WorldWideScience

Sample records for evaluation axisymmetric analysis

  1. Seismic analysis of axisymmetric shells

    International Nuclear Information System (INIS)

    Jospin, R.J.; Toledo, E.M.; Feijoo, R.A.

    1984-01-01

    Axisymmetric shells subjected to multiple support excitation are studied. The shells are spatialy discretized by the finite element method and in order to obtain estimates for the maximum values of displacements and stresses the response spectrum tecnique is used. Finally, some numerical results are presented and discussed in the case of a shell of revolution with vertical symmetry axis, subjected to seismic ground motions in the horizontal, vertical and rocking directions. (Author) [pt

  2. Evaluation of thermal ratchetting on axisymmetric thin shells at the free level of sodium: Experimental results and elastic analysis

    International Nuclear Information System (INIS)

    Cabrillat, M.T.; Gatt, J.M.; Schoulguine, P.; Skiara, A.

    1993-01-01

    Startup operations and load variations for a FBR reactor (Fast Breeder Reactor) cause sodium level variations in the vessels which exert stresses on the emergent shells in the free level area. The loading of these shells is mainly linked to the axial thermal gradient, primary stresses being generally low or negligible as are the radial thermal gradients. Under the effect of these variable axial thermal gradients, there is a risk of progressive deformation even in the absence of primary type stresses. The simplified methods of analysis (Bree diagram, efficiency diagram) proposed in the design codes (Code Case and RCCMR) are not applicable in this specific case where primary type stresses are negligible. In recent years, many studies and experimental programmes have been undertaken in order to propose more reliable methods of analysis for these structures. This paper describes the experimental program, called VINIL, developed at the CEA at Cadarache. After a brief description of the experimental facility and of the experimental results, this paper proposes an evaluation of the risk of progressive deformation on an elastic basis: various simplified methods of analysis were used and are compared with experimental results

  3. Forcing scheme analysis for the axisymmetric lattice Boltzmann method under incompressible limit.

    Science.gov (United States)

    Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Chen, Jie; Yin, Linmao; Chew, Jia Wei

    2017-04-01

    Because the standard lattice Boltzmann (LB) method is proposed for Cartesian Navier-Stokes (NS) equations, additional source terms are necessary in the axisymmetric LB method for representing the axisymmetric effects. Therefore, the accuracy and applicability of the axisymmetric LB models depend on the forcing schemes adopted for discretization of the source terms. In this study, three forcing schemes, namely, the trapezium rule based scheme, the direct forcing scheme, and the semi-implicit centered scheme, are analyzed theoretically by investigating their derived macroscopic equations in the diffusive scale. Particularly, the finite difference interpretation of the standard LB method is extended to the LB equations with source terms, and then the accuracy of different forcing schemes is evaluated for the axisymmetric LB method. Theoretical analysis indicates that the discrete lattice effects arising from the direct forcing scheme are part of the truncation error terms and thus would not affect the overall accuracy of the standard LB method with general force term (i.e., only the source terms in the momentum equation are considered), but lead to incorrect macroscopic equations for the axisymmetric LB models. On the other hand, the trapezium rule based scheme and the semi-implicit centered scheme both have the advantage of avoiding the discrete lattice effects and recovering the correct macroscopic equations. Numerical tests applied for validating the theoretical analysis show that both the numerical stability and the accuracy of the axisymmetric LB simulations are affected by the direct forcing scheme, which indicate that forcing schemes free of the discrete lattice effects are necessary for the axisymmetric LB method.

  4. Linear stability analysis of supersonic axisymmetric jets

    Directory of Open Access Journals (Sweden)

    Zhenhua Wan

    2014-01-01

    Full Text Available Stabilities of supersonic jets are examined with different velocities, momentum thicknesses, and core temperatures. Amplification rates of instability waves at inlet are evaluated by linear stability theory (LST. It is found that increased velocity and core temperature would increase amplification rates substantially and such influence varies for different azimuthal wavenumbers. The most unstable modes in thin momentum thickness cases usually have higher frequencies and azimuthal wavenumbers. Mode switching is observed for low azimuthal wavenumbers, but it appears merely in high velocity cases. In addition, the results provided by linear parabolized stability equations show that the mean-flow divergence affects the spatial evolution of instability waves greatly. The most amplified instability waves globally are sometimes found to be different from that given by LST.

  5. Dynamic analysis of reactor containment building using axisymmetric finite element model

    International Nuclear Information System (INIS)

    Thakkar, S.K.; Dubey, R.N.

    1989-01-01

    The structural safety of nuclear reactor building during earthquake is of great importance in view of possibility of radiation hazards. The rational evaluation of forces and displacements in various portions of structure and foundation during strong ground motion is most important for safe performance and economic design of the reactor building. The accuracy of results of dynamic analysis is naturally dependent on the type of mathematical model employed. Three types of mathematical models are employed for dynamic analysis of reactor building beam model axisymmetric finite element model and three dimensional model. In this paper emphasis is laid on axisymmetric model. This model of containment building is considered a reinfinement over conventional beam model of the structure. The nuclear reactor building on a rocky foundation is considered herein. The foundation-structure interaction is relatively less in this condition. The objective of the paper is to highlight the significance of modelling of non-axisymmetric portion of building, such as reactor internals by equivalent axisymmetric body, on the structural response of the building

  6. SIGMARZ, Stress Analysis of Axisymmetric or Plane Structures

    International Nuclear Information System (INIS)

    1978-01-01

    1 - Nature of the physical problem solved: Classic stress analysis program for axisymmetric or plane geometric structures. 2 - Method of solution: The finite element method is used. Input are the finite element nodes, the imposed displacements, the applied forces at the nodes and the volumetric distributed forces. The linear equation system is solved by the Cholesky method. 3 - Restrictions on the complexity of the problem: Maximum number of nodes: 800; Maximum number of elements: 1300; Maximum number of displacements: 300; Maximum band width: 72

  7. Analysis of axisymmetric shells subjected to asymmetric loads using field consistent shear flexible curved element

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishna, C; Sarma, B S [Defence Research and Development Laboratory, Hyderabad (India)

    1989-02-01

    A formulation for axisymmetric shell analysis under asymmetric load based on Fourier series representation and using field consistent 3 noded curved axisymmetric shell element is presented. Different field inconsistent/consistent interpolations for an element based on shear flexible theory have been studied for thick and thin shells under asymmetric loads. Various examples covering axisymmetric as well as asymmetric loading cases have been analyzed and numerical results show a good agreement with the available results in the case of thin shells. 12 refs.

  8. Stress analysis in a non axisymmetric loaded reactor pressure vessel

    International Nuclear Information System (INIS)

    Albuquerque, Levi Barcelos; Assis, Gracia Menezes V. de; Miranda, Carlos Alexandre J.; Cruz, Julio Ricardo B.; Mattar Neto, Miguel

    1995-01-01

    In this work we intend to present the stress analysis of a PWR vessel under postulated concentrated loads. The vessel was modeled with Axisymmetric solid 4 nodes harmonic finite elements with the use of the ANSYS program, version 5.0. The bolts connecting the vessel flanges were modeled with beam elements. Some considerations were made to model the contact between the flanges. The perforated part of the vessel tori spherical head was modeled (with reduced properties due to its holes) to introduce its stiffness and loads but was not within the scope of this work. The loading consists of some usual ones, as pressure, dead weight, bolts preload, seismic load and some postulated ones as concentrated loads, over the vessel, modeled by Fourier Series. The results in the axisymmetric model are taken in terms of linearized stresses, obtained in some circumferential positions and for each position, in some sections along the vessel. Using the ASME Code (Section III, Division 1, Sub-section NB) the stresses are within the allowable limits. In order to draw some conclusions about stress linearization, the membrane plus bending stresses (Pl + Pb) are obtained and compared in some sections, using three different methods. (author)

  9. Elastic-plastic analysis of an axi-symmetric problem by a finite element method

    International Nuclear Information System (INIS)

    Isozaki, Toshikuni

    1984-06-01

    Generally speaking, many structures are designed and fabricated on the basis of an axi-symmetric structure. Finite Element Method is the capable method to solve these axi-symmetric problems beyond the elastic limit. As the first step to solve these problems, the computer program for the elastic-plastic analysis of the axi-symmetric problem is composed. The basic program is based upon that described in Zienkiewicz's text book to solve the elastic plane stress problem, taking the plastic stress matrix by Yamada's method into consideration and it is converted to solve the axi-symmetric problem. For the verification of the program, the plane strain problem of a cylindrical tube under internal pressure was solved. The computed results were compared with those shown in ADINA's user's manual. They showed close agreement. (author)

  10. Nonconforming axisymmetric elements for the analysis of containment structures

    International Nuclear Information System (INIS)

    Choi, C.K.; Kim, S.Y.

    1989-01-01

    In this study, the behaviors of the conforming isoparametric quadrilateral 4-node and triangular 3-nod axisymmetric solid elements are improved by adding nonconforming displacement modes. The convergence tests and the irregular mesh tests have been established through the analyses of a primary shield wall typed structure. For example study, a containment wall with internal pressure of 60 ksi has been analyzed. It shows that the nonconforming elements behave better than the conforming elements, especially, in the structurally discontinuous regions

  11. ASSESSMENT OF BACTERIAL BIOSURFACTANT PRODUCTION THROUGH AXISYMMETRICAL DROP SHAPE-ANALYSIS BY PROFILE

    NARCIS (Netherlands)

    VANDERVEGT, W; VANDERMEI, HC; BUSSCHER, HJ

    Axisymmetric drop shape analysis by profile (ADSA-P) is a technique developed in colloid and surface science to simultaneously determine the contact angle and liquid surface tension from the profile of a droplet resting on a solid surface. In this paper is described how ADSA-P can be employed to

  12. Experimental evaluation of pumpjet propulsor for an axisymmetric body in wind tunnel

    Directory of Open Access Journals (Sweden)

    Ch. Suryanarayana

    2010-03-01

    Full Text Available Design of a Pump Jet Propulsor (PJP was undertaken for an underwater body with axisymmetric configuration using axial flow compressor design techniques supported by Computational Fluid Dynamics (CFD analysis for performance prediction. Experimental evaluation of the PJP was carried out through experiments in a Wind Tunnel Facility (WTF using momentum defect principle for propulsive performance prior to proceeding with extensive experimental evaluation in towing tank and cavitation tunnel. Experiments were particularly conducted with respect to Self Propulsion Point (SPP, residual torque and thrust characteristics over a range of vehicle advance ratio in order to ascertain whether sufficient thrust is developed at the design condition with least possible imbalance torque left out due to residual swirl in the slip stream. Pumpjet and body models were developed for the propulsion tests using Aluminum alloy forged material. Tests were conducted from 0 m/s to 30 m/s at four rotational speeds of the PJP. SPP was determined confirming the thrust development capability of PJP. Estimation of residual torque was carried out at SPP corresponding to speeds of 15, 20 and 25 m/s to examine the effectiveness of the stator. Estimation of thrust and residual torque was also carried out at wind speeds 0 and 6 m/s for PJP RPMs corresponding to self propulsion tests to study the propulsion characteristics during the launch of the vehicle in water where advance ratios are close to Zero. These results are essential to assess the thrust performance at very low advance ratios to accelerate the body and to control the body during initial stages. This technique has turned out to be very useful and economical method for quick assessment of overall performance of the propulsor and generation of exhaustive fluid dynamic data to validate CFD techniques employed.

  13. FLEXURAL STRESS ANALYSIS OF RIGID PAVEMENTS USING AXI-SYMMETRIC AND PLANE STRAIN FEM

    Directory of Open Access Journals (Sweden)

    V.A. Sawant

    2017-11-01

    Full Text Available The design of pavement involves a study of soils and paving materials, their response under load for different climatic conditions. In the present study, an attempt has been made to compare stresses predicted using two finite element analyses. First analysis is based on the twodimensional plane strain assumption where as in second approach axi-symmetric condition is assumed to consider three-dimensional behavior of rigid pavement. The results are compared with flexural stresses obtained from conventional Portland Cement Association method. The computed flexural stresses obtained from axi-symmetric condition are found to be in close agreement with PCA method. Results of plane strain analysis show a fair agreement after application of an appropriate multiplication factor

  14. Scramjet test flow reconstruction for a large-scale expansion tube, Part 2: axisymmetric CFD analysis

    Science.gov (United States)

    Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.

    2017-11-01

    This paper presents the second part of a study aiming to accurately characterise a Mach 10 scramjet test flow generated using a large free-piston-driven expansion tube. Part 1 described the experimental set-up, the quasi-one-dimensional simulation of the full facility, and the hybrid analysis technique used to compute the nozzle exit test flow properties. The second stage of the hybrid analysis applies the computed 1-D shock tube flow history as an inflow to a high-fidelity two-dimensional-axisymmetric analysis of the acceleration tube. The acceleration tube exit flow history is then applied as an inflow to a further refined axisymmetric nozzle model, providing the final nozzle exit test flow properties and thereby completing the analysis. This paper presents the results of the axisymmetric analyses. These simulations are shown to closely reproduce experimentally measured shock speeds and acceleration tube static pressure histories, as well as nozzle centreline static and impact pressure histories. The hybrid scheme less successfully predicts the diameter of the core test flow; however, this property is readily measured through experimental pitot surveys. In combination, the full test flow history can be accurately determined.

  15. Analysis of axisymmetric and non-axisymmetric wave propagation in a homogeneous piezoelectric solid circular cylinder of transversely isotropic material

    CSIR Research Space (South Africa)

    Shatalov, MY

    2010-01-01

    Full Text Available artefacts. An elaborate discussion of these artefacts is given by Yenwong-Fai, (Yenwong-Fai, 2008). These artefacts could be simply detected and eliminated from the dispersion plots by program tools.Our algorithm, as it has been implemented, does.... Arthur G. Every and our student Alfred S. Yenwong-Fai participating in the investigation of the non-axisymmetric case of the piezoelectric cylinder vibrations (Shatalov, et al. 2009). I also want to thank Mr. Yuri M. Shatalov who investigated...

  16. Seismic response analysis of reactor containment structures - axisymmetric model with modified ground motion

    International Nuclear Information System (INIS)

    Saha, S.; Dasgupta, A.; Basu, P.C.

    1993-01-01

    Seismic analysis of a Reactor Building is performed idealising the system as a beam model (BM) and also an Axi-symmetric model (ASM) and the results compared. In both the cases effect of Soil-Structure Interaction have been taken Into account. Since the lower boundary of the ASM was at a depth much lower than that of the BM, deconvolution of the specified Free-Field Motion (FFM) was necessary. The deconvolution has been performed using frequency domain approach. (author)

  17. Axisymmetric Drop Shape Analysis for Estimating the Surface Tension of Cell Aggregates by Centrifugation

    OpenAIRE

    Kalantarian, Ali; Ninomiya, Hiromasa; Saad, Sameh M.I.; David, Robert; Winklbauer, Rudolf; Neumann, A. Wilhelm

    2009-01-01

    Biological tissues behave in certain respects like liquids. Consequently, the surface tension concept can be used to explain aspects of the in vitro and in vivo behavior of multicellular aggregates. Unfortunately, conventional methods of surface tension measurement cannot be readily applied to small cell aggregates. This difficulty can be overcome by an experimentally straightforward method consisting of centrifugation followed by axisymmetric drop shape analysis (ADSA). Since the aggregates ...

  18. Application of Quasi-Newton methods to the analysis of axisymmetric pressure vessels

    International Nuclear Information System (INIS)

    Parisi, D.A.C.

    1987-01-01

    This work studies the application of Quasi-Newton techniques to material nonlinear analysis of axisymmetrical pressure vessels by the finite element method. In the formulation the material bahavior is described by an isotropic elastoplastic model with strain hardening. The continum is discretized through triangular finite elements of axisymmetrical solids with linear interpolation of the displacement field. The incremental governing equations are derived by the virtual work. The solution of the system of simultaneous nonlinear equations is solved iteratively by the Quasi-Newton method employing the BFGS update. The numerical performance of the proposed method is compared with the Newton-Raphson method and some of its variants through some selected examples. (author) [pt

  19. Global stability analysis of axisymmetric boundary layer over a circular cylinder

    Science.gov (United States)

    Bhoraniya, Ramesh; Vinod, Narayanan

    2018-05-01

    This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.

  20. Complex stiffness formulation for the finite element analysis of anisotropic axisymmetric solids subjected to nonsymmetric loads

    International Nuclear Information System (INIS)

    Frater, J.; Lestingi, J.; Padovan, J.

    1977-01-01

    This paper describes the development of an improved semi-analytical finite element for the stress analysis of anisotropic axisymmetric solids subjected to nonsymmetric loads. Orthogonal functions in the form of finite Fourier exponential transforms, which satisfy the equations of equilibrium of the theory of elasticity for an anisotropic solid of revolution, are used to expand the imposed loadings and displacement field. It is found that the orthogonality conditions for the assumed solution reduce the theta-dependency, thus reducing the three dimensional problem to an infinite series of two dimensional problems. (Auth.)

  1. SAFE-AXISYM, Stress Analysis of Axisymmetric Composite Structure by Finite Elements Method

    International Nuclear Information System (INIS)

    Cornell, D.C.

    1967-01-01

    1 - Nature of physical problem solved: SAFE-AXISYM is a program for the analysis of multi-material axisymmetric composite structures. It is designed for the analysis of heterogeneous structures such as reinforced and/or prestressed concrete vessels. The structure is assumed to be linearly elastic, and only bodies of revolution subjected to axisymmetric loading can be treated. 2 - Method of solution: SAFE-AXISYM uses a finite element method with a modified Gauss-Seidel iteration scheme. A reference grid subdivides the structure into ring-like small, finite elements, the vertices of which are called nodes. The grid may be generated by hand, by the computer or by a combination of the two methods. Each node has two degrees of freedom, translation in the and in the axial direction. Both zero and non-zero fixed displacement constraints may be assumed, and the loading condition may be mechanical and/or thermal. 3 - Restrictions on the complexity of the problem: Multi-material structures with varying rigidities converge very slowly. Not valid for incompressible materials. Maximum number of nodes = 475. Maximum number of elements = 1100

  2. Axisymmetric global structural analysis of BARC prestressed concrete containment model for beyond design pressure

    International Nuclear Information System (INIS)

    Singh, Tarvinder; Singh, R.K.; Ghosh, A.K.

    2008-10-01

    In order to check the adequacy of the Indian Pressurized Heavy Water Reactor (PHWR) containment structure to withstand severe accident induced internal pressure load, the ultimate load capacity assessment is required. Reactor Safety Division (RSD) of Bhabha Atomic Research Centre (BARC) has initiated an experimental program at BARC Tarapur Containment Test Facility to evaluate the ultimate load capacity of Indian PHWR containment. For this study, BARC Containment Model (BARCOM), which is 1:4 scale representation of Tarapur Atomic Power Station (TAPS) unit-3 and 4 540 MWe PHWR Inner Containment of Pre-stressed Concrete has been constructed. The model includes all the important major design features of the prototype containment and simulates Main Air Lock (MAL), Steam Generator (SG), Emergency Air Lock (EAL) and Fueling Machine Air Lock (FMAL) openings. The design pressure (Pd) of BARCOM is 1.44kg/cm 2 (g), which is same as the prototype. The pretest analysis of BARCOM has been performed with finite element axi-symmetric modeling. The objective of this simulation was to understand the behavior of containment model under internal pressure and find out the various failure modes and critical locations important for instrumentation during the experiment. The structural response of the containment model is assessed in terms of wall and dome displacement; cracking of concrete, longitudinal and hoop strains and stresses. Another objective of the analysis was to predict the various failure modes of BARCOM with regard to the concrete cracking, reinforcement yielding and tendon inelastic behavior along with the estimation of the ultimate load capacity of the containment model. It is noted that the BARCOM has an ultimate load capacity factor of 3.54 Pd. However, further analysis is needed to quantify the factor of safety with detail 3D model, which should account for the local structural behavior due to various openings. Meanwhile, this preliminary simplified analysis helps to

  3. MHD stability analysis of axisymmetric surface current model tokamaks close to the spheromak regime

    International Nuclear Information System (INIS)

    Honma, Toshihisa; Kaji, Ikuo; Fukai, Ichiro; Kito, Masafumi.

    1984-01-01

    In the toroidal coordinates, a stability analysis is presented for very low-aspect-ratio tokamaks with circular cross section which is described by a surface current model (SCM) of axisymmetric equilibria. The energy principle determining the stability of plasma is treated without any expansion of aspect ratio. Numerical results show that, owing to the occurrence of the non-axisymmetric (n=1) unstable modes, there exists no MHD-stable ideal SCM spheromak characterized by zero external toroidal vacuum field. Instead, a stable spheromak-type plasma which comes to the ideal SCM spheromak is provided by the configuration with a very weak external toroidal field. Close to the spheromak regime (1.0 1 aspect ratio< = 1.1), the minimum safety factor and the critical β-values increase mo notonically with aspect ratio decreasing from a large value, and curves of βsub(p) versus β in the marginal stability approach to an ideal SCM spheromak line βsub(p)=β. (author)

  4. Dynamic instability analysis of axisymmetric shells by finite element method with convected coordinates

    International Nuclear Information System (INIS)

    Hsieh, B.J.

    1977-01-01

    The instability of axisymmetric shells has been used in engineering fields as a safety device such as the rupture discs used in the LMFBR (Liquid Metal Fast Breeder Reactor) design to relieve the excessive pressure caused by the water and sodium reaction when there is a leak in the piping system. Hence, the analysis of the instability of shells under time varying loading is becoming more and more important. However, notorious discrepancy has been observed between various analytical predications and experimental results for the buckling of shells. Various theories have been proposed to explain these discrepancies. Most of these theories are concerned with two aspects: initial imperfections and asymmetric responses. Both theories do narrow the gap between theoretical and experimental results; however, the remaining discrepancy is still not small. Other possible causes of this discrepancy have to be studied- among them, the boundary conditions. It has been pointed out that the slip at the boundary may have noticeable effect on the transient behavior of a plate. In this paper, the effect of various boundary conditions on the dynamic instability of axisymmetric shells is studied using the numerical discretization technique--convective finite element method

  5. Theoretical analysis of the vibration of axisymmetric liquid bridges of arbitrary shape

    Energy Technology Data Exchange (ETDEWEB)

    Montanero, J.M. [Departamento de Electronica e Ingenieria Electromecanica, Universidad de Extremadura, 06071 Badajoz (Spain)

    2003-01-01

    A liquid bridge consists of a mass of liquid sustained by the action of capillary forces between two parallel disks. The dynamics of these liquid columns has been extensively analysed both theoretically and experimentally over the last decades. Many of the studies have focused on the dynamical response of cylindrical liquid bridges subjected to the action of an oscillatory microgravity field due to, for instance, an in-phase vibration of the supporting disks. There have been fewer studies dealing with the vibration of axisymmetric liquid bridges of arbitrary shape. In this paper the dynamics of rotating inviscid axisymmetric liquid bridges is analysed considering the combined effect of residual gravity, the inequality of the disks and the liquid bridge volume. The results are calculated numerically by using the one-dimensional Cosserat model and the full three-dimensional description. The excitation is assumed to be of small amplitude and harmonic, so that the theoretical models are linearized and the analysis is performed in the frequency domain. The details of the numerical methods proposed are discussed. Comparison between the values of the first resonance frequency obtained from both models shows an excellent agreement for long liquid bridges, the discrepancies increasing as the value of the slenderness decreases. (orig.)

  6. Input-output analysis of high-speed axisymmetric isothermal jet noise

    Science.gov (United States)

    Jeun, Jinah; Nichols, Joseph W.; Jovanović, Mihailo R.

    2016-04-01

    We use input-output analysis to predict and understand the aeroacoustics of high-speed isothermal turbulent jets. We consider axisymmetric linear perturbations about Reynolds-averaged Navier-Stokes solutions of ideally expanded turbulent jets with jet Mach numbers 0.6 parabolized stability equations (PSE), and this mode dominates the response. For subsonic jets, however, the singular values indicate that the contributions of sub-optimal modes to noise generation are nearly equal to that of the optimal mode, explaining why the PSE do not fully capture the far-field sound in this case. Furthermore, high-fidelity large eddy simulation (LES) is used to assess the prevalence of sub-optimal modes in the unsteady data. By projecting LES source term data onto input modes and the LES acoustic far-field onto output modes, we demonstrate that sub-optimal modes of both types are physically relevant.

  7. An axisymmetric method of creep analysis for primary and secondary creep

    International Nuclear Information System (INIS)

    Jahed, Hamid; Bidabadi, Jalal

    2003-01-01

    A general axisymmetric method for elastic-plastic analysis was previously proposed by Jahed and Dubey [ASME J Pressure Vessels Technol 119 (1997) 264]. In the present work the method is extended to the time domain. General rate type governing equations are derived and solved in terms of rate of change of displacement as a function of rate of change in loading. Different types of loading, such as internal and external pressure, centrifugal loading and temperature gradient, are considered. To derive specific equations and employ the proposed formulation, the problem of an inhomogeneous non-uniform rotating disc is worked out. Primary and secondary creep behaviour is predicted using the proposed method and results are compared to FEM results. The problem of creep in pressurized vessels is also solved. Several numerical examples show the effectiveness and robustness of the proposed method

  8. Analysis of stresses in filament-wound spherical pressure vessels produced by the delta-axisymmetric pattern

    International Nuclear Information System (INIS)

    Knight, C.E. Jr.

    1975-01-01

    Spherical pressure vessels may be produced by filament winding the composite material with a delta-axisymmetric pattern. This particular pattern yields a composite with high fiber density and efficient and reproducible structures. The pattern is readily defined mathematically and, thus, eases the analysis problem. (U.S.)

  9. Partial Fourier analysis of time-harmonic Maxwell's equations in axisymmetric domains

    International Nuclear Information System (INIS)

    Nkemzi, Boniface

    2003-01-01

    We analyze the Fourier method for treating time-harmonic Maxwell's equations in three-dimensional axisymmetric domains with non-axisymmetric data. The Fourier method reduces the three-dimensional boundary value problem to a system of decoupled two-dimensional boundary value problems on the plane meridian domain of the axisymmetric domain. The reduction process is fully described and suitable weighted spaces are introduced on the meridian domain to characterize the two-dimensional solutions. In particular, existence and uniqueness of solutions of the two-dimensional problems is proved and a priori estimates for the solutions are given. (author)

  10. Lyapunov stability analysis of magnetohydrodynamic plasma equilibria with axisymmetric toroidal flow

    International Nuclear Information System (INIS)

    Almaguer, J.A.; Hameiri, E.; Herrera, J.; Holm, D.D.

    1988-01-01

    Lyapunov stability conditions for ideal magnetohydrodynamic (MHD) plasmas with mass flow in axisymmetric toroidal geometry are determined in the Eulerian representation. Axisymmetric equilibrium solutions of ideal MHD are associated to critical points of a nonlinearly conserved Lyapunov functional consisting of the sum of the total energy and the following flux-weighted quantities: the circulation along field lines, the angular momentum, the toroidal flux, and the mass content within each flux tube. Conditions sufficient for Lyapunov stability of these equilibria against axisymmetric perturbations are found by taking advantage of the Hamiltonian formalism for ideal MHD. In particular [see Eq. (60)], it is sufficient for Lyapunov stability under linearized dynamics that an axisymmetric equilibrium be subsonic in the appropriate rotating frame, lie in the first elliptic regime of the Bernoulli--Grad--Shafranov (BGS) system of equations, and satisfy one additional, more complicated, condition. Effects of boundary conditions, nonlinearity, and three-dimensionality on MHD stability are also discussed

  11. Analysis of the formation mechanism of the slug and jet center hole of axisymmetric shaped charges

    Science.gov (United States)

    Baoxiang, Ren; Gang, Tao; Peng, Wen; Changxing, Du; Chunqiao, Pang; Hongbo, Meng

    2018-06-01

    In the jet formation process of axisymmetric shaped charges, the slug is also formed. There is always a central hole in the symmetry axis of the jet and slug. The phenomenon was rarely mentioned and analyzed by the classical theory of shaped charges. For this problem, this paper attempts to explain the existence of the central hole in the jet and slug. Based on the analysis of recovery slug, we know that the jet and slug are in solid state in the process of formation. Through the analysis of X-flash radiographs of the stretching jet and particulation fracture, it is confirmed that the center holes in the jet are also present. Meanwhile, through the analysis of the microstructure of the recovered slug, it is found that there is a wave disturbance near the surface of the central hole. It can be speculated that the wave disturbance also exist in the jet. This effect may be one of the reasons for jet breakup. Due to the presence of the central hole in the jet, the density deficit of the jet obtained by other tests is very reasonable.

  12. Axisymmetric drop shape analysis for estimating the surface tension of cell aggregates by centrifugation.

    Science.gov (United States)

    Kalantarian, Ali; Ninomiya, Hiromasa; Saad, Sameh M I; David, Robert; Winklbauer, Rudolf; Neumann, A Wilhelm

    2009-02-18

    Biological tissues behave in certain respects like liquids. Consequently, the surface tension concept can be used to explain aspects of the in vitro and in vivo behavior of multicellular aggregates. Unfortunately, conventional methods of surface tension measurement cannot be readily applied to small cell aggregates. This difficulty can be overcome by an experimentally straightforward method consisting of centrifugation followed by axisymmetric drop shape analysis (ADSA). Since the aggregates typically show roughness, standard ADSA cannot be applied and we introduce a novel numerical method called ADSA-IP (ADSA for imperfect profile) for this purpose. To examine the new methodology, embryonic tissues from the gastrula of the frog, Xenopus laevis, deformed in the centrifuge are used. It is confirmed that surface tension measurements are independent of centrifugal force and aggregate size. Surface tension is measured for ectodermal cells in four sample batches, and varies between 1.1 and 7.7 mJ/m2. Surface tension is also measured for aggregates of cells expressing cytoplasmically truncated EP/C-cadherin, and is approximately half as large. In parallel, such aggregates show a reduction in convergent extension-driven elongation after activin treatment, reflecting diminished intercellular cohesion.

  13. Axisymmetric analysis of a 1:6-scale reinforced concrete containment building using a distributed cracking model for the concrete

    International Nuclear Information System (INIS)

    Weatherby, J.R.

    1987-09-01

    Results of axisymmetric structural analyses of a 1:6 scale model of a reinforced concrete nuclear containment building are presented. Both a finite element shell analysis and a simplified membrane analysis were made to predict the structural response and ultimate pressure capacity of the model. Analytical results indicate that the model will fail at an internal pressure of 187 psig when the stress level in the hoop reinforcement at the midsection of the cylinder exceeds the ultimate strength of the bar splices. 5 refs., 34 figs., 6 tabs

  14. Numerical analysis of laser ablation using the axisymmetric two-temperature model

    Science.gov (United States)

    Dziatkiewicz, Jolanta; Majchrzak, Ewa

    2018-01-01

    Laser ablation of the axisymmetric micro-domain is analyzed. To describe the thermal processes occurring in the micro-domain the two-temperature hyperbolic model supplemented by the boundary and initial conditions is used. This model takes into account the phase changes of material (solid-liquid and liquid-vapour) and the ablation process. At the stage of numerical computations the finite difference method with staggered grid is used. In the final part the results of computations are shown.

  15. Large deflection analysis of a pre-stressed annular plate with a rigid boss under axisymmetric loading

    Science.gov (United States)

    Su, Y. H.; Chen, K. S.; Roberts, D. C.; Spearing, S. M.

    2001-11-01

    The large deflection analysis of a pre-stressed annular plate with a central rigid boss subjected to axisymmetric loading is presented. The factors affecting the transition from plate behaviour to membrane behaviour (e.g. thickness, in-plane tension and material properties) are studied. The effect of boss size and pre-tension on the effective stiffness of the plate are investigated. The extent of the bending boundary layers at the edges of the plate are quantified. All results are presented in non-dimensional form. The design implications for microelectromechanical system components are assessed.

  16. TSAAS: finite-element thermal and stress analysis of plane and axisymmetric solids with orthotropic temperature-dependent material properties

    Energy Technology Data Exchange (ETDEWEB)

    Browning, R.V.; Anderson, C.A.

    1982-02-01

    The finite element method is used to determine the temperatures, displacements, stresses, and strains in axisymmetric solids with orthotropic, temperature-dependent material properties under axisymmetric thermal and mechanical loads. The mechanical loads can be surface pressures, surface shears, and nodal point forces as well as an axial or centripetal acceleration. The continuous solid is replaced by a system of ring elements with triangular or quadrilateral cross sections. Accordingly, the method is valid for solids that are composed of many different materials and that have complex geometry. Nonlinear mechanical behavior as typified by plastic, locking, or creeping materials can be approximated. Two dimensional mesh generation, plotting, and editing features allow the computer program to be readily used. In addition to a stress analysis program that is based on a modified version of the SAAS code, TSAAS can carry out a transient thermal analysis with the finite element mesh used in stress analysis. An implicit time differencing scheme allows the use of arbitrary time steps with consequent fast running times. At specified times, the program will return to SAAS for thermal stress analysis. Nonlinear thermal properties and Arrhenius reaction kinetics are also incorporated into TSAAS. Several versions of TSAAS are in use at Los Alamos, running on CDC-7600, CRAY-1 and VAX 11/780 computers. This report describes the nominal TSAAS; other versions may have some unique features.

  17. Thermal-hydraulic analysis techniques for axisymmetric pebble bed nuclear reactor cores

    International Nuclear Information System (INIS)

    Stroh, K.R.

    1979-03-01

    The pebble bed reactor's cylindrical core volume contains a random bed of small, spherical fuel-moderator elements. These graphite spheres, containing a central region of dispersed coated-particle fissile and fertile material, are cooled by high pressure helium flowing through the connected interstitial voids. A mathematical model and numerical solution technique have been developed which allow calculation of macroscopic values of thermal-hydraulic variables in an axisymmetric pebble bed nuclear reactor core. The computer program PEBBLE is based on a mathematical model which treats the bed macroscopically as a generating, conducting porous medium. The steady-state model uses a nonlinear Forchheimer-type relation between the coolant pressure gradient and mass flux, with newly derived coefficients for the linear and quadratic resistance terms. The remaining equations in the model make use of mass continuity, and thermal energy balances for the solid and fluid phases

  18. Heat transfer analysis for magnetohydrodynamics axisymmetric flow between stretching disks in the presence of viscous dissipation and Joule heating

    Directory of Open Access Journals (Sweden)

    N. Khan

    2015-05-01

    Full Text Available The investigation of heat transfer analysis on steady MHD axi-symmetric flow between two infinite stretching disks in the presence of viscous dissipation and Joule heating is basic objective of this paper. Attention has been focused to acquire the similarity solutions of the equations governing the flow and thermal fields. The transformed boundary value problem is solved analytically using homotopy analysis method. The series solutions are developed and the convergence of these solutions is explicitly discussed. The analytical expressions for fluid velocity, pressure and temperature are constructed and analyzed for various set of parameter values. The numerical values for skin friction coefficient and the Nusselt number are presented in tabular form. Particular attention is given to the variations of Prandtl and Eckert numbers. We examined that the dimensionless temperature field is enhanced when we increase the values of Eckert number and Prandtl number.

  19. Hydrodynamic analysis and shape optimization for vertical axisymmetric wave energy converters

    Science.gov (United States)

    Zhang, Wan-chao; Liu, Heng-xu; Zhang, Liang; Zhang, Xue-wei

    2016-12-01

    The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber's hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisymmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion.

  20. Analysis of PKP scattering using mantle mixing simulations and axisymmetric 3D waveforms

    Science.gov (United States)

    Haugland, Samuel M.; Ritsema, Jeroen; van Keken, Peter E.; Nissen-Meyer, Tarje

    2018-03-01

    The scattering of PKP waves in the lower mantle produces isolated signals before the PKIKP phase. We explore whether these so-called PKIKP precursors can be related to wave scattering off mid ocean ridge basalt (MORB) fragments that have been advected in the deep mantle throughout geologic time. We construct seismic models of small-scale (>20 km) heterogeneity in the lower mantle informed by mantle mixing simulations from Brandenburg et al. (2008) and generate PKIKP precursors using 3D, axisymmetric waveform simulations up to 0.75 Hz. We consider two end-member geodynamic models with fundamentally different distributions of MORB in the lower mantle. Our results suggest that the accumulation of MORB at the base of the mantle is a viable hypothesis for the origin of PKP scattering. We find that the strength of the PKIKP precursor amplitudes is consistent with P wave speed heterogeneity of 0.1-0.2%, as reported previously. The radial distribution of MORB has a profound effect on the strength of PKIKP precursors. Simulation of PKIKP precursors for models with an increasing MORB concentration in the lowermost 500 km of the mantle appears to reproduce most accurately the strength of PKIKP precursors in Global Seismic Network waveforms. These models assume that MORB has an excess density of at least 7%. Additional simulations of more complex geodynamic models will better constrain the geodynamic conditions to explain the significant variability of PKP scattering strength.

  1. Axisymmetric control in tokamaks

    International Nuclear Information System (INIS)

    Humphreys, D.A.

    1991-02-01

    Vertically elongated tokamak plasmas are intrinsically susceptible to vertical axisymmetric instabilities as a result of the quadrupole field which must be applied to produce the elongation. The present work analyzes the axisymmetric control necessary to stabilize elongated equilibria, with special application to the Alcator C-MOD tokamak. A rigid current-conserving filamentary plasma model is applied to Alcator C-MOD stability analysis, and limitations of the model are addressed. A more physically accurate nonrigid plasma model is developed using a perturbed equilibrium approach to estimate linearized plasma response to conductor current variations. This model includes novel flux conservation and vacuum vessel stabilization effects. It is found that the nonrigid model predicts significantly higher growth rates than predicted by the rigid model applied to the same equilibria. The nonrigid model is then applied to active control system design. Multivariable pole placement techniques are used to determine performance optimized control laws. Formalisms are developed for implementing and improving nominal feedback laws using the C-MOD digital-analog hybrid control system architecture. A proportional-derivative output observer which does not require solution of the nonlinear Ricatti equation is developed to help accomplish this implementation. The nonrigid flux conserving perturbed equilibrium plasma model indicates that equilibria with separatrix elongation of at least κ sep = 1.85 can be stabilized robustly with the present control architecture and conductor/sensor configuration

  2. Performance of an Axisymmetric Rocket Based Combined Cycle Engine During Rocket Only Operation Using Linear Regression Analysis

    Science.gov (United States)

    Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.

    1998-01-01

    The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.

  3. Development and application of an analysis of axisymmetric body effects on helicopter rotor aerodynamics using modified slender body theory

    Science.gov (United States)

    Yamauchi, G.; Johnson, W.

    1984-01-01

    A computationally efficient body analysis designed to couple with a comprehensive helicopter analysis is developed in order to calculate the body-induced aerodynamic effects on rotor performance and loads. A modified slender body theory is used as the body model. With the objective of demonstrating the accuracy, efficiency, and application of the method, the analysis at this stage is restricted to axisymmetric bodies at zero angle of attack. By comparing with results from an exact analysis for simple body shapes, it is found that the modified slender body theory provides an accurate potential flow solution for moderately thick bodies, with only a 10%-20% increase in computational effort over that of an isolated rotor analysis. The computational ease of this method provides a means for routine assessment of body-induced effects on a rotor. Results are given for several configurations that typify those being used in the Ames 40- by 80-Foot Wind Tunnel and in the rotor-body aerodynamic interference tests being conducted at Ames. A rotor-hybrid airship configuration is also analyzed.

  4. Axisymmetric tokamak scapeoff transport

    International Nuclear Information System (INIS)

    Singer, C.E.; Langer, W.D.

    1982-08-01

    We present the first self-consistent estimate of the magnitude of each term in a fluid treatment of plasma transport for a plasma lying in regions of open field lines in an axisymmetric tokamak. The fluid consists of a pure hydrogen plasma with sources which arise from its interaction with neutral hydrogen atoms. The analysis and results are limited to the high collisionality regime, which is optimal for a gaseous neutralizer divertor, or to a cold plasma mantle in a tokamak reactor. In this regime, both classical and neoclassical transport processes are important, and loss of particles and energy by diamagnetic flow are also significant. The prospect of extending the analysis to the lower collisionality regimes encountered in many existing experiments is discussed

  5. Axisymmetric buckling analysis of laterally restrained thick annular plates using a hybrid numerical method

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, P. [Department of Mechanical Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: malekzadeh@pgu.ac.ir; Ouji, A. [Department of Civil Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Islamic Azad University, Larestan Branch, Larestan (Iran, Islamic Republic of)

    2008-11-15

    The buckling analysis of annular thick plates with lateral supports such as two-parameter elastic foundations or ring supports is investigated using an elasticity based hybrid numerical method. For this purpose, firstly, the displacement components are perturbed around the pre-buckling state, which is located using the elasticity theory. Then, by decomposing the plate into a set of sub-domain in the form of co-axial annular plates, the buckling equations are discretized through the radial direction using global interpolation functions in conjunction with the principle of virtual work. The resulting differential equations are solved using the differential quadrature method. The method has the capability of modeling the arbitrary boundary conditions either at the inner and outer edges of thin-to-thick plates and with different types of lateral restraints. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its accuracy and versatility for thin-to-thick plates.

  6. Mechanics analysis of axisymmetric thin-walled part in warm sheet hydroforming

    Directory of Open Access Journals (Sweden)

    Yang Xiying

    2015-10-01

    Full Text Available To obtain the influence of fluid pressure and temperature on warm hydroforming of 5A06-O aluminum alloy sheet, the unified mechanics equilibrium equations, which take through-thickness normal stress and friction into account, were established in spherical coordinate system. The distribution of through-thickness normal stress in the thickness direction was determined. The relation between through-thickness normal stress and fluid pressure was also analyzed in different regions of cylindrical cup. Based on the method of subtracting one increasing function from another, the constitutive equation of 5A06-O applied to warm hydroforming was established and in a good agreement with uniaxial tensile data. Based on whether the thickness variation was taken into account, two mechanic models were established to do the comparative study. The results for the studied case show that the calculated stress values are pretty close according to the two models and consistent with results of finite element analysis; the thickness distribution in flange computed by the second model conforms to the experimental data. Finally, the influences of fluid pressure on the flange thickness and radial stress were analyzed.

  7. FEMAXI-III. An axisymmetric finite element computer code for the analysis of fuel rod performance

    International Nuclear Information System (INIS)

    Ichikawa, M.; Nakajima, T.; Okubo, T.; Iwano, Y.; Ito, K.; Kashima, K.; Saito, H.

    1980-01-01

    For the analysis of local deformation of fuel rods, which is closely related to PCI failure in LWR, FEMAXI-III has been developed as an improved version based on the essential models of FEMAXI-II, MIPAC, and FEAST codes. The major features of FEMAXI-III are as follows: Elasto-plasticity, creep, pellet cracking, relocation, densification, hot pressing, swelling, fission gas release, and their interrelated effects are considered. Contact conditions between pellet and cladding are exactly treated, where sliding or sticking is defined by iterations. Special emphasis is placed on creep and pellet cracking. In the former, an implicit algorithm is applied to improve numerical stability. In the latter, the pellet is assumed to be non-tension material. The recovery of pellet stiffness under compression is related to initial relocation. Quadratic isoparametric elements are used. The skyline method is applied to solve linear stiffness equation to reduce required core memories. The basic performance of the code has been proven to be satisfactory. (author)

  8. Axisymmetric flow in a cylindrical tank over a rotating bottom. Part I. Analysis of boundary layers and vertical circulation

    Energy Technology Data Exchange (ETDEWEB)

    Iga, Keita, E-mail: iga@aori.u-tokyo.ac.jp [Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564 (Japan)

    2017-12-15

    Axisymmetric flow in a cylindrical tank over a rotating bottom is investigated and its approximate solution with an analytic expression is obtained. The interior region, comprising the majority of the fluid, consists of two sub-regions. It is easily shown that a rigid-body rotational flow with the same rotation rate as that of the bottom is formed in the inner interior and that a potential flow with constant angular momentum occurs in the outer interior sub-region. However, the radius that divides these two sub-regions has not been determined. To determine this radius, the structures of the boundary layers are investigated in detail. These boundary layers surround the interior regions, and include the boundaries between the interior region and the side wall of the tank, between the interior and the bottom, and between the inner and outer interior sub-regions. By connecting the flows in the boundary layers, the vertical circulation as a whole is established, and consequently the radius dividing the two interior sub-regions is successfully determined as a function of the aspect ratio of the water layer region. This axisymmetric flow will be utilized as the basic state for investigating theoretically various non-axisymmetric phenomena observed in laboratory experiments. (paper)

  9. Evaluation of the toroidal torque driven by external non-resonant non-axisymmetric magnetic field perturbations in a tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Kasilov, Sergei V. [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, Technische Universität Graz Petersgasse 16, A–8010 Graz (Austria); Institute of Plasma Physics National Science Center “Kharkov Institute of Physics and Technology” ul. Akademicheskaya 1, 61108 Kharkov (Ukraine); Kernbichler, Winfried; Martitsch, Andreas F.; Heyn, Martin F. [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, Technische Universität Graz Petersgasse 16, A–8010 Graz (Austria); Maassberg, Henning [Max-Planck Institut für Plasmaphysik, D-17491 Greifswald (Germany)

    2014-09-15

    The toroidal torque driven by external non-resonant magnetic perturbations (neoclassical toroidal viscosity) is an important momentum source affecting the toroidal plasma rotation in tokamaks. The well-known force-flux relation directly links this torque to the non-ambipolar neoclassical particle fluxes arising due to the violation of the toroidal symmetry of the magnetic field. Here, a quasilinear approach for the numerical computation of these fluxes is described, which reduces the dimension of a standard neoclassical transport problem by one without model simplifications of the linearized drift kinetic equation. The only limiting condition is that the non-axisymmetric perturbation field is small enough such that the effect of the perturbation field on particle motion within the flux surface is negligible. Therefore, in addition to most of the transport regimes described by the banana (bounce averaged) kinetic equation also such regimes as, e.g., ripple-plateau and resonant diffusion regimes are naturally included in this approach. Based on this approach, a quasilinear version of the code NEO-2 [W. Kernbichler et al., Plasma Fusion Res. 3, S1061 (2008).] has been developed and benchmarked against a few analytical and numerical models. Results from NEO-2 stay in good agreement with results from these models in their pertinent range of validity.

  10. Axisymmetric annular curtain stability

    International Nuclear Information System (INIS)

    Ahmed, Zahir U; Khayat, Roger E; Maissa, Philippe; Mathis, Christian

    2012-01-01

    A temporal stability analysis was carried out to investigate the stability of an axially moving viscous annular liquid jet subject to axisymmetric disturbances in surrounding co-flowing viscous gas media. We investigated in this study the effects of inertia, surface tension, the gas-to-liquid density ratio, the inner-to-outer radius ratio and the gas-to-liquid viscosity ratio on the stability of the jet. With an increase in inertia, the growth rate of the unstable disturbances is found to increase. The dominant (or most unstable) wavenumber decreases with increasing Reynolds number for larger values of the gas-to-liquid viscosity ratio. However, an opposite tendency for the most unstable wavenumber is predicted for small viscosity ratio in the same inertia range. The surrounding gas density, in the presence of viscosity, always reduces the growth rate, hence stabilizing the flow. There exists a critical value of the density ratio above which the flow becomes stable for very small viscosity ratio, whereas for large viscosity ratio, no stable flow appears in the same range of the density ratio. The curvature has a significant destabilizing effect on the thin annular jet, whereas for a relatively thick jet, the maximum growth rate decreases as the inner radius increases, irrespective of the surrounding gas viscosity. The degree of instability increases with Weber number for a relatively large viscosity ratio. In contrast, for small viscosity ratio, the growth rate exhibits a dramatic dependence on the surface tension. There is a small Weber number range, which depends on the viscosity ratio, where the flow is stable. The viscosity ratio always stabilizes the flow. However, the dominant wavenumber increases with increasing viscosity ratio. The range of unstable wavenumbers is affected only by the curvature effect. (paper)

  11. Analysis of non-axisymmetric wave propagation in a homogeneous piezoelectric solid circular cylinder of transversely isotropic material

    CSIR Research Space (South Africa)

    Shatalov, MY

    2009-01-01

    Full Text Available ). The main disadvantage of this approach is that the roots of characteristic arguments ( ( )0, 1, , 4k kξ = = … ) are also displayed on the surface plots as obvious artefacts. An elaborate discussion of these artefacts is given in Yenwong-Fai (2008...-matrix interface by guided waves: Axisymmetric case. J. Acoust. Soc. Am 89 (6), 2573-2583. Yenwong-Fai, A., 2008. Wave propagation in a piezoelectric solid cylinder of transversely isotropic material. Master’s thesis, University of Witwatersrand, Johannesburg...

  12. Radiating axisymmetric metric

    International Nuclear Information System (INIS)

    Patel, M.D.

    1978-01-01

    The Einstein's field equations for an enveloping radiating zone surrounding rotating axisymmetric collapsing source are studied. The solution has singularity along the axis of rotation. It is proved that on null hyper surface u = 0, the solution of the field equation for the radiating zone match with solution of axially symmetric vacuum field equations obtained by the author. Landau Lifshitz complex is used to obtain conserved total mass. (author)

  13. Analysis and correction of intrinsic non-axisymmetric magnetic fields in high-β DIII-D plasmas

    International Nuclear Information System (INIS)

    Garofalo, A.M.; La Haye, R.J.; Scoville, J.T.

    2002-01-01

    Rapid plasma toroidal rotation, sufficient for stabilization of the n=1 resistive wall mode, can be sustained by improving the axisymmetry of the toroidal magnetic field geometry of DIII-D. The required symmetrization is determined experimentally both by optimizing currents in external n=1 correction coils with respect to the plasma rotation, and by use of the n=1 magnetic feedback to detect and minimize the plasma response to non-axisymmetric fields as β increases. Both methods point to an intrinsic ∼7 G (0.03% of the toroidal field), m/n=2/1 resonant helical field at the q=2 surface as the cause of the plasma rotation slowdown above the no-wall β limit. The drag exerted by this field on the plasma rotation is consistent with the behaviour of 'slipping' in a simple induction motor model. (author)

  14. Axisymmetric modeling of prestressing tendons in nuclear containment dome

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Se-Jin [DAEWOO E and C, Institute of Construction Technology, 60 Songjook-dong, Jangan-gu, Suwon, Kyonggi 440-210 (Korea, Republic of)]. E-mail: jsj@dwconst.co.kr; Chung, Chul-Hun [Department of Civil and Environmental Engineering, Dankook University, San 8, Hannam-dong, Youngsan-gu, Seoul 140-714 (Korea, Republic of)

    2005-12-15

    Simple axisymmetric modeling of a nuclear containment building has been often employed in practice to estimate structural behavior for the axisymmetric loadings such as internal pressure. In this case, the prestressing tendons placed in the containment dome should be axisymmetrically approximated, since most dome tendons are not arranged in an axisymmetric manner. Some procedures are proposed that can realistically implement the actual three-dimensional tendon stiffness and prestressing effect into the axisymmetric model. Prestressing tendons, which are arranged in two or three ways depending on a containment type, are converted into the equivalent layer to consider the stiffness contribution in meridional and hoop directions. In order to reflect the prestressing effect, the equivalent load method and the initial stress method are devised, respectively, and the corresponding loads or stresses are derived in terms of the axisymmetric model. The proposed schemes are verified through some numerical examples comparing the results of the axisymmetric models to those of the actual three-dimensional model. The examples show that the proper level of the prestressing in the hoop direction of the axisymmetric dome plays an important role in tracing the actual behavior induced by the prestressing. Finally, some correction factors are discussed that can further improve the analysis results.

  15. Axisymmetric modeling of prestressing tendons in nuclear containment dome

    International Nuclear Information System (INIS)

    Jeon, Se-Jin; Chung, Chul-Hun

    2005-01-01

    Simple axisymmetric modeling of a nuclear containment building has been often employed in practice to estimate structural behavior for the axisymmetric loadings such as internal pressure. In this case, the prestressing tendons placed in the containment dome should be axisymmetrically approximated, since most dome tendons are not arranged in an axisymmetric manner. Some procedures are proposed that can realistically implement the actual three-dimensional tendon stiffness and prestressing effect into the axisymmetric model. Prestressing tendons, which are arranged in two or three ways depending on a containment type, are converted into the equivalent layer to consider the stiffness contribution in meridional and hoop directions. In order to reflect the prestressing effect, the equivalent load method and the initial stress method are devised, respectively, and the corresponding loads or stresses are derived in terms of the axisymmetric model. The proposed schemes are verified through some numerical examples comparing the results of the axisymmetric models to those of the actual three-dimensional model. The examples show that the proper level of the prestressing in the hoop direction of the axisymmetric dome plays an important role in tracing the actual behavior induced by the prestressing. Finally, some correction factors are discussed that can further improve the analysis results

  16. Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model

    Directory of Open Access Journals (Sweden)

    L. Fita

    2007-01-01

    Full Text Available Tropical-like storms on the Mediterranean Sea are occasionally observed on satellite images, often with a clear eye surrounded by an axysimmetric cloud structure. These storms sometimes attain hurricane intensity and can severely affect coastal lands. A deep, cut-off, cold-core low is usually observed at mid-upper tropospheric levels in association with the development of these tropical-like systems. In this study we attempt to apply some tools previously used in studies of tropical hurricanes to characterise the environments in which seven known Mediterranean events developed. In particular, an axisymmetric, nonhydrostatic, cloud resolving model is applied to simulate the tropical-like storm genesis and evolution. Results are compared to surface observations when landfall occurred and with satellite microwave derived wind speed measurements over the sea. Finally, sensitivities of the numerical simulations to different factors (e.g. sea surface temperature, vertical humidity profile and size of the initial precursor of the storm are examined.

  17. Computational Fluid Dynamic (CFD) analysis of axisymmetric plume and base flow of film/dump cooled rocket nozzle

    Science.gov (United States)

    Tucker, P. K.; Warsi, S. A.

    1993-01-01

    Film/dump cooling a rocket nozzle with fuel rich gas, as in the National Launch System (NLS) Space Transportation Main Engine (STME), adds potential complexities for integrating the engine with the vehicle. The chief concern is that once the film coolant is exhausted from the nozzle, conditions may exist during flight for the fuel-rich film gases to be recirculated to the vehicle base region. The result could be significantly higher base temperatures than would be expected from a regeneratively cooled nozzle. CFD analyses were conduced to augment classical scaling techniques for vehicle base environments. The FDNS code with finite rate chemistry was used to simulate a single, axisymmetric STME plume and the NLS base area. Parallel calculations were made of the Saturn V S-1 C/F1 plume base area flows. The objective was to characterize the plume/freestream shear layer for both vehicles as inputs for scaling the S-C/F1 flight data to NLS/STME conditions. The code was validated on high speed flows with relevant physics. This paper contains the calculations for the NLS/STME plume for the baseline nozzle and a modified nozzle. The modified nozzle was intended to reduce the fuel available for recirculation to the vehicle base region. Plumes for both nozzles were calculated at 10kFT and 50kFT.

  18. CRUCIB: an axisymmetric convection code

    International Nuclear Information System (INIS)

    Bertram, L.A.

    1975-03-01

    The CRUCIB code was written in support of an experimental program aimed at measurement of thermal diffusivities of refractory liquids. Precise values of diffusivity are necessary to realistic analysis of reactor safety problems, nuclear waste disposal procedures, and fundamental metal forming processes. The code calculates the axisymmetric transient convective motions produced in a right circular cylindrical crucible, which is surface heated by an annular heat pulse. Emphasis of this report is placed on the input-output options of the CRUCIB code, which are tailored to assess the importance of the convective heat transfer in determining the surface temperature distribution. Use is limited to Prandtl numbers less than unity; larger values can be accommodated by replacement of a single block of the code, if desired. (U.S.)

  19. Progress in the analysis of non-axisymmetric wave propagation in a homogeneous solid circular cylinder of a piezoelectric transversely isotropic material

    CSIR Research Space (South Africa)

    Every, AG

    2010-01-01

    Full Text Available Non-axisymmetric waves in a free homogeneous piezoelectric cylinder of transversely isotropic material with axial polarization are investigated on the basis of the linear theory of elasticity and linear electromechanical coupling. The solution...

  20. SEAWAT-based simulation of axisymmetric heat transport.

    Science.gov (United States)

    Vandenbohede, Alexander; Louwyck, Andy; Vlamynck, Nele

    2014-01-01

    Simulation of heat transport has its applications in geothermal exploitation of aquifers and the analysis of temperature dependent chemical reactions. Under homogeneous conditions and in the absence of a regional hydraulic gradient, groundwater flow and heat transport from or to a well exhibit radial symmetry, and governing equations are reduced by one dimension (1D) which increases computational efficiency importantly. Solute transport codes can simulate heat transport and input parameters may be modified such that the Cartesian geometry can handle radial flow. In this article, SEAWAT is evaluated as simulator for heat transport under radial flow conditions. The 1971, 1D analytical solution of Gelhar and Collins is used to compare axisymmetric transport with retardation (i.e., as a result of thermal equilibrium between fluid and solid) and a large diffusion (conduction). It is shown that an axisymmetric simulation compares well with a fully three dimensional (3D) simulation of an aquifer thermal energy storage systems. The influence of grid discretization, solver parameters, and advection solution is illustrated. Because of the high diffusion to simulate conduction, convergence criterion for heat transport must be set much smaller (10(-10) ) than for solute transport (10(-6) ). Grid discretization should be considered carefully, in particular the subdivision of the screen interval. On the other hand, different methods to calculate the pumping or injection rate distribution over different nodes of a multilayer well lead to small differences only. © 2013, National Ground Water Association.

  1. Pressure drop coefficient of laminar Newtonian flow in axisymmetric diffusers

    International Nuclear Information System (INIS)

    Rosa, S.; Pinho, F.T.

    2006-01-01

    The laminar flow of Newtonian fluids in axisymmetric diffusers has been numerically investigated to evaluate the pressure-loss coefficient as a function of Reynolds number, diffusion angle and expansion ratio. The numerical simulations were carried out with a finite-volume based code using non-orthogonal collocated grids and second order accurate differencing schemes to discretize all terms of the transport equations. The calculations were carried out for Reynolds numbers between 2 and 200, diffusion angles from 0 deg. to 90 deg. and expansion ratios of 1.5 and 2 and the data are presented in tabular form and as correlations. A simplified 1D theoretical analysis helped explain the various contributions to the loss coefficient and its difference relative to the reversible pressure variation due to differences between the actual and fully developed friction losses, distortions of the velocity profiles and pressure non-uniformity upstream and downstream of the expansion section

  2. Pressure drop coefficient of laminar Newtonian flow in axisymmetric diffusers

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, S. [Escola Superior de Tecnologia e Gestao, Instituto Politecnico, Campus de Santa Apolonia, 5301-857 Braganca (Portugal)]. E-mail: srosa@ipb.pt; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEM, Universidade do Minho, Campus de Azurem, 4800-058 Guimaraes (Portugal)]. E-mail: fpinho@fe.up.pt

    2006-04-15

    The laminar flow of Newtonian fluids in axisymmetric diffusers has been numerically investigated to evaluate the pressure-loss coefficient as a function of Reynolds number, diffusion angle and expansion ratio. The numerical simulations were carried out with a finite-volume based code using non-orthogonal collocated grids and second order accurate differencing schemes to discretize all terms of the transport equations. The calculations were carried out for Reynolds numbers between 2 and 200, diffusion angles from 0 deg. to 90 deg. and expansion ratios of 1.5 and 2 and the data are presented in tabular form and as correlations. A simplified 1D theoretical analysis helped explain the various contributions to the loss coefficient and its difference relative to the reversible pressure variation due to differences between the actual and fully developed friction losses, distortions of the velocity profiles and pressure non-uniformity upstream and downstream of the expansion section.

  3. On the axisymmetric Lewis metric

    International Nuclear Information System (INIS)

    Gariel, J.; Marcilhacy, G.

    2001-03-01

    We obtain the general solution of the axisymmetric stationary vacuum spacetime of Lewis. After precising the fundamental hypothesis of Lewis, we demonstrate that the solution is related to an arbitrary harmonic function. Formally, these solutions are the same as for the corresponding cylindrically symmetric case, and can be classified in a similar way. Furthermore, the interpretation, in the cylindrically symmetric system, of the field equations as decribing the motion of a classical particle in a central force field is still valid. (author)

  4. Development of axisymmetric lattice Boltzmann flux solver for complex multiphase flows

    Science.gov (United States)

    Wang, Yan; Shu, Chang; Yang, Li-Ming; Yuan, Hai-Zhuan

    2018-05-01

    This paper presents an axisymmetric lattice Boltzmann flux solver (LBFS) for simulating axisymmetric multiphase flows. In the solver, the two-dimensional (2D) multiphase LBFS is applied to reconstruct macroscopic fluxes excluding axisymmetric effects. Source terms accounting for axisymmetric effects are introduced directly into the governing equations. As compared to conventional axisymmetric multiphase lattice Boltzmann (LB) method, the present solver has the kinetic feature for flux evaluation and avoids complex derivations of external forcing terms. In addition, the present solver also saves considerable computational efforts in comparison with three-dimensional (3D) computations. The capability of the proposed solver in simulating complex multiphase flows is demonstrated by studying single bubble rising in a circular tube. The obtained results compare well with the published data.

  5. Axisymmetric vibrations of thick shells of revolution

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin

    1983-01-01

    Axisymmetric shells of revolution are used for chemical plants, nuclear power plants, aircrafts, structures and so on, and the elucidation of their free vibration is important for the design. In this study, the axisymmetric vibration of a barrel-shaped shell was analyzed by the modified thick shell theory. The Lagrangian during one period of the vibration of a shell of revolution was determined, and from its stopping condition, the vibration equations and the boundary conditions were derived. The vibration equations were analyzed strictly by using the series solution. Moreover, the basic equations for the strain of a shell and others were based on those of Love. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. By comparing the results of this study with the results by thin shell theory, the effects of shearing deformation and rotary inertia on the natural frequency and vibration mode were clarified. The theoretical analysis and the numerical calculation are described. The effects of shearing deformation and rotary inertia on the natural frequency became larger in the higher order vibration. The vibration mode did not much change in both theories. (Kako, I.)

  6. Stationary axisymmetric Einstein--Maxwell field equations

    International Nuclear Information System (INIS)

    Catenacci, R.; Diaz Alonso, J.

    1976-01-01

    We show the existence of a formal identity between Einstein's and Ernst's stationary axisymmetric gravitational field equations and the Einstein--Maxwell and the Ernst equations for the electrostatic and magnetostatic axisymmetric cases. Our equations are invariant under very simple internal symmetry groups, and one of them appears to be new. We also obtain a method for associating two stationary axisymmetric vacuum solutions with every electrostatic known

  7. Multispecies transport theory for axisymmetric rotating plasmas

    International Nuclear Information System (INIS)

    Tessarotto, M.; White, R.B.

    1992-01-01

    A reduced gyrokinetic equation is derived for a multi-species toroidal axisymmetric plasma with arbitrary toroidal differential rotation speeds and in the presence of a finite induced electric field. The kinetic equation obtained, extending previous results obtained by Hinton and Wong and by Catto, Bernstein and Tessarotto, has a form suited for transport applications, via variational techniques; in particular it exhibits the feature that all source terms, including the Spitzer source term, carrying the contribution due to the inductive electric field, appear to be acted upon by the collision operator. Moreover, the equation displays a new contribution due to ''explicit'' velocity perturbations, here proven to be consistent with transport ordering, whose evaluation appears relevant for transport calculations. In addition, general expressions are obtained for the neoclassical fluxes in terms of a variational principle, as well as for the classical ones, retaining, in both cases, the contributions due to the Spitzer's inductive terms

  8. Determination of two dimensional axisymmetric finite element model for reactor coolant piping nozzles

    International Nuclear Information System (INIS)

    Choi, S. N.; Kim, H. N.; Jang, K. S.; Kim, H. J.

    2000-01-01

    The purpose of this paper is to determine a two dimensional axisymmetric model through a comparative study between a three dimensional and an axisymmetric finite element analysis of the reactor coolant piping nozzle subject to internal pressure. The finite element analysis results show that the stress adopting the axisymmetric model with the radius of equivalent spherical vessel are well agree with that adopting the three dimensional model. The radii of equivalent spherical vessel are 3.5 times and 7.3 times of the radius of the reactor coolant piping for the safety injection nozzle and for the residual heat removal nozzle, respectively

  9. Numerical computation of gravitational field for general axisymmetric objects

    Science.gov (United States)

    Fukushima, Toshio

    2016-10-01

    We developed a numerical method to compute the gravitational field of a general axisymmetric object. The method (I) numerically evaluates a double integral of the ring potential by the split quadrature method using the double exponential rules, and (II) derives the acceleration vector by numerically differentiating the numerically integrated potential by Ridder's algorithm. Numerical comparison with the analytical solutions for a finite uniform spheroid and an infinitely extended object of the Miyamoto-Nagai density distribution confirmed the 13- and 11-digit accuracy of the potential and the acceleration vector computed by the method, respectively. By using the method, we present the gravitational potential contour map and/or the rotation curve of various axisymmetric objects: (I) finite uniform objects covering rhombic spindles and circular toroids, (II) infinitely extended spheroids including Sérsic and Navarro-Frenk-White spheroids, and (III) other axisymmetric objects such as an X/peanut-shaped object like NGC 128, a power-law disc with a central hole like the protoplanetary disc of TW Hya, and a tear-drop-shaped toroid like an axisymmetric equilibrium solution of plasma charge distribution in an International Thermonuclear Experimental Reactor-like tokamak. The method is directly applicable to the electrostatic field and will be easily extended for the magnetostatic field. The FORTRAN 90 programs of the new method and some test results are electronically available.

  10. Analysis in usability evaluations

    DEFF Research Database (Denmark)

    Følstad, Asbjørn; Lai-Chong Law, Effie; Hornbæk, Kasper

    2010-01-01

    While the planning and implementation of usability evaluations are well described in the literature, the analysis of the evaluation data is not. We present interviews with 11 usability professionals on how they conduct analysis, describing the resources, collaboration, creation of recommendations......, and prioritization involved. The interviews indicate a lack of structure in the analysis process and suggest activities, such as generating recommendations, that are unsupported by existing methods. We discuss how to better support analysis, and propose four themes for future research on analysis in usability...

  11. RAXBOD- INVISCID TRANSONIC FLOW OVER AXISYMMETRIC BODIES

    Science.gov (United States)

    Keller, J. D.

    1994-01-01

    The problem of axisymmetric transonic flow is of interest not only because of the practical application to missile and launch vehicle aerodynamics, but also because of its relation to fully three-dimensional flow in terms of the area rule. The RAXBOD computer program was developed for the analysis of steady, inviscid, irrotational, transonic flow over axisymmetric bodies in free air. RAXBOD uses a finite-difference relaxation method to numerically solve the exact formulation of the disturbance velocity potential with exact surface boundary conditions. Agreement with available experimental results has been good in cases where viscous effects and wind-tunnel wall interference are not important. The governing second-order partial differential equation describing the flow potential is replaced by a system of finite difference equations, including Jameson's "rotated" difference scheme at supersonic points. A stretching is applied to both the normal and tangential coordinates such that the infinite physical space is mapped onto a finite computational space. The boundary condition at infinity can be applied directly and there is no need for an asymptotic far-field solution. The system of finite difference equations is solved by a column relaxation method. In order to obtain both rapid convergence and any desired resolution, the relaxation is performed iteratively on successively refined grids. Input to RAXBOD consists of a description of the body geometry, the free stream conditions, and the desired resolution control parameters. Output from RAXBOD includes computed geometric parameters in the normal and tangential directions, iteration history information, drag coefficients, flow field data in the computational plane, and coordinates of the sonic line. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6600 computer with an overlayed central memory requirement of approximately 40K (octal) of 60 bit words. Optional plotted output

  12. Streamline topology of axisymmetric flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    Topological fluid mechanics in the sense of the present paper is the study and classification of flow patterns close to a critical point. Here we discuss the topology of steady viscous incompressible axisymmetric flows in the vicinity of the axis. Following previous studies the velocity field $v...... to the authors knowledge has not been used systematically to high orders in topological fluid mechanics. We compare the general results with experimental and computational results on the Vogel-Ronneberg flow. We show that the topology changes observed when recirculating bubbles on the vortex axis are created...... and interact follow the topological classification and that the complete set of patterns found is contained in a codimension-4 unfolding of the most simple singular configuration....

  13. An axisymmetric gravitational collapse code

    Energy Technology Data Exchange (ETDEWEB)

    Choptuik, Matthew W [CIAR Cosmology and Gravity Program, Department of Physics and Astronomy, University of British Columbia, Vancouver BC, V6T 1Z1 (Canada); Hirschmann, Eric W [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84604 (United States); Liebling, Steven L [Southampton College, Long Island University, Southampton, NY 11968 (United States); Pretorius, Frans [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2003-05-07

    We present a new numerical code designed to solve the Einstein field equations for axisymmetric spacetimes. The long-term goal of this project is to construct a code that will be capable of studying many problems of interest in axisymmetry, including gravitational collapse, critical phenomena, investigations of cosmic censorship and head-on black-hole collisions. Our objective here is to detail the (2+1)+1 formalism we use to arrive at the corresponding system of equations and the numerical methods we use to solve them. We are able to obtain stable evolution, despite the singular nature of the coordinate system on the axis, by enforcing appropriate regularity conditions on all variables and by adding numerical dissipation to hyperbolic equations.

  14. An axisymmetric gravitational collapse code

    International Nuclear Information System (INIS)

    Choptuik, Matthew W; Hirschmann, Eric W; Liebling, Steven L; Pretorius, Frans

    2003-01-01

    We present a new numerical code designed to solve the Einstein field equations for axisymmetric spacetimes. The long-term goal of this project is to construct a code that will be capable of studying many problems of interest in axisymmetry, including gravitational collapse, critical phenomena, investigations of cosmic censorship and head-on black-hole collisions. Our objective here is to detail the (2+1)+1 formalism we use to arrive at the corresponding system of equations and the numerical methods we use to solve them. We are able to obtain stable evolution, despite the singular nature of the coordinate system on the axis, by enforcing appropriate regularity conditions on all variables and by adding numerical dissipation to hyperbolic equations

  15. Evaluating Style Analysis

    NARCIS (Netherlands)

    de Roon, F.A.; Nijman, T.E.; Ter Horst, J.R.

    2000-01-01

    In this paper we evaluate applications of (return based) style analysis.The portfolio and positivity constraints imposed by style analysis are useful in constructing mimicking portfolios without short positions.Such mimicking portfolios can be used, e.g., to construct efficient portfolios of mutual

  16. Evaluating Style Analysis

    NARCIS (Netherlands)

    F.A. de Roon (Frans); T.E. Nijman (Theo); B.J.M. Werker

    2000-01-01

    textabstractIn this paper we evaluate applications of (return based) style analysis. The portfolio and positivity constraints imposed by style analysis are useful in constructing mimicking portfolios without short positions. Such mimicking portfolios can be used e.g. to construct efficient

  17. Axisymmetric magnetohydrodynamic equilibria in local polar coordinates

    International Nuclear Information System (INIS)

    Clemente, R.A.

    1982-01-01

    The Grad--Shafranov equation for an ideal magnetohydrodynamic axisymmetric toroidal configuration is solved analytically in a local polar coordinate system using a novel method which produces solutions valid up to the second order in the inverse aspect ratio expansion

  18. Adaptative mixed methods to axisymmetric shells

    International Nuclear Information System (INIS)

    Malta, S.M.C.; Loula, A.F.D.; Garcia, E.L.M.

    1989-09-01

    The mixed Petrov-Galerkin method is applied to axisymmetric shells with uniform and non uniform meshes. Numerical experiments with a cylindrical shell showed a significant improvement in convergence and accuracy with adaptive meshes. (A.C.A.S.) [pt

  19. An axisymmetric diffusion experiment for the determination of diffusion and sorption coefficients of rock samples.

    Science.gov (United States)

    Takeda, M; Hiratsuka, T; Ito, K; Finsterle, S

    2011-04-25

    Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an

  20. Discontinuities in an axisymmetric generalized thermoelastic problem

    Directory of Open Access Journals (Sweden)

    Moncef Aouadi

    2005-06-01

    Full Text Available This paper deals with discontinuities analysis in the temperature, displacement, and stress fields of a thick plate whose lower and upper surfaces are traction-free and subjected to a given axisymmetric temperature distribution. The analysis is carried out under three thermoelastic theories. Potential functions together with Laplace and Hankel transform techniques are used to derive the solution in the transformed domain. Exact expressions for the magnitude of discontinuities are computed by using an exact method developed by Boley (1962. It is found that there exist two coupled waves, one of which is elastic and the other is thermal, both propagating with finite speeds with exponential attenuation, and a third which is called shear wave, propagating with constant speed but with no exponential attenuation. The Hankel transforms are inverted analytically. The inversion of the Laplace transforms is carried out using the inversion formula of the transform together with Fourier expansion techniques. Numerical results are presented graphically along with a comparison of the three theories of thermoelasticity.

  1. A steady-state axisymmetric toroidal system

    International Nuclear Information System (INIS)

    Hirano, K.

    1984-01-01

    Conditions for achieving a steady state in an axisymmetric toroidal system are studied with emphasis on a very-high-beta field-reversed configuration. The analysis is carried out for the electromotive force produced by the Ohkawa current that is induced by neutral-beam injection. It turns out that, since the perpendicular component of the current j-vectorsub(perpendicular) to the magnetic field can be generated automatically by the diamagnetic effect, only the parallel component j-vectorsub(parallel) must be driven by the electromotive force. The drive of j-vectorsub(parallel) generates shear in the field line so that the pure toroidal field on the magnetic axis is rotated towards the plasma boundary and matched to the external field lines. This matching condition determines the necessary amount of injection beam current and power. It is demonstrated that a very-high-beta field-reversed configuration requires only a small amount of current-driving beam power because almost all the toroidal current except that close to the magnetic axis is carried by the diamagnetic current due to high beta. A low-beta tokamak, on the other hand, needs very high current-driving power since most of the toroidal current is composed of j-vectorsub(parallel) which must be driven by the beam. (author)

  2. Supersonic quasi-axisymmetric vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1991-01-01

    An extensive computational study of supersonic quasi-axisymmetric vortex breakdown in a configured circular duct is presented. The unsteady, compressible, full Navier-Stokes (NS) equations are used. The NS equations are solved for the quasi-axisymmetric flows using an implicit, upwind, flux difference splitting, finite volume scheme. The quasi-axisymmetric solutions are time accurate and are obtained by forcing the components of the flowfield vector to be equal on two axial planes, which are in close proximity of each other. The effect of Reynolds number, for laminar flows, on the evolution and persistence of vortex breakdown, is studied. Finally, the effect of swirl ration at the duct inlet is investigated.

  3. Boundary element method for internal axisymmetric flow

    Directory of Open Access Journals (Sweden)

    Gokhman Alexander

    1999-01-01

    Full Text Available We present an accurate fast method for the computation of potential internal axisymmetric flow based on the boundary element technique. We prove that the computed velocity field asymptotically satisfies reasonable boundary conditions at infinity for various types of inlet/exit. Computation of internal axisymmetric potential flow is an essential ingredient in the three-dimensional problem of computation of velocity fields in turbomachines. We include the results of a practical application of the method to the computation of flow in turbomachines of Kaplan and Francis types.

  4. Development of an inelastic stress analysis code 'KINE-T' and its evaluations

    International Nuclear Information System (INIS)

    Kobatake, K.; Takahashi, S.; Suzuki, M.

    1977-01-01

    Referring to the ASME B and PVC Code Case 1592-7, the inelastic stress analysis is required for the designs of the class 1 components in elevated temperature if the results of the elastic stress analysis and/or simplified inelastic analysis do not satisfy the requirements. Authors programmed a two-dimensional axisymmetric inelastic analysis code 'KINE-T', and carried out its evaluations and an application. This FEM code is based on the incremental method and the following: elastic-plastic constitutive equation (yield condition of von Mises; flow rule of Prandtl-Reuss; Prager's hardening rule); creep constitutive equation (equation of state approach; flow rule of von Mises; strain hardening rule); the temperature dependency of the yield function is considered; solution procedure of the assembled stiffness matrix is the 'initial stress method'. After the completion of the programming, authors compared the output with not only theoretical results but also with those of the MARC code and the ANSYS code. In order to apply the code to the practical designing, authors settled a quasi-component two-dimensional axisymmetric model and a loading cycle (500 cycles). Then, an inelastic analysis and its integrity evaluation are carried out

  5. A high-precision algorithm for axisymmetric flow

    Directory of Open Access Journals (Sweden)

    A. Gokhman

    1995-01-01

    Full Text Available We present a new algorithm for highly accurate computation of axisymmetric potential flow. The principal feature of the algorithm is the use of orthogonal curvilinear coordinates. These coordinates are used to write down the equations and to specify quadrilateral elements following the boundary. In particular, boundary conditions for the Stokes' stream-function are satisfied exactly. The velocity field is determined by differentiating the stream-function. We avoid the use of quadratures in the evaluation of Galerkin integrals, and instead use splining of the boundaries of elements to take the double integrals of the shape functions in closed form. This is very accurate and not time consuming.

  6. Feedback stabilization of axisymmetric modes in tokamaks

    International Nuclear Information System (INIS)

    Jardin, S.C.; Larrabee, D.A.

    1982-01-01

    Noncircular tokamak plasmas can be unstable to ideal MHD axisymmetric instabilities. Passive conductors with finite resistivity will at best slow down these instabilities to the resistive (L/R) time of the conductors. An active feedback system far from the plasma which responds on this resistive time can stabilize the system provided its mutual inductance with the passive coils is small enough

  7. Magneto-hydrodynamically stable axisymmetric mirrorsa)

    Science.gov (United States)

    Ryutov, D. D.; Berk, H. L.; Cohen, B. I.; Molvik, A. W.; Simonen, T. C.

    2011-09-01

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  8. Magneto-hydrodynamically stable axisymmetric mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D.; Cohen, B. I.; Molvik, A. W. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Berk, H. L. [University of Texas, Austin, Texas 78712 (United States); Simonen, T. C. [University of California, Berkeley, California 94720 (United States)

    2011-09-15

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  9. The spectrum of axisymmetric torsional Alfven waves

    International Nuclear Information System (INIS)

    Sy, W.N.

    1977-03-01

    The spectrum of axisymmetric torsional Alfven waves propagating in a cylindrical, non-uniform, resistive plasma waveguide has been analysed by a method of singular perturbations. A simple condition has been derived which predicts whether the spectrum is continuous or discrete under given physical conditions. Application of this result to resolve an apparent discrepancy in experimental observations is briefly discussed. (Author)

  10. Axisymmetric solution with charge in general relativity

    International Nuclear Information System (INIS)

    Arutyunyan, G.G.; Papoyan, V.V.

    1989-01-01

    The possibility of generating solutions to the equations of general relativity from known solutions of the generalized theory of gravitation and vice versa is proved. An electrovac solution to Einstein's equations that describes a static axisymmetric gravitational field is found. 14 refs

  11. The Langley Stability and Transition Analysis Code (LASTRAC) : LST, Linear and Nonlinear PSE for 2-D, Axisymmetric, and Infinite Swept Wing Boundary Layers

    Science.gov (United States)

    Chang, Chau-Lyan

    2003-01-01

    During the past two decades, our understanding of laminar-turbulent transition flow physics has advanced significantly owing to, in a large part, the NASA program support such as the National Aerospace Plane (NASP), High-speed Civil Transport (HSCT), and Advanced Subsonic Technology (AST). Experimental, theoretical, as well as computational efforts on various issues such as receptivity and linear and nonlinear evolution of instability waves take part in broadening our knowledge base for this intricate flow phenomenon. Despite all these advances, transition prediction remains a nontrivial task for engineers due to the lack of a widely available, robust, and efficient prediction tool. The design and development of the LASTRAC code is aimed at providing one such engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. LASTRAC was written from scratch based on the state-of-the-art numerical methods for stability analysis and modem software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory (LST) or linear parabolized stability equations (LPSE) method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. Coupled with the built-in receptivity model that is currently under development, the nonlinear PSE method offers a synergistic approach to predict transition onset for a given disturbance environment based on first principles. This paper describes the governing equations, numerical methods, code development, and case studies for the current release of LASTRAC. Practical applications of LASTRAC are demonstrated for linear stability calculations, N-factor transition correlation, non-linear breakdown simulations, and controls of stationary crossflow instability in supersonic swept wing boundary

  12. Asymptotic properties of axisymmetric Stokes flow of a viscous liquid with intersecting boundaries

    International Nuclear Information System (INIS)

    Voinov, O.V.

    2004-01-01

    The general axisymmetric problem on the liquid flow by the low Reynolds number when the boundary surfaces (both of the solid body and free one) are intersecting at the certain angle on the moving line, is considered. The work is aimed at establishing the asymptotic regularities of the behavior of the current function and voltages in the small vicinity of the intersection (contact) line of the boundary surfaces. The asymptotic analysis makes it possible to consider the arbitrary axisymmetric Stokes flow with the intersecting boundaries [ru

  13. Axisymmetric instability in a noncircular tokamak

    International Nuclear Information System (INIS)

    Lipschultz, B.

    1979-10-01

    The stability of dee, inverse-dee and square cross section plasmas to axisymmetric modes has been investigated experimentally in Tokapole II, a tokamak with a four-null poloidal divertor. Experimental results are closely compared with predictions of two numerical stability codes - the PEST code (ideal MHD, linear stability) adapted to tokapole geometry and a code which follows the nonlinear evolution of shapes similar to tokapole equilibria

  14. Numerical description of cavitation on axisymmetric bodies

    Energy Technology Data Exchange (ETDEWEB)

    Hickox, C.E.; Hailey, C.E.; Wolfe, W.P.; Watts, H.A.; Gross, R.J.; Ingber, M.S.

    1988-01-01

    This paper reports on ongoing studies which are directed toward the development of predictive techniques for the modeling of steady cavitation on axisymmetric bodies. The primary goal of the modeling effort is the prediction of cavity shape and pressure distribution from which forces and moments can be calculated. Here we present an overview of the modeling techniques developed and compare predictions with experimental data obtained from water tunnel tests for both limited and supercavitation. 14 refs., 4 figs.

  15. Axisymmetric vibrations of thin shells of revolution

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Kikuchi, Norio; Kosawada, Tadashi; Takahashi, Shin

    1983-01-01

    The problem of free vibration of axisymmetric shells of revolution is important in connection with the design of pressure vessels, chemical equipment, aircrafts, structures and so on. In this study, the axisymmetrical vibration of a thin shell of revolution having a constant curvature in meridian direction was analyzed by thin shell theory. First, the Lagrangian during one period of the vibration of a shell of revolution was determined by the primary approximate theory of Love, and the vibration equations and boundary conditions were derived from its stopping condition. The vibration equations were strictly analyzed by using the series solution. The basic equations for the strain and strain energy of a shell were based on those of Novozhilov. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. The theory and the numerical calculation ore described. Especially in the frequency curves, the waving phenomena were observed frequently, which were not seen in non-axisymmetric vibration, accordingly also the vibration mode changed in complex state on the frequency curves of same order. The numerical calculation was carried out in the large computer center in Tohoku University. (Kako, I.)

  16. Axisymmetric ideal magnetohydrodynamic equilibria with incompressible flows

    International Nuclear Information System (INIS)

    Tasso, H.; Throumoulopoulos, G.N.

    1997-12-01

    It is shown that the ideal MHD equilibrium states of an axisymmetric plasma with incompressible flows are governed by an elliptic partial differential equation for the poloidal magnetic flux function ψ containing five surface quantities along with a relation for the pressure. Exact equilibria are constructed including those with non vanishing poloidal and toroidal flows and differentially varying radial electric fields. Unlike the case in cylindrical incompressible equilibria with isothermal magnetic surfaces which should have necessarily circular cross sections [G. N. Throumoulopoulos and H. Tasso, Phys. Plasmas 4, 1492 (1997)], no restriction appears on the shapes of the magnetic surfaces in the corresponding axisymmetric equilibria. The latter equilibria satisfy a set of six ordinary differential equations which for flows parallel to the magnetic field B can be solved semianalytically. In addition, it is proved the non existence of incompressible axisymmetric equilibria with (a) purely poloidal flows and (b) non-parallel flows with isothermal magnetic surfaces and vertical stroke B vertical stroke = vertical stroke B vertical stroke (ψ) (omnigenous equilibria). (orig.)

  17. Elastic layer under axisymmetric indentation and surface energy effects

    Science.gov (United States)

    Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon

    2018-04-01

    In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.

  18. Identification of multiple modes of axisymmetric or circularly repetitive structures

    International Nuclear Information System (INIS)

    Kopff, P.

    1983-01-01

    The axisymmetric structures, or those composed with circularly repetitive elements, often display multiple modes, which are not easy to separate by modal identification of experimental responses. To be able to solve in situ some problems related to the vibrational behaviour of reactor vessels or other such huge structures, ELECTRICITY DE FRANCE developed a few years ago, experimental capabilities providing heavy harmonic driving forces, and elaborate data acquisition, signal processing and modal identification software, self-contained in an integrated mobile test facility. The modal analysis techniques we have developed with the LABORATOIRE DE MECANIQUE Appliquee of University of BESANCON (FRANCE) were especially suited for identification of multiple or separation of quasi-multiple modes, i.e. very close and strongly coupled resonances. Besides, the curve fitting methods involved, compute the same complex eigen-frequencies for all the vibration pick-ups, for better accuracy of the related eigen-vector components. Moreover, the latest extensions of these algorithms give us the means to deal with non-linear behaviour. The performances of these programs are drawn from some experimental results on axisymmetric or circularly repetitive structure, we tested in our laboratory to validate the computational hypothesis used in models for seismic responses of breeder reactor vessels. (orig.)

  19. Axisymmetric fretting analysis in coated cylinder

    Indian Academy of Sciences (India)

    The results are compared with 2D models (strip and half-plane) to examine their utility ... ferent values of coefficient of friction and elastic mismatch are illustrated through contour plots of ... fatigue life expectancy of coatings. Depending on the ...

  20. Low Cost Method of Manufacturing Cooled Axisymmetric Scramjets, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Scramjet engine developers are working on advanced axisymmetric engine concepts that may not be feasible due to limitations of currently available manufacturing...

  1. Influence of Axisymmetrically Deformed Explosions in Type II Supernovae on the Reproduction of the Solar System Abundances

    Science.gov (United States)

    Nagataki, Shigehiro

    1999-01-01

    We have tried to reproduce the solar system abundances using the nucleosynthesis products of Type Ia and Type II supernovae. In particular, we examined the effects of axisymmetrically deformed explosions in Type II supernovae. 44Ca and 47,48Ti are enhanced considerably in axisymmetrically deformed explosion models because of the active alpha-rich freezeout. The enhancement of nuclei around A=45 is a welcome result since it solves the problem of the nuclei shortage. Moreover, 59Co, 63,65Cu, and 66Zn are enhanced enough to reproduce the solar system abundances. The enhancement of Cu and Zn means the possibility that these nuclei, which have been said to be produced by the slow process, can be synthesized fairly well during the explosive nucleosynthesis. To discuss their origin quantitatively, the position of the mass cut is a very important parameter that is very difficult to determine numerically at present. We also stress that an axisymmetrically deformed explosion of Type II supernovae of the degree that is considered in this analysis is not excluded by the results of calculations of explosive nucleosynthesis, that is, the nucleosynthesis products are not extremely disturbed and the solar system abundances can be reproduced fairly well by the axisymmetrically deformed explosion models. This conclusion will be good for the theory of core collapse including the rotation of an iron core, magnetic field, and axisymmetrically modified neutrino radiation from a rotating protoneutron star, which possibly can cause an axisymmetrically deformed explosion.

  2. A numerical method for simulating the dynamics of 3D axisymmetric vesicles suspended in viscous flows

    Science.gov (United States)

    Veerapaneni, Shravan K.; Gueyffier, Denis; Biros, George; Zorin, Denis

    2009-10-01

    We extend [Shravan K. Veerapaneni, Denis Gueyffier, Denis Zorin, George Biros, A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D, Journal of Computational Physics 228(7) (2009) 2334-2353] to the case of three-dimensional axisymmetric vesicles of spherical or toroidal topology immersed in viscous flows. Although the main components of the algorithm are similar in spirit to the 2D case—spectral approximation in space, semi-implicit time-stepping scheme—the main differences are that the bending and viscous force require new analysis, the linearization for the semi-implicit schemes must be rederived, a fully implicit scheme must be used for the toroidal topology to eliminate a CFL-type restriction and a novel numerical scheme for the evaluation of the 3D Stokes single layer potential on an axisymmetric surface is necessary to speed up the calculations. By introducing these novel components, we obtain a time-scheme that experimentally is unconditionally stable, has low cost per time step, and is third-order accurate in time. We present numerical results to analyze the cost and convergence rates of the scheme. To verify the solver, we compare it to a constrained variational approach to compute equilibrium shapes that does not involve interactions with a viscous fluid. To illustrate the applicability of method, we consider a few vesicle-flow interaction problems: the sedimentation of a vesicle, interactions of one and three vesicles with a background Poiseuille flow.

  3. Microfluidic step-emulsification in axisymmetric geometry.

    Science.gov (United States)

    Chakraborty, I; Ricouvier, J; Yazhgur, P; Tabeling, P; Leshansky, A M

    2017-10-25

    Biphasic step-emulsification (Z. Li et al., Lab Chip, 2015, 15, 1023) is a promising microfluidic technique for high-throughput production of μm and sub-μm highly monodisperse droplets. The step-emulsifier consists of a shallow (Hele-Shaw) microchannel operating with two co-flowing immiscible liquids and an abrupt expansion (i.e., step) to a deep and wide reservoir. Under certain conditions the confined stream of the disperse phase, engulfed by the co-flowing continuous phase, breaks into small highly monodisperse droplets at the step. Theoretical investigation of the corresponding hydrodynamics is complicated due to the complex geometry of the planar device, calling for numerical approaches. However, direct numerical simulations of the three dimensional surface-tension-dominated biphasic flows in confined geometries are computationally expensive. In the present paper we study a model problem of axisymmetric step-emulsification. This setup consists of a stable core-annular biphasic flow in a cylindrical capillary tube connected co-axially to a reservoir tube of a larger diameter through a sudden expansion mimicking the edge of the planar step-emulsifier. We demonstrate that the axisymmetric setup exhibits similar regimes of droplet generation to the planar device. A detailed parametric study of the underlying hydrodynamics is feasible via inexpensive (two dimensional) simulations owing to the axial symmetry. The phase diagram quantifying the different regimes of droplet generation in terms of governing dimensionless parameters is presented. We show that in qualitative agreement with experiments in planar devices, the size of the droplets generated in the step-emulsification regime is independent of the capillary number and almost insensitive to the viscosity ratio. These findings confirm that the step-emulsification regime is solely controlled by surface tension. The numerical predictions are in excellent agreement with in-house experiments with the axisymmetric

  4. Nonlinear electromagnetic gyrokinetic equations for rotating axisymmetric plasmas

    International Nuclear Information System (INIS)

    Artun, M.; Tang, W.M.

    1994-03-01

    The influence of sheared equilibrium flows on the confinement properties of tokamak plasmas is a topic of much current interest. A proper theoretical foundation for the systematic kinetic analysis of this important problem has been provided here by presented the derivation of a set of nonlinear electromagnetic gyrokinetic equations applicable to low frequency microinstabilities in a rotating axisymmetric plasma. The subsonic rotation velocity considered is in the direction of symmetry with the angular rotation frequency being a function of the equilibrium magnetic flux surface. In accordance with experimental observations, the rotation profile is chosen to scale with the ion temperature. The results obtained represent the shear flow generalization of the earlier analysis by Frieman and Chen where such flows were not taken into account. In order to make it readily applicable to gyrokinetic particle simulations, this set of equations is cast in a phase-space-conserving continuity equation form

  5. Reversed straining in axisymmetric compression test

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Wanheim, Tarras; Lindegren, Maria

    2005-01-01

    A large group of the cold forging processes is carried out in a thick – walled container with the deformation force transmitted through a punch moving axially in the container. The work piece, being entrapped between punch and container will expand and exert a radial pressure resulting in an expa...... to simulate these conditions a reversed axisymmetrical material tester is designed and constructed. Three different materials were tested, aluminum alloy AA6082, technically pure copper (99.5%) and cold forging steel Ma8, at different temperatures found during cold forging....

  6. An axisymmetric inertia-gravity wave generator

    Science.gov (United States)

    Maurer, P.; Ghaemsaidi, S. J.; Joubaud, S.; Peacock, T.; Odier, P.

    2017-10-01

    There has been a rich interplay between laboratory experimental studies of internal waves and advancing understanding of their role in the ocean and atmosphere. In this study, we present and demonstrate the concept for a new form of laboratory internal wave generator that can excite axisymmetric wave fields of arbitrary radial structure. The construction and operation of the generator are detailed, and its capabilities are demonstrated through a pair of experiments using a Bessel function and a bourrelet (i.e., ring-shaped) configuration. The results of the experiments are compared with the predictions of an accompanying analytical model.

  7. Calculation of rf fields in axisymmetric cavities

    International Nuclear Information System (INIS)

    Iwashita, Y.

    1985-01-01

    A new code, PISCES, has been developed for calculating a complete set of rf electromagnetic modes in an axisymmetric cavity. The finite-element method is used with up to third-order shape functions. Although two components are enough to express these modes, three components are used as unknown variables to take advantage of the symmetry of the element matrix. The unknowns are taken to be either the electric field components or the magnetic field components. The zero-divergence condition will be satisfied by the shape function within each element

  8. Numerical determination of axisymmetric toroidal magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Johnson, J.L.; Dalhed, H.E.; Greene, J.M.

    1978-07-01

    Numerical schemes for the determination of stationary axisymmetric toroidal equilibria appropriate for modeling real experimental devices are given. Iterative schemes are used to solve the elliptic nonlinear partial differential equation for the poloidal flux function psi. The principal emphasis is on solving the free boundary (plasma-vacuum interface) equilibrium problem where external current-carrying toroidal coils support the plasma column, but fixed boundary (e.g., conducting shell) cases are also included. The toroidal current distribution is given by specifying the pressure and either the poloidal current or the safety factor profiles as functions of psi. Examples of the application of the codes to tokamak design at PPPL are given

  9. Ideal magnetohydrodynamic stability of axisymmetric mirrors

    International Nuclear Information System (INIS)

    D'Ippolito, D.A.; Hafizi, B.; Myra, J.R.

    1982-01-01

    The governing partial differential equation for general mode-number pressure-driven ballooning modes in a long-thin, axisymmetric plasma is derived within the context of ideal magnetohydrodynamics. It is shown that the equation reduces in special limits to the Hain--Luest equation, the high-m diffuse p(psi) ballooning equation, and the low-m sharp-boundary equation. A low-β analytic solution of the full partial differential equation is presented for quasiflute modes in an idealized tandem mirror model to elucidate the relationship of the various limiting cases

  10. Topological fluid mechanics of Axisymmetric Flow

    DEFF Research Database (Denmark)

    Brøns, Morten

    1998-01-01

    Topological fluid mechanics in the sense of the present paper is the study and classification of flow patterns close to a critical point. Here we discuss the topology of steady viscous incompressible axisymmetric flows in the vicinity of the axis. Following previous studies the velocity field v...... to the authors knowledge has not been used systematically to high orders in topological fluid mechanics. We compare the general results with experimental and computational results on the Vogel-Ronneberg flow. We show that the topology changes observed when recirculating bubbles on the vortex axis are created...

  11. Static axisymmetric discs and gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Chamorro, A.; Gregory, R.; Stewart, J.M.

    1987-09-08

    Regular static axisymmetric vacuum solutions of Einstein's field equations representing the exterior field of a finite thin disc are found. These are used to describe the slow collapse of a disc-like object. If no conditions are placed on the matter, a naked singularity is formed and the cosmic censorship hypothesis would be violated. Imposition of the weak energy condition, however, prevents slow collapse to a singularity and preserves the validity of this hypothesis. The validity of the hoop conjecture is also discussed.

  12. The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror Status Study Group

    International Nuclear Information System (INIS)

    Simonen, T.; Cohen, R.; Correll, D.; Fowler, K.; Post, D.; Berk, H.; Horton, W.; Hooper, E.B.; Fisch, N.; Hassam, A.; Baldwin, D.; Pearlstein, D.; Logan, G.; Turner, B.; Moir, R.; Molvik, A.; Ryutov, D.; Ivanov, A.A; Kesner, J.; Cohen, B.; McLean, H.; Tamano, T.; Tang, X.Z.; Imai, T.

    2008-01-01

    experiments have confirmed the physics of effluent plasma stabilization predicted by theory. The plasma had a mean ion energy of 10 keV and a density of 5e19m-3. If successful, the axisymmetric tandem mirror extension of the GDT idea could lead to a Q ∼ 10 power plant of modest size and would yield important applications at lower Q. In addition to the GDT method, there are four other ways to augment stability that have been demonstrated; including: plasma rotation (MCX), diverter coils (Tara), pondermotive (Phaedrus and Tara), and end wall funnel shape (Nizhni Novgorod). There are also 5 stabilization techniques predicted, but not yet demonstrated: expander kinetic pressure (KSTM-Post), Pulsed ECH Dynamic Stabilization (Post), wall stabilization (Berk), non-paraxial end mirrors (Ryutov), and cusp ends (Kesner). While these options should be examined further together with conceptual engineering designs. Physics issues that need further analysis include: electron confinement, MHD and trapped particle modes, analysis of micro stability, radial transport, evaluation and optimization of Q, and the plasma density needed to bridge to the expansion-region. While promising all should be examined through increased theory effort, university-scale experiments, and through increased international collaboration with the substantial facilities in Russia and Japan The conventional wisdom of magnetic mirrors was that they would never work as a fusion concept for a number of reasons. This conventional wisdom is most probably all wrong or not applicable, especially for applications such as low Q (DT Neutron Source) aimed at materials testing or for a Q ∼ 3-5 fusion neutron source applied to destroying actinides in fission waste and breeding of fissile fuel

  13. The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror Status Study Group

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, T; Cohen, R; Correll, D; Fowler, K; Post, D; Berk, H; Horton, W; Hooper, E B; Fisch, N; Hassam, A; Baldwin, D; Pearlstein, D; Logan, G; Turner, B; Moir, R; Molvik, A; Ryutov, D; Ivanov, A A; Kesner, J; Cohen, B; McLean, H; Tamano, T; Tang, X Z; Imai, T

    2008-10-24

    experiments have confirmed the physics of effluent plasma stabilization predicted by theory. The plasma had a mean ion energy of 10 keV and a density of 5e19m-3. If successful, the axisymmetric tandem mirror extension of the GDT idea could lead to a Q {approx} 10 power plant of modest size and would yield important applications at lower Q. In addition to the GDT method, there are four other ways to augment stability that have been demonstrated; including: plasma rotation (MCX), diverter coils (Tara), pondermotive (Phaedrus & Tara), and end wall funnel shape (Nizhni Novgorod). There are also 5 stabilization techniques predicted, but not yet demonstrated: expander kinetic pressure (KSTM-Post), Pulsed ECH Dynamic Stabilization (Post), wall stabilization (Berk), non-paraxial end mirrors (Ryutov), and cusp ends (Kesner). While these options should be examined further together with conceptual engineering designs. Physics issues that need further analysis include: electron confinement, MHD and trapped particle modes, analysis of micro stability, radial transport, evaluation and optimization of Q, and the plasma density needed to bridge to the expansion-region. While promising all should be examined through increased theory effort, university-scale experiments, and through increased international collaboration with the substantial facilities in Russia and Japan The conventional wisdom of magnetic mirrors was that they would never work as a fusion concept for a number of reasons. This conventional wisdom is most probably all wrong or not applicable, especially for applications such as low Q (DT Neutron Source) aimed at materials testing or for a Q {approx} 3-5 fusion neutron source applied to destroying actinides in fission waste and breeding of fissile fuel.

  14. Development of Compact Quasi-Axisymmetric Stellarator Reactor Configurations

    International Nuclear Information System (INIS)

    Ku, L.P.; Zarnstorff, M.; White, R.B.; Cooper, W.A.; Sanchez, R.; Neilson, H.; Schmidt, J.A.

    2003-01-01

    We have started to examine the reactor potential of quasi-axisymmetric (QA) stellarators with an integrated approach that includes systems evaluation, engineering considerations, and plasma and coil optimizations. In this paper, we summarize the progress made so far in developing QA configurations with reduced alpha losses while retaining good MHD stability properties. The minimization of alpha losses is achieved by directly targeting the collisionless orbits to prolong the average resident times. Configurations with an overall energy loss rate of ∼10% or less, including collisional contributions, have been found. To allow remotely maintaining coils and machine components in a reactor environment, there is a desire to simplify to the extent possible the coil design. To this end, finding a configuration that is optimized not only for the alpha confinement and MHD stability but also for the good coil and reactor performance, remains to be a challenging task

  15. Stability of axisymmetric plasmas in closed line magnetic fields

    International Nuclear Information System (INIS)

    Simakov, A.N.; Vernon Wong, H.; Berk, H.L.

    2003-01-01

    The stability of axisymmetric plasmas confined by closed poloidal magnetic field lines is considered. The results are relevant to plasmas in the dipolar fields of stars and planets, as well as the Levitated Dipole Experiment, multipoles, Z pinches and field reversed configurations. The ideal MHD energy principle is employed to study the stability of pressure driven shear Alfven modes. A point dipole is considered in detail to demonstrate that equilibria exist which are MHD stable for arbitrary beta. Effects of sound waves and plasma resistivity are investigated for Z pinch and point dipole equilibria by means of resistive MHD theory. Kinetic theory is used to study drift frequency modes and their interaction with MHD modes near the ideal stability boundary for different collisionality regimes. Effects of collisional dissipation on drift mode stability are explicitly evaluated and applied to a Z pinch. The role of finite Larmor radius effects and drift reversed particles in modifying ideal stability thresholds is examined. (author)

  16. CLASSIFICATION OF STELLAR ORBITS IN AXISYMMETRIC GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baile; Holley-Bockelmann, Kelly [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Khan, Fazeel Mahmood, E-mail: baile.li@vanderbilt.edu, E-mail: k.holley@vanderbilt.edu, E-mail: khanfazeel.ist@gmail.com [Department of Space Science, Institute of Space Technology, P.O. Box 2750 Islamabad (Pakistan)

    2015-09-20

    It is known that two supermassive black holes (SMBHs) cannot merge in a spherical galaxy within a Hubble time; an emerging picture is that galaxy geometry, rotation, and large potential perturbations may usher the SMBH binary through the critical three-body scattering phase and ultimately drive the SMBH to coalesce. We explore the orbital content within an N-body model of a mildly flattened, non-rotating, SMBH-embedded elliptical galaxy. When used as the foundation for a study on the SMBH binary coalescence, the black holes bypassed the binary stalling often seen within spherical galaxies and merged on gigayear timescales. Using both frequency-mapping and angular momentum criteria, we identify a wealth of resonant orbits in the axisymmetric model, including saucers, that are absent from an otherwise identical spherical system and that can potentially interact with the binary. We quantified the set of orbits that could be scattered by the SMBH binary, and found that the axisymmetric model contained nearly six times the number of these potential loss cone orbits compared to our equivalent spherical model. In this flattened model, the mass of these orbits is more than three times that of the SMBH, which is consistent with what the SMBH binary needs to scatter to transition into the gravitational wave regime.

  17. Fast axisymmetric stability calculations using variational techniques

    International Nuclear Information System (INIS)

    Haney, S.W., Pearlstein, L.D.; Bulmer, R.H.

    1991-01-01

    A procedure for treating the axisymmetric (n = 0) stability of diverted plasmas in the presence of arbitrary, but toroidally symmetric, structures and active feedback circuits has been developed and implemented as a module in the TEQ free-boundary equilibrium code. This procedure is based on a variational solution of the ideal MHD normal mode equations. Inertia is ordered small but provides a constraint to allow the calculation of the poloidal and toroidal components of the plasma displacement. Feedback based on flux loop measurements is handled by introducing an adjoint system into the variational principle. Approximately 200 trial functions for the radial component of the plasma displacement and 200 magnetic surfaces are employed to obtain highly accurate estimates of the passive growth rate and the non-rigid eigenfunction. Nevertheless, the method is extremely fast: typically 10-20 sec of Cray 2 CPU time are required to analyze a realistic tokamak configuration. This speed, along with the direct coupling to the MHD equilibrium solver, allows interactive investigations of tokamak axisymmetric stability. Benchmarks with TSC and GATO are presented along with parameter scans for ITER and BPX. The results emphasize the importance of considering non-rigid mode effects which for ITER, yield higher nominal growth rates (non-rigid: 45 Hz, rigid: 25 Hz) and atypical internal inductance dependence (smaller l i more unstable)

  18. Multitude scaling laws in axisymmetric turbulent wake

    Science.gov (United States)

    Layek, G. C.; Sunita

    2018-03-01

    We establish theoretically multitude scaling laws of a self-similar (statistical) axisymmetric turbulent wake. At infinite Reynolds number limit, the flow evolves as general power law and a new exponential law of streamwise distance, consistent with the criterion of equilibrium similarity hypothesis. We found power law scalings for components of the homogeneous dissipation rate (ɛ) obeying the non-Richardson-Kolmogorov cascade as ɛu˜ku3 /2/(l R elm ) , ɛv˜kv3 /2/l , kv˜ku/R el2 m, 0 stress, l is the local length scale, and Rel is the Reynolds number. The Richardson-Kolmogorov cascade corresponds to m = 0. For m ≈ 1, the power law agrees with non-equilibrium scaling laws observed in recent experiments of the axisymmetric wake. On the contrary, the exponential scaling law follows the above dissipation law with different regions of existence for power index m = 3. At finite Reynolds number with kinematic viscosity ν, scalings obey the dissipation laws ɛu ˜ νku/l2 and ɛv ˜ νkv/l2 with kv˜ku/R eln. The value of n is preferably 0 and 2. Different possibilities of scaling laws and symmetry breaking process are discussed at length.

  19. Axisymmetric multiphase lattice Boltzmann method for generic equations of state

    NARCIS (Netherlands)

    Reijers, S.A.; Gelderblom, H.; Toschi, F.

    2016-01-01

    We present an axisymmetric lattice Boltzmann model based on the Kupershtokh et al. multiphase model that is capable of solving liquid–gas density ratios up to 103. Appropriate source terms are added to the lattice Boltzmann evolution equation to fully recover the axisymmetric multiphase conservation

  20. Relativistic equations for axisymmetric gravitational collapse with escaping neutrinos

    International Nuclear Information System (INIS)

    Patel, M.D.

    1979-01-01

    Einstein's field equations for the dynamics of a self-gravitating axially symmetric source of a perfect fluid, presented by Chandrasekhar and Friedman (1964), are modified to allow emission of neutrinos. The boundary conditions at the outer surface of the radiating axisymmetric source are obtained by matching to an exterior solution of an axisymmetric rotating, radiating core. (auth.)

  1. Axial turbomachine modelling with a 1D axisymmetric approach

    International Nuclear Information System (INIS)

    Tauveron, Nicolas; Saez, Manuel; Ferrand, Pascal; Leboeuf, Francis

    2007-01-01

    This work concerns the design and safety analysis of direct cycle gas cooled reactor. The estimation of compressor and turbine performances in transient operations is of high importance for the designer. The first goal of this study is to provide a description of compressor behaviour in unstable conditions with a better understanding than the models based on performance maps ('traditional' 0D approach). A supplementary objective is to provide a coherent description of the turbine behaviour. The turbomachine modelling approach consists in the solution of 1D axisymmetric Navier-Stokes equations on an axial grid inside the turbomachine: mass, axial momentum, circumferential momentum and total-enthalpy balances are written. Blade forces are taken into account by using compressor or turbine blade cascade steady correlations. A particular effort has been developed to generate or test correlations in low mass flow and negative mass flow regimes, based on experimental data. The model is tested on open literature cases of the gas turbine aircraft community. For compressor and turbine, steady situations are fairly described, especially for medium and high mass flow rate. The dynamic behaviour of compressor is also quite well described, even in unstable operation (surge): qualitative tendencies (role of plenum volume and role of throttle) and some quantitative characteristics (frequency) are in a good agreement with experimental data. The application to transient simulations of gas cooled nuclear reactors is concentrated on the hypothetical 10 in. break accident. The results point out the importance of the location of the pipe rupture in a hypothetical break event. In some detailed cases, compressor surge and back flow through the circuit can occur. In order to be used in a design phase, a simplified model of surge has also been developed. This simplified model is applied to the gas fast reactor (GFR) and compared quite favourably with 1D axisymmetric simulation results

  2. Thin circular cylinder under axisymmetrical thermal and mechanical loading

    International Nuclear Information System (INIS)

    Arnaudeau, F.; Zarka, J.; Gerij, J.

    1977-01-01

    To assess structural integrity of components subjected to cyclic thermal loadings one must look at thermal ratchetting as a possible failure mode. Considering a thin circular cylinder subjected to constant internal pressure and cyclically varying thermal gradient through the thickness Bree, J. Strain Analysis 2 (1967) No.3, obtained a diagram that serves as a foundation for many design rules (e.g.: ASME code). The upper part of the french LMFBR main vessel is subjected to an axisymmetrical axial thermal loading and an axial load (own weight). Operation of the reactor leads to cyclic variations of the axial thermal loading. The question that arises is whether or not the Bree diagram is realistic for such loading conditions. A special purpose computer code (Ratch) was developed to analyse a thin circular cylinder subjected to axisymmetrical mechanical and thermal loadings. The Mendelson's approach of this problem is followed. Classical Kirchoff-Love hypothesis of thin shells is used and a state of plane stress is assumed. Space integrations are performed by Gaussian quadrature in the axial direction and by Simpson's one third rule throughout the thickness. Thermoelastic-plastic constitutive equations are solved with an implicit scheme (Nguyen). Thermovisco-plastic constitutive equations are solved with an explicit time integration scheme (Treanor's algorithm especially fitted). A Bree type diagram is obtained for an axial step of temperature which varies cyclically and a sustained constant axial load. The material behavior is assumed perfectly plastic and creep effect is not considered. Results show that the domain where no ratchetting occurs is reduced when compared with the domain predicted by the Bree diagram

  3. A Compact Quasi-axisymmetric Stellarator Reactor

    International Nuclear Information System (INIS)

    Ku, L.P.

    2003-01-01

    We report the progress made in assessing the potential of compact, quasi-axisymmetric stellarators as power-producing reactors. Using an aspect ratio A=4.5 configuration derived from NCSX and optimized with respect to the quasi-axisymmetry and MHD stability in the linear regime as an example, we show that a reactor of 1 GW(e) maybe realizable with a major radius *8 m. This is significantly smaller than the designs of stellarator reactors attempted before. We further show the design of modular coils and discuss the optimization of coil aspect ratios in order to accommodate the blanket for tritium breeding and radiation shielding for coil protection. In addition, we discuss the effects of coil aspect ratio on the peak magnetic field in the coils

  4. Electrostatic axisymmetric mirror with removable spherical aberration

    International Nuclear Information System (INIS)

    Birmuzaev, S.B.; Serikbaeva, G.S.; Hizirova, M.A.

    1999-01-01

    The electrostatic axisymmetric mirror, assembled from three coaxial cylinders with an equal diameter d and under the potential v1, v2 and v3, was computed. The proportions of geometrical and electric parameters of the mirror, with which the spherical 3-order aberration may be eliminated, were determined. The computation outcomes of the case, when the focal power of the mirror is enough large and the object plane in the focus is out of its field, are presented (Fig. 1 - potentials proportion that makes elimination of the spherical aberration possible; Fig. 2 - the focus coordinates when the spherical aberration is eliminated). The geometrical values are presented by d, and the electric ones are presented by v1. The figures on the curves present a length of the second (middle) electrode. The zero point is located in the middle of the gap between the first and second electrodes The investigated mirror may be used as a lens for the transmission electron microscope

  5. Axisymmetric Eigenmodes of Spheroidal Pure Electron Plasmas

    Science.gov (United States)

    Kawai, Yosuke; Saitoh, Haruhiko; Yoshida, Zensho; Kiwamoto, Yasuhito

    2010-11-01

    The axisymmetric electrostatic eigenmodes of spheroidal pure electron plasmas have been studied experimentally. It is confirmed that the observed spheroidal plasma attains a theoretically expected equilibrium density distribution, with the exception of a low-density halo distribution surrounding the plasma. When the eigenmode frequency observed for the plasma is compared with the frequency predicted by the dispersion relation derived under ideal conditions wherein the temperature is zero and the boundary is located at an infinite distance from the plasma, it is observed that the absolute value of the observed frequency is systematically higher than the theoretical prediction. Experimental examinations and numerical calculations indicate that the upward shift of the eigenmode frequency cannot be accounted for solely by the finite temperature effect, but is significantly affected by image charges induced on the conducting boundary and the resulting distortion of the density profile from the theoretical expectation.

  6. Citation analysis in research evaluation

    CERN Document Server

    Moed, Henk F

    2005-01-01

    This book is written for members of the scholarly research community, and for persons involved in research evaluation and research policy. More specifically, it is directed towards the following four main groups of readers: - All scientists and scholars who have been or will be subjected to a quantitative assessment of research performance using citation analysis. - Research policy makers and managers who wish to become conversant with the basic features of citation analysis, and about its potentialities and limitations. - Members of peer review committees and other evaluators, who consider th

  7. Axisymmetric MHD stability of sharp-boundary Tokamaks

    International Nuclear Information System (INIS)

    Rebhan, E.; Salat, A.

    1976-09-01

    For a sharp-boundary, constant pressure plasma model of axisymmetric equilibria the MHD stability problem of axisymmetric perturbations is solved by analytic reduction to a one-dimensional problem on the boundary and subsequent numerical treatment, using the energy principle. The stability boundaries are determined for arbitrary aspect ratio, arbitrary βsub(p) and elliptical, triangular and rectangular plasma cross-sections, wall stabilization not being taken into account. It is found that the axisymmetric stability strongly depends on the plasma shape and is almost independent of the safety factor q. (orig.) [de

  8. On solution of Maxwell's equations in axisymmetric domains with edges. Part II: Numerical aspects

    International Nuclear Information System (INIS)

    Nkemzi, Boniface

    2003-10-01

    In this paper we consider the Fourier-finite-element method for treating the Maxwell's equations in three-dimensional axisymmetric domains with reentrant edges. By means of partial Fourier analysis, the 3D BVP is decomposed into an infinite sequence of 2D variational equations in the plane meridian domain of the axisymmetric domain, a finite number of which is considered and treated using nodal H 1 -conforming finite elements. For domains with reentrant edges, the singular field method is employed to compensate the singular behavior of the solutions. Emphases are given to estimates of the Fourier-finite-element approximation error and convergence analysis in the H 1 -norm under different regularity assumptions. (author)

  9. Nuclear instrumentation evaluation and analysis

    International Nuclear Information System (INIS)

    Park, Suk Jun; Han, Sang Joon; Chung, Chong Eun; Han, Kwang Soo; Kim, Dong Hwa; Park, Byung Hae; Moon, Je Sun; Lee, Chel Kwon; Song, Ki Sang; Choi, Myung Jin; Kim, Seung Bok; Kim, Jung Bok

    1986-12-01

    This project provides the program for improving instrumentation reliability as well as developing a cost-effective preventive maintenance activity through evaluation and analysis of nuclear instrumentation concerning pilot plants, large-scale test facilities and various laboratories on KAERI site. In addition, it discusses the program for enhancing safe operations and improving facility availability through establishment of maintenance technology. (Author)

  10. Integrity evaluation of the pressure vessels of Angra-2 and Angra-3 reactors by stress analysis

    International Nuclear Information System (INIS)

    Gomes, E.

    1978-01-01

    The integrity of the reactor pressure vessel of the unit II/III of the Nuclear Power Station at 'Angras do Reis' is evaluated by stress analysis, through the dynamics relaxation method. For the solution of the problem an axisymmetric model is fixed. Initially, the data of the Oak Ridge Vessel V-7 is compared with those obtained by two computer programs used in this study. The methods used in the computer programs are FEM and DEM. A11 the results are compared with the ASME Code Section III 1974 edition. The range deviation is determined to 99% confidence limit, in order to minimize the error probabilities. Finally, the equivalent intensity stress obtained is calculated and compared with the acceptable values of the ASME Code Section III, 1974 edition [pt

  11. WKB theory for high-n modes in axisymmetric toroidal plasmas

    International Nuclear Information System (INIS)

    Dewar, R.L.; Chance, M.S.; Glasser, A.H.; Greene, J.M.; Frieman, E.A.

    1979-09-01

    It is demonstrated that the low-frequency, k/sub parallel//k/sub perpendicular/ approx. = 0 normal modes of an axisymmetric plasma, at large but finite toroidal mode number n, can be obtained by solving a novel WKB problem involving an infinite number of branches. Formulae for the frequencies of periodic normal modes are derived. The analysis is performed in the context of an ideal MHD model, and comparison is made with numerical ballooning mode results

  12. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)

    2011-05-13

    The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=Pfusion/Pinput~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from

  13. Computational study of axisymmetric modes in noncircular cross section tokamaks

    International Nuclear Information System (INIS)

    Johnson, J.L.; Chance, M.S.; Greene, J.M.; Grimm, R.C.; Jardin, S.C.; Kerner, W.; Manickam, J.; Weimer, K.E.

    1976-09-01

    A major computational program to investigate the MHD equilibrium, stability, and nonlinear evolution properties of realistic tokamak configurations is proceeding. Preliminary application is made to the Princeton PDX device. Both axisymmetric (n = 0) modes and kink (n = 1) modes are found; the growth rates depend sensitively on the configuration. A study of the nonlinear evolution of axisymmetric modes in such a device shows that flux conservation in the vacuum region can limit their growth

  14. Destructive analysis and evaluation services

    International Nuclear Information System (INIS)

    Kuhn, E.; Lemaire, R.; Wenzel, U.; Aigner, H.; Bagliano, G.; Deron, S.; Jordan, L.

    1986-07-01

    This manual describes the procedures for independent verification measurements by Destructive Analysis as required by the Divisions of Operations. It includes the relevant instructions and information necessary to achieve the verification from sampling through final use of the evaluation results. It is a working/reference document for the Inspectors and for the supporting units, as well as a training manual for Inspectors which brings together all the necessary information for verification by Destructive Analysis. This manual gives information essential to the Inspector and to the units of the Safeguards Analytical Services (SAS) in the following areas: material stratification, sampling, sample conditioning and data collection; packaging, transporting, tracking, receipt and analysis of samples; and evaluation and final use of the evaluation results. This information is provided as: specific instructions and/or examples; summaries of relevant, existing documents; and references to existing documents. Forms are available for sample, item and stratum data collection as well as for transfer of samples and for the reporting of results. A complete typical example package of the documents related to the verification by Destructive Analysis is included. In addition, summaries of the analytical procedures used at the Safeguards Analytical Laboratory (SAL) of the IAEA and the expected measurement performance for element assay and isotopic abundance are provided. (author)

  15. Axisymmetric, Ventilated Supercavitation in Unsteady, Horizontal Flow

    Science.gov (United States)

    Kawakami, Ellison; Lee, Seung-Jae; Arndt, Roger

    2012-11-01

    Drag reduction and/or speed augmentation of marine vehicles by means of supercavitation is a topic of great interest. During the initial launch of a supercavitating vehicle, an artificial supercavity is required until the vehicle can reach conditions at which a natural supercavity can be sustained. Previous studies at Saint Anthony Falls Laboratory (SAFL) focused on the behavior of ventilated supercavities in steady horizontal flows. In open waters, vehicles can encounter unsteady flows, especially when traveling under waves. A study has been carried out at SAFL to investigate the effects of unsteady flow on axisymmetric supercavities. An attempt is made to duplicate sea states seen in open waters. In an effort to track cavity dimensions throughout a wave cycle, an automated cavity tracking script has been developed. Using a high speed camera and the proper software, it is possible to synchronize cavity dimensions with pressure measurements taken inside the cavity. Results regarding supercavity shape, ventilation demand, cavitation parameters and closure methods are presented. It was found that flow unsteadiness caused a decrease in the overall length of the supercavity while having only a minimal effect on the maximum diameter. The supercavity volume varied with cavitation number and a possible relationship between the two is being explored. (Supported by ONR)

  16. Pressure anisotropy stabilization of axisymmetric mirror machines

    International Nuclear Information System (INIS)

    Weitzner, H.

    1978-01-01

    The stability of a two species, anisotropic pressure, axisymmetric plasma is studied using the guiding center plasma model. Successively, asymptotic expansions are applied appropriate to a long, thin plasma, and to a plasma with flux surfaces close to cylinders. The resultant stability problem may be cast as an ordinary differential equation eigenvalue problem or as a problem in the calculus of variations. It is shown that low beta plasmas cannot be confined and be stable although plasmas may be stable in which the pressure gradients are nonzero where the pressure tends to zero. Stable profiles are given; these profiles include the possibility of field reversed regions. These stable profiles require the anisotropic species to be cold near the axis. Rather than absolute stability, a weaker condition is also considered which for fixed azimuthal mode number vertical-barmvertical-bar puts the point of accumulation of the spectrum of modes on the stable side. It is hoped that such a condition may yield systems stable to vertical-barmvertical-bar small modes although not all values of vertical-barmvertical-bar. This condition is more readily satisfied and allows more reasonable profiles near the axis

  17. Axisymmetric plasma equilibria in a Kerr metric

    Science.gov (United States)

    Elsässer, Klaus

    2001-10-01

    Plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species. The quasi-neutrality assumption (no charge density, no toroidal current) allows to solve Maxwell's equations analytically for any axisymmetric stationary metric, and to reduce the fluid equations to one single scalar equation for the stream function \\chi of the positrons or ions, respectively. The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio m_e/m_i. The \\chi-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.

  18. Axisymmetric Plasma Equilibria in General Relativity

    Science.gov (United States)

    Elsässer, Klaus

    Axisymmetric plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species; they remain arbitrary if no gain and loss processes are considered, in close analogy to the free flux functions in ideal magnetohydrodynamics. Several simplifying assumptions allow the reduction of the basic equations to one single scalar equation for the stream function χ of positrons or ions, respectively, playing the rôle of the Grad/Shafranov equation in magnetohydrodynamics; in particular, Maxwell's equations can be solved analytically for a quasineutral plasma when both the charge density and the toroidal electric current density are negligible (in contrast to the Tokamak situation). The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio me/mi. The χ-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.

  19. Voice stress analysis and evaluation

    Science.gov (United States)

    Haddad, Darren M.; Ratley, Roy J.

    2001-02-01

    Voice Stress Analysis (VSA) systems are marketed as computer-based systems capable of measuring stress in a person's voice as an indicator of deception. They are advertised as being less expensive, easier to use, less invasive in use, and less constrained in their operation then polygraph technology. The National Institute of Justice have asked the Air Force Research Laboratory for assistance in evaluating voice stress analysis technology. Law enforcement officials have also been asking questions about this technology. If VSA technology proves to be effective, its value for military and law enforcement application is tremendous.

  20. On solution of Maxwell's equations in axisymmetric domains with edges. Part I: Theoretical aspects

    International Nuclear Information System (INIS)

    Nkemzi, Boniface

    2003-10-01

    In this paper we present the basic mathematical tools for treating boundary value problems for the Maxwell's equations in three-dimensional axisymmetric domains with reentrant edges by means of partial Fourier analysis. We consider the decomposition of the classical and regularized time-harmonic three-dimensional Maxwell's equations into variational equations in the plane meridian domain of the axisymmetric domain and define suitable weighted Sobolev spaces for their treatment. The trace properties of these spaces on the rotational axis and some properties of the solutions are proved, which are important for further numerical treatment, e.g. by the finite-element method. Particularly, a priori estimates of the solutions of the reduced system are given and the asymptotic behavior of these solutions near reentrant corners of the meridian domain is explicitly described by suitable singular functions. (author)

  1. Axisymmetric bifurcations of thick spherical shells under inflation and compression

    KAUST Repository

    deBotton, G.; Bustamante, R.; Dorfmann, A.

    2013-01-01

    Incremental equilibrium equations and corresponding boundary conditions for an isotropic, hyperelastic and incompressible material are summarized and then specialized to a form suitable for the analysis of a spherical shell subject to an internal or an external pressure. A thick-walled spherical shell during inflation is analyzed using four different material models. Specifically, one and two terms in the Ogden energy formulation, the Gent model and an I1 formulation recently proposed by Lopez-Pamies. We investigate the existence of local pressure maxima and minima and the dependence of the corresponding stretches on the material model and on shell thickness. These results are then used to investigate axisymmetric bifurcations of the inflated shell. The analysis is extended to determine the behavior of a thick-walled spherical shell subject to an external pressure. We find that the results of the two terms Ogden formulation, the Gent and the Lopez-Pamies models are very similar, for the one term Ogden material we identify additional critical stretches, which have not been reported in the literature before.© 2012 Published by Elsevier Ltd.

  2. Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer.

    Science.gov (United States)

    Peng, Jifeng; Alben, Silas

    2012-03-01

    In nature, there exists a special group of aquatic animals which have an axisymmetric body and whose primary swimming mechanism is to use periodic body contractions to generate vortex rings in the surrounding fluid. Using jellyfish medusae as an example, this study develops a mathematical model of body kinematics of an axisymmetric swimmer and uses a computational approach to investigate the induced vortex wakes. Wake characteristics are identified for swimmers using jet propulsion and rowing, two mechanisms identified in previous studies of medusan propulsion. The parameter space of body kinematics is explored through four quantities: a measure of body shape, stroke amplitude, the ratio between body contraction duration and extension duration, and the pulsing frequency. The effects of these parameters on thrust, input power requirement and circulation production are quantified. Two metrics, cruising speed and energy cost of locomotion, are used to evaluate the propulsion performance. The study finds that a more prolate-shaped swimmer with larger stroke amplitudes is able to swim faster, but its cost of locomotion is also higher. In contrast, a more oblate-shaped swimmer with smaller stroke amplitudes uses less energy for its locomotion, but swims more slowly. Compared with symmetric strokes with equal durations of contraction and extension, faster bell contractions increase the swimming speed whereas faster bell extensions decrease it, but both require a larger energy input. This study shows that besides the well-studied correlations between medusan body shape and locomotion, stroke variables also affect the propulsion performance. It provides a framework for comparing the propulsion performance of axisymmetric swimmers based on their body kinematics when it is difficult to measure and analyze their wakes empirically. The knowledge from this study is also useful for the design of robotic swimmers that use axisymmetric body contractions for propulsion.

  3. Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer

    International Nuclear Information System (INIS)

    Peng Jifeng; Alben, Silas

    2012-01-01

    In nature, there exists a special group of aquatic animals which have an axisymmetric body and whose primary swimming mechanism is to use periodic body contractions to generate vortex rings in the surrounding fluid. Using jellyfish medusae as an example, this study develops a mathematical model of body kinematics of an axisymmetric swimmer and uses a computational approach to investigate the induced vortex wakes. Wake characteristics are identified for swimmers using jet propulsion and rowing, two mechanisms identified in previous studies of medusan propulsion. The parameter space of body kinematics is explored through four quantities: a measure of body shape, stroke amplitude, the ratio between body contraction duration and extension duration, and the pulsing frequency. The effects of these parameters on thrust, input power requirement and circulation production are quantified. Two metrics, cruising speed and energy cost of locomotion, are used to evaluate the propulsion performance. The study finds that a more prolate-shaped swimmer with larger stroke amplitudes is able to swim faster, but its cost of locomotion is also higher. In contrast, a more oblate-shaped swimmer with smaller stroke amplitudes uses less energy for its locomotion, but swims more slowly. Compared with symmetric strokes with equal durations of contraction and extension, faster bell contractions increase the swimming speed whereas faster bell extensions decrease it, but both require a larger energy input. This study shows that besides the well-studied correlations between medusan body shape and locomotion, stroke variables also affect the propulsion performance. It provides a framework for comparing the propulsion performance of axisymmetric swimmers based on their body kinematics when it is difficult to measure and analyze their wakes empirically. The knowledge from this study is also useful for the design of robotic swimmers that use axisymmetric body contractions for propulsion. (paper)

  4. Analytic modeling of axisymmetric disruption halo currents

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Kellman, A.G.

    1999-01-01

    Currents which can flow in plasma facing components during disruptions pose a challenge to the design of next generation tokamaks. Induced toroidal eddy currents and both induced and conducted poloidal ''halo'' currents can produce design-limiting electromagnetic loads. While induction of toroidal and poloidal currents in passive structures is a well-understood phenomenon, the driving terms and scalings for poloidal currents flowing on open field lines during disruptions are less well established. A model of halo current evolution is presented in which the current is induced in the halo by decay of the plasma current and change in enclosed toroidal flux while being convected into the halo from the core by plasma motion. Fundamental physical processes and scalings are described in a simplified analytic version of the model. The peak axisymmetric halo current is found to depend on halo and core plasma characteristics during the current quench, including machine and plasma dimensions, resistivities, safety factor, and vertical stability growth rate. Two extreme regimes in poloidal halo current amplitude are identified depending on the minimum halo safety factor reached during the disruption. A 'type I' disruption is characterized by a minimum safety factor that remains relatively high (typically 2 - 3, comparable to the predisruption safety factor), and a relatively low poloidal halo current. A 'type II' disruption is characterized by a minimum safety factor comparable to unity and a relatively high poloidal halo current. Model predictions for these two regimes are found to agree well with halo current measurements from vertical displacement event disruptions in DIII-D [T. S. Taylor, K. H. Burrell, D. R. Baker, G. L. Jackson, R. J. La Haye, M. A. Mahdavi, R. Prater, T. C. Simonen, and A. D. Turnbull, open-quotes Results from the DIII-D Scientific Research Program,close quotes in Proceedings of the 17th IAEA Fusion Energy Conference, Yokohama, 1998, to be published in

  5. Magnetohydrodynamic equilibria and local stability of axisymmetric tokamak plasmas

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Dory, R.A.; Nelson, D.B.; Sayer, R.O.

    1976-07-01

    Axisymmetric magnetohydrodynamic equilibria are evaluated in terms of the Mercier Stability Criterion. The parameters of interest include poloidal beta (β/sub p/), current and pressure profile widths, D-shaped and doublet plasmas with elongation (sigma) and triangularity (delta), and the aspect ratio (A). For marginal local stability, the critical values of β, plasma current, and the safety factor q with fixed toroidal field at the geometric center of the plasma are obtained. It is shown that for a wide range of profiles in a D-shaped plasma with A = 3, the highest critical β occurs at β/sub p/ = 2.4, sigma = 1.65, and delta = 0.5. If the toroidal field at the coil surface is fixed, the highest critical pressure occurs near A approximately 3 to 4, given reasonable distance between the coils and the plasma edge. Calculations for a Doublet II-A plasma with sigma = 3 show that with similar pressure profile the highest critical β occurs at β/sub p/ = 1 and is 84 percent of the highest critical β for the D-shaped plasmas. Critical values of ohmic heating power density are also found to be comparable for the two plasma shapes. A D-shaped plasma with the above parameters is suggested for use in future high-β tokamak devices

  6. Axisymmetric core collapse simulations using characteristic numerical relativity

    International Nuclear Information System (INIS)

    Siebel, Florian; Mueller, Ewald; Font, Jose A.; Papadopoulos, Philippos

    2003-01-01

    We present results from nonrotating axisymmetric stellar core collapse simulations in general relativity. Our hydrodynamics code has proved robust and accurate enough to allow for a detailed analysis of the global dynamics of the collapse. Contrary to traditional approaches based on the 3+1 formulation of the gravitational field equations, our framework uses a foliation based on a family of outgoing light cones, emanating from a regular center, and terminating at future null infinity. Such a coordinate system is well adapted to the study of interesting dynamical spacetimes in relativistic astrophysics such as stellar core collapse and neutron star formation. Perhaps most importantly this procedure allows for the extraction of gravitational waves at future null infinity, along with the commonly used quadrupole formalism for the gravitational wave extraction. Our results concerning the gravitational wave signals show noticeable disagreement when those are extracted by computing the Bondi news at future null infinity on the one hand and by using the quadrupole formula on the other hand. We have a strong indication that for our setup the quadrupole formula on the null cone does not lead to physical gravitational wave signals. The Bondi gravitational wave signals extracted at infinity show typical oscillation frequencies of about 0.5 kHz

  7. Direct numerical simulation of axisymmetric laminar low-density jets

    Science.gov (United States)

    Gomez Lendinez, Daniel; Coenen, Wilfried; Sevilla, Alejandro

    2017-11-01

    The stability of submerged laminar axisymmetric low-density jets has been investigated experimentally (Kyle & Sreenivasan 1993, Hallberg & Strykowski 2006) and with linear analysis (Jendoubi & Strykowski 1994, Coenen & Sevilla 2012, Coenen et al. 2017). These jets become globally unstable when the Reynolds number is larger than a certain critical value which depends on the density ratio and on the velocity profile at the injector outlet. In this work, Direct Numerical Simulations using FreeFEM + + (Hecht 2012) with P1 elements for pressure and P2 for velocity and density are performed to complement the above mentioned studies. Density and velocity fields are analyzed at long time showing the unforced space-time evolution of nonlinear disturbances propagating along the jet. Using the Stuart-Landau model to fit the numerical results for the self-excited oscillations we have computed a neutral stability curve that shows good agreement with experiments and stability theory. Thanks to Spanish MINECO under projects DPI2014-59292-C3-1-P and DPI2015-71901-REDT for financial support.

  8. A new periodic imperfect quasi axisymmetric shell element

    International Nuclear Information System (INIS)

    Combescure, A.; Garuti, G.

    1983-08-01

    The object of this paper is to give the formulation and the validation of a ''quasi axisymmetric'' shell element: the main idea is to develop the theory of an imperfect quasi axisymmetric shell element. The imperfection is a variation of the circumferential radius of curvature rsub(theta). The equations are obtained by transporting the equilibrium equations from the actual geometry onto the theoretical axisymmetric (rsub(theta)=r 0 geometry. It is shown that the main hypothesis convenient to perform simply this transformation is that the membrane strains associated with that variation of geometry are less than 1% (that is always the case if you suppose that the imperfect structure is obtained from the perfect one by an inextensional displacement field). The formulation of the element is given in the general case. The rigidity matrices, are given in the particular case in which the imperfection has a component on a single Fourier harmonic. The comparison of theoretical and computed, 3D and quasi axisymmetric, solution or a very simple case shows the influence of the number of the Fourier harmonics chosen on the response of the structure. The influence of the initial imperfections on the natural frequency are studied with element and compared with 3D calculations. Comparison of 3D, quasi axisymmetric, and analytical buckling loads are given and explained. This element gives a very efficient tool for the calculation of thin shells of revolution (which are always imperfect) and especially unables easy parametric study of the variation of the buckling load and eigen frequencies with the amplitude and shapes of non axisymmetric imperfections

  9. Integrable motion of a vortex dipole in an axisymmetric flow

    International Nuclear Information System (INIS)

    Sutyrin, G.G.; Perrot, X.; Carton, X.

    2008-01-01

    The evolution of a self-propelling vortex dipole, embedded in an external nondivergent flow with constant potential vorticity, is studied in an equivalent-barotropic model commonly used in geophysical, astrophysical and plasma studies. In addition to the conservation of the Hamiltonian for an arbitrary point vortex dipole, it is found that the angular momentum is also conserved when the external flow is axisymmetric. This reduces the original four degrees of freedom to only two, so that the solution is expressed in quadratures. In particular, the scattering of antisymmetric dipoles approaching from the infinity is analyzed in the presence of an axisymmetric oceanic flow typical for the vicinity of isolated seamounts

  10. An axisymmetric evolution code for the Einstein equations on hyperboloidal slices

    International Nuclear Information System (INIS)

    Rinne, Oliver

    2010-01-01

    We present the first stable dynamical numerical evolutions of the Einstein equations in terms of a conformally rescaled metric on hyperboloidal hypersurfaces extending to future null infinity. Axisymmetry is imposed in order to reduce the computational cost. The formulation is based on an earlier axisymmetric evolution scheme, adapted to time slices of constant mean curvature. Ideas from a previous study by Moncrief and the author are applied in order to regularize the formally singular evolution equations at future null infinity. Long-term stable and convergent evolutions of Schwarzschild spacetime are obtained, including a gravitational perturbation. The Bondi news function is evaluated at future null infinity.

  11. Axisymmetric Lattice Boltzmann Model of Droplet Impact on Solid Surfaces

    Science.gov (United States)

    Dalgamoni, Hussein; Yong, Xin

    2017-11-01

    Droplet impact is a ubiquitous fluid phenomena encountered in scientific and engineering applications such as ink-jet printing, coating, electronics manufacturing, and many others. It is of great technological importance to understand the detailed dynamics of drop impact on various surfaces. The lattice Boltzmann method (LBM) emerges as an efficient method for modeling complex fluid systems involving rapidly evolving fluid-fluid and fluid-solid interfaces with complex geometries. In this work, we model droplet impact on flat solid substrates with well-defined wetting behavior using a two-phase axisymmetric LBM with high density and viscosity contrasts. We extend the two-dimensional Lee and Liu model to capture axisymmetric effect in the normal impact. First we compare the 2D axisymmetric results with the 2D and 3D results reported by Lee and Liu to probe the effect of axisymmetric terms. Then, we explore the effects of Weber number, Ohnesorge number, and droplet-surface equilibrium contact angle on the impact. The dynamic contact angle and spreading factor of the droplet during impact are investigated to qualitatively characterize the impact dynamics.

  12. Axisymmetric free convection boundary-layer flow past slender bodies

    NARCIS (Netherlands)

    Kuiken, H.K.

    1968-01-01

    Radial curvature effects on axisymmetric free convection boundary-layer flow are investigated for vertical cylinders and cones for some special non-uniform temperature differences between the surface and the ambient fluid. The solution is given as a power series expansion, the first term being equal

  13. Vortical motion in the head of an axisymmetric gravity current

    NARCIS (Netherlands)

    Patterson, M.D.; Simpson, J.E.; Dalziel, S.B.; Heijst, van G.J.F.

    2006-01-01

    A series of experiments that examine the initial development of an axisymmetric gravity current have been carried out. The experiments highlight the growth of a ring vortex that dominates the dynamics of the gravity current's early time propagation. In particular, the experiments show three distinct

  14. The shape of an axisymmetric bubble in uniform motion

    Indian Academy of Sciences (India)

    Axisymmetric bubble shapes; non-linear free boundary problems; surface singularity methods in potential flows. PACS Nos 47.55.Dz; 47.11.+j; 47.15.Hg. 1. .... should be fast and reasonably accurate, (c) the iterative procedure for determining .... curve while K2 is the other associated principal curvature; K2 can be deduced.

  15. Potential formation in axisymmetrized tandem mirror GAMMA 10

    International Nuclear Information System (INIS)

    Cho, T.; Ichimura, M.; Inutake, M.

    1985-01-01

    The paper reports experimental results on potential formation and end plugging in the axisymmetrized tandem mirror GAMMA 10. The plugging at both ends has been achieved by a combination of neutral beams and gyrotrons. The presence of a plug potential with a thermal barrier in an axisymmetric mirror has been confirmed by direct measurement of the axial potential profile. Enhancement of axial particle confinement has been observed during the end plugging. Non-ambipolar radial transport has been greatly reduced in the axisymmetrized magnetic configuration. The potentials measured by beam probes and end loss analysers are 0.7, 0.4 and 1.1 kV in the central, barrier and plug regions, respectively. Strong end plugging is observed when the central-cell density is higher than the densities in the plug and the barrier, and the plug density remains higher than the barrier density. The plug electron temperature is higher than the central temperature. Hot electrons forming a football-shaped profile have been stably produced in the axisymmetric mirror. The beta value and the fraction of the hot electrons reach up to 5% and 0.8, respectively. Central-cell ion-cyclotron resonance heating can sustain a stable plasma with higher density and ion temperature when resonance surfaces exist in both the anchor and the central cells. (author)

  16. Edge Plasma Response to Non-Axisymmetric Fields in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, N. M.; Lao, L. L.; Buttery, R. J.; Evans, T. E.; Snyder, P. B.; Wade, M.R., E-mail: ferraro@fusion.gat.com [General Atomics, San Diego (United States); Moyer, R. A.; Orlov, D. M. [University of California San Diego, La Jolla (United States); Lanctot, M. J. [Lawrence Livermore National Laboratory, Livermore (United States)

    2012-09-15

    Full text: The application of non-axisymmetric fields is found to have significant effects on the transport and stability of H-mode tokamak plasmas. These effects include dramatic changes in rotation and particle transport, and may lead to the partial or complete suppression of edge-localized modes (ELMs) under some circumstances. The physical mechanism underlying these effects is presently not well understood, in large part because the response of the plasma to non- axisymmetric fields is significant and complex. Here, recent advances in modeling the plasma response to non-axisymmetric fields are discussed. Calculations using a resistive two-fluid model in diverted toroidal geometry confirm the special role of the perpendicular electron velocity in suppressing the formation of islands in the plasma. The possibility that islands form near the top of the pedestal, where the zero-crossing of the perpendicular electron velocity may coincide with a mode-rational surface, is explored, and the implications for ELM suppression are discussed. Modeling results are compared with empirical data. It is shown that numerical modeling is successful in reproducing some experimentally observed effects of applied non-axisymmetric fields on the edge temperature and density profiles. The numerical model self-consistently includes the plasma, separatrix, and scrape-off layer. Rotation and diamagnetic effects are also included self-consistently. Solutions are calculated using the M3D-C1 extended-MHD code. (and others)

  17. Modelling axisymmetric cod-ends made of different mesh types

    DEFF Research Database (Denmark)

    Priour, D.; Herrmann, Bent; O'Neill, F.G.

    2009-01-01

    the selectivity process has become more important. This paper presents a model of the deformation of an axisymmetric cod-end. The twine tension and the catch pressure acting on the knots of each mesh along the cod-end profile are calculated, and a Newton-Raphson scheme is used to estimate the equilibrium position...

  18. Decay of passive scalar fluctuations in axisymmetric turbulence

    Science.gov (United States)

    Yoshimatsu, Katsunori; Davidson, Peter A.; Kaneda, Yukio

    2016-11-01

    Passive scalar fluctuations in axisymmetric Saffman turbulence are examined theoretically and numerically. Theoretical predictions are verified by direct numerical simulation (DNS). According to the DNS, self-similar decay of the turbulence and the persistency of the large-scale anisotropy are found for its fully developed turbulence. The DNS confirms the time-independence of the Corrsin integral.

  19. Non-Axisymmetric Shaping of Tokamaks Preserving Quasi-Axisymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Long-Poe Ku and Allen H. Boozer

    2009-06-05

    If quasi-axisymmetry is preserved, non-axisymmetric shaping can be used to design tokamaks that do not require current drive, are resilient to disruptions, and have robust plasma stability without feedback. Suggestions for addressing the critical issues of tokamaks can only be validated when presented with sufficient specificity that validating experiments can be designed. The purpose of this paper is provide that specificity for non-axisymmetric shaping. To our knowledge, no other suggestions for the solution of a number of tokamak issues, such as disruptions, have reached this level of specificity. Sequences of three-field-period quasi-axisymmetric plasmas are studied. These sequences address the questions: (1) What can be achieved at various levels of non-axisymmetric shaping? (2) What simplifications to the coils can be achieved by going to a larger aspect ratio? (3) What range of shaping can be achieved in a single experimental facility? The sequences of plasmas found in this study provide a set of interesting and potentially important configurations.

  20. On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders

    Science.gov (United States)

    Wu, Bin; Su, Yipin; Liu, Dongying; Chen, Weiqiu; Zhang, Chuanzeng

    2018-05-01

    Soft materials can be designed with a functionally graded (FG) property for specific applications. Such material inhomogeneity can also be found in many soft biological tissues whose functionality is only partly understood to date. In this paper, we analyze the axisymmetric guided wave propagation in a pressurized FG elastomeric hollow cylinder. The cylinder is subjected to a combined action of axial pre-stretch and pressure difference applied to the inner and outer cylindrical surfaces. We consider both torsional waves and longitudinal waves propagating in the FG cylinder made of incompressible isotropic elastomer, which is characterized by the Mooney-Rivlin strain energy function but with the material parameters varying with the radial coordinate in an affine way. The pressure difference generates an inhomogeneous deformation field in the FG cylinder, which dramatically complicates the superimposed wave problem described by the small-on-large theory. A particularly efficient approach is hence employed which combines the state-space formalism for the incremental wave motion with the approximate laminate or multi-layer technique. Dispersion relations for the two types of axisymmetric guided waves are then derived analytically. The accuracy and convergence of the proposed approach is validated numerically. The effects of the pressure difference, material gradient, and axial pre-stretch on both the torsional and the longitudinal wave propagation characteristics are discussed in detail through numerical examples. It is found that the frequency of axisymmetric waves depends nonlinearly on the pressure difference and the material gradient, and an increase in the material gradient enhances the capability of the pressure difference to adjust the wave behavior in the FG cylinder. This work provides a theoretical guidance for characterizing FG soft materials by in-situ ultrasonic nondestructive evaluation and for designing tunable waveguides via material tailoring along

  1. Time-dependent solution for axisymmetric flow over a blunt body with ideal gas, CF4, or equilibrium air chemistry

    Science.gov (United States)

    Hamilton, H. H., II; Spall, J. R.

    1986-01-01

    A time-asymptotic method has been used to obtain steady-flow solutions for axisymmetric inviscid flow over several blunt bodies including spheres, paraboloids, ellipsoids, and spherically blunted cones. Comparisons with experimental data and results of other computational methods have demonstrated that accurate solutions can be obtained using this approach. The method should prove useful as an analysis tool for comparing with experimental data and for making engineering calculations for blunt reentry vehicles.

  2. Axisymmetric instability in a noncircular tokamak: experiment and theory

    International Nuclear Information System (INIS)

    Lipschultz, B.; Prager, S.C.; Todd, A.M.M.; Delucia, J.

    1979-09-01

    The stability of dee, inverse-dee and square cross section plasmas to axisymmetric modes has been investigated experimentally in Tokapole II, a tokamak with a four-null poloidal divertor. Experimental results are closely compared with predictions of two numerical stability codes -- the PEST code (ideal MHD, linear stability) adapted to tokapole geometry and a code which follows the nonlinear evolution of shapes similar to tokapole equilibria. Experimentally, the square is vertically stable and both dee's unstable to a vertical nonrigid axisymmetric shift. The central magnetic axis displacement grows exponentially with a growth time approximately 10 3 poloidal Alfven times plasma time. Proper initial positioning of the plasma on the midplane allows passive feedback to nonlinearly restore vertical motion to a small stable oscillation. Experimental poloidal flux plots are produced directly from internal magnetic probe measurements

  3. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Izotov, I. V.; Razin, S. V.; Sidorov, A. V.; Skalyga, V. A.; Zorin, V. G.; Bagryansky, P. A.; Beklemishev, A. D.; Prikhodko, V. V.

    2012-01-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap (''vortex'' confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of ''vortex'' confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  4. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source.

    Science.gov (United States)

    Izotov, I V; Razin, S V; Sidorov, A V; Skalyga, V A; Zorin, V G; Bagryansky, P A; Beklemishev, A D; Prikhodko, V V

    2012-02-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap ("vortex" confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of "vortex" confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  5. Experimental and numerical research on cavitating flows around axisymmetric bodies

    International Nuclear Information System (INIS)

    Haipeng, Wei; Song, Fu; Qin, Wu; Biao, Huang; Guoyu, Wang

    2014-01-01

    We investigated the cavitating flows around different axisymmetric bodies based on experiments and numerical simulation. In the numerical simulation, the multiphase Reynolds averaged Navier Stokes equations (RANS) were solved via the commercial computational fluid dynamics code CFX. The modified k-wSST turbulence model was used along with the transport equation-based cavitation model. In the experiments, a high-speed video technique was used to observe the unsteady cavitating flow patterns, and the dynamic force measurement system was used to measure the hydrodynamics of the axisymmetric bodies under different cavitation conditions. Results are shown for the hemisphere bodies, conical bodies and blunt bodies. Reasonable agreements were obtained between the computational and experimental results. The results show that for the hemispherical body, the cavity consists of quasi-steady transparent region and unsteady foggy water-vapor mixture region, which contains small-scale vortices and is dominated by bubble clusters, causing irregular disturbances at the cavity interfaces. The curvature at the front of the conical body is larger, resulting in that the flow separates at the shoulder of the axisymmetric body. The cavity stretches downstream and reaches to a fixed cavity length and shape. For blunt bodies, the incipient cavitation number is larger than that for the hemispherical body. A large cloud cavity is formed at the shoulder of the blunt body in the cores of vortices in high shear separation regions and the re-entrant jet does not significantly interact with the cavity interface when it moves upstream. As to the dynamic characteristics of unsteady cavitating flows around the axisymmetric bodies, the pulsation frequency for the hemispherical body is larger than that for the blunt body. For the hemispherical body, the pulsation is mainly caused by the high-frequency, small-scale shedding at the rear end of the cavity, while for the blunt body, the main factor for

  6. Axisymmetric MHD equilibrium solver with bicubic Hermite elements

    International Nuclear Information System (INIS)

    Luetjens, H.; Bondeson, A.; Roy, A.

    1990-05-01

    A numerical code solving axisymmetric magnetohydrodynamic equilibria with rectangular bicubic Hermite elements has been developed. Two test cases are used for checking the convergence rate of the solution. The mapping of the equilibrium quantities into flux coordinates for magnetohydrodynamic stability calculation is performed by a method which preserves the convergence properties of the cubic Hermite elements. Convergence studies show the behaviour of the stability results when the equilibrium mesh is varied. (author) 13 refs., 3 tabs

  7. RESONANT ABSORPTION OF AXISYMMETRIC MODES IN TWISTED MAGNETIC FLUX TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Giagkiozis, I.; Verth, G. [Solar Plasma Physics Research Centre, School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield, S3 7RH (United Kingdom); Goossens, M.; Doorsselaere, T. Van [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Fedun, V. [Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, Amy Johnson Building, Sheffield, S1 3JD (United Kingdom)

    2016-06-01

    It has been shown recently that magnetic twist and axisymmetric MHD modes are ubiquitous in the solar atmosphere, and therefore the study of resonant absorption for these modes has become a pressing issue because it can have important consequences for heating magnetic flux tubes in the solar atmosphere and the observed damping. In this investigation, for the first time, we calculate the damping rate for axisymmetric MHD waves in weakly twisted magnetic flux tubes. Our aim is to investigate the impact of resonant damping of these modes for solar atmospheric conditions. This analytical study is based on an idealized configuration of a straight magnetic flux tube with a weak magnetic twist inside as well as outside the tube. By implementing the conservation laws derived by Sakurai et al. and the analytic solutions for weakly twisted flux tubes obtained recently by Giagkiozis et al. we derive a dispersion relation for resonantly damped axisymmetric modes in the spectrum of the Alfvén continuum. We also obtain an insightful analytical expression for the damping rate in the long wavelength limit. Furthermore, it is shown that both the longitudinal magnetic field and the density, which are allowed to vary continuously in the inhomogeneous layer, have a significant impact on the damping time. Given the conditions in the solar atmosphere, resonantly damped axisymmetric modes are highly likely to be ubiquitous and play an important role in energy dissipation. We also suggest that, given the character of these waves, it is likely that they have already been observed in the guise of Alfvén waves.

  8. Elastoplastic buckling of quasi axisymmetric shells of revolution

    International Nuclear Information System (INIS)

    Combescure, A.

    1987-01-01

    This paper gives the formulation of a finite element which allows the computation of quasi axisymmetric shells of revolution. This element has two nodes and the displacement field is developped in Fourier series. In this paper, an emphasis is put on the elastic and plastic buckling formulation. Two examples are developped in details showing the applicability and the interest of such a finite element. (orig.)

  9. Numerical methods for axisymmetric and 3D nonlinear beams

    Science.gov (United States)

    Pinton, Gianmarco F.; Trahey, Gregg E.

    2005-04-01

    Time domain algorithms that solve the Khokhlov--Zabolotzskaya--Kuznetsov (KZK) equation are described and implemented. This equation represents the propagation of finite amplitude sound beams in a homogenous thermoviscous fluid for axisymmetric and fully three dimensional geometries. In the numerical solution each of the terms is considered separately and the numerical methods are compared with known solutions. First and second order operator splitting are used to combine the separate terms in the KZK equation and their convergence is examined.

  10. Modeling axisymmetric flows dynamics of films, jets, and drops

    CERN Document Server

    Middleman, Stanley

    1995-01-01

    This concise book is intended to fulfill two purposes: to provide an important supplement to classic texts by carrying fluid dynamics students on into the realm of free boundary flows; and to demonstrate the art of mathematical modeling based on knowledge, intuition, and observation. In the authors words, the overall goal is make the complex simple, without losing the essence--the virtue--of the complexity.Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops is the first book to cover the topics of axisymmetric laminar flows; free-boundary flows; and dynamics of drops, jets, and films. The text also features comparisons of models to experiments, and it includes a large selection of problems at the end of each chapter.Key Features* Contains problems at the end of each chapter* Compares real-world experimental data to theory* Provides one of the first comprehensive examinations of axisymmetric laminar flows, free-boundary flows, and dynamics of drops, jets, and films* Includes development of basic eq...

  11. Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt

    2014-10-01

    This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank

  12. Options for axisymmetric operation of MFTF-B

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Devoto, R.S.; Thomassen, K.I.

    1986-01-01

    The flexibility of MFTF-B for axisymmetric experiments has been investigated. Interhcanging the axicell coils and increasing their separation results in an axisymmetric plug cell with 12:1 and 6:1 inner and outer mirror ratios, respectively. For axisymmetric operation, the sloshing-ion neutral beams, ECRH gyrotrons, and the pumping system would be moved to the axicell. Stabilization by E-rings could be explored in this configuration. With the addition of octopole magnets, off-axis multipole stabilization could also be tested. Operating points for octopole and E-ring-stabilized configurations with properties similar to those of the quadrupole MFTF-B, namely T/sub ic/ = 10 - 15 keV and n/sub c/ approx. = 3 x 10 13 cm -3 , have been obtained. Because of the negligible radial transport of central-cell ions, the required neutral-beam power in the central cell has been dramatically reduced. In addition, because MHD stabilization is achieved by off-axis hot electrons in both cases, much lower barrier beta is possible, which aids in reducing the barrier ECRH power. Total ECRH power in the end cell is projected to be approx. =1 MW. Possible operating points for both octopole and E-ring configurations are described along with the stability considerations involved

  13. Forage evaluation by analysis after

    African Journals Online (AJOL)

    by forages, can be estimated by amino acid analysis of the products of fermentation in vitro. Typical results of such analyses are presented in Table 1. These results indicate that after fermentation the amino acid balance of forages is not optimal for either milk or meat production, with histidine usually being the first limiting.

  14. Jet flow issuing from an axisymmetric pipe-cavity-orifice nozzle

    Directory of Open Access Journals (Sweden)

    Broučková Zuzana

    2016-01-01

    Full Text Available An axisymmetric air jet flow is experimentally investigated under passive flow control. The jet issues from a pipe of the inner diameter and length of 10 mm and 150 mm which is equipped with an axisymmetric cavity at the pipe end. The cavity operates as a resonator creating self-sustained acoustic excitations of the jet flow. A mechanism of excitations is rather complex – in comparison with a common Helmholtz resonator. The experiments were performed using flow visualization, microphone measurements and time-mean velocity measurements by the Pitot probe. The power spectral density (PSD and the sound pressure level (SPL were evaluated from microphone measurements. The jet Reynolds number ranged Re = 1600–18 000. Distinguishable peaks in PSD indicated a function of the resonator. Because the most effective acoustic response was found at higher Re, a majority of experiments focused on higher Re regime. The results demonstrate effects of the passive control on the jet behavior. Fluid mixing and velocity decay along the axis is intensified. It causes shortening of the jet transition region. On the other hand, an inverse proportionality of the velocity decay (u ~ 1/x in the fully developed region is not changed. The momentum and kinetic energy fluxes decrease more intensively in the controlled jets in comparison with common jets.

  15. Magnetohydrodynamic helical structures in nominally axisymmetric low-shear tokamak plasmas

    International Nuclear Information System (INIS)

    Graves, J P; Brunetti, D; Cooper, W A; Reimerdes, H; Halpern, F; Pochelon, A; Sauter, O; Chapman, I T

    2013-01-01

    The primary goal of hybrid scenarios in tokamaks is to enable high performance operation with large plasma currents whilst avoiding MHD instabilities. However, if a local minimum in the safety factor is allowed to approach unity, the energy required to overcome stabilizing magnetic field line bending is very small, and as a consequence, large MHD structures can be created, with typically dominant m = n = 1 helical component. If there is no exact q = 1 rational surface the essential character of these modes can be modelled assuming ideal nested magnetic flux surfaces. The methods used to characterize these structures include linear and non-linear ideal MHD stability calculations which evaluate the departure from an axisymmetric plasma state, and also equilibrium calculations using a 3D equilibrium code. While these approaches agree favourably for simulations of ITER relevant hybrid regimes in this paper, the relevance of the ideal MHD model itself is tested through empirical examination of helical states in MAST and TCV. While long lived modes in MAST do not have island structures, some of the continuous mode oscillations exhibited in high elongation experiments in TCV indicate that resistivity may play a role in further weakening the ability of the tokamak core to remain axisymmetric. The simulations and experiments consistently highlight the need to control the safety factor in hybrid scenarios planned for future fusion grade tokamaks such as ITER. (paper)

  16. Equilibrium and ballooning mode stability of an axisymmetric tensor pressure tokamak

    International Nuclear Information System (INIS)

    Cooper, W.A.; Bateman, G.; Nelson, D.B.; Kammash, T.

    1980-08-01

    A force balance relation, a representation for the poloidal beta (β/sub p/), and expressions for the current densities are derived from the MHD equilibrium relations for an axisymmetric tensor pressure tokamak. Perpendicular and parallel beam pressure components are evaluated from a distribution function that models high energy neutral particle injection. A double adiabatic energy principle is derived from that of Kruskal and Oberman, with correction terms added. The energy principle is then applied to an arbitrary cross-section axisymmetric tokamak to examine ballooning instabilities of large toroidal mode number. The resulting Euler equation is remarkably similar to that of ideal MHD. Although the field-bending term is virtually unaltered, the driving term is modified because the pressures are no longer constant on a flux surface. Either a necessary or a sufficient marginal stability criterion for a guiding center plasma can be derived from this equation whenever an additional stabilizing element unique to the double adiabatic theory is either kept or neglected, respectively

  17. Direct Numerical Simulation of Hypersonic Turbulent Boundary Layer inside an Axisymmetric Nozzle

    Science.gov (United States)

    Huang, Junji; Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2017-01-01

    As a first step toward a study of acoustic disturbance field within a conventional, hypersonic wind tunnel, direct numerical simulations (DNS) of a Mach 6 turbulent boundary layer on the inner wall of a straight axisymmetric nozzle are conducted and the results are compared with those for a flat plate. The DNS results for a nozzle radius to boundary-layer thickness ratio of 5:5 show that the turbulence statistics of the nozzle-wall boundary layer are nearly unaffected by the transverse curvature of the nozzle wall. Before the acoustic waves emanating from different parts of the nozzle surface can interfere with each other and undergo reflections from adjacent portions of the nozzle surface, the rms pressure fluctuation beyond the boundary layer edge increases toward the nozzle axis, apparently due to a focusing effect inside the axisymmetric configuration. Spectral analysis of pressure fluctuations at both the wall and the freestream indicates a similar distribution of energy content for both the nozzle and the flat plate, with the peak of the premultiplied frequency spectrum at a frequency of [(omega)(delta)]/U(sub infinity) approximately 6.0 inside the free stream and at [(omega)(delta)]/U(sub infinity) approximately 2.0 along the wall. The present results provide the basis for follow-on simulations involving reverberation effects inside the nozzle.

  18. Axisymmetric flow and heat transfer to modified second grade fluid over a radially stretching sheet

    Directory of Open Access Journals (Sweden)

    Masood Khan

    Full Text Available In the present work, an analysis is made to the two-dimensional axisymmetric flow and heat transfer of a modified second grade fluid over an isothermal non-linear radially stretching sheet. The momentum and energy equations are modelled and the boundary layer equations are derived. The governing equations for velocity and temperature are turned down into a system of ordinary differential equations by invoking appropriate transformations which are then solved numerically via fourth and fifth order Runge-Kutta Fehlberg method. Moreover, the influence of the pertinent parameters namely the generalized second grade parameter, stretching parameter, the power-law index and the generalized Prandtl number is graphically portrayed. It is inferred that the generalized second grade parameter uplifted the momentum boundary layer while lessened the thermal boundary layer. Furthermore, the impact of stretching parameter is more pronounced for the second grade fluid (m = 0 in contrast with the power-law fluid (k = 0. For some special cases, comparisons are made with previously reported results and an excellent agreement is established. Keywords: Modified second grade fluid, Axisymmetric flow, Heat transfer, Non-linear stretching sheet

  19. Axisymmetric thrust-vectoring nozzle performance prediction

    International Nuclear Information System (INIS)

    Wilson, E. A.; Adler, D.; Bar-Yoseph, P.Z

    1998-01-01

    Throat-hinged geometrically variable converging-diverging thrust-vectoring nozzles directly affect the jet flow geometry and rotation angle at the nozzle exit as a function of the nozzle geometry, the nozzle pressure ratio and flight velocity. The consideration of nozzle divergence in the effective-geometric nozzle relation is theoretically considered here for the first time. In this study, an explicit calculation procedure is presented as a function of nozzle geometry at constant nozzle pressure ratio, zero velocity and altitude, and compared with experimental results in a civil thrust-vectoring scenario. This procedure may be used in dynamic thrust-vectoring nozzle design performance predictions or analysis for civil and military nozzles as well as in the definition of initial jet flow conditions in future numerical VSTOL/TV jet performance studies

  20. Reactor accident analysis and evaluation

    International Nuclear Information System (INIS)

    Chang, J.W.

    1983-01-01

    Reactor Management Division of Korea Advanced Energy Research Institute has, so far, adopted, modified and developed quite a number of large programs for nuclear core analysis. During the course of this work, it was found necessary to employ some standard subroutines for handling data, input procedures, core memory management and search files. Many programs share lots of common subroutines and/or functions with other programs. Above all, some of them are in lack of transmittal. During the installation of big codes for CYBER computer, it has drawn our keen attention that many elementary subroutines are heavily machine-dependent and that their conversion is extremely difficult. After having collected and modified the subroutines to fit in different codes, it was finally named KINEP (KAERI Improved Nuclear Environmental Package). KINEP has been proved to be convenient even for smaller programs for general purpose. The KINEP includes about one hundred subroutines to facilitate data handling, operator communications, storage allocation, decimal input, file maintence and scratch I/O. (Author)

  1. Axisymmetrical impulsive responses of an infinite circular cylindrical shell filled with liquid

    International Nuclear Information System (INIS)

    Ujihashi, Sadayuki; Matsumoto, Hiroyuki; Nakahara, Ichiro; Shigeta, Masayuki.

    1986-01-01

    In this paper, dynamic interaction phenomena on solid and liquid interfaces are discussed. Axisymmetrical responses of an infinite circular cylindrical shell perfectly filled with liquid are analyzed, based on Fluegge's theory for a circular cylindrical shell and the potential theory for the ideal fluid under conditions of the impulsive external band pressure given on the outer surface of the shell. The deflection and the moment of the shell and the pressure in the fluid are evaluated by using the numerical inversion of the Laplace transformation method. The approximate solution for the shell with an equivalent mass on it is analyzed and is evaluated, based on the solution for the solid and liquid interaction. (author)

  2. Model Performance Evaluation and Scenario Analysis (MPESA)

    Science.gov (United States)

    Model Performance Evaluation and Scenario Analysis (MPESA) assesses the performance with which models predict time series data. The tool was developed Hydrological Simulation Program-Fortran (HSPF) and the Stormwater Management Model (SWMM)

  3. Resonant oscillations in open axisymmetric tubes

    Science.gov (United States)

    Amundsen, D. E.; Mortell, M. P.; Seymour, B. R.

    2017-12-01

    We study the behaviour of the isentropic flow of a gas in both a straight tube of constant cross section and a cone, open at one end and forced at or near resonance at the other. A continuous transition between these configurations is provided through the introduction of a geometric parameter k associated with the opening angle of the cone where the tube corresponds to k=0. The primary objective is to find long-time resonant and near-resonant approximate solutions for the open tube, i.e. k→ 0. Detailed analysis for both the tube and cone in the limit of small forcing (O(ɛ 3)) is carried out, where ɛ 3 is the Mach number of the forcing function and the resulting flow has Mach number O(ɛ ). The resulting approximate solutions are compared with full numerical simulations. Interesting distinctions between the cone and the tube emerge. Depending on the damping and detuning, the responses for the tube are continuous and of O(ɛ ). In the case of the cone, the resonant response involves an amplification of the fundamental resonant mode, usually called the dominant first-mode approximation. However, higher modes must be included for the tube to account for the nonlinear generation of higher-order resonances. Bridging these distinct solution behaviours is a transition layer of O(ɛ 2) in k. It is found that an appropriately truncated set of modes provides the requisite modal approximation, again comparing well to numerical simulations.

  4. Credit Risk Evaluation : Modeling - Analysis - Management

    OpenAIRE

    Wehrspohn, Uwe

    2002-01-01

    An analysis and further development of the building blocks of modern credit risk management: -Definitions of default -Estimation of default probabilities -Exposures -Recovery Rates -Pricing -Concepts of portfolio dependence -Time horizons for risk calculations -Quantification of portfolio risk -Estimation of risk measures -Portfolio analysis and portfolio improvement -Evaluation and comparison of credit risk models -Analytic portfolio loss distributions The thesis contributes to the evaluatio...

  5. Applied decision analysis and risk evaluation

    International Nuclear Information System (INIS)

    Ferse, W.; Kruber, S.

    1995-01-01

    During 1994 the workgroup 'Applied Decision Analysis and Risk Evaluation; continued the work on the knowledge based decision support system XUMA-GEFA for the evaluation of the hazard potential of contaminated sites. Additionally a new research direction was started which aims at the support of a later stage of the treatment of contaminated sites: The clean-up decision. For the support of decisions arising at this stage, the methods of decision analysis will be used. Computational aids for evaluation and decision support were implemented and a case study at a waste disposal site in Saxony which turns out to be a danger for the surrounding groundwater ressource was initiated. (orig.)

  6. Feedback stabilization of the axisymmetric instability of a deformable tokamak plasma

    International Nuclear Information System (INIS)

    Pomphrey, N.; Jardin, S.C.; Ward, D.J.

    1989-01-01

    The paper presents an analysis of the magnetohydrodynamic stability of the axisymmetric system consisting of a free boundary tokamak plasma with non-circular cross-section, finite resistivity passive conductors, and an active feedback system with magnetic flux pickup loops, a proportional amplifier with gain G and current carrying poloidal field coils. A numerical simulation of the system when G is set to zero identifies flux loop locations which correctly sense the plasma motion. However, when certain of these locations are incorporated into an active feedback scheme, the plasma fails to be stabilized, no matter what value of the gain is chosen. Analysis on the basis of an extended energy principle indicates that this failure is due to the deformability of the plasma cross-section. (author). 14 refs, 7 figs

  7. Axisymmetric Vibration of Piezo-Lemv Composite Hollow Multilayer Cylinder

    Directory of Open Access Journals (Sweden)

    E. S. Nehru

    2012-01-01

    Full Text Available Axisymmetric vibration of an infinite piezolaminated multilayer hollow cylinder made of piezoelectric layers of 6 mm class and an isotropic LEMV (Linear Elastic Materials with Voids layers is studied. The frequency equations are obtained for the traction free outer surface with continuity conditions at the interfaces. Numerical results are carried out for the inner, middle, and outer hollow piezoelectric layers bonded by LEMV (It is hypothetical material layers and the dispersion curves are compared with that of a similar 3-layer model and of 3 and 5 layer models with inner, middle, and outer hollow piezoelectric layers bonded by CFRP (Carbon fiber reinforced plastics.

  8. Whether diffusion in axisymmetric confinement systems is intrinsically ambipolar

    International Nuclear Information System (INIS)

    Kovrizhnykh, L.M.

    1997-01-01

    The problem of diffusion ambipolarity in axisymmetric magnetic systems is analyzed. The question is discussed of whether diffusion is intrinsically ambipolar (and if so, then in which particular cases) or the ambipolarity constraint is an additional independent condition, which does not follow from the equations of motion and, hence, contains new information. It is shown that the second assertion is correct: strictly speaking, diffusion can never be intrinsically ambipolar, and, in the presence of several different mechanisms causing electron and ion losses across the magnetic field, only the total fluxes, but not the partial ones, should satisfy the ambipolarity constraint. (UK)

  9. Fusion-product transport in axisymmetric tokamaks: losses and thermalization

    International Nuclear Information System (INIS)

    Hively, L.M.

    1980-01-01

    High-energy fusion-product losses from an axisymmetric tokamak plasma are studied. Prompt-escape loss fluxes (i.e. prior to slowing down) are calculated including the non-separable dependence of flux as a function of poloidal angle and local angle-of-incidence at the first wall. Fusion-product (fp) thermalization and heating are calculated assuming classical slowing down. The present analytical model describes fast ion orbits and their distribution function in realistic, high-β, non-circular tokamak equilibria. First-orbit losses, trapping effects, and slowing-down drifts are also treated

  10. Preserving spherical symmetry in axisymmetric coordinates for diffusion problems

    International Nuclear Information System (INIS)

    Brunner, T. A.; Kolev, T. V.; Bailey, T. S.; Till, A. T.

    2013-01-01

    Persevering symmetric solutions, even in the under-converged limit, is important to the robustness of production simulation codes. We explore the symmetry preservation in both a continuous nodal and a mixed finite element method. In their standard formulation, neither method preserves spherical solution symmetry in axisymmetric (RZ) coordinates. We propose two methods, one for each family of finite elements, that recover spherical symmetry for low-order finite elements on linear or curvilinear meshes. This is a first step toward understanding achieving symmetry for higher-order elements. (authors)

  11. Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides

    DEFF Research Database (Denmark)

    Bæk, David; Willatzen, Morten

    2008-01-01

    A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...... by expanding solutions in terms of cross-sectional eigenfunctions following Stevenson’s method. A transfer matrix can be easily constructed from simple model responses of a given waveguide and later used in computing the response to any complex wave input. Energy losses due to heat conduction and viscous...

  12. An axisymmetric PFEM formulation for bottle forming simulation

    Science.gov (United States)

    Ryzhakov, Pavel B.

    2017-01-01

    A numerical model for bottle forming simulation is proposed. It is based upon the Particle Finite Element Method (PFEM) and is developed for the simulation of bottles characterized by rotational symmetry. The PFEM strategy is adapted to suit the problem of interest. Axisymmetric version of the formulation is developed and a modified contact algorithm is applied. This results in a method characterized by excellent computational efficiency and volume conservation characteristics. The model is validated. An example modelling the final blow process is solved. Bottle wall thickness is estimated and the mass conservation of the method is analysed.

  13. Axisymmetric tandem mirror stabilized by a magnetic limiter

    International Nuclear Information System (INIS)

    Kesner, J.; Post, R.S.; Lane, B.

    1985-06-01

    In order to stabilize MHD-like, fast growing m = 1 fluctuations in the central cell of a tandem mirror we propose the introduction of a magnetic limiter. The magnetic limiter would create a ring null in the magnetic field. Electrons which enter the null can stream azimuthally and thereby ''short-circuit'' m = 1 fluctuations. Some pressure could be maintained on the separatrix flux surface by locating the null on a local magnetic maxima or by axial plugging. This scheme introduces the possibility of a fully axisymmetric tandem mirror

  14. Flow in axisymmetric expansion in a catalytic converter

    DEFF Research Database (Denmark)

    Gotfredsen, Erik; Meyer, Knud Erik

    The flow in an axisymmetric expansion (circular diffusor) is used in many different engineering applications, such as heat exchangers, catalytic converters and filters. These applications require a relatively uniform flow at the inlet. To minimise the pressure loss, an ideal solution would...... Velocimetry (PIV) is a unique method that resolve the entire cross flow. This type of flow is expected to have a fluctuating ‘jet’-like structure from the smaller inlet pipe into the larger converter. The fluctuations of the jet are difficult, if not impossible, to capture with standard time averaged models...

  15. Neoclassical and anomalous transport in axisymmetric toroidal plasmas with electrostatic turbulence

    International Nuclear Information System (INIS)

    Sugama, H.; Horton, W.

    1995-05-01

    Neoclassical and anomalous transport fluxes are determined for axisymmetric toroidal plasmas with weak electrostatic fluctuations. The neoclassical and anomalous fluxes are defined based on the ensemble-averaged kinetic equation with the statistically averaged nonlinear term. The anomalous forces derived from that quasilinear term induce the anomalous particle and heat fluxes. The neoclassical banana-plateau particle and heat fluxes and the bootstrap current are also affected by the fluctuations through the parallel anomalous forces and the modified parallel viscosities. The quasilinear term, the anomalous forces, and the anomalous particle and heat fluxes are evaluated from the fluctuating part of the drift kinetic equation. The averaged drift kinetic equation with the quasilinear term is solved for the plateau regime to derive the parallel viscosities modified by the fluctuations. The entropy production rate due to the anomalous transport processes is formulated and used to identify conjugate pairs of the anomalous fluxes and forces, which are connected by the matrix with the Onsager symmetry. (author)

  16. Aerodynamics characteristic of axisymmetric surface protuberance in supersonic regime

    KAUST Repository

    Qamar, Adnan; Sanghi, Sanjeev

    2012-01-01

    The present work deals with the problem of an axi-symmetric surface protuberance mounted on a spherical nosed body of revolution. The numerical computations are carried out for laminar supersonic viscous flow for trapezoidal shape axi-symmetric protuberances. A free stream Mach number ranging from 3 to 8 in steps of 1 at a fixed free stream Reynolds number of 1.8x10(4) has been used in the present study. The steady solutions are obtained using a time marching approach. A newly developed Particle Velocity Upwinding (PVU) scheme has been used for the computation. The spatial flow pattern exhibits a strong bow shock in front of the hemispherical nose, which engulfs the entire base body. Near the protuberance, the fluid particle decelerates due to the adverse pressure created by the protuberance and thus the flow separates in front of the protuberance. This point of separation is found to be a function of Mach number and the protuberance shape. A low-pressure expansion region dominates the base region of the obstacle. The reattachment point for the base separation is also a function of Mach number. As the Mach number is increased the reattachment point shifts toward the protuberances base. A weak recompression shock is also seen in the base, which affects the separated zone behind the protuberance. The important design parameters such as skin friction, heat transfer, drag, and surface pressure coefficients are reported extensively.

  17. Application of the Least Squares Method in Axisymmetric Biharmonic Problems

    Directory of Open Access Journals (Sweden)

    Vasyl Chekurin

    2016-01-01

    Full Text Available An approach for solving of the axisymmetric biharmonic boundary value problems for semi-infinite cylindrical domain was developed in the paper. On the lateral surface of the domain homogeneous Neumann boundary conditions are prescribed. On the remaining part of the domain’s boundary four different biharmonic boundary pieces of data are considered. To solve the formulated biharmonic problems the method of least squares on the boundary combined with the method of homogeneous solutions was used. That enabled reducing the problems to infinite systems of linear algebraic equations which can be solved with the use of reduction method. Convergence of the solution obtained with developed approach was studied numerically on some characteristic examples. The developed approach can be used particularly to solve axisymmetric elasticity problems for cylindrical bodies, the heights of which are equal to or exceed their diameters, when on their lateral surface normal and tangential tractions are prescribed and on the cylinder’s end faces various types of boundary conditions in stresses in displacements or mixed ones are given.

  18. Hot Wire Measurements in a Axisymmetric Shear Layer with Swirl

    Science.gov (United States)

    Ewing, D.; Pollard, A.

    1996-11-01

    It is well known that the introduction of swirl in an axisymmetric jet can influence the development of and mixing in the near field of the jet. Recent efforts to compute this flow have demonstrated that the development of the near field is dependent on parameters at the jet outlet other than distribution of the swirl component, such as the distribution the mean radial velocity (Xai, J.L., Smith, B.L., Benim, A. C., Schmidli, J., and Yadigaroglu, G. (1996) Influence of Boundary Conditions on Swirling Flow in Combustors, Proc. ASME Fluid. Eng. Div. Summer Meeting), San Diego, Ca., July 7-11.. An experimental rig has been designed to produce co-axial round and annular swirling jets with uniform outlet conditions in each flow. The flow rate and swirl component from each of these jets can be controlled independently and the rig can be configured to produce both co- and counter-swirling flows. Thus, the rig can be used to carry out an extensive investigation of the effect of swirl on the development of axisymmetric flows. The key design features of the rig and the first sets of hot-wire measurements in the shear layer will be reported here.

  19. Axisymmetric magnetic mirrors for plasma confinement. Recent development and perspectives

    International Nuclear Information System (INIS)

    Kruglyakov, E.P.; Dimov, G.I.; Ivanov, A.A.; Koidan, V.S.

    2003-01-01

    Mirrors are the only one class of fusion systems which completely differs topologically from the systems with closed magnetic configurations. At present, three modern types of different mirror machines for plasma confinement and heating exist in Novosibirsk (Gas Dynamic Trap,- GDT, Multi-mirror,- GOL-3, and Tandem Mirror,- AMBAL-M). All these systems are attractive from the engineering point of view because of very simple axisymmetric geometry of magnetic configurations. In the present paper, the status of different confinement systems is presented. The experiments most crucial for the mirror concept are described such as a demonstration of different principles of suppression of electron heat conductivity (GDT, GOL-3), finding of MHD stable regimes of plasma confinement in axisymmetric geometry of magnetic field (GDT, AMBAL-M), an effective heating of a dense plasma by relativistic electron beam (GOL-3), observation of radial diffusion of quiescent plasma with practically classical diffusion coefficient (AMBAL-M), etc. It should be mentioned that on the basis of the GDT it is possible to make a very important intermediate step. Using 'warm' plasma and oblique injection of fast atoms of D and T one can create a powerful 14 MeV neutron source with a moderate irradiation area (about 1 square meter) and, accordingly, with low tritium consumption. The main plasma parameters achieved are presented and the future perspectives of different mirror machines are outlined. (author)

  20. Topological Fluid Mechanics with Applications to Free Surfaces and Axisymmetric Flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    1996-01-01

    Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow.......Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow....

  1. Noise-tolerant inverse analysis models for nondestructive evaluation of transportation infrastructure systems using neural networks

    Science.gov (United States)

    Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper

    2013-09-01

    The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement

  2. Engineering Design Study of Quasi-Axisymmetric Stellarator with Low Aspect Ratio

    International Nuclear Information System (INIS)

    Matsuoka, Keisuke; Okamura, Shoichi; Nishimura, Shin; Isobe, Mitsutaka; Suzuki, Chihiro; Shimizu, Akihiro; Tanaka, Nobuo; Hasegawa, Mitsuru; Naito, Hideji; Urata, Kazuhiro; Suzuki, Yutaka; Tsukamoto, Tadanori

    2004-01-01

    The engineering design of the quasi-axisymmetric stellarator CHS-qa is described, having a toroidal period number of 2, major radius of 1.5 m, and plasma aspect ratio of 3.2. Although the entire structure of the machine is highly nonaxisymmetric and deformative, the following major engineering concerns for the modular coils and the vacuum vessel have been resolved: (a) modular coil design (curvature and twist of conductors), (b) supporting structures for modular coils, (c) errors due to electromagnetic forces and misalignment in manufacturing processes (analysis shows that the magnetic surface is robust against such disturbances), (d) construction procedure for vacuum vessel and modular coils, and (e) ports for heating and diagnostics

  3. Thermal characterization of indirectly heated axi-symmetric solid cathode electron beam gun for melting application

    International Nuclear Information System (INIS)

    Prakash, B.; Gupta, S.; Malik, P.; Mishra, K.K.; Jha, M.N.; Kandaswamy, E.; Martin, M.

    2015-01-01

    Electron beam melting gun with indirectly heated axi-symmetric solid cathode was designed, fabricated and characterized experimentally. The thermal simulation and optical analysis of the electron gun was carried out to estimate the power required to achieve the emission temperature of the solid cathode, to obtain the temperature distribution in the assembly and the beam transportation. On the basis of the thermal simulation and electron optics, the electron gun design was finalised. The electron gun assembly was fabricated and installed in the vacuum chamber for carrying out the experiment to find the actual temperature distribution. Thermocouple and two colour pyrometer were used to measure the temperature at various locations in the electron gun. The attenuation effect of the viewing port glass of the vacuum chamber was compensated in the final reading of the temperature measured by the pyrometer. The temperature of solid cathode obtained by the experiment was found to be 2800K which is the emission temperature of solid cathode. (author)

  4. Feedback stabilization of the axisymmetric instability of a deformable tokamak plasma

    International Nuclear Information System (INIS)

    Pomphrey, N.; Jardin, S.C.

    1987-09-01

    We analyze the magnetohydrodynamic (MHD) stability of the axisymmetric system consisting of a free boundary, non-circular cross-section tokamak plasma, finite resistivity passive conductors, and an active feedback system with magnetic flux pickup loops, a proportional amplifier with gain G, and current carrying poloidal field coils. Numerical simulation of a system that is unstable with G = 0 shows that for some placements of the pickup loops, the system will remain unstable for all values of G, while for other placements of the loops, the system will be stable for G > G/sub crit/. This behavior is explained by analysis using an extended energy principle, and it is shown to result from the deformability of the plasma cross section. 9 refs., 5 figs

  5. Calculation of an axisymmetric current coil field with the bounding contour integration method

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, Alexander P.; Klevets, Nickolay I. E-mail: pmsolution@mail.ru

    2004-06-01

    Method for the economic and stable (in the sense of calculation errors) analysis of an induction of a magnetic field created with axisymmetric coils in arbitrary points of space, including points located inside a coil or on its border, is obtained. The basic idea of the method is to replace a current coil with continuous distribution of current density by magnetization distributed in the volume of the coil and creating the equivalent magnetic field. This allows to use field surface sources at calculation of the fields. Consequently, the range of integration is reduced resulting in reduction of calculation volume by an order in most cases. Besides, the calculation of improper integrals in internal points and on the border is completely excluded.

  6. Calculation of an axisymmetric current coil field with the bounding contour integration method

    International Nuclear Information System (INIS)

    Telegin, Alexander P.; Klevets, Nickolay I.

    2004-01-01

    Method for the economic and stable (in the sense of calculation errors) analysis of an induction of a magnetic field created with axisymmetric coils in arbitrary points of space, including points located inside a coil or on its border, is obtained. The basic idea of the method is to replace a current coil with continuous distribution of current density by magnetization distributed in the volume of the coil and creating the equivalent magnetic field. This allows to use field surface sources at calculation of the fields. Consequently, the range of integration is reduced resulting in reduction of calculation volume by an order in most cases. Besides, the calculation of improper integrals in internal points and on the border is completely excluded

  7. Development of detailed analysis program for high-temperature crack growth evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yukio; Nakayama, Yasunari [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab

    2001-04-01

    Evaluation of crack growth as well as crack initiation is necessary to make realistic evaluation of structural integrity and life management of high-temperature plant components. Domain integral formulae for three kinds of nonlinear fracture mechanics parameters, i.e. J-integral, fatigue J-integral range and creep J-integral were derived for two-dimensional, three-dimensional and axi-symmetrical structures. Furthermore, methods for applying them to finite element results were derived and a computer program was developed for the general-purpose finite element program, MARC. The program was applied to various problems and its effectiveness was demonstrated. (author)

  8. Validation of a solid-fluid interaction computer program for the earthquake analysis of nuclear power reactors

    International Nuclear Information System (INIS)

    Dubois, J.; Descleve, P.; Dupont, Y.

    1978-01-01

    This paper evaluates a numerical method for the analysis of the mechanical response of nuclear reactor components composed of steel structures and fluids, during normal or accidental conditions. The method consists of computing the mode shapes and frequencies of the coupled system, with the assumption of small acoustic movements and incompressibility for the fluid. The paper validates the theory and its implementation in the computer program NOVAX (axisymmetric geometry, non axisymmetric loads and response for earthquake response studies) by comparison with known theoretical and experimental results. (author)

  9. Numerical analysis of residual stresses reconstruction for axisymmetric glass components

    Science.gov (United States)

    Tao, Bo; Xu, Shuang; Yao, Honghui

    2018-01-01

    A non-destructive measurement method for 3D stress state in a glass cylinder using photoelasticity has been analyzed by simulation in this research. Based on simulated stresses in a glass cylinder, intensity of the cylinder in a circular polariscope can be calculated by Jones calculus. Therefore, the isoclinic angle and optical retardation can be obtained by six steps phase shifting technique. Through the isoclinic angle and optical retardation, the magnitude and distribution of residual stresses inside the glass cylinder in cylindrical coordinate system can be reconstructed. Comparing the reconstructed stresses with numerical simulated stresses, the results verify this non-destructive method can be used to reconstruct the 3D stresses. However, there are some mismatches in axial stress, radial stress and circumferential stress.

  10. Hamiltonian analysis of transverse dynamics in axisymmetric rf photoinjectors

    International Nuclear Information System (INIS)

    Wang, C.-x.

    2006-01-01

    A general Hamiltonian that governs the beam dynamics in an rf photoinjector is derived from first principles. With proper choice of coordinates, the resulting Hamiltonian has a simple and familiar form, while taking into account the rapid acceleration, rf focusing, magnetic focusing, and space-charge forces. From the linear Hamiltonian, beam-envelope evolution is readily obtained, which better illuminates the theory of emittance compensation. Preliminary results on the third-order nonlinear Hamiltonian will be given as well.

  11. Axi-symmetric analysis of vertically inhomogeneous elastic multilayered systems

    CSIR Research Space (South Africa)

    Maina, JW

    2009-06-01

    Full Text Available primary resilient responses are investigated by way of worked examples of hypothetical three-layer system, which was analyzed by considering homogenous and inhomogeneous material properties in each of the three layers. Effect of a inhomogeneity parameter...

  12. Ray-tracing toroidal axisymmetric devices. 1. theoretical analysis

    International Nuclear Information System (INIS)

    Cardinali, A.; Brambilla, M.

    1981-06-01

    Ray tracing technique for lower hybrid waves is used to obtain informations about accessibility, power deposition profiles and eventually electric field distribution. In the first part a critical discussion to establish the meaning and validity of this technique is presented, while in the second part of this work applications to small and to large, fat tokamaks are presented, which support and explain the theoretical arguments

  13. Stability analysis of non-axisymmetric three-dimensional finite ...

    Indian Academy of Sciences (India)

    The present work explores the use of mass-lumping in stability ... further considers orthotropic flexible support which makes the stiffness matrix a ... symmetric rotor on rigid, isotropic and orthotropic bearing is stable in absence of a destabilizing.

  14. Statistical evaluation of vibration analysis techniques

    Science.gov (United States)

    Milner, G. Martin; Miller, Patrice S.

    1987-01-01

    An evaluation methodology is presented for a selection of candidate vibration analysis techniques applicable to machinery representative of the environmental control and life support system of advanced spacecraft; illustrative results are given. Attention is given to the statistical analysis of small sample experiments, the quantification of detection performance for diverse techniques through the computation of probability of detection versus probability of false alarm, and the quantification of diagnostic performance.

  15. Job Evaluation with the Position Analysis Questionnaire

    Science.gov (United States)

    Harris, Alma F.; Matson, G. Albion

    1976-01-01

    Assessment of the Position Analysis Questionnaire (PAQ) at a four-year state college with 8,000 students indicates that the PAQ job evaluation method is sufficiently valid and has enough unique advantages to warrant its serious consideration for use by college and university personnel administrators. (LBH)

  16. Advancing Usability Evaluation through Human Reliability Analysis

    International Nuclear Information System (INIS)

    Ronald L. Boring; David I. Gertman

    2005-01-01

    This paper introduces a novel augmentation to the current heuristic usability evaluation methodology. The SPAR-H human reliability analysis method was developed for categorizing human performance in nuclear power plants. Despite the specialized use of SPAR-H for safety critical scenarios, the method also holds promise for use in commercial off-the-shelf software usability evaluations. The SPAR-H method shares task analysis underpinnings with human-computer interaction, and it can be easily adapted to incorporate usability heuristics as performance shaping factors. By assigning probabilistic modifiers to heuristics, it is possible to arrive at the usability error probability (UEP). This UEP is not a literal probability of error but nonetheless provides a quantitative basis to heuristic evaluation. When combined with a consequence matrix for usability errors, this method affords ready prioritization of usability issues

  17. Angular momentum in general relativity. 1. Definition and asymptotic behaviour. [axisymmetric space-times, infinity, conservation law, spin coefficient formalism

    Energy Technology Data Exchange (ETDEWEB)

    Prior, C R [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics

    1977-06-27

    Angular momentum in axisymmetric space-times is investigated. The conclusions lead to a general definition suitable for all asymptotically-flat spaces which is valid both at infinity and on the event horizon of a black hole. This first paper restricts attention to considerations at infinity. Working in terms of the spin coefficient formalism, the field equations are solved asymptotically at large distances and the definition is evaluated. A conservation law is derived and finally the effect on the angular momentum of a supertranslation of the coordinates is discussed.

  18. An evaluation paradigm for cumulative impact analysis

    Science.gov (United States)

    Stakhiv, Eugene Z.

    1988-09-01

    Cumulative impact analysis is examined from a conceptual decision-making perspective, focusing on its implicit and explicit purposes as suggested within the policy and procedures for environmental impact analysis of the National Environmental Policy Act of 1969 (NEPA) and its implementing regulations. In this article it is also linked to different evaluation and decision-making conventions, contrasting a regulatory context with a comprehensive planning framework. The specific problems that make the application of cumulative impact analysis a virtually intractable evaluation requirement are discussed in connection with the federal regulation of wetlands uses. The relatively familiar US Army Corps of Engineers' (the Corps) permit program, in conjunction with the Environmental Protection Agency's (EPA) responsibilities in managing its share of the Section 404 regulatory program requirements, is used throughout as the realistic context for highlighting certain pragmatic evaluation aspects of cumulative impact assessment. To understand the purposes of cumulative impact analysis (CIA), a key distinction must be made between the implied comprehensive and multiobjective evaluation purposes of CIA, promoted through the principles and policies contained in NEPA, and the more commonly conducted and limited assessment of cumulative effects (ACE), which focuses largely on the ecological effects of human actions. Based on current evaluation practices within the Corps' and EPA's permit programs, it is shown that the commonly used screening approach to regulating wetlands uses is not compatible with the purposes of CIA, nor is the environmental impact statement (EIS) an appropriate vehicle for evaluating the variety of objectives and trade-offs needed as part of CIA. A heuristic model that incorporates the basic elements of CIA is developed, including the idea of trade-offs among social, economic, and environmental protection goals carried out within the context of environmental

  19. Component evaluation testing and analysis algorithms.

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Darren M.; Merchant, Bion John

    2011-10-01

    The Ground-Based Monitoring R&E Component Evaluation project performs testing on the hardware components that make up Seismic and Infrasound monitoring systems. The majority of the testing is focused on the Digital Waveform Recorder (DWR), Seismic Sensor, and Infrasound Sensor. In order to guarantee consistency, traceability, and visibility into the results of the testing process, it is necessary to document the test and analysis procedures that are in place. Other reports document the testing procedures that are in place (Kromer, 2007). This document serves to provide a comprehensive overview of the analysis and the algorithms that are applied to the Component Evaluation testing. A brief summary of each test is included to provide the context for the analysis that is to be performed.

  20. Approach to uncertainty evaluation for safety analysis

    International Nuclear Information System (INIS)

    Ogura, Katsunori

    2005-01-01

    Nuclear power plant safety used to be verified and confirmed through accident simulations using computer codes generally because it is very difficult to perform integrated experiments or tests for the verification and validation of the plant safety due to radioactive consequence, cost, and scaling to the actual plant. Traditionally the plant safety had been secured owing to the sufficient safety margin through the conservative assumptions and models to be applied to those simulations. Meanwhile the best-estimate analysis based on the realistic assumptions and models in support of the accumulated insights could be performed recently, inducing the reduction of safety margin in the analysis results and the increase of necessity to evaluate the reliability or uncertainty of the analysis results. This paper introduces an approach to evaluate the uncertainty of accident simulation and its results. (Note: This research had been done not in the Japan Nuclear Energy Safety Organization but in the Tokyo Institute of Technology.) (author)

  1. A strategy for evaluating pathway analysis methods.

    Science.gov (United States)

    Yu, Chenggang; Woo, Hyung Jun; Yu, Xueping; Oyama, Tatsuya; Wallqvist, Anders; Reifman, Jaques

    2017-10-13

    Researchers have previously developed a multitude of methods designed to identify biological pathways associated with specific clinical or experimental conditions of interest, with the aim of facilitating biological interpretation of high-throughput data. Before practically applying such pathway analysis (PA) methods, we must first evaluate their performance and reliability, using datasets where the pathways perturbed by the conditions of interest have been well characterized in advance. However, such 'ground truths' (or gold standards) are often unavailable. Furthermore, previous evaluation strategies that have focused on defining 'true answers' are unable to systematically and objectively assess PA methods under a wide range of conditions. In this work, we propose a novel strategy for evaluating PA methods independently of any gold standard, either established or assumed. The strategy involves the use of two mutually complementary metrics, recall and discrimination. Recall measures the consistency of the perturbed pathways identified by applying a particular analysis method to an original large dataset and those identified by the same method to a sub-dataset of the original dataset. In contrast, discrimination measures specificity-the degree to which the perturbed pathways identified by a particular method to a dataset from one experiment differ from those identifying by the same method to a dataset from a different experiment. We used these metrics and 24 datasets to evaluate six widely used PA methods. The results highlighted the common challenge in reliably identifying significant pathways from small datasets. Importantly, we confirmed the effectiveness of our proposed dual-metric strategy by showing that previous comparative studies corroborate the performance evaluations of the six methods obtained by our strategy. Unlike any previously proposed strategy for evaluating the performance of PA methods, our dual-metric strategy does not rely on any ground truth

  2. Hand function evaluation: a factor analysis study.

    Science.gov (United States)

    Jarus, T; Poremba, R

    1993-05-01

    The purpose of this study was to investigate hand function evaluations. Factor analysis with varimax rotation was used to assess the fundamental characteristics of the items included in the Jebsen Hand Function Test and the Smith Hand Function Evaluation. The study sample consisted of 144 subjects without disabilities and 22 subjects with Colles fracture. Results suggest a four factor solution: Factor I--pinch movement; Factor II--grasp; Factor III--target accuracy; and Factor IV--activities of daily living. These categories differentiated the subjects without Colles fracture from the subjects with Colles fracture. A hand function evaluation consisting of these four factors would be useful. Such an evaluation that can be used for current clinical purposes is provided.

  3. Particle collector scoops for improved exhaust in ''axisymmetric'' devices

    International Nuclear Information System (INIS)

    Conn, R.W.; Wolf, G.H.

    1987-11-01

    Application of particle collector scoops in front of the pumping ducts of axisymmetric divertor/magnetic limiter configurations is proposed. These scoops should enclose a significant fraction of the recycling particles. The resulting increase in natural particle pressure in front of the pumping ducts leads to an improved exhaust efficiency. This can permit an extension of the operational margin for density control. Alternatively, aiming at a prescribed exhaust flow in reactor-type devices such as INTOR, the pumping ducts could be reduced in aperture, leaving valuable space for other components. The lay-out of the proposed scheme depends on the heat load on the leading edge in front of the scoop and on the deflector in front of the pumping ducts. 14 refs., 5 figs

  4. Calculation of transport coefficients in an axisymmetric plasma

    International Nuclear Information System (INIS)

    Shumaker, D.E.

    1977-01-01

    A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount

  5. Cellular blebs: pressure-driven, axisymmetric, membrane protrusions

    KAUST Repository

    Woolley, Thomas E.

    2013-07-16

    Blebs are cellular protrusions that are used by cells for multiple purposes including locomotion. A mechanical model for the problem of pressure-driven blebs based on force and moment balances of an axisymmetric shell model is proposed. The formation of a bleb is initiated by weakening the shell over a small region, and the deformation of the cellular membrane from the cortex is obtained during inflation. However, simply weakening the shell leads to an area increase of more than 4 %, which is physically unrealistic. Thus, the model is extended to include a reconfiguration process that allows large blebs to form with small increases in area. It is observed that both geometric and biomechanical constraints are important in this process. In particular, it is shown that although blebs are driven by a pressure difference across the cellular membrane, it is not the limiting factor in determining bleb size. © 2013 Springer-Verlag Berlin Heidelberg.

  6. Electron cyclotron current drive efficiency in an axisymmetric tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Tapia, C.; Beltran-Plata, M. [Instituto Nacional de Investigaciones Nucleares, Dept. de Fisica, Mexico D.F. (Mexico)

    2004-07-01

    The neoclassical transport theory is applied to calculate electron cyclotron current drive (ECCD) efficiency in an axisymmetric tokamak in the low-collisionality regime. The tokamak ordering is used to obtain a system of equations that describe the dynamics of the plasma where the nonlinear ponderomotive (PM) force due to high-power radio-frequency (RF) waves is included. The PM force is produced around an electron cyclotron resonant surface at a specific poloidal location. The ECCD efficiency is analyzed in the cases of first and second harmonics (for different impinging angles of the RF waves) and it is validated using experimental parameter values from TCV and T-10 tokamaks. The results are in agreement with those obtained by means of Green's function techniques. (authors)

  7. Theory of plasma confinement in non-axisymmetric magnetic fields.

    Science.gov (United States)

    Helander, Per

    2014-08-01

    The theory of plasma confinement by non-axisymmetric magnetic fields is reviewed. Such fields are used to confine fusion plasmas in stellarators, where in contrast to tokamaks and reversed-field pinches the magnetic field generally does not possess any continuous symmetry. The discussion is focussed on magnetohydrodynamic equilibrium conditions, collisionless particle orbits, and the kinetic theory of equilbrium and transport. Each of these topics is fundamentally affected by the absence of symmetry in the magnetic field: the field lines need not trace out nested flux surfaces, the particle orbits may not be confined, and the cross-field transport can be very large. Nevertheless, by tailoring the magnetic field appropriately, well-behaved equilibria with good confinement can be constructed, potentially offering an attractive route to magnetic fusion. In this article, the mathematical apparatus to describe stellarator plasmas is developed from first principles and basic elements underlying confinement optimization are introduced.

  8. Modeling and simulation of axisymmetric coating growth on nanofibers

    International Nuclear Information System (INIS)

    Moore, K.; Clemons, C. B.; Kreider, K. L.; Young, G. W.

    2007-01-01

    This work is a modeling and simulation extension of an integrated experimental/modeling investigation of a procedure to coat nanofibers and core-clad nanostructures with thin film materials using plasma enhanced physical vapor deposition. In the experimental effort, electrospun polymer nanofibers are coated with metallic materials under different operating conditions to observe changes in the coating morphology. The modeling effort focuses on linking simple models at the reactor level, nanofiber level, and atomic level to form a comprehensive model. The comprehensive model leads to the definition of an evolution equation for the coating free surface. This equation was previously derived and solved under a single-valued assumption in a polar geometry to determine the coating morphology as a function of operating conditions. The present work considers the axisymmetric geometry and solves the evolution equation without the single-valued assumption and under less restrictive assumptions on the concentration field than the previous work

  9. Axisymmetric Tornado Simulations with a Semi-Slip Boundary

    Directory of Open Access Journals (Sweden)

    Brian H. Fiedler

    2017-12-01

    Full Text Available The structure of natural tornadoes and simulated analogs are sensitive to the lower boundary condition for friction. Three-dimensional numerical simulations of storms require a choice for turbulence parameterizations and resolution of wind near the lower boundary. This article explores some of the consequences of choices of a surface drag coefficient on the structure of a mature simulated tornado, using a conventional axisymmetric model. The surface drag parameterization is explored over the range of the semi-slip condition, including the extremes of no-slip and free-slip. A moderate semi-slip condition allows for an extreme pressure deficit, but without the unrealistic vortex breakdown of the no-slip condition.

  10. Controlled Wake of a Moving Axisymmetric Bluff Body

    Science.gov (United States)

    Lee, E.; Vukasinovic, B.; Glezer, A.

    2017-11-01

    The aerodynamic loads exerted on a wire-mounted axisymmetric bluff body in prescribed rigid motion are controlled by fluidic manipulation of its near wake. The body is supported by a six-degree of freedom eight-wire traverse and its motion is controlled using a dedicated servo actuator and inline load cell for each wire. The instantaneous aerodynamic forces and moments on the moving body are manipulated by controlled interactions of an azimuthal array of integrated synthetic jet actuators with the cross flow to induce localized flow attachment over the body's aft end and thereby alter the symmetry of the wake. The coupled interactions between the wake structure and the effected aerodynamic loads during prescribed time-periodic and transitory (gust like) motions are investigated with emphasis on enhancing or diminishing the loads for maneuver control, and decoupling the body's motion from its far wake.

  11. Ideal, steady-state, axisymmetric magnetohydrodynamic equations with flow

    International Nuclear Information System (INIS)

    Baransky, Y.A.

    1987-01-01

    The motivation of this study is to gain additional understanding of the effect of rotation on the equilibrium of a plasma. The axisymmetric equilibria of ideal magnetohydrodynamics (MHD) with flow have been studied numerically and analytically. A general discussion is provided of previous work on plasmas with flow and comparisons are made to the static model. A variational principle has been derived for the two dimensional problem with comments as to appropriate boundary conditions. An inverse aspect ratio expansion has been used for a study of the toroidal flow equation for both low- and high-β. The inverse aspect ratio expansion has also been used for a study of equations with both poloidal and toroidal flow. An overview is provided of the adaptive finite-difference code which was developed to solve the full equations. (FI)

  12. Numerical study of the axisymmetric ideal MHD stability of Extrap

    International Nuclear Information System (INIS)

    Benda, M.

    1993-04-01

    A numerical study of the free-boundary axisymmetric (n=0) ideal magnetohydrodynamical (MHD) motions of the Extrap device is presented. The dependence of stability on current profiles in the plasma and currents in the external conductors is investigated. Results are shown for linear growth-rates and nonlinear saturation amplitudes and their dependence on plasma radius as well as on the conducting shell radius. A method combined of two different algorithms has been developed and tested. The interior region of the plasma is simulated by means of a Lagrangian Finite Element Method (FEM) for ideal magnetohydrodynamics, The method is based on a nonlinear radiation principle for the Lagrangian description of ideal MHD. The Boundary Element Method (BEM) is used together with the Lagrangian FEM to simulate nonlinear motion of an ideal MHD plasma behaviour in a vacuum region under the influence of external magnetic fields. 31 refs

  13. Numerical calculation of axisymmetric non-neutral plasma equilibria

    International Nuclear Information System (INIS)

    Spencer, R.L.; Rasband, S.N.; Vanfleet, R.R.

    1993-01-01

    Efficient techniques for computing axisymmetric non-neutral plasma equilibria are described. These equilibria may be obtained either by requiring global thermal equilibrium, by specifying the midplane radial density profile, or by specifying the radial profile of ∫n dz. Both splines and finite-differences are used, and the accuracy of the two is compared by using a new characterization of the thermal equilibrium density profile which gives a simple formula for estimating the radial and axial gradient scale lengths of thermal equilibria. It is found that for global thermal equilibrium 1% accuracy is achieved with splines if the distance between neighboring splines is about two Debye lengths while finite differences require a grid spacing of about one-half Debye length to achieve the same accuracy

  14. Numerical solutions of ICRF fields in axisymmetric mirrors

    International Nuclear Information System (INIS)

    Phillips, M.W.

    1985-01-01

    The results of a new numerical code called GARFIELD (Grumman Aerospace Rf Field code) that calculates ICRF Fields in axisymmetric mirror geometry (such as the central cell of a tandem mirror or an RF test stand) are presented. The code solves the electromagnetic wave equation using a cold plasma dispersion relation with a small collision frequency to simulate absorption. The purpose of the calculation is to examine how ICRF wave structure and propagation is effected by the axial variation of the magnetic field in a mirror for various antenna designs. In the code the wave equation is solved in flux coordinates using a finite element method. This should allow more complex dielectric tensors to be modeled in the future. The resulting matrix is solved iteratively, to maximize the allowable size of the spatial grid. Results for a typical antenna array in a simple mirror will be shown

  15. The numerical solution of ICRF fields in axisymmetric mirrors

    International Nuclear Information System (INIS)

    Phillips, M.W.; Todd, A.M.M.

    1986-01-01

    The numerics of a numerical code called GARFIELD (Grumman Aerospace RF fIELD code) designed to calculate the three-dimensional structure of ICRF fields in axisymmetric mirrors is presented. The code solves the electromagnetic wave equation for the electric field using a cold plasma dispersion relation with a small collision term to simulate absorption. The full wave solution including E.B is computed. The fields are Fourier analyzed in the poloidal direction and solved on a grid in the axial and radial directions. A two-dimensional equilibrium can be used as the source of equilibrium data. This allows us to extend previous studies of ICRF wave propagation and absorption in mirrors to include the effect of axial variation of the magnetic field and density. (orig.)

  16. Secular instability of axisymmetric rotating stars to gravitational radiation reaction

    International Nuclear Information System (INIS)

    Managan, R.A.

    1985-01-01

    A generalization of the Eulerian variational principle derived by Ipser and Managan, for nonaxisymmetric neutral modes of axisymmetric fluid configurations, is developed. The principle provides a variational basis for calculating the frequencies of nonaxisymmetric normal modes proportional to e/sup i/(sigmat + mphi). A modified form of this principle, valid for sigma near 0, is also developed. The latter principle is used to locate the points where the frequency of a nonaxisymmetric normal mode of an axisymmetric rotating fluid configuration passes through zero. lt is at these points that the configuration becomes secularly unstable to gravitational radiation reaction (GRR). This is demonstrated directly by including the GRR potential and showing that the imaginary part of sigma passes through zero and becomes negative at these points. The imaginary part of the frequency is used to estimate the e-folding time of the mode. This variational principle is applied to sequences of rotating polytropes. The sequences are constructed using four rotation laws at each value of the polytropic index n = 0.5, 1.0, 1.5, 2.0, and 3.0. The values of (T/W)/sub m/, the ratio of the rotational kinetic energy to the magnitude of the gravitational potential energy at the onset of instability, and timescales for the modes with m = 2, 3, and 4 are estimated for each sequence. The value of (T/W) 2 is largely independent of the equation of state and rotation law. For m > 2, (T/W)/sub m/ decreases as the equation of state becomes softer, i.e., as the polytropic index n increases, and increases as the amount of differential rotation increases. The most striking result of this behavior occurs for uniform rotation

  17. Inner cauchy horizon of axisymmetric and stationary black holes with surrounding matter in einstein-maxwell theory.

    Science.gov (United States)

    Ansorg, Marcus; Hennig, Jörg

    2009-06-05

    We study the interior electrovacuum region of axisymmetric and stationary black holes with surrounding matter and find that there exists always a regular inner Cauchy horizon inside the black hole, provided the angular momentum J and charge Q of the black hole do not vanish simultaneously. In particular, we derive an explicit relation for the metric on the Cauchy horizon in terms of that on the event horizon. Moreover, our analysis reveals the remarkable universal relation (8piJ);{2}+(4piQ;{2});{2}=A;{+}A;{-}, where A+ and A- denote the areas of event and Cauchy horizon, respectively.

  18. Experimental investigation about the effect of non-axisymmetric wake impact on a low speed axial compressor

    Science.gov (United States)

    Liu, Jianyong; Lu, Yajun; Li, Zhiping

    2010-05-01

    Non-axisymmetric wake impact experiments were carried out after the best exciting frequency for a low speed axial compressor had been found by axisymmetric wake impact experiments. When the number and circumferential distribution of inlet guide vanes (IGV) are logical the wakes of non-axisymmetric IGVs can exert beneficial unsteady exciting effect on their downstream rotor flow fields and improve the compressor’s performance. In the present paper, four non-axisymmetric wake impact plans were found working better than the axisymmetric wake impact plan. Compared with the base plan, the best non-axisymmetric plan increased the compressor’s peak efficiency, and the total pressure rise by 1.1 and 2%, and enhanced the stall margin by 4.4%. The main reason why non-axisymmetric plans worked better than the axisymmetric plan was explained as the change of the unsteady exciting signal arising from IGV wakes. Besides the high-frequency components, the non-axisymmetric plan generated a beneficial low-frequency square-wave exciting signal and other secondary frequency components. Compared with the axisymmetric plan, multi-frequency exciting wakes arising from the non-axisymmetric plans are easier to get coupling relation with complex vortices such as clearance vortices, passage vortices and shedding vortices.

  19. A time-dependent dusty gas dynamic model of axisymmetric cometary jets

    International Nuclear Information System (INIS)

    Korosmezey, A.; Gombosi, T.I.

    1990-01-01

    The present time-dependent, axisymmetric dusty gas dynamical model of inner cometary atmospheres solves the coupled and time-dependent equations of continuity, momentum, and energy for a gas-dust mixture between the surface of the nucleus and 100 km, using an axisymmetric 40 x 40 grid structure. A novel numerical method employing a second-order accurate Godunov-type scheme with dimensional splitting is used to solve the time-dependent pde system. It is established that a subsolar dust spike not predicted by previous calculations is generated by narrow axisymmetric jets, together with a jet cone whose opening angle depends on the jet length. 28 refs

  20. Axisymmetric thermoviscoelastoplastic state of branched laminar shells, taking account of transverse-shear and torsional deformation

    International Nuclear Information System (INIS)

    Galishin, A.Z.

    1995-01-01

    The nonaxisymmetric thermoelastic stress-strain state (SSS) of branched laminar orthotropic shells was considered; the axisymmetric thermoviscoelastic SSS of branched laminar orthotropic shells was considered; and the axisymmetric thermoviscoelastoplastic SSS of branched laminar isotropic shells was considered, taking into account of the transverse-shear deformation. In the present work, in contrast, the axisymmetric thermoviscoelastoplastic SSS of branched laminar isotropic shells is considered, taking account of transverse-shear and torsional deformation. Layers that are made from orthotropic materials and deform in the elastic region may be present

  1. Job analysis for training design and evaluation

    International Nuclear Information System (INIS)

    Andersson, H.; Baeck, P.; Wirstad, J.

    1979-01-01

    The report describes a job analysis method which has been used for competency requirements and training evaluation purposes on three jobs in a Swedish nuclear power station. The jobs are the shift supervisor, the reactor operator and the turbine operator. The method is based on a system analytical approach. Through a topdown analysis of the power generation system a structure is derived which is used for an inventory of possible operator tasks. The primary source for actual task generation was interviews with operators and with other personnel who are cooperating with the operators. The method suggests alternative sources for the task generation when operator interviews are not feasible, e.g. in systems which are being developed or when operator experiences are lacking. The result of the job analysis is a set of typical tasks for each job. These tasks represent the contents of the job to be considered in the planning of job training and for recruitment requirements. The same job analysis method was used for training design and evaluation in a Finnish nuclear power station. The concluding remarks of this report are made in the light of this study also. This report is based on a research project B15/77 from the Swedish Nuclear Power Inspectorate. (author)

  2. Evaluation and analysis of nuclear resonance data

    International Nuclear Information System (INIS)

    Frohner, F.H.

    2000-01-01

    A probabilistic foundations of data evaluation are reviewed, with special emphasis on parameter estimation based on Bayes' theorem and a quadratic loss function, and on modern methods for the assignment of prior probabilities. The data reduction process leading from raw experimental data to evaluated computer files of nuclear reaction cross sections is outlined, with a discussion of systematic and statistical errors and their propagation and of the generalized least squares formalism including prior information and nonlinear theoretical models. It is explained how common errors induce correlations between data, what consequences they have for uncertainty propagation and sensitivity studies, and how evaluators can construct covariance matrices from the usual error information provided by experimentalists. New techniques for evaluation of inconsistent data are also presented. The general principles are then applied specifically to the analysis and evaluation of neutron resonance data in terms of theoretical models - R-matrix theory (and especially its practically used multi-level Breit-Wigner and Reich-Moore variants) in the resolved region, and resonance-averaged R-matrix theory (Hauser-Feshbach theory with width-fluctuation corrections) in the unresolved region. Complications arise because the measured transmission data, capture and fission yields, self-indication ratios and other observables are not yet the wanted cross sections. These are obtained only by means of parametrisation. The intervening effects - Doppler and resolution broadening, self-shielding, multiple scattering, backgrounds, sample impurities, energy-dependent detector efficiencies, inaccurate reference data etc - are therefore also discussed. (author)

  3. Extending CANTUP code analysis to probabilistic evaluations

    International Nuclear Information System (INIS)

    Florea, S.

    2001-01-01

    The structural analysis with numerical methods based on final element method plays at present a central role in evaluations and predictions of structural systems which require safety and reliable operation in aggressive environmental conditions. This is the case too for the CANDU - 600 fuel channel, where besides the corrosive and thermal aggression upon the Zr97.5Nb2.5 pressure tubes, a lasting irradiation adds which has marked consequences upon the materials properties evolution. This results in an unavoidable spreading in the materials properties in time, affected by high uncertainties. Consequently, the deterministic evaluation with computation codes based on finite element method are supplemented by statistic and probabilistic methods of evaluation of the response of structural components. This paper reports the works on extending the thermo-mechanical evaluation of the fuel channel components in the frame of probabilistic structure mechanics based on statistical methods and developed upon deterministic CANTUP code analyses. CANTUP code was adapted from LAHEY 77 platform onto Microsoft Developer Studio - Fortran Power Station 4.0 platform. To test the statistical evaluation of the creeping behaviour of pressure tube, the value of longitudinal elasticity modulus (Young) was used, as random variable, with a normal distribution around value, as used in deterministic analyses. The influence of the random quantity upon the hog and effective stress developed in the pressure tube for to time values, specific to primary and secondary creep was studied. The results obtained after a five year creep, corresponding to the secondary creep are presented

  4. Evaluation of pavement life cycle cost analysis: Review and analysis

    Directory of Open Access Journals (Sweden)

    Peyman Babashamsi

    2016-07-01

    Full Text Available The cost of road construction consists of design expenses, material extraction, construction equipment, maintenance and rehabilitation strategies, and operations over the entire service life. An economic analysis process known as Life-Cycle Cost Analysis (LCCA is used to evaluate the cost-efficiency of alternatives based on the Net Present Value (NPV concept. It is essential to evaluate the above-mentioned cost aspects in order to obtain optimum pavement life-cycle costs. However, pavement managers are often unable to consider each important element that may be required for performing future maintenance tasks. Over the last few decades, several approaches have been developed by agencies and institutions for pavement Life-Cycle Cost Analysis (LCCA. While the transportation community has increasingly been utilising LCCA as an essential practice, several organisations have even designed computer programs for their LCCA approaches in order to assist with the analysis. Current LCCA methods are analysed and LCCA software is introduced in this article. Subsequently, a list of economic indicators is provided along with their substantial components. Collecting previous literature will help highlight and study the weakest aspects so as to mitigate the shortcomings of existing LCCA methods and processes. LCCA research will become more robust if improvements are made, facilitating private industries and government agencies to accomplish their economic aims. Keywords: Life-Cycle Cost Analysis (LCCA, Pavement management, LCCA software, Net Present Value (NPV

  5. Regulatory analysis technical evaluation handbook. Final report

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of this Handbook is to provide guidance to the regulatory analyst to promote preparation of quality regulatory analysis documents and to implement the policies of the Regulatory Analysis Guidelines of the US Nuclear Regulatory Commission (NUREG/BR-0058 Rev. 2). This Handbook expands upon policy concepts included in the NRC Guidelines and translates the six steps in preparing regulatory analyses into implementable methodologies for the analyst. It provides standardized methods of preparation and presentation of regulatory analyses, with the inclusion of input that will satisfy all backfit requirements and requirements of NRC's Committee to Review Generic Requirements. Information on the objectives of the safety goal evaluation process and potential data sources for preparing a safety goal evaluation is also included. Consistent application of the methods provided here will result in more directly comparable analyses, thus aiding decision-makers in evaluating and comparing various regulatory actions. The handbook is being issued in loose-leaf format to facilitate revisions. NRC intends to periodically revise the handbook as new and improved guidance, data, and methods become available

  6. Enforcement of evaluation by achievement analysis system

    International Nuclear Information System (INIS)

    Konishi, Yasutoshi; Sonoyama, Minoru; Suzuki, Atsushi

    2004-02-01

    Japan Nuclear Cycle Development Institute (JNC) has developed FBR achievement analysis system by the last fiscal year and has enforced the investigation of its functional expansion. That system is based on the AHP (Analytic Hierarchy Process) to do comparative evaluation multilaterally between proposed concepts of FBR cycle or between FBR cycle and other power source systems. This fiscal year, we enforced achievement analysis for 22 cases of proposed concepts of FBR cycle and between FBR cycle and other power source systems (LWR, thermal power generation, hydraulic power generation, etc.). The evaluation items related with technical feasibility and social acceptability were included in addition to those of economy, resource utilization effectiveness, environmental burden reduction, nuclear proliferation resistance and safety. Also, we investigated social changes that could happen in our country in the future, and we drew 4 future scenarios combining likely changes, then we investigated classifications of weight that seem to be adequate under each scenario with its calculation logic. In establishing points of view or structure of evaluation, and in the process of drawing scenarios, we collected comments from experts in OR (Operations Research) field and energy field. (author)

  7. Quantify Plasma Response to Non-Axisymmetric (3D) Magnetic Fields in Tokamaks, Final Report for FES (Fusion Energy Sciences) FY2014 Joint Research Target

    International Nuclear Information System (INIS)

    Strait, E. J.; Park, J. K.; Marmar, E. S.; Ahn, J. W.; Berkery, J. W.; Burrell, K. H.; Canik, J. M.; Delgado-Aparicio, L.; Ferraro, N. M.; Garofalo, A. M.; Gates, D. A.; Greenwald, M.; Kim, K.; King, J. D.; Lanctot, M. J.; Lazerson, S. A.; Liu, Y. Q.; Lore, J. D.; Menard, J. E.; Nazikian, R.; Shafer, M. W.; Paz-Soldan, C.; Reiman, A. H.; Rice, J. E.; Sabbagh, S. A.; Sugiyama, L.; Turnbull, A. D.; Volpe, F.; Wang, Z. R.; Wolfe, S. M.

    2014-01-01

    The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10 -4 of the main axisymmetric field, such ''3D'' fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data

  8. Quantify Plasma Response to Non-Axisymmetric (3D) Magnetic Fields in Tokamaks, Final Report for FES (Fusion Energy Sciences) FY2014 Joint Research Target

    Energy Technology Data Exchange (ETDEWEB)

    Strait, E. J. [General Atomics, San Diego, CA (United States); Park, J. -K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Marmar, E. S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ahn, J. -W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Berkery, J. W. [Columbia Univ., New York, NY (United States); Burrell, K. H. [General Atomics, San Diego, CA (United States); Canik, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delgado-Aparicio, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ferraro, N. M. [General Atomics, San Diego, CA (United States); Garofalo, A. M. [General Atomics, San Diego, CA (United States); Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Greenwald, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kim, K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); King, J. D. [General Atomics, San Diego, CA (United States); Lanctot, M. J. [General Atomics, San Diego, CA (United States); Lazerson, S. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Liu, Y. Q. [Culham Science Centre, Abingdon (United Kingdom). Euratom/CCFE Association; Logan, N. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lore, J. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menard, J. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Nazikian, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Shafer, M. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Paz-Soldan, C. [General Atomics, San Diego, CA (United States); Reiman, A. H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Rice, J. E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Sabbagh, S. A. [Columbia Univ., New York, NY (United States); Sugiyama, L. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Turnbull, A. D. [General Atomics, San Diego, CA (United States); Volpe, F. [Columbia Univ., New York, NY (United States); Wang, Z. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wolfe, S. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-09-30

    The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10-4 of the main axisymmetric field, such “3D” fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data, in

  9. Characteristics of premixed flames stabilized in an axisymmetric curved-wall jet burner with tip modification

    KAUST Repository

    Kim, Daejoong; Gil, Y. S.; Chung, TaeWon; Chung, Suk-Ho

    2009-01-01

    The stabilization characteristics of premixed flames in an axisymmetric curved-wall jet burner have been experimentally investigated. This burner utilized the Coanda effect on top of a burner tip. The initially spherical burner tip was modified to a

  10. Integration of Transients in Axisymmetrical Cavities for Accelerators: Formulation and applications to BNL Photocathode Gun

    International Nuclear Information System (INIS)

    Parsa, Z.; Serafini, L.

    1992-04-01

    This note provides a sketch of the formalism used for the Integration of Transients in Axisymmetrical Cavities for Accelerators, (ITACA). Application to study the BNL Photocathode Gun via the code ITACA is also included

  11. Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1991-01-01

    The unsteady, compressible Navier-Stokes equations are used to compute and analyze compressible quasi-axisymmetric isolated vortices. The Navier-Stokes equations are solved using an implicit, upwind, flux-difference splitting finite-volume scheme. The developed three-dimensional solver has been verified by comparing its solution profiles with those of a slender, quasi-axisymmetric vortex solver for a subsonic, isolated quasi-axisymmetric vortex in an unbounded domain. The Navier-Stokes solver is then used to solve for a supersonic quasi-axisymmetric vortex flow in a configured circular duct. Steady and unsteady vortex-shock interactions and breakdown have been captured. The problem has also been calculated using the Euler solver of the same code and the results are compared with those of the Navier-Stokes solver. The effect of the initial swirl has been tentatively studied.

  12. Computation of compressible quasi-axisymmetric slender vortex flow and breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.

    1991-01-01

    The unsteady, compressible Navier-Stokes equations are used to compute and analyze compressible quasi-axisymmetric isolated vortices. The Navier-Stokes equations are solved using an implicit, upwind, flux difference splitting finite volume scheme. The developed three dimensional solver was verified by comparing its solution profiles with those of a slender, quasi-axisymmetric vortex solver for a subsonic, quasi-axisymmetric vortex in an unbounded domain. The Navier-Stokes solver is then used to solve for a supersonic, quasi-axisymmetric vortex flow in a configured circular duct. Steady and unsteady vortex-shock interactions and breakdown were captured. The problem was also calculated using the Euler solver of the same code; the results were compared with those of the Navier-Stokes solver. The effect of the initial swirl was investigated.

  13. The study of non-axisymmetric control coil applications in NSTX-U

    Science.gov (United States)

    Park, J.-K.; Menard, J. E.; Kim, K.; Gerhardt, S. P.; Maingi, R.; Bialek, J. M.; Sabbagh, S. A.; Berkery, J. W.; Boozer, A. H.; Canik, J. M.; Evans, T. E.

    2013-10-01

    As expanded 3D field capability is essential to meet NSTX-U programmatic goals and support ITER, non-axisymmetric control coil (NCC) configurations have been proposed and studied to assess potential physics applications. IPEC-NTV, POCA, and TRIP-3D code analysis show that NCC can provide a range of non-resonant error field control while minimizing resonant error field, and enhance NTV variability to better control rotation and shear, and also largely vary stochastic layers in the edge while maintaining similar plasma response characteristics. VALEN-3D analysis shows that RWM control performance increases with NCC and indicates even the possibility of operation near the ideal-wall limit. In addition, 3D analysis using stellarator codes such as COBRA indicates that NCC can directly broaden ballooning unstable region across radius and thus can be used to improve ELM pacing in NSTX-U. Relevant figures-of-merit are defined and used to quantify these NCC physics capabilities, as will be presented with future analysis plans. This work was supported by DOE Contract DE-AC02-09CH11466.

  14. Evaluation and Policy Analysis: A Communicative Framework

    Directory of Open Access Journals (Sweden)

    Cynthia Wallat

    1997-07-01

    Full Text Available A major challenge for the next generation of students of human development is to help shape the paradigms by which we analyze and evaluate public policies for children and families. Advocates of building research and policy connections point to health care and stress experiences across home, school, and community as critical policy issues that expand the scope of contexts and outcomes studied. At a minimum, development researchers and practitioners will need to be well versed in available methods of inquiry; they will need to be "methodologically multilingual" when conducting evaluation and policy analysis, producing reports, and reporting their interpretations to consumer and policy audiences. This article suggests how traditional approaches to policy inquiry can be reconsidered in light of these research inquiry and communicative skills needed by all policy researchers. A fifteen year review of both policy and discourse processes research is presented to suggest ways to conduct policy studies within a communicative framework.

  15. Effect of compressibility on the global stability of axisymmetric wake flows

    OpenAIRE

    Meliga , Philippe; Sipp , D.; Chomaz , Jean-Marc

    2010-01-01

    International audience; We study the linear dynamics of global eigenmodes in compressible axisymmetric wake flows, up to the high subsonic regime. We consider both an afterbody flow at zero angle of attack and a sphere, and find that the sequence of bifurcations destabilizing the axisymmetric steady flow is independent of the Mach number and reminiscent of that documented in the incompressible wake past a sphere and a disk (Natarajan & Acrivos, J. Fluid Mech., vol. 254, 1993, p. 323), hence s...

  16. Gaps, Rings, and Non-Axisymmetric Structures in Protoplanetary Disks - From Simulations to ALMA Observations

    OpenAIRE

    Flock, M.; Ruge, J. P.; Dzyurkevich, N.; Henning, Th.; Klahr, H.; Wolf, S.

    2014-01-01

    International audience; Aims. Recent observations by the Atacama Large Millimeter/submillimeter Array (ALMA) of disks around young stars revealed distinct asymmetries in the dust continuum emission. In this work we wish to study axisymmetric and non-axisymmetric structures that are generated by the magneto-rotational instability in the outer regions of protoplanetary disks. We combine the results of state-of-the-art numerical simulations with post-processing radiative transfer (RT) to generat...

  17. A noise-resistant ADSA-PH algorithm for superhydrophobic surface’s static contact angle evaluation

    OpenAIRE

    Z. N. Xu

    2017-01-01

    The blur around the contact points significantly decreases the evaluated static contact angle for superhydrophobic surface which is clearly presented in the paper. To improve the accuracy in the evaluated static contact angle for superhydrophobic surface, an accurate static contact angle algorithm, namely ADSA-PH (axisymmetric drop shape analysis-profile and height), is proposed. It discards the extracted drop edge points close to the contact points and makes use of the residual points and th...

  18. First integrals of the axisymmetric shape equation of lipid membranes

    Science.gov (United States)

    Zhang, Yi-Heng; McDargh, Zachary; Tu, Zhan-Chun

    2018-03-01

    The shape equation of lipid membranes is a fourth-order partial differential equation. Under the axisymmetric condition, this equation was transformed into a second-order ordinary differential equation (ODE) by Zheng and Liu (Phys. Rev. E 48 2856 (1993)). Here we try to further reduce this second-order ODE to a first-order ODE. First, we invert the usual process of variational calculus, that is, we construct a Lagrangian for which the ODE is the corresponding Euler–Lagrange equation. Then, we seek symmetries of this Lagrangian according to the Noether theorem. Under a certain restriction on Lie groups of the shape equation, we find that the first integral only exists when the shape equation is identical to the Willmore equation, in which case the symmetry leading to the first integral is scale invariance. We also obtain the mechanical interpretation of the first integral by using the membrane stress tensor. Project supported by the National Natural Science Foundation of China (Grant No. 11274046) and the National Science Foundation of the United States (Grant No. 1515007).

  19. Thin circular cylinder under axisymmetrical thermal and mechanical loading

    International Nuclear Information System (INIS)

    Arnaudeau, F.; Zarka, J.; Gerij, J.

    1977-01-01

    A special purpose computer code (Ratch) was developed to analyse a thin circular cylinder subjected to axisymmetrical mechanical and thermal loadings. The Mendelson's approach of this problem is followed. Classical Kirchoff-Love hypothesis of thin shells is used and a state of plane stress is assumed. Space integrations are performed by Gaussian quadrature in the axial direction and by Simpson's one third rule throughout the thickness. Thermoelastic-plastic constitutive equations are solved with an implicit scheme (Nguyen). Thermovisco-plastic constitutive equations are solved with an explicit time integration scheme (Treanor's algorithm especially fitted). A Bree type diagram is obtained for an axial step of temperature which varies cyclically and a sustained constant axial load. The material behavior is assumed perfectly plastic and creep effect is not considered. Results show that the domain where ratchetting occurs is reduced when compared with the domain predicted by the Bree diagram. To investigate the effect of material hardening the authors verify Halphen's Theorem which states that a structure made of material with kinematic hardening behavior and constant properties with temperature will always shake down to a periodic behavior. (Auth.)

  20. Plasma equilibria and stationary flows in axisymmetric systems. Pt. 3

    International Nuclear Information System (INIS)

    Zelazny, R.; Stankiewicz, R.; Galkowski, A.; Potempski, S.; Pietak, R.

    1990-08-01

    The problem of the importance of poloidal flows for the behaviour of plasmas in axisymmetric systems has caused a lot of discussion and controversy during the last 15 years. There is no doubt that the mere existence of poloidal flow transforms the elliptic Grad-Shafranov-Schlueter equation into a system of mixed type partial differential equation and an algebraic multivalued Bernoulli equation. This fact leads to the appearance of Bernoulli branches in the solutions. Then, one can come across three branches of elliptic solutions as well as two branches of hyperbolic solutions with the possible appearance of phenomena connected with ''transsonic'' effects. Problems connected with such a mathematical situation have been extensively discussed in the report with the same title, dated May 1988, which we shall call later Part I of our studies on this subject. The present report, considered as Part III, is devoted to the presentation of results of efforts aimed at constructing programmes which allow us to solve the extended Grad-Shafranov-Schlueter equation (EGSS) (with stationary flows) in a more realistic situation relevant to the JET operating conditions. The main problem is to specify for a wider class of profiles the boundary conditions at the magnetic axis for a system of nonlinear ordinary differential equations ODE, resulting from EGSS equation after application of Fourier transformation techniques and of inverse method approach. The present report elaborates a much more general case and describes the computational framework enabling us to derive those boundary conditions. (author)

  1. Linear theory of the tearing instability in axisymmetric toroidal devices

    International Nuclear Information System (INIS)

    Rogister, A.; Singh, R.

    1988-08-01

    We derive a very general kinetic equation describing the linear evolution of low m/l modes in axisymmetric toroidal plasmas with arbitrary cross sections. Included are: Ion sound, inertia, diamagnetic drifts, finite poloidal beta, and finite ion Larmor radius effects. Assuming the magnetic surfaces to form a set of nested tori with circular cross sections of shifted centers, and introducing adequate simplifications justified by our knowledge of experimental tokamak plasmas, we then obtain explicitely the sets of equations describing the coupling of the quasimodes 0/1, 1/1, 2/1, and, for m≥2, m/1, (m+1)/1. By keeping finite aspect ratio effects into account when calculating the jump of the derivative of the eigenfunction, it is shown that the theory can explain the rapid evolution, within one sawtooth period, of the growth rate of the sawteeth precursors from resistive values to magnetohydrodynamic ones. The characteristics thus theoretically required from current profiles in sawtoothing discharges have clearly been observed. Other aspects of the full theory could be relevant to the phenomenon of major disruptions. (orig.)

  2. The Poisson equation in axisymmetric domains with conical points

    International Nuclear Information System (INIS)

    Nkemzi, B.

    2003-01-01

    This paper analyzes the application of the Fourier-finite-element method (FFEM) for the resolution of the Derichlet problem for the Poisson equation -Δu-circumflex = f-circumflex in axisymmetric domains Ω-circumflex subset of R 3 with conical points on the rotation axis. The FFEM combines the approximate Fourier method with respect to one space direction with the finite element method for the approximate calculation of the Fourier coefficients of the solution. Here, the influence of the conical points on the regularity of the Fourier coefficients of the solution is analyzed and the asymptotic behaviour of the coefficients near the conical points is described by some singularity functions and treated numerically by mesh grading in the two-dimensional meridian of Ω-circumflex. It is proved that for f-circumflex in L 2 (Ω-circumflex), the rate of convergence of the combined approximations in the Sobolev space W 2 1 (Ω-circumflex) is of the order O(h + N -1 ), where h and N represent, respectively, the parameters of the finite-element- and the Fourier-approximation, with h → 0 and n → ∞. (author)

  3. Propagation of a hybrid inferior wave in axisymmetrical plasma

    International Nuclear Information System (INIS)

    Fivaz, M.; Appert, K.; Krlin, L.

    1990-05-01

    The linear propagation of hybrid inferior waves in an axisymmetrical plasma (magnetohydrodynamic equilibrium of the Soloviev type) has been numerically simulated. The evolution of k // (component of the wave vector k parallel to the magnetic field B), important for current drive modelling, has been studied as a function of the geometric parameters of the equilibrium: aspect ratio, ellipticity and triangularity. The results show that k // depends abruptly on the parameters; the engendered structures are very rich. Two mechanisms by which k // increases have been shown: the 'resonance' occurring in small bands of the space of the parameters and which is associated with trajectories in (R,Z) near stabilization; a stochastic evolution resembling diffusion in equlibriums of very high triangularity. However, a strong increase of k // of a part of the waves, susceptible of engendering a current in the plasma, has only been observed in a minority of cases. In literature current drive experiments have been reported which work and whose parameters are a priori such that our model cannot be expected to show the desired growth of k // . Consequently, our model, which is similar to normally used models, does not explain the current drive. 5 refs., 16 figs

  4. Characterization of axisymmetric disruption dynamics toward VDE avoidance in tokamaks

    International Nuclear Information System (INIS)

    Nakamura, Y.

    2002-01-01

    Disruption experiments on Alcator C-Mod and ASDEX-Upgrade tokamaks and axisymmetric MHD simulations using the TSC have explicated the underlying mechanisms of Vertical Displacement Events (VDEs) and a diversity of disruption dynamics. First, the neutral point, which is known as an initial vertical plasma position advantageous to VDE avoidance, is shown to be fairly insensitive to plasma shape and current profile parameters, while the VDE rate significantly depends on those parameters. Secondly, it is clarified that a rapid flattening of the plasma current profile frequently seen at the thermal quench drags a single null-diverted, up-down asymmetric plasma vertically toward divertor, whereas the dragging effect is absent in up-down symmetric limiter discharges. As a consequence, the occurrence of downward-going VDEs predominates over the upward-going ones in bottom-diverted discharges, being consistent with experiments in ASDEX-Upgrade. Together with the attractive force that arises from passive shell currents induced by the current quench and vanishes at the neutral point, the dragging effect explains many details of the VDE dynamics over the whole period of disruptive termination. (author)

  5. Characterization of axisymmetric disruption dynamics toward VDE avoidance in tokamaks

    International Nuclear Information System (INIS)

    Nakamura, Y.; Yoshino, R.; Granetz, R.S.; Pautasso, G.; Gruber, O.; Jardin, S.C.

    2003-01-01

    Experiments and axisymmetric MHD simulations on tokamak disruptions have explicated the underlying mechanisms of Vertical Displacement Events (VDEs) and a diversity of disruption dynamics. First, the neutral point, which is known as an advantageous vertical plasma position to avoiding VDEs during the plasma current quench, is shown to be fairly insensitive to plasma shape and current profile parameters. Secondly, a rapid flattening of the plasma current profile frequently seen at thermal quench is newly clarified to play a substantial role in dragging a single null-diverted plasma vertically towards the divertor. As a consequence, the occurrence of downward-going VDEs predominates over the upward-going ones in bottom diverted discharges. This dragging effect is absent in up-down symmetric limiter discharges. These simulation results are consistent with experiments. Together with the attractive force that arises from passive shell currents and essentially vanishes at the neutral point, the dragging effect explains many details of the VDE dynamics over the whole period of the disruptive termination. (author)

  6. Calculation of transport coefficients in an axisymmetric plasma

    International Nuclear Information System (INIS)

    Shumaker, D.E.

    1976-01-01

    A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount. For example, a deuterium plasma with 1.3 percent oxygen, one of the particle transport coefficients is increased by a factor of about four. The transport coefficients for the toroidal magnetic flux are reduced by about 20 percent. The increase in the particle transport coefficient is due to the collisional scattering of the deuterons by the heavy oxygen ions which is larger than the deuteron electron scattering, the normal process for particle transport in a two species plasma. The reduction in the toroidal magnetic flux transport coefficients are left unexplained

  7. Axisymmetric toroidal equilibrium with flow and anisotropic pressure

    International Nuclear Information System (INIS)

    Iacono, R.; Bondeson, A.; Troyon, F.; Gruber, R.

    1989-10-01

    Axisymmetric toroidal plasma equilibria with mass flows and anisotropic pressure are investigated. The equilibrium system is derived for a general functional form of the pressures, which includes both fluid models, such as the magnetohydrodynamic (MHD) and the double-adiabatic models, and Grad's guiding centre model. This allows for detailed comparisons between the models and clarifies how the 'first hyperbolic region', occurring in the fluid theory when the poloidal flow is of the order of the poloidal sound speed, can be eliminated in guiding centre theory. In the case of a pure toroidal rotation, macroscopic equations of state are derived from the guiding centre model, characterized by a parallel temperature that is constant on each magnetic surface and a perpendicular temperature that varies with the magnetic field. The outward centrifugal shifts of the magnetic axis and of the mass density profile, due to toroidal rotation, are increased by anisotropy. The guiding centre model shows that poloidal flow produces an inward shift of the density profile, in contrast with the MHD result. (author) 1 fig., 1 tab., 17 refs

  8. Plasma equilibria and stationary flows in axisymmetric systems. Pt. 1

    International Nuclear Information System (INIS)

    Zelazny, R.; Stankiewicz, R.; Potempski, S.

    1988-05-01

    During discharges within a tokamak device such as JET fluctuations are observed in the plasma, of plasma density, temperature, electric potential and of the magnetic field. These fluctuations have complicated structure and are linked with different kinds of instabilities. However, it is not clear which instabilities are most important in determining the behaviour of the plasma. A comprehensive numerical theory which can predict the effect of the instabilities on the transport of plasma in axisymmetric systems has been sought using the static Grad-Shafranov-Schlueter (SGSS) equation as a basis. However, the static equation was over simplified for the situation in JET with additional heating giving rise to large toroidal flows, and an extended equation (EGSS) was developed. The results of the study include the discovery of algebraic branches of solutions to the EGSS equation even for very small poloidal flows, solutions to the inverse problem for the SGSS and EGSS equations using Fourier decomposition, classification of the boundary condition at the magnetic axis, demonstration of a visible effect of the poloidal flow on the separation of the density surface and the magnetic surface an indication of the existence of multiple branches of solutions to the EGSS and SGSS equations and their relation to stability properties. (U.K.)

  9. Wave scattering by an axisymmetric ice floe of varying thickness

    Science.gov (United States)

    Bennetts, Luke G.; Biggs, Nicholas R. T.; Porter, David

    2009-04-01

    The problem of water wave scattering by a circular ice floe, floating in fluid of finite depth, is formulated and solved numerically. Unlike previous investigations of such situations, here we allow the thickness of the floe (and the fluid depth) to vary axisymmetrically and also incorporate a realistic non-zero draught. A numerical approximation to the solution of this problem is obtained to an arbitrary degree of accuracy by combining a Rayleigh-Ritz approximation of the vertical motion with an appropriate variational principle. This numerical solution procedure builds upon the work of Bennets et al. (2007, J. Fluid Mech., 579, 413-443). As part of the numerical formulation, we utilize a Fourier cosine expansion of the azimuthal motion, resulting in a system of ordinary differential equations to solve in the radial coordinate for each azimuthal mode. The displayed results concentrate on the response of the floe rather than the scattered wave field and show that the effects of introducing the new features of varying floe thickness and a realistic draught are significant.

  10. Finite Volume Element (FVE) discretization and multilevel solution of the axisymmetric heat equation

    Science.gov (United States)

    Litaker, Eric T.

    1994-12-01

    The axisymmetric heat equation, resulting from a point-source of heat applied to a metal block, is solved numerically; both iterative and multilevel solutions are computed in order to compare the two processes. The continuum problem is discretized in two stages: finite differences are used to discretize the time derivatives, resulting is a fully implicit backward time-stepping scheme, and the Finite Volume Element (FVE) method is used to discretize the spatial derivatives. The application of the FVE method to a problem in cylindrical coordinates is new, and results in stencils which are analyzed extensively. Several iteration schemes are considered, including both Jacobi and Gauss-Seidel; a thorough analysis of these schemes is done, using both the spectral radii of the iteration matrices and local mode analysis. Using this discretization, a Gauss-Seidel relaxation scheme is used to solve the heat equation iteratively. A multilevel solution process is then constructed, including the development of intergrid transfer and coarse grid operators. Local mode analysis is performed on the components of the amplification matrix, resulting in the two-level convergence factors for various combinations of the operators. A multilevel solution process is implemented by using multigrid V-cycles; the iterative and multilevel results are compared and discussed in detail. The computational savings resulting from the multilevel process are then discussed.

  11. Verification and Validation of a Coordinate Transformation Method in Axisymmetric Transient Magnetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ashcraft, C. Chace [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Niederhaus, John Henry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, Allen C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-29

    We present a verification and validation analysis of a coordinate-transformation-based numerical solution method for the two-dimensional axisymmetric magnetic diffusion equation, implemented in the finite-element simulation code ALEGRA. The transformation, suggested by Melissen and Simkin, yields an equation set perfectly suited for linear finite elements and for problems with large jumps in material conductivity near the axis. The verification analysis examines transient magnetic diffusion in a rod or wire in a very low conductivity background by first deriving an approximate analytic solution using perturbation theory. This approach for generating a reference solution is shown to be not fully satisfactory. A specialized approach for manufacturing an exact solution is then used to demonstrate second-order convergence under spatial refinement and tem- poral refinement. For this new implementation, a significant improvement relative to previously available formulations is observed. Benefits in accuracy for computed current density and Joule heating are also demonstrated. The validation analysis examines the circuit-driven explosion of a copper wire using resistive magnetohydrodynamics modeling, in comparison to experimental tests. The new implementation matches the accuracy of the existing formulation, with both formulations capturing the experimental burst time and action to within approximately 2%.

  12. Axisymmetric alternating direction explicit scheme for efficient coupled simulation of hydro-mechanical interaction in geotechnical engineering—Application to circular footing and deep tunnel in saturated ground

    Directory of Open Access Journals (Sweden)

    Simon Heru Prassetyo

    2018-04-01

    Full Text Available Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical (H-M interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit (ADE scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in non-uniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourth-order finite difference (FD approximation to the spatial derivatives of the axisymmetric fluid–diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps, giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua (FLAC. This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%–50% that of FLAC's basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%

  13. Finite difference methods for reducing numerical diffusion in TEACH-type calculations. [Teaching Elliptic Axisymmetric Characteristics Heuristically

    Science.gov (United States)

    Syed, S. A.; Chiappetta, L. M.

    1985-01-01

    A methodological evaluation for two-finite differencing schemes for computer-aided gas turbine design is presented. The two computational schemes include; a Bounded Skewed Finite Differencing Scheme (BSUDS); and a Quadratic Upwind Differencing Scheme (QSDS). In the evaluation, the derivations of the schemes were incorporated into two-dimensional and three-dimensional versions of the Teaching Axisymmetric Characteristics Heuristically (TEACH) computer code. Assessments were made according to performance criteria for the solution of problems of turbulent, laminar, and coannular turbulent flow. The specific performance criteria used in the evaluation were simplicity, accuracy, and computational economy. It is found that the BSUDS scheme performed better with respect to the criteria than the QUDS. Some of the reasons for the more successful performance BSUDS are discussed.

  14. SIMS analysis: Development and evaluation program summary

    International Nuclear Information System (INIS)

    Groenewold, G.S.; Appelhans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1996-11-01

    This report provides an overview of the ''SIMS Analysis: Development and Evaluation Program'', which was executed at the Idaho National Engineering Laboratory from mid-FY-92 to the end of FY-96. It should be noted that prior to FY-1994 the name of the program was ''In-Situ SIMS Analysis''. This report will not go into exhaustive detail regarding program accomplishments, because this information is contained in annual reports which are referenced herein. In summary, the program resulted in the design and construction of an ion trap secondary ion mass spectrometer (IT-SIMS), which is capable of the rapid analysis of environmental samples for adsorbed surface contaminants. This instrument achieves efficient secondary ion desorption by use of a molecular, massive ReO 4 - primary ion particle. The instrument manages surface charge buildup using a self-discharging principle, which is compatible with the pulsed nature of the ion trap. The instrument can achieve high selectivity and sensitivity using its selective ion storage and MS/MS capability. The instrument was used for detection of tri-n-butyl phosphate, salt cake (tank cake) characterization, and toxic metal speciation studies (specifically mercury). Technology transfer was also an important component of this program. The approach that was taken toward technology transfer was that of component transfer. This resulted in transfer of data acquisition and instrument control software in FY-94, and ongoing efforts to transfer primary ion gun and detector technology to other manufacturers

  15. Decay power evaluation for licensing analysis

    International Nuclear Information System (INIS)

    Tran, H.; Schrock, V.E.

    1987-01-01

    The ANSI/ANS 5.1-1979 Standard on Decay Power in shutdown reactors has been available as the basis for accident analysis for the past 7 yr. The US Nuclear Regulatory Commission has made a commitment to use this standard in new licensing approaches and has approved a licensing model for boiling water. More sweeping changes in the licensing rules are currently under review that will involve the use of best-estimate models and a statistical evaluation of the uncertainty (95% confidence level) in the key results. The structure of the decay power standard is well suited for such applications because it provides a statistically meaningful uncertainty in the decay power from fission products. The normalized decay power is a function specific to each point in the reactor volume due to the fact that the fuel composition develops a spatial dependence as burnup proceeds and decay power depends on the mix of fissioning nuclides. For reactor safety calculations it is desirable to employ a single temporal decay power function for the whole core inasmuch as many variations of accident parameters are required. This is the usual approach in large system thermal-hydraulics codes. Such a single representative or generic curve for a specified total operating power history can be acceptable but at the expense of some increase in the uncertainty. In this paper, the author present a method of evaluating the additional uncertainty in the decay power associated with use of a generic curve

  16. Computer Aided Process Planning for Non-Axisymmetric Deep Drawing Products

    Science.gov (United States)

    Park, Dong Hwan; Yarlagadda, Prasad K. D. V.

    2004-06-01

    In general, deep drawing products have various cross-section shapes such as cylindrical, rectangular and non-axisymmetric shapes. The application of the surface area calculation to non-axisymmetric deep drawing process has not been published yet. In this research, a surface area calculation for non-axisymmetric deep drawing products with elliptical shape was constructed for a design of blank shape of deep drawing products by using an AutoLISP function of AutoCAD software. A computer-aided process planning (CAPP) system for rotationally symmetric deep drawing products has been developed. However, the application of the system to non-axisymmetric components has not been reported yet. Thus, the CAPP system for non-axisymmetric deep drawing products with elliptical shape was constructed by using process sequence design. The system developed in this work consists of four modules. The first is recognition of shape module to recognize non-axisymmetric products. The second is a three-dimensional (3-D) modeling module to calculate the surface area for non-axisymmetric products. The third is a blank design module to create an oval-shaped blank with the identical surface area. The forth is a process planning module based on the production rules that play the best important role in an expert system for manufacturing. The production rules are generated and upgraded by interviewing field engineers. Especially, the drawing coefficient, the punch and die radii for elliptical shape products are considered as main design parameters. The suitability of this system was verified by applying to a real deep drawing product. This CAPP system constructed would be very useful to reduce lead-time for manufacturing and improve an accuracy of products.

  17. Kinetic extensions of magnetohydrodynamic models for axisymmetric toroidal plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1989-04-01

    A nonvariational kinetic-MHD stability code (NOVA-K) has been developed to integrate a set of non-Hermitian integro-differential eigenmode equations due to energetic particles for axisymmetric toroidal plasmas in a general flux coordinate system with an arbitrary Jacobian. The NOVA-K code employs the Galerkin method involving Fourier expansions in the generalized poloidal angle θ and generalized toroidal angle /zeta/ directions, and cubic-B spline finite elements in the radial /Psi/ direction. Extensive comparisons with the existing variational ideal MHD codes show that the ideal MHD version of the NOVA-K code converges faster and gives more accurate results. The NOVA-K code is employed to study the effects of energetic particles on MHD-type modes: the stabilization of ideal MHD internal kink modes and the excitation of ''fishbone'' internal kink modes; and the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are also presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n = 1 internal kink mode in the hot particle beta space exists even in the absence of the core ion finite Larmor radius effect. On the other hand, the trapped alpha particles are found to have negligible effects on the stability of the n = 1 internal kink mode, but the circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 60 refs., 24 figs., 1 tab

  18. Reynolds number and geometry effects in laminar axisymmetric isothermal counterflows

    KAUST Repository

    Scribano, Gianfranco

    2016-12-29

    The counterflow configuration is a canonical stagnation flow, featuring two opposed impinging round jets and a mixing layer across the stagnation plane. Although counterflows are used extensively in the study of reactive mixtures and other applications where mixing of two streams is required, quantitative data on the scaling properties of the flow field are lacking. The aim of this work is to characterize the velocity and mixing fields in isothermal counterflows over a wide range of conditions. The study features both experimental data from particle image velocimetry and results from detailed axisymmetric simulations. The scaling laws for the nondimensional velocity and mixture fraction are obtained as a function of an appropriate Reynolds number and the ratio of the separation distance of the nozzles to their diameter. In the range of flow configurations investigated, the nondimensional fields are found to depend primarily on the separation ratio and, to a lesser extent, the Reynolds number. The marked dependence of the velocity field with respect to the separation ratio is linked to a high pressure region at the stagnation point. On the other hand, Reynolds number effects highlight the role played by the wall boundary layer on the interior of the nozzles, which becomes less important as the separation ratio decreases. The normalized strain rate and scalar dissipation rate at the stagnation plane are found to attain limiting values only for high values of the Reynolds number. These asymptotic values depend markedly on the separation ratio and differ significantly from the values produced by analytical models. The scaling of the mixing field does not show a limiting behavior as the separation ratio decreases to the smallest practical value considered.

  19. Axisymmetric Numerical Modeling of Pulse Detonation Rocket Engines

    Science.gov (United States)

    Morris, Christopher I.

    2005-01-01

    Pulse detonation rocket engines (PDREs) have generated research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred considerable interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models. In recent work by the author, a quasi-one-dimensional, finite rate chemistry CFD model was utilized to study the gasdynamics and performance characteristics of PDREs over a range of blowdown pressure ratios from 1-1000. Models of this type are computationally inexpensive, and enable first-order parametric studies of the effect of several nozzle and extension geometries on PDRE performance over a wide range of conditions. However, the quasi-one-dimensional approach is limited in that it cannot properly capture the multidimensional blast wave and flow expansion downstream of the PDRE, nor can it resolve nozzle flow separation if present. Moreover, the previous work was limited to single-pulse calculations. In this paper, an axisymmetric finite rate chemistry model is described and utilized to study these issues in greater detail. Example Mach number contour plots showing the multidimensional blast wave and nozzle exhaust plume are shown. The performance results are compared with the quasi-one-dimensional results from the previous paper. Both Euler and Navier-Stokes solutions are calculated in order to determine the effect of viscous

  20. Disability Evaluation Systems Analysis and Research Annual Report 2015

    Science.gov (United States)

    2016-03-21

    Army and Air Force had higher percentages of reserve component disability evaluations, likely due to the inclusion of National Guard service members...Annual Report 2015 Disability Evaluation Systems Analysis and Research Prepared by Accession Medical Standards Analysis and Research Activity...Preventive Medicine Branch Walter Reed Army Institute of Research Silver Spring, Maryland Disability Evaluation Systems Analysis and Research

  1. Disability Evaluation System Analysis and Research Annual Report 2015

    Science.gov (United States)

    2016-03-11

    Inclusion of laboratory and diagnostic information on the medical condition or injury that precipitated the disability evaluation in each service’s...Annual Report 2015 Disability Evaluation Systems Analysis and Research Prepared by Accession Medical Standards Analysis and Research Activity...Preventive Medicine Branch Walter Reed Army Institute of Research Silver Spring, Maryland Disability Evaluation Systems Analysis and Research

  2. 5-D simulation study of suprathermal electron transport in non-axisymmetric plasmas

    International Nuclear Information System (INIS)

    Murakami, S.; Idei, H.; Kubo, S.; Nakajima, N.; Okamoto, M.; Gasparino, U.; Maassberg, H.; Rome, M.; Marushchenko, N.

    2000-01-01

    ECRH driven transport of suprathermal electrons is studied in non-axisymmetric plasmas using a new Monte Carlo simulation technique in 5-D phase space. Two different phases of the ECRH driven transport of suprathermal electrons can be seen. The first is a rapid convective phase due to the direct radial motion of trapped electrons and the second is a slower phase due to the collisional transport. The important role of the radial transport of suprathermal electrons in the broadening of the ECRH deposition profile in W7-AS is clarified. The ECRH driven flux is also evaluated and considered in relation to the 'electron root' feature recently observed in W7-AS. It is found that, at low collisionalities, the ECRH driven flux due to the suprathermal electrons can play a dominant role in the condition of ambipolarity, and thus the observed electron root feature in W7-AS is thought to be driven by the radial (convective) flux of ECRH generated suprathermal electrons. A possible scenario for this type of electron root is considered for the LHD plasma. (author)

  3. Effects of magnetic drift tangential to magnetic surfaces on neoclassical transport in non-axisymmetric plasmas

    International Nuclear Information System (INIS)

    Matsuoka, Seikichi; Satake, Shinsuke; Kanno, Ryutaro; Sugama, Hideo

    2015-01-01

    In evaluating neoclassical transport by radially local simulations, the magnetic drift tangential to a flux surface is usually ignored in order to keep the phase-space volume conservation. In this paper, effect of the tangential magnetic drift on the local neoclassical transport is investigated. To retain the effect of the tangential magnetic drift in the local treatment of neoclassical transport, a new local formulation for the drift kinetic simulation is developed. The compressibility of the phase-space volume caused by the tangential magnetic drift is regarded as a source term for the drift kinetic equation, which is solved by using a two-weight δf Monte Carlo method for non-Hamiltonian system [G. Hu and J. A. Krommes, Phys. Plasmas 1, 863 (1994)]. It is demonstrated that the effect of the drift is negligible for the neoclassical transport in tokamaks. In non-axisymmetric systems, however, the tangential magnetic drift substantially changes the dependence of the neoclassical transport on the radial electric field E r . The peaked behavior of the neoclassical radial fluxes around E r  =   0 observed in conventional local neoclassical transport simulations is removed by taking the tangential magnetic drift into account

  4. Neoclassical and anomalous transport in axisymmetric toroidal plasmas with electrostatic turbulence

    International Nuclear Information System (INIS)

    Sugama, H.; Horton, W.

    1995-01-01

    Neoclassical and anomalous transport fluxes are determined for axisymmetric toroidal plasmas with weak electrostatic fluctuations. The neoclassical and anomalous fluxes are defined based on the ensemble-averaged kinetic equation with the statistically averaged nonlinear term. The anomalous forces derived from that quasilinear term induce the anomalous particle and heat fluxes. The neoclassical banana-plateau particle and heat fluxes and the bootstrap current are also affected by the fluctuations through the parallel anomalous forces and the modified parallel viscosities. The quasilinear term, the anomalous forces, and the anomalous particle and heat fluxes are evaluated from the fluctuating part of the drift kinetic equation. The averaged drift kinetic equation with the quasilinear term is solved for the plateau regime to derive the parallel viscosities modified by the fluctuations. The entropy production rate due to the anomalous transport processes is formulated and used to identify conjugate pairs of the anomalous fluxes and forces, which are connected by the matrix with the Onsager symmetry. copyright 1995 American Institute of Physics

  5. Effects of magnetic drift tangential to magnetic surfaces on neoclassical transport in non-axisymmetric plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Seikichi, E-mail: matsuoka@rist.or.jp [Research Organization for Information Science and Technology, 6F Kimec-Center Build., 1-5-2 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047 (Japan); Satake, Shinsuke; Kanno, Ryutaro [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Department of Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); Sugama, Hideo [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)

    2015-07-15

    In evaluating neoclassical transport by radially local simulations, the magnetic drift tangential to a flux surface is usually ignored in order to keep the phase-space volume conservation. In this paper, effect of the tangential magnetic drift on the local neoclassical transport is investigated. To retain the effect of the tangential magnetic drift in the local treatment of neoclassical transport, a new local formulation for the drift kinetic simulation is developed. The compressibility of the phase-space volume caused by the tangential magnetic drift is regarded as a source term for the drift kinetic equation, which is solved by using a two-weight δf Monte Carlo method for non-Hamiltonian system [G. Hu and J. A. Krommes, Phys. Plasmas 1, 863 (1994)]. It is demonstrated that the effect of the drift is negligible for the neoclassical transport in tokamaks. In non-axisymmetric systems, however, the tangential magnetic drift substantially changes the dependence of the neoclassical transport on the radial electric field E{sub r}. The peaked behavior of the neoclassical radial fluxes around E{sub r }={sub  }0 observed in conventional local neoclassical transport simulations is removed by taking the tangential magnetic drift into account.

  6. HEATMESH, Geometry Data Generator for Heat Transfer Calculation in Axisymmetric System

    International Nuclear Information System (INIS)

    Gabrielson, V.K.

    1972-01-01

    1 - Description of problem or function: HEATMESH is used to generate geometrical data required for studies of heat transfer in axisymmetric structures represented as surfaces of revolution. The program consists of two distinct phases. The first subdivides the given parts into a nodal network and evaluates the geometrical properties of the nodes. The second determines adjacent nodes and edits geometrical data for the thermal model. 2 - Method of solution: The structure to be studied, represented as a body of revolution, is divided into parts having common material properties and represented as bodies of revolution. Each part is then described as four surfaces of revolution subdivided into nodes which form a mesh. Data for each part are collected, i. e. volume, area, and part number of each node, and node surfaces on the part boundary and inside the part boundary. The distance between the center and the midpoint of each surface of the node is tabulated also. 3 - Restrictions on the complexity of the problem: Number of subdivisions between 1 and 50 for sides 1 and 3, Number of subdivisions between 1 and 12 for sides 2 and 4

  7. 5D simulation study of suprathermal electron transport in non-axisymmetric plasmas

    International Nuclear Information System (INIS)

    Murakami, S.; Idei, H.; Kubo, S.; Nakajima, N.; Okamoto, M.; Gasparino, U.; Maassberg, H.; Rome, M.; Marushchenko, N.

    1999-01-01

    ECRH-driven transport of suprathermal electrons is studied in non-axisymmetric plasmas using a new Monte Carlo simulation technique in 5D phase space. Two different phases of the ECRH-driven transport of suprathermal electrons can be seen; one is a rapid convective phase due to the direct radial motion of trapped electrons and the other is a slower phase due to the collisional transport. The important role of the radial transport of suprathermal electrons in the broadening of the ECRH deposition profile is clarified in W7-AS. The ECRH driven flux is also evaluated and put in relation with the 'electron root' feature recently observed in W7-AS. It is found that, at low collisionalities, the ECRH driven flux due to the suprathermal electrons can play a dominant role in the condition of ambipolarity and, thus, the observed 'electron root' feature in W7-AS is thought to be driven by the radial (convective) flux of ECRH generated suprathermal electrons. The possible scenario of this 'ECRH-driven electron root' is considered in the LHD plasma. (author)

  8. Kinetic description of quasi-stationary axisymmetric collisionless accretion disk plasmas with arbitrary magnetic field configurations

    International Nuclear Information System (INIS)

    Cremaschini, Claudio; Miller, John C.; Tessarotto, Massimo

    2011-01-01

    A kinetic treatment is developed for collisionless magnetized plasmas occurring in high-temperature, low-density astrophysical accretion disks, such as are thought to be present in some radiatively inefficient accretion flows onto black holes. Quasi-stationary configurations are investigated, within the framework of a Vlasov-Maxwell description. The plasma is taken to be axisymmetric and subject to the action of slowly time-varying gravitational and electromagnetic fields. The magnetic field is assumed to be characterized by a family of locally nested but open magnetic surfaces. The slow collisionless dynamics of these plasmas is investigated, yielding a reduced gyrokinetic Vlasov equation for the kinetic distribution function. For doing this, an asymptotic quasi-stationary solution is first determined, represented by a generalized bi-Maxwellian distribution expressed in terms of the relevant adiabatic invariants. The existence of the solution is shown to depend on having suitable kinetic constraints and conditions leading to particle trapping phenomena. With this solution, one can treat temperature anisotropy, toroidal and poloidal flow velocities, and finite Larmor-radius effects. An asymptotic expansion for the distribution function permits analytic evaluation of all the relevant fluid fields. Basic theoretical features of the solution and their astrophysical implications are discussed. As an application, the possibility of describing the dynamics of slowly time-varying accretion flows and the self-generation of magnetic field by means of a ''kinetic dynamo effect'' are discussed. Both effects are shown to be related to intrinsically kinetic physical mechanisms.

  9. Control of supersonic axisymmetric base flows using passive splitter plates and pulsed plasma actuators

    Science.gov (United States)

    Reedy, Todd Mitchell

    An experimental investigation evaluating the effects of flow control on the near-wake downstream of a blunt-based axisymmetric body in supersonic flow has been conducted. To better understand and control the physical phenomena that govern these massively separated high-speed flows, this research examined both passive and active flow-control methodologies designed to alter the stability characteristics and structure of the near-wake. The passive control investigation consisted of inserting splitter plates into the recirculation region. The active control technique utilized energy deposition from multiple electric-arc plasma discharges placed around the base. The flow-control authority of both methodologies was evaluated with experimental diagnostics including particle image velocimetry, schlieren photography, surface flow visualization, pressure-sensitive paint, and discrete surface pressure measurements. Using a blowdown-type wind tunnel reconstructed specifically for these studies, baseline axisymmetric experiments without control were conducted for a nominal approach Mach number of 2.5. In addition to traditional base pressure measurements, mean velocity and turbulence quantities were acquired using two-component, planar particle image velocimetry. As a result, substantial insight was gained regarding the time-averaged and instantaneous near-wake flow fields. This dataset will supplement the previous benchmark point-wise laser Doppler velocimetry data of Herrin and Dutton (1994) for comparison with new computational predictive techniques. Next, experiments were conducted to study the effects of passive triangular splitter plates placed in the recirculation region behind a blunt-based axisymmetric body. By dividing the near-wake into 1/2, 1/3, and 1/4 cylindrical regions, the time-averaged base pressure distribution, time-series pressure fluctuations, and presumably the stability characteristics were altered. While the spatial base pressure distribution was

  10. Large scale organized motion in isothermal swirling flow through an axisymmetric dump combustor

    International Nuclear Information System (INIS)

    Daddis, E.D.; Lieber, B.B.; Nejad, A.S.; Ahmed, S.A.

    1990-01-01

    This paper reports on velocity measurements that were obtained in a model axisymmetric dump combustor which included a coaxial swirler by means of a two component laser Doppler velocimeter (LDV) at a Reynolds number of 125,000. The frequency spectrum of the velocity fluctuations is obtained via the Fast Fourier Transform (FFT). The velocity field downstream of the dump plane is characterized, in addition to background turbulence, by large scale organized structures which are manifested as sharp spikes of the spectrum at relatively low frequencies. The decomposition of velocity disturbances to background turbulence and large scale structures can then be achieved through spectral methods which include matched filters and spectral factorization. These methods are demonstrated here for axial velocity obtained one step height downstream of the dump plane. Subsequent analysis of the various velocity disturbances shows that large scale structures account for about 25% of the apparent normal stresses at this particular location. Naturally, large scale structures evolve spatially and their contribution to the apparent stress tensor may vary depending on the location in the flow field

  11. On axisymmetric flow and heat transfer of Cross fluid over a radially stretching sheet

    Science.gov (United States)

    Khan, Masood; Manzur, Mehwish; ur Rahman, Masood

    In this article, an analysis is made on the axisymmetric flow and heat transfer of the Cross fluid over a radially stretching sheet. The present study provides with the boundary layer equations of the Cross fluid in cylindrical polar co-ordinates. The modelled momentum and energy equations are further simplified into non-linear ordinary differential equations by applying suitable similarity transformations. The system of equation is then numerically solved by the help of well-known shooting technique. The velocity and temperature profiles are plotted for some values of the governing parameters such as power-law index, local Weissenberg number and the Prandtl number. It is found that growing values of the power-law index elevated the momentum boundary layer structures while the thermal boundary layer thickness lessened correspondingly. Further, the numerical values of the local skin friction coefficient and the local Nusselt number are tabulated for several set of physical parameters. An outstanding agreement is observed by comparing the present results with the previously reported results in the literature as a special case.

  12. The Fourier-finite-element approximation of the lame equations in axisymmetric domains with edges

    International Nuclear Information System (INIS)

    Nkemzil, Boniface

    2003-10-01

    This paper is concerned with a priori error estimates and convergence analysis of the Fourier-finite-element solutions of the Neumann problem for the Lame equations in axisymmetric domains Ω-circumflex is contained in R 3 with reentrant edges. The Fourier-FEM combines the approximating Fourier method with respect to the rotational angle using trigonometric polynomials of degree N (N →∞), with the finite-element method on the plane meridian domain of Ω-circumflex with mesh size h (h → 0) for approximating the Fourier coefficients. The asymptotic behavior of the solution near reentrant edges is described by singular functions in non-tensor product form and treated numerically by means of finite element method on locally graded meshes. For the right-hand side f-circumflex is an element of (L 2 (Ω-circumflex)) 3 , it is proved that the rate of convergence of the combined approximations in the norms of (W 2 1 (Ω-circumflex)) 3 is of the order O(h 2-l +N -(2-l) ) (l=0,1). (author)

  13. Axi-symmetric patterns of active polar filaments on spherical and composite surfaces

    Science.gov (United States)

    Srivastava, Pragya; Rao, Madan

    2014-03-01

    Experiments performed on Fission Yeast cells of cylindrical and spherical shapes, rod-shaped bacteria and reconstituted cylindrical liposomes suggest the influence of cell geometry on patterning of cortical actin. A theoretical model based on active hydrodynamic description of cortical actin that includes curvature-orientation coupling predicts spontaneous formation of acto-myosin rings, cables and nodes on cylindrical and spherical geometries [P. Srivastava et al, PRL 110, 168104(2013)]. Stability and dynamics of these patterns is also affected by the cellular shape and has been observed in experiments performed on Fission Yeast cells of spherical shape. Motivated by this, we study the stability and dynamics of axi-symmetric patterns of active polar filaments on the surfaces of spherical, saddle shaped and conical geometry and classify the stable steady state patterns on these surfaces. Based on the analysis of the fluorescence images of Myosin-II during ring slippage we propose a simple mechanical model for ring-sliding based on force balance and make quantitative comparison with the experiments performed on Fission Yeast cells. NSF Grant DMR-1004789 and Syracuse Soft Matter Program.

  14. Engineering studies for the installation of an axi-symmetric metallic divertor in Tore Supra

    International Nuclear Information System (INIS)

    Doceul, L.; Portafaix, C.; Bucalossi, J.; Saille, A.; Bertrand, B.; Lipa, M.; Missirlian, M.; Jiolat, G.; Samaille, F.; Soler, B.

    2011-01-01

    Tore Supra (TS) has been designed to operate using technologies that allow long plasma operation (a few minutes), by means of superconducting magnets and actively-cooled high heat flux plasma facing components (PFCs). Actively cooled tungsten PFC will be used in the baffle area of the first ITER divertor. In order to validate such a technology fully (industrial manufacturing, operation with long plasma duration), the implementation of a tungsten axi-symmetric divertor in the tokamak Tore Supra has been studied . With this second major upgrade, Tore Supra should be able to address the problematic of long plasma discharges with a metallic divertor. The proposed divertor is made up of two stainless steel casings containing a copper coil winding located at the top and bottom area of the vacuum vessel. These casings are firmly maintained by connection beams and protected by PFC. This paper describes the mechanical design of this major component and its integration in TS, the associated electromagnetic and thermomechanical analysis, the manufacturing issues and finally the integration of ITER representative PFCs.

  15. Influence of the outer bath on the eigenfrequencies of rotating axisymmetric liquid bridges

    Energy Technology Data Exchange (ETDEWEB)

    Montanero, J.M. [Departamento de Electronica e Ingenieria Electromecanica, Universidad de Extremadura, E-06071, Badajoz (Spain)

    2004-04-01

    In experiments with liquid bridges, the neutral buoyancy technique has frequently been used to simulate microgravity conditions. In this technique the liquid bridge is surrounded by an outer liquid with similar density to compensate partially for the effect of the hydrostatic pressure over the interface. The outer bath is expected to play a relevant role not only in the static problem, but also in the dynamical behaviour of this fluid configuration. In the present contribution the eigenfrequencies characterizing the oscillation modes of a rotating axisymmetric liquid bridge are calculated. The analysis focuses on the influence of the outer bath and the liquid bridge equilibrium shape on those quantities. The results are obtained numerically by solving the inviscid two-dimensional model by means of a finite difference scheme. The method provides accurate results as is shown by comparison with the analytical solution for the cylindrical configuration. The comparison between the theoretical predictions for the first eigenfrequency and the experimental data obtained by Perales and Meseguer (1992) shows the capability of the model to describe the dynamics of real liquid bridges. (orig.)

  16. A variational principle for the axisymmetric stability of rotating relativistic stars

    International Nuclear Information System (INIS)

    Prabhu, Kartik; Wald, Robert M; Schiffrin, Joshua S

    2016-01-01

    It is well known that all rotating perfect fluid stars in general relativity are unstable to certain non-axisymmetric perturbations via the Chandrasekhar–Friedman–Schutz (CFS) instability. However, the mechanism of the CFS instability requires, in an essential way, the loss of angular momentum by gravitational radiation and, in many instances, it acts on too long a timescale to be physically/astrophysically relevant. It is therefore of interest to examine the stability of rotating, relativistic stars to axisymmetric perturbations, where the CFS instability does not occur. In this paper, we provide a Rayleigh–Ritz-type variational principle for testing the stability of perfect fluid stars to axisymmetric perturbations, which generalizes to axisymmetric perturbations of rotating stars a variational principle given by Chandrasekhar for spherical perturbations of static, spherical stars. Our variational principle provides a lower bound to the rate of exponential growth in the case of instability. The derivation closely parallels the derivation of a recently obtained variational principle for analyzing the axisymmetric stability of black holes. (paper)

  17. Physics Issues in the Design of Low Aspect-Ratio, High-Beta, Quasi-Axisymmetric Stellarators

    International Nuclear Information System (INIS)

    Zarnstorff, M.C.; Berry, L.A.; Boozer, A.; Brooks, A.; Cooper, W.A.

    2000-01-01

    Compact stellarators have the potential to combine the best features of the stellarator and the advanced tokamak, offering steady state operation without current drive and potentially without disruptions at an aspect ratio similar to tokamaks. A quasi-axisymmetric stellarator is developed that is consistent with the boot-strap current and passively stable to the ballooning, kink, Mercier, vertical, and neoclassical tearing modes at b=4.1 % without need for conducting walls or external feedback. The configuration has good flux surfaces and fast ion confinement. Thermal transport analysis indicates that the confinement should be similar to tokamaks of the same size, allowing access to the b-limit with moderate power. Coils have been designed to reproduce the physics properties. Initial analysis indicates the coils have considerable flexibility to manipulate the configuration properties. Simulations of the current evolution indicate the kink-mode can remain stable during the approach to h igh-beta

  18. MHD axisymmetric flow of power-law fluid over an unsteady stretching sheet with convective boundary conditions

    Directory of Open Access Journals (Sweden)

    Jawad Ahmed

    Full Text Available This paper examines the boundary layer flow and heat transfer characteristic in power law fluid model over unsteady radially stretching sheet under the influence of convective boundary conditions. A uniform magnetic field is applied transversely to the direction of the flow. The governing time dependent nonlinear boundary layer equations are reduced into nonlinear ordinary differential equations with the help of similarity transformations. The transformed coupled ordinary differential equations are then solved analytically by homotopy analysis method (HAM and numerically by shooting procedure. Effects of various governing parameters like, power law index n, magnetic parameter M, unsteadiness A, suction/injection S, Biot number γ and generalized Prandtl number Pr on velocity, temperature, local skin friction and the local Nusselt number are studied and discussed. It is found from the analysis that the magnetic parameter diminishes the velocity profile and the corresponding thermal boundary layer thickness. Keywords: Axisymmetric flow, Power law fluid, Unsteady stretching, Convective boundary conditions

  19. A stabilized finite element formulation for the solution of the Navier-Stokes equations in axisymmetric geometry

    International Nuclear Information System (INIS)

    Souza, Altivo Monteiro de

    2008-12-01

    The world energy consumption has been increasing strongly in recent years. Nuclear energy has been regarded as a suitable option to supply this growing energy demand in industrial scale. In view of the need of improving the understanding and capacity of analysis of nuclear power plants, modern simulation techniques for flow and heat transfer problems are gaining greater importance. A large number of problems found in nuclear reactor engineering can be dealt assuming axial symmetry. Thus, in this work a stabilized finite element formulation for the solution of the Navier-Stokes and energy equations for axisymmetric problems have been developed and tested. The formulation has been implemented in the NS S OLVER M PI 2 D A program developed at the Parallel Computation Laboratory of the Instituto de Engenharia Nuclear (LCP/IEN) and is now available either for safety analysis or design of nuclear systems. (author)

  20. The Exact Solution for Linear Thermoelastic Axisymmetric Deformations of Generally Laminated Circular Cylindrical Shells

    Science.gov (United States)

    Nemeth, Michael P.; Schultz, Marc R.

    2012-01-01

    A detailed exact solution is presented for laminated-composite circular cylinders with general wall construction and that undergo axisymmetric deformations. The overall solution is formulated in a general, systematic way and is based on the solution of a single fourth-order, nonhomogeneous ordinary differential equation with constant coefficients in which the radial displacement is the dependent variable. Moreover, the effects of general anisotropy are included and positive-definiteness of the strain energy is used to define uniquely the form of the basis functions spanning the solution space of the ordinary differential equation. Loading conditions are considered that include axisymmetric edge loads, surface tractions, and temperature fields. Likewise, all possible axisymmetric boundary conditions are considered. Results are presented for five examples that demonstrate a wide range of behavior for specially orthotropic and fully anisotropic cylinders.

  1. Economic Evaluation and Impact Analysis of SMART

    International Nuclear Information System (INIS)

    Jeong, K. H.; Kim, J. H.; Boo, K. D.; Park, S. B.

    2010-07-01

    The objective of this study is to analyze the economic value and contribution to the national economy of the SMART project. This study tries to evaluate three kinds of values of the project separately; national economy contribution, the financial cost-benefit analysis and intangible social benefit of the project. The research methods are Net Present Valuation (NPT) for the first analysis, Input-Output (IO) model for the second analysis and Contingent Valuation Method(CVM) for the last analysis. This study tries to answer for the following questions: (1) how much does the project affect on Korean national economy in area of construction, electricity generation and export? (2) what is the financial cost - benefit assessment of the SMART project which is of the most interest to the private sector constructing the reactor? (3) how much is the project's intangible social gains in that it brings Korea's scientific development in area of nuclear generation and improves Korea's global standing? Main Results of Research are (1) Domestic Construction and Electricity Generation of the 1st Reactor A. Contribution to the National Economy Production inducing effect by the domestic construction and generation of the 1st reactor amounts to 1,801 ∼2,059 billion won, value added inducing effect amounts to 789∼919 billion won, and employment inducing effect amounts to 11,015∼12, 856 men. B. Financial Cost-Benefit Assessment Financial cost - benefit of the domestic construction and generation of the 1st reactor turns out to be economically non-profitable from the point of view of private companies participating the project, by having economic loss over all scenarios of construction costs. C. Combining Financial Cost-Benefit Assessment and Contribution to the National Economy's Value-Added Combining financial cost - benefit and value added inducing effect of the domestic construction and generation of the 1st reactor turns out to be economically valid from the point of view of

  2. Non-axisymmetric line-driven disc winds - I. Disc perturbations

    Science.gov (United States)

    Dyda, Sergei; Proga, Daniel

    2018-04-01

    We study mass outflows driven from accretion discs by radiation pressure due to spectral lines. To investigate non-axisymmetric effects, we use the ATHENA++ code and develop a new module to account for radiation pressure driving. In 2D, our new simulations are consistent with previous 2D axisymmetric solutions by Proga et al., who used the ZEUS 2D code. Specifically, we find that the disc winds are time dependent, characterized by a dense stream confined to ˜45° relative to the disc mid-plane and bounded on the polar side by a less dense, fast stream. In 3D, we introduce a vertical, ϕ-dependent, subsonic velocity perturbation in the disc mid-plane. The perturbation does not change the overall character of the solution but global outflow properties such as the mass, momentum, and kinetic energy fluxes are altered by up to 100 per cent. Non-axisymmetric density structures develop and persist mainly at the base of the wind. They are relatively small, and their densities can be a few times higher than the azimuthal average. The structure of the non-axisymmetric and axisymmetric solutions differ also in other ways. Perhaps most importantly from the observational point of view are the differences in the so-called clumping factors, that serve as a proxy for emissivity due to two body processes. In particular, the spatially averaged clumping factor over the entire fast stream, while it is of a comparable value in both solutions, it varies about 10 times faster in the non-axisymmetric case.

  3. Experimental studies on an axisymmetric divertor in DIVA(JFT-2a)

    International Nuclear Information System (INIS)

    Yamamoto, Shin

    1979-03-01

    DIVA(JFT-2a) is the first tokamak with an axisymmetric divertor in the world. Objectives of the experiments were i) Plasma production and confinement in a tokamak with a separatrix magnetic surface, and ii) divertor effects on radiation loss and plasma confinement. The results so far are as follows: i) The equilibrium with a separatrix magnetic surface is stable during the discharge. ii) There is an ergodic region near the separatrix magnetic surface due to non-axisymmetric magnetic perturbations. iii) The divertor reduces radiation loss and increases energy confinement time. iv) The divertor does not affect the transport process in the main plasma. (author)

  4. ASCOT-1, Thermohydraulics of Axisymmetric PWR Core with Homogeneous Flow During LOCA

    International Nuclear Information System (INIS)

    1978-01-01

    1 - Nature of the physical problem solved: ASCOT-1 is used to analyze the thermo-hydraulic behaviour in a PWR core during a loss-of-coolant accident. 2 - Method of solution: The core is assumed to be axisymmetric two-dimensional and the conservation laws are solved by the method of characteristics. For the temperature response of fuel in the annular regions into which the core is divided, the heat conduction equations are solved by an explicit method with averaged flow conditions. 3 - Restrictions on the complexity of the problem: Axisymmetric two-dimensional homogeneous flows

  5. Stable operation of an effectively axisymmetric neutral beam driven tandem mirror

    International Nuclear Information System (INIS)

    Molvik, A.W.; Barter, J.D.; Buchenauer, D.A.; Casper, T.A.; Correll, D.L.; Dimonte, G.; Falabella, S.; Foote, J.H.; Pincosy, P.A.

    1990-01-01

    A quiescent plasma is sustained for 80 energy confinement times by only gas fuelling and neutral beam heating in an axisymmetric region of the Tandem Mirror Experiment Upgrade (TMX-U). This plasma should be unstable because of the bad magnetic curvature and the absence of ion cyclotron heating which previously provided ponderomotive stabilization to sustain plasmas in bad-curvature regions of other axisymmetric mirror experiments. The TMX-U data are consistent with stabilization by a symbiosis between two mechanisms - line tying, which reduces the growth rate, and finite Larmor radius edge stabilization, which can result in quiescent operation. (author). 42 refs, 8 figs, 1 tab

  6. Numerical Investigation of Pressure Losses in Axisymmetric Sudden Expansion with a Chamfer

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Kim, Youngin; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, the pressure losses through axisymmetric sudden expansions with a chamfer are analyzed by means of numerical simulation, with an emphasis on the effect of the Reynolds number. In this study, we investigate numerically the turbulent flow in axisymmetric sudden expansions having a slight chamfer on the edge. With the aim of investigating the impact of Reynolds number on the expansion losses in a time-averaged sense, an extensive set of simulations is carried out. On the basis of numerical results, we also propose a general correlation to estimate the local loss coefficient in sudden expansions with a chamfer.

  7. Numerical Investigation of Pressure Losses in Axisymmetric Sudden Expansion with a Chamfer

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Youngin; Kim, Keung Koo

    2014-01-01

    In this paper, the pressure losses through axisymmetric sudden expansions with a chamfer are analyzed by means of numerical simulation, with an emphasis on the effect of the Reynolds number. In this study, we investigate numerically the turbulent flow in axisymmetric sudden expansions having a slight chamfer on the edge. With the aim of investigating the impact of Reynolds number on the expansion losses in a time-averaged sense, an extensive set of simulations is carried out. On the basis of numerical results, we also propose a general correlation to estimate the local loss coefficient in sudden expansions with a chamfer

  8. Compact formulas for bounce/transit averaging in axisymmetric tokamak geometry

    Energy Technology Data Exchange (ETDEWEB)

    Duthoit, F.-X. [SNU Division of Graduate Education for Sustainabilization of Foundation Energy, Seoul National University, Seoul 151-742 (Korea, Republic of); Brizard, A. J. [Department of Physics, Saint Michael' s College, Colchester, Vermont 05439 (United States); Hahm, T. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-12-15

    Compact formulas for bounce and transit orbit averaging of the fluctuation-amplitude eikonal factor in axisymmetric tokamak geometry, which is frequently encountered in bounce-gyrokinetic description of microturbulence, are given in terms of the Jacobi elliptic functions and elliptic integrals. These formulas are readily applicable to the calculation of the neoclassical susceptibility in the framework of modern bounce-gyrokinetic theory. In the long-wavelength limit for axisymmetric electrostatic perturbations, we recover the expression for the Rosenbluth-Hinton residual zonal flow [M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998)] accurately.

  9. Physico-Chemical Analysis and Sensory Evaluation of Bread

    African Journals Online (AJOL)

    Shuaibu et al.

    Physico-Chemical Analysis and Sensory Evaluation of Bread Produced Using ... analysis of the bread samples revealed that the moisture content ..... 72. Jarup, L. ,2003. Hazards of heavy metal contamination. Br Med. Bull; 68, pp.167-82.

  10. Evaluation of nuclear reactor based activation analysis techniques

    International Nuclear Information System (INIS)

    Obrusnik, I.; Kucera, J.

    1977-09-01

    A survey is presented of the basic types of activation analysis applied in environmental control. Reactor neutron activation analysis is described (including the reactor as a neutron source, sample activation in the reactor, methodology of neutron activation analysis, sample transport into the reactor and sample packaging after irradiation, instrumental activation analysis with radiochemical separation, data measurement and evaluation, sampling and sample preparation). Sources of environmental contamination with trace elements, sampling and sample analysis by neutron activation are described. The analysis is described of soils, waters and biological materials. Methods are shown of evaluating neutron activation analysis results and of their interpretation for purposes of environmental control. (J.B.)

  11. Evaluation of steel corrosion by numerical analysis

    OpenAIRE

    Kawahigashi, Tatsuo

    2017-01-01

    Recently, various non-destructive and numerical methods have been used and many cases of steel corrosion are examined. For example, methods of evaluating corrosion through various numerical methods and evaluating macrocell corrosion and micro-cell corrosion using measurements have been proposed. However, there are few reports on estimating of corrosion loss with distinguishing the macro-cell and micro-cell corrosion and with resembling an actuality phenomenon. In this study, for distinguishin...

  12. Analysis and evaluation of measuring customer satisfaction

    OpenAIRE

    BURDOVÁ, Monika

    2012-01-01

    The main aim of this diploma thesis is based on the analysis of services provided by the newly renovated hotel, which is located in the center of the small town Jaroměřice nad Rokytnou and analysis of the customer satisfaction with these hotel services provided.

  13. Generation of new solutions of the stationary axisymmetric Einstein equations by a double complex function method

    International Nuclear Information System (INIS)

    Zhong, Z.

    1985-01-01

    A new approach to the solution of certain differential equations, the double complex function method, is developed, combining ordinary complex numbers and hyperbolic complex numbers. This method is applied to the theory of stationary axisymmetric Einstein equations in general relativity. A family of exact double solutions, double transformation groups, and n-soliton double solutions are obtained

  14. Material density measurements from dynamic flash x-ray radiographs using axisymmetric tomography

    International Nuclear Information System (INIS)

    Fugelso, E.

    1981-03-01

    The axisymmetric version of the tomographic x-ray reconstruction procedures has been utilized to determine the material density for the impact of a cylinder on a steel plate. Derivations of the reconstruction algorithms relating x-ray radiographic intensities to the material densities are presented. Effects of noise, point spread functions, and motion blur are minimized

  15. On the impact of a concave nosed axisymmetric body on a free surface

    NARCIS (Netherlands)

    Mathai, Varghese; Govardhan, R.N.; Arakeri, V.H.

    2015-01-01

    We report on an experimental study of the vertical impact of a concave nosed axisymmetric body on a free surface. Previous studies have shown that bodies with a convex nose, like a sphere, produce a well defined splash with a relatively large cavity behind the model. In contrast, we find that with a

  16. Uncertainty analysis for Ulysses safety evaluation report

    International Nuclear Information System (INIS)

    Frank, M.V.

    1991-01-01

    As part of the effort to review the Ulysses Final Safety Analysis Report and to understand the risk of plutonium release from the Ulysses spacecraft General Purpose Heat Source---Radioisotope Thermal Generator (GPHS-RTG), the Interagency Nuclear Safety Review Panel (INSRP) and the author performed an integrated, quantitative analysis of the uncertainties of the calculated risk of plutonium release from Ulysses. Using state-of-art probabilistic risk assessment technology, the uncertainty analysis accounted for both variability and uncertainty of the key parameters of the risk analysis. The results show that INSRP had high confidence that risk of fatal cancers from potential plutonium release associated with calculated launch and deployment accident scenarios is low

  17. An Evaluation Methodology for Protocol Analysis Systems

    Science.gov (United States)

    2007-03-01

    Main Memory Requirement NS: Needham-Schroeder NSL: Needham-Schroeder-Lowe OCaml : Objective Caml POSIX: Portable Operating System...methodology is needed. A. PROTOCOL ANALYSIS FIELD As with any field, there is a specialized language used within the protocol analysis community. Figure...ProVerif requires that Objective Caml ( OCaml ) be installed on the system, OCaml version 3.09.3 was installed. C. WINDOWS CONFIGURATION OS

  18. CRITICAL ANALYSIS OF EVALUATION MODEL LOMCE

    Directory of Open Access Journals (Sweden)

    José Luis Bernal Agudo

    2015-06-01

    Full Text Available The evaluation model that the LOMCE projects sinks its roots into the neoliberal beliefs, reflecting a specific way of understanding the world. What matters is not the process but the results, being the evaluation the center of the education-learning processes. It presents an evil planning, since the theory that justifies the model doesn’t specify upon coherent proposals, where there is an excessive worry for excellence and diversity is left out. A comprehensive way of understanding education should be recovered.

  19. Surface pressure drag for hydrostatic two-layer flow over axisymmetric mountains

    Energy Technology Data Exchange (ETDEWEB)

    Leutbecher, M.

    2000-07-01

    The effect of partial reflections on surface pressure drag is investigated for hydrostatic gravity waves in two-layer flow with piecewise constant buoyancy frequency. The variation of normalized surface pressure drag with interface height is analyzed for axisymmetric mountains. The results are compared with the familiar solution for infinitely long ridges. The drag for the two-layer flow is normalized with the drag of one-layer flow, which has the buoyancy frequency of the lower layer. An analytical expression for the normalized drag of axisymmetric mountains is derived from linear theory of steady flow. Additionally, two-layer flow over finite-height axisymmetric mountains is simulated numerically for flow with higher stability in the upper layer. The temporal evolution of the surface pressure drag is examined in a series of experiments with different interface and mountain heights. The focus is on the linear regime and the nonlinear regime of nonbreaking gravity waves. The dispersion of gravity waves in flow over isolated mountains prevents that the entire wave spectrum is in resonance at the same interface height, which is the case in hydrostatic flow over infinitely long ridges. In consequence, the oscillation of the normalized drag with interface height is smaller for axisymmetric mountains than for infinitely long ridges. However, even for a reflection coefficient as low as 1/3 the drag of an axisymmetric mountain can be amplified by 50% and reduced by 40%. The nonlinear drag becomes steady in the numerical experiments in which no wave breaking occurs. The steady state nonlinear drag agrees quite well with the prediction of linear theory if the linear drag is computed for a slightly lowered interface. (orig.)

  20. Numerical simulation of the generation mechanism of axisymmetric supersonic jet screech tones

    Science.gov (United States)

    Li, X. D.; Gao, J. H.

    2005-08-01

    In this paper an axisymmetric computational aeroacoustic procedure is developed to investigate the generation mechanism of axisymmetric supersonic jet screech tones. The axisymmetric Navier-Stokes equations and the two equations standard k-ɛ turbulence model modified by Turpin and Troyes ["Validation of a two-equation turbulence model for axisymmetric reacting and non-reaction flows," AIAA Paper No. 2000-3463 (2000)] are solved in the generalized curvilinear coordinate system. A generalized wall function is applied in the nozzle exit wall region. The dispersion-relation-preserving scheme is applied for space discretization. The 2N storage low-dissipation and low-dispersion Runge-Kutta scheme is employed for time integration. Much attention is paid to far-field boundary conditions and turbulence model. The underexpanded axisymmetric supersonic jet screech tones are simulated over the Mach number from 1.05 to 1.2. Numerical results are presented and compared with the experimental data by other researchers. The simulated wavelengths of A0, A1, A2, and B modes and part of simulated amplitudes agree very well with the measurement data by Ponton and Seiner ["The effects of nozzle exit lip thickness on plume resonance," J. Sound Vib. 154, 531 (1992)]. In particular, the phenomena of modes jumping have been captured correctly although the numerical procedure has to be improved to predict the amplitudes of supersonic jet screech tones more accurately. Furthermore, the phenomena of shock motions are analyzed. The predicted splitting and combination of shock cells are similar with the experimental observations of Panda ["Shock oscillation in underexpanded screeching jets," J. Fluid. Mech. 363, 173 (1998)]. Finally, the receptivity process is numerically studied and analyzed. It is shown that the receptivity zone is associated with the initial thin shear layer, and the incoming and reflected sound waves.

  1. Adapting Job Analysis Methodology to Improve Evaluation Practice

    Science.gov (United States)

    Jenkins, Susan M.; Curtin, Patrick

    2006-01-01

    This article describes how job analysis, a method commonly used in personnel research and organizational psychology, provides a systematic method for documenting program staffing and service delivery that can improve evaluators' knowledge about program operations. Job analysis data can be used to increase evaluators' insight into how staffs…

  2. Finite-Difference Solution for Laminar or Turbulent Boundary Layer Flow over Axisymmetric Bodies with Ideal Gas, CF4, or Equilibrium Air Chemistry

    Science.gov (United States)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-01-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  3. 3. Evaluation of unstable lands for interagency watershed analysis

    Science.gov (United States)

    Leslie M. Reid; Robert R. Ziemer; Mark E. Smith; Colin Close

    1994-01-01

    Abstract - Although methods for evaluating landslide rates and distributions are well developed, much less attention has been paid to evaluating the biological and physical role of landsliding. New directions in land management on Federal lands of the Pacific Northwest now require such evaluations for designing Riparian Reserves. Traditional analysis methods are no...

  4. Evaluation and analysis of harmonic problems

    International Nuclear Information System (INIS)

    Flechas V, Jairo Hernando; Manrique H, Jorge Eduardo; Castro R, Fredy Augusto

    2000-01-01

    In this article a methodology is presented that outlines the different steps to continue to evaluate and to analyze problems of power quality in users of electric power distribution system. The methodology begins of the practical experience of the authors in this type of studies and it seeks to be a guide for all those that are involved with the topic. A case is analyzed of a user of distribution system of industrial type in Colombia

  5. Analysis of Two Methods to Evaluate Antioxidants

    Science.gov (United States)

    Tomasina, Florencia; Carabio, Claudio; Celano, Laura; Thomson, Leonor

    2012-01-01

    This exercise is intended to introduce undergraduate biochemistry students to the analysis of antioxidants as a biotechnological tool. In addition, some statistical resources will also be used and discussed. Antioxidants play an important metabolic role, preventing oxidative stress-mediated cell and tissue injury. Knowing the antioxidant content…

  6. Evaluation of color representation for texture analysis

    NARCIS (Netherlands)

    Verbrugge, R.; van den Broek, Egon; van Rikxoort, E.M.; Taatgen, N.; Schomaker, L.

    2004-01-01

    Since more than 50 years texture in image material is a topic of research. Hereby, color was ignored mostly. This study compares 70 different configurations for texture analysis, using four features. For the configurations we used: (i) a gray value texture descriptor: the co-occurrence matrix and a

  7. Using Ratio Analysis to Evaluate Financial Performance.

    Science.gov (United States)

    Minter, John; And Others

    1982-01-01

    The ways in which ratio analysis can help in long-range planning, budgeting, and asset management to strengthen financial performance and help avoid financial difficulties are explained. Types of ratios considered include balance sheet ratios, net operating ratios, and contribution and demand ratios. (MSE)

  8. Phytochemical analysis and toxicological evaluation of the ...

    African Journals Online (AJOL)

    Phytochemical analysis revealed the presence of tannins, Flavonoid, Alkaloids, Anthraquinone, Saponin and Cardiac glycosides. This work thus justifies the ethnomedicinal use of the plant in the treatment of anaemia and its safety profile. Keywords: Toxicological, Ethno toxicity, Hematological and phytochemical ...

  9. Evaluating Dynamic Analysis Techniques for Program Comprehension

    NARCIS (Netherlands)

    Cornelissen, S.G.M.

    2009-01-01

    Program comprehension is an essential part of software development and software maintenance, as software must be sufficiently understood before it can be properly modified. One of the common approaches in getting to understand a program is the study of its execution, also known as dynamic analysis.

  10. Fluxball magnetic field analysis using a hybrid analytical/FEM/BEM with equivalent currents

    International Nuclear Information System (INIS)

    Fernandes, João F.P.; Camilo, Fernando M.; Machado, V. Maló

    2016-01-01

    In this paper, a fluxball electric machine is analyzed concerning the magnetic flux, force and torque. A novel method is proposed based in a special hybrid FEM/BEM (Finite Element Method/Boundary Element Method) with equivalent currents by using an analytical treatment for the source field determination. The method can be applied to evaluate the magnetic field in axisymmetric problems, in the presence of several magnetic materials. Same results obtained by a commercial Finite Element Analysis tool are presented for validation purposes with the proposed method. - Highlights: • The Fluxball machine magnetic field is analyzed by a new FEM/BEM/Analytical method. • The method is adequate for axisymmetric non homogeneous magnetic field problems. • The source magnetic field is evaluated considering a non-magnetic equivalent problem. • Material magnetization vectors are accounted by using equivalent currents. • A strong reduction of the finite element domain is achieved.

  11. Neoclassical resonant-plateau transport calculation in an effectively axisymmetrized tandem mirror with finite end plate resistance

    International Nuclear Information System (INIS)

    Katanuma, I.; Kiwamoto, Y.; Adachi, S.; Inutake, M.; Ishii, K.; Yatsu, K.; Sawada, K.; Miyoshi, S.

    1987-05-01

    Calculations are made for neoclassical resonant-plateau transports in the geometry of the effectively axisymmetrized tandem mirror GAMMA 10 magnetic field, which has minimum B inbord anchors inside the axisymmetric plug/barrier mirror cells. Azimuthal drifts at the local non-axisymmetric regions are included. The radial potential profile is determined by solving selfconsistently the charge neutrality equation. A finite resistance connecting end plate to machine ground provides appropriate boundary conditions on the radial electrostatic potential distribution so that it can be determined uniquely. The calculation is consistent with experimental results of GAMMA 10. (author)

  12. Hydrogeochemical analysis and quality evaluation of groundwater ...

    African Journals Online (AJOL)

    The chemical analysis revealed that the total hardness (measured in terms of CaCO3) varied from 16 to 140 mg/l for both sets of samples indicating soft to moderately hard water. Based on the values of EC, percent sodium, SAR (which vary from 0.3 to 1.7 meq/l), RSC (from 0.1 to 0.99 meq/l less than the standard value of ...

  13. Evaluation And Analysis of Natural Gas Rates

    International Nuclear Information System (INIS)

    Taheri, Ali Akbar

    1999-01-01

    Natural gas is considered as a preferred fuel and its utility is growing every day in the country (Iran). The usage of natural gas has increased from 3.5 to 44 billion cubic meters from 1980 to 1997, respectively. Currently, 4 million residences and most of the industrial sector are being provided with the pipelined natural gas. Because of the tremendous increase in consumption, it is necessary to give the needed considerations to natural gas rate structure. The objective of the paper is to 1.Evaluate the fundamentals and principal methods used for rate structures. 2. Identification of effective components. 3. Analyze the current rates including connection fees and other customer charges

  14. Constrained mathematics evaluation in probabilistic logic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Arlin Cooper, J

    1998-06-01

    A challenging problem in mathematically processing uncertain operands is that constraints inherent in the problem definition can require computations that are difficult to implement. Examples of possible constraints are that the sum of the probabilities of partitioned possible outcomes must be one, and repeated appearances of the same variable must all have the identical value. The latter, called the 'repeated variable problem', will be addressed in this paper in order to show how interval-based probabilistic evaluation of Boolean logic expressions, such as those describing the outcomes of fault trees and event trees, can be facilitated in a way that can be readily implemented in software. We will illustrate techniques that can be used to transform complex constrained problems into trivial problems in most tree logic expressions, and into tractable problems in most other cases.

  15. Fuzzy Uncertainty Evaluation for Fault Tree Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Beom; Shim, Hyung Jin [Seoul National University, Seoul (Korea, Republic of); Jae, Moo Sung [Hanyang University, Seoul (Korea, Republic of)

    2015-05-15

    This traditional probabilistic approach can calculate relatively accurate results. However it requires a long time because of repetitive computation due to the MC method. In addition, when informative data for statistical analysis are not sufficient or some events are mainly caused by human error, the probabilistic approach may not be possible because uncertainties of these events are difficult to be expressed by probabilistic distributions. In order to reduce the computation time and quantify uncertainties of top events when basic events whose uncertainties are difficult to be expressed by probabilistic distributions exist, the fuzzy uncertainty propagation based on fuzzy set theory can be applied. In this paper, we develop a fuzzy uncertainty propagation code and apply the fault tree of the core damage accident after the large loss of coolant accident (LLOCA). The fuzzy uncertainty propagation code is implemented and tested for the fault tree of the radiation release accident. We apply this code to the fault tree of the core damage accident after the LLOCA in three cases and compare the results with those computed by the probabilistic uncertainty propagation using the MC method. The results obtained by the fuzzy uncertainty propagation can be calculated in relatively short time, covering the results obtained by the probabilistic uncertainty propagation.

  16. Creep analysis of boiler tubes by fem | Taye | Zede Journal

    African Journals Online (AJOL)

    In this paper an analysis is developed for the determination of creep deformation of an axisymmetric boiler tubes subjected to axisymmetric loads. The stresses and the permanent strains at a particular time and at the steady state condition, resulting from loading of the tube under constant internal pressure and elevated ...

  17. An economic analysis methodology for project evaluation and programming.

    Science.gov (United States)

    2013-08-01

    Economic analysis is a critical component of a comprehensive project or program evaluation methodology that considers all key : quantitative and qualitative impacts of highway investments. It allows highway agencies to identify, quantify, and value t...

  18. Non-Axisymmetric Oscillation of Acoustically Levitated Water Drops at Specific Frequencies

    International Nuclear Information System (INIS)

    Chang-Le, Shen; Wen-Jun, Xie; Bing-Bo, Wei

    2010-01-01

    A category of non-axisymmetric oscillations of acoustically levitated water drops was observed. These oscillations can be qualitatively described by superposing a sectorial oscillating term upon the initial oblate shape resulting from the effect of acoustic radiation pressure. The oscillation frequencies are around 25 Hz for the 2-lobed mode and exactly 50 Hz for the 3- and 4-lobed modes. These oscillations were excited by the disturbance from the power supply. For the same water drop, higher mode oscillations were observed with more oblate initial shape, indicating that the eigenfrequencies of these non-axisymmetric oscillations decrease with increasing initial distortion. The maximum velocity and acceleration within the oscillating drop can attain 0.3m·s −1 and 98.7m·s −2 respectively, resulting in strong fluid convection and enhanced heat and mass transfer. (condensed matter: structure, mechanical and thermal properties)

  19. On Perturbation Solutions for Axisymmetric Bending Boundary Values of a Deep Thin Spherical Shell

    Directory of Open Access Journals (Sweden)

    Rong Xiao

    2014-01-01

    Full Text Available On the basis of the general theory of elastic thin shells and the Kirchhoff-Love hypothesis, a fundamental equation for a thin shell under the moment theory is established. In this study, the author derives Reissner’s equation with a transverse shear force Q1 and the displacement component w. These basic unknown quantities are derived considering the axisymmetry of the deep, thin spherical shell and manage to constitute a boundary value question of axisymmetric bending of the deep thin spherical shell under boundary conditions. The asymptotic solution is obtained by the composite expansion method. At the end of this paper, to prove the correctness and accuracy of the derivation, an example is given to compare the numerical solution by ANSYS and the perturbation solution. Meanwhile, the effects of material and geometric parameters on the nonlinear response of axisymmetric deep thin spherical shell under uniform external pressure are also analyzed in this paper.

  20. Marginal Stability Boundaries for Infinite-n Ballooning Modes in a Quasi-axisymmetric Stellarator

    International Nuclear Information System (INIS)

    Hudson, S.R.; Hegna, C.C.

    2003-01-01

    A method for computing the ideal-MHD stability boundaries in three-dimensional equilibria is employed. Following Hegna and Nakajima [Phys. Plasmas 5 (May 1998) 1336], a two-dimensional family of equilibria are constructed by perturbing the pressure and rotational-transform profiles in the vicinity of a flux surface for a given stellarator equilibrium. The perturbations are constrained to preserve the magnetohydrodynamic equilibrium condition. For each perturbed equilibrium, the infinite-n ballooning stability is calculated. Marginal stability diagrams are thus constructed that are analogous to (s; a) diagrams for axisymmetric configurations. A quasi-axisymmetric stellarator is considered. Calculations of stability boundaries generally show regions of instability can occur for either sign of the average magnetic shear. Additionally, regions of second-stability are present

  1. From x-ray telescopes to neutron scattering: Using axisymmetric mirrors to focus a neutron beam

    International Nuclear Information System (INIS)

    Khaykovich, B.; Gubarev, M.V.; Bagdasarova, Y.; Ramsey, B.D.; Moncton, D.E.

    2011-01-01

    We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in X-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We implemented a system containing four nested Ni mirror pairs, which was tested by the focusing of a polychromatic neutron beam at the MIT Reactor. In addition, we have carried out extensive ray-tracing simulations of the mirrors and their performance in different situations. The major advantages of the Wolter mirrors are nesting for large angular collection and aberration-free performance. We discuss how these advantages can be utilized to benefit various neutron scattering methods, such as imaging, SANS, and time-of-flight spectroscopy.

  2. Excitation of nonaxisymmetric perturbations by the axisymmetric explosive magnetorotational instability in Keplerian discs

    Science.gov (United States)

    Shtemler, Yu.; Mond, M.; Liverts, E.

    2018-02-01

    The excitation of nonaxisymmetric quasi-resonant triads by clustering around a dominant axisymmetric explosively unstable magnetorotational instability (MRI) in Keplerian discs is investigated. Clustering, namely, the mutual interactions of a large number of quasi-resonant triads that are connected by a single dominant explosively unstable axisymmetric triad, is invoked in order to provide a viable mechanism for the stabilization of the explosive nature of the latter. The results, however, are of wider scope as the proposed clustering scenario also provides a strong mechanism for the excitation of high-amplitude nonaxisymmetric perturbations. The latter play a major role in the nonlinear evolution of the MRI on the route to fully developed turbulence.

  3. Effect of Axisymmetric Aft Wall Angle Cavity in Supersonic Flow Field

    Science.gov (United States)

    Jeyakumar, S.; Assis, Shan M.; Jayaraman, K.

    2018-03-01

    Cavity plays a significant role in scramjet combustors to enhance mixing and flame holding of supersonic streams. In this study, the characteristics of axisymmetric cavity with varying aft wall angles in a non-reacting supersonic flow field are experimentally investigated. The experiments are conducted in a blow-down type supersonic flow facility. The facility consists of a supersonic nozzle followed by a circular cross sectional duct. The axisymmetric cavity is incorporated inside the duct. Cavity aft wall is inclined with two consecutive angles. The performance of the aft wall cavities are compared with rectangular cavity. Decreasing aft wall angle reduces the cavity drag due to the stable flow field which is vital for flame holding in supersonic combustor. Uniform mixing and gradual decrease in stagnation pressure loss can be achieved by decreasing the cavity aft wall angle.

  4. Motions in a Bose condensate: X. New results on stability of axisymmetric solitary waves of the Gross-Pitaevskii equation

    OpenAIRE

    Berloff, Natalia G.; Roberts, Paul H.

    2004-01-01

    The stability of the axisymmetric solitary waves of the Gross-Pitaevskii (GP) equation is investigated. The Implicitly Restarted Arnoldi Method for banded matrices with shift-invert was used to solve the linearised spectral stability problem. The rarefaction solitary waves on the upper branch of the Jones-Roberts dispersion curve are shown to be unstable to axisymmetric infinitesimal perturbations, whereas the solitary waves on the lower branch and all two-dimensional solitary waves are linea...

  5. Utilization of axisymmetrical models in the description of the fluctuating temperature field and in the calculation of turbulent thermal diffusivity

    International Nuclear Information System (INIS)

    Cintra Filho, J. de S.

    1981-01-01

    The fluctuating temperature field structure is studied for the case of turbulent circular pipe flow. Experimentally determined integral length scales are used in modeling this structure in terms of axisymmetric forms. It is found that the appropriate angle of axisymmetry is larger than the one for modeling the large scale velocity structure. The axisymmetric model is then used to examine the validity and the prediction capability of the Tyldesley and Silver's non-spherical eddy diffusivity theory. (Author) [pt

  6. Global regularity for a family of 3D models of the axi-symmetric Navier–Stokes equations

    Science.gov (United States)

    Hou, Thomas Y.; Liu, Pengfei; Wang, Fei

    2018-05-01

    We consider a family of three-dimensional models for the axi-symmetric incompressible Navier–Stokes equations. The models are derived by changing the strength of the convection terms in the axisymmetric Navier–Stokes equations written using a set of transformed variables. We prove the global regularity of the family of models in the case that the strength of convection is slightly stronger than that of the original Navier–Stokes equations, which demonstrates the potential stabilizing effect of convection.

  7. Statistical evaluation of diagnostic performance topics in ROC analysis

    CERN Document Server

    Zou, Kelly H; Bandos, Andriy I; Ohno-Machado, Lucila; Rockette, Howard E

    2016-01-01

    Statistical evaluation of diagnostic performance in general and Receiver Operating Characteristic (ROC) analysis in particular are important for assessing the performance of medical tests and statistical classifiers, as well as for evaluating predictive models or algorithms. This book presents innovative approaches in ROC analysis, which are relevant to a wide variety of applications, including medical imaging, cancer research, epidemiology, and bioinformatics. Statistical Evaluation of Diagnostic Performance: Topics in ROC Analysis covers areas including monotone-transformation techniques in parametric ROC analysis, ROC methods for combined and pooled biomarkers, Bayesian hierarchical transformation models, sequential designs and inferences in the ROC setting, predictive modeling, multireader ROC analysis, and free-response ROC (FROC) methodology. The book is suitable for graduate-level students and researchers in statistics, biostatistics, epidemiology, public health, biomedical engineering, radiology, medi...

  8. Stationary axisymmetric four dimensional space-time endowed with Einstein metric

    International Nuclear Information System (INIS)

    Hasanuddin; Azwar, A.; Gunara, B. E.

    2015-01-01

    In this paper, we construct Ernst equation from vacuum Einstein field equation for both zero and non-zero cosmological constant. In particular, we consider the case where the space-time admits axisymmetric using Boyer-Lindquist coordinates. This is called Kerr-Einstein solution describing a spinning black hole. Finally, we give a short discussion about the dynamics of photons on Kerr-Einstein space-time

  9. Numerical simulation of feedback stabilization of axisymmetric modes in tokamaks using driven halo currents

    International Nuclear Information System (INIS)

    Jardin, S.C.; Schmidt, J.A.

    1998-01-01

    The Tokamak Simulation Code (TSC) has been used to model a new method of feedback stabilization of the axisymmetric instability in tokamaks using driven halo (or scrape-off layer) currents. The method appears to be feasible for a wide range of plasma edge parameters. It may offer advantages over the more conventional method of controlling this instability when applied in a reactor environment. (author)

  10. MHD stability calculations of high-β quasi-axisymmetric stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Pomphrey, N.; Redi, M.H.; Kessel, C.; Monticello, D.A.; Reiman, A.; Hughes, M.; Cooper, W.A.; Nuehrenberg, C.

    1999-01-01

    The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size. (author)

  11. MHD Stability Calculations of High-Beta Quasi-Axisymmetric Stellarators

    International Nuclear Information System (INIS)

    Kessel, C.; Fu, G.Y.; Ku, L.P.; Redi, M.H.; Pomphrey, N.

    1999-01-01

    The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size

  12. NOVA: a nonvariational code for solving MHD stability of axisymmetric toroidal plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Chance, M.S.

    1986-04-01

    A nonvariational approach for determining the ideal MHD stability of axisymmetric toroidal confinement systems is presented. The code (NOVA) employs cubic B-spline finite elements and Fourier expansion in a general flux coordinate (psi, theta, zeta) system. Better accuracy and faster convergence were obtained in comparison with the variational PEST and ERATO codes. The nonvariational approach can be extended to problems having non-Hermitian eigenmode equations where variational energy principles cannot be obtained

  13. MHD stability calculations of high-β quasi-axisymmetric stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Pomphrey, N.; Redi, M.; Kessel, C.; Monticello, D.; Reiman, A.; Hughes, M.; Cooper, W.A.; Nuehrenberg, C.

    2001-01-01

    The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size. (author)

  14. The computation of multiple MHD equilibria in axisymmetric and straight geometry

    International Nuclear Information System (INIS)

    Thomas, C.Ll.

    1979-01-01

    The details of the numerical methods used in codes for computing MHD equilibria in discrete conductor configurations are described with both code users and code writers in mind. Results produced by the codes have been successfully verified against analytic results and independent computations. The axisymmetric code has proved to be a valuable diagnostic aid for the TOSCA experiment. The user images of the codes are described in the appendices. (author)

  15. Axisymmetric modeling of ultrashort-pulse laser interactions with thin metal film

    Directory of Open Access Journals (Sweden)

    E. Majchrzak

    2011-10-01

    Full Text Available The hyperbolic two-temperature model is used in order to describe the heat propagation in metal film subjected to an ultrashort-pulse laser heating. An axisymmetric heat soureceewith Gaussian temporeal and spatial distributions has been taken into account. At the stage of numerical computations the finite difference method is used. In the final part of the paper the examples of computations are shown.

  16. An Axisymmetric View of Concentric Eyewall Evolution in Hurricane Rita (2005)

    Science.gov (United States)

    2012-08-01

    of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 1237–1259. Martinez, Y., G. Brunet, and M. K. Yau, 2010: On the dynamics of two-dimensional hurricane ...An Axisymmetric View of Concentric Eyewall Evolution in Hurricane Rita (2005) MICHAEL M. BELL Naval Postgraduate School, Monterey, California, and... Hurricane Research Division, Miami, Florida WEN-CHAU LEE National Center for Atmospheric Research,* Boulder, Colorado (Manuscript received 23 June 2011, in

  17. Nonlinear full two-fluid study of m=0 sausage instabilities in an axisymmetric Z pinch

    International Nuclear Information System (INIS)

    Loverich, J.; Shumlak, U.

    2006-01-01

    A nonlinear full five-moment two-fluid model is used to study axisymmetric instabilities in a Z pinch. When the electron velocity due to the current J is greater than the ion acoustic speed, high wave-number sausage instabilities develop that initiate shock waves in the ion fluid. This condition corresponds to a pinch radius on the order of a few ion Larmor radii

  18. Computational method for an axisymmetric laser beam scattered by a body of revolution

    International Nuclear Information System (INIS)

    Combis, P.; Robiche, J.

    2005-01-01

    An original hybrid computational method to solve the 2-D problem of the scattering of an axisymmetric laser beam by an arbitrary-shaped inhomogeneous body of revolution is presented. This method relies on a domain decomposition of the scattering zone into concentric spherical radially homogeneous sub-domains and on an expansion of the angular dependence of the fields on the Legendre polynomials. Numerical results for the fields obtained for various scatterers geometries are presented and analyzed. (authors)

  19. Axisymmetric force-free states and relaxation of a spheroidal spheromak

    International Nuclear Information System (INIS)

    Throumoulopoulos, G.N.; Pantis, G.

    1990-01-01

    Axisymmetric force-free equilibrium eigenstates for a prolate as well as an oblate spheroidal Spheromak with arbitrary elongation are obtained. In the framework of the Woltjer-Taylor relaxation theory the relaxed states are also identified. A simple hypothesis for the relaxation process is introduced, which implies that the plasma relaxes from multitoroidal formations to a singly toroidal configuration, in qualitative agreement with experimental results. (author)

  20. CFD Validation Experiment of a Mach 2.5 Axisymmetric Shock-Wave/Boundary-Layer Interaction

    Science.gov (United States)

    Davis, David Owen

    2015-01-01

    Preliminary results of an experimental investigation of a Mach 2.5 two-dimensional axisymmetric shock-wave/ boundary-layer interaction (SWBLI) are presented. The purpose of the investigation is to create a SWBLI dataset specifically for CFD validation purposes. Presented herein are the details of the facility and preliminary measurements characterizing the facility and interaction region. These results will serve to define the region of interest where more detailed mean and turbulence measurements will be made.

  1. A high-order boundary integral method for surface diffusions on elastically stressed axisymmetric rods

    OpenAIRE

    Li, Xiaofan; Nie, Qing

    2009-01-01

    Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratu...

  2. Axisymmetric force-free states and relaxation of a spheroidal spheromak

    International Nuclear Information System (INIS)

    Throumoulopoulos, G.N.; Pantis, G.

    1990-01-01

    Axisymmetric force-free equilibrium eigenstates for a prolate as well as an oblate spheroidal spheromak with arbitrary elongation are obtained. In the framework of the Woltjer-Taylor relaxation theory the relaxed states are also identified. A simple hypothesis for the relaxation process is introduced which implies that the plasma relaxes from multitoroidal formations to a singly toroidal configuration in qualitative agreement with experimental results. (Author)

  3. Meta-analysis of landscape conservation plan evaluations

    Science.gov (United States)

    Michaela Foster; M. Nils Peterson; Frederick Cubbage; Gerard McMahon

    2016-01-01

    The number of studies evaluating the quality and content of many types of plans have grown in recent decades. Natural resource conservation plans have been included in some of these plan evaluation studies; however, no meta-analysis of natural resource planning literature has been conducted. This focus is needed because natural resource conservation planning differs...

  4. Lower bounds of collapse loads in axisymmetrical vessels

    International Nuclear Information System (INIS)

    Fonseca Neto, J. de D.; Ebecken, N.F.F.

    1981-01-01

    The rigid-plastic limit analysis of shells of revolution subject to rotationally symmetric loadings, is presented. After assembling the finite elements, the limit analysis program is reduced to a simple application of the non-linear programming technique, where the sequential unconstrained minimization technique (SUMT) is utilized for the statically admissible approach. Lower bounds of the collapse loads are presented and compared with the results described in the literature. (Author) [pt

  5. Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity

    International Nuclear Information System (INIS)

    Shibata, Masaru; Sekiguchi, Yu-ichirou

    2004-01-01

    Axisymmetric numerical simulations of rotating stellar core collapse to a neutron star are performed in the framework of full general relativity. The so-called Cartoon method, in which the Einstein field equations are solved in Cartesian coordinates and the axisymmetric condition is imposed around the y=0 plane, is adopted. The hydrodynamic equations are solved in cylindrical coordinates (on the y=0 plane in Cartesian coordinates) using a high-resolution shock-capturing scheme with maximum grid size (2500,2500). A parametric equation of state is adopted to model collapsing stellar cores and neutron stars following Dimmelmeier, Font, and Mueller. It is found that the evolution of the central density during the collapse, bounce, and formation of protoneutron stars agrees well with that in the work of Dimmelmeier, Font, and Mueller in which an approximate general relativistic formulation is adopted. This indicates that such an approximation is appropriate for following axisymmetric stellar core collapses and the subsequent formation of protoneutron stars. Gravitational waves are computed using a quadrupole formula. It is found that the waveforms are qualitatively in good agreement with those by Dimmelmeier, Font, and Mueller. However, quantitatively, two waveforms do not agree well. The possible reasons for the disagreement are discussed

  6. Axisymmetrical separator for separating particulate matter from a fluid carrying medium

    Science.gov (United States)

    Linhardt, Hans D.

    1984-09-04

    A separator for separating particles carried in a fluid carrying medium is disclosed. The separator includes an elongated duct and associated openings incorporated in a solid body. The duct is axisymmetrical relative to its longitudinal axis, and includes a curved wall portion having a curved cross-section taken along the longitudinal axis. An axisymmetrical opening located downstream of the curved wall portion leads from the duct into an axisymmetrical channel which is substantially radially disposed relative to the longitudinal axis. Continuation of the duct downstream of the opening is a discharge portion which is substantially colinear with the longitudinal axis. In operation, a substantial majority of the fluid carrying medium leaves the duct radially through the opening and channel in a state substantially free of particles. A remaining small portion of the fluid carrying medium and a substantial majority of the particles are channelled into the discharge portion by centrifugal forces arising due to travel of the particles along the curved walls. For industrial scale separation of particles from a fluid carrying medium, such as for the clean-up of stack gases, an array of several hundred to several thousand of the separators is provided.

  7. Development of evaluation method for software safety analysis techniques

    International Nuclear Information System (INIS)

    Huang, H.; Tu, W.; Shih, C.; Chen, C.; Yang, W.; Yih, S.; Kuo, C.; Chen, M.

    2006-01-01

    Full text: Full text: Following the massive adoption of digital Instrumentation and Control (I and C) system for nuclear power plant (NPP), various Software Safety Analysis (SSA) techniques are used to evaluate the NPP safety for adopting appropriate digital I and C system, and then to reduce risk to acceptable level. However, each technique has its specific advantage and disadvantage. If the two or more techniques can be complementarily incorporated, the SSA combination would be more acceptable. As a result, if proper evaluation criteria are available, the analyst can then choose appropriate technique combination to perform analysis on the basis of resources. This research evaluated the applicable software safety analysis techniques nowadays, such as, Preliminary Hazard Analysis (PHA), Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis (FTA), Markov chain modeling, Dynamic Flowgraph Methodology (DFM), and simulation-based model analysis; and then determined indexes in view of their characteristics, which include dynamic capability, completeness, achievability, detail, signal/ noise ratio, complexity, and implementation cost. These indexes may help the decision makers and the software safety analysts to choose the best SSA combination arrange their own software safety plan. By this proposed method, the analysts can evaluate various SSA combinations for specific purpose. According to the case study results, the traditional PHA + FMEA + FTA (with failure rate) + Markov chain modeling (without transfer rate) combination is not competitive due to the dilemma for obtaining acceptable software failure rates. However, the systematic architecture of FTA and Markov chain modeling is still valuable for realizing the software fault structure. The system centric techniques, such as DFM and Simulation-based model analysis, show the advantage on dynamic capability, achievability, detail, signal/noise ratio. However, their disadvantage are the completeness complexity

  8. Disability Evaluation System Analysis and Research Annual Report 2017

    Science.gov (United States)

    2017-11-20

    females, other race, enlisted and active duty service members for all services and time periods. • Rates increase as age increases in the Army. For the...Annual Report 2017 Disability Evaluation Systems Analysis and Research Prepared by Accession Medical Standards Analysis and Research Activity ...50 History of hospitalization among active duty service

  9. Facility/equipment performance evaluation using microcomputer simulation analysis

    International Nuclear Information System (INIS)

    Chockie, A.D.; Hostick, C.J.

    1985-08-01

    A computer simulation analysis model was developed at the Pacific Northwest Laboratory to assist in assuring the adequacy of the Monitored Retrievable Storage facility design to meet the specified spent nuclear fuel throughput requirements. The microcomputer-based model was applied to the analysis of material flow, equipment capability and facility layout. The simulation analysis evaluated uncertainties concerning both facility throughput requirements and process duration times as part of the development of a comprehensive estimate of facility performance. The evaluations provided feedback into the design review task to identify areas where design modifications should be considered

  10. Homogeneous axisymmetric model with a limitting stiff equation of state

    International Nuclear Information System (INIS)

    Korkina, M.P.; Martynenko, V.G.

    1976-01-01

    A solution is obtained for Einstein's equations in which all metric coefficients are time functions for a limiting stiff equation of the substance state. Thr solution describes a homogeneous cosmological model with cylindrical symmetry. It is shown that the same metrics can be induced by a massless scalar only time-dependent field. Analysis of this solution is presented

  11. Intellectual Data Analysis Method for Evaluation of Virtual Teams

    Directory of Open Access Journals (Sweden)

    Sandra Strigūnaitė

    2013-01-01

    Full Text Available The purpose of the article is to present a method for virtual team performance evaluation based on intelligent team member collaboration data analysis. The motivation for the research is based on the ability to create an evaluation method that is similar to ambiguous expert evaluations. The concept of the hierarchical fuzzy rule based method aims to evaluate the data from virtual team interaction instances related to implementation of project tasks. The suggested method is designed for project managers or virtual team leaders to help in virtual teamwork evaluation that is based on captured data analysis. The main point of the method is the ability to repeat human thinking and expert valuation process for data analysis by applying fuzzy logic: fuzzy sets, fuzzy signatures and fuzzy rules. The fuzzy set principle used in the method allows evaluation criteria numerical values to transform into linguistic terms and use it in constructing fuzzy rules. Using a fuzzy signature is possible in constructing a hierarchical criteria structure. This structure helps to solve the problem of exponential increase of fuzzy rules including more input variables. The suggested method is aimed to be applied in the virtual collaboration software as a real time teamwork evaluation tool. The research shows that by applying fuzzy logic for team collaboration data analysis it is possible to get evaluations equal to expert insights. The method includes virtual team, project task and team collaboration data analysis. The advantage of the suggested method is the possibility to use variables gained from virtual collaboration systems as fuzzy rules inputs. Information on fuzzy logic based virtual teamwork collaboration evaluation has evidence that can be investigated in the future. Also the method can be seen as the next virtual collaboration software development step.

  12. Evaluation of Thermal Margin Analysis Models for SMART

    International Nuclear Information System (INIS)

    Seo, Kyong Won; Kwon, Hyuk; Hwang, Dae Hyun

    2011-01-01

    Thermal margin of SMART would be analyzed by three different methods. The first method is subchannel analysis by MATRA-S code and it would be a reference data for the other two methods. The second method is an on-line few channel analysis by FAST code that would be integrated into SCOPS/SCOMS. The last one is a single channel module analysis by safety analysis. Several thermal margin analysis models for SMART reactor core by subchannel analysis were setup and tested. We adopted a strategy of single stage analysis for thermal analysis of SMART reactor core. The model should represent characteristics of the SMART reactor core including hot channel. The model should be simple as possible to be evaluated within reasonable time and cost

  13. Canonical correlation analysis of course and teacher evaluation

    DEFF Research Database (Denmark)

    Sliusarenko, Tamara; Ersbøll, Bjarne Kjær

    2010-01-01

    At the Technical University of Denmark course evaluations are performed by the students on a questionnaire. On one form the students are asked specific questions regarding the course. On a second form they are asked specific questions about the teacher. This study investigates the extent to which...... information obtained from the course evaluation form overlaps with information obtained from the teacher evaluation form. Employing canonical correlation analysis it was found that course and teacher evaluations are correlated. However, the structure of the canonical correlation is subject to change...

  14. Low Frequency Sloshing Analysis of Cylindrical Containers with Flat and Conical Baffles

    Directory of Open Access Journals (Sweden)

    Gnitko V.

    2017-12-01

    Full Text Available This paper presents an analysis of low-frequency liquid vibrations in rigid partially filled containers with baffles. The liquid is supposed to be an ideal and incompressible one and its flow is irrotational. A compound shell of revolution is considered as the container model. For evaluating the velocity potential the system of singular boundary integral equations has been obtained. The single-domain and multi-domain reduced boundary element methods have been used for its numerical solution. The numerical simulation is performed to validate the proposed method and to estimate the sloshing frequencies and modes of fluid-filled cylindrical shells with baffles in the forms of circular plates and truncated cones. Both axisymmetric and non-axisymmetric modes of liquid vibrations in baffled and un-baffled tanks have been considered. The proposed method makes it possible to determine a suitable place with a proper height for installing baffles in tanks by using the numerical experiment.

  15. Research on Air Quality Evaluation based on Principal Component Analysis

    Science.gov (United States)

    Wang, Xing; Wang, Zilin; Guo, Min; Chen, Wei; Zhang, Huan

    2018-01-01

    Economic growth has led to environmental capacity decline and the deterioration of air quality. Air quality evaluation as a fundamental of environmental monitoring and air pollution control has become increasingly important. Based on the principal component analysis (PCA), this paper evaluates the air quality of a large city in Beijing-Tianjin-Hebei Area in recent 10 years and identifies influencing factors, in order to provide reference to air quality management and air pollution control.

  16. Analytic electrostatic solution of an axisymmetric accelerator gap

    International Nuclear Information System (INIS)

    Boyd, J.K.

    1995-01-01

    Numerous computer codes calculate beam dynamics of particles traversing an accelerating gap. In order to carry out these calculations the electric field of a gap must be determined. The electric field is obtained from derivatives of the scalar potential which solves Laplace's equation and satisfies the appropriate boundary conditions. An integral approach for the solution of Laplace's equation is used in this work since the objective is to determine the potential and fields without solving on a traditional spatial grid. The motivation is to quickly obtain forces for particle transport, and eliminate the need to keep track of a large number of grid point fields. The problem then becomes one of how to evaluate the appropriate integral. In this work the integral solution has been converted to a finite sum of easily computed functions. Representing the integral solution in this manner provides a readily calculable formulation and avoids a number of difficulties inherent in dealing with an integral that can be weakly convergent in some regimes, and is, in general, highly oscillatory

  17. Experimental Database with Baseline CFD Solutions: 2-D and Axisymmetric Hypersonic Shock-Wave/Turbulent-Boundary-Layer Interactions

    Science.gov (United States)

    Marvin, Joseph G.; Brown, James L.; Gnoffo, Peter A.

    2013-01-01

    A database compilation of hypersonic shock-wave/turbulent boundary layer experiments is provided. The experiments selected for the database are either 2D or axisymmetric, and include both compression corner and impinging type SWTBL interactions. The strength of the interactions range from attached to incipient separation to fully separated flows. The experiments were chosen based on criterion to ensure quality of the datasets, to be relevant to NASA's missions and to be useful for validation and uncertainty assessment of CFD Navier-Stokes predictive methods, both now and in the future. An emphasis on datasets selected was on surface pressures and surface heating throughout the interaction, but include some wall shear stress distributions and flowfield profiles. Included, for selected cases, are example CFD grids and setup information, along with surface pressure and wall heating results from simulations using current NASA real-gas Navier-Stokes codes by which future CFD investigators can compare and evaluate physics modeling improvements and validation and uncertainty assessments of future CFD code developments. The experimental database is presented tabulated in the Appendices describing each experiment. The database is also provided in computer-readable ASCII files located on a companion DVD.

  18. PC-based package for interactive assessment of MHD equilibrium and poloidal field coil design in axisymmetric toroidal geometry

    International Nuclear Information System (INIS)

    Kelleher, W.P.

    1987-01-01

    In the assessment of Magnetohydrodynamic (MHD) equilibrium and Poloidal Field Coil (PFC) arrangement for toroidal axisymmetric geometry, the Grad-Shafranov equation must be solved, either analytically or numerically. Existing numerical tools have been developed primarily for mainframe usage and can prove cumbersome for screening assessments and parametric evaluations. The objective of this thesis was to develop a personal computer (PC)-based calculational tool for assessing MHD/PFC problems in a highly interactive mode, well suited for scoping studies. The approach adopted involves a two-step process: first the MHD equilibrium is calculated and then the PFC arrangement, consistent with the equilibrium, is determined in an interactive design environment. The PC-based system developed consists of two programs: (1) PCEQ, which solve the MHD equilibrium problem and (2) PFDE-SIGN, which is employed to arrive at a PFC arrangement. PCEQ provides an output file including, but not limited to, the following: poloidal beta, total beta, safety factors, q, on axis and on edge. PCEQ plots the following contours and/or profiles: flux, pressure and toroidal current density, safety factor, and ratio of plasma toroidal field to vacuum field

  19. The Motivation Analysis Test: an historical and contemporary evaluation.

    Science.gov (United States)

    Bernard, Larry C; Walsh, R Patricia; Mills, Michael

    2005-04-01

    This is an historical review and contemporary empirical evaluation of the Motivation Analysis Test (MAT), one of the first tests to take a psychometric approach to the assessment of motivation. Reviews were quite positive, but the test is now over 50 years old. Nevertheless, it employs innovations in measurement not widely used in objective measurement then or now: (1) subtests with different formats, (2) disguised items, (3) speeded administration procedures, and (4) ipsative format and scoring procedures. These issues are discussed and a contemporary sample (N = 360) obtained to evaluate the Motivation Analysis Test in light of its innovative characteristics.

  20. Linear wave propagation in a hot axisymmetric toroidal plasma

    International Nuclear Information System (INIS)

    Jaun, A.

    1995-03-01

    Kinetic effects on the propagation of the Alfven wave are studied for the first time in a toroidal plasma relevant for experiments. This requires the resolution of a set of coupled partial differential equations whose coefficients depend locally on the plasma parameters. For this purpose, a numerical wave propagation code called PENN has been developed using either a bilinear or a bicubic Hermite finite element discretization. It solves Maxwell's equations in toroidal geometry, with a dielectric tensor operator that takes into account the linear response of the plasma. Two different models have been implemented and can be used comparatively to describe the same physical case: the first treats the plasma as resistive fluids and gives results which are in good agreement with toroidal fluid codes. The second is a kinetic model and takes into account the finite size of the Larmor radii; it has successfully been tested against a kinetic plasma model in cylindrical geometry. New results have been obtained when studying kinetic effects in toroidal geometry. Two different conversion mechanisms to the kinetic Alfven wave have been described: one occurs at toroidally coupled resonant surfaces and is the kinetic counterpart of the fluid models' resonance absorption. The other has no such correspondence and results directly from the toroidal coupling between the kinetic Alfven wave and the global wavefield. An analysis of a heating scenario suggests that it might be difficult to heat a plasma with Alfven waves up to temperatures that are relevant for a tokamak reactor. Kinetic effects are studied for three types of global Alfven modes (GAE, TAE, BAE) and a new class of kinetic eigenmodes is described which appear inside the fluid gap: it could be related to recent observations in the JET (Joint European Torus) tokamak. (author) 56 figs., 6 tabs., 58 refs

  1. Linear wave propagation in a hot axisymmetric toroidal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jaun, A [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1995-03-01

    Kinetic effects on the propagation of the Alfven wave are studied for the first time in a toroidal plasma relevant for experiments. This requires the resolution of a set of coupled partial differential equations whose coefficients depend locally on the plasma parameters. For this purpose, a numerical wave propagation code called PENN has been developed using either a bilinear or a bicubic Hermite finite element discretization. It solves Maxwell`s equations in toroidal geometry, with a dielectric tensor operator that takes into account the linear response of the plasma. Two different models have been implemented and can be used comparatively to describe the same physical case: the first treats the plasma as resistive fluids and gives results which are in good agreement with toroidal fluid codes. The second is a kinetic model and takes into account the finite size of the Larmor radii; it has successfully been tested against a kinetic plasma model in cylindrical geometry. New results have been obtained when studying kinetic effects in toroidal geometry. Two different conversion mechanisms to the kinetic Alfven wave have been described: one occurs at toroidally coupled resonant surfaces and is the kinetic counterpart of the fluid models` resonance absorption. The other has no such correspondence and results directly from the toroidal coupling between the kinetic Alfven wave and the global wavefield. An analysis of a heating scenario suggests that it might be difficult to heat a plasma with Alfven waves up to temperatures that are relevant for a tokamak reactor. Kinetic effects are studied for three types of global Alfven modes (GAE, TAE, BAE) and a new class of kinetic eigenmodes is described which appear inside the fluid gap: it could be related to recent observations in the JET (Joint European Torus) tokamak. (author) 56 figs., 6 tabs., 58 refs.

  2. Investigation of vortex clouds and droplet sizes in heated water spray patterns generated by axisymmetric full cone nozzles.

    Science.gov (United States)

    Naz, M Y; Sulaiman, S A; Ariwahjoedi, B; Ku Shaari, Ku Zilati

    2013-01-01

    The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm), these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD) of the spray droplets was also measured by using Phase Doppler Anemometry (PDA) at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit.

  3. Investigation of Vortex Clouds and Droplet Sizes in Heated Water Spray Patterns Generated by Axisymmetric Full Cone Nozzles

    Directory of Open Access Journals (Sweden)

    M. Y. Naz

    2013-01-01

    Full Text Available The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm, these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD of the spray droplets was also measured by using Phase Doppler Anemometry (PDA at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit.

  4. Stellar dynamics around a massive black hole - III. Resonant relaxation of razor-thin axisymmetric discs

    Science.gov (United States)

    Sridhar, S.; Touma, Jihad R.

    2017-02-01

    We study the resonant relaxation (RR) of an axisymmetric, low-mass (or Keplerian) stellar disc orbiting a more massive black hole (MBH). Our recent work on the general kinetic theory of RR is simplified in the standard manner by the neglect of 'gravitational polarization' and applied to a razor-thin axisymmetric disc. The wake of a stellar orbit is expressed in terms of the angular momenta exchanged with other orbits, and used to derive a kinetic equation for RR under the combined actions of self-gravity, 1 PN and 1.5 PN general relativistic effects of the MBH and an arbitrary external axisymmetric potential. This is a Fokker-Planck equation for the stellar distribution function (DF), wherein the diffusion coefficients are given self-consistently in terms of contributions from apsidal resonances between pairs of stellar orbits. The physical kinetics is studied for the two main cases of interest. (1) 'Lossless' discs in which the MBH is not a sink of stars, and disc mass, angular momentum and energy are conserved: we prove that general H-functions can increase or decrease during RR, but the Boltzmann entropy is (essentially) unique in being a non-decreasing function of time. Therefore, secular thermal equilibria are maximum entropy states, with DFs of the Boltzmann form; the two-ring correlation function at equilibrium is computed. (2) Discs that lose stars to the MBH through an 'empty loss cone': we derive expressions for the MBH feeding rates of mass, angular momentum and energy in terms of the diffusive fluxes at the loss-cone boundaries.

  5. Physico-chemical analysis and sensory evaluation of bread ...

    African Journals Online (AJOL)

    This study carried out the physico-chemical analysis and sensory evaluation of bread produced using different indigenous yeast isolates in order to offer an insight into the overall quality of the bread. Four (4) different yeast species were isolated from sweet orange, pineapple and palm wine. The yeasts were characterized ...

  6. Yield evaluation and stability analysis in newly selected `KSA' cotton ...

    African Journals Online (AJOL)

    Yield evaluation and stability analysis in newly selected `KSA' cotton cultivars in Western Kenya. R M Opondo, G A Ombakho. Abstract. (African Crop Science Journal, 1997 5(2): 119-126). http://dx.doi.org/10.4314/acsj.v5i2.27854 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians ...

  7. Argumentative Bluff in Eristic Discussion : An Analysis and Evaluation

    NARCIS (Netherlands)

    van Laar, Jan Albert

    How does the analysis and evaluation of argumentation depend on the dialogue type in which the argumentation has been put forward? This paper focuses on argumentative bluff in eristic discussion. Argumentation cannot be presented without conveying the pretence that it is dialectically reasonable, as

  8. Microbiological, proximate analysis and sensory evaluation of baked ...

    African Journals Online (AJOL)

    The possibility of making bread of good nutritional, microbiological and sensory qualities from blends of wheat-breadfruit flours was examined. Blends of wheat flour (WF) with percentages of 0, 5, 10, 15, 20 and 25 of breadfruits flour (BF) were used in the production process. The proximate analysis, sensory evaluation and ...

  9. Use of Video Analysis System for Working Posture Evaluations

    Science.gov (United States)

    McKay, Timothy D.; Whitmore, Mihriban

    1994-01-01

    In a work environment, it is important to identify and quantify the relationship among work activities, working posture, and workplace design. Working posture may impact the physical comfort and well-being of individuals, as well as performance. The Posture Video Analysis Tool (PVAT) is an interactive menu and button driven software prototype written in Supercard (trademark). Human Factors analysts are provided with a predefined set of options typically associated with postural assessments and human performance issues. Once options have been selected, the program is used to evaluate working posture and dynamic tasks from video footage. PVAT has been used to evaluate postures from Orbiter missions, as well as from experimental testing of prototype glove box designs. PVAT can be used for video analysis in a number of industries, with little or no modification. It can contribute to various aspects of workplace design such as training, task allocations, procedural analyses, and hardware usability evaluations. The major advantage of the video analysis approach is the ability to gather data, non-intrusively, in restricted-access environments, such as emergency and operation rooms, contaminated areas, and control rooms. Video analysis also provides the opportunity to conduct preliminary evaluations of existing work areas.

  10. Comparative analysis of evaluation techniques for transport policies

    International Nuclear Information System (INIS)

    Browne, David; Ryan, Lisa

    2011-01-01

    The objective of this paper is to examine and compare the use of a number of policy evaluation tools, which can be used to measure the impact of transport policies and programmes as part of a strategic environmental assessment (SEA) or sustainability appraisal. The evaluation tools that were examined include cost-benefit analysis (CBA), cost-effectiveness analysis (CEA) and multi-criteria decision analysis (MCDA). It was concluded that both CEA and CBA are useful for estimating the costs and/or benefits associated with transport policies but are constrained by the difficulty in quantifying non-market impacts and monetising total costs and benefits. Furthermore, CEA is limited to identifying the most 'cost-effective policy' for achieving a single, narrowly defined objective, usually greenhouse gas (GHG) reduction and is, therefore, not suitable for evaluating policy options with ancillary costs or a variety of potential benefits. Thus, CBA or CEA evaluation should be complemented by a complete environmental and socio-economic impact assessment approach such as MCDA. This method allows for participatory analysis and qualitative assessment but is subject to caveats such as subjectivity and value-laden judgments.

  11. Three-Dimensional Design of a Non-Axisymmetric Periodic Permanent Magnet Focusing System

    CERN Document Server

    Chen Chi Ping; Radovinsky, Alexey; Zhou, Jing

    2005-01-01

    A three-dimensional (3D) design is presented of a non-axisymmetric periodic permanent magnet focusing system which will be used to focus a large-aspect-ratio, ellipse-shaped, space-charge-dominated electron beam. In this design, an analytic theory is used to specify the magnetic profile for beam transport. The OPERA3D code is used to compute and optimize a realizable magnet system. Results of the magnetic design are verified by two-dimensional particle-in-cell and three-dimensional trajectory simulations of beam propagation using PFB2D and OMNITRAK, respectively. Results of fabrication tolerance studies are discussed.

  12. The surface effect on axisymmetric wave propagation in piezoelectric cylindrical shells

    Directory of Open Access Journals (Sweden)

    Yunying Zhou

    2015-02-01

    Full Text Available Based on the surface piezoelectricity theory and first-order shear deformation theory, the surface effect on the axisymmetric wave propagating in piezoelectric cylindrical shells is analyzed. The Gurtin–Murdoch theory is utilized to get the nontraditional boundary conditions and constitutive equations of the surface, in company with classical governing equations of the bulk, from which the basic formulations are obtained. Numerical results show that the surface layer has a profound effect on wave characteristics in nanostructure at a higher mode.

  13. Tokamak equilibria with non-parallel flow in a triangularity-deformed axisymmetric toroidal coordinate system

    Directory of Open Access Journals (Sweden)

    Ap Kuiroukidis

    2018-01-01

    Full Text Available We consider a generalized Grad–Shafranov equation (GGSE in a triangularity-deformed axisymmetric toroidal coordinate system and solve it numerically for the generic case of ITER-like and JET-like equilibria with non-parallel flow. It turns out that increase of the triangularity improves confinement by leading to larger values of the toroidal beta and the safety factor. This result is supported by the application of a criterion for linear stability valid for equilibria with flow parallel to the magnetic field. Also, the parallel flow has a weaker stabilizing effect.

  14. A numerical study of two-phase Stokes flow in an axisymmetric flow-focusing device

    DEFF Research Database (Denmark)

    Jensen, Mads Jakob; Stone, H.A.; Bruus, Henrik

    2006-01-01

    We present a numerical investigation of the time-dependent dynamics of the creation of gas bubbles in an axisymmetric flow-focusing device. The liquid motion is treated as a Stokes flow, and using a generic framework we implement a second-order time-integration scheme and a free-surface model...... in MATLAB, which interfaces with the finite-element software FEMLAB. We derive scaling laws for the volume of a created bubble and for the gas flow rate, and confirm them numerically. Our results are consistent with existing experimental results by Garstecki et al. [Phys. Rev. Lett. 94, 164501 (2005...

  15. How axi-symmetric is the inner HI disc of the Milky Way?

    Directory of Open Access Journals (Sweden)

    Marasco A.

    2012-02-01

    Full Text Available We modelled the distribution and the kinematics of HI in the inner Milky Way (R < R☉ at latitude b = 0∘ assuming axi-symmetry. We fitted the line profiles of the LAB 21-cm survey using an iterative approach based on the tangent-point method. The resulting model reproduces the H I data remarkably well, with significant differences arising only for R ≲ 2 kpc. This suggests that, despite the presence of a barred potential, the neutral gas in the inner Milky Way is distributed in a fairly axi-symmetric disc.

  16. Vortex breakdown simulation - A circumspect study of the steady, laminar, axisymmetric model

    Science.gov (United States)

    Salas, M. D.; Kuruvila, G.

    1989-01-01

    The incompressible axisymmetric steady Navier-Stokes equations are written using the streamfunction-vorticity formulation. The resulting equations are discretized using a second-order central-difference scheme. The discretized equations are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers (based on vortex core radius) 100-1800 and swirl parameter 0.9-1.1. The effects of inflow boundary conditions, the location of farfield and outflow boundaries, and mesh refinement are examined. Finally, the stability of the steady solutions is investigated by solving the time-dependent equations.

  17. Flow of Polymer Melts in Plane- and Axi-symmetric Converging Dies

    DEFF Research Database (Denmark)

    Lauridsen, Carsten Linding; Kjær, Erik Michael; Haudrum, Jan

    1997-01-01

    The extensional flow has considerable influence on the pressure loss in converging flows, which are present in both extrusion and injection moulding. Both plane- and axi-symmetric converging flows have been studied with LDPE, HDPE and PS. The transient extensional viscosities are determined in al...... for the LDPE and the PS melts. Further more, the pressure losses are characterised with the Deborah number in which the characteristic time of the material is shear rate dependent and the characteristic rime of the now is Hencky strain rate dependent....

  18. Flow of Polymer Melts in Plane- and Axi-Symmetric Converging Dies

    DEFF Research Database (Denmark)

    Lauridsen, Carsten Linding; Kjær, Erik Michael; Haudrum, Jan

    1998-01-01

    The extensional flow has considerable influence on the pressure loss in converging flows, which are present in both extrusion and injection moulding. Both plane- and axi-symmetric converging flows have been studied with LDPE, HDPE and PS. The transient extensional viscosities are determined in al...... are comparable for the LDPE and the PS melts. Furthermore, the pressure losses are characterized with the Deborah number in which the characteristic time of the material is shear rate dependent and the characteristic time of the flow is Hencky strain rate dependent....

  19. Simulations of axisymmetric, Newtonian star clusters - prelude to 2 + 1 general relativistic computations

    International Nuclear Information System (INIS)

    Shapiro, S.L.; Teukolsky, S.A.

    1987-01-01

    The dynamical behavior of nonspherical systems in general relativity is analyzed, allowing for rotation and the emission of gravitational waves. An axisymmetric code for solving the Vlasov equation in the Newtonian limit based on a mean-field particle simulation scheme is constructed and tested by reproducing the known evolution of homogeneous spheroids with and without rotation, including the Lin-Kestel-Shu instability. Results for the collapse of homogeneous, nonequilbrium spheroids are described, and stability studies of homogeneous, equilibrium spheroids are summarized. Finally, the code is used to follow the evolution of inhomogeneous, centrally condensed spheroids, and the results are compared with those for homogeneous collapse. 22 references

  20. Interpolation of magnetic surface functions for an axi-symmetric plasma

    International Nuclear Information System (INIS)

    Yamaguchi, Taiki; Maeyama, Mitsuaki

    2000-01-01

    Informations of the magnetic surface functions of magnetically confined plasma are indispensable for equilibrium, stability and transport analyses. In this paper, in order to identify a realistic surface functions and compare those with ones which are introduced from Taylor's relaxation theory, we propose a code to interpolate these surface functions for an axi-symmetric plasma from experimentally measured data. To confirm our code, we used the date which were analyzed from known functions given as a measured data. As a result, we have developed a code which can derive surface functions I and P. Effects of measurement error on those functions are also examined. (author)

  1. Axisymmetric wave propagation in gas shear flow confined by a rigid-walled pipeline

    International Nuclear Information System (INIS)

    Chen Yong; Huang Yi-Yong; Chen Xiao-Qian; Bai Yu-Zhu; Tan Xiao-Dong

    2015-01-01

    The axisymmetric acoustic wave propagating in a perfect gas with a shear pipeline flow confined by a circular rigid wall is investigated. The governing equations of non-isentropic and isentropic acoustic assumptions are mathematically deduced while the constraint of Zwikker and Kosten is relaxed. An iterative method based on the Fourier–Bessel theory is proposed to semi-analytically solve the proposed models. A comparison of numerical results with literature contributions validates the present contribution. Meanwhile, the features of some high-order transverse modes, which cannot be analyzed based on the Zwikker and Kosten theory, are analyzed (paper)

  2. Non-Newtonian fluid flow in an axisymmetric channel with porous wall

    Directory of Open Access Journals (Sweden)

    M. Hosseini

    2013-12-01

    Full Text Available In the present article Optimal Homotopy Asymptotic Method (OHAM is used to obtain the solutions of momentum and heat transfer equations of non-Newtonian fluid flow in an axisymmetric channel with porous wall for turbine cooling applications. Numerical method is used for validity of this analytical method and excellent agreement is observed between the solutions obtained from OHAM and numerical results. Trusting to this validity, effects of some other parameters are discussed. The results show that Nusselt number increases with increase of Reynolds number, Prandtl number and power law index.

  3. Emergency Entry with One Control Torque: Non-Axisymmetric Diagonal Inertia Matrix

    Science.gov (United States)

    Llama, Eduardo Garcia

    2011-01-01

    In another work, a method was presented, primarily conceived as an emergency backup system, that addressed the problem of a space capsule that needed to execute a safe atmospheric entry from an arbitrary initial attitude and angular rate in the absence of nominal control capability. The proposed concept permits the arrest of a tumbling motion, orientation to the heat shield forward position and the attainment of a ballistic roll rate of a rigid spacecraft with the use of control in one axis only. To show the feasibility of such concept, the technique of single input single output (SISO) feedback linearization using the Lie derivative method was employed and the problem was solved for different number of jets and for different configurations of the inertia matrix: the axisymmetric inertia matrix (I(sub xx) > I(sub yy) = I(sub zz)), a partially complete inertia matrix with I(sub xx) > I(sub yy) > I(sub zz), I(sub xz) not = 0 and a realistic complete inertia matrix with I(sub xx) > I(sub yy) > I)sub zz), I(sub ij) not= 0. The closed loop stability of the proposed non-linear control on the total angle of attack, Theta, was analyzed through the zero dynamics of the internal dynamics for the case where the inertia matrix is axisymmetric (I(sub xx) > I(sub yy) = I(sub zz)). This note focuses on the problem of the diagonal non-axisymmetric inertia matrix (I(sub xx) > I(sub yy) > I(sub zz)), which is half way between the axisymmetric and the partially complete inertia matrices. In this note, the control law for this type of inertia matrix will be determined and its closed-loop stability will be analyzed using the same methods that were used in the other work. In particular, it will be proven that the control system is stable in closed-loop when the actuators only provide a roll torque.

  4. Axisymmetric vibrations of thick shells of revolution having meridionally varying curvature

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin; Takahashi, Fumiaki.

    1987-01-01

    An exact method using power series expansions is presented for solving axisymmetric free vibration problems for thick shells of revolution having meridionally varying curvature. Based on the improved thick shell theory, the Lagrangian of the shells of revolution are obtained, and the equations of motion and the boundary conditions are derived from the stationary condition of the Lagrangian. The method is applied to thick shells of revolution having their generating curves of ellipse, cycloid, parabola, catenary and hyperbola. The results by the present method are compared with those by the thin shell theory and the effects of rotatory inertia and shear deformation upon the natural frequencies and the mode shapes are clarified. (author)

  5. On the impact of a concave nosed axisymmetric body on a free surface

    OpenAIRE

    Mathai, Varghese; Govardhan, Raghuraman N.; Arakeri, Vijay H.

    2017-01-01

    We report on an experimental study of the vertical impact of a concave nosed axisymmetric body on a free surface. Previous studies have shown that bodies with a convex nose, like a sphere, produce a well defined splash with a relatively large cavity behind the model. In contrast, we find that with a concave nose, there is hardly a splash and the cavity extent is greatly reduced. This may be explained by the fact that in the concave nosed case, the initial impact is between a confined air pock...

  6. Performance characteristics of axisymmetric venturi-like reverse-flow diverters. Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Smith, G.V.; Counce, R.M.

    1984-01-01

    This paper presents experimental and model-predicted pressure-flow characteristics of axisymmetric venturi-like reverse-flow diverters (RFDs), the key component of fluid pumping systems utilized for the transport of hazardous fluids. The effects of several key geometric parameters, operating conditions, and fluid properties on the performance of the RFD are presented and compared to model predictions. The results indicate good agreement between data and theory over a large portion of the range of variables studied. Cavitation is observed to be the primary factor in limiting the performance of the RFD at small values of load impedances

  7. Two-point boundary value and Cauchy formulations in an axisymmetrical MHD equilibrium problem

    International Nuclear Information System (INIS)

    Atanasiu, C.V.; Subbotin, A.A.

    1999-01-01

    In this paper we present two equilibrium solvers for axisymmetrical toroidal configurations, both based on the expansion in poloidal angle method. The first one has been conceived as a two-point boundary value solver in a system of coordinates with straight field lines, while the second one uses a well-conditioned Cauchy formulation of the problem in a general curvilinear coordinate system. In order to check the capability of our moment methods to describe equilibrium accurately, a comparison of the moment solutions with analytical solutions obtained for a Solov'ev equilibrium has been performed. (author)

  8. Crash Prediction and Risk Evaluation Based on Traffic Analysis Zones

    Directory of Open Access Journals (Sweden)

    Cuiping Zhang

    2014-01-01

    Full Text Available Traffic safety evaluation for traffic analysis zones (TAZs plays an important role in transportation safety planning and long-range transportation plan development. This paper aims to present a comprehensive analysis of zonal safety evaluation. First, several criteria are proposed to measure the crash risk at zonal level. Then these criteria are integrated into one measure-average hazard index (AHI, which is used to identify unsafe zones. In addition, the study develops a negative binomial regression model to statistically estimate significant factors for the unsafe zones. The model results indicate that the zonal crash frequency can be associated with several social-economic, demographic, and transportation system factors. The impact of these significant factors on zonal crash is also discussed. The finding of this study suggests that safety evaluation and estimation might benefit engineers and decision makers in identifying high crash locations for potential safety improvements.

  9. Evaluation of an automated karyotyping system for chromosome aberration analysis

    International Nuclear Information System (INIS)

    Prichard, H.M.

    1987-01-01

    Chromosome aberration analysis is a promising complement to conventional radiation dosimetry, particularly in the complex radiation fields encountered in the space environment. The capabilities of a recently developed automated karyotyping system were evaluated both to determine current capabilities and limitations and to suggest areas where future development should be emphasized. Cells exposed to radiometric chemicals and to photon and particulate radiation were evaluated by manual inspection and by automated karyotyping. It was demonstrated that the evaluated programs were appropriate for image digitization, storage, and transmission. However, automated and semi-automated scoring techniques must be advanced significantly if in-flight chromosome aberration analysis is to be practical. A degree of artificial intelligence may be necessary to realize this goal

  10. Sensitivity Analysis in Observational Research: Introducing the E-Value.

    Science.gov (United States)

    VanderWeele, Tyler J; Ding, Peng

    2017-08-15

    Sensitivity analysis is useful in assessing how robust an association is to potential unmeasured or uncontrolled confounding. This article introduces a new measure called the "E-value," which is related to the evidence for causality in observational studies that are potentially subject to confounding. The E-value is defined as the minimum strength of association, on the risk ratio scale, that an unmeasured confounder would need to have with both the treatment and the outcome to fully explain away a specific treatment-outcome association, conditional on the measured covariates. A large E-value implies that considerable unmeasured confounding would be needed to explain away an effect estimate. A small E-value implies little unmeasured confounding would be needed to explain away an effect estimate. The authors propose that in all observational studies intended to produce evidence for causality, the E-value be reported or some other sensitivity analysis be used. They suggest calculating the E-value for both the observed association estimate (after adjustments for measured confounders) and the limit of the confidence interval closest to the null. If this were to become standard practice, the ability of the scientific community to assess evidence from observational studies would improve considerably, and ultimately, science would be strengthened.

  11. Capital Cost Optimization for Prefabrication: A Factor Analysis Evaluation Model

    Directory of Open Access Journals (Sweden)

    Hong Xue

    2018-01-01

    Full Text Available High capital cost is a significant hindrance to the promotion of prefabrication. In order to optimize cost management and reduce capital cost, this study aims to explore the latent factors and factor analysis evaluation model. Semi-structured interviews were conducted to explore potential variables and then questionnaire survey was employed to collect professionals’ views on their effects. After data collection, exploratory factor analysis was adopted to explore the latent factors. Seven latent factors were identified, including “Management Index”, “Construction Dissipation Index”, “Productivity Index”, “Design Efficiency Index”, “Transport Dissipation Index”, “Material increment Index” and “Depreciation amortization Index”. With these latent factors, a factor analysis evaluation model (FAEM, divided into factor analysis model (FAM and comprehensive evaluation model (CEM, was established. The FAM was used to explore the effect of observed variables on the high capital cost of prefabrication, while the CEM was used to evaluate comprehensive cost management level on prefabrication projects. Case studies were conducted to verify the models. The results revealed that collaborative management had a positive effect on capital cost of prefabrication. Material increment costs and labor costs had significant impacts on production cost. This study demonstrated the potential of on-site management and standardization design to reduce capital cost. Hence, collaborative management is necessary for cost management of prefabrication. Innovation and detailed design were needed to improve cost performance. The new form of precast component factories can be explored to reduce transportation cost. Meanwhile, targeted strategies can be adopted for different prefabrication projects. The findings optimized the capital cost and improved the cost performance through providing an evaluation and optimization model, which helps managers to

  12. Evaluation of Cost Models and Needs & Gaps Analysis

    DEFF Research Database (Denmark)

    Kejser, Ulla Bøgvad

    2014-01-01

    they breakdown costs. This is followed by an in depth analysis of stakeholders’ needs for financial information derived from the 4C project stakeholder consultation.The stakeholders’ needs analysis indicated that models should:• support accounting, but more importantly they should enable budgeting• be able......his report ’D3.1—Evaluation of Cost Models and Needs & Gaps Analysis’ provides an analysis of existing research related to the economics of digital curation and cost & benefit modelling. It reports upon the investigation of how well current models and tools meet stakeholders’ needs for calculating...... andcomparing financial information. Based on this evaluation, it aims to point out gaps that need to be bridged in order to increase the uptake of cost & benefit modelling and good practices that will enable costing and comparison of the costs of alternative scenarios—which in turn provides a starting point...

  13. Analysis of the evaluated data discrepancies for minor actinides and development of improved evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ignatyuk, A. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    The work is directed on a compilation of experimental and evaluated data available for neutron induced reaction cross sections on {sup 237}Np, {sup 241}Am, {sup 242m}Am and {sup 243}Am isotopes, on the analysis of the old data and renormalizations connected with changes of standards and on the comparison of experimental data with theoretical calculation. Main results of the analysis performed by now are presented in this report. (J.P.N.)

  14. Nuclear data evaluation and group constant generation for reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Do; Gil, Choong Sup [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1993-12-01

    In nuclear or shielding design analysis for reactors including nuclear facilities, nuclear data are one of the primary importances. Research project for nuclear data evaluation and their effective applications has been continuously performed. The objectives of this project are (1) to compile the latest evaluated nuclear data files, (2) to establish their processing code systems, and (3) to evaluate the multigroup constant library using the newly compiled data files and the code systems. As the results of this project, JEF-2.2 which is latest version of Joint Evaluated File developed at OECD/NEA was compiled and COMPLOT and EVALPLOT utility codes were installed in personal computer, which are able to draw ENDF/B-formatted nuclear data for comparison and check. Computer system (NJOY/ACER) for generating continuous energy Monte Carlo code MCNP library was established and the system was validated by analyzing a number of experimental data. (Author).

  15. Computerized Analysis of Digital Photographs for Evaluation of Tooth Movement.

    Science.gov (United States)

    Toodehzaeim, Mohammad Hossein; Karandish, Maryam; Karandish, Mohammad Nabi

    2015-03-01

    Various methods have been introduced for evaluation of tooth movement in orthodontics. The challenge is to adopt the most accurate and most beneficial method for patients. This study was designed to introduce analysis of digital photographs with AutoCAD software as a method to evaluate tooth movement and assess the reliability of this method. Eighteen patients were evaluated in this study. Three intraoral digital images from the buccal view were captured from each patient in half an hour interval. All the photos were sent to AutoCAD software 2011, calibrated and the distance between canine and molar hooks were measured. The data was analyzed using intraclass correlation coefficient. Photographs were found to have high reliability coefficient (P > 0.05). The introduced method is an accurate, efficient and reliable method for evaluation of tooth movement.

  16. Left ventricular wall motion abnormalities evaluated by factor analysis as compared with Fourier analysis

    International Nuclear Information System (INIS)

    Hirota, Kazuyoshi; Ikuno, Yoshiyasu; Nishikimi, Toshio

    1986-01-01

    Factor analysis was applied to multigated cardiac pool scintigraphy to evaluate its ability to detect left ventricular wall motion abnormalities in 35 patients with old myocardial infarction (MI), and in 12 control cases with normal left ventriculography. All cases were also evaluated by conventional Fourier analysis. In most cases with normal left ventriculography, the ventricular and atrial factors were extracted by factor analysis. In cases with MI, the third factor was obtained in the left ventricle corresponding to wall motion abnormality. Each case was scored according to the coincidence of findings of ventriculography and those of factor analysis or Fourier analysis. Scores were recorded for three items; the existence, location, and degree of asynergy. In cases of MI, the detection rate of asynergy was 94 % by factor analysis, 83 % by Fourier analysis, and the agreement in respect to location was 71 % and 66 %, respectively. Factor analysis had higher scores than Fourier analysis, but this was not significant. The interobserver error of factor analysis was less than that of Fourier analysis. Factor analysis can display locations and dynamic motion curves of asynergy, and it is regarded as a useful method for detecting and evaluating left ventricular wall motion abnormalities. (author)

  17. Extension of the flow-rate-of-strain tensor formulation of plasma rotation theory to non-axisymmetric tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W. M. [Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Bae, C. [National Fusion Research Institute, Daejoen (Korea, Republic of)

    2015-06-15

    A systematic formalism for the calculation of rotation in non-axisymmetric tokamaks with 3D magnetic fields is described. The Braginskii Ωτ-ordered viscous stress tensor formalism, generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry, and the resulting fluid moment equations provide a systematic formalism for the calculation of toroidal and poloidal rotation and radial ion flow in tokamaks in the presence of various non-axisymmetric “neoclassical toroidal viscosity” mechanisms. The relation among rotation velocities, radial ion particle flux, ion orbit loss, and radial electric field is discussed, and the possibility of controlling these quantities by producing externally controllable toroidal and/or poloidal currents in the edge plasma for this purpose is suggested for future investigation.

  18. An Evaluation of Centrographic Analysis as Compared with Conventional Cephalometric Analysis

    Directory of Open Access Journals (Sweden)

    A B Nehete

    2012-01-01

    Conclusion : Individuals belonging to same sample group and with well-balanced skeletal and soft tissue profiles and normal occlusion demonstrated wide variations in craniofacial structure as evaluated with centrographic analysis and routinely used conventional cephalometric measurements.

  19. Integrating multicriteria evaluation and stakeholders analysis for assessing hydropower projects

    International Nuclear Information System (INIS)

    Rosso, M.; Bottero, M.; Pomarico, S.; La Ferlita, S.; Comino, E.

    2014-01-01

    The use of hydroelectric potential and the protection of the river ecosystem are two contrasting aspects that arise in the management of the same resource, generating conflicts between different stakeholders. The purpose of the paper is to develop a multi-level decision-making tool, able to support energy planning, with specific reference to the construction of hydropower plants in mountain areas. Starting from a real-world problem concerning the basin of the Sesia Valley (Italy), an evaluation framework based on the combined use of Multicriteria Evaluation and Stakeholders Analysis is proposed in the study. The results of the work show that the methodology is able to grant participated decisions through a multi-stakeholders traceable and transparent assessment process, to highlight the important elements of the decision problem and to support the definition of future design guidelines. - Highlights: • The paper concerns a multi-level decision-making tool able to support energy planning. • The evaluation framework is based on the use of AHP and Stakeholders Analysis. • Hydropower projects in the Sesia Valley (Italy) are evaluated and ranked in the study. • Environmental, economic, technical and sociopolitical criteria have been considered. • 42 stakeholder groups have been included in the evaluation

  20. A smart growth evaluation model based on data envelopment analysis

    Science.gov (United States)

    Zhang, Xiaokun; Guan, Yongyi

    2018-04-01

    With the rapid spread of urbanization, smart growth (SG) has attracted plenty of attention from all over the world. In this paper, by the establishment of index system for smart growth, data envelopment analysis (DEA) model was suggested to evaluate the SG level of the current growth situation in cities. In order to further improve the information of both radial direction and non-radial detection, we introduced the non-Archimedean infinitesimal to form C2GS2 control model. Finally, we evaluated the SG level in Canberra and identified a series of problems, which can verify the applicability of the model and provide us more improvement information.

  1. Kinematic Analysis and Performance Evaluation of Novel PRS Parallel Mechanism

    Science.gov (United States)

    Balaji, K.; Khan, B. Shahul Hamid

    2018-02-01

    In this paper, a 3 DoF (Degree of Freedom) novel PRS (Prismatic-Revolute- Spherical) type parallel mechanisms has been designed and presented. The combination of striaght and arc type linkages for 3 DOF parallel mechanism is introduced for the first time. The performances of the mechanisms are evaluated based on the indices such as Minimum Singular Value (MSV), Condition Number (CN), Local Conditioning Index (LCI), Kinematic Configuration Index (KCI) and Global Conditioning Index (GCI). The overall reachable workspace of all mechanisms are presented. The kinematic measure, dexterity measure and workspace analysis for all the mechanism have been evaluated and compared.

  2. Preliminary analysis of alternative fuel cycles for proliferation evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M. J.; Ripfel, H. C.F.; Rainey, R. H.

    1977-01-01

    The ERDA Division of Nuclear Research and Applications proposed 67 nuclear fuel cycles for assessment as to their nonproliferation potential. The object of the assessment was to determine which fuel cycles pose inherently low risk for nuclear weapon proliferation while retaining the major benefits of nuclear energy. This report is a preliminary analysis of these fuel cycles to develop the fuel-recycle data that will complement reactor data, environmental data, and political considerations, which must be included in the overall evaluation. This report presents the preliminary evaluations from ANL, HEDL, ORNL, and SRL and is the basis for a continuing in-depth study. (DLC)

  3. Gravitomagnetic bending angle of light with finite-distance corrections in stationary axisymmetric spacetimes

    Science.gov (United States)

    Ono, Toshiaki; Ishihara, Asahi; Asada, Hideki

    2017-11-01

    By using the Gauss-Bonnet theorem, the bending angle of light in a static, spherically symmetric and asymptotically flat spacetime has been recently discussed, especially by taking account of the finite distance from a lens object to a light source and a receiver [Ishihara, Suzuki, Ono, Asada, Phys. Rev. D 95, 044017 (2017), 10.1103/PhysRevD.95.044017]. We discuss a possible extension of the method of calculating the bending angle of light to stationary, axisymmetric and asymptotically flat spacetimes. For this purpose, we consider the light rays on the equatorial plane in the axisymmetric spacetime. We introduce a spatial metric to define the bending angle of light in the finite-distance situation. We show that the proposed bending angle of light is coordinate-invariant by using the Gauss-Bonnet theorem. The nonvanishing geodesic curvature of the photon orbit with the spatial metric is caused in gravitomagnetism, even though the light ray in the four-dimensional spacetime follows the null geodesic. Finally, we consider Kerr spacetime as an example in order to examine how the bending angle of light is computed by the present method. The finite-distance correction to the gravitomagnetic deflection angle due to the Sun's spin is around a pico-arcsecond level. The finite-distance corrections for Sgr A* also are estimated to be very small. Therefore, the gravitomagnetic finite-distance corrections for these objects are unlikely to be observed with present technology.

  4. Characterization of a medium-sized washer-gun for an axisymmetric mirror

    Science.gov (United States)

    Yi, Hongshen; Liu, Ming; Shi, Peiyun; Yang, Zhida; Zhu, Guanghui; Lu, Quanming; Sun, Xuan

    2018-04-01

    A new medium-sized washer gun is developed for a plasma start-up in a fully axisymmetric mirror. The gun is positioned at the east end of the Keda Mirror with AXisymmetricity facility and operated in the pulsed mode with an arc discharging time of 1.2 ms and a typical arc current of 8.5 kA with 1.5 kV discharge voltage. To optimize the operation, a systematic scan of the neutral pressure, the arc voltage, the bias voltage on a mesh grid 6 cm in front of the gun and an end electrode located on the west end of mirror, and the mirror ratio was performed. The streaming plasma was measured with triple probes in the three mirror cells and a diamagnetic loop in the central cell. Floating potential measurements suggest that the plasma could be divided into streaming and mirror-confined plasmas. The floating potential for the streaming plasma is negative, with an electric field pointing inwards. The mirror-confined plasma has a typical lifetime of 0.5 ms.

  5. ON THE COMMONALITY OF 10–30 AU SIZED AXISYMMETRIC DUST STRUCTURES IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Zhang, Ke; Bergin, Edwin A.; Schwarz, Kamber R.; Blake, Geoffrey A.; Cleeves, L. Ilsedore; Hogerheijde, Michiel; Salinas, Vachail

    2016-01-01

    An unsolved problem in step-wise core-accretion planet formation is that rapid radial drift in gas-rich protoplanetary disks should drive millimeter-/meter-sized particles inward to the central star before large bodies can form. One promising solution is to confine solids within small-scale structures. Here, we investigate dust structures in the (sub)millimeter continuum emission of four disks (TW Hya, HL Tau, HD 163296, and DM Tau), a sample of disks with the highest spatial resolution Atacama Large Millimeter/submillimeter Array observations to date. We retrieve the surface brightness distributions using synthesized images and fitting visibilities with analytical functions. We find that the continuum emission of the four disks is ∼axisymmetric but rich in 10–30 AU-sized radial structures, possibly due to physical gaps, surface density enhancements, or localized dust opacity variations within the disks. These results suggest that small-scale axisymmetric dust structures are likely to be common, as a result of ubiquitous processes in disk evolution and planet formation. Compared with recent spatially resolved observations of CO snow lines in these same disks, all four systems show enhanced continuum emission from regions just beyond the CO condensation fronts, potentially suggesting a causal relationship between dust growth/trapping and snow lines

  6. ON THE COMMONALITY OF 10–30 AU SIZED AXISYMMETRIC DUST STRUCTURES IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ke; Bergin, Edwin A.; Schwarz, Kamber R. [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Blake, Geoffrey A. [Division of Geological and Planetary Sciences, California Institute of Technology, MC 150-21, Pasadena, CA 91125 (United States); Cleeves, L. Ilsedore [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hogerheijde, Michiel; Salinas, Vachail, E-mail: kezhang@umich.edu [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2016-02-10

    An unsolved problem in step-wise core-accretion planet formation is that rapid radial drift in gas-rich protoplanetary disks should drive millimeter-/meter-sized particles inward to the central star before large bodies can form. One promising solution is to confine solids within small-scale structures. Here, we investigate dust structures in the (sub)millimeter continuum emission of four disks (TW Hya, HL Tau, HD 163296, and DM Tau), a sample of disks with the highest spatial resolution Atacama Large Millimeter/submillimeter Array observations to date. We retrieve the surface brightness distributions using synthesized images and fitting visibilities with analytical functions. We find that the continuum emission of the four disks is ∼axisymmetric but rich in 10–30 AU-sized radial structures, possibly due to physical gaps, surface density enhancements, or localized dust opacity variations within the disks. These results suggest that small-scale axisymmetric dust structures are likely to be common, as a result of ubiquitous processes in disk evolution and planet formation. Compared with recent spatially resolved observations of CO snow lines in these same disks, all four systems show enhanced continuum emission from regions just beyond the CO condensation fronts, potentially suggesting a causal relationship between dust growth/trapping and snow lines.

  7. Comparative study of turbulence model performance for axisymmetric sudden expansion flow

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Kim, Young In; Kim, Keung Koo; Yoon, Juhyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, the performance of turbulence models in predicting the turbulent flow in an axisymmetric sudden expansion with an expansion ratio of 4 is assessed for a Reynolds number of 5.6 Χ 10{sup 4}. The comparisons show that the standard k-ε and RSM models provide the best agreement with the experimental data, whereas the standard k-ω model gives poor predictions. Owing to its computational efficiency, the Reynolds Averaged Navier-Stokes (RANS) approach has been widely used for the prediction of turbulent flows and associated pressure losses in a variety of internal flow systems such as a diffuser, orifice, converging nozzle, and pipes with sudden expansion. However, the lack of a general turbulence model often leads to limited applications of a RANS approach, i. e., the accuracy and validity of solutions obtained from RANS equations vary with the turbulence model, flow regime, near-wall treatment, and configuration of the problem. In light of the foregoing, a large amount of turbulence research has been conducted to assess the performance of existing turbulence models for different flow fields. In this paper, the turbulent flow in an axisymmetric sudden expansion is numerically investigated for a Reynolds number of 5.6 Χ 10{sup 4}, with the aim of examining the performance of several turbulence models.

  8. Comparative study of turbulence model performance for axisymmetric sudden expansion flow

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Young In; Kim, Keung Koo; Yoon, Juhyeon

    2013-01-01

    In this study, the performance of turbulence models in predicting the turbulent flow in an axisymmetric sudden expansion with an expansion ratio of 4 is assessed for a Reynolds number of 5.6 Χ 10 4 . The comparisons show that the standard k-ε and RSM models provide the best agreement with the experimental data, whereas the standard k-ω model gives poor predictions. Owing to its computational efficiency, the Reynolds Averaged Navier-Stokes (RANS) approach has been widely used for the prediction of turbulent flows and associated pressure losses in a variety of internal flow systems such as a diffuser, orifice, converging nozzle, and pipes with sudden expansion. However, the lack of a general turbulence model often leads to limited applications of a RANS approach, i. e., the accuracy and validity of solutions obtained from RANS equations vary with the turbulence model, flow regime, near-wall treatment, and configuration of the problem. In light of the foregoing, a large amount of turbulence research has been conducted to assess the performance of existing turbulence models for different flow fields. In this paper, the turbulent flow in an axisymmetric sudden expansion is numerically investigated for a Reynolds number of 5.6 Χ 10 4 , with the aim of examining the performance of several turbulence models

  9. Nonlinear to Linear Elastic Code Coupling in 2-D Axisymmetric Media.

    Energy Technology Data Exchange (ETDEWEB)

    Preston, Leiph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Explosions within the earth nonlinearly deform the local media, but at typical seismological observation distances, the seismic waves can be considered linear. Although nonlinear algorithms can simulate explosions in the very near field well, these codes are computationally expensive and inaccurate at propagating these signals to great distances. A linearized wave propagation code, coupled to a nonlinear code, provides an efficient mechanism to both accurately simulate the explosion itself and to propagate these signals to distant receivers. To this end we have coupled Sandia's nonlinear simulation algorithm CTH to a linearized elastic wave propagation code for 2-D axisymmetric media (axiElasti) by passing information from the nonlinear to the linear code via time-varying boundary conditions. In this report, we first develop the 2-D axisymmetric elastic wave equations in cylindrical coordinates. Next we show how we design the time-varying boundary conditions passing information from CTH to axiElasti, and finally we demonstrate the coupling code via a simple study of the elastic radius.

  10. A high-order boundary integral method for surface diffusions on elastically stressed axisymmetric rods.

    Science.gov (United States)

    Li, Xiaofan; Nie, Qing

    2009-07-01

    Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratures along with an extrapolation technique, leading to an arbitrarily high-order quadrature; in addition, a high-order (temporal) integration factor method, based on explicit representation of the mean curvature, is used to reduce the stability constraint on time-step. To apply this method to a periodic (in axial direction) and axi-symmetric elastically stressed cylinder, we also present a fast and accurate summation method for the periodic Green's functions of isotropic elasticity. Using the high-order boundary integral method, we demonstrate that in absence of elasticity the cylinder surface pinches in finite time at the axis of the symmetry and the universal cone angle of the pinching is found to be consistent with the previous studies based on a self-similar assumption. In the presence of elastic stress, we show that a finite time, geometrical singularity occurs well before the cylindrical solid collapses onto the axis of symmetry, and the angle of the corner singularity on the cylinder surface is also estimated.

  11. Field simulation of axisymmetric plasma screw pinches by alternating-direction-implicit methods

    International Nuclear Information System (INIS)

    Lambert, M.A.

    1996-06-01

    An axisymmetric plasma screw pinch is an axisymmetric column of ionized gaseous plasma radially confined by forces from axial and azimuthal currents driven in the plasma and its surroundings. This dissertation is a contribution to detailed, high resolution computer simulation of dynamic plasma screw pinches in 2-d rz-coordinates. The simulation algorithm combines electron fluid and particle-in-cell (PIC) ion models to represent the plasma in a hybrid fashion. The plasma is assumed to be quasineutral; along with the Darwin approximation to the Maxwell equations, this implies application of Ampere's law without displacement current. Electron inertia is assumed negligible so that advective terms in the electron momentum equation are ignored. Electrons and ions have separate scalar temperatures, and a scalar plasma electrical resistivity is assumed. Altemating-direction-implicit (ADI) methods are used to advance the electron fluid drift velocity and the magnetic fields in the simulation. The ADI methods allow time steps larger than allowed by explicit methods. Spatial regions where vacuum field equations have validity are determined by a cutoff density that invokes the quasineutral vacuum Maxwell equations (Darwin approximation). In this dissertation, the algorithm was first checked against ideal MM stability theory, and agreement was nicely demonstrated. However, such agreement is not a new contribution to the research field. Contributions to the research field include new treatments of the fields in vacuum regions of the pinch simulation. The new treatments predict a level of magnetohydrodynamic turbulence near the bulk plasma surface that is higher than predicted by other methods

  12. Critical analysis of science textbooks evaluating instructional effectiveness

    CERN Document Server

    2013-01-01

    The critical analysis of science textbooks is vital in improving teaching and learning at all levels in the subject, and this volume sets out a range of academic perspectives on how that analysis should be done. Each chapter focuses on an aspect of science textbook appraisal, with coverage of everything from theoretical and philosophical underpinnings, methodological issues, and conceptual frameworks for critical analysis, to practical techniques for evaluation. Contributions from many of the most distinguished scholars in the field give this collection its sure-footed contemporary relevance, reflecting the international standards of UNESCO as well as leading research organizations such as the American Association for the Advancement of Science (whose Project 2061 is an influential waypoint in developing protocols for textbook analysis). Thus the book shows how to gauge aspects of textbooks such as their treatment of controversial issues, graphical depictions, scientific historiography, vocabulary usage, acc...

  13. A biosegmentation benchmark for evaluation of bioimage analysis methods

    Directory of Open Access Journals (Sweden)

    Kvilekval Kristian

    2009-11-01

    Full Text Available Abstract Background We present a biosegmentation benchmark that includes infrastructure, datasets with associated ground truth, and validation methods for biological image analysis. The primary motivation for creating this resource comes from the fact that it is very difficult, if not impossible, for an end-user to choose from a wide range of segmentation methods available in the literature for a particular bioimaging problem. No single algorithm is likely to be equally effective on diverse set of images and each method has its own strengths and limitations. We hope that our benchmark resource would be of considerable help to both the bioimaging researchers looking for novel image processing methods and image processing researchers exploring application of their methods to biology. Results Our benchmark consists of different classes of images and ground truth data, ranging in scale from subcellular, cellular to tissue level, each of which pose their own set of challenges to image analysis. The associated ground truth data can be used to evaluate the effectiveness of different methods, to improve methods and to compare results. Standard evaluation methods and some analysis tools are integrated into a database framework that is available online at http://bioimage.ucsb.edu/biosegmentation/. Conclusion This online benchmark will facilitate integration and comparison of image analysis methods for bioimages. While the primary focus is on biological images, we believe that the dataset and infrastructure will be of interest to researchers and developers working with biological image analysis, image segmentation and object tracking in general.

  14. A review of findings of a study of rocket based combined cycle engines applied to extensively axisymmetric single stage to orbit vehicles

    Science.gov (United States)

    Foster, Richard W.

    1992-01-01

    Extensively axisymmetric and non-axisymmetric Single Stage To Orbit (SSTO) vehicles are considered. The information is presented in viewgraph form and the following topics are presented: payload comparisons; payload as a percent of dry weight - a system hardware cost indicator; life cycle cost estimations; operations and support costs estimation; selected engine type; and rocket engine specific impulse calculation.

  15. Stress analysis and evaluation of a rectangular pressure vessel

    International Nuclear Information System (INIS)

    Rezvani, M.A.; Ziada, H.H.; Shurrab, M.S.

    1992-10-01

    This study addresses structural analysis and evaluation of an abnormal rectangular pressure vessel, designed to house equipment for drilling and collecting samples from Hanford radioactive waste storage tanks. It had to be qualified according to ASME boiler and pressure vessel code, Section VIII; however, it had the cover plate bolted along the long face, a configuration not addressed by the code. Finite element method was used to calculate stresses resulting from internal pressure; these stresses were then used to evaluate and qualify the vessel. Fatigue is not a concern; thus, it can be built according to Section VIII, Division I instead of Division 2. Stress analysis was checked against the code. A stayed plate was added to stiffen the long side of the vessel

  16. Evaluation of dairy effluent management options using multiple criteria analysis.

    Science.gov (United States)

    Hajkowicz, Stefan A; Wheeler, Sarah A

    2008-04-01

    This article describes how options for managing dairy effluent on the Lower Murray River in South Australia were evaluated using multiple criteria analysis (MCA). Multiple criteria analysis is a framework for combining multiple environmental, social, and economic objectives in policy decisions. At the time of the study, dairy irrigation in the region was based on flood irrigation which involved returning effluent to the river. The returned water contained nutrients, salts, and microbial contaminants leading to environmental, human health, and tourism impacts. In this study MCA was used to evaluate 11 options against 6 criteria for managing dairy effluent problems. Of the 11 options, the MCA model selected partial rehabilitation of dairy paddocks with the conversion of remaining land to other agriculture. Soon after, the South Australian Government adopted this course of action and is now providing incentives for dairy farmers in the region to upgrade irrigation infrastructure and/or enter alternative industries.

  17. Systematic Evaluation of Uncertainty in Material Flow Analysis

    DEFF Research Database (Denmark)

    Laner, David; Rechberger, Helmut; Astrup, Thomas Fruergaard

    2014-01-01

    Material flow analysis (MFA) is a tool to investigate material flows and stocks in defined systems as a basis for resource management or environmental pollution control. Because of the diverse nature of sources and the varying quality and availability of data, MFA results are inherently uncertain....... Uncertainty analyses have received increasing attention in recent MFA studies, but systematic approaches for selection of appropriate uncertainty tools are missing. This article reviews existing literature related to handling of uncertainty in MFA studies and evaluates current practice of uncertainty analysis......) and exploratory MFA (identification of critical parameters and system behavior). Whereas mathematically simpler concepts focusing on data uncertainty characterization are appropriate for descriptive MFAs, statistical approaches enabling more-rigorous evaluation of uncertainty and model sensitivity are needed...

  18. Evaluation of new control rooms by operator performance analysis

    International Nuclear Information System (INIS)

    Mori, M; Tomizawa, T.; Tai, I.; Monta, K.; Yoshimura, S.; Hattori, Y.

    1987-01-01

    An advanced supervisory and control system called PODIA TM (Plant Operation by Displayed Information and Automation) was developed by Toshiba. Since this system utilizes computer driven CRTs as a main device for information transfer to operators, thorough system integration tests were performed at the factory and evaluations were made of operators' assessment from the initial experience of the system. The PODIA system is currently installed at two BWR power plants. Based on the experiences from the development of PODIA, a more advanced man-machine interface, Advanced-PODIA (A-PODIA), is developed. A-PODIA enhances the capabilities of PODIA in automation, diagnosis, operational guidance and information display. A-PODIA has been validated by carrying out systematic experiments with a full-scope simulator developed for the validation. The results of the experiments have been analyzed by the method of operator performance analysis and applied to further improvement of the A-PODIA system. As a feedback from actual operational experience, operator performance data in simulator training is an important source of information to evaluate human factors of a control room. To facilitate analysis of operator performance, a performance evaluation system has been developed by applying AI techniques. The knowledge contained in the performance evaluation system was elicited from operator training experts and represented as rules. The rules were implemented by employing an object-oriented paradigm to facilitate knowledge management. In conclusion, it is stated that the feedback from new control room operation can be obtained at an early stage by validation tests and also continuously by comprehensive evaluation (with the help of automated tools) of operator performance in simulator training. The results of operator performance analysis can be utilized for improvement of system design as well as operator training. (author)

  19. Knowledge construction about port performance evaluation: An international literature analysis

    Directory of Open Access Journals (Sweden)

    Karine Somensi

    2017-10-01

    Full Text Available Purpose: This study aims at identifying and analyzing the characteristics of international scientific research that address the literature fragment referring to the Port Performance Evaluation to identify the existence of theoretical alignment of Performance Evaluation notion, as an area of knowledge, with practical area stage, the Port Performance Evaluation. Design/Methodology/Approach: The approach the problem, this paper makes use of qualitative research, since it analyzes the Bibliographical Portfolio characteristics related to the Performance Evaluation Port. The strategy adopted was action research where the authors through their analysis and interpretation made the selection of the  Bibliographical Portfolio. Findings: From the analyzed literature fragment it was possible to identify some misalignment between what has been pointed out in the literature regarding the management practices in the port sector. This discrepancy refers to the management practices that are ignored by port managers, which implies the loss of opportunities and may even come to jeopardize the organization's performance. Research limitations/implications: The literature search was restricted to articles written in the English language, published in indexed scientific journals in the selected databases (ii the restriction by the time limit of articles published after the year 2000; (iii the generation of knowledge based on the characteristics selected by the researchers and (iv the analysis of BP articles regarding the  by the judgment and interpretation of this research authors. It is suggested for future work the expanding this research to other databases, other languages, other features, and continuity of this investigation with the development of "systemic analysis' and 'identifying research opportunities' stages through ProKnow-C. Originality/value: Although two similar works have been developed in the same area of research in 2015, the results achieved have

  20. Structural analysis and evaluation for the design of pressure vessel

    International Nuclear Information System (INIS)

    Arai, K.; Uragami, K.; Funada, T.; Baba, K.; Kira, T.

    1977-01-01

    For the design of pressure vessel, the detailed structural analysis such as the fatigue analysis under operating conditions is required by ASME Code or Japanese regulation. Accordingly, it should be verified by the analysis that the design of the pressure vessel is in compliance with the stress limitation defined in the Code or the regulation. However, it was apparent that the analysis is very complicated and takes a lot of time to evaluate in accordance with the Code requirements. Thereupon we developed the computer program by which we can perform the stress analysis with correctness and comparatively in a short period of design work reflecting the calculation results on detailed drawings to be used for fabrication. The computer program is controlled in combination with the system of the design work and out put list of the program can be directly used for the stress analysis report which is issued to customers. In addition to the above computer program, we developed the specific three dimensional finite element computer program to make sure of the structural integrity of the vessel head and flanges which are most complex for the analysis compared with the stress distribution measured by strain gauges on the vessel head and flange. Besides the structural analysis, the fracture mechanics analysis for the purpose of preventing the pressure vessel from the brittle fracture during heat-up and cool-down operation is also important and thereby we showed herein that the pressure vessel is in safety against the brittle fracture for the specified operating conditions. As a result of the above-mentioned analysis, the pressure vessel is designed with safety from the stand-points of the structural intensity and the fracture mechanics. (auth.)

  1. Argumentative Bluff in Eristic Discussion: An Analysis and Evaluation

    OpenAIRE

    van Laar, Jan Albert

    2010-01-01

    How does the analysis and evaluation of argumentation depend on the dialogue type in which the argumentation has been put forward? This paper focuses on argumentative bluff in eristic discussion. Argumentation cannot be presented without conveying the pretence that it is dialectically reasonable, as well as, at least to some degree, rhetorically effective. Within eristic discussion it can be profitable to engage in bluff with respect to such claims. However, it will be argued that such bluffi...

  2. Homogeneity evaluation of mesenchymal stem cells based on electrotaxis analysis

    OpenAIRE

    Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Kim, Dohyun; Koo, Min-Ah; Seon, Gyeung Mi; Park, Jong-Chul

    2017-01-01

    Stem cell therapy that can restore function to damaged tissue, avoid host rejection and reduce inflammation throughout body without use of immunosuppressive drugs. The established methods were used to identify and to isolate specific stem cell markers by FACS or by immunomagnetic cell separation. The procedures for distinguishing population of stem cells took a time and needed many preparations. Here we suggest an electrotaxis analysis as a new method to evaluate the homogeneity of mesenchyma...

  3. Office for Analysis and Evaluation of Operational Data

    International Nuclear Information System (INIS)

    1990-07-01

    The annual report of the US Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data (AEOD) is devoted to the activities performed during 1989. The report covers nonreactors and presents a review of the events and concerns during 1989 associated with the use of licensed material in nonreactor applications, such as personnel overexposures and medical misadministrations. This volume contains a list of the AEOD reports issued for 1980--1989. 5 tabs

  4. EVALUATION OF BARTIN CITY ECONOMIC CONSTRUCT WITH DIGITALIZED SWOT ANALYSIS

    Directory of Open Access Journals (Sweden)

    NERMİN ÇELİK

    2013-06-01

    Full Text Available In this study, firstly besides weakness and strengths of Bartın economy, threats and opportunities were presented by means of SWOT analysis. Secondly obtained findings were evaluated in comparative way and priority weights of each one were calculated by means of Analytic Hierarchy Process (AHP which is an evaluation approach with multiple criteria. Finally, the weak aspects were taken attention on the basis of quantitative findings and the alternative strategies towards to economic development of the city were presented. The weakest side of the city is high unemployment ratio and immigration problem, the most strength side of the city is the using for trading of Bartın port. Besides preparing that study as a first for Bartın city which is within the Encouragement Law, offering the solutions by evaluating the current and potential situations can be described as original sides of this study.

  5. Expert systems for space power supply: design, analysis, and evaluation

    International Nuclear Information System (INIS)

    Cooper, R.S.; Thomson, M.K.; Hoshor, A.

    1987-01-01

    The authors evaluated the feasibility of applying expert systems to the conceptual design, analysis, and evaluation of space power supplies in particular, and complex systems in general. To do this, they analyzed the space power supply design process and in associated knowledge base, and characterized them in a form suitable for computer emulation of a human expert. The existing expert system tools and the results achieved with them were evaluated to assess their applicability to power system design. They applied some new concepts for combining program architectures (modular expert systems and algorithms) with information about the domain to create a deep system for handling the complex design problem. They authors developed, programmed and tested NOVICE, a code to solve a simplified version of a scoping study of a wide variety of power supply types for a broad range of missions, as a concrete feasibility demonstration

  6. Evaluation of Apache Hadoop for parallel data analysis with ROOT

    International Nuclear Information System (INIS)

    Lehrack, S; Duckeck, G; Ebke, J

    2014-01-01

    The Apache Hadoop software is a Java based framework for distributed processing of large data sets across clusters of computers, using the Hadoop file system (HDFS) for data storage and backup and MapReduce as a processing platform. Hadoop is primarily designed for processing large textual data sets which can be processed in arbitrary chunks, and must be adapted to the use case of processing binary data files which cannot be split automatically. However, Hadoop offers attractive features in terms of fault tolerance, task supervision and control, multi-user functionality and job management. For this reason, we evaluated Apache Hadoop as an alternative approach to PROOF for ROOT data analysis. Two alternatives in distributing analysis data were discussed: either the data was stored in HDFS and processed with MapReduce, or the data was accessed via a standard Grid storage system (dCache Tier-2) and MapReduce was used only as execution back-end. The focus in the measurements were on the one hand to safely store analysis data on HDFS with reasonable data rates and on the other hand to process data fast and reliably with MapReduce. In the evaluation of the HDFS, read/write data rates from local Hadoop cluster have been measured and compared to standard data rates from the local NFS installation. In the evaluation of MapReduce, realistic ROOT analyses have been used and event rates have been compared to PROOF.

  7. Evaluation of Apache Hadoop for parallel data analysis with ROOT

    Science.gov (United States)

    Lehrack, S.; Duckeck, G.; Ebke, J.

    2014-06-01

    The Apache Hadoop software is a Java based framework for distributed processing of large data sets across clusters of computers, using the Hadoop file system (HDFS) for data storage and backup and MapReduce as a processing platform. Hadoop is primarily designed for processing large textual data sets which can be processed in arbitrary chunks, and must be adapted to the use case of processing binary data files which cannot be split automatically. However, Hadoop offers attractive features in terms of fault tolerance, task supervision and control, multi-user functionality and job management. For this reason, we evaluated Apache Hadoop as an alternative approach to PROOF for ROOT data analysis. Two alternatives in distributing analysis data were discussed: either the data was stored in HDFS and processed with MapReduce, or the data was accessed via a standard Grid storage system (dCache Tier-2) and MapReduce was used only as execution back-end. The focus in the measurements were on the one hand to safely store analysis data on HDFS with reasonable data rates and on the other hand to process data fast and reliably with MapReduce. In the evaluation of the HDFS, read/write data rates from local Hadoop cluster have been measured and compared to standard data rates from the local NFS installation. In the evaluation of MapReduce, realistic ROOT analyses have been used and event rates have been compared to PROOF.

  8. Evaluation of gastric motility by Fourier analysis of condensed images

    International Nuclear Information System (INIS)

    Linke, R.; Muenzing, W.; Hahn, K.; Tatsch, K.

    2000-01-01

    In this study Fourier analysis was applied to condensed images of gastric emptying with the aim of evaluating the amplitude and frequency of gastric contractions as well as gastric emptying in patients with various well-defined disorders. In 15 controls, 65 patients with progressive systemic sclerosis (PSS), 41 patients with diabetes mellitus type I (DM), 12 patients with pyloric stenosis and 9 patients who had undergone gastric surgery, gastric emptying was determined after ingestion of a semi-solid test meal. In addition, condensed images were generated to evaluate the amplitude and frequency of gastric contractions by means of Fourier analysis. In PSS and DM patients, gastric emptying and contraction amplitudes were significantly reduced (P<0.01). Patients with pyloric stenosis displayed regular peristalsis but significantly delayed emptying (P<0.01). Patients who had undergone gastric surgery showed normal or rapid gastric emptying associated with decreased amplitudes (P<0.01). The frequency of gastric contractions in the patient groups was not different from that in controls. This study showed Fourier analysis of condensed images to be a rapid and feasible approach for the evaluation of gastric contractions. Depending on the underlying disorder, gastric emptying and peristalsis showed both corresponding and discrepant findings. Data on gastric contractions provided additional information compared with results obtained by conventional emptying studies. Therefore, both parameters should be routinely assessed to further improve characterisation of gastric dysfunction by scintigraphy. (orig.)

  9. Evaluation of gastric motility by Fourier analysis of condensed images

    Energy Technology Data Exchange (ETDEWEB)

    Linke, R.; Muenzing, W.; Hahn, K.; Tatsch, K. [Dept. of Nuclear Medicine, Univ. of Munich, Munich (Germany)

    2000-10-01

    In this study Fourier analysis was applied to condensed images of gastric emptying with the aim of evaluating the amplitude and frequency of gastric contractions as well as gastric emptying in patients with various well-defined disorders. In 15 controls, 65 patients with progressive systemic sclerosis (PSS), 41 patients with diabetes mellitus type I (DM), 12 patients with pyloric stenosis and 9 patients who had undergone gastric surgery, gastric emptying was determined after ingestion of a semi-solid test meal. In addition, condensed images were generated to evaluate the amplitude and frequency of gastric contractions by means of Fourier analysis. In PSS and DM patients, gastric emptying and contraction amplitudes were significantly reduced (P<0.01). Patients with pyloric stenosis displayed regular peristalsis but significantly delayed emptying (P<0.01). Patients who had undergone gastric surgery showed normal or rapid gastric emptying associated with decreased amplitudes (P<0.01). The frequency of gastric contractions in the patient groups was not different from that in controls. This study showed Fourier analysis of condensed images to be a rapid and feasible approach for the evaluation of gastric contractions. Depending on the underlying disorder, gastric emptying and peristalsis showed both corresponding and discrepant findings. Data on gastric contractions provided additional information compared with results obtained by conventional emptying studies. Therefore, both parameters should be routinely assessed to further improve characterisation of gastric dysfunction by scintigraphy. (orig.)

  10. [Evaluation of dental plaque by quantitative digital image analysis system].

    Science.gov (United States)

    Huang, Z; Luan, Q X

    2016-04-18

    To analyze the plaque staining image by using image analysis software, to verify the maneuverability, practicability and repeatability of this technique, and to evaluate the influence of different plaque stains. In the study, 30 volunteers were enrolled from the new dental students of Peking University Health Science Center in accordance with the inclusion criteria. The digital images of the anterior teeth were acquired after plaque stained according to filming standardization.The image analysis was performed using Image Pro Plus 7.0, and the Quigley-Hein plaque indexes of the anterior teeth were evaluated. The plaque stain area percentage and the corresponding dental plaque index were highly correlated,and the Spearman correlation coefficient was 0.776 (Pchart showed only a few spots outside the 95% consistency boundaries. The different plaque stains image analysis results showed that the difference of the tooth area measurements was not significant, while the difference of the plaque area measurements significant (P<0.01). This method is easy in operation and control,highly related to the calculated percentage of plaque area and traditional plaque index, and has good reproducibility.The different plaque staining method has little effect on image segmentation results.The sensitive plaque stain for image analysis is suggested.

  11. Applying Hierarchical Task Analysis Method to Discovery Layer Evaluation

    Directory of Open Access Journals (Sweden)

    Marlen Promann

    2015-03-01

    Full Text Available Libraries are implementing discovery layers to offer better user experiences. While usability tests have been helpful in evaluating the success or failure of implementing discovery layers in the library context, the focus has remained on its relative interface benefits over the traditional federated search. The informal site- and context specific usability tests have offered little to test the rigor of the discovery layers against the user goals, motivations and workflow they have been designed to support. This study proposes hierarchical task analysis (HTA as an important complementary evaluation method to usability testing of discovery layers. Relevant literature is reviewed for the discovery layers and the HTA method. As no previous application of HTA to the evaluation of discovery layers was found, this paper presents the application of HTA as an expert based and workflow centered (e.g. retrieving a relevant book or a journal article method to evaluating discovery layers. Purdue University’s Primo by Ex Libris was used to map eleven use cases as HTA charts. Nielsen’s Goal Composition theory was used as an analytical framework to evaluate the goal carts from two perspectives: a users’ physical interactions (i.e. clicks, and b user’s cognitive steps (i.e. decision points for what to do next. A brief comparison of HTA and usability test findings is offered as a way of conclusion.

  12. Safety analysis and evaluation of the next fusion device

    International Nuclear Information System (INIS)

    Kobayashi, Shigetada; Honda, Tsutomu; Ohmura, Hiroshi; Kawai, Masayoshi; Shimizu, Takeshi; Yamaoka, Mitsuaki; Nakahara, Katsuhiko; Seki, Yasushi.

    1988-12-01

    As a part of safety evaluation, a probabilistic risk assessment (PRA) has been attempted for the Next Fusion Device system. Among the various events related to safety, a number of representative events have been selected for assessment, from the events in normal operation state, repair and maintenance state and accidental state. In the first chapter, in order to conduct the probabilistic risk assessment of the whole Fusion Experimental Reactor (FER), the data base required for the analysis was investigated in 1.1, the results on the failure mode and effects analysis (FMEA), accident sequence, radioactive inventory leakage flow path, event tree analysis (ETA) and fault tree analysis (FTA) were summarized in 1.2 to 1.5, respectively. Based on these results, accident initiating events were evaluated in 1.6, and overall risk was assessed in 1.7 and the tasks for the future were summarized in 1.8. It is important to analyze and evaluate various events during normal operations, repair and maintenance and accidents. However, due to the large uncertainties in the modeling of phenomena or the data base, there are many events for which realistic analyses are difficult. Three such events were selected and studied in chapter two. In 2.1, the temperature rise in the reactor structure after the Loss-of-Coolant-Accident caused by the decay heat under various heat removal conditions were investigated. In 2.2, the radiation dose of personnel during repair and maintenance period caused by the release of activated dust were estimated. Lastly, in 2.3 tritium behavior in the stainless steel first wall and graphite armour were studied. (author)

  13. Studies on scaling of flow noise received at the stagnation point of an axisymmetric body

    Science.gov (United States)

    Arakeri, V. H.; Satyanarayana, S. G.; Mani, K.; Sharma, S. D.

    1991-05-01

    A description of the studies related to the problem of scaling of flow noise received at the stagnation point of axisymmetric bodies is provided. The source of flow noise under consideration is the transitional/turbulent regions of the boundary layer flow on the axisymmetric body. Lauchle has recently shown that the noise measured in the laminar region (including the stagnation point) corresponds closely to the noise measured in the transition region, provided that the acoustic losses due to diffraction are accounted for. The present study includes experimental measurement of flow noise at the stagnation point of three different shaped axisymmetric headforms. One of the body shapes chosen is that used by Lauchle in similar studies. This was done to establish the effect of body size on flow noise. The results of the experimental investigations clearly show that the flow noise received at the stagnation point is a strong function of free stream velocity, a moderately strong function of body scale but a weak function of boundary layer thickness. In addition, there is evidence that when body scale change is involved, flow noise amplitude scales but no frequency shift is involved. A scaling procedure is proposed based on the present observations along with those of Lauchle. At a given frequency, the amplitude of noise level obtained under model testing conditions is first scaled to account for differences in the velocity and size corresponding to the prototype conditions; then a correction to this is applied to account for losses due to diffraction, which are estimated on the basis of the geometric theory of diffraction (GTD) with the source being located at the predicted position of turbulent transition. Use of the proposed scaling law to extrapolate presently obtained noise levels to two other conditions involving larger-scale bodies show good agreement with actually measured levels, in particular at higher frequencies. Since model scale results have been used

  14. Direct methods of soil-structure interaction analysis for earthquake loadings(II)

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Chung Bang; Lee, S R; Kim, J M; Park, K L; Oh, S B; Choi, J S; Kim, Y S [Korea Advanced Institute of Science Technology, Daejeon (Korea, Republic of)

    1994-07-15

    In this study, methods for 3-D soil-structure interaction analysis have been studied. They are 3-D axisymmetric analysis method, 3-D axisymmetric finite element method incorporating infinite elements, and 3-D boundary element methods. The computer code, named as 'KIESSI - PF', has been developed which is based on the 3-D axisymmetric finite element method coupled with infinite element method. It is able to simulate forced vibration test results of a soil-structure interaction system. The Hualien FVT post-correlation analysis before backfill and the blind prediction analysis after backfill have been carried out using the developed computer code 'KIESSI - PF'.

  15. Direct methods of soil-structure interaction analysis for earthquake loadings(II)

    International Nuclear Information System (INIS)

    Yun, Chung Bang; Lee, S. R.; Kim, J. M.; Park, K. L.; Oh, S. B.; Choi, J. S.; Kim, Y. S.

    1994-07-01

    In this study, methods for 3-D soil-structure interaction analysis have been studied. They are 3-D axisymmetric analysis method, 3-D axisymmetric finite element method incorporating infinite elements, and 3-D boundary element methods. The computer code, named as 'KIESSI - PF', has been developed which is based on the 3-D axisymmetric finite element method coupled with infinite element method. It is able to simulate forced vibration test results of a soil-structure interaction system. The Hualien FVT post-correlation analysis before backfill and the blind prediction analysis after backfill have been carried out using the developed computer code 'KIESSI - PF'

  16. Aeroacoustic power generated by a compact axisymmetric cavity: Prediction of self-sustained osciallation and influence of depth

    NARCIS (Netherlands)

    Nakiboglu, G.; Manders, H.B.M.; Hirschberg, Abraham

    2012-01-01

    Aeroacoustic power generation due to a self-sustained oscillation by an axisymmetric compact cavity exposed to a low-Mach-number grazing flow is studied both experimentally and numerically. The feedback effect is produced by the velocity fluctuations resulting from a coupling with acoustic standing

  17. Streamline topology of steady axisymmetric vortex breakdown in a cylinder with co- and counter-rotating end-covers

    DEFF Research Database (Denmark)

    Brøns, Morten; Voigt, Lars Peter Køllgaard; Sørensen, Jens Nørkær

    1998-01-01

    Using a combination of bifurcation theory for two-dimensional dynamical systems and numerical simulations, we systematically determine the possible flow topologies of the steady vortex breakdown in axisymmetric flow in a cylindrical container with rotating end-covers. For fixed values...

  18. Streamline topology of steady axisymmetric vortex breakdown in a cylinder with co- and counter-rotating end-covers

    DEFF Research Database (Denmark)

    Brøns, Morten; Voigt, Lars Peter Kølgaard; Sørensen, Jens Nørkær

    1999-01-01

    Using a combination of bifurcation theory for two-dimensional dynamical systems and numerical simulations, we systematically determine the possible flow topologies of the steady vortex breakdown in axisymmetric flow in a cylindrical container with rotating end-covers. For fixed values of the ratio...

  19. Evaluation of electrolytic alkaline cleaners by evaporative-rate analysis

    International Nuclear Information System (INIS)

    Hamilton, C.B.

    1975-01-01

    A method has been developed by which electrolytic alkaline cleaners used in large volumes in steel mills can be evaluated for their ability to clean rolling oil from steel strip without the necessity of large-scale mill trials. The method is evaporative-rate analysis, which can be used to determine the relative amount of residual oil on steel strip after cleaning. The procedure consists in placing a droplet of a solution of a volatile, radioactive, carbon-14 tagged organic compound dissolved in a more volatile solvent, on the surface of the metal, where it forms a ternary solution with any oil on the surface. The amount of oil in this ternary solution affects the rate of evaporation of the tagged compound. The rate of evaporation, monitored by a Geiger-Mueller detector, is a measure of the cleanliness of the surface. A number of commercial alkaline cleaners, both solids and liquids, were evaluated over a range of concentrations. Results indicated that the effectiveness of commercial alkaline cleaners varies greatly, and is a function of the cleaner concentration, cleaner composition, and polarity of cleaning. The presence of antifoaming agents also affects cleaning ability. The results of this study indicate that evaporative-rate analysis is a rapid and effective method for evaluating cleaners

  20. Using fractal analysis of thermal signatures for thyroid disease evaluation

    Science.gov (United States)

    Gavriloaia, Gheorghe; Sofron, Emil; Gavriloaia, Mariuca-Roxana; Ghemigean, Adina-Mariana

    2010-11-01

    The skin is the largest organ of the body and it protects against heat, light, injury and infection. Skin temperature is an important parameter for diagnosing diseases. Thermal analysis is non-invasive, painless, and relatively inexpensive, showing a great potential research. Since the thyroid regulates metabolic rate it is intimately connected to body temperature, more than, any modification of its function generates a specific thermal image on the neck skin. The shapes of thermal signatures are often irregular in size and shape. Euclidean geometry is not able to evaluate their shape for different thyroid diseases, and fractal geometry is used in this paper. Different thyroid diseases generate different shapes, and their complexity are evaluated by specific mathematical approaches, fractal analysis, in order to the evaluate selfsimilarity and lacunarity. Two kinds of thyroid diseases, hyperthyroidism and papillary cancer are analyzed in this paper. The results are encouraging and show the ability to continue research for thermal signature to be used in early diagnosis of thyroid diseases.

  1. Evaluation of Analysis by Cross-Validation, Part II: Diagnostic and Optimization of Analysis Error Covariance

    Directory of Open Access Journals (Sweden)

    Richard Ménard

    2018-02-01

    Full Text Available We present a general theory of estimation of analysis error covariances based on cross-validation as well as a geometric interpretation of the method. In particular, we use the variance of passive observation-minus-analysis residuals and show that the true analysis error variance can be estimated, without relying on the optimality assumption. This approach is used to obtain near optimal analyses that are then used to evaluate the air quality analysis error using several different methods at active and passive observation sites. We compare the estimates according to the method of Hollingsworth-Lönnberg, Desroziers et al., a new diagnostic we developed, and the perceived analysis error computed from the analysis scheme, to conclude that, as long as the analysis is near optimal, all estimates agree within a certain error margin.

  2. Accident Sequence Evaluation Program: Human reliability analysis procedure

    Energy Technology Data Exchange (ETDEWEB)

    Swain, A.D.

    1987-02-01

    This document presents a shortened version of the procedure, models, and data for human reliability analysis (HRA) which are presented in the Handbook of Human Reliability Analysis With emphasis on Nuclear Power Plant Applications (NUREG/CR-1278, August 1983). This shortened version was prepared and tried out as part of the Accident Sequence Evaluation Program (ASEP) funded by the US Nuclear Regulatory Commission and managed by Sandia National Laboratories. The intent of this new HRA procedure, called the ''ASEP HRA Procedure,'' is to enable systems analysts, with minimal support from experts in human reliability analysis, to make estimates of human error probabilities and other human performance characteristics which are sufficiently accurate for many probabilistic risk assessments. The ASEP HRA Procedure consists of a Pre-Accident Screening HRA, a Pre-Accident Nominal HRA, a Post-Accident Screening HRA, and a Post-Accident Nominal HRA. The procedure in this document includes changes made after tryout and evaluation of the procedure in four nuclear power plants by four different systems analysts and related personnel, including human reliability specialists. The changes consist of some additional explanatory material (including examples), and more detailed definitions of some of the terms. 42 refs.

  3. Accident Sequence Evaluation Program: Human reliability analysis procedure

    International Nuclear Information System (INIS)

    Swain, A.D.

    1987-02-01

    This document presents a shortened version of the procedure, models, and data for human reliability analysis (HRA) which are presented in the Handbook of Human Reliability Analysis With emphasis on Nuclear Power Plant Applications (NUREG/CR-1278, August 1983). This shortened version was prepared and tried out as part of the Accident Sequence Evaluation Program (ASEP) funded by the US Nuclear Regulatory Commission and managed by Sandia National Laboratories. The intent of this new HRA procedure, called the ''ASEP HRA Procedure,'' is to enable systems analysts, with minimal support from experts in human reliability analysis, to make estimates of human error probabilities and other human performance characteristics which are sufficiently accurate for many probabilistic risk assessments. The ASEP HRA Procedure consists of a Pre-Accident Screening HRA, a Pre-Accident Nominal HRA, a Post-Accident Screening HRA, and a Post-Accident Nominal HRA. The procedure in this document includes changes made after tryout and evaluation of the procedure in four nuclear power plants by four different systems analysts and related personnel, including human reliability specialists. The changes consist of some additional explanatory material (including examples), and more detailed definitions of some of the terms. 42 refs

  4. Performance evaluation of existing building structure with pushover analysis

    Science.gov (United States)

    Handana, MAP; Karolina, R.; Steven

    2018-02-01

    In the management of the infrastructure of the building, during the period of buildings common building damage as a result of several reasons, earthquakes are common. The building is planned to work for a certain service life. But during the certain service life, the building vulnerable to damage due to various things. Any damage to cultivate can be detected as early as possible, because the damage could spread, triggering and exacerbating the latest. The newest concept to earthquake engineering is Performance Based Earthquake Engineering (PBEE). PBEE divided into two, namely Performance Based Seismic Design (PBSD) and Performance Based Seismic Evaluation (PBSE). Evaluation on PBSE one of which is the analysis of nonlinear pushover. Pushover analysis is a static analysis of nonlinear where the influence of the earthquake plan on building structure is considered as burdens static catch at the center of mass of each floor, which it was increased gradually until the loading causing the melting (plastic hinge) first within the building structure, then the load increases further changes the shapes of post-elastic large it reached the condition of elastic. Then followed melting (plastic hinge) in the location of the other structured.

  5. Rethinking ASME III seismic analysis for piping operability evaluations

    International Nuclear Information System (INIS)

    Adams, T.M.; Stevenson, J.D.

    1994-01-01

    It has been recognized since the mid 1980's that there are very large seismic margins to failure for nuclear piping systems when designed using current industry practice, design criteria, and methods. As a result of this realization there are or have been approximately eighteen initiatives within the ASME , Boiler and Pressure Vessel Code Section III, Division 1, in the form of proposed code cases and proposed code text changes designed to reduce these failure margins to more realistic values. For the most part these initiatives have concentrated on reclassifying seismic inertia stresses in the piping as secondary and increasing the allowable stress limits permitted by Section III of the ASME, Boiler Code. This paper focuses on the application of non-linear spectral analysis methods as a method to reduce the input seismic demand determination and thereby reduce the seismic failure margins. The approach is evaluated using the ASME Boiler Pressure Vessel Code Section III Subgroup on Design benchmark procedure as proposed by the Subgroup's Special Task Group on Integrated Piping Criteria. Using this procedure, criteria are compared to current code criterion and analysis methods, and several other of the currently proposed Boiler and Pressure Vessel, Section III, changes. Finally, the applicability of the non-linear spectral analysis to continued Safe Operation Evaluations is reviewed and discussed

  6. Evaluation of fat grains in gothaj sausage using image analysis

    Directory of Open Access Journals (Sweden)

    Ludmila Luňáková

    2016-12-01

    Full Text Available Fat is an irreplacable ingredient in the production of sausages and it determines the appearance of the resulting cut to a significant extent. When shopping, consumers choose a traditional product mostly according to its appearance, based onwhat they are used to. Chemical analysis is capable to determine the total fat content in the product, but it cannot accurately describe the shape and size of fat grains which the consumer observes when looking at the product. The size of fat grains considered acceptable by consumers can be determined using sensory analysis or image analysis. In recent years, image analysis has become widely used when examining meat and meat products. Compared to the human eye, image analysis using a computer system is highly effective, since a correctly adjusted computer program is able to evaluate results with lower error rate. The most commonly monitored parameter in meat products is the aforementioned fat. The fat is located in the cut surface of the product in the form of dispersed particles which can be fairly reliably identified based on color differences in the individual parts of the product matrix. The size of the fat grains depends on the input raw material used as well as on the production technology. The present article describes the application of image analysis when evaluating fat grains in the appearance of cut of the Gothaj sausage whose sensory requirements are set by Czech legislation, namely by Decree No. 326/2001 Coll., as amended. The paper evaluates the size of fat mosaic grains in Gothaj sausages from different manufacturers. Fat grains were divided into ten size classes according to various size limits; specifically, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 5.0, 8.0 and over 8 mm. The upper limit of up to 8 mm in diameter was chosen based on the limit for the size of individual fat grains set by the legislation. This upper limit was not exceeded by any of the products. On the other side the mosaic had the

  7. Nuclear data evaluation and group constant generation for reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Do; Lee, Jong Tae; Min, Byung Joo; Gil, Choong Sup [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of)

    1991-01-01

    In nuclear or shielding design analysis for reactors or other facilities, nuclear data are one of the primary importances. Research project for nuclear data evaluation and their effective applications has been continuously performed. The objectives of this project are (1) to compile the latest evaluated nuclear data files, (2) to establish their processing code systems, and (3) to evaluate the multi- group constant library using the newly compiled data files and the code systems. As the results of this project, ENDF/B-VI Supplementary File including important nuclides, JENDL-3.1 and JEF-1 were compiled, and ENDF-6 international computer file format for evaluated nuclear data and its processing system NJOY89.31 were tested with ENDF/B-VI data. In order to test an applicability of the newly released data to thermal reactor problems, a number of benchmark calculations were performed, and the results were analyzed. Since preliminary benchmark testing of thermal reactor problems have been made the newly compiled data are expected to be positively used to develop advanced reactors. (Author).

  8. Nuclear data evaluation and group constant generation for reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Do; Gil, Choong Sup; Min, Byung Joo; Lee, Jong Tai [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1993-01-01

    In nuclear or shielding design analysis for reactors or other facilities, nuclear data are one of the primary importances. Research project for nuclear data evaluation and their effective applications has been continuously performed. The objectives of this project are (1) to compile the latest evaluated nuclear data files, (2) to establish their processing code systems, and (3) to evaluate the multi-group constant library using the newly compiled data files and the code systems. As the results of this project, the latest version of NJOY nuclear data processing system, NJOY91.38 which is capable of processing data in ENDF-6 format, was compiled and installed in Cyber 960-31(OS : NOS/VE) and HP710 workstation. A 50-group constant library for fast reactor was generated with NJOY91.38 using evaluated data from JEF-1 and benchmark test of this library was performed. The newly generated library has been found to do an excellent job of calculating integral quantities for fast critical assemblies and is expected to be positively used to develop fast reactors. (Author).

  9. Nuclear data evaluation and group constant generation for reactor analysis

    International Nuclear Information System (INIS)

    Kim, Jung Do; Lee, Jong Tae; Min, Byung Joo; Gil, Choong Sup

    1991-01-01

    In nuclear or shielding design analysis for reactors or other facilities, nuclear data are one of the primary importances. Research project for nuclear data evaluation and their effective applications has been continuously performed. The objectives of this project are (1) to compile the latest evaluated nuclear data files, (2) to establish their processing code systems, and (3) to evaluate the multi- group constant library using the newly compiled data files and the code systems. As the results of this project, ENDF/B-VI Supplementary File including important nuclides, JENDL-3.1 and JEF-1 were compiled, and ENDF-6 international computer file format for evaluated nuclear data and its processing system NJOY89.31 were tested with ENDF/B-VI data. In order to test an applicability of the newly released data to thermal reactor problems, a number of benchmark calculations were performed, and the results were analyzed. Since preliminary benchmark testing of thermal reactor problems have been made the newly compiled data are expected to be positively used to develop advanced reactors. (Author)

  10. Predictions of toroidal rotation and torque sources arising in non-axisymmetric perturbed magnetic fields in tokamaks

    Science.gov (United States)

    Honda, M.; Satake, S.; Suzuki, Y.; Shinohara, K.; Yoshida, M.; Narita, E.; Nakata, M.; Aiba, N.; Shiraishi, J.; Hayashi, N.; Matsunaga, G.; Matsuyama, A.; Ide, S.

    2017-11-01

    Capabilities of the integrated framework consisting of TOPICS, OFMC, VMEC and FORTEC-3D, have been extended to calculate toroidal rotation in fully non-axisymmetric perturbed magnetic fields for demonstrating operation scenarios in actual tokamak geometry and conditions. The toroidally localized perturbed fields due to the test blanket modules and the tangential neutral beam ports in ITER augment the neoclassical toroidal viscosity (NTV) substantially, while do not significantly influence losses of beam ions and alpha particles in an ITER L-mode discharge. The NTV takes up a large portion of total torque in ITER and fairly decelerates toroidal rotation, but the change in toroidal rotation may have limited effectiveness against turbulent heat transport. The error field correction coils installed in JT-60SA can externally apply the perturbed fields, which may alter the NTV and the resultant toroidal rotation profiles. However, the non-resonant n=18 components of the magnetic fields arising from the toroidal field ripple mainly contribute to the NTV, regardless of the presence of the applied field by the coil current of 10 kA , where n is the toroidal mode number. The theoretical model of the intrinsic torque due to the fluctuation-induced residual stress is calibrated by the JT-60U data. For five JT-60U discharges, the sign of the calibration factor conformed to the gyrokinetic linear stability analysis and a range of the amplitude thereof was revealed. This semi-empirical approach opens up access to an attempt on predicting toroidal rotation in H-mode plasmas.

  11. Global gene expression analysis for evaluation and design of biomaterials

    Directory of Open Access Journals (Sweden)

    Nobutaka Hanagata, Taro Takemura and Takashi Minowa

    2010-01-01

    Full Text Available Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data.

  12. Hierarchic Analysis Method to Evaluate Rock Burst Risk

    Directory of Open Access Journals (Sweden)

    Ming Ji

    2015-01-01

    Full Text Available In order to reasonably evaluate the risk of rock bursts in mines, the factors impacting rock bursts and the existing grading criterion on the risk of rock bursts were studied. By building a model of hierarchic analysis method, the natural factors, technology factors, and management factors that influence rock bursts were analyzed and researched, which determined the degree of each factor’s influence (i.e., weight and comprehensive index. Then the grade of rock burst risk was assessed. The results showed that the assessment level generated by the model accurately reflected the actual risk degree of rock bursts in mines. The model improved the maneuverability and practicability of existing evaluation criteria and also enhanced the accuracy and science of rock burst risk assessment.

  13. Pareto analysis of critical factors affecting technical institution evaluation

    Directory of Open Access Journals (Sweden)

    Victor Gambhir

    2012-08-01

    Full Text Available With the change of education policy in 1991, more and more technical institutions are being set up in India. Some of these institutions provide quality education, but others are merely concentrating on quantity. These stakeholders are in a state of confusion about decision to select the best institute for their higher educational studies. Although various agencies including print media provide ranking of these institutions every year, but their results are controversial and biased. In this paper, the authors have made an endeavor to find the critical factors for technical institution evaluation from literature survey. A Pareto analysis has also been performed to find the intensity of these critical factors in evaluation. This will not only help the stake holders in taking right decisions but will also help the management of institutions in benchmarking for identifying the most important critical areas to improve the existing system. This will in turn help Indian economy.

  14. AEOD (Office for Analysis and Evaluation of Operational Data)

    International Nuclear Information System (INIS)

    1989-06-01

    The annual report of the US Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data (AEOD) is devoted to the activities performed during 1988. The report is published in two separate parts. The report is published in two separate parts. NUREG-1272, Vol. 3, No. 1, covers Power Reactors and presents an overview of the operating experience of the nuclear power industry, including comments about the trends of some key performance measures. The report also includes the principal findings and issues identified in AEOD studies over the past year and summarizes information from Licensee Event Reports, Diagnostic Evaluations, and reports to the NRC's Operations Center. NUREG-1272, Vol. 3, No. 2, covers Nonreactors and presents a review of the nonreactor events and misadministrations that were reported in 1988 and a brief synopsis of AEOD studies published in 1988. Each volume contains a list of the AEOD reports issued for 1980--1988. 15 figs., 10 tabs

  15. Global gene expression analysis for evaluation and design of biomaterials

    International Nuclear Information System (INIS)

    Hanagata, Nobutaka; Takemura, Taro; Minowa, Takashi

    2010-01-01

    Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data. (topical review)

  16. Numerical investigation of flows in Czochralski crystal growth by an axisymmetric lattice Boltzmann method

    Science.gov (United States)

    Peng, Y.; Shu, C.; Chew, Y. T.; Qiu, J.

    2003-03-01

    An alternative new method called lattice Boltzmann method (LBM) is applied in this work to simulate the flows in Czochralski crystal growth, which is one of the widely used prototypical systems for melt-crystal growth. The standard LBM can only be used in Cartesian coordinate system and we extend it to be applicable to this axisymmetric thermal flow problem, avoiding the use of three-dimensional LBM on Cartesian coordinate system. The extension is based on the following idea. By inserting position and time dependent source terms into the evolution equation of standard LBM, the continuity and NS equations on the cylindrical coordinate system [1] can be recovered. Our extension is validated by its application to the benchmark problem suggested by Wheeler [2].

  17. Centrifugal pumping during Czochralski silicon growth with a strong, non-uniform, axisymmetric magnetic field

    Science.gov (United States)

    Khine, Y. Y.; Walker, J. S.

    1996-08-01

    Centrifugal pumping flows are produced in the melt by the rotations of crystal and crucible during the Czochralski growth of silicon crystals. This paper treats the centrifugal pumping effects with a steady, strong, non-uniform axisymmetric magnetic field. We consider a family of magnetic fields ranging from a uniform axial field to a "cusp" field, which has a purely radial field at the crystal-melt interface and free surface. We present the numerical solutions for the centrifugal pumping flows as the magnetic field is changed continuously from a uniform axial field to a cusp one, and for arbitrary Hartmann number. Since the perfect alignment between the local magnetic field vector and the crystal-melt interface or free surface is not likely, we also investigate the effects of a slight misalignment.

  18. Buoyant convection during Czochralski silicon growth with a strong, non-uniform, axisymmetric magnetic field

    Science.gov (United States)

    Khine, Y. Y.; Walker, J. S.

    1995-02-01

    This paper treats the buoyant convection during the Czochralski growth of silicon crystals with a steady, strong, non-uniform, axisymmetric magnetic field. We consider a family of magnetic fields which includes a uniform axial magnetic field and a "cusp" field which is produced by identical solenoids placed symmetrically above and below the plane of the crystal-melt interface and free surface. We investigate the evolution of the buoyant convection as the magnetic field is changed continuously from a uniform axial field to a cusp field, with a constant value of the root-mean-squared magnetic flux density in the melt. We also investigate changes as the magnetic flux density is increased. While the cusp field appears very promising, perfect alignment between the local magnetic field vector and the crystal-melt interface or free surface is not possible, so the effects of a slight misalignment are also investigated.

  19. Numerical investigation of flows in Czochralski crystal growth by an axisymmetric lattice Boltzmann method

    International Nuclear Information System (INIS)

    Peng, Y.; Shu, C.; Chew, Y.T.; Qiu, J.

    2003-01-01

    An alternative new method called lattice Boltzmann method (LBM) is applied in this work to simulate the flows in Czochralski crystal growth, which is one of the widely used prototypical systems for melt-crystal growth. The standard LBM can only be used in Cartesian coordinate system and we extend it to be applicable to this axisymmetric thermal flow problem, avoiding the use of three-dimensional LBM on Cartesian coordinate system. The extension is based on the following idea. By inserting position and time dependent source terms into the evolution equation of standard LBM, the continuity and NS equations on the cylindrical coordinate system can be recovered. Our extension is validated by its application to the benchmark problem suggested by Wheeler

  20. Versatile controllability of non-axisymmetric magnetic perturbations in KSTAR experiments

    Science.gov (United States)

    Han, Hyunsun; Jeon, Y. M.; in, Y.; Kim, J.; Yoon, S. W.; Hahn, S. H.; Ahn, H. S.; Woo, M. H.; Park, B. H.; Bak, J. G.; Kstar Team

    2015-11-01

    A newly upgraded IVCC (In-Vessel Control Coil) system equipped with four broadband power supplies, along with current connection patch panel, will be presented and discussed in terms of its capability on various KSTAR experiments. Until the last run-campaign, there were impressive experimental results on ELM(Edge Localized Mode) control experiments using the 3D magnetic field, but the non-axisymmetric field configuration could not be changed in a shot, let alone the limited number of accessible configurations. Introducing the new power supplies, such restrictions have been greatly reduced. Based on the preliminary commissioning results for 2015 KSTAR run-campaign, this new system has been confirmed to easily cope with various dynamic demands for toroidal and poloidal phases of 3D magnetic field in a shot. This enables us to diagnose the plasma response in more detail and to address the 3-D field impacts on the ELM behaviors better than ever.

  1. Development of a magnetohydrodynamic code for axisymmetric, high-β plasmas with complex magnetic fields

    International Nuclear Information System (INIS)

    Cook, G.O. Jr.

    1982-12-01

    The Topolotron is an axisymmetric, toroidal magnetic fusion concept in which two-dimensional effects are important, as well as all three magnetic field components. The particular MHD model employed is basically the one-fluid, two-temperature model using classical Braginskii transport with viscous effects ignored. The model is augmented by Saha-Boltzmann dissociation and partial ionization physics, a simple radiation loss mechanism, and an additional resistivity due to electron-neutral collisions. While retaining all velocity and magnetic field components, the assumption of axisymmetry is made, and the resulting equations are expanded in cylindrical coordinates. The major approximation technique is then applied: spline collocation, which reduces these equations to a set of ordinary differential equations

  2. MODFLOW equipped with a new method for the accurate simulation of axisymmetric flow

    Science.gov (United States)

    Samani, N.; Kompani-Zare, M.; Barry, D. A.

    2004-01-01

    Axisymmetric flow to a well is an important topic of groundwater hydraulics, the simulation of which depends on accurate computation of head gradients. Groundwater numerical models with conventional rectilinear grid geometry such as MODFLOW (in contrast to analytical models) generally have not been used to simulate aquifer test results at a pumping well because they are not designed or expected to closely simulate the head gradient near the well. A scaling method is proposed based on mapping the governing flow equation from cylindrical to Cartesian coordinates, and vice versa. A set of relationships and scales is derived to implement the conversion. The proposed scaling method is then embedded in MODFLOW 2000. To verify the accuracy of the method steady and unsteady flows in confined and unconfined aquifers with fully or partially penetrating pumping wells are simulated and compared with the corresponding analytical solutions. In all cases a high degree of accuracy is achieved.

  3. Non-axisymmetric flexural vibrations of free-edge circular silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, A.V., E-mail: dmitriev@hbar.phys.msu.ru; Gritsenko, D.S.; Mitrofanov, V.P., E-mail: mitr@hbar.phys.msu.ru

    2014-02-07

    Non-axisymmetric flexural vibrations of circular silicon (111) wafers are investigated. The modes with azimuthal index 2⩽k⩽30 are electrostatically excited and monitored by a capacitive sensor. The splitting of the mode frequencies associated with imperfection of the wafer is observed. The measured loss factors for the modes with 6≲k≲26 are close to those calculated according to the thermoelastic damping theory, while clamping losses likely dominate for k≲6, and surface losses at the level of inverse Q-factor Q{sup −1}≈4×10{sup −6} prevail for the modes with large k. The modes demonstrate nonlinear behavior of mainly geometrical origin at large amplitudes.

  4. CASINO, a code for simulation of charged particles in an axisymmetric Tokamak

    International Nuclear Information System (INIS)

    Dillner, Oe.

    1992-01-01

    The present report comprises a documentation of CASINO, a simulation code developed as a means for the study of high energy charged particles in an axisymmetric Tokamak. The background of the need for such a numerical tool is presented. In the description of the numerical model used for the orbit integration, the method using constants of motion, the Lao-Hirsman geometry for the flux surfaces and a method for reducing the necessary number of particles is elucidated. A brief outline of the calculational sequence is given as a flow chart. The essential routines and functions as well as the common blocks are briefly described. The input and output routines are shown. Finally the documentation is completed by a short discussion of possible extensions of the code and a test case. (au)

  5. Minimal inductance for axisymmetric transmission lines with radially dependent anode-cathode gap

    Directory of Open Access Journals (Sweden)

    Eduardo M. Waisman

    2009-09-01

    Full Text Available We extend the variational calculus technique for inductance minimization of constant gap axisymmetric transmission lines (TL, introduced by Hurricane [J. Appl. Phys. 95, 4503 (2004JAPIAU0021-897910.1063/1.1687986], to the case in which the anode-cathode gap is a linear function of the midgap radius. The full analytic optimal midgap solution curve z(r yielding minimum inductance is obtained in terms of a single parameter ρ_{0}, determined numerically by imposing that z(r goes through prescribed end points. The radius of curvature ρ(r of the optimal curve is obtained everywhere the function is defined, even outside of the end point range, and it is shown that a convenient choice is ρ_{0}=ρ(0. The value of the transmission line inductance is calculated by 1D numerical quadrature. A simple numerical technique is introduced for TL with nonlinear radial gap dependence.

  6. Conformal symmetries of the Einstein-Hilbert action on horizons of stationary and axisymmetric black holes

    International Nuclear Information System (INIS)

    Mei Jianwei

    2012-01-01

    We suggest a way to study possible conformal symmetries on black hole horizons. We do this by carrying out a Kaluza-Klein-like reduction of the Einstein-Hilbert action along the ignorable coordinates of stationary and axisymmetric black holes. Rigid diffeomorphism invariance of the m-ignorable coordinates then becomes a global SL(m, R) gauge symmetry of the reduced action. Related to each non-vanishing angular velocity, there is a particular SL(2, R) subgroup, which can be extended to the Witt algebra on the black hole horizons. The classical Einstein-Hilbert action thus has k-copies of infinite-dimensional conformal symmetries on a given black hole horizon, with k being the number of non-vanishing angular velocities of the black hole. (paper)

  7. Numerical investigation of flows in Czochralski crystal growth by an axisymmetric lattice Boltzmann method

    CERN Document Server

    Peng, Y; Chew, Y T; Qiu, J

    2003-01-01

    An alternative new method called lattice Boltzmann method (LBM) is applied in this work to simulate the flows in Czochralski crystal growth, which is one of the widely used prototypical systems for melt-crystal growth. The standard LBM can only be used in Cartesian coordinate system and we extend it to be applicable to this axisymmetric thermal flow problem, avoiding the use of three-dimensional LBM on Cartesian coordinate system. The extension is based on the following idea. By inserting position and time dependent source terms into the evolution equation of standard LBM, the continuity and NS equations on the cylindrical coordinate system can be recovered. Our extension is validated by its application to the benchmark problem suggested by Wheeler .

  8. Axisymmetric accretion flows very near black holes and Rosen-collapsed objects

    International Nuclear Information System (INIS)

    Stoeger, W.R.

    1979-01-01

    Motivated by the need for stronger observational leverage on the black hole hypothesis and for a more detailed characterization of axisymmetric accretion flows across the marginally stable circular orbit rsub(ms), a general approach for describing the non-Keplerian accretion in the region rsub(H) 0 , where rsub(H) = radius of the event horizon and r 0 > = rsub(ms) is developed. The procedure possesses many advantages, including easily imposed consistency with the Keplerian for r > rsub(o), the avoidance of ad hoc boundary conditions at rsub(ms) and/or at rsub(H) and its application also to accretion in Rosen's bimetric theory, whose spherically symmetric solution has the same qualitative orbital topography as that of general relativity. It becomes apparent, furthermore, that the particular viscosity law chosen in this procedure will have a crucial bearing on the flow in the region rsub(ms) 0 . (author)

  9. Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models

    Science.gov (United States)

    Rosenthal, C. S.

    1992-01-01

    Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.

  10. Axisymmetric particle-in-cell simulations of diamagnetic-cavity formation in vacuum

    International Nuclear Information System (INIS)

    Gisler, G.

    1989-01-01

    Axisymmetric simulations of the expansion of a hot plasma suddenly introduced into a vacuum containing a weak magnetic field were performed using an electromagnetic particle-in-cell code. Both uniform and gradient fields have been used, with the simulation axis along the principle field direction. The formation of a diamagnetic cavity requires an initial plasma β > 1; as the expansion proceeds, β diminishes, and the field eventually recovers. The maximum spatial extent of the cavity and its duration can be obtained from simple dynamical considerations. Field-aligned ion acceleration behind the electron front is observed in all field geometries and strengths. In the case of expansion into a divergent field, the plasma is found to move down the field gradient by ambipolar diffusion. These simulations are relevant to active release experiments in the Earth's magnetosphere, to pellet ablation experiments, and to the naturally occurring diamagnetic bubbles observed at the Earth's foreshock

  11. Efficient trap of a coaxial gun plasma in an axisymmetric mirror with an internal hoop

    International Nuclear Information System (INIS)

    Asano, Shiro; Ihara, Makoto; Fukao, Masayuki

    1989-01-01

    A method to trap a high temperature and high density plasma from a coaxial gun in a mirror machine is described. The method is to inject plasma parallel to the axis from a coaxial gun located off the axis. The validity of the method is experimentally demonstrated with an MHD-stabilized axisymmetric mirror with an internal hoop. Density, electron and ion temperatures and their time behaviors were measured and it was made clear that a high density high temperature plasma was well trapped in the mirror by the parallel off-axis injection while the plasma was little trapped by on-axis injection. The plasma parameters obtained were also compared with those of a conventional titanium washer gun plasma. The causes to restrict the maximum ion temperature and of its quick decay are discussed. (author)

  12. Stability and instability of axisymmetric droplets in thermocapillary-driven thin films

    Science.gov (United States)

    Nicolaou, Zachary G.

    2018-03-01

    The stability of compactly supported, axisymmetric droplet states is considered for driven thin viscous films evolving on two-dimensional surfaces. Stability is assessed using Lyapunov energy methods afforded by the Cahn-Hilliard variational form of the governing equation. For general driving forces, a criterion on the gradient of profiles at the boundary of their support (their contact slope) is shown to be a necessary condition for stability. Additional necessary and sufficient conditions for stability are established for a specific driving force corresponding to a thermocapillary-driven film. It is found that only droplets of sufficiently short height that satisfy the contact slope criterion are stable. This destabilization of droplets with increasing height is characterized as a saddle-node bifurcation between a branch of tall, unstable droplets and a branch of short, stable droplets.

  13. Radiative modelling by the zonal method and WSGG model in inhomogeneous axisymmetric cylindrical enclosure

    International Nuclear Information System (INIS)

    Méchi, Rachid; Farhat, Habib; Said, Rachid

    2016-01-01

    Nongray radiation calculations are carried out for a case problem available in the literature. The problem is a non-isothermal and inhomogeneous CO 2 -H 2 O- N 2 gas mixture confined within an axisymmetric cylindrical furnace. The numerical procedure is based on the zonal method associated with the weighted sum of gray gases (WSGG) model. The effect of the wall emissivity on the heat flux losses is discussed. It is shown that this property affects strongly the furnace efficiency and that the most important heat fluxes are those leaving through the circumferential boundary. The numerical procedure adopted in this work is found to be effective and may be relied on to simulate coupled turbulent combustion-radiation in fired furnaces. (paper)

  14. Solution of axisymmetric transient inverse heat conduction problems using parameter estimation and multi block methods

    International Nuclear Information System (INIS)

    Azimi, A.; Hannani, S.K.; Farhanieh, B.

    2005-01-01

    In this article, a comparison between two iterative inverse techniques to solve simultaneously two unknown functions of axisymmetric transient inverse heat conduction problems in semi complex geometries is presented. The multi-block structured grid together with blocked-interface nodes is implemented for geometric decomposition of physical domain. Numerical scheme for solution of transient heat conduction equation is the finite element method with frontal technique to solve algebraic system of discrete equations. The inverse heat conduction problem involves simultaneous unknown time varying heat generation and time-space varying boundary condition estimation. Two parameter-estimation techniques are considered, Levenberg-Marquardt scheme and conjugate gradient method with adjoint problem. Numerically computed exact and noisy data are used for the measured transient temperature data needed in the inverse solution. The results of the present study for a configuration including two joined disks with different heights are compared to those of exact heat source and temperature boundary condition, and show good agreement. (author)

  15. Impedance Calculations of Non-Axisymmetric Transitions Using the Optical Approximation

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Stupakov, G.; Zagorodov, I.

    2007-01-01

    In a companion report, we have derived a method for finding the impedance at high frequencies of vacuum chamber transitions that are short compared to the catch-up distance, in a frequency regime that--in analogy to geometric optics for light--we call the optical regime. In this report we apply the method to various non-axisymmetric geometries such as irises/short collimators in a beam pipe, step-in transitions, step-out transitions, and more complicated transitions of practical importance. Most of our results are analytical, with a few given in terms of a simple one dimensional integral. Our results are compared to wakefield simulations with the time-domain, finite-difference program ECHO, and excellent agreement is found

  16. A Family of Vortices to Study Axisymmetric Vortex Breakdown and Reconnection

    Science.gov (United States)

    Young, Larry A.

    2007-01-01

    A new analytic model describing a family of vortices has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. The family of vortices incorporates a wide range of prescribed initial vorticity distributions -- including single or dual-core vorticity distributions. The result is analytical solutions for the vorticity and velocities for each member of the family of vortices. This model is of sufficient generality to further illustrate the dependence of vortex reconnection and breakdown on initial vorticity distribution as was suggested by earlier analytical work. This family of vortices, though laminar in nature, is anticipated to provide valuable insight into the vortical evolution of large-scale rotor and propeller wakes.

  17. Influence of Initial Vorticity Distribution on Axisymmetric Vortex Breakdown and Reconnection

    Science.gov (United States)

    Young, Larry A.

    2007-01-01

    An analytical treatment has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. In particular, the presence of negative vorticity in the inner core of a vortex filament (one example of which is examined in this paper) subsequent to "cutting" by a solid body has a profound influence on the vortex reconnection, leading to analog flow behavior similar to vortex breakdown phenomena described in the literature. Initial vorticity distributions (three specific examples which are examined) without an inner core of negative vorticity do not exhibit vortex breakdown and instead manifest diffusion-like properties while undergoing vortex reconnection. Though this work focuses on laminar vortical flow, this work is anticipated to provide valuable insight into rotary-wing aerodynamics as well as other types of vortical flow phenomena.

  18. Axisymmetric disruption dynamics including current profile changes in the ASDEX-Upgrade tokamak

    International Nuclear Information System (INIS)

    Nakamura, Y.; Pautasso, G.; Gruber, O.; Jardin, S.C.

    2002-01-01

    Axisymmetric MHD simulations have revealed a new driving mechanism that governs the vertical displacement event (VDE) dynamics in tokamak disruptions. A rapid flattening of the plasma current profile during the disruption plays a substantial role in dragging a single null-diverted plasma vertically towards the divertor. As a consequence, the occurrence of downward-going VDEs predominates over the upward-going ones in bottom-diverted discharges. This dragging effect, due to an abrupt change in the current profile, is absent in up-down symmetric limiter discharges. These simulation results are consistent with experiments in ASDEX-Upgrade. Together with the attractive force that arises from passive shell currents induced by the plasma current quench, the dragging effect explains many details of the VDE dynamics over the whole period of the disruptive termination. (author)

  19. The interior of axisymmetric and stationary black holes: Numerical and analytical studies

    International Nuclear Information System (INIS)

    Ansorg, Marcus; Hennig, Joerg

    2011-01-01

    We investigate the interior hyperbolic region of axisymmetric and stationary black holes surrounded by a matter distribution. First, we treat the corresponding initial value problem of the hyperbolic Einstein equations numerically in terms of a single-domain fully pseudo-spectral scheme. Thereafter, a rigorous mathematical approach is given, in which soliton methods are utilized to derive an explicit relation between the event horizon and an inner Cauchy horizon. This horizon arises as the boundary of the future domain of dependence of the event horizon. Our numerical studies provide strong evidence for the validity of the universal relation A + A - (8πJ) 2 where A + and A - are the areas of event and inner Cauchy horizon respectively, and J denotes the angular momentum. With our analytical considerations we are able to prove this relation rigorously.

  20. Modified k-l model and its ability to simulate supersonic axisymmetric turbulent flows

    International Nuclear Information System (INIS)

    Ahmadikia, H.; Shirani, E.

    2001-05-01

    The k-l turbulence model is a promising two-equation model. In this paper, the k and l model equations were derived from k-kl incompressible and one-equation turbulent models. Then the model was modified for compressible and transitional flows, and was applied to simulate supersonic axisymmetric flows over Hollow cylinder flare an hyperboloid flare bodies. The results were compared with the results obtained for the same flows experimentally as well as k-ε, k-ω and Baldwin-Lomax models. It was shown that the k-l model produces good results compared with experimental data and numerical data obtained when other turbulence models were used. It gives better results than k-ω and k-ε models in some cases. (author)