide use in lots of applications. However, the method requires a material that possesses some conflicting properties: stable and reproducible relations between air humidity, moisture uptake and a specific property (for instance the length of a hair, the electrical impedance of the material), fast absorption and desorption of the water vapour (to obtain a short response time), small hysteresis, wide range of relative humidity (RH) and temperature-independent output (only responsive to RH). For these reasons, much research is done and is still going on to find suitable materials that combine high performance and low price. In this special feature, three of the four papers report on absorption sensors, all with different focus. Aziz et al describe experiments with newly developed materials. The surface structure is extensively studied, in view of its ability to rapidly absorb water vapour and exhibit a reproducible change in the resistance and capacitance of the device. Sanchez et al employ optical fibres coated with a thin moisture-absorbing layer as a sensitive humidity sensor. They have studied various coating materials and investigated the possibility of using changes in optical properties of the fibre (here the lossy mode resonance) due to a change in humidity of the surrounding air. The third paper, by Weremczuk et al, focuses on a cheap fabrication method for absorption-based humidity sensors. The inkjet technology appears to be suitable for mass fabrication of such sensors, which is demonstrated by extensive measurements of the electrical properties (resistance and capacitance) of the absorbing layers. Moreover, they have developed a model that describes the relation between humidity and the electrical parameters of the moisture-sensitive layer. Despite intensive research, absorption sensors still do not meet the requirements for high accuracy applications. The dew-point temperature method is more appropriate

  19. Cell phones as imaging sensors

    Science.gov (United States)

    Bhatti, Nina; Baker, Harlyn; Marguier, Joanna; Berclaz, Jérôme; Süsstrunk, Sabine

    2010-04-01

    Camera phones are ubiquitous, and consumers have been adopting them faster than any other technology in modern history. When connected to a network, though, they are capable of more than just picture taking: Suddenly, they gain access to the power of the cloud. We exploit this capability by providing a series of image-based personal advisory services. These are designed to work with any handset over any cellular carrier using commonly available Multimedia Messaging Service (MMS) and Short Message Service (SMS) features. Targeted at the unsophisticated consumer, these applications must be quick and easy to use, not requiring download capabilities or preplanning. Thus, all application processing occurs in the back-end system (i.e., as a cloud service) and not on the handset itself. Presenting an image to an advisory service in the cloud, a user receives information that can be acted upon immediately. Two of our examples involve color assessment - selecting cosmetics and home décor paint palettes; the third provides the ability to extract text from a scene. In the case of the color imaging applications, we have shown that our service rivals the advice quality of experts. The result of this capability is a new paradigm for mobile interactions - image-based information services exploiting the ubiquity of camera phones.

  20. Sensors in Smart Phone

    OpenAIRE

    Pei, Chunmei; Guo, Huiling; Yang, Xiuqing; Wang, Yangqiu; Zhang, Xiaojing; Ye, Hairong

    2010-01-01

    International audience; The technological innovation in electronics makes nowadays mobile phone more than a simple communication tool: it becomes a portable electronic device with integrated functions, such as listening to music, watching movies, taking photos, etc. To achieve these, many kinds of advanced sensor are used. In this paper, several applications of sensor in smart phone are introduced including Image Sensor, Fingerprint Identification Sensor, Photo-electric Sensor, Acceleration S...

  1. Online sensing of volatile organic compounds in groundwater using mid-infrared fibre optic evanescent wave spectroscopy: a pilot scale test.

    Science.gov (United States)

    Steiner, H; Staubmann, K; Allabashi, R; Fleischmann, N; Katzir, A; Reichlin, Y; Milzaikoff, B

    2003-01-01

    A prototype sensing system for in-situ monitoring of volatile organic compounds in contaminated groundwater was tested at a pilot scale plant. The sensor consists of a commercially available Fourier transform infrared spectrometer, connected to a 6 m long infrared transparent silver halide fibre optic cable. A 10 cm long core-only section at the centre of the fibre is mounted on a sensor head and coated with a hydrophobic polymer layer, while the remaining fibre is protected by Teflon tubing and thus not in contact with the surrounding media. The sensor head was immersed into the monitoring wells of the pilot plant testing the sensor system under circumstances close to field conditions and typical for in-situ measurements. The pilot plant consists of a 1 m3 cubic tank filled with gravel. A pump is used to circulate water horizontally through the tank, simulating a natural aquifer. The evolution of the concentration of analytes injected into the system is monitored with time using the developed prototype sensing system. The results are validated by corresponding sampling and analysis with headspace gas chromatography.

  2. Fuel level sensor based on polymer optical fiber Bragg gratings for aircraft applications

    Science.gov (United States)

    Marques, C. A. F.; Pospori, A.; Sáez-Rodríguez, D.; Nielsen, K.; Bang, O.; Webb, D. J.

    2016-04-01

    Safety in civil aviation is increasingly important due to the increase in flight routes and their more challenging nature. Like other important systems in aircraft, fuel level monitoring is always a technical challenge. The most frequently used level sensors in aircraft fuel systems are based on capacitive, ultrasonic and electric techniques, however they suffer from intrinsic safety concerns in explosive environments combined with issues relating to reliability and maintainability. In the last few years, optical fiber liquid level sensors (OFLLSs) have been reported to be safe and reliable and present many advantages for aircraft fuel measurement. Different OFLLSs have been developed, such as the pressure type, float type, optical radar type, TIR type and side-leaking type. Amongst these, many types of OFLLSs based on fiber gratings have been demonstrated. However, these sensors have not been commercialized because they exhibit some drawbacks: low sensitivity, limited range, long-term instability, or limited resolution. In addition, any sensors that involve direct interaction of the optical field with the fuel (either by launching light into the fuel tank or via the evanescent field of a fiber-guided mode) must be able to cope with the potential build up of contamination - often bacterial - on the optical surface. In this paper, a fuel level sensor based on microstructured polymer optical fiber Bragg gratings (mPOFBGs), including poly (methyl methacrylate) (PMMA) and TOPAS fibers, embedded in diaphragms is investigated in detail. The mPOFBGs are embedded in two different types of diaphragms and their performance is investigated with aviation fuel for the first time, in contrast to our previous works, where water was used. Our new system exhibits a high performance when compared with other previously published in the literature, making it a potentially useful tool for aircraft fuel monitoring.

  3. Next generation infrared sensor instrumentation: remote sensing and sensor networks using the openPHOTONS repository

    Science.gov (United States)

    So, Stephen; Jeng, Evan; Smith, Clinton; Krueger, David; Wysocki, Gerard

    2010-09-01

    We describe our novel instrumentation architectures for infrared laser spectrometers. Compact, power efficient, low noise modules allow for optimized implementation of cell phone sized sensors using VCSELs, diode, and quantum cascade laser sources. These sensors can consume as little as 0.3W with full laser temperature (adapted to new optical configurations and applications. Such modules allow the development of flexible sensors, whether implementing closed path spectrometers, open path perimeter monitoring, or remote backscatter based sensors. This work is also the enabling technology for wireless sensor networks (WSN) of precision sensors, a desirable sensing paradigm for long term, wide area, precision, temporally and spatially resolved studies. This approach can complement existing remote sensing and mapping technologies including satellite observations and sparse networks of flux towers.

  4. Watt-level, all-fiber, ultrafast Er/Yb-codoped double-clad fiber laser mode-locked by reduced graphene oxide interacting with a weak evanescent field

    CERN Document Server

    Gao, Lei; Li, Yujia

    2015-01-01

    We propose a Watt-level, all-fiber, ultrafast Er/Yb-codoped double-clad fiber laser passively mode-locked by reduced graphene oxide (rGO) interacting with a weak evanescent field of photonic crystal fiber (PCF). The rGO solution is filled into the cladding holes of the PCF based on total reflection, and after evaporation, the rGO flakes bear only 1/107 of the total energy in laser system, which enhances the thermal damage threshold and decreases the accumulated nonlinearity. By incorporating the saturable absorber into an Er/Yb-codoped fiber ring cavity, stable conventional soliton with a duration of 573 fs is generated, and a average output power up to 1.14 W is obtained.

  5. Magnetic Tactile Sensor for Braille Reading

    KAUST Repository

    Alfadhel, Ahmed

    2016-04-27

    We report a biomimetic magnetic tactile sensor for Braille characters reading. The sensor consists of magnetic nanocomposite artificial cilia implemented on magnetic micro sensors. The nanocomposite is produced from the highly elastic polydimethylsiloxane and iron nanowires that exhibit a permanent magnetic behavior. This design enables remote operation and does not require an additional magnetic field to magnetize the nanowires. The highly elastic nanocomposite is easy to pattern, corrosion resistant and thermally stable. The tactile sensors can detect vertical and shear forces, which allows recognizing small changes in surface texture, as in the case of Braille dots. The 6 dots of a braille cell are read from top to bottom with a tactile sensor array consisting of 4 elements and 1 mm long nanocomposite cilia.

  6. Towards Sensor Database Systems

    DEFF Research Database (Denmark)

    Bonnet, Philippe; Gehrke, Johannes; Seshadri, Praveen

    2001-01-01

    . These systems lack flexibility because data is extracted in a predefined way; also, they do not scale to a large number of devices because large volumes of raw data are transferred regardless of the queries that are submitted. In our new concept of sensor database system, queries dictate which data is extracted...... from the sensors. In this paper, we define the concept of sensor databases mixing stored data represented as relations and sensor data represented as time series. Each long-running query formulated over a sensor database defines a persistent view, which is maintained during a given time interval. We...... also describe the design and implementation of the COUGAR sensor database system....

  7. FRET based tri-color emissive rhodamine-pyrene conjugate as an Al3+ selective colorimetric and fluorescence sensor for living cell imaging.

    Science.gov (United States)

    Sahana, Animesh; Banerjee, Arnab; Lohar, Sisir; Banik, Avishek; Mukhopadhyay, Subhra Kanti; Safin, Damir A; Babashkina, Maria G; Bolte, Michael; Garcia, Yann; Das, Debasis

    2013-10-07

    A rhodamine-pyrene hybrid molecule acts as a colorimetric and fluorimetric sensor for Al(3+) through time dependent PET-CHEF and FRET processes associated with tri-color emission. Intracellular Al(3+) has been visualized through time dependent blue-green-red emission. The lowest limit of detection for Al(3+) is 0.02 μM.

  8. On-line methanol sensor system development for recombinant ...

    African Journals Online (AJOL)

    PANCHIGA

    2016-10-19

    Oct 19, 2016 ... Calibration of the methanol sensor system was done in a medium environment with yeast cells during cells adaptation to ... between voltage output signal from the methanol sensor unit and residual methanol in culture broth were created with third ... Saccharomyces cerevisiae (Sleep et al., 1990), Bacillus.

  9. Embedded sensor systems

    CERN Document Server

    Agrawal, Dharma Prakash

    2017-01-01

    This inspiring textbook provides an introduction to wireless technologies for sensors, explores potential use of sensors for numerous applications, and utilizes probability theory and mathematical methods as a means of embedding sensors in system design. It discusses the need for synchronization and underlying limitations, inter-relation between given coverage and connectivity to number of sensors needed, and the use of geometrical distance to determine location of the base station for data collection and explore use of anchor nodes for relative position determination of sensors. The book explores energy conservation, communication using TCP, the need for clustering and data aggregation, and residual energy determination and energy harvesting. It covers key topics of sensor communication like mobile base stations and relay nodes, delay-tolerant sensor networks, and remote sensing and possible applications. The book defines routing methods and do performance evaluation for random and regular sensor topology an...

  10. Air Sensor Toolbox

    Science.gov (United States)

    Air Sensor Toolbox provides information to citizen scientists, researchers and developers interested in learning more about new lower-cost compact air sensor technologies and tools for measuring air quality.

  11. Sensor distribution design of travel time tomography in explosion.

    Science.gov (United States)

    Guo, Yali; Han, Yan; Wang, Liming; Liu, Linmao

    2014-07-15

    Optimal sensor distribution in explosion testing is important in saving test costs and improving experiment efficiency. Aiming at travel time tomography in an explosion, an optimizing method in sensor distribution is proposed to improve the inversion stability. The influence factors of inversion stability are analyzed and the evaluating function on optimizing sensor distribution is proposed. This paper presents a sub-region and multi-scale cell partition method, according to the characteristics of a shock wave in an explosion. An adaptive escaping particle swarm optimization algorithm is employed to achieve the optimal sensor distribution. The experimental results demonstrate that optimal sensor distribution has improved both indexes and inversion stability.

  12. Simulation of Smith-Purcell radiation using a particle-in-cell code

    Directory of Open Access Journals (Sweden)

    J. T. Donohue

    2005-06-01

    Full Text Available A simulation of the generation of Smith-Purcell (SP radiation at microwave frequencies is performed using the two-dimensional particle-in-cell code MAGIC. The simulation supposes that a continuous, thin (but infinitely wide, monoenergetic electron beam passes over a diffraction grating, while a strong axial magnetic field constrains the electrons to essentially one-dimensional motion. The code computes the time-dependent electric and magnetic fields by solving the Maxwell equations using a finite element approach. We find that the passage of the beam excites an evanescent electromagnetic wave in the proximity of the grating, which in turn leads to bunching of the initially continuous electron beam. The frequency and wave number of the bunching are determined, and found to be close to those proposed by Brau and co-workers in recent work. This frequency is below the threshold for SP radiation. However, the bunching is sufficiently strong that higher harmonics are clearly visible in the beam current. These harmonic frequencies correspond to allowed SP radiation, and we see strong emission of such radiation at the appropriate angles in our simulation, again in agreement with Brau’s predictions. We also find that at the ends of the grating, some of the evanescent wave is diffracted away from the surface, and radiation below the threshold occurs. In addition, we observe a second evanescent wave at the same frequency, but with a different wave number. The existence of this wave is also predicted by the theory, although its presence in our simulation is unexpected. Numerical estimates of the growth of the evanescent wave are also in reasonable agreement with the predictions, although the precise form of the dependence of the gain on beam current remains hard to establish.

  13. Biomedical Sensors of Ionizing Radiation

    OpenAIRE

    Pani, S; Speller, R; Royle, G; Olivo, A

    2010-01-01

    Sensors Technology Series Editor-in-Chief's Preface vii Preface ix 1 Biomedical Sensors: Temperature Sensor ... G. Kim Prisk 4 Biomedical Sensors of Ionizing Radiation 129 Robert Speller, Alessandro Olivo, Silvia Pani, and Gary Royle 5 ...

  14. Digital Sensor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  15. Acoustic Humidity Sensor

    Science.gov (United States)

    Shakkottai, Parthasarathy; Kwack, Eug Y.; Venkateshan, Shakkottai

    1990-01-01

    Industrial humidity sensor measures volume fraction of water in air via its effect on speed of sound. Only portion of sensor exposed to sensed atmosphere is pair of stainless-steel tubes, one containing dry air and other containing moist air. Counters measure intervals between reflected pulses. Sensor rugged enough for use in harsh environments like those used to control drying of paper in paper mills, where most humidity sensors do not survive.

  16. Development of flexible array tactile sensors

    DEFF Research Database (Denmark)

    Drimus, Alin; Marian, Nicolae; Bilberg, Arne

    2010-01-01

    In this paper we describe the development of an array tactile sensor for use in robotic grippers based on a flexible piezoresistive material. We start by comparing different cell structures in terms of output characteristics and we construct an array of cells in a row and columns layout. A real t...

  17. Laser sensor system documentation.

    Science.gov (United States)

    2017-03-01

    Phase 1 of TxDOT Project 0-6873, True Road Surface Deflection Measuring Device, developed a : laser sensor system based on several sensors mounted on a rigid beam. : This sensor system remains with CTR currently, as the project is moving into Phase 2...

  18. Sensors for Entertainment

    Directory of Open Access Journals (Sweden)

    Fabrizio Lamberti

    2016-07-01

    Full Text Available Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on “Sensors for Entertainment”, developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.

  19. Sensors and actuators, Twente

    NARCIS (Netherlands)

    Bergveld, Piet

    1989-01-01

    This paper describes the organization and the research programme of the Sensor and Actuator (S&A) Research Unit of the University of Twente, Enschede, the Netherlands. It includes short descriptions of all present projects concerning: micromachined mechanical sensors and actuators, optical sensors,

  20. Thermal flow micro sensors

    NARCIS (Netherlands)

    Elwenspoek, Michael Curt

    1999-01-01

    A review is given on sensors fabricated by silicon micromachining technology using the thermal domain for the measurement of fluid flow. Attention is paid especially to performance and geometry of the sensors. Three basic types of thermal flow sensors are discussed: anemometers, calorimetric flow

  1. Automotive vehicle sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  2. Extra Sensor Perception

    Directory of Open Access Journals (Sweden)

    Javad MOKHBERY

    2007-01-01

    Full Text Available This article describes the importance of sensor verification. It also describes the benefits of a portable sensor verification system and how it can be an essential tool that compliments any program in which sensors are used for control manufacturing or during critical testing.

  3. Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, Gary [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States); Scott, Brian [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

    2014-06-30

    This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study of a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70μm) with a hollow core was successfully constructed with lead-in and lead-out 50μm diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber

  4. Virtual Sensor Test Instrumentation

    Science.gov (United States)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  5. Glucokinase, the pancreatic glucose sensor, is not the gut glucose sensor

    DEFF Research Database (Denmark)

    Murphy, R; Tura, A; Clark, P M

    2008-01-01

    AIMS/HYPOTHESIS: The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotrophic peptide (GIP) are released from intestinal endocrine cells in response to luminal glucose. Glucokinase is present in these cells and has been proposed as a glucose sensor. The physiological...... role of glucokinase can be tested using individuals with heterozygous glucokinase gene (GCK) mutations. If glucokinase is the gut glucose sensor, GLP-1 and GIP secretion during a 75 g OGTT would be lower in GCK mutation carriers compared with controls. METHODS: We compared GLP-1 and GIP concentrations....../INTERPRETATION: Glucokinase, the major pancreatic glucose sensor, is not the main gut glucose sensor. By modelling OGTT data in GCK mutation carriers we were able to distinguish a specific beta cell glucose-sensing defect. Our data suggest a reduction in potentiation of insulin secretion by glucose that is independent...

  6. Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures.

    Science.gov (United States)

    Ohodnicki, Paul R; Buric, Michael P; Brown, Thomas D; Matranga, Christopher; Wang, Congjun; Baltrus, John; Andio, Mark

    2013-10-07

    Embedded sensors capable of operation in extreme environments including high temperatures, high pressures, and highly reducing, oxidizing and/or corrosive environments can make a significant impact on enhanced efficiencies and reduced greenhouse gas emissions of current and future fossil-based power generation systems. Relevant technologies can also be leveraged in a wide range of other applications with similar needs including nuclear power generation, industrial process monitoring and control, and aviation/aerospace. Here we describe a novel approach to embedded sensing under extreme temperature conditions by integration of Au-nanoparticle based plasmonic nanocomposite thin films with optical fibers in an evanescent wave absorption spectroscopy configuration. Such sensors can potentially enable simultaneous temperature and gas sensing at temperatures approaching 900-1000 °C in a manner compatible with embedded and distributed sensing approaches. The approach is demonstrated using the Au/SiO2 system deposited on silica-based optical fibers. Stability of optical fibers under relevant high temperature conditions and interactions with changing ambient gas atmospheres is an area requiring additional investigation and development but the simplicity of the sensor design makes it potentially cost-effective and may offer a potential for widespread deployment.

  7. Response Characterization of a Fiber Optic Sensor Array with Dye-Coated Planar Waveguide for Detection of Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Jae-Sung Lee

    2014-07-01

    Full Text Available We have developed a multi-array side-polished optical-fiber gas sensor for the detection of volatile organic compound (VOC gases. The side-polished optical-fiber coupled with a polymer planar waveguide (PWG provides high sensitivity to alterations in refractive index. The PWG was fabricated by coating a solvatochromic dye with poly(vinylpyrrolidone. To confirm the effectiveness of the sensor, five different sensing membranes were fabricated by coating the side-polished optical-fiber using the solvatochromic dyes Reinhardt’s dye, Nile red, 4-aminophthalimide, 4-amino-N-methylphthalimide, and 4-(dimethylaminocinnamaldehyde, which have different polarities that cause changes in the effective refractive index of the sensing membrane owing to evanescent field coupling. The fabricated gas detection system was tested with five types of VOC gases, namely acetic acid, benzene, dimethylamine, ethanol, and toluene at concentrations of 1, 2,…,10 ppb. Second-regression and principal component analyses showed that the response properties of the proposed VOC gas sensor were linearly shifted bathochromically, and each gas showed different response characteristics.

  8. Multifuctional integrated sensors (MFISES).

    Energy Technology Data Exchange (ETDEWEB)

    Homeijer, Brian D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roozeboom, Clifton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and the real world applications of the sensors systems.

  9. ITA Sensor Fabric

    Science.gov (United States)

    Wright, Joel; Gibson, Christopher; Bergamaschi, Flavio; Marcus, Kelvin; Pham, Tien; Pressley, Ryan; Verma, Gunjan

    2009-05-01

    The diverse sensor types and networking technologies commonly used in fielded sensro networks provide a unique set of challenges [1] in the areas of sensor identification, interoperability, and sensor data consumability. The ITA Senor Fabric is a middleware infrastructure - developed as part of the International Technology Alliance (ITA)[2] in Network and Information Science - that addresses these challenges by providing unified access to, and management of, sensor networks. The Fabric spans the network from command and control, through forward operating bases, and out to mobile forces and fielded sensors, maximizing the availability and utility of intelligence information to users.

  10. Sensor mount assemblies and sensor assemblies

    Science.gov (United States)

    Miller, David H [Redondo Beach, CA

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  11. Wireless Biological Electronic Sensors.

    Science.gov (United States)

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  12. Sensor technology foresight

    DEFF Research Database (Denmark)

    Andersen, Per Dannemand; Jørgensen, Birte Holst; Rasmussen, Birgitte

    2001-01-01

    , robustness, dispensability, and the abilityto be self-calibrating. Future sensors are expected to be integrated systems with multiple applications. The market sectors most influenced by new sensor technology change from topic to topic. But a general conclusion is that health care is the marketsector most......The Sensor Technology Center A/S (STC) in co-operation with Risoe National Laboratory has carried out a sensor technology foresight in order to strengthen a strategic outlook on sensor technology. The technology foresight (with a timeframe of 2000 to2015) has been performed in the period October...... 2000 - September 2001. The conclusions of the sensor technology report are based on 1) a scanning of existing forward looking literature on sensor technology, 2) a number of workshops with Danish andinternational participants and 3) an international survey with 174 respondents. Half of the respondents...

  13. Silicon force sensor

    Energy Technology Data Exchange (ETDEWEB)

    Galambos, Paul C.; Crenshaw, Thomas B.; Nishida, Erik E.; Burnett, Damon J.; Lantz, Jeffrey W.

    2016-07-05

    The various technologies presented herein relate to a sensor for measurement of high forces and/or high load shock rate(s), whereby the sensor utilizes silicon as the sensing element. A plate of Si can have a thinned region formed therein on which can be formed a number of traces operating as a Wheatstone bridge. The brittle Si can be incorporated into a layered structure comprising ductile and/or compliant materials. The sensor can have a washer-like configuration which can be incorporated into a nut and bolt configuration, whereby tightening of the nut and bolt can facilitate application of a compressive preload upon the sensor. Upon application of an impact load on the bolt, the compressive load on the sensor can be reduced (e.g., moves towards zero-load), however the magnitude of the preload can be such that the load on the sensor does not translate to tensile stress being applied to the sensor.

  14. MEMS optical sensor

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an all-optical sensor utilizing effective index modulation of a waveguide and detection of a wavelength shift of reflected light and a force sensing system accommodating said optical sensor. One embodiment of the invention relates to a sensor system comprising...... at least one multimode light source, one or more optical sensors comprising a multimode sensor optical waveguide accommodating a distributed Bragg reflector, at least one transmitting optical waveguide for guiding light from said at least one light source to said one or more multimode sensor optical...... waveguides, a detector for measuring light reflected from said Bragg reflector in said one or more multimode sensor optical waveguides, and a data processor adapted for analyzing variations in the Bragg wavelength of at least one higher order mode of the reflected light....

  15. Chemical-Biological Properties of Zinc Sensors TSQ and Zinquin: Formation of Sensor-Zn-Protein Adducts versus Zn(Sensor)2 Complexes.

    Science.gov (United States)

    Nowakowski, Andrew B; Meeusen, Jeffrey W; Menden, Heather; Tomasiewicz, Henry; Petering, David H

    2015-12-21

    Fluorescent zinc sensors are the most commonly used tool to study the intracellular mobile zinc status within cellular systems. Previously, we have shown that the quinoline-based sensors Zinquin and 6-methoxy-8-p-toluenesulfonamido-quinoline (TSQ) predominantly form ternary adducts with members of the Zn-proteome. Here, the chemistries of these sensors are further characterized, including how Zn(sensor)2 complexes may react in an intracellular environment. We demonstrate that these sensors are typically used in higher concentrations than needed to obtain maximum signal. Exposing cells to either Zn(Zinquin)2 or Zn(TSQ)2 resulted in efficient cellular uptake and the formation of sensor-Zn-protein adducts as evidenced by both a fluorescence spectral shift toward that of ternary adducts and the localization of the fluorescence signal within the proteome after gel filtration of cellular lysates. Likewise, reacting Zn(sensor)2 with the Zn-proteome from LLC-PK1 cells resulted in the formation of sensor-Zn-protein ternary adducts that could be inhibited by first saturating the Zn- proteome with excess sensor. Further, a native SDS-PAGE analysis of the Zn-proteome reacted with either the sensor or the Zn(sensor)2 complex revealed that both reactions result in the formation of a similar set of sensor-Zn-protein fluorescent products. The results of this experiment also demonstrated that TSQ and Zinquin react with different members of the Zn-proteome. Reactions with the model apo-Zn-protein bovine serum albumin showed that both Zn(TSQ)2 and Zn(Zinquin)2 reacted to form ternary adducts with its apo-Zn-binding site. Moreover, incubating Zn(sensor)2 complexes with non-zinc binding proteins failed to elicit a spectral shift in the fluorescence spectrum, supporting the premise that blue-shifted emission spectra are due to sensor-Zn-protein ternary adducts. It was concluded that Zn(sensors)2 species do not play a significant role in the overall reaction between these sensors and

  16. Digital Sensor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Quinn, Edward L. [Technology Resources, Dana Point, CA (United States); Mauck, Jerry L. [Technology Resources, Dana Point, CA (United States); Bockhorst, Richard M. [Technology Resources, Dana Point, CA (United States)

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  17. HEAT Sensor: Harsh Environment Adaptable Thermionic Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Limb, Scott J. [Palo Alto Research Center, Palo Alto, CA (United States)

    2016-05-31

    This document is the final report for the “HARSH ENVIRONMENT ADAPTABLE THERMIONIC SENSOR” project under NETL’s Crosscutting contract DE-FE0013062. This report addresses sensors that can be made with thermionic thin films along with the required high temperature hermetic packaging process. These sensors can be placed in harsh high temperature environments and potentially be wireless and self-powered.

  18. GOOSE: semantic search on internet connected sensors

    Science.gov (United States)

    Schutte, Klamer; Bomhof, Freek; Burghouts, Gertjan; van Diggelen, Jurriaan; Hiemstra, Peter; van't Hof, Jaap; Kraaij, Wessel; Pasman, Huib; Smith, Arthur; Versloot, Corne; de Wit, Joost

    2013-05-01

    More and more sensors are getting Internet connected. Examples are cameras on cell phones, CCTV cameras for traffic control as well as dedicated security and defense sensor systems. Due to the steadily increasing data volume, human exploitation of all this sensor data is impossible for effective mission execution. Smart access to all sensor data acts as enabler for questions such as "Is there a person behind this building" or "Alert me when a vehicle approaches". The GOOSE concept has the ambition to provide the capability to search semantically for any relevant information within "all" (including imaging) sensor streams in the entire Internet of sensors. This is similar to the capability provided by presently available Internet search engines which enable the retrieval of information on "all" web pages on the Internet. In line with current Internet search engines any indexing services shall be utilized cross-domain. The two main challenge for GOOSE is the Semantic Gap and Scalability. The GOOSE architecture consists of five elements: (1) an online extraction of primitives on each sensor stream; (2) an indexing and search mechanism for these primitives; (3) a ontology based semantic matching module; (4) a top-down hypothesis verification mechanism and (5) a controlling man-machine interface. This paper reports on the initial GOOSE demonstrator, which consists of the MES multimedia analysis platform and the CORTEX action recognition module. It also provides an outlook into future GOOSE development.

  19. Sensor for metal detection

    KAUST Repository

    Kodzius, Rimantas

    2014-06-26

    NOVELTY - The sensor has a microfluidic flow channel that is provided with an inlet port, an outlet port, and a detection chamber. The detection chamber is provided with a group of sensing electrodes (4) having a working electrode (8), a counter electrode (9), and a reference electrode (10). A flow sensor is configured to measure flow in the channel. A temperature sensor (6) is configured to measure temperature in the channel (3). An electrical connection is configured to connect the sensor to a sensing device. USE - Sensor for detecting metal such as toxic metal in sample such as clinical sample such as stool, saliva, sputum, bronchial lavage, urine, vaginal swab, nasal swab, biopsy, tissue, tears, breath, blood, serum, plasma, cerebrospinal fluid, peritoneal fluid, pleural fluid, pericardial fluid, joint fluid, and amniotic fluid, water sample, food sample, air sample, and soil sample (all claimed). ADVANTAGE - The sensor for use with the portable analytical instrument is configured for detection of metalsin samples. The sensor can provide the excellent solution for on-site metal detection, including heavy metal detection. The sensors can provide significant advantages in higher throughput, lower cost, at the same time being less labor intensive and less dependent on individual skills. The disposable design of the sensor, the enhanced reliability and repeatability of measurements can be obtained. The sensors can be widely applied in various industries. DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following: (1) a system for detecting metal in sample; and (2) a method for using sensor for detecting metal in sample. DESCRIPTION OF DRAWING(S) - The drawing shows a schematic view of the sensor prototype. Channel (3) Sensing electrodes (4) Temperature sensor (6) Working electrode (8) Counter electrode (9) Reference electrode (10)

  20. Advanced Sensor Arrays and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Ryter, John Wesley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Christopher J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramaiyan, Kannan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brosha, Eric L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-11

    Novel sensor packaging elements were designed, fabricated, and tested in order to facilitate the transition of electrochemical mixed-potential sensors toward commercialization. Of the two designs completed, the first is currently undergoing field trials, taking direct measurements within vehicle exhaust streams, while the second is undergoing preliminary laboratory testing. The sensors’ optimal operating conditions, sensitivity to hydrogen, and long-­term baseline stability were also investigated. The sensing capabilities of lanthanum chromite (La0.8Sr0.2CrO3) and indium-­doped tin oxide (ITO) working electrodes were compared, and the ITO devices were selected for pre-­commercial field trials testing at a hydrogen fuel cell vehicle fueling station in California. Previous data from that fueling station were also analyzed, and the causes of anomalous baseline drift were identified.