WorldWideScience

Sample records for evaluating target motion

  1. Utilize target motion to cover clinical target volume (ctv) - a novel and practical treatment planning approach to manage respiratory motion

    International Nuclear Information System (INIS)

    Jin Jianyue; Ajlouni, Munther; Kong Fengming; Ryu, Samuel; Chetty, Indrin J.; Movsas, Benjamin

    2008-01-01

    Purpose: To use probability density function (PDF) to model motion effects and incorporate this information into treatment planning for lung cancers. Material and methods: PDFs were calculated from the respiratory motion traces of 10 patients. Motion effects were evaluated by convolving static dose distributions with various PDFs. Based on a differential dose prescription with relatively lower dose to the clinical target volume (CTV) than to the gross tumor volume (GTV), two approaches were proposed to incorporate PDFs into treatment planning. The first approach uses the GTV-based internal target volume (ITV) as the planning target volume (PTV) to ensure full dose to the GTV, and utilizes the motion-induced dose gradient to cover the CTV. The second approach employs an inhomogeneous static dose distribution within a minimized PTV to best match the prescription dose gradient. Results: Motion effects on dose distributions were minimal in the anterior-posterior (AP) and lateral directions: a 10-mm motion only induced about 3% of dose reduction in the peripheral target region. The motion effect was remarkable in the cranial-caudal direction. It varied with the motion amplitude, but tended to be similar for various respiratory patterns. For the first approach, a 10-15 mm motion would adequately cover the CTV (presumed to be 60-70% of the GTV dose) without employing the CTV in planning. For motions 15-mm. An example of inhomogeneous static dose distribution in a reduced PTV was given, and it showed significant dose reduction in the normal tissue without compromising target coverage. Conclusions: Respiratory motion-induced dose gradient can be utilized to cover the CTV and minimize the lung dose without the need for more sophisticated technologies

  2. SU-E-J-199: Evaluation of Motion Tracking Effects On Stereotactic Body Radiotherapy of Abdominal Targets

    Energy Technology Data Exchange (ETDEWEB)

    Monterroso, M; Dogan, N; Yang, Y [University Miami, Miami, FL (United States)

    2014-06-01

    Purpose: To evaluate the effects of respiratory motion on the delivered dose distribution of CyberKnife motion tracking-based stereotactic body radiotherapy (SBRT) of abdominal targets. Methods: Four patients (two pancreas and two liver, and all with 4DCT scans) were retrospectively evaluated. A plan (3D plan) using CyberKnife Synchrony was optimized on the end-exhale phase in the CyberKnife's MultiPlan treatment planning system (TPS), with 40Gy prescribed in 5 fractions. A 4D plan was then created following the 4D planning utility in the MultiPlan TPS, by recalculating dose from the 3D plan beams on all 4DCT phases, with the same prescribed isodose line. The other seven phases of the 4DCT were then deformably registered to the end-exhale phase for 4D dose summation. Doses to the target and organs at risk (OAR) were compared between 3D and 4D plans for each patient. The mean and maximum doses to duodenum, liver, spinal cord and kidneys, and doses to 5cc of duodenum, 700cc of liver, 0.25cc of spinal cord and 200cc of kidneys were used. Results: Target coverage in the 4D plans was about 1% higher for two patients and about 9% lower in the other two. OAR dose differences between 3D and 4D varied among structures, with doses as much as 8.26Gy lower or as much as 5.41Gy higher observed in the 4D plans. Conclusion: The delivered dose can be significantly different from the planned dose for both the target and OAR close to the target, which is caused by the relative geometry change while the beams chase the moving target. Studies will be performed on more patients in the future. The differences of motion tracking versus passive motion management with the use of internal target volumes will also be investigated.

  3. Ground motion input in seismic evaluation studies

    International Nuclear Information System (INIS)

    Sewell, R.T.; Wu, S.C.

    1996-07-01

    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants

  4. A Single Unexpected Change in Target- but Not Distractor Motion Impairs Multiple Object Tracking

    Directory of Open Access Journals (Sweden)

    Hauke S. Meyerhoff

    2013-02-01

    Full Text Available Recent research addresses the question whether motion information of multiple objects contributes to maintaining a selection of objects across a period of motion. Here, we investigate whether target and/or distractor motion information is used during attentive tracking. We asked participants to track four objects and changed either the motion direction of targets, the motion direction of distractors, neither, or both during a brief flash in the middle of a tracking interval. We observed that a single direction change of targets is sufficient to impair tracking performance. In contrast, changing the motion direction of distractors had no effect on performance. This indicates that target- but not distractor motion information is evaluated during tracking.

  5. A motion algorithm to extract physical and motion parameters of mobile targets from cone-beam computed tomographic images.

    Science.gov (United States)

    Alsbou, Nesreen; Ahmad, Salahuddin; Ali, Imad

    2016-05-17

    A motion algorithm has been developed to extract length, CT number level and motion amplitude of a mobile target from cone-beam CT (CBCT) images. The algorithm uses three measurable parameters: Apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm are tested with mobile targets having different well-known sizes that are made from tissue-equivalent gel which is inserted into a thorax phantom. The phantom moves sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0-20 mm. Using this motion algorithm, three unknown parameters are extracted that include: Length of the target, CT number level, speed or motion amplitude for the mobile targets from CBCT images. The motion algorithm solves for the three unknown parameters using measured length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agrees with the measured lengths which are dependent on the target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, the target length and motion amplitude. Motion frequency and phase do not affect the elongation and CT number distribution of the mobile target and could not be determined. A motion algorithm has been developed to extract three parameters that include length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement of motion tracking and sorting of the images into different breathing phases. The motion model developed here works well for tumors that have simple shapes, high contrast relative to surrounding tissues and move nearly in regular motion pattern

  6. Treatment simulations with a statistical deformable motion model to evaluate margins for multiple targets in radiotherapy for high-risk prostate cancer

    International Nuclear Information System (INIS)

    Thörnqvist, Sara; Hysing, Liv B.; Zolnay, Andras G.; Söhn, Matthias; Hoogeman, Mischa S.; Muren, Ludvig P.; Bentzen, Lise; Heijmen, Ben J.M.

    2013-01-01

    Background and purpose: Deformation and correlated target motion remain challenges for margin recipes in radiotherapy (RT). This study presents a statistical deformable motion model for multiple targets and applies it to margin evaluations for locally advanced prostate cancer i.e. RT of the prostate (CTV-p), seminal vesicles (CTV-sv) and pelvic lymph nodes (CTV-ln). Material and methods: The 19 patients included in this study, all had 7–10 repeat CT-scans available that were rigidly aligned with the planning CT-scan using intra-prostatic implanted markers, followed by deformable registrations. The displacement vectors from the deformable registrations were used to create patient-specific statistical motion models. The models were applied in treatment simulations to determine probabilities for adequate target coverage, e.g. by establishing distributions of the accumulated dose to 99% of the target volumes (D 99 ) for various CTV–PTV expansions in the planning-CTs. Results: The method allowed for estimation of the expected accumulated dose and its variance of different DVH parameters for each patient. Simulations of inter-fractional motion resulted in 7, 10, and 18 patients with an average D 99 >95% of the prescribed dose for CTV-p expansions of 3 mm, 4 mm and 5 mm, respectively. For CTV-sv and CTV-ln, expansions of 3 mm, 5 mm and 7 mm resulted in 1, 11 and 15 vs. 8, 18 and 18 patients respectively with an average D 99 >95% of the prescription. Conclusions: Treatment simulations of target motion revealed large individual differences in accumulated dose mainly for CTV-sv, demanding the largest margins whereas those required for CTV-p and CTV-ln were comparable

  7. Evaluation of the combined effects of target size, respiratory motion and background activity on 3D and 4D PET/CT images

    International Nuclear Information System (INIS)

    Park, Sang-June; Ionascu, Dan; Killoran, Joseph; Chin, Lee; Berbeco, Ross; Mamede, Marcelo; Gerbaudo, Victor H

    2008-01-01

    Gated (4D) PET/CT has the potential to greatly improve the accuracy of radiotherapy at treatment sites where internal organ motion is significant. However, the best methodology for applying 4D-PET/CT to target definition is not currently well established. With the goal of better understanding how to best apply 4D information to radiotherapy, initial studies were performed to investigate the effect of target size, respiratory motion and target-to-background activity concentration ratio (TBR) on 3D (ungated) and 4D PET images. Using a PET/CT scanner with 4D or gating capability, a full 3D-PET scan corrected with a 3D attenuation map from 3D-CT scan and a respiratory gated (4D) PET scan corrected with corresponding attenuation maps from 4D-CT were performed by imaging spherical targets (0.5-26.5 mL) filled with 18 F-FDG in a dynamic thorax phantom and NEMA IEC body phantom at different TBRs (infinite, 8 and 4). To simulate respiratory motion, the phantoms were driven sinusoidally in the superior-inferior direction with amplitudes of 0, 1 and 2 cm and a period of 4.5 s. Recovery coefficients were determined on PET images. In addition, gating methods using different numbers of gating bins (1-20 bins) were evaluated with image noise and temporal resolution. For evaluation, volume recovery coefficient, signal-to-noise ratio and contrast-to-noise ratio were calculated as a function of the number of gating bins. Moreover, the optimum thresholds which give accurate moving target volumes were obtained for 3D and 4D images. The partial volume effect and signal loss in the 3D-PET images due to the limited PET resolution and the respiratory motion, respectively were measured. The results show that signal loss depends on both the amplitude and pattern of respiratory motion. However, the 4D-PET successfully recovers most of the loss induced by the respiratory motion. The 5-bin gating method gives the best temporal resolution with acceptable image noise. The results based on the 4D

  8. Prostate bed target interfractional motion using RTOG consensus definitions and daily CT on rails. Does target motion differ between superior and inferior portions of the clinical target volume

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vivek; Zhou, Sumin; Enke, Charles A.; Wahl, Andrew O. [University of Nebraska Medical Center, Department of Radiation Oncology, Omaha (United States); Chen, Shifeng [University of Maryland School of Medicine, Department of Radiation Oncology, Baltimore, MD (United States)

    2017-01-15

    Using high-quality CT-on-rails imaging, the daily motion of the prostate bed clinical target volume (PB-CTV) based on consensus Radiation Therapy Oncology Group (RTOG) definitions (instead of surgical clips/fiducials) was studied. It was assessed whether PB motion in the superior portion of PB-CTV (SUP-CTV) differed from the inferior PB-CTV (INF-CTV). Eight pT2-3bN0-1M0 patients underwent postprostatectomy intensity-modulated radiotherapy, totaling 300 fractions. INF-CTV and SUP-CTV were defined as PB-CTV located inferior and superior to the superior border of the pubic symphysis, respectively. Daily pretreatment CT-on-rails images were compared to the planning CT in the left-right (LR), superoinferior (SI), and anteroposterior (AP) directions. Two parameters were defined: ''total PB-CTV motion'' represented total shifts from skin tattoos to RTOG-defined anatomic areas; ''PB-CTV target motion'' (performed for both SUP-CTV and INF-CTV) represented shifts from bone to RTOG-defined anatomic areas (i. e., subtracting shifts from skin tattoos to bone). Mean (± standard deviation, SD) total PB-CTV motion was -1.5 (± 6.0), 1.3 (± 4.5), and 3.7 (± 5.7) mm in LR, SI, and AP directions, respectively. Mean (± SD) PB-CTV target motion was 0.2 (±1.4), 0.3 (±2.4), and 0 (±3.1) mm in the LR, SI, and AP directions, respectively. Mean (± SD) INF-CTV target motion was 0.1 (± 2.8), 0.5 (± 2.2), and 0.2 (± 2.5) mm, and SUP-CTV target motion was 0.3 (± 1.8), 0.5 (± 2.3), and 0 (± 5.0) mm in LR, SI, and AP directions, respectively. No statistically significant differences between INF-CTV and SUP-CTV motion were present in any direction. There are no statistically apparent motion differences between SUP-CTV and INF-CTV. Current uniform planning target volume (PTV) margins are adequate to cover both portions of the CTV. (orig.) [German] Zur Evaluation der interfraktionellen Variabilitaet des klinischen Zielvolumens der Prostataloge

  9. Cone beam CT for organs motion evaluation in pediatric abdominal neuroblastoma

    International Nuclear Information System (INIS)

    Nazmy, Mohamed Soliman; Khafaga, Yasser; Mousa, Amr; Khalil, Ehab

    2012-01-01

    Background and purpose: To quantify the organ motion relative to bone in different breathing states in pediatric neuroblastoma using cone beam CT (CBCT) for better definition of the planning margins during abdominal IMRT. Methods and materials: Forty-two datasets of kV CBCT for 9 pediatric patients with abdominal neuroblastoma treated with IMRT were evaluated. Organs positions on planning CT scan were considered the reference position against which organs and target motions were evaluated. The position of the kidneys and the liver was assessed in all scans. The target movement was evaluated in four patients who were treated for gross residual disease. Results: The mean age of the patients was 4.1 ± 1.6 years. The range of target movement in the craniocaudal direction (CC) was 5 mm. In the CC direction, the range of movement was 10 mm for the right kidney, and 8 mm for the left kidney. Similarly, the liver upper edge range of motion was 11 mm while the lower edge range of motion was 13 mm. Conclusions: With the use of daily CBCT we may be able to reduce the PTV margin. If CBCT is not used daily, a wider margin is needed.

  10. Prostate bed target interfractional motion using RTOG consensus definitions and daily CT on rails. Does target motion differ between superior and inferior portions of the clinical target volume

    International Nuclear Information System (INIS)

    Verma, Vivek; Zhou, Sumin; Enke, Charles A.; Wahl, Andrew O.; Chen, Shifeng

    2017-01-01

    Using high-quality CT-on-rails imaging, the daily motion of the prostate bed clinical target volume (PB-CTV) based on consensus Radiation Therapy Oncology Group (RTOG) definitions (instead of surgical clips/fiducials) was studied. It was assessed whether PB motion in the superior portion of PB-CTV (SUP-CTV) differed from the inferior PB-CTV (INF-CTV). Eight pT2-3bN0-1M0 patients underwent postprostatectomy intensity-modulated radiotherapy, totaling 300 fractions. INF-CTV and SUP-CTV were defined as PB-CTV located inferior and superior to the superior border of the pubic symphysis, respectively. Daily pretreatment CT-on-rails images were compared to the planning CT in the left-right (LR), superoinferior (SI), and anteroposterior (AP) directions. Two parameters were defined: ''total PB-CTV motion'' represented total shifts from skin tattoos to RTOG-defined anatomic areas; ''PB-CTV target motion'' (performed for both SUP-CTV and INF-CTV) represented shifts from bone to RTOG-defined anatomic areas (i. e., subtracting shifts from skin tattoos to bone). Mean (± standard deviation, SD) total PB-CTV motion was -1.5 (± 6.0), 1.3 (± 4.5), and 3.7 (± 5.7) mm in LR, SI, and AP directions, respectively. Mean (± SD) PB-CTV target motion was 0.2 (±1.4), 0.3 (±2.4), and 0 (±3.1) mm in the LR, SI, and AP directions, respectively. Mean (± SD) INF-CTV target motion was 0.1 (± 2.8), 0.5 (± 2.2), and 0.2 (± 2.5) mm, and SUP-CTV target motion was 0.3 (± 1.8), 0.5 (± 2.3), and 0 (± 5.0) mm in LR, SI, and AP directions, respectively. No statistically significant differences between INF-CTV and SUP-CTV motion were present in any direction. There are no statistically apparent motion differences between SUP-CTV and INF-CTV. Current uniform planning target volume (PTV) margins are adequate to cover both portions of the CTV. (orig.) [de

  11. Flash trajectory imaging of target 3D motion

    Science.gov (United States)

    Wang, Xinwei; Zhou, Yan; Fan, Songtao; He, Jun; Liu, Yuliang

    2011-03-01

    We present a flash trajectory imaging technique which can directly obtain target trajectory and realize non-contact measurement of motion parameters by range-gated imaging and time delay integration. Range-gated imaging gives the range of targets and realizes silhouette detection which can directly extract targets from complex background and decrease the complexity of moving target image processing. Time delay integration increases information of one single frame of image so that one can directly gain the moving trajectory. In this paper, we have studied the algorithm about flash trajectory imaging and performed initial experiments which successfully obtained the trajectory of a falling badminton. Our research demonstrates that flash trajectory imaging is an effective approach to imaging target trajectory and can give motion parameters of moving targets.

  12. Evaluation Method of Collision Risk by Using True Motion

    Directory of Open Access Journals (Sweden)

    Hayama Imazu

    2017-03-01

    Full Text Available It is necessary to develop a useful application to use big data like as AIS for safety and efficiency of ship operation. AIS is very useful system to collect targets information, but this information is not effective use yet. The evaluation method of collision risk is one of the cause disturb. Usually the collision risk of ship is evaluated by the value of the Closest Point of Approach (CPA which is related to a relative motion. So, it becomes difficult to find out a safety pass in a congested water. Here, Line of Predicted Collision (LOPC and Obstacle Zone by Target (OZT for evaluation of collision risk are introduced, these values are related to a true motion and it became visible of dangerous place, so it will make easy to find out a safety pass in a congested water.

  13. The effects of platform motion and target orientation on the performance of trackball manipulation.

    Science.gov (United States)

    Yau, Yi-Jan; Chao, Chin-Jung; Feng, Wen-Yang; Hwang, Sheue-Ling

    2011-08-01

    The trackball has been widely employed as a control/command input device on moving vehicles, but few studies have explored the effects of platform motion on its manipulation. Fewer still have considered this issue in designing the user interface and the arrangement of console location and orientation simultaneously. This work describes an experiment carried out to investigate the performance of trackball users on a simple point-and-click task in a motion simulator. By varying the orientation of onscreen targets, the effect of cursor movement direction on performance is investigated. The results indicate that the platform motion and target orientation both significantly affect the time required to point and click, but not the accuracy of target selection. The movement times were considerably longer under rolling and pitching motions and for targets located along the diagonal axes of the interface. Subjective evaluations carried out by the participants agree with these objective results. These findings could be used to optimise console and graphical menu design for use on maritime vessels. STATEMENT OF RELEVANCE: In military situations, matters of life or death may be decided in milliseconds. Any delay or error in classification and identification will thus affect the safety of the ship and its crew. This study demonstrates that performance of manipulating a trackball is affected by the platform motion and target orientation. The results of the present study can guide the arrangement of consoles and the design of trackball-based graphical user interfaces on maritime vessels.

  14. Evaluation of image guided motion management methods in lung cancer radiotherapy

    International Nuclear Information System (INIS)

    Zhuang, Ling; Yan, Di; Liang, Jian; Ionascu, Dan; Mangona, Victor; Yang, Kai; Zhou, Jun

    2014-01-01

    Purpose: To evaluate the accuracy and reliability of three target localization methods for image guided motion management in lung cancer radiotherapy. Methods: Three online image localization methods, including (1) 2D method based on 2D cone beam (CB) projection images, (2) 3D method using 3D cone beam CT (CBCT) imaging, and (3) 4D method using 4D CBCT imaging, have been evaluated using a moving phantom controlled by (a) 1D theoretical breathing motion curves and (b) 3D target motion patterns obtained from daily treatment of 3 lung cancer patients. While all methods are able to provide target mean position (MP), the 2D and 4D methods can also provide target motion standard deviation (SD) and excursion (EX). For each method, the detected MP/SD/EX values are compared to the analytically calculated actual values to calculate the errors. The MP errors are compared among three methods and the SD/EX errors are compared between the 2D and 4D methods. In the theoretical motion study (a), the dependency of MP/SD/EX error on EX is investigated with EX varying from 2.0 cm to 3.0 cm with an increment step of 0.2 cm. In the patient motion study (b), the dependency of MP error on target sizes (2.0 cm and 3.0 cm), motion patterns (four motions per patient) and EX variations is investigated using multivariant linear regression analysis. Results: In the theoretical motion study (a), the MP detection errors are −0.2 ± 0.2, −1.5 ± 1.1, and −0.2 ± 0.2 mm for 2D, 3D, and 4D methods, respectively. Both the 2D and 4D methods could accurately detect motion pattern EX (error < 1.2 mm) and SD (error < 1.0 mm). In the patient motion study (b), MP detection error vector (mm) with the 2D method (0.7 ± 0.4) is found to be significantly less than with the 3D method (1.7 ± 0.8,p < 0.001) and the 4D method (1.4 ± 1.0, p < 0.001) using paired t-test. However, no significant difference is found between the 4D method and the 3D method. Based on multivariant linear regression analysis, the

  15. Evaluation of image guided motion management methods in lung cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Ling [Department of Radiation Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, Michigan 48201 (United States); Yan, Di; Liang, Jian; Ionascu, Dan; Mangona, Victor; Yang, Kai; Zhou, Jun, E-mail: jun.zhou@beaumont.edu [Department of Radiation Oncology, William Beaumont Hospital, 3601 West Thirteen Mile Road, Royal Oak, Michigan 48073 (United States)

    2014-03-15

    Purpose: To evaluate the accuracy and reliability of three target localization methods for image guided motion management in lung cancer radiotherapy. Methods: Three online image localization methods, including (1) 2D method based on 2D cone beam (CB) projection images, (2) 3D method using 3D cone beam CT (CBCT) imaging, and (3) 4D method using 4D CBCT imaging, have been evaluated using a moving phantom controlled by (a) 1D theoretical breathing motion curves and (b) 3D target motion patterns obtained from daily treatment of 3 lung cancer patients. While all methods are able to provide target mean position (MP), the 2D and 4D methods can also provide target motion standard deviation (SD) and excursion (EX). For each method, the detected MP/SD/EX values are compared to the analytically calculated actual values to calculate the errors. The MP errors are compared among three methods and the SD/EX errors are compared between the 2D and 4D methods. In the theoretical motion study (a), the dependency of MP/SD/EX error on EX is investigated with EX varying from 2.0 cm to 3.0 cm with an increment step of 0.2 cm. In the patient motion study (b), the dependency of MP error on target sizes (2.0 cm and 3.0 cm), motion patterns (four motions per patient) and EX variations is investigated using multivariant linear regression analysis. Results: In the theoretical motion study (a), the MP detection errors are −0.2 ± 0.2, −1.5 ± 1.1, and −0.2 ± 0.2 mm for 2D, 3D, and 4D methods, respectively. Both the 2D and 4D methods could accurately detect motion pattern EX (error < 1.2 mm) and SD (error < 1.0 mm). In the patient motion study (b), MP detection error vector (mm) with the 2D method (0.7 ± 0.4) is found to be significantly less than with the 3D method (1.7 ± 0.8,p < 0.001) and the 4D method (1.4 ± 1.0, p < 0.001) using paired t-test. However, no significant difference is found between the 4D method and the 3D method. Based on multivariant linear regression analysis, the

  16. Adaptive Radiation Therapy for Postprostatectomy Patients Using Real-Time Electromagnetic Target Motion Tracking During External Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Mingyao [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States); Bharat, Shyam [Philips Research North America, Briarcliff Manor, New York (United States); Michalski, Jeff M.; Gay, Hiram A. [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States); Hou, Wei-Hsien [St Louis University School of Medicine, St Louis, Missouri (United States); Parikh, Parag J., E-mail: pparikh@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States)

    2013-03-15

    Purpose: Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in postprostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Methods and Materials: Tracking data recorded by Calypso EM transponders was analyzed for postprostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (D{sub min}) with the planned D{sub min} to the CTV. Treatments were considered adequate if the delivered CTV D{sub min} is at least 95% of the planned CTV D{sub min}. Results: Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: −0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5°, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Conclusion: Target rotational motion could cause underdosage to partial volume of the postprostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery.

  17. Evaluating and comparing algorithms for respiratory motion prediction

    International Nuclear Information System (INIS)

    Ernst, F; Dürichen, R; Schlaefer, A; Schweikard, A

    2013-01-01

    In robotic radiosurgery, it is necessary to compensate for systematic latencies arising from target tracking and mechanical constraints. This compensation is usually achieved by means of an algorithm which computes the future target position. In most scientific works on respiratory motion prediction, only one or two algorithms are evaluated on a limited amount of very short motion traces. The purpose of this work is to gain more insight into the real world capabilities of respiratory motion prediction methods by evaluating many algorithms on an unprecedented amount of data. We have evaluated six algorithms, the normalized least mean squares (nLMS), recursive least squares (RLS), multi-step linear methods (MULIN), wavelet-based multiscale autoregression (wLMS), extended Kalman filtering, and ε-support vector regression (SVRpred) methods, on an extensive database of 304 respiratory motion traces. The traces were collected during treatment with the CyberKnife (Accuray, Inc., Sunnyvale, CA, USA) and feature an average length of 71 min. Evaluation was done using a graphical prediction toolkit, which is available to the general public, as is the data we used. The experiments show that the nLMS algorithm—which is one of the algorithms currently used in the CyberKnife—is outperformed by all other methods. This is especially true in the case of the wLMS, the SVRpred, and the MULIN algorithms, which perform much better. The nLMS algorithm produces a relative root mean square (RMS) error of 75% or less (i.e., a reduction in error of 25% or more when compared to not doing prediction) in only 38% of the test cases, whereas the MULIN and SVRpred methods reach this level in more than 77%, the wLMS algorithm in more than 84% of the test cases. Our work shows that the wLMS algorithm is the most accurate algorithm and does not require parameter tuning, making it an ideal candidate for clinical implementation. Additionally, we have seen that the structure of a patient

  18. Real-Time Target Motion Animation for Missile Warning System Testing

    Science.gov (United States)

    2006-04-01

    T. Perkins, R. Sundberg, J. Cordell, Z. Tun , and M. Owen, Real-time Target Motion Animation for Missile Warning System Testing, Proc. SPIE Vol 6208...Z39-18 Real-time target motion animation for missile warning system testing Timothy Perkins*a, Robert Sundberga, John Cordellb, Zaw Tunb, Mark

  19. Nonrandom Intrafraction Target Motions and General Strategy for Correction of Spine Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Ma Lijun; Sahgal, Arjun; Hossain, Sabbir; Chuang, Cynthia; Descovich, Martina; Huang, Kim; Gottschalk, Alex; Larson, David A.

    2009-01-01

    Purpose: To characterize nonrandom intrafraction target motions for spine stereotactic body radiotherapy and to develop a method of correction via image guidance. The dependence of target motions, as well as the effectiveness of the correction strategy for lesions of different locations within the spine, was analyzed. Methods and Materials: Intrafraction target motions for 64 targets in 64 patients treated with a total of 233 fractions were analyzed. Based on the target location, the cases were divided into three groups, i.e., cervical (n = 20 patients), thoracic (n = 20 patients), or lumbar-sacrum (n = 24 patients) lesions. For each case, time-lag autocorrelation analysis was performed for each degree of freedom of motion that included both translations (x, y, and z shifts) and rotations (roll, yaw, and pitch). A general correction strategy based on periodic interventions was derived to determine the time interval required between two adjacent interventions, to overcome the patient-specific target motions. Results: Nonrandom target motions were detected for 100% of cases regardless of target locations. Cervical spine targets were found to possess the highest incidence of nonrandom target motion compared with thoracic and lumbar-sacral lesions (p < 0.001). The average time needed to maintain the target motion to within 1 mm of translation or 1 deg. of rotational deviation was 5.5 min, 5.9 min, and 7.1 min for cervical, thoracic, and lumbar-sacrum locations, respectively (at 95% confidence level). Conclusions: A high incidence of nonrandom intrafraction target motions was found for spine stereotactic body radiotherapy treatments. Periodic interventions at approximately every 5 minutes or less were needed to overcome such motions.

  20. Filling gaps in visual motion for target capture

    Directory of Open Access Journals (Sweden)

    Gianfranco eBosco

    2015-02-01

    Full Text Available A remarkable challenge our brain must face constantly when interacting with the environment is represented by ambiguous and, at times, even missing sensory information. This is particularly compelling for visual information, being the main sensory system we rely upon to gather cues about the external world. It is not uncommon, for example, that objects catching our attention may disappear temporarily from view, occluded by visual obstacles in the foreground. Nevertheless, we are often able to keep our gaze on them throughout the occlusion or even catch them on the fly in the face of the transient lack of visual motion information. This implies that the brain can fill the gaps of missing sensory information by extrapolating the object motion through the occlusion. In recent years, much experimental evidence has been accumulated that both perceptual and motor processes exploit visual motion extrapolation mechanisms. Moreover, neurophysiological and neuroimaging studies have identified brain regions potentially involved in the predictive representation of the occluded target motion. Within this framework, ocular pursuit and manual interceptive behavior have proven to be useful experimental models for investigating visual extrapolation mechanisms. Studies in these fields have pointed out that visual motion extrapolation processes depend on manifold information related to short-term memory representations of the target motion before the occlusion, as well as to longer term representations derived from previous experience with the environment. We will review recent oculomotor and manual interception literature to provide up-to-date views on the neurophysiological underpinnings of visual motion extrapolation.

  1. Filling gaps in visual motion for target capture

    Science.gov (United States)

    Bosco, Gianfranco; Delle Monache, Sergio; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka; Lacquaniti, Francesco

    2015-01-01

    A remarkable challenge our brain must face constantly when interacting with the environment is represented by ambiguous and, at times, even missing sensory information. This is particularly compelling for visual information, being the main sensory system we rely upon to gather cues about the external world. It is not uncommon, for example, that objects catching our attention may disappear temporarily from view, occluded by visual obstacles in the foreground. Nevertheless, we are often able to keep our gaze on them throughout the occlusion or even catch them on the fly in the face of the transient lack of visual motion information. This implies that the brain can fill the gaps of missing sensory information by extrapolating the object motion through the occlusion. In recent years, much experimental evidence has been accumulated that both perceptual and motor processes exploit visual motion extrapolation mechanisms. Moreover, neurophysiological and neuroimaging studies have identified brain regions potentially involved in the predictive representation of the occluded target motion. Within this framework, ocular pursuit and manual interceptive behavior have proven to be useful experimental models for investigating visual extrapolation mechanisms. Studies in these fields have pointed out that visual motion extrapolation processes depend on manifold information related to short-term memory representations of the target motion before the occlusion, as well as to longer term representations derived from previous experience with the environment. We will review recent oculomotor and manual interception literature to provide up-to-date views on the neurophysiological underpinnings of visual motion extrapolation. PMID:25755637

  2. Filling gaps in visual motion for target capture.

    Science.gov (United States)

    Bosco, Gianfranco; Monache, Sergio Delle; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka; Lacquaniti, Francesco

    2015-01-01

    A remarkable challenge our brain must face constantly when interacting with the environment is represented by ambiguous and, at times, even missing sensory information. This is particularly compelling for visual information, being the main sensory system we rely upon to gather cues about the external world. It is not uncommon, for example, that objects catching our attention may disappear temporarily from view, occluded by visual obstacles in the foreground. Nevertheless, we are often able to keep our gaze on them throughout the occlusion or even catch them on the fly in the face of the transient lack of visual motion information. This implies that the brain can fill the gaps of missing sensory information by extrapolating the object motion through the occlusion. In recent years, much experimental evidence has been accumulated that both perceptual and motor processes exploit visual motion extrapolation mechanisms. Moreover, neurophysiological and neuroimaging studies have identified brain regions potentially involved in the predictive representation of the occluded target motion. Within this framework, ocular pursuit and manual interceptive behavior have proven to be useful experimental models for investigating visual extrapolation mechanisms. Studies in these fields have pointed out that visual motion extrapolation processes depend on manifold information related to short-term memory representations of the target motion before the occlusion, as well as to longer term representations derived from previous experience with the environment. We will review recent oculomotor and manual interception literature to provide up-to-date views on the neurophysiological underpinnings of visual motion extrapolation.

  3. Online manual movement adjustments in response to target position changes and apparent target motion

    NARCIS (Netherlands)

    Oostwoud Wijdenes, L.; Brenner, E.; Smeets, J.B.J.

    2014-01-01

    This study set out to determine whether the fastest online hand movement corrections are only responses to changing judgments of the targets' position or whether they are also influenced by the apparent target motion. Introducing a gap between when a target disappears and when it reappears at a new

  4. Planning Study Comparison of Real-Time Target Tracking and Four-Dimensional Inverse Planning for Managing Patient Respiratory Motion

    International Nuclear Information System (INIS)

    Zhang Peng; Hugo, Geoffrey D.; Yan Di

    2008-01-01

    Purpose: Real-time target tracking (RT-TT) and four-dimensional inverse planning (4D-IP) are two potential methods to manage respiratory target motion. In this study, we evaluated each method using the cumulative dose-volume criteria in lung cancer radiotherapy. Methods and Materials: Respiration-correlated computed tomography scans were acquired for 4 patients. Deformable image registration was applied to generate a displacement mapping for each phase image of the respiration-correlated computed tomography images. First, the dose distribution for the organs of interest obtained from an idealized RT-TT technique was evaluated, assuming perfect knowledge of organ motion and beam tracking. Inverse planning was performed on each phase image separately. The treatment dose to the organs of interest was then accumulated from the optimized plans. Second, 4D-IP was performed using the probability density function of respiratory motion. The beam arrangement, prescription dose, and objectives were consistent in both planning methods. The dose-volume and equivalent uniform dose in the target volume, lung, heart, and spinal cord were used for the evaluation. Results: The cumulative dose in the target was similar for both techniques. The equivalent uniform dose of the lung, heart, and spinal cord was 4.6 ± 2.2, 11 ± 4.4, and 11 ± 6.6 Gy for RT-TT with a 0-mm target margin, 5.2 ± 3.1, 12 ± 5.9, and 12 ± 7.8 Gy for RT-TT with a 2-mm target margin, and 5.3 ± 2.3, 11.9 ± 5.0, and 12 ± 5.6 Gy for 4D-IP, respectively. Conclusion: The results of our study have shown that 4D-IP can achieve plans similar to those achieved by RT-TT. Considering clinical implementation, 4D-IP could be a more reliable and practical method to manage patient respiration-induced motion

  5. SU-E-J-252: A Motion Algorithm to Extract Physical and Motion Parameters of a Mobile Target in Cone-Beam Computed Tomographic Imaging Retrospective to Image Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [Department of Electrical and Computer Engineering, Ada, OH (United States)

    2014-06-01

    Purpose: A motion algorithm was developed to extract actual length, CT-numbers and motion amplitude of a mobile target imaged with cone-beam-CT (CBCT) retrospective to image-reconstruction. Methods: The motion model considered a mobile target moving with a sinusoidal motion and employed three measurable parameters: apparent length, CT number level and gradient of a mobile target obtained from CBCT images to extract information about the actual length and CT number value of the stationary target and motion amplitude. The algorithm was verified experimentally with a mobile phantom setup that has three targets with different sizes manufactured from homogenous tissue-equivalent gel material embedded into a thorax phantom. The phantom moved sinusoidal in one-direction using eight amplitudes (0–20mm) and a frequency of 15-cycles-per-minute. The model required imaging parameters such as slice thickness, imaging time. Results: This motion algorithm extracted three unknown parameters: length of the target, CT-number-level, motion amplitude for a mobile target retrospective to CBCT image reconstruction. The algorithm relates three unknown parameters to measurable apparent length, CT-number-level and gradient for well-defined mobile targets obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on actual length of the target and motion amplitude. The cumulative CT-number for a mobile target was dependent on CT-number-level of the stationary target and motion amplitude. The gradient of the CT-distribution of mobile target is dependent on the stationary CT-number-level, actual target length along the direction of motion, and motion amplitude. Motion frequency and phase did not affect the elongation and CT-number distributions of mobile targets when imaging time included several motion cycles. Conclusion: The motion algorithm developed in this study has potential applications in diagnostic CT imaging and radiotherapy to extract

  6. Computer-aided target tracking in motion analysis studies

    Science.gov (United States)

    Burdick, Dominic C.; Marcuse, M. L.; Mislan, J. D.

    1990-08-01

    Motion analysis studies require the precise tracking of reference objects in sequential scenes. In a typical situation, events of interest are captured at high frame rates using special cameras, and selected objects or targets are tracked on a frame by frame basis to provide necessary data for motion reconstruction. Tracking is usually done using manual methods which are slow and prone to error. A computer based image analysis system has been developed that performs tracking automatically. The objective of this work was to eliminate the bottleneck due to manual methods in high volume tracking applications such as the analysis of crash test films for the automotive industry. The system has proven to be successful in tracking standard fiducial targets and other objects in crash test scenes. Over 95 percent of target positions which could be located using manual methods can be tracked by the system, with a significant improvement in throughput over manual methods. Future work will focus on the tracking of clusters of targets and on tracking deformable objects such as airbags.

  7. Postural sway and gaze can track the complex motion of a visual target.

    Directory of Open Access Journals (Sweden)

    Vassilia Hatzitaki

    Full Text Available Variability is an inherent and important feature of human movement. This variability has form exhibiting a chaotic structure. Visual feedback training using regular predictive visual target motions does not take into account this essential characteristic of the human movement, and may result in task specific learning and loss of visuo-motor adaptability. In this study, we asked how well healthy young adults can track visual target cues of varying degree of complexity during whole-body swaying in the Anterior-Posterior (AP and Medio-Lateral (ML direction. Participants were asked to track three visual target motions: a complex (Lorenz attractor, a noise (brown and a periodic (sine moving target while receiving online visual feedback about their performance. Postural sway, gaze and target motion were synchronously recorded and the degree of force-target and gaze-target coupling was quantified using spectral coherence and Cross-Approximate entropy. Analysis revealed that both force-target and gaze-target coupling was sensitive to the complexity of the visual stimuli motions. Postural sway showed a higher degree of coherence with the Lorenz attractor than the brown noise or sinusoidal stimulus motion. Similarly, gaze was more synchronous with the Lorenz attractor than the brown noise and sinusoidal stimulus motion. These results were similar regardless of whether tracking was performed in the AP or ML direction. Based on the theoretical model of optimal movement variability tracking of a complex signal may provide a better stimulus to improve visuo-motor adaptation and learning in postural control.

  8. SAR Imaging of Ground Moving Targets with Non-ideal Motion Error Compensation(in English

    Directory of Open Access Journals (Sweden)

    Zhou Hui

    2015-06-01

    Full Text Available Conventional ground moving target imaging algorithms mainly focus on the range cell migration correction and the motion parameter estimation of the moving target. However, in real Synthetic Aperture Radar (SAR data processing, non-ideal motion error compensation is also a critical process, which focuses and has serious impacts on the imaging quality of moving targets. Non-ideal motion error can not be compensated by either the stationary SAR motion error compensation algorithms or the autofocus techniques. In this paper, two sorts of non-ideal motion errors that affect the Doppler centroid of the moving target is analyzed, and a novel non-ideal motion error compensation algorithm is proposed based on the Inertial Navigation System (INS data and the range walk trajectory. Simulated and real data processing results are provided to demonstrate the effectiveness of the proposed algorithm.

  9. DMLC motion tracking of moving targets for intensity modulated arc therapy treatment

    DEFF Research Database (Denmark)

    Zimmerman, Jens; Korreman, Stine; Persson, Gitte

    2009-01-01

    (DMLC). The aim of this work was to evaluate the dose delivered to moving targets using the RapidArc (Varian Medical Systems, Inc.) technology with and without a DMLC tracking algorithm. MATERIAL AND METHODS: A Varian Clinac iX was equipped with a preclinical RapidArc and a 3D DMLC tracking application......) and state (1). CONCLUSIONS: DMLC tracking together with RapidArc make a feasible combination and is capable of improving the dose distribution delivered to a moving target. It seems to be of importance to minimize noise influencing the tracking, to gain the full benefit from the application........ A motion platform was placed on the couch, with the detectors on top: a PTW seven29 and a Scandidos Delta4. One lung plan and one prostate plan were delivered. Motion was monitored using a Real-time Position Management (RPM) system. Reference measurements were performed for both plans with both detectors...

  10. Effects of Target Positioning Error on Motion Compensation for Airborne Interferometric SAR

    Directory of Open Access Journals (Sweden)

    Li Yin-wei

    2013-12-01

    Full Text Available The measurement inaccuracies of Inertial Measurement Unit/Global Positioning System (IMU/GPS as well as the positioning error of the target may contribute to the residual uncompensated motion errors in the MOtion COmpensation (MOCO approach based on the measurement of IMU/GPS. Aiming at the effects of target positioning error on MOCO for airborne interferometric SAR, the paper firstly deduces a mathematical model of residual motion error bring out by target positioning error under the condition of squint. And the paper analyzes the effects on the residual motion error caused by system sampling delay error, the Doppler center frequency error and reference DEM error which result in target positioning error based on the model. Then, the paper discusses the effects of the reference DEM error on the interferometric SAR image quality, the interferometric phase and the coherent coefficient. The research provides theoretical bases for the MOCO precision in signal processing of airborne high precision SAR and airborne repeat-pass interferometric SAR.

  11. Contribution of self-motion perception to acoustic target localization.

    Science.gov (United States)

    Pettorossi, V E; Brosch, M; Panichi, R; Botti, F; Grassi, S; Troiani, D

    2005-05-01

    The findings of this study suggest that acoustic spatial perception during head movement is achieved by the vestibular system, which is responsible for the correct dynamic of acoustic target pursuit. The ability to localize sounds in space during whole-body rotation relies on the auditory localization system, which recognizes the position of sound in a head-related frame, and on the sensory systems, namely the vestibular system, which perceive head and body movement. The aim of this study was to analyse the contribution of head motion cues to the spatial representation of acoustic targets in humans. Healthy subjects standing on a rotating platform in the dark were asked to pursue with a laser pointer an acoustic target which was horizontally rotated while the body was kept stationary or maintained stationary while the whole body was rotated. The contribution of head motion to the spatial acoustic representation could be inferred by comparing the gains and phases of the pursuit in the two experimental conditions when the frequency was varied. During acoustic target rotation there was a reduction in the gain and an increase in the phase lag, while during whole-body rotations the gain tended to increase and the phase remained constant. The different contributions of the vestibular and acoustic systems were confirmed by analysing the acoustic pursuit during asymmetric body rotation. In this particular condition, in which self-motion perception gradually diminished, an increasing delay in target pursuit was observed.

  12. Modern design of far-field target motion simulators

    Science.gov (United States)

    Hauser, Robin; Swamp, Michael; Havlicsek, Howard

    2006-05-01

    Target Motion Simulators (TMS) are often used in conjunction with Flight Motion Simulators (FMS) to provide a realistic simulation of tracking and target engagement. For near-field applications, the TMS has typically been implemented with two additional gimbals around the FMS. For far-field applications, such as a radar, the TMS has traditionally been implemented with curvilinear X-Y Frames. A curvilinear frame placed at the proper distance from the FMS has the benefit of always pointing the Target back to the FMS intersection of axes. In most cases the curvilinear TMS provides good results. However, the curvilinear TMS lacks the possibility to change the distance between Target and Seeker, which is needed for operation with different radar wavelengths. Acutronic has developed a new approach using a flat frame (X-Y) TMS coupled with a gimballed payload mount that has the possibility of being used at various distances without losing the functionality of continuous pointing back to the seeker. This paper describes the electro-mechanical design and gives an overview of the Computer and Controllers used. It further addresses the problem of coordination transformation that is needed to obtain the correct pointing.

  13. SU-E-J-150: Four-Dimensional Cone-Beam CT Algorithm by Extraction of Physical and Motion Parameter of Mobile Targets Retrospective to Image Reconstruction with Motion Modeling

    International Nuclear Information System (INIS)

    Ali, I; Ahmad, S; Alsbou, N

    2015-01-01

    Purpose: To develop 4D-cone-beam CT (CBCT) algorithm by motion modeling that extracts actual length, CT numbers level and motion amplitude of a mobile target retrospective to image reconstruction by motion modeling. Methods: The algorithm used three measurable parameters: apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine actual length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm were tested with mobile targets that with different well-known sizes made from tissue-equivalent gel which was inserted into a thorax phantom. The phantom moved sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0–20mm. Results: Using this 4D-CBCT algorithm, three unknown parameters were extracted that include: length of the target, CT number level, speed or motion amplitude for the mobile targets retrospective to image reconstruction. The motion algorithms solved for the three unknown parameters using measurable apparent length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on the actual target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, actual target length and motion amplitude. Motion frequency and phase did not affect the elongation and CT number distribution of the mobile target and could not be determined. Conclusion: A 4D-CBCT motion algorithm was developed to extract three parameters that include actual length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement to motion tracking and sorting of the images into different breathing phases

  14. SU-E-J-150: Four-Dimensional Cone-Beam CT Algorithm by Extraction of Physical and Motion Parameter of Mobile Targets Retrospective to Image Reconstruction with Motion Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [Ohio Northern University, Ada, OH (United States)

    2015-06-15

    Purpose: To develop 4D-cone-beam CT (CBCT) algorithm by motion modeling that extracts actual length, CT numbers level and motion amplitude of a mobile target retrospective to image reconstruction by motion modeling. Methods: The algorithm used three measurable parameters: apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine actual length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm were tested with mobile targets that with different well-known sizes made from tissue-equivalent gel which was inserted into a thorax phantom. The phantom moved sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0–20mm. Results: Using this 4D-CBCT algorithm, three unknown parameters were extracted that include: length of the target, CT number level, speed or motion amplitude for the mobile targets retrospective to image reconstruction. The motion algorithms solved for the three unknown parameters using measurable apparent length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on the actual target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, actual target length and motion amplitude. Motion frequency and phase did not affect the elongation and CT number distribution of the mobile target and could not be determined. Conclusion: A 4D-CBCT motion algorithm was developed to extract three parameters that include actual length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement to motion tracking and sorting of the images into different breathing phases

  15. Micro-motion Recognition of Spatial Cone Target Based on ISAR Image Sequences

    Directory of Open Access Journals (Sweden)

    Changyong Shu

    2016-04-01

    Full Text Available The accurate micro-motions recognition of spatial cone target is the foundation of the characteristic parameter acquisition. For this reason, a micro-motion recognition method based on the distinguishing characteristics extracted from the Inverse Synthetic Aperture Radar (ISAR sequences is proposed in this paper. The projection trajectory formula of cone node strong scattering source and cone bottom slip-type strong scattering sources, which are located on the spatial cone target, are deduced under three micro-motion types including nutation, precession, and spinning, and the correctness is verified by the electromagnetic simulation. By comparison, differences are found among the projection of the scattering sources with different micro-motions, the coordinate information of the scattering sources in the Inverse Synthetic Aperture Radar sequences is extracted by the CLEAN algorithm, and the spinning is recognized by setting the threshold value of Doppler. The double observation points Interacting Multiple Model Kalman Filter is used to separate the scattering sources projection of the nutation target or precession target, and the cross point number of each scattering source’s projection track is used to classify the nutation or precession. Finally, the electromagnetic simulation data are used to verify the effectiveness of the micro-motion recognition method.

  16. Evaluation of potential internal target volume of liver tumors using cine-MRI.

    Science.gov (United States)

    Akino, Yuichi; Oh, Ryoong-Jin; Masai, Norihisa; Shiomi, Hiroya; Inoue, Toshihiko

    2014-11-01

    Four-dimensional computed tomography (4DCT) is widely used for evaluating moving tumors, including lung and liver cancers. For patients with unstable respiration, however, the 4DCT may not visualize tumor motion properly. High-speed magnetic resonance imaging (MRI) sequences (cine-MRI) permit direct visualization of respiratory motion of liver tumors without considering radiation dose exposure to patients. Here, the authors demonstrated a technique for evaluating internal target volume (ITV) with consideration of respiratory variation using cine-MRI. The authors retrospectively evaluated six patients who received stereotactic body radiotherapy (SBRT) to hepatocellular carcinoma. Before acquiring planning CT, sagittal and coronal cine-MRI images were acquired for 30 s with a frame rate of 2 frames/s. The patient immobilization was conducted under the same condition as SBRT. Planning CT images were then acquired within 15 min from cine-MRI image acquisitions, followed by a 4DCT scan. To calculate tumor motion, the motion vectors between two continuous frames of cine-MRI images were calculated for each frame using the pyramidal Lucas-Kanade method. The target contour was delineated on one frame, and each vertex of the contour was shifted and copied onto the following frame using neighboring motion vectors. 3D trajectory data were generated with the centroid of the contours on sagittal and coronal images. To evaluate the accuracy of the tracking method, the motion of clearly visible blood vessel was analyzed with the motion tracking and manual detection techniques. The target volume delineated on the 50% (end-exhale) phase of 4DCT was translated with the trajectory data, and the distribution of the occupancy probability of target volume was calculated as potential ITV (ITV Potential). The concordance between ITV Potential and ITV estimated with 4DCT (ITV 4DCT) was evaluated using the Dice's similarity coefficient (DSC). The distance between blood vessel positions

  17. Statistical analysis of target motion in gated lung stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Zhao Bo; Yang Yong; Li Tianfang; Li Xiang; Heron, Dwight E; Huq, M Saiful

    2011-01-01

    An external surrogate-based respiratory gating technique is a useful method to reduce target margins for the treatment of a moving lung tumor. The success of this technique relies on a good correlation between the motion of the external markers and the internal tumor as well as the repeatability of the respiratory motion. In gated lung stereotactic body radiation therapy (SBRT), the treatment time for each fraction could exceed 30 min due to large fractional dose. Tumor motion may experience pattern changes such as baseline shift during such extended treatment time. The purpose of this study is to analyze tumor motion traces in actual treatment situations and to evaluate the effect of the target baseline shift in gated lung SBRT treatment. Real-time motion data for both the external markers and tumors from 51 lung SBRT treatments with Cyberknife Synchrony technology were analyzed in this study. The treatment time is typically greater than 30 min. The baseline shift was calculated with a rolling average window equivalent to ∼20 s and subtracted from that at the beginning. The magnitude of the baseline shift and its relationship with treatment time were investigated. Phase gating simulation was retrospectively performed on 12 carefully selected treatments with respiratory amplitude larger than 5 mm and regular phases. A customized gating window was defined for each individual treatment. It was found that the baseline shifts are specific to each patient and each fraction. Statistical analysis revealed that more than 69% treatments exhibited increased baseline shifts with the lapse of treatment time. The magnitude of the baseline shift could reach 5.3 mm during a 30 min treatment. Gating simulation showed that tumor excursion was caused mainly by the uncertainties in phase gating simulation and baseline shift, the latter being the primary factor. With a 5 mm gating window, 2 out of 12 treatments in the study group showed significant tumor excursion. Baseline shifts

  18. Evaluation of potential internal target volume of liver tumors using cine-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Akino, Yuichi, E-mail: akino@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan and Miyakojima IGRT Clinic, Miyakojima-ku, Osaka 5340021 (Japan); Oh, Ryoong-Jin; Masai, Norihisa; Shiomi, Hiroya; Inoue, Toshihiko [Miyakojima IGRT Clinic, Miyakojima-ku, Osaka 5340021 (Japan)

    2014-11-01

    Purpose: Four-dimensional computed tomography (4DCT) is widely used for evaluating moving tumors, including lung and liver cancers. For patients with unstable respiration, however, the 4DCT may not visualize tumor motion properly. High-speed magnetic resonance imaging (MRI) sequences (cine-MRI) permit direct visualization of respiratory motion of liver tumors without considering radiation dose exposure to patients. Here, the authors demonstrated a technique for evaluating internal target volume (ITV) with consideration of respiratory variation using cine-MRI. Methods: The authors retrospectively evaluated six patients who received stereotactic body radiotherapy (SBRT) to hepatocellular carcinoma. Before acquiring planning CT, sagittal and coronal cine-MRI images were acquired for 30 s with a frame rate of 2 frames/s. The patient immobilization was conducted under the same condition as SBRT. Planning CT images were then acquired within 15 min from cine-MRI image acquisitions, followed by a 4DCT scan. To calculate tumor motion, the motion vectors between two continuous frames of cine-MRI images were calculated for each frame using the pyramidal Lucas–Kanade method. The target contour was delineated on one frame, and each vertex of the contour was shifted and copied onto the following frame using neighboring motion vectors. 3D trajectory data were generated with the centroid of the contours on sagittal and coronal images. To evaluate the accuracy of the tracking method, the motion of clearly visible blood vessel was analyzed with the motion tracking and manual detection techniques. The target volume delineated on the 50% (end-exhale) phase of 4DCT was translated with the trajectory data, and the distribution of the occupancy probability of target volume was calculated as potential ITV (ITV {sub Potential}). The concordance between ITV {sub Potential} and ITV estimated with 4DCT (ITV {sub 4DCT}) was evaluated using the Dice’s similarity coefficient (DSC). Results

  19. A novel respiratory motion compensation strategy combining gated beam delivery and mean target position concept - A compromise between small safety margins and long duty cycles

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Kavanagh, Anthony; Webb, Steve; Brada, Michael

    2011-01-01

    Purpose: To evaluate a novel respiratory motion compensation strategy combining gated beam delivery with the mean target position (MTP) concept for pulmonary stereotactic body radiotherapy (SBRT). Materials and methods: Four motion compensation strategies were compared for 10 targets with motion amplitudes between 6 mm and 31 mm: the internal target volume concept (plan ITV ); the MTP concept where safety margins were adapted based on 4D dose accumulation (plan MTP ); gated beam delivery without margins for motion compensation (plan gated ); a novel approach combining gating and the MTP concept (plan gated and MTP ). Results: For 5/10 targets with an average motion amplitude of 9 mm, the differences in the mean lung dose (MLD) between plan gated and plan MTP were gated and MTP . Despite significantly shorter duty cycles, plan gated reduced the MLD by gated and MTP . The MLD was increased by 18% in plan MTP compared to that of plan gated and MTP . Conclusions: For pulmonary targets with motion amplitudes >10-15 mm, the combination of gating and the MTP concept allowed small safety margins with simultaneous long duty cycles.

  20. Software-controlled, highly automated intrafraction prostate motion correction with intrafraction stereographic targeting: System description and clinical results

    International Nuclear Information System (INIS)

    Mutanga, Theodore F.; Boer, Hans C. J. de; Rajan, Vinayakrishnan; Dirkx, Maarten L. P.; Os, Marjolein J. H. van; Incrocci, Luca; Heijmen, Ben J. M.

    2012-01-01

    Purpose: A new system for software-controlled, highly automated correction of intrafraction prostate motion,'' intrafraction stereographic targeting'' (iSGT), is described and evaluated. Methods: At our institute, daily prostate positioning is routinely performed at the start of treatment beam using stereographic targeting (SGT). iSGT was implemented by extension of the SGT software to facilitate fast and accurate intrafraction motion corrections with minimal user interaction. iSGT entails megavoltage (MV) image acquisitions with the first segment of selected IMRT beams, automatic registration of implanted markers, followed by remote couch repositioning to correct for intrafraction motion above a predefined threshold, prior to delivery of the remaining segments. For a group of 120 patients, iSGT with corrections for two nearly lateral beams was evaluated in terms of workload and impact on effective intrafraction displacements in the sagittal plane. Results: SDs of systematic (Σ) and random (σ) displacements relative to the planning CT measured directly after initial SGT setup correction were eff eff eff eff eff eff < 0.7 mm, requiring corrections in 82.4% of the fractions. Because iSGT is highly automated, the extra time added by iSGT is <30 s if a correction is required. Conclusions: Without increasing imaging dose, iSGT successfully reduces intrafraction prostate motion with minimal workload and increase in fraction time. An action level of 2 mm is recommended.

  1. Research on Ground Motion Metal Target Based on Rocket Projectile by Using Millimeter Wave Radiometer Technology

    Directory of Open Access Journals (Sweden)

    Zhang Dongyang

    2014-06-01

    Full Text Available How to detect the ground motion metal target effectively is an important guarantee for precision strike in the process of Rocket Projectile flight. Accordingly and in view of the millimeter- wave radiation characteristic of the ground motion metal target, a mathematical model was established based on Rocket Projectile about millimeter-wave detection to the ground motion metal target. Through changing various parameters in the process of Rocket Projectile flight, the detection model was studied by simulation. The parameters variation and effective range of millimeter wave radiometer were obtained in the process of rotation and horizontal flight. So a certain theoretical basis was formed for the precision strike to the ground motion metal target.

  2. Uncertainty Prediction in Passive Target Motion Analysis

    Science.gov (United States)

    2016-05-12

    Number 15/152,696 Filing Date 12 May 2016 Inventor John G. Baylog et al Address any questions concerning this matter to the Office of...300118 1 of 25 UNCERTAINTY PREDICTION IN PASSIVE TARGET MOTION ANALYSIS STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein...at an unknown location and following an unknown course relative to an observer 12. Observer 12 has a sensor array such as a passive sonar or radar

  3. Extrapolation of vertical target motion through a brief visual occlusion.

    Science.gov (United States)

    Zago, Myrka; Iosa, Marco; Maffei, Vincenzo; Lacquaniti, Francesco

    2010-03-01

    It is known that arbitrary target accelerations along the horizontal generally are extrapolated much less accurately than target speed through a visual occlusion. The extent to which vertical accelerations can be extrapolated through an occlusion is much less understood. Here, we presented a virtual target rapidly descending on a blank screen with different motion laws. The target accelerated under gravity (1g), decelerated under reversed gravity (-1g), or moved at constant speed (0g). Probability of each type of acceleration differed across experiments: one acceleration at a time, or two to three different accelerations randomly intermingled could be presented. After a given viewing period, the target disappeared for a brief, variable period until arrival (occluded trials) or it remained visible throughout (visible trials). Subjects were asked to press a button when the target arrived at destination. We found that, in visible trials, the average performance with 1g targets could be better or worse than that with 0g targets depending on the acceleration probability, and both were always superior to the performance with -1g targets. By contrast, the average performance with 1g targets was always superior to that with 0g and -1g targets in occluded trials. Moreover, the response times of 1g trials tended to approach the ideal value with practice in occluded protocols. To gain insight into the mechanisms of extrapolation, we modeled the response timing based on different types of threshold models. We found that occlusion was accompanied by an adaptation of model parameters (threshold time and central processing time) in a direction that suggests a strategy oriented to the interception of 1g targets at the expense of the interception of the other types of tested targets. We argue that the prediction of occluded vertical motion may incorporate an expectation of gravity effects.

  4. Motion-specific internal target volumes for FDG-avid mediastinal and hilar lymph nodes

    International Nuclear Information System (INIS)

    Lamb, James M.; Robinson, Clifford G.; Bradley, Jeffrey D.; Low, Daniel A.

    2013-01-01

    Background and purpose: To quantify the benefit of motion-specific internal target volumes for FDG-avid mediastinal and hilar lymph nodes generated using 4D-PET, vs. conventional internal target volumes generated using non-respiratory gated PET and 4D-CT scans. Materials and methods: Five patients with FDG-avid tumors metastatic to 11 hilar or mediastinal lymph nodes were imaged with respiratory-correlated FDG-PET (4D-PET) and 4D-CT. FDG-avid nodes were contoured by a radiation oncologist in two ways. Standard-of-care volumes were contoured using conventional un-gated PET, 4D-CT, and breath-hold CT. A second, motion-specific, set of volumes were contoured using 4D-PET.Contours based on 4D-PET corresponded directly to an internal target volume (ITV 4D ), whereas contours based on un-gated PET were expanded by a series of exploratory isotropic margins (from 5 to 13 mm) based on literature recommendations on lymph node motion to form internal target volumes (ITV 3D ). Results: A 13 mm expansion of the un-gated PET nodal volume was needed to cover the ITV 4D for 10 of 11 nodes studied. The ITV 3D based on a 13 mm expansion included on average 45 cm 3 of tissue that was not included in the ITV 4D . Conclusions: Motion-specific lymph-node internal target volumes generated from 4D-PET imaging could be used to improve accuracy and/or reduce normal-tissue irradiation compared to the standard-of-care un-gated PET based internal target volumes

  5. Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions.

    Science.gov (United States)

    Zago, Myrka; Bosco, Gianfranco; Maffei, Vincenzo; Iosa, Marco; Ivanenko, Yuri P; Lacquaniti, Francesco

    2004-04-01

    Prevailing views on how we time the interception of a moving object assume that the visual inputs are informationally sufficient to estimate the time-to-contact from the object's kinematics. Here we present evidence in favor of a different view: the brain makes the best estimate about target motion based on measured kinematics and an a priori guess about the causes of motion. According to this theory, a predictive model is used to extrapolate time-to-contact from expected dynamics (kinetics). We projected a virtual target moving vertically downward on a wide screen with different randomized laws of motion. In the first series of experiments, subjects were asked to intercept this target by punching a real ball that fell hidden behind the screen and arrived in synchrony with the visual target. Subjects systematically timed their motor responses consistent with the assumption of gravity effects on an object's mass, even when the visual target did not accelerate. With training, the gravity model was not switched off but adapted to nonaccelerating targets by shifting the time of motor activation. In the second series of experiments, there was no real ball falling behind the screen. Instead the subjects were required to intercept the visual target by clicking a mousebutton. In this case, subjects timed their responses consistent with the assumption of uniform motion in the absence of forces, even when the target actually accelerated. Overall, the results are in accord with the theory that motor responses evoked by visual kinematics are modulated by a prior of the target dynamics. The prior appears surprisingly resistant to modifications based on performance errors.

  6. SU-E-J-115: Correlation of Displacement Vector Fields Calculated by Deformable Image Registration Algorithms with Motion Parameters of CT Images with Well-Defined Targets and Controlled-Motion

    Energy Technology Data Exchange (ETDEWEB)

    Jaskowiak, J; Ahmad, S; Ali, I [University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Alsbou, N [Ohio Northern University, Ada, OH (United States)

    2015-06-15

    Purpose: To investigate correlation of displacement vector fields (DVF) calculated by deformable image registration algorithms with motion parameters in helical axial and cone-beam CT images with motion artifacts. Methods: A mobile thorax phantom with well-known targets with different sizes that were made from water-equivalent material and inserted in foam to simulate lung lesions. The thorax phantom was imaged with helical, axial and cone-beam CT. The phantom was moved with a cyclic motion with different motion amplitudes and frequencies along the superior-inferior direction. Different deformable image registration algorithms including demons, fast demons, Horn-Shunck and iterative-optical-flow from the DIRART software were used to deform CT images for the phantom with different motion patterns. The CT images of the mobile phantom were deformed to CT images of the stationary phantom. Results: The values of displacement vectors calculated by deformable image registration algorithm correlated strongly with motion amplitude where large displacement vectors were calculated for CT images with large motion amplitudes. For example, the maximal displacement vectors were nearly equal to the motion amplitudes (5mm, 10mm or 20mm) at interfaces between the mobile targets lung tissue, while the minimal displacement vectors were nearly equal to negative the motion amplitudes. The maximal and minimal displacement vectors matched with edges of the blurred targets along the Z-axis (motion-direction), while DVF’s were small in the other directions. This indicates that the blurred edges by phantom motion were shifted largely to match with the actual target edge. These shifts were nearly equal to the motion amplitude. Conclusions: The DVF from deformable-image registration algorithms correlated well with motion amplitude of well-defined mobile targets. This can be used to extract motion parameters such as amplitude. However, as motion amplitudes increased, image artifacts increased

  7. Models and Algorithms for Tracking Target with Coordinated Turn Motion

    Directory of Open Access Journals (Sweden)

    Xianghui Yuan

    2014-01-01

    Full Text Available Tracking target with coordinated turn (CT motion is highly dependent on the models and algorithms. First, the widely used models are compared in this paper—coordinated turn (CT model with known turn rate, augmented coordinated turn (ACT model with Cartesian velocity, ACT model with polar velocity, CT model using a kinematic constraint, and maneuver centered circular motion model. Then, in the single model tracking framework, the tracking algorithms for the last four models are compared and the suggestions on the choice of models for different practical target tracking problems are given. Finally, in the multiple models (MM framework, the algorithm based on expectation maximization (EM algorithm is derived, including both the batch form and the recursive form. Compared with the widely used interacting multiple model (IMM algorithm, the EM algorithm shows its effectiveness.

  8. De-Trending K2 Exoplanet Targets for High Spacecraft Motion

    Science.gov (United States)

    Saunders, Nicholas; Luger, Rodrigo; Barnes, Rory

    2018-01-01

    After the failure of two reaction wheels, the Kepler space telescope lost its fine pointing ability and entered a new phase of observation, K2. Targets observed by K2 have high motion relative to the detector and K2 light curves have higher noise than Kepler observations. Despite the increased noise, systematics removal pipelines such as K2SFF and EVEREST have enabled continued high-precision transiting planet science with the telescope, resulting in the detection of hundreds of new exoplanets. However, as the spacecraft begins to run out of fuel, sputtering will drive large and random variations in pointing that can prevent detection of exoplanets during the remaining 5 campaigns. In general, higher motion will spread the stellar point spread function (PSF) across more pixels during a campaign, which increases the number of degrees of freedom in the noise component and significantly reduces the de-trending power of traditional systematics removal methods. We use a model of the Kepler CCD combined with pixel-level information of a large number of stars across the detector to improve the performance of the EVEREST pipeline at high motion. We also consider the problem of increased crowding for static apertures in the high-motion regime and develop pixel response function (PRF)-fitting techniques to mitigate contamination and maximize the de-trending power. We assess the performance of our code by simulating sputtering events and assessing exoplanet detection efficiency with transit injection/recovery tests. We find that targets with roll amplitudes of up to 8 pixels, approximately 15 times K2 roll, can be de-trended within 2 to 3 factors of current K2 photometric precision for stars up to 14th magnitude. Achieved recovery precision allows detection of small planets around 11th and 12th magnitude stars. These methods can be applied to the light curves of K2 targets for existing and future campaigns to ensure that precision exoplanet science can still be performed

  9. Three-dimensional intrafractional internal target motions in accelerated partial breast irradiation using three-dimensional conformal external beam radiotherapy.

    Science.gov (United States)

    Hirata, Kimiko; Yoshimura, Michio; Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Inoue, Minoru; Sasaki, Makoto; Fujimoto, Takahiro; Yano, Shinsuke; Nakata, Manabu; Mizowaki, Takashi; Hiraoka, Masahiro

    2017-07-01

    We evaluated three-dimensional intrafractional target motion, divided into respiratory-induced motion and baseline drift, in accelerated partial breast irradiation (APBI). Paired fluoroscopic images were acquired simultaneously using orthogonal kV X-ray imaging systems at pre- and post-treatment for 23 patients who underwent APBI with external beam radiotherapy. The internal target motion was calculated from the surgical clips placed around the tumour cavity. The peak-to-peak respiratory-induced motions ranged from 0.6 to 1.5mm in all directions. A systematic baseline drift of 1.5mm towards the posterior direction and a random baseline drift of 0.3mm in the lateral-medial and cranial-caudal directions were observed. The baseline for an outer tumour cavity drifted towards the lateral and posterior directions, and that for an upper tumour cavity drifted towards the cranial direction. Moderate correlations were observed between the posterior baseline drift and the patients' physical characteristics. The posterior margin for intrafractional uncertainties was larger than 5mm in patients with greater fat thickness due to the baseline drift. The magnitude of the intrafractional motion was not uniform according to the direction, patients' physical characteristics, or tumour cavity location due to the baseline drift. Therefore, the intrafractional systematic movement should be properly managed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Evaluation of a portable markerless finger position capture device: accuracy of the Leap Motion controller in healthy adults.

    Science.gov (United States)

    Tung, James Y; Lulic, Tea; Gonzalez, Dave A; Tran, Johnathan; Dickerson, Clark R; Roy, Eric A

    2015-05-01

    Although motion analysis is frequently employed in upper limb motor assessment (e.g. visually-guided reaching), they are resource-intensive and limited to laboratory settings. This study evaluated the reliability and accuracy of a new markerless motion capture device, the Leap Motion controller, to measure finger position. Testing conditions that influence reliability and agreement between the Leap and a research-grade motion capture system were examined. Nine healthy young adults pointed to 15 targets on a computer screen under two conditions: (1) touching the target (touch) and (2) 4 cm away from the target (no-touch). Leap data was compared to an Optotrak marker attached to the index finger. Across all trials, root mean square (RMS) error of the Leap system was 17.30  ±  9.56 mm (mean ± SD), sampled at 65.47  ±  21.53 Hz. The % viable trials and mean sampling rate were significantly lower in the touch condition (44% versus 64%, p motion capture systems, the Leap Motion controller is sufficiently reliable for measuring motor performance in pointing tasks that do not require high positional accuracy (e.g. reaction time, Fitt's, trails, bimanual coordination).

  11. Processing of targets in smooth or apparent motion along the vertical in the human brain: an fMRI study.

    Science.gov (United States)

    Maffei, Vincenzo; Macaluso, Emiliano; Indovina, Iole; Orban, Guy; Lacquaniti, Francesco

    2010-01-01

    Neural substrates for processing constant speed visual motion have been extensively studied. Less is known about the brain activity patterns when the target speed changes continuously, for instance under the influence of gravity. Using functional MRI (fMRI), here we compared brain responses to accelerating/decelerating targets with the responses to constant speed targets. The target could move along the vertical under gravity (1g), under reversed gravity (-1g), or at constant speed (0g). In the first experiment, subjects observed targets moving in smooth motion and responded to a GO signal delivered at a random time after target arrival. As expected, we found that the timing of the motor responses did not depend significantly on the specific motion law. Therefore brain activity in the contrast between different motion laws was not related to motor timing responses. Average BOLD signals were significantly greater for 1g targets than either 0g or -1g targets in a distributed network including bilateral insulae, left lingual gyrus, and brain stem. Moreover, in these regions, the mean activity decreased monotonically from 1g to 0g and to -1g. In the second experiment, subjects intercepted 1g, 0g, and -1g targets either in smooth motion (RM) or in long-range apparent motion (LAM). We found that the sites in the right insula and left lingual gyrus, which were selectively engaged by 1g targets in the first experiment, were also significantly more active during 1g trials than during -1g trials both in RM and LAM. The activity in 0g trials was again intermediate between that in 1g trials and that in -1g trials. Therefore in these regions the global activity modulation with the law of vertical motion appears to hold for both RM and LAM. Instead, a region in the inferior parietal lobule showed a preference for visual gravitational motion only in LAM but not RM.

  12. Analysis of target volume motion followed by induced abdominal compression in tomotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Oh, Jeong Hun; Jung, Geon A; Jung, Won Seok; Jo, Jung Young; Kim, Gi Chul; Choi, Tae Kyu

    2014-01-01

    To evaluate the changes of the motion of abdominal cavity between interfraction and intrafraction by using abdominal compression for reducing abdominal motion. 60 MVCT images were obtained before and after tomotherapy from 10 prostate cancer patients over the whole radiotherapy period. Shift values ( X -lateral Y -longitudinal Z -vertical and Roll ) were measured and from it, the correlation of between interfraction set up change and intrafraction target motion was analyzed when applying abdominal compression. The motion changes of interfraction were X- average 0.65±2.32mm, Y-average 1.41±4.83mm, Z-average 0.73± 0.52mm and Roll-average 0.96±0.21mm. The motion changes of intrafraction were X-average 0.15±0.44mm, Y-average 0.13 ±0.44mm, Z-average 0.24±0.64mm and Roll- average 0.1±0.9mm. The average PTV maximum dose difference was minimum for 10% phase and maximum for 70% phase. The average Spain cord maximum dose difference was minimum for 0% phase and maximum for 50% phase. The average difference of V 20 , V 10 , V 5 of Lung show bo certain trend. Abdominal compression can minimize the motion of internal organs and patients. So it is considered to be able to get more ideal dose volume without damage of normal structures from generating margin in small in producing PTV

  13. Verification of target motion effects on SAR imagery using the Gotcha GMTI challenge dataset

    Science.gov (United States)

    Hack, Dan E.; Saville, Michael A.

    2010-04-01

    This paper investigates the relationship between a ground moving target's kinematic state and its SAR image. While effects such as cross-range offset, defocus, and smearing appear well understood, their derivations in the literature typically employ simplifications of the radar/target geometry and assume point scattering targets. This study adopts a geometrical model for understanding target motion effects in SAR imagery, termed the target migration path, and focuses on experimental verification of predicted motion effects using both simulated and empirical datasets based on the Gotcha GMTI challenge dataset. Specifically, moving target imagery is generated from three data sources: first, simulated phase history for a moving point target; second, simulated phase history for a moving vehicle derived from a simulated Mazda MPV X-band signature; and third, empirical phase history from the Gotcha GMTI challenge dataset. Both simulated target trajectories match the truth GPS target position history from the Gotcha GMTI challenge dataset, allowing direct comparison between all three imagery sets and the predicted target migration path. This paper concludes with a discussion of the parallels between the target migration path and the measurement model within a Kalman filtering framework, followed by conclusions.

  14. Target motion predictions for pre-operative planning during needle-based interventions

    NARCIS (Netherlands)

    op den Buijs, J.; Abayazid, Momen; de Korte, Chris L.; Misra, Sarthak

    During biopsies, breast tissue is subjected to displacement upon needle indentation, puncture, and penetration. Thus, accurate needle placement requires pre-operative predictions of the target motions. In this paper, we used ultrasound elastography measurements to non-invasively predict elastic

  15. Artificial ground motion compatible with specified peak ground displacement and target multi-damping response spectra

    International Nuclear Information System (INIS)

    Zhang Yushan; Zhao Fengxin

    2010-01-01

    With respect to the design ground motion of nuclear power plant (NPP), the Regular Guide 1.60 of the US not only defined the standard multi-damping response spectra, i.e. the RG1.60 spectra, but also definitely prescribed the peak ground displacement (PGD) value corresponding to the standard spectra. However, in the engineering practice of generating multi-damping-spectra-compatible artificial ground motion for the seismic design of NPP, the PGD value had been neglected. Addressing this issue, this paper proposed a synthesizing method which generates the artificial ground motion compatible with not only the target multi-damping response spectra but also the specified PGD value. Firstly, by the transfer formula between the power spectrum and the response spectrum, an initial uniformly modulated acceleration time history is synthesized by multiplying the stationary Gaussian process with the prescribed intensity envelope to simulate the amplitude-non-stationarity of earthquake ground motion. And then by superimposing a series of narrow-band time histories in the time domain, the initial time history is modified in the iterative manner to match the target PGD as well as the target multi-damping spectra with the pre-specified matching precisions. Numerical examples are provided to demonstrate the matching precisions of the proposed method to the target values.

  16. Initial clinical evaluation of PET-based ion beam therapy monitoring under consideration of organ motion.

    Science.gov (United States)

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Richter, Daniel; Herfarth, Klaus; Debus, Jürgen; Parodi, Katia

    2016-02-01

    Intrafractional organ motion imposes considerable challenges to scanned ion beam therapy and demands for a thorough verification of the applied treatment. At the Heidelberg Ion-Beam Therapy Center (HIT), the scanned ion beam delivery is verified by means of postirradiation positron-emission-tomography (PET) imaging. This work presents a first clinical evaluation of PET-based treatment monitoring in ion beam therapy under consideration of target motion. Three patients with mobile liver lesions underwent scanned carbon ion irradiation at HIT and postirradiation PET/CT (x-ray-computed-tomography) imaging with a commercial scanner. Respiratory motion was recorded during irradiation and subsequent image acquisition. This enabled a time-resolved (4D) calculation of the expected irradiation-induced activity pattern and, for one patient where an additional 4D CT was acquired at the PET/CT scanner after treatment, a motion-compensated PET image reconstruction. For the other patients, PET data were reconstructed statically. To verify the treatment, calculated prediction and reconstructed measurement were compared with a focus on the ion beam range. Results in the current three patients suggest that for motion amplitudes in the order of 2 mm there is no benefit from incorporating respiratory motion information into PET-based treatment monitoring. For a target motion in the order of 10 mm, motion-related effects become more severe and a time-resolved modeling of the expected activity distribution can lead to an improved data interpretation if a sufficient number of true coincidences is detected. Benefits from motion-compensated PET image reconstruction could not be shown conclusively at the current stage. The feasibility of clinical PET-based treatment verification under consideration of organ motion has been shown for the first time. Improvements in noise-robust 4D PET image reconstruction are deemed necessary to enhance the clinical potential.

  17. Initial clinical evaluation of PET-based ion beam therapy monitoring under consideration of organ motion

    International Nuclear Information System (INIS)

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Herfarth, Klaus; Debus, Jürgen; Richter, Daniel; Parodi, Katia

    2016-01-01

    Purpose: Intrafractional organ motion imposes considerable challenges to scanned ion beam therapy and demands for a thorough verification of the applied treatment. At the Heidelberg Ion-Beam Therapy Center (HIT), the scanned ion beam delivery is verified by means of postirradiation positron-emission-tomography (PET) imaging. This work presents a first clinical evaluation of PET-based treatment monitoring in ion beam therapy under consideration of target motion. Methods: Three patients with mobile liver lesions underwent scanned carbon ion irradiation at HIT and postirradiation PET/CT (x-ray-computed-tomography) imaging with a commercial scanner. Respiratory motion was recorded during irradiation and subsequent image acquisition. This enabled a time-resolved (4D) calculation of the expected irradiation-induced activity pattern and, for one patient where an additional 4D CT was acquired at the PET/CT scanner after treatment, a motion-compensated PET image reconstruction. For the other patients, PET data were reconstructed statically. To verify the treatment, calculated prediction and reconstructed measurement were compared with a focus on the ion beam range. Results: Results in the current three patients suggest that for motion amplitudes in the order of 2 mm there is no benefit from incorporating respiratory motion information into PET-based treatment monitoring. For a target motion in the order of 10 mm, motion-related effects become more severe and a time-resolved modeling of the expected activity distribution can lead to an improved data interpretation if a sufficient number of true coincidences is detected. Benefits from motion-compensated PET image reconstruction could not be shown conclusively at the current stage. Conclusions: The feasibility of clinical PET-based treatment verification under consideration of organ motion has been shown for the first time. Improvements in noise-robust 4D PET image reconstruction are deemed necessary to enhance the

  18. Harmonic pulsed excitation and motion detection of a vibrating reflective target.

    Science.gov (United States)

    Urban, Matthew W; Greenleaf, James F

    2008-01-01

    Elasticity imaging is an emerging medical imaging modality. Methods involving acoustic radiation force excitation and pulse-echo ultrasound motion detection have been investigated to assess the mechanical response of tissue. In this work new methods for dynamic radiation force excitation and motion detection are presented. The theory and model for harmonic motion detection of a vibrating reflective target are presented. The model incorporates processing of radio frequency data acquired using pulse-echo ultrasound to measure harmonic motion with amplitudes ranging from 100 to 10,000 nm. A numerical study was performed to assess the effects of different parameters on the accuracy and precision of displacement amplitude and phase estimation and showed how estimation errors could be minimized. Harmonic pulsed excitation is introduced as a multifrequency radiation force excitation method that utilizes ultrasound tonebursts repeated at a rate f(r). The radiation force, consisting of frequency components at multiples of f(r), is generated using 3.0 MHz ultrasound, and motion detection is performed simultaneously with 9.0 MHz pulse-echo ultrasound. A parameterized experimental analysis showed that displacement can be measured with small errors for motion with amplitudes as low as 100 nm. The parameterized numerical and experimental analyses provide insight into how to optimize acquisition parameters to minimize measurement errors.

  19. On development and improvement of evaluation techniques for seismic ground motion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Issues regarding evaluation of active fault and ground motion for formulation of design basis ground motion (Ss) were prescribed in 'NSC seismic and tsunami safety reviewing manual' in 2012. Moreover, Nuclear Regulation Authority (NRA) is establishing the new seismic safety guideline. In this theme following four subjects were investigated to resolve the important problems for ground motion evaluation, (1) advanced evaluation of ground motion using fault model and uncertainty; (2) improving evaluation of ground motion using attenuation relation of response spectrum; (3) development of advanced and generic techniques for ground motion observation and observation tool in deep borehole; (4) improving the evaluation of site effect and seismic wave propagation characteristics. In addition as emergency requirements from NRA following two subjects were also investigated; (5) hazard evaluation development on fault displacement; (6) ground motion evaluation at near-by source location. Obtained results will be reflected not only in the domestic guideline established by NRA but in the national safety review and also in the safety standard guidelines of the International Atomic Energy Agency (IAEA) through its Extra-Budgetary Program (EBP), thereby contributing to technical cooperation in global nuclear seismic safety. (author)

  20. Evaluation of the interplay effect when using RapidArc to treat targets moving in the craniocaudal or right-left direction

    International Nuclear Information System (INIS)

    Court, Laurence; Wagar, Matthew; Berbeco, Ross; Reisner, Adam; Winey, Brian; Schofield, Debbie; Ionascu, Dan; Allen, Aaron M.; Popple, Richard; Lingos, Tania

    2010-01-01

    Purpose: We have investigated the dosimetric errors caused by the interplay between the motions of the LINAC and the tumor during the delivery of a volume modulated arc therapy treatment. This includes the development of an IMRT QA technique, applied here to evaluate RapidArc plans of varying complexity. Methods: An IMRT QA technique was developed, which involves taking a movie of the delivered dose (0.2 s frames) using a 2D ion chamber array. Each frame of the movie is then moved according to a respiratory trace and the cumulative dose calculated. The advantage of this approach is that the impact of turning the beam on at different points in the respiratory trace, and of different types of motion, can be evaluated using data from a single irradiation. We evaluated this technique by comparing with the results when we actually moved the phantom during irradiation. RapidArc plans were created to treat a 62 cc spherical tumor in a lung phantom (16 plans) and a 454 cc irregular tumor in an actual patient (five plans). The complexity of each field was controlled by adjusting the MU (312-966 MU). Each plan was delivered to a phantom, and a movie of the delivered dose taken using a 2D ion chamber array. Patient motion was modeled by shifting each dose frame according to a respiratory trace, starting the motion at different phases. The expected dose distribution was calculated by blurring the static dose distribution with the target motion. The dose error due to the interplay effect was then calculated by comparing the delivered dose with the expected dose distribution. Peak-to-peak motion of 0.5, 1.0, and 2.0 cm in the craniocaudal and right-left directions, with target periods of 3 and 5 s, were evaluated for each plan (252 different target motion/plan combinations). Results: The daily dose error due to the interplay effect was less than 10% for 98.4% of all pixels in the target for all plans investigated. The percentage of pixels for which the daily dose error could be

  1. Possible influences on color constancy by motion of color targets and by attention-controlled gaze.

    Science.gov (United States)

    Wan, Lifang; Shinomori, Keizo

    2018-04-01

    We investigated the influence of motion on color constancy using a chromatic stimulus presented in various conditions (static, motion, and rotation). Attention to the stimulus and background was also controlled in different gaze modes, constant fixation of the stimulus, and random viewing of the stimulus. Color constancy was examined in six young observers using a haploscopic view of a computer monitor. The target and background were illuminated in simulation by red, green, blue, and yellow, shifted from daylight (D65) by specific color differences along L - M or S - (L + M) axes on the equiluminance plane. The standard pattern (under D65) and test pattern (under the color illuminant) of a 5-deg square were presented side by side, consisting of 1.2-deg square targets with one of 12 colors at each center, surrounded by 230 background ellipses consisting of eight other colors. The central color targets in both patterns flipped between top and bottom locations at the rate of 3 deg/s in the motion condition. The results indicated an average reduction of color constancy over the 12 test colors by motion. The random viewing parameter indicated better color constancy by more attention to the background, although the difference was not significant. Color constancy of the four color illuminations was better to worse in green, red, yellow, and blue, respectively. The reduction of color constancy by motion could be explained by less contribution of the illumination estimation effect on color constancy. In the motion with constant fixation condition, the retina strongly adapted to the mean chromaticity of the background. However, motion resulted in less attention to the color of the background, causing a weaker effect of the illumination estimation. Conversely, in the static state with a random viewing condition, more attention to the background colors caused a stronger illumination estimation effect, and color constancy was improved overall.

  2. Experimental investigation of a moving averaging algorithm for motion perpendicular to the leaf travel direction in dynamic MLC target tracking

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul [Department of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul, Korea 131-700 and Research Institute of Biomedical Engineering, Catholic University of Korea, Seoul, 131-700 (Korea, Republic of); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States) and Department of Radiation Oncology, Asan Medical Center, Seoul, 138-736 (Korea, Republic of); Department of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul, 131-700 and Research Institute of Biomedical Engineering, Catholic University of Korea, Seoul, 131-700 (Korea, Republic of); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States) and Radiation Physics Laboratory, Sydney Medical School, University of Sydney, 2006 (Australia)

    2011-07-15

    Purpose: In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. Methods: The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a {gamma}-test with a 3%/3 mm criterion. Results: The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the {gamma}-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation

  3. Experimental investigation of a moving averaging algorithm for motion perpendicular to the leaf travel direction in dynamic MLC target tracking.

    Science.gov (United States)

    Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul

    2011-07-01

    In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a tgamma-test with a 3%/3 mm criterion. The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the gamma-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation. The delivery efficiency of

  4. Evaluation of target coverage and margins adequacy during CyberKnife Lung Optimized Treatment.

    Science.gov (United States)

    Ricotti, Rosalinda; Seregni, Matteo; Ciardo, Delia; Vigorito, Sabrina; Rondi, Elena; Piperno, Gaia; Ferrari, Annamaria; Zerella, Maria Alessia; Arculeo, Simona; Francia, Claudia Maria; Sibio, Daniela; Cattani, Federica; De Marinis, Filippo; Spaggiari, Lorenzo; Orecchia, Roberto; Riboldi, Marco; Baroni, Guido; Jereczek-Fossa, Barbara Alicja

    2018-04-01

    Evaluation of target coverage and verification of safety margins, in motion management strategies implemented by Lung Optimized Treatment (LOT) module in CyberKnife system. Three fiducial-less motion management strategies provided by LOT can be selected according to tumor visibility in the X ray images acquired during treatment. In 2-view modality the tumor is visible in both X ray images and full motion tracking is performed. In 1-view modality the tumor is visible in a single X ray image, therefore, motion tracking is combined with an internal target volume (ITV)-based margin expansion. In 0-view modality the lesion is not visible, consequently the treatment relies entirely on an ITV-based approach. Data from 30 patients treated in 2-view modality were selected providing information on the three-dimensional tumor motion in correspondence to each X ray image. Treatments in 1-view and 0-view modalities were simulated by processing log files and planning volumes. Planning target volume (PTV) margins were defined according to the tracking modality: end-exhale clinical target volume (CTV) + 3 mm in 2-view and ITV + 5 mm in 0-view. In the 1-view scenario, the ITV encompasses only tumor motion along the non-visible direction. Then, non-uniform ITV to PTV margins were applied: 3 mm and 5 mm in the visible and non-visible direction, respectively. We defined the coverage of each voxel of the CTV as the percentage of X ray images where such voxel was included in the PTV. In 2-view modality coverage was calculated as the intersection between the CTV centred on the imaged target position and the PTV centred on the predicted target position, as recorded in log files. In 1-view modality, coverage was calculated as the intersection between the CTV centred on the imaged target position and the PTV centred on the projected predictor data. In 0-view modality coverage was calculated as the intersection between the CTV centred on the imaged target position and the non

  5. Evaluation of the radiobiological gamma index with motion interplay in tangential IMRT breast treatment

    Science.gov (United States)

    Sumida, Iori; Yamaguchi, Hajime; Das, Indra J.; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yamada, Yuji; Tamari, Kiesuke; Suzuki, Osamu; Seo, Yuji; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko

    2016-01-01

    The purpose of this study was to evaluate the impact of the motion interplay effect in early-stage left-sided breast cancer intensity-modulated radiation therapy (IMRT), incorporating the radiobiological gamma index (RGI). The IMRT dosimetry for various breathing amplitudes and cycles was investigated in 10 patients. The predicted dose was calculated using the convolution of segmented measured doses. The physical gamma index (PGI) of the planning target volume (PTV) and the organs at risk (OAR) was calculated by comparing the original with the predicted dose distributions. The RGI was calculated from the PGI using the tumor control probability (TCP) and the normal tissue complication probability (NTCP). The predicted mean dose and the generalized equivalent uniform dose (gEUD) to the target with various breathing amplitudes were lower than the original dose (P < 0.01). The predicted mean dose and gEUD to the OARs with motion were higher than for the original dose to the OARs (P < 0.01). However, the predicted data did not differ significantly between the various breathing cycles for either the PTV or the OARs. The mean RGI gamma passing rate for the PTV was higher than that for the PGI (P < 0.01), and for OARs, the RGI values were higher than those for the PGI (P < 0.01). The gamma passing rates of the RGI for the target and the OARs other than the contralateral lung differed significantly from those of the PGI under organ motion. Provided an NTCP value <0.05 is considered acceptable, it may be possible, by taking breathing motion into consideration, to escalate the dose to achieve the PTV coverage without compromising the TCP. PMID:27534793

  6. Motion state analysis of space target based on optical cross section

    Science.gov (United States)

    Tian, Qichen; Li, Zhi; Xu, Can; Liu, Chenghao

    2017-10-01

    In order to solve the problem that the movement state analysis method of the space target based on OCS is not related to the real motion state. This paper proposes a method based on OCS for analyzing the state of space target motion. This paper first establish a three-dimensional model of real STSS satellite, then change the satellite's surface into element, and assign material to each panel according to the actual conditions of the satellite. This paper set up a motion scene according to the orbit parameters of STSS satellite in STK, and the motion states are set to three axis steady state and slowly rotating unstable state respectively. In these two states, the occlusion condition of the surface element is firstly determined, and the effective face element is selected. Then, the coordinates of the observation station and the solar coordinates in the satellite body coordinate system are input into the OCS calculation program, and the OCS variation curves of the three axis steady state and the slow rotating unstable state STSS satellite are obtained. Combining the satellite surface structure and the load situation, the OCS change curve of the three axis stabilized satellite is analyzed, and the conclude that the OCS curve fluctuates up and down when the sunlight is irradiated to the load area; By using Spectral analysis method, autocorrelation analysis and the cross residual method, the rotation speed of OCS satellite in slow rotating unstable state is analyzed, and the rotation speed of satellite is successfully reversed. By comparing the three methods, it is found that the cross residual method is more accurate.

  7. Management of three-dimensional intrafraction motion through real-time DMLC tracking

    International Nuclear Information System (INIS)

    Sawant, Amit; Venkat, Raghu; Srivastava, Vikram; Carlson, David; Povzner, Sergey; Cattell, Herb; Keall, Paul

    2008-01-01

    Tumor tracking using a dynamic multileaf collimator (DMLC) represents a promising approach for intrafraction motion management in thoracic and abdominal cancer radiotherapy. In this work, we develop, empirically demonstrate, and characterize a novel 3D tracking algorithm for real-time, conformal, intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based radiation delivery to targets moving in three dimensions. The algorithm obtains real-time information of target location from an independent position monitoring system and dynamically calculates MLC leaf positions to account for changes in target position. Initial studies were performed to evaluate the geometric accuracy of DMLC tracking of 3D target motion. In addition, dosimetric studies were performed on a clinical linac to evaluate the impact of real-time DMLC tracking for conformal, step-and-shoot (S-IMRT), dynamic (D-IMRT), and VMAT deliveries to a moving target. The efficiency of conformal and IMRT delivery in the presence of tracking was determined. Results show that submillimeter geometric accuracy in all three dimensions is achievable with DMLC tracking. Significant dosimetric improvements were observed in the presence of tracking for conformal and IMRT deliveries to moving targets. A gamma index evaluation with a 3%-3 mm criterion showed that deliveries without DMLC tracking exhibit between 1.7 (S-IMRT) and 4.8 (D-IMRT) times more dose points that fail the evaluation compared to corresponding deliveries with tracking. The efficiency of IMRT delivery, as measured in the lab, was observed to be significantly lower in case of tracking target motion perpendicular to MLC leaf travel compared to motion parallel to leaf travel. Nevertheless, these early results indicate that accurate, real-time DMLC tracking of 3D tumor motion is feasible and can potentially result in significant geometric and dosimetric advantages leading to more effective management of intrafraction motion

  8. On development and improvement of evaluation techniques for strong ground motion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    Issues regarding evaluation of active fault and ground motion for formulation of design basis ground motion (Ss) were identified during NISA and NSC seismic safety reviewing activities, which have been conducted in the light of the revision of the relevant seismic regulatory guide in 2006 and the experiences of the Niigataken Chuetsu-oki Earthquake in 2007 and the 2011 off the Pacific Coast of Tohoku Earthquake. In this theme following four subjects were investigated to resolve the important problems for ground motion evaluation, (1) advanced evaluation of ground motion using fault model and uncertainty; (2) improving evaluation of ground motion using attenuation relation of response spectrum; (3) development of advanced technique for ground motion observation and observation tool in deep borehole; (4) improving the evaluation of site effect and seismic wave propagation characteristics. Obtained results will be incorporated into the national safety review and also in the safety standard guidelines of the International Atomic Energy Agency (IAEA) using its Extra-Budgetary Program (IAEA EBP), thereby contributing to technical cooperation in global nuclear seismic safety. (author)

  9. Motion compensation for MRI-compatible patient-mounted needle guide device: estimation of targeting accuracy in MRI-guided kidney cryoablations

    Science.gov (United States)

    Tokuda, Junichi; Chauvin, Laurent; Ninni, Brian; Kato, Takahisa; King, Franklin; Tuncali, Kemal; Hata, Nobuhiko

    2018-04-01

    Patient-mounted needle guide devices for percutaneous ablation are vulnerable to patient motion. The objective of this study is to develop and evaluate a software system for an MRI-compatible patient-mounted needle guide device that can adaptively compensate for displacement of the device due to patient motion using a novel image-based automatic device-to-image registration technique. We have developed a software system for an MRI-compatible patient-mounted needle guide device for percutaneous ablation. It features fully-automated image-based device-to-image registration to track the device position, and a device controller to adjust the needle trajectory to compensate for the displacement of the device. We performed: (a) a phantom study using a clinical MR scanner to evaluate registration performance; (b) simulations using intraoperative time-series MR data acquired in 20 clinical cases of MRI-guided renal cryoablations to assess its impact on motion compensation; and (c) a pilot clinical study in three patients to test its feasibility during the clinical procedure. FRE, TRE, and success rate of device-to-image registration were mm, mm, and 98.3% for the phantom images. The simulation study showed that the motion compensation reduced the targeting error for needle placement from 8.2 mm to 5.4 mm (p  <  0.0005) in patients under general anesthesia (GA), and from 14.4 mm to 10.0 mm () in patients under monitored anesthesia care (MAC). The pilot study showed that the software registered the device successfully in a clinical setting. Our simulation study demonstrated that the software system could significantly improve targeting accuracy in patients treated under both MAC and GA. Intraprocedural image-based device-to-image registration was feasible.

  10. Predicting 2D target velocity cannot help 2D motion integration for smooth pursuit initiation.

    Science.gov (United States)

    Montagnini, Anna; Spering, Miriam; Masson, Guillaume S

    2006-12-01

    Smooth pursuit eye movements reflect the temporal dynamics of bidimensional (2D) visual motion integration. When tracking a single, tilted line, initial pursuit direction is biased toward unidimensional (1D) edge motion signals, which are orthogonal to the line orientation. Over 200 ms, tracking direction is slowly corrected to finally match the 2D object motion during steady-state pursuit. We now show that repetition of line orientation and/or motion direction does not eliminate the transient tracking direction error nor change the time course of pursuit correction. Nonetheless, multiple successive presentations of a single orientation/direction condition elicit robust anticipatory pursuit eye movements that always go in the 2D object motion direction not the 1D edge motion direction. These results demonstrate that predictive signals about target motion cannot be used for an efficient integration of ambiguous velocity signals at pursuit initiation.

  11. Intrafractional Target Motions and Uncertainties of Treatment Setup Reference Systems in Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Yue, Ning J.; Goyal, Sharad; Zhou Jinghao; Khan, Atif J.; Haffty, Bruce G.

    2011-01-01

    Purpose: This study investigated the magnitude of intrafractional motion and level of accuracy of various setup strategies in accelerated partial breast irradiation (APBI) using three-dimensional conformal external beam radiotherapy. Methods and Materials: At lumpectomy, gold fiducial markers were strategically sutured to the surrounding walls of the cavity. Weekly fluoroscopy imaging was conducted at treatment to investigate the respiration-induced target motions. Daily pre- and post-RT kV imaging was performed, and images were matched to digitally reconstructed radiographs based on bony anatomy and fiducial markers, respectively, to determine the intrafractional motion magnitudes over the course of treatment. The positioning differences of the laser tattoo- and the bony anatomy-based setups compared with those of the marker-based setup (benchmark) were also determined. The study included 21 patients. Results: Although lung exhibited significant motion, the average marker motion amplitude on the fluoroscopic image was about 1 mm. Over a typical treatment time period, average intrafractional motion magnitude was 4.2 mm and 2.6 mm based on the marker and bony anatomy matching, respectively. The bony anatomy- and laser tattoo-based interfractional setup errors, with respect to the fiducial marker-based setup, were 7.1 and 9.0 mm, respectively. Conclusions: Respiration has limited effects on the target motion during APBI. Bony anatomy-based treatment setup improves the accuracy relative to that of the laser tattoo-based setup approach. Since fiducial markers are sutured directly to the surgical cavity, the marker-based approach can further improve the interfractional setup accuracy. On average, a seroma cavity exhibits intrafractional motion of more than 4 mm, a magnitude that is larger than that which is otherwise derived based on bony anatomy matching. A seroma-specific marker-based approach has the potential to improve treatment accuracy by taking the true inter

  12. SU-E-J-57: First Development of Adapting to Intrafraction Relative Motion Between Prostate and Pelvic Lymph Nodes Targets

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Y; Colvill, E; O’Brien, R; Keall, P [Radiation Physics Laboratory, University of Sydney, NSW (Australia); Booth, J [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW (Australia)

    2015-06-15

    Purpose Large intrafraction relative motion of multiple targets is common in advanced head and neck, lung, abdominal, gynaecological and urological cancer, jeopardizing the treatment outcomes. The objective of this study is to develop a real-time adaptation strategy, for the first time, to accurately correct for the relative motion of multiple targets by reshaping the treatment field using the multi-leaf collimator (MLC). Methods The principle of tracking the simultaneously treated but differentially moving tumor targets is to determine the new aperture shape that conforms to the shifted targets. Three dimensional volumes representing the individual targets are projected to the beam’s eye view. The leaf openings falling inside each 2D projection will be shifted according to the measured motion of each target to form the new aperture shape. Based on the updated beam shape, new leaf positions will be determined with optimized trade-off between the target underdose and healthy tissue overdose, and considerations of the physical constraints of the MLC. Taking a prostate cancer patient with pelvic lymph node involvement as an example, a preliminary dosimetric study was conducted to demonstrate the potential treatment improvement compared to the state-of- art adaptation technique which shifts the whole beam to track only one target. Results The world-first intrafraction adaptation system capable of reshaping the beam to correct for the relative motion of multiple targets has been developed. The dose in the static nodes and small bowel are closer to the planned distribution and the V45 of small bowel is decreased from 110cc to 75cc, corresponding to a 30% reduction by this technique compared to the state-of-art adaptation technique. Conclusion The developed adaptation system to correct for intrafraction relative motion of multiple targets will guarantee the tumour coverage and thus enable PTV margin reduction to minimize the high target dose to the adjacent organs

  13. SU-F-J-151: Evaluation of a Magnetic Resonance Image Gated Radiotherapy System Using a Motion Phantom and Radiochromic Film

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, J; Ginn, J; O’Connell, D; Thomas, D; Agazaryan, N; Cao, M; Yang, Y; Low, D [UCLA, Los Angeles, CA (United States)

    2016-06-15

    Purpose: Magnetic resonance image (MRI) guided radiotherapy enables gating directly on target position for soft-tissue targets in the lung and abdomen. We present a dosimetric evaluation of a commercially-available FDA-approved MRI-guided radiotherapy system’s gating performance using a MRI-compatible respiratory motion phantom and radiochromic film. Methods: The MRI-compatible phantom was capable of one-dimensional motion. The phantom consisted of a target rod containing high-contrast target inserts which moved inside a body structure containing background contrast material. The target rod was equipped with a radiochromic film insert. Treatment plans were generated for a 3 cm diameter spherical target, and delivered to the phantom at rest and in motion with and without gating. Both sinusoidal and actual tumor trajectories (two free-breathing trajectories and one repeated-breath hold) were used. Gamma comparison at 5%/3mm was used to measure fidelity to the static target dose distribution. Results: Without gating, gamma pass rates were 24–47% depending on motion trajectory. Using our clinical standard of repeated breath holds and a gating window of 3 mm with 10% of the target allowed outside the gating boundary, the gamma pass rate was 99.6%. Relaxing the gating window to 5 mm resulted in gamma pass rate of 98.6% with repeated breath holds. For all motion trajectories gated with 3 mm margin and 10% allowed out, gamma pass rates were between 64–100% (mean:87.5%). For a 5 mm margin and 10% allowed out, gamma pass rates were between 57–98% (mean: 82.49%), significantly lower than for 3 mm by paired t-test (p=0.01). Conclusion: We validated the performance of respiratory gating based on real-time cine MRI images with the only FDA-approved MRI-guided radiotherapy system. Our results suggest that repeated breath hold gating should be used when possible for best accuracy. A 3 mm gating margin is statistically significantly more accurate than a 5 mm gating margin.

  14. Role of retinal slip in the prediction of target motion during smooth and saccadic pursuit.

    Science.gov (United States)

    de Brouwer, S; Missal, M; Lefèvre, P

    2001-08-01

    Visual tracking of moving targets requires the combination of smooth pursuit eye movements with catch-up saccades. In primates, catch-up saccades usually take place only during pursuit initiation because pursuit gain is close to unity. This contrasts with the lower and more variable gain of smooth pursuit in cats, where smooth eye movements are intermingled with catch-up saccades during steady-state pursuit. In this paper, we studied in detail the role of retinal slip in the prediction of target motion during smooth and saccadic pursuit in the cat. We found that the typical pattern of pursuit in the cat was a combination of smooth eye movements with saccades. During smooth pursuit initiation, there was a correlation between peak eye acceleration and target velocity. During pursuit maintenance, eye velocity oscillated at approximately 3 Hz around a steady-state value. The average gain of smooth pursuit was approximately 0.5. Trained cats were able to continue pursuing in the absence of a visible target, suggesting a role of the prediction of future target motion in this species. The analysis of catch-up saccades showed that the smooth-pursuit motor command is added to the saccadic command during catch-up saccades and that both position error and retinal slip are taken into account in their programming. The influence of retinal slip on catch-up saccades showed that prediction about future target motion is used in the programming of catch-up saccades. Altogether, these results suggest that pursuit systems in primates and cats are qualitatively similar, with a lower average gain in the cat and that prediction affects both saccades and smooth eye movements during pursuit.

  15. Earthquake Ground Motion Measures for Seismic Response Evaluation of Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In-Kil; Ahn, Seong-Moon; Choun, Young-Sun; Seo, Jeong-Moon

    2007-03-15

    This study used the assessment results of failure criteria - base shear, story drift, top acceleration and top displacement - for a PSC containment building subjected to 30 sets of near-fault ground motions to evaluate the earthquake ground motion intensity measures. Seven intensity measures, peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(Sa), velocity(Sv), spectrum intensity for acceleration(SIa), velocity(SIv) and displacement(SId), were used to represent alternative ground motion. The regression analyses of the failure criteria for a PSC containment building were carried out to evaluate a proper intensity measure by using two regression models and seven ground motion parameters. The regression analysis results demonstrate the correlation coefficients of the failure criteria in terms of the candidate IM. From the results, spectral acceleration(Sa) is estimated as the best parameter for a evaluation of the structural safety for a seismic PSA.

  16. Target preparation by means of the vibrational motion of particles at one atmosphere

    CERN Document Server

    Sugai, I

    1999-01-01

    The new target preparation method, which is based on the vibrational motion of microparticles in the electric field between parallel electrodes, has been applied to prepare Pd and Si self-supporting foils at one atmosphere in air. We successfully prepared targets of 0.10-0.50 mg/cm sup 2 thick with an electrode separation of 10 mm and an applied voltage of 10 kV. The impurities in the prepared targets were examined by using the Rutherford scattering of a 65 MeV alpha-beam. It was found that the impurity amounts depend on the prepared element.

  17. A real-time dynamic-MLC control algorithm for delivering IMRT to targets undergoing 2D rigid motion in the beam's eye view

    International Nuclear Information System (INIS)

    McMahon, Ryan; Berbeco, Ross; Nishioka, Seiko; Ishikawa, Masayori; Papiez, Lech

    2008-01-01

    An MLC control algorithm for delivering intensity modulated radiation therapy (IMRT) to targets that are undergoing two-dimensional (2D) rigid motion in the beam's eye view (BEV) is presented. The goal of this method is to deliver 3D-derived fluence maps over a moving patient anatomy. Target motion measured prior to delivery is first used to design a set of planned dynamic-MLC (DMLC) sliding-window leaf trajectories. During actual delivery, the algorithm relies on real-time feedback to compensate for target motion that does not agree with the motion measured during planning. The methodology is based on an existing one-dimensional (1D) algorithm that uses on-the-fly intensity calculations to appropriately adjust the DMLC leaf trajectories in real-time during exposure delivery [McMahon et al., Med. Phys. 34, 3211-3223 (2007)]. To extend the 1D algorithm's application to 2D target motion, a real-time leaf-pair shifting mechanism has been developed. Target motion that is orthogonal to leaf travel is tracked by appropriately shifting the positions of all MLC leaves. The performance of the tracking algorithm was tested for a single beam of a fractionated IMRT treatment, using a clinically derived intensity profile and a 2D target trajectory based on measured patient data. Comparisons were made between 2D tracking, 1D tracking, and no tracking. The impact of the tracking lag time and the frequency of real-time imaging were investigated. A study of the dependence of the algorithm's performance on the level of agreement between the motion measured during planning and delivery was also included. Results demonstrated that tracking both components of the 2D motion (i.e., parallel and orthogonal to leaf travel) results in delivered fluence profiles that are superior to those that track the component of motion that is parallel to leaf travel alone. Tracking lag time effects may lead to relatively large intensity delivery errors compared to the other sources of error investigated

  18. An interdimensional correlation framework for real-time estimation of six degree of freedom target motion using a single x-ray imager during radiotherapy

    Science.gov (United States)

    Nguyen, D. T.; Bertholet, J.; Kim, J.-H.; O'Brien, R.; Booth, J. T.; Poulsen, P. R.; Keall, P. J.

    2018-01-01

    Increasing evidence suggests that intrafraction tumour motion monitoring needs to include both 3D translations and 3D rotations. Presently, methods to estimate the rotation motion require the 3D translation of the target to be known first. However, ideally, translation and rotation should be estimated concurrently. We present the first method to directly estimate six-degree-of-freedom (6DoF) motion from the target’s projection on a single rotating x-ray imager in real-time. This novel method is based on the linear correlations between the superior-inferior translations and the motion in the other five degrees-of-freedom. The accuracy of the method was evaluated in silico with 81 liver tumour motion traces from 19 patients with three implanted markers. The ground-truth motion was estimated using the current gold standard method where each marker’s 3D position was first estimated using a Gaussian probability method, and the 6DoF motion was then estimated from the 3D positions using an iterative method. The 3D position of each marker was projected onto a gantry-mounted imager with an imaging rate of 11 Hz. After an initial 110° gantry rotation (200 images), a correlation model between the superior-inferior translations and the five other DoFs was built using a least square method. The correlation model was then updated after each subsequent frame to estimate 6DoF motion in real-time. The proposed algorithm had an accuracy (±precision) of  -0.03  ±  0.32 mm, -0.01  ±  0.13 mm and 0.03  ±  0.52 mm for translations in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) directions respectively; and, 0.07  ±  1.18°, 0.07  ±  1.00° and 0.06  ±  1.32° for rotations around the LR, SI and AP axes respectively on the dataset. The first method to directly estimate real-time 6DoF target motion from segmented marker positions on a 2D imager was devised. The algorithm was evaluated using 81

  19. POD evaluation for joint angles from inertial and optical motion capturing system

    International Nuclear Information System (INIS)

    Shimizu, Kai; Kobayashi, Futoshi; Nakamoto, Hiroyuki; Kojima, Fumio

    2016-01-01

    It has been recognized that advances in preventive maintenance can improve the sustainment of systems, facilities, and infrastructure. Robot technologies have also received attention for maintenance applications. In order to operate delicate tasks, multi-fingered robot hands have been proposed in cases where human capability is deficient. This paper deals with motion capturing systems for controlling the hand/arm robot remotely. Several types of motion capturing systems have been developed so far. However, it is difficult for individual motion capturing systems to measure precise joint angles of a human arm. Therefore, in this paper, we integrate the inertial motion capturing system with the optical motion capturing system to capture a human arm posture. By evaluating the reliability of each motion capturing system, the integration is carried out. The probability of detection (POD) is applied to evaluate and compare the reliability of datasets measured by each motion capturing system. POD is one of the widely used statistical techniques to determine reliability. We apply the â analysis to determine the POD(a) function from the data set. Based on the POD evaluation, two motion capturing systems are integrated. (author)

  20. A novel rotational invariants target recognition method for rotating motion blurred images

    Science.gov (United States)

    Lan, Jinhui; Gong, Meiling; Dong, Mingwei; Zeng, Yiliang; Zhang, Yuzhen

    2017-11-01

    The imaging of the image sensor is blurred due to the rotational motion of the carrier and reducing the target recognition rate greatly. Although the traditional mode that restores the image first and then identifies the target can improve the recognition rate, it takes a long time to recognize. In order to solve this problem, a rotating fuzzy invariants extracted model was constructed that recognizes target directly. The model includes three metric layers. The object description capability of metric algorithms that contain gray value statistical algorithm, improved round projection transformation algorithm and rotation-convolution moment invariants in the three metric layers ranges from low to high, and the metric layer with the lowest description ability among them is as the input which can eliminate non pixel points of target region from degenerate image gradually. Experimental results show that the proposed model can improve the correct target recognition rate of blurred image and optimum allocation between the computational complexity and function of region.

  1. Further studies of Fermi-motion effects in lepton scattering from nuclear targets

    International Nuclear Information System (INIS)

    Bodek, A.; Ritchie, J.L.

    1981-01-01

    We have calculated the ratio of deep-inelastic structure functions of nuclear targets to the sum of free-neutron and -proton structure functions. The calculations incorporate structure-function fits which are based on quantum-chromodynamic considerations. This paper is an addendum to an earlier publication in which we calculated the Fermi-motion corrections using other fits to the nucleon structure functions

  2. Interacting with target tracking algorithms in a gaze-enhanced motion video analysis system

    Science.gov (United States)

    Hild, Jutta; Krüger, Wolfgang; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2016-05-01

    Motion video analysis is a challenging task, particularly if real-time analysis is required. It is therefore an important issue how to provide suitable assistance for the human operator. Given that the use of customized video analysis systems is more and more established, one supporting measure is to provide system functions which perform subtasks of the analysis. Recent progress in the development of automated image exploitation algorithms allow, e.g., real-time moving target tracking. Another supporting measure is to provide a user interface which strives to reduce the perceptual, cognitive and motor load of the human operator for example by incorporating the operator's visual focus of attention. A gaze-enhanced user interface is able to help here. This work extends prior work on automated target recognition, segmentation, and tracking algorithms as well as about the benefits of a gaze-enhanced user interface for interaction with moving targets. We also propose a prototypical system design aiming to combine both the qualities of the human observer's perception and the automated algorithms in order to improve the overall performance of a real-time video analysis system. In this contribution, we address two novel issues analyzing gaze-based interaction with target tracking algorithms. The first issue extends the gaze-based triggering of a target tracking process, e.g., investigating how to best relaunch in the case of track loss. The second issue addresses the initialization of tracking algorithms without motion segmentation where the operator has to provide the system with the object's image region in order to start the tracking algorithm.

  3. Compensating for Quasi-periodic Motion in Robotic Radiosurgery

    CERN Document Server

    Ernst, Floris

    2012-01-01

    Compensating for Quasi-periodic Motion in Robotic Radiosurgery outlines the techniques needed to accurately track and compensate for respiratory and pulsatory motion during robotic radiosurgery. The algorithms presented within the book aid in the treatment of tumors that move during respiration. In Chapters 1 and 2,  the book introduces the concept of stereotactic body radiation therapy, motion compensation strategies and the clinical state-of-the-art. In Chapters 3 through 5, the author describes and evaluates new methods for motion prediction, for correlating external motion to internal organ motion, and for the evaluation of these algorithms’ output based on an unprecedented amount of real clinical data. Finally, Chapter 6 provides a brief introduction into currently investigated, open questions and further fields of research. Compensating for Quasi-periodic Motion in Robotic Radiosurgery targets researchers working in the related fields of surgical oncology, artificial intelligence, robotics and more. ...

  4. Effects of target plasma electron-electron collisions on correlated motion of fragmented H2+ protons

    International Nuclear Information System (INIS)

    Barriga-Carrasco, Manuel D.

    2006-01-01

    The objective of the present work is to examined the effects of plasma target electron-electron collisions on H 2 + protons traversing it. Specifically, the target is deuterium in a plasma state with temperature T e =10 eV and density n=10 23 cm -3 , and proton velocities are v p =v th , v p =2v th , and v p =3v th , where v th is the electron thermal velocity of the target plasma. Proton interactions with plasma electrons are treated by means of the dielectric formalism. The interactions among close protons through plasma electronic medium are called vicinage forces. It is checked that these forces always screen the Coulomb explosions of the two fragmented protons from the same H 2 + ion decreasing their relative distance. They also align the interproton vector along the motion direction, and increase the energy loss of the two protons at early dwell times while for longer times the energy loss tends to the value of two isolated protons. Nevertheless, vicinage forces and effects are modified by the target electron collisions. These collisions enhance the calculated self-stopping and vicinage forces over the collisionless results. Regarding proton correlated motion, when these collisions are included, the interproton vector along the motion direction overaligns at slower proton velocities (v p =v th ) and misaligns for faster ones (v p =2v th , v p =3v th ). They also contribute to a great extend to increase the energy loss of the fragmented H 2 + ion. This later effect is more significant in reducing projectile velocity

  5. Model-Based Description of Human Body Motions for Ergonomics Evaluation

    Science.gov (United States)

    Imai, Sayaka

    This paper presents modeling of Working Process and Working Simulation factory works. I focus on an example work (motion), its actual work(motion) and reference between them. An example work and its actual work can be analyzed and described as a sequence of atomic action. In order to describe workers' motion, some concepts of Atomic Unit, Model Events and Mediator are introduced. By using these concepts, we can analyze a workers' action and evaluate their works. Also, we consider it as a possible way for unifying all the data used in various applications (CAD/CAM, etc) during the design process and evaluating all subsystems in a virtual Factory.

  6. Smoothing of respiratory motion traces for motion-compensated radiotherapy.

    Science.gov (United States)

    Ernst, Floris; Schlaefer, Alexander; Schweikard, Achim

    2010-01-01

    The CyberKnife system has been used successfully for several years to radiosurgically treat tumors without the need for stereotactic fixation or sedation of the patient. It has been shown that tumor motion in the lung, liver, and pancreas can be tracked with acceptable accuracy and repeatability. However, highly precise targeting for tumors in the lower abdomen, especially for tumors which exhibit strong motion, remains problematic. Reasons for this are manifold, like the slow tracking system operating at 26.5 Hz, and using the signal from the tracking camera "as is." Since the motion recorded with the camera is used to compensate for system latency by prediction and the predicted signal is subsequently used to infer the tumor position from a correlation model based on x-ray imaging of gold fiducials around the tumor, camera noise directly influences the targeting accuracy. The goal of this work is to establish the suitability of a new smoothing method for respiratory motion traces used in motion-compensated radiotherapy. The authors endeavor to show that better prediction--With a lower rms error of the predicted signal--and/or smoother prediction is possible using this method. The authors evaluated six commercially available tracking systems (NDI Aurora, PolarisClassic, Polaris Vicra, MicronTracker2 H40, FP5000, and accuTrack compact). The authors first tracked markers both stationary and while in motion to establish the systems' noise characteristics. Then the authors applied a smoothing method based on the a trous wavelet decomposition to reduce the devices' noise level. Additionally, the smoothed signal of the moving target and a motion trace from actual human respiratory motion were subjected to prediction using the MULIN and the nLMS2 algorithms. The authors established that the noise distribution for a static target is Gaussian and that when the probe is moved such as to mimic human respiration, it remains Gaussian with the exception of the FP5000 and the

  7. Smoothing of respiratory motion traces for motion-compensated radiotherapy

    International Nuclear Information System (INIS)

    Ernst, Floris; Schlaefer, Alexander; Schweikard, Achim

    2010-01-01

    Purpose: The CyberKnife system has been used successfully for several years to radiosurgically treat tumors without the need for stereotactic fixation or sedation of the patient. It has been shown that tumor motion in the lung, liver, and pancreas can be tracked with acceptable accuracy and repeatability. However, highly precise targeting for tumors in the lower abdomen, especially for tumors which exhibit strong motion, remains problematic. Reasons for this are manifold, like the slow tracking system operating at 26.5 Hz, and using the signal from the tracking camera ''as is''. Since the motion recorded with the camera is used to compensate for system latency by prediction and the predicted signal is subsequently used to infer the tumor position from a correlation model based on x-ray imaging of gold fiducials around the tumor, camera noise directly influences the targeting accuracy. The goal of this work is to establish the suitability of a new smoothing method for respiratory motion traces used in motion-compensated radiotherapy. The authors endeavor to show that better prediction--With a lower rms error of the predicted signal--and/or smoother prediction is possible using this method. Methods: The authors evaluated six commercially available tracking systems (NDI Aurora, PolarisClassic, Polaris Vicra, MicronTracker2 H40, FP5000, and accuTrack compact). The authors first tracked markers both stationary and while in motion to establish the systems' noise characteristics. Then the authors applied a smoothing method based on the a trous wavelet decomposition to reduce the devices' noise level. Additionally, the smoothed signal of the moving target and a motion trace from actual human respiratory motion were subjected to prediction using the MULIN and the nLMS 2 algorithms. Results: The authors established that the noise distribution for a static target is Gaussian and that when the probe is moved such as to mimic human respiration, it remains Gaussian with the

  8. Visual search for motion-form conjunctions: is form discriminated within the motion system?

    Science.gov (United States)

    von Mühlenen, A; Müller, H J

    2001-06-01

    Motion-form conjunction search can be more efficient when the target is moving (a moving 45 degrees tilted line among moving vertical and stationary 45 degrees tilted lines) rather than stationary. This asymmetry may be due to aspects of form being discriminated within a motion system representing only moving items, whereas discrimination of stationary items relies on a static form system (J. Driver & P. McLeod, 1992). Alternatively, it may be due to search exploiting differential motion velocity and direction signals generated by the moving-target and distractor lines. To decide between these alternatives, 4 experiments systematically varied the motion-signal information conveyed by the moving target and distractors while keeping their form difference salient. Moving-target search was found to be facilitated only when differential motion-signal information was available. Thus, there is no need to assume that form is discriminated within the motion system.

  9. On development and improvement of evaluation techniques for strong ground motion

    International Nuclear Information System (INIS)

    Tsutsumi, Hideaki; Wu, Changjiang; Kobayashi, Genyu; Mamada, Yutaka

    2011-01-01

    The NSC regulatory guide for reviewing seismic design, revised in September 2006 requires revision of evaluation method for design seismic ground motion. The new design seismic ground motion must be evaluated based on not only response spectra method but also fault model method. In the case of evaluation method using fault model, factors which affect ground motion (heterogeneous fault rupture, frequency dependence of radiation pattern on seismic waves and high-frequency reduction on observed spectrum (fmax)) were studied in order to apply the models to actual phenomenon. In the case of response spectra, attenuation relationships for earthquake response spectra on seismic basement, considering the earthquake source types (e.g. inter-plate, intra-plate and crustal types), were developed. In addition, in coping with the problems on evaluating ground motion amplification and attenuation in deep underground, JNES drills 3000 m deep boring and acquires the data for verification of new evaluation methods at deep borehole locating on sedimentary rock site in the Niigata Institute of Technology. Moreover JNES develops borehole seismometer enduring high temperature and high pressure and enabling multi-depth seismic observation system to perform vertical seismic array observation. (author)

  10. Ground Motion Saturation Evaluation (GMSE) Data Needs Workshop

    International Nuclear Information System (INIS)

    NA

    2004-01-01

    The objective of the data needs workshop is to identify potential near-term (12-18 month) studies that would reduce uncertainty in extremely low probability ( -5 /yr) earthquake ground motions at Yucca Mountain. Recommendations made at the workshop will be considered by BSC and DOE management in formulating plans for FY05 seismic-related investigations. Based on studies done earlier this year, a bound on peak ground velocities (PGVs), consisting of a uniform distribution from 150 cm/s to 500 cm/s, has been applied to the existing PGV hazard curve for the underground repository horizon, for use in the forthcoming License Application. The technical basis for this bounding distribution is being documented, along with the basis for a slightly less conservative bound in the form of a roughly triangular distribution from 153 cm/s to 451 cm/s. The objective of the GMSE studies is to provide a technical basis for reducing remaining excessive conservatism, if any, in the extremely low probability ground motions that are used in postclosure performance assessments. Potential studies that have already been suggested include: (1) Additional tests of failure-strains of repository rocks, at, above, and below the repository horizon; (2) Identification and evaluation of nuclear explosion data that may help establish strain limits in tuff; (3) Numerical modeling of seismic wave propagation through repository rock column to test hypothesis that nonwelded tuffs below the repository horizon would fail in tension and prevent extreme strains from being transmitted to the repository; (4) Evaluation of seismic failure threshold of bladed, fragile-appearing lithophysal crystals; (5) Evaluation of whether a ground motion parameter other than PGV would correlate better with calculated drip-shield and waste-package damage states; (6) Qualification and use of finite seismic-source model to evaluate probabilities of extreme ground motions from extreme scenario earthquakes (e.g., magnitude 6

  11. TARGETED PRINCIPLE COMPONENT ANALYSIS: A NEW MOTION ARTIFACT CORRECTION APPROACH FOR NEAR-INFRARED SPECTROSCOPY

    Science.gov (United States)

    YÜCEL, MERYEM A.; SELB, JULIETTE; COOPER, ROBERT J.; BOAS, DAVID A.

    2014-01-01

    As near-infrared spectroscopy (NIRS) broadens its application area to different age and disease groups, motion artifacts in the NIRS signal due to subject movement is becoming an important challenge. Motion artifacts generally produce signal fluctuations that are larger than physiological NIRS signals, thus it is crucial to correct for them before obtaining an estimate of stimulus evoked hemodynamic responses. There are various methods for correction such as principle component analysis (PCA), wavelet-based filtering and spline interpolation. Here, we introduce a new approach to motion artifact correction, targeted principle component analysis (tPCA), which incorporates a PCA filter only on the segments of data identified as motion artifacts. It is expected that this will overcome the issues of filtering desired signals that plagues standard PCA filtering of entire data sets. We compared the new approach with the most effective motion artifact correction algorithms on a set of data acquired simultaneously with a collodion-fixed probe (low motion artifact content) and a standard Velcro probe (high motion artifact content). Our results show that tPCA gives statistically better results in recovering hemodynamic response function (HRF) as compared to wavelet-based filtering and spline interpolation for the Velcro probe. It results in a significant reduction in mean-squared error (MSE) and significant enhancement in Pearson’s correlation coefficient to the true HRF. The collodion-fixed fiber probe with no motion correction performed better than the Velcro probe corrected for motion artifacts in terms of MSE and Pearson’s correlation coefficient. Thus, if the experimental study permits, the use of a collodion-fixed fiber probe may be desirable. If the use of a collodion-fixed probe is not feasible, then we suggest the use of tPCA in the processing of motion artifact contaminated data. PMID:25360181

  12. TARGETED PRINCIPLE COMPONENT ANALYSIS: A NEW MOTION ARTIFACT CORRECTION APPROACH FOR NEAR-INFRARED SPECTROSCOPY.

    Science.gov (United States)

    Yücel, Meryem A; Selb, Juliette; Cooper, Robert J; Boas, David A

    2014-03-01

    As near-infrared spectroscopy (NIRS) broadens its application area to different age and disease groups, motion artifacts in the NIRS signal due to subject movement is becoming an important challenge. Motion artifacts generally produce signal fluctuations that are larger than physiological NIRS signals, thus it is crucial to correct for them before obtaining an estimate of stimulus evoked hemodynamic responses. There are various methods for correction such as principle component analysis (PCA), wavelet-based filtering and spline interpolation. Here, we introduce a new approach to motion artifact correction, targeted principle component analysis (tPCA), which incorporates a PCA filter only on the segments of data identified as motion artifacts. It is expected that this will overcome the issues of filtering desired signals that plagues standard PCA filtering of entire data sets. We compared the new approach with the most effective motion artifact correction algorithms on a set of data acquired simultaneously with a collodion-fixed probe (low motion artifact content) and a standard Velcro probe (high motion artifact content). Our results show that tPCA gives statistically better results in recovering hemodynamic response function (HRF) as compared to wavelet-based filtering and spline interpolation for the Velcro probe. It results in a significant reduction in mean-squared error (MSE) and significant enhancement in Pearson's correlation coefficient to the true HRF. The collodion-fixed fiber probe with no motion correction performed better than the Velcro probe corrected for motion artifacts in terms of MSE and Pearson's correlation coefficient. Thus, if the experimental study permits, the use of a collodion-fixed fiber probe may be desirable. If the use of a collodion-fixed probe is not feasible, then we suggest the use of tPCA in the processing of motion artifact contaminated data.

  13. Evaluation of MotionSim XY/4D for patient specific QA of respiratory gated treatment for lung cancer

    International Nuclear Information System (INIS)

    Wen, C.; Ackerly, T.; Lancaster, C.; Bailey, N.

    2011-01-01

    Full text: A commercial system-MotionSim XY/4D(TM) capable of simulating two-dimensional tumour motion and measuring planar dose with diode-matrix was evaluated at the Alfred Hospital, for establishing patient-specific QA programme of respiratory gated treatment of lung cancer. This study presents the investigation of accuracies, limitations and the practical aspects of that system. Planar doses generated on iPlan-TM by mapping clinical beams to a scanned-in water phantom were measured by MotionSim XY/4D-TM with 5 cm water equivalent build-up at normal incidence. The gated delivery using ExacTrac-TM through tracking infrared markers simulating external respiration surrogate was measured simultaneously with Gaf-ChromicR RTQA2 film and MapCHECK 2TM . Dose maps of both non-gated and gated beams with 30% duty cycle were compared with both film and diodes measurements. Differences in dose distribution were analysed with built-in tools in MapCHECK2 TM and the effect of residual motion within the beamenabled window was then assessed. Preliminary results indicate that difference between Gafchromic film and MapCHECK2 measurements of same beam was ignorable. Gated dose delivery to a target at 9 mm maximum motion was in good agreement with planned dose. Complement to measurements suggested in AAPM Report No.9 I I, this QA device can detect any random error and assess the magnitude of residual target motion through analysing differences between planned and delivered doses as gamma function. Although some user-friendliness aspects could be improved, it meets its specification and can be used for routine clinical QA purposes provided calibrations were performed and procedures were followed.

  14. Evaluation of tumor localization in respiration motion-corrected cone-beam CT: prospective study in lung.

    Science.gov (United States)

    Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Rimner, Andreas; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S

    2014-10-01

    Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image registration, each CBCT was

  15. The use of vestibular models for design and evaluation of flight simulator motion

    Science.gov (United States)

    Bussolari, Steven R.; Young, Laurence R.; Lee, Alfred T.

    1989-01-01

    Quantitative models for the dynamics of the human vestibular system are applied to the design and evaluation of flight simulator platform motion. An optimal simulator motion control algorithm is generated to minimize the vector difference between perceived spatial orientation estimated in flight and in simulation. The motion controller has been implemented on the Vertical Motion Simulator at NASA Ames Research Center and evaluated experimentally through measurement of pilot performance and subjective rating during VTOL aircraft simulation. In general, pilot performance in a longitudinal tracking task (formation flight) did not appear to be sensitive to variations in platform motion condition as long as motion was present. However, pilot assessment of motion fidelity by means of a rating scale designed for this purpose, were sensitive to motion controller design. Platform motion generated with the optimal motion controller was found to be generally equivalent to that generated by conventional linear crossfeed washout. The vestibular models are used to evaluate the motion fidelity of transport category aircraft (Boeing 727) simulation in a pilot performance and simulator acceptability study at the Man-Vehicle Systems Research Facility at NASA Ames Research Center. Eighteen airline pilots, currently flying B-727, were given a series of flight scenarios in the simulator under various conditions of simulator motion. The scenarios were chosen to reflect the flight maneuvers that these pilots might expect to be given during a routine pilot proficiency check. Pilot performance and subjective rating of simulator fidelity was relatively insensitive to the motion condition, despite large differences in the amplitude of motion provided. This lack of sensitivity may be explained by means of the vestibular models, which predict little difference in the modeled motion sensations of the pilots when different motion conditions are imposed.

  16. Qualitative and quantitative evaluation of rigid and deformable motion correction algorithms using dual-energy CT images in view of application to CT perfusion measurements in abdominal organs affected by breathing motion.

    Science.gov (United States)

    Skornitzke, S; Fritz, F; Klauss, M; Pahn, G; Hansen, J; Hirsch, J; Grenacher, L; Kauczor, H-U; Stiller, W

    2015-02-01

    To compare six different scenarios for correcting for breathing motion in abdominal dual-energy CT (DECT) perfusion measurements. Rigid [RRComm(80 kVp)] and non-rigid [NRComm(80 kVp)] registration of commercially available CT perfusion software, custom non-rigid registration [NRCustom(80 kVp], demons algorithm) and a control group [CG(80 kVp)] without motion correction were evaluated using 80 kVp images. Additionally, NRCustom was applied to dual-energy (DE)-blended [NRCustom(DE)] and virtual non-contrast [NRCustom(VNC)] images, yielding six evaluated scenarios. After motion correction, perfusion maps were calculated using a combined maximum slope/Patlak model. For qualitative evaluation, three blinded radiologists independently rated motion correction quality and resulting perfusion maps on a four-point scale (4 = best, 1 = worst). For quantitative evaluation, relative changes in metric values, R(2) and residuals of perfusion model fits were calculated. For motion-corrected images, mean ratings differed significantly [NRCustom(80 kVp) and NRCustom(DE), 3.3; NRComm(80 kVp), 3.1; NRCustom(VNC), 2.9; RRComm(80 kVp), 2.7; CG(80 kVp), 2.7; all p VNC), 22.8%; RRComm(80 kVp), 0.6%; CG(80 kVp), 0%]. Regarding perfusion maps, NRCustom(80 kVp) and NRCustom(DE) were rated highest [NRCustom(80 kVp), 3.1; NRCustom(DE), 3.0; NRComm(80 kVp), 2.8; NRCustom(VNC), 2.6; CG(80 kVp), 2.5; RRComm(80 kVp), 2.4] and had significantly higher R(2) and lower residuals. Correlation between qualitative and quantitative evaluation was low to moderate. Non-rigid motion correction improves spatial alignment of the target region and fit of CT perfusion models. Using DE-blended and DE-VNC images for deformable registration offers no significant improvement. Non-rigid algorithms improve the quality of abdominal CT perfusion measurements but do not benefit from DECT post processing.

  17. Evaluating correlation between geometrical relationship and dose difference caused by respiratory motion using statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong Seok; Kim, Dong Su; Kim, Tae Ho; Kim, Kyeong Hyeon; Yoon, Do Kun; Suh, Tae Suk [The Catholic University of Korea, Seoul (Korea, Republic of); Kang, Seong Hee [Seoul National University Hospital, Seoul (Korea, Republic of); Cho, Min Seok [Asan Medical Center, Seoul (Korea, Republic of); Noh, Yu Yoon [Eulji University Hospital, Daejeon (Korea, Republic of)

    2017-04-15

    Three-dimensional dose (3D dose) can consider coverage of moving target, however it is difficult to provide dosimetric effect which occurs by respiratory motions. Four-dimensional dose (4D dose) which uses deformable image registration (DIR) algorithm from four-dimensional computed tomography (4DCT) images can consider dosimetric effect by respiratory motions. The dose difference between 3D dose and 4D dose can be varied according to the geometrical relationship between a planning target volume (PTV) and an organ at risk (OAR). The purpose of this study is to evaluate the correlation between the overlap volume histogram (OVH), which quantitatively shows the geometrical relationship between the PTV and OAR, and the dose differences. In conclusion, no significant statistical correlation was found between the OVH and dose differences. However, it was confirmed that a higher difference between the 3D and 4D doses could occur in cases that have smaller OVH value. No significant statistical correlation was found between the OVH and dose differences. However, it was confirmed that a higher difference between the 3D and 4D doses could occur in cases that have smaller OVH value.

  18. An evaluation method on seat comfort based on optical motion capture

    Directory of Open Access Journals (Sweden)

    Qing TAO

    2015-10-01

    Full Text Available To research the sitting posture comfort evaluation method, through the example of comfort evaluation of the ergonomic seat and standard office seat, a methodology is introduced to evaluate the sitting posture comfort combining ergonomics theory. The proposed method is based on optical motion capture system, pressure sensor and JACK software, and TRC file is acquired by using EVART real-time capture software for identifying the spatial motion trail of human body. Then MATLAB software is used to analyze the human body motion data, and the sitting posture angle difference data for human body in different seats is acquired. TRC file is loaded into JACK software, and with the TAT REPORTER of JACK software, muscle force, moment of force and fatigue data, etc. are output, which are compared with the actual measured data from experiments, and ergonomics method is used for the evaluation. The result shows that the method of considering joint angles combining JACK software for data output is effective for evaluating sitting comfort.

  19. Evaluation of tumor localization in respiration motion-corrected cone-beam CT: Prospective study in lung

    Energy Technology Data Exchange (ETDEWEB)

    Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S., E-mail: magerasg@mskcc.org [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065 (United States); Rimner, Andreas [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065 (United States)

    2014-10-15

    Purpose: Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. Methods: In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image

  20. SU-E-J-44: A Novel Approach to Quantify Patient Setup and Target Motion for Real-Time Image-Guided Radiotherapy (IGRT)

    Energy Technology Data Exchange (ETDEWEB)

    Li, S; Charpentier, P; Sayler, E; Micaily, B; Miyamoto, C [Temple University Hospital, Phila., PA (United States); Geng, J [Xigen LLC, Gaithersburg, MD (United States)

    2015-06-15

    Purpose Isocenter shifts and rotations to correct patient setup errors and organ motion cannot remedy some shape changes of large targets. We are investigating new methods in quantification of target deformation for realtime IGRT of breast and chest wall cancer. Methods Ninety-five patients of breast or chest wall cancer were accrued in an IRB-approved clinical trial of IGRT using 3D surface images acquired at daily setup and beam-on time via an in-room camera. Shifts and rotations relating to the planned reference surface were determined using iterative-closest-point alignment. Local surface displacements and target deformation are measured via a ray-surface intersection and principal component analysis (PCA) of external surface, respectively. Isocenter shift, upper-abdominal displacement, and vectors of the surface projected onto the two principal components, PC1 and PC2, were evaluated for sensitivity and accuracy in detection of target deformation. Setup errors for some deformed targets were estimated by superlatively registering target volume, inner surface, or external surface in weekly CBCT or these outlines on weekly EPI. Results Setup difference according to the inner-surface, external surface, or target volume could be 1.5 cm. Video surface-guided setup agreed with EPI results to within < 0.5 cm while CBCT results were sometimes (∼20%) different from that of EPI (>0.5 cm) due to target deformation for some large breasts and some chest walls undergoing deep-breath-hold irradiation. Square root of PC1 and PC2 is very sensitive to external surface deformation and irregular breathing. Conclusion PCA of external surfaces is quick and simple way to detect target deformation in IGRT of breast and chest wall cancer. Setup corrections based on the target volume, inner surface, and external surface could be significant different. Thus, checking of target shape changes is essential for accurate image-guided patient setup and motion tracking of large deformable

  1. Training of goal directed arm movements with motion interactive video games in children with cerebral palsy - a kinematic evaluation.

    Science.gov (United States)

    Sandlund, Marlene; Domellöf, Erik; Grip, Helena; Rönnqvist, Louise; Häger, Charlotte K

    2014-10-01

    The main aim of this study was to evaluate the quality of goal-directed arm movements in 15 children with cerebral palsy (CP) following four weeks of home-based training with motion interactive video games. A further aim was to investigate the applicability and characteristics of kinematic parameters in a virtual context in comparison to a physical context. Kinematics and kinetics were captured while the children performed arm movements directed towards both virtual and physical targets. The children's movement precision improved, their centre of pressure paths decreased, as did the variability in maximal shoulder angles when reaching for virtual objects. Transfer to a situation with physical targets was mainly indicated by increased movement smoothness. Training with motion interactive games seems to improve arm motor control in children with CP. The results highlight the importance of considering both the context and the task itself when investigating kinematic parameters.

  2. Relativistic description of the Fermi motion effects on deuterium targets

    International Nuclear Information System (INIS)

    Kusno, D.

    1979-12-01

    A comprehensive analysis of the inconsistencies of the conventional, non-relativistic approach, which has been used so far in the extraction of neutron data from deuterium targets, is given. A new approach dealing with the smearing effects, due to the nucleon's Fermi motion inside the deuteron, is developed as an alternative to the conventional one. This new approach is a spin-less, relativistic, simple and consistent approach. A new covariant model of the elastic electromagnetic form factors of the deuteron in the impulse approximation is also presented. The treatment includes spin and allows for a possibility of determining completely the two elastic structure functions

  3. Feasibility evaluation of a motion detection system with face images for stereotactic radiosurgery.

    Science.gov (United States)

    Yamakawa, Takuya; Ogawa, Koichi; Iyatomi, Hitoshi; Kunieda, Etsuo

    2011-01-01

    In stereotactic radiosurgery we can irradiate a targeted volume precisely with a narrow high-energy x-ray beam, and thus the motion of a targeted area may cause side effects to normal organs. This paper describes our motion detection system with three USB cameras. To reduce the effect of change in illuminance in a tracking area we used an infrared light and USB cameras that were sensitive to the infrared light. The motion detection of a patient was performed by tracking his/her ears and nose with three USB cameras, where pattern matching between a predefined template image for each view and acquired images was done by an exhaustive search method with a general-purpose computing on a graphics processing unit (GPGPU). The results of the experiments showed that the measurement accuracy of our system was less than 0.7 mm, amounting to less than half of that of our previous system.

  4. Frequency filtering based analysis on the cardiac induced lung tumor motion and its impact on the radiotherapy management

    International Nuclear Information System (INIS)

    Chen, Ting; Qin, Songbing; Xu, Xiaoting; Jabbour, Salma K.; Haffty, Bruce G.; Yue, Ning J.

    2014-01-01

    Purpose/objectives: Lung tumor motion may be impacted by heartbeat in addition to respiration. This study seeks to quantitatively analyze heart-motion-induced tumor motion and to evaluate its impact on lung cancer radiotherapy. Methods/materials: Fluoroscopy images were acquired for 30 lung cancer patients. Tumor, diaphragm, and heart were delineated on selected fluoroscopy frames, and their motion was tracked and converted into temporal signals based on deformable registration propagation. The clinical relevance of heart impact was evaluated using the dose volumetric histogram of the redefined target volumes. Results: Correlation was found between tumor and cardiac motion for 23 patients. The heart-induced motion amplitude ranged from 0.2 to 2.6 mm. The ratio between heart-induced tumor motion and the tumor motion was inversely proportional to the amplitude of overall tumor motion. When the heart motion impact was integrated, there was an average 9% increase in internal target volumes for 17 patients. Dose coverage decrease was observed on redefined planning target volume in simulated SBRT plans. Conclusions: The tumor motion of thoracic cancer patients is influenced by both heart and respiratory motion. The cardiac impact is relatively more significant for tumor with less motion, which may lead to clinically significant uncertainty in radiotherapy for some patients

  5. Attention and apparent motion.

    Science.gov (United States)

    Horowitz, T; Treisman, A

    1994-01-01

    Two dissociations between short- and long-range motion in visual search are reported. Previous research has shown parallel processing for short-range motion and apparently serial processing for long-range motion. This finding has been replicated and it has also been found that search for short-range targets can be impaired both by using bicontrast stimuli, and by prior adaptation to the target direction of motion. Neither factor impaired search in long-range motion displays. Adaptation actually facilitated search with long-range displays, which is attributed to response-level effects. A feature-integration account of apparent motion is proposed. In this theory, short-range motion depends on specialized motion feature detectors operating in parallel across the display, but subject to selective adaptation, whereas attention is needed to link successive elements when they appear at greater separations, or across opposite contrasts.

  6. Circling motion and screen edges as an alternative input method for on-screen target manipulation.

    Science.gov (United States)

    Ka, Hyun W; Simpson, Richard C

    2017-04-01

    To investigate a new alternative interaction method, called circling interface, for manipulating on-screen objects. To specify a target, the user makes a circling motion around the target. To specify a desired pointing command with the circling interface, each edge of the screen is used. The user selects a command before circling the target. To evaluate the circling interface, we conducted an experiment with 16 participants, comparing the performance on pointing tasks with different combinations of selection method (circling interface, physical mouse and dwelling interface) and input device (normal computer mouse, head pointer and joystick mouse emulator). A circling interface is compatible with many types of pointing devices, not requiring physical activation of mouse buttons, and is more efficient than dwell-clicking. Across all common pointing operations, the circling interface had a tendency to produce faster performance with a head-mounted mouse emulator than with a joystick mouse. The performance accuracy of the circling interface outperformed the dwelling interface. It was demonstrated that the circling interface has the potential as another alternative pointing method for selecting and manipulating objects in a graphical user interface. Implications for Rehabilitation A circling interface will improve clinical practice by providing an alternative pointing method that does not require physically activating mouse buttons and is more efficient than dwell-clicking. The Circling interface can also work with AAC devices.

  7. Performance assessment of a programmable five degrees-of-freedom motion platform for quality assurance of motion management techniques in radiotherapy.

    Science.gov (United States)

    Huang, Chen-Yu; Keall, Paul; Rice, Adam; Colvill, Emma; Ng, Jin Aun; Booth, Jeremy T

    2017-09-01

    Inter-fraction and intra-fraction motion management methods are increasingly applied clinically and require the development of advanced motion platforms to facilitate testing and quality assurance program development. The aim of this study was to assess the performance of a 5 degrees-of-freedom (DoF) programmable motion platform HexaMotion (ScandiDos, Uppsala, Sweden) towards clinically observed tumor motion range, velocity, acceleration and the accuracy requirements of SABR prescribed in AAPM Task Group 142. Performance specifications for the motion platform were derived from literature regarding the motion characteristics of prostate and lung tumor targets required for real time motion management. The performance of the programmable motion platform was evaluated against (1) maximum range, velocity and acceleration (5 DoF), (2) static position accuracy (5 DoF) and (3) dynamic position accuracy using patient-derived prostate and lung tumor motion traces (3 DoF). Translational motion accuracy was compared against electromagnetic transponder measurements. Rotation was benchmarked with a digital inclinometer. The static accuracy and reproducibility for translation and rotation was quality assurance and commissioning of motion management systems in radiation oncology.

  8. Evaluation of cardiac motion and function by cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kondo, Takeshi; Kurokawa, Hiroshi; Anno, Hirofumi

    1992-01-01

    Cardiac cine magnetic resonance imaging (MRI) was studied to evaluate the cardiac motion and function, and a water-stream phantom study was performed to clarify whether it was possible to quantitatively assess the valvular regurgitation flow by the size of the flow void. In normal subjects, the left ventricular (LV) epicardial apex swung up to the base only a few millimeters, and the mitral annulus ring moved about 14 mm as mean value toward the apex during systole. Those motions of mitral annulus ring may contribute to the left atrial filling. The LV longitudinal shortening and torsions were shown by the tagging method. This tagging method was the best method for estimating cardiac motions. Cardiac cine MRI using software including a modified Simpson's method program and a wall motion analysis program was useful for routine LV volumetry and wall motion analysis because it was a simple and reliable method. Our water-stream phantom studies demonstrated that it might be difficult to perform quantitative evaluation of valvular regurgitation flow by using only the size of the flow void without acquiring information relating to the orifice area. (author)

  9. Evaluation of Paradoxical Septal Motion Following Cardiac Surgery with Gated Cardiac Blood Pool Scan

    International Nuclear Information System (INIS)

    Shin, Seong Hae; Chung, June Key; Lee, Myung Chul; Cho, Bo Youn; Koh, Chang Soon; Suh, Kyung Phil

    1985-01-01

    The development of paradoxical interventricular septal motion is a common consequence of cardiopulmonary bypass operation. The reason for this postoperative abnormal septal motion is not clear. 41 patients were studied preoperatively and postoperatively with radionuclide blood pool scan to evaluate the frequency of development of paradoxical septal motion with right ventricular volume overload before surgery and the frequency of development of paradoxical septal motion after cardiac surgery with cardiopulmonary bypass, and to evaluate the change of EF related to the development of paradoxical septal motion after cardiac surgery. The results were as follows; 1) 7 of 41 patients with right ventricular volume overload (that is 17%) showed paradoxical septal motion before surgery. But 13 of 34 patients (that is 42%) had paradoxical septal motion after cardiac surgery with cardiopulmonary bypass. So open heart surgery with cardiopulmonary bypass related the development of paradoxical septal motion after surgery. 2) EF significantly decreased in patients who developed paradoxical septal motion after surgery, whereas the EF did not change in the patients who retained normal interventricular septal motion after surgery. So paradoxical septal motion usually reflected some diminution of left ventricular function, immediately after cardiac surgery.

  10. Evaluation of Paradoxical Septal Motion Following Cardiac Surgery with Gated Cardiac Blood Pool Scan

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seong Hae; Chung, June Key; Lee, Myung Chul; Cho, Bo Youn; Koh, Chang Soon; Suh, Kyung Phil [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1985-03-15

    The development of paradoxical interventricular septal motion is a common consequence of cardiopulmonary bypass operation. The reason for this postoperative abnormal septal motion is not clear. 41 patients were studied preoperatively and postoperatively with radionuclide blood pool scan to evaluate the frequency of development of paradoxical septal motion with right ventricular volume overload before surgery and the frequency of development of paradoxical septal motion after cardiac surgery with cardiopulmonary bypass, and to evaluate the change of EF related to the development of paradoxical septal motion after cardiac surgery. The results were as follows; 1) 7 of 41 patients with right ventricular volume overload (that is 17%) showed paradoxical septal motion before surgery. But 13 of 34 patients (that is 42%) had paradoxical septal motion after cardiac surgery with cardiopulmonary bypass. So open heart surgery with cardiopulmonary bypass related the development of paradoxical septal motion after surgery. 2) EF significantly decreased in patients who developed paradoxical septal motion after surgery, whereas the EF did not change in the patients who retained normal interventricular septal motion after surgery. So paradoxical septal motion usually reflected some diminution of left ventricular function, immediately after cardiac surgery.

  11. Methodology to evaluate the site standard seismic motion to a nuclear facility

    International Nuclear Information System (INIS)

    Soares, W.A.

    1983-01-01

    For the seismic design of nuclear facilities, the input motion is normally defined by the predicted maximum ground horizontal acceleration and the free field ground response spectrum. This spectrum is computed on the basis of records of strong motion earthquakes. The pair maximum acceleration-response spectrum is called the site standard seismic motion. An overall view of the subjects involved in the determination of the site standard seismic motion to a nuclear facility is presented. The main topics discussed are: basic principles of seismic instrumentation; dynamic and spectral concepts; design earthquakes definitions; fundamentals of seismology; empirical curves developed from prior seismic data; available methodologies and recommended procedures to evaluate the site standard seismic motion. (Author) [pt

  12. Proton pencil beam scanning for mediastinal lymphoma: the impact of interplay between target motion and beam scanning

    Science.gov (United States)

    Zeng, C.; Plastaras, J. P.; Tochner, Z. A.; White, B. M.; Hill-Kayser, C. E.; Hahn, S. M.; Both, S.

    2015-04-01

    The purpose of this study was to assess the feasibility of proton pencil beam scanning (PBS) for the treatment of mediastinal lymphoma. A group of 7 patients of varying tumor size (100-800 cc) were planned using a PBS anterior field. We investigated 17 fractions of 1.8 Gy(RBE) to deliver 30.6 Gy(RBE) to the internal target volume (ITV). Spots with σ ranging from 4 mm to 8 mm were used for all patients, while larger spots (σ = 6-16 mm) were employed for patients with motion perpendicular to the beam (⩾5 mm), based on initial 4-dimensional computed tomography (4D CT) motion evaluation. We considered volumetric repainting such that the same field would be delivered twice in each fraction. The ratio of extreme inhalation amplitude and regular tidal inhalation amplitude (free-breathing variability) was quantified as an indicator of potential irregular breathing during the scanning. Four-dimensional dose was calculated on the 4D CT scans based on the respiratory trace and beam delivery sequence, implemented by partitioning the spots into separate plans on each 4D CT phase. Four starting phases (end of inhalation, end of exhalation, middle of inhalation and middle of exhalation) were sampled for each painting and 4 energy switching times (0.5 s, 1 s, 3 s and 5 s) were tested, which resulted in 896 dose distributions for the analyzed cohort. Plan robustness was measured for the target and critical structures in terms of the percent difference between ‘delivered’ dose (4D-evaluated) and planned dose (calculated on average CT). It was found that none of the patients exhibited highly variable or chaotic breathing patterns. For all patients, the ITV D98% was degraded by Wilcoxon signed-rank tests (p < 0.05). This feasibility study demonstrates that, for mediastinal lymphoma, the impact of the interplay effect on the PBS plan robustness is minimal when volumetric repainting and/or larger spots are employed.

  13. Management of the interplay effect when using dynamic MLC sequences to treat moving targets

    International Nuclear Information System (INIS)

    Court, Laurence E.; Wagar, Matthew; Ionascu, Dan; Berbeco, Ross; Chin, Lee

    2008-01-01

    Interplay between organ motion and leaf motion has been shown to generally have a small dosimetric impact for most clinical intensity-modulated radiation therapy treatments. However, it has also been shown that for some MLC sequences there can be large daily variations in the delivered dose, depending on details of patient motion or the number of fractions. This study investigates guidelines for dynamic MLC sequences that will keep daily dose variations due to the interplay between organ motion and leaf motion within 10%. Dose distributions for a range of MLC separations (0.2-5.0 cm) and displacements between adjacent MLCs (0-1.5 cm) were exported from ECLIPSE to purpose-written software, which simulated the dose distribution delivered to a moving target. Target motion parallel and perpendicular to the MLC motion was investigated for a range of amplitudes (0.5-4.0 cm), periods (1.5-10 s), and MLC speeds (0.1-3.0 cm/s) with target motions modeled as sin 6 . Results were confirmed experimentally by measuring the dose delivered to an ion chamber array in a moving phantom for different MLC sequences. The simulation results were used to identify MLC sequences that kept dose variations within 10% compared to the dose delivered with no motion. The maximum allowable MLC speed, when target motion is parallel to the MLC motion, was found to be a simple function of target period and MLC separation. When the target motion is perpendicular to MLC motion, the maximum allowable MLC speed can be described as a function of MLC separation and the displacement of adjacent MLCs. These guidelines were successfully applied to two-dimensional motion, and a simple program was written to import MLC sequence files and evaluate whether the maximum daily dose discrepancy caused by the interplay effect will be larger than 10%. This software was experimentally evaluated, and found to conservatively predict whether a given MLC sequence could give large daily dose discrepancies

  14. Calculation and experimental verification of the RBE-weighted dose for scanned ion beams in the presence of target motion

    International Nuclear Information System (INIS)

    Gemmel, A; Rietzel, E; Kraft, G; Durante, M; Bert, C

    2011-01-01

    We present an algorithm suitable for the calculation of the RBE-weighted dose for moving targets with a scanned particle beam. For verification of the algorithm, we conducted a series of cell survival measurements that were compared to the calculations. Calculation of the relative biological effectiveness (RBE) with respect to tumor motion was included in the treatment planning procedure, in order to fully assess its impact on treatment delivery with a scanned ion beam. We implemented an algorithm into our treatment planning software TRiP4D which allows determination of the RBE including its dependence on target tissue, absorbed dose, energy and particle spectra in the presence of organ motion. The calculations are based on time resolved computed tomography (4D-CT) and the corresponding deformation maps. The principal of the algorithm is illustrated in in silico simulations that provide a detailed view of the different compositions of the energy and particle spectra at different target positions and their consequence on the resulting RBE. The calculations were experimentally verified with several cell survival measurements using a dynamic phantom and a scanned carbon ion beam. The basic functionality of the new dose calculation algorithm has been successfully tested in in silico simulations. The algorithm has been verified by comparing its predictions to cell survival measurements. Four experiments showed in total a mean difference (standard deviation) of −1.7% (6.3%) relative to the target dose of 9 Gy (RBE). The treatment planning software TRiP is now capable to calculate the patient relevant RBE-weighted dose in the presence of target motion and was verified against cell survival measurements.

  15. Motion Model Employment using interacting Motion Model Algorithm

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar

    2006-01-01

    The paper presents a simulation study to track a maneuvering target using a selective approach in choosing Interacting Multiple Models (IMM) algorithm to provide a wider coverage to track such targets.  Initially, there are two motion models in the system to track a target.  Probability of each m...

  16. Design and evaluation of an augmented reality simulator using leap motion.

    Science.gov (United States)

    Wright, Trinette; de Ribaupierre, Sandrine; Eagleson, Roy

    2017-10-01

    Advances in virtual and augmented reality (AR) are having an impact on the medical field in areas such as surgical simulation. Improvements to surgical simulation will provide students and residents with additional training and evaluation methods. This is particularly important for procedures such as the endoscopic third ventriculostomy (ETV), which residents perform regularly. Simulators such as NeuroTouch, have been designed to aid in training associated with this procedure. The authors have designed an affordable and easily accessible ETV simulator, and compare it with the existing NeuroTouch for its usability and training effectiveness. This simulator was developed using Unity, Vuforia and the leap motion (LM) for an AR environment. The participants, 16 novices and two expert neurosurgeons, were asked to complete 40 targeting tasks. Participants used the NeuroTouch tool or a virtual hand controlled by the LM to select the position and orientation for these tasks. The length of time to complete each task was recorded and the trajectory log files were used to calculate performance. The resulting data from the novices' and experts' speed and accuracy are compared, and they discuss the objective performance of training in terms of the speed and accuracy of targeting accuracy for each system.

  17. Design and evaluation of an augmented reality simulator using leap motion

    Science.gov (United States)

    de Ribaupierre, Sandrine; Eagleson, Roy

    2017-01-01

    Advances in virtual and augmented reality (AR) are having an impact on the medical field in areas such as surgical simulation. Improvements to surgical simulation will provide students and residents with additional training and evaluation methods. This is particularly important for procedures such as the endoscopic third ventriculostomy (ETV), which residents perform regularly. Simulators such as NeuroTouch, have been designed to aid in training associated with this procedure. The authors have designed an affordable and easily accessible ETV simulator, and compare it with the existing NeuroTouch for its usability and training effectiveness. This simulator was developed using Unity, Vuforia and the leap motion (LM) for an AR environment. The participants, 16 novices and two expert neurosurgeons, were asked to complete 40 targeting tasks. Participants used the NeuroTouch tool or a virtual hand controlled by the LM to select the position and orientation for these tasks. The length of time to complete each task was recorded and the trajectory log files were used to calculate performance. The resulting data from the novices' and experts' speed and accuracy are compared, and they discuss the objective performance of training in terms of the speed and accuracy of targeting accuracy for each system. PMID:29184667

  18. PET Motion Compensation for Radiation Therapy Using a CT-Based Mid-Position Motion Model: Methodology and Clinical Evaluation

    International Nuclear Information System (INIS)

    Kruis, Matthijs F.; Kamer, Jeroen B. van de; Houweling, Antonetta C.; Sonke, Jan-Jakob; Belderbos, José S.A.; Herk, Marcel van

    2013-01-01

    Purpose: Four-dimensional positron emission tomography (4D PET) imaging of the thorax produces sharper images with reduced motion artifacts. Current radiation therapy planning systems, however, do not facilitate 4D plan optimization. When images are acquired in a 2-minute time slot, the signal-to-noise ratio of each 4D frame is low, compromising image quality. The purpose of this study was to implement and evaluate the construction of mid-position 3D PET scans, with motion compensated using a 4D computed tomography (CT)-derived motion model. Methods and Materials: All voxels of 4D PET were registered to the time-averaged position by using a motion model derived from the 4D CT frames. After the registration the scans were summed, resulting in a motion-compensated 3D mid-position PET scan. The method was tested with a phantom dataset as well as data from 27 lung cancer patients. Results: PET motion compensation using a CT-based motion model improved image quality of both phantoms and patients in terms of increased maximum SUV (SUV max ) values and decreased apparent volumes. In homogenous phantom data, a strong relationship was found between the amplitude-to-diameter ratio and the effects of the method. In heterogeneous patient data, the effect correlated better with the motion amplitude. In case of large amplitudes, motion compensation may increase SUV max up to 25% and reduce the diameter of the 50% SUV max volume by 10%. Conclusions: 4D CT-based motion-compensated mid-position PET scans provide improved quantitative data in terms of uptake values and volumes at the time-averaged position, thereby facilitating more accurate radiation therapy treatment planning of pulmonary lesions

  19. Use of Item Response Curves of the Force and Motion Conceptual Evaluation to Compare Japanese and American Students' Views on Force and Motion

    Science.gov (United States)

    Ishimoto, Michi; Davenport, Glen; Wittmann, Michael C.

    2017-01-01

    Student views of force and motion reflect the personal experiences and physics education of the student. With a different language, culture, and educational system, we expect that Japanese students' views on force and motion might be different from those of American students. The Force and Motion Conceptual Evaluation (FMCE) is an instrument used…

  20. Evaluation of simulation motion fidelity criteria in the vertical and directional axes

    Science.gov (United States)

    Schroeder, Jeffery A.

    1993-01-01

    An evaluation of existing motion fidelity criteria was conducted on the NASA Ames Vertical Motion Simulator. Experienced test pilots flew single-axis repositioning tasks in both the vertical and the directional axes. Using a first-order approximation of a hovering helicopter, tasks were flown with variations only in the filters that attenuate the commands to the simulator motion system. These filters had second-order high-pass characteristics, and the variations were made in the filter gain and natural frequency. The variations spanned motion response characteristics from nearly full math-model motion to fixed-base. Between configurations, pilots recalibrated their motion response perception by flying the task with full motion. Pilots subjectively rated the motion fidelity of subsequent configurations relative to this full motion case, which was considered the standard for comparison. The results suggested that the existing vertical-axis criterion was accurate for combinations of gain and natural frequency changes. However, if only the gain or the natural frequency was changed, the rated motion fidelity was better than the criterion predicted. In the vertical axis, the objective and subjective results indicated that a larger gain reduction was tolerated than the existing criterion allowed. The limited data collected in the yaw axis revealed that pilots had difficulty in distinguishing among the variations in the pure yaw motion cues.

  1. Key features of hip hop dance motions affect evaluation by judges.

    Science.gov (United States)

    Sato, Nahoko; Nunome, Hiroyuki; Ikegami, Yasuo

    2014-06-01

    The evaluation of hip hop dancers presently lacks clearly defined criteria and is often dependent on the subjective impressions of judges. Our study objective was to extract hidden motion characteristics that could potentially distinguish the skill levels of hip hop dancers and to examine the relationship between performance kinematics and judging scores. Eleven expert, six nonexpert, and nine novice dancers participated in the study, where each performed the "wave" motion as an experimental task. The movements of their upper extremities were captured by a motion capture system, and several kinematic parameters including the propagation velocity of the wave were calculated. Twelve judges evaluated the performances of the dancers, and we compared the kinematic parameters of the three groups and examined the relationship between the judging scores and the kinematic parameters. We found the coefficient of variation of the propagation velocity to be significantly different among the groups (P < .01) and highly correlated with the judging scores (r = -0.800, P < .01). This revealed that the variation of propagation velocity was the most dominant variable representing the skill level of the dancers and that the smooth propagation of the wave was most closely related to the evaluation by judges.

  2. Mathematical Modeling and Evaluation of Human Motions in Physical Therapy Using Mixture Density Neural Networks.

    Science.gov (United States)

    Vakanski, A; Ferguson, J M; Lee, S

    2016-12-01

    The objective of the proposed research is to develop a methodology for modeling and evaluation of human motions, which will potentially benefit patients undertaking a physical rehabilitation therapy (e.g., following a stroke or due to other medical conditions). The ultimate aim is to allow patients to perform home-based rehabilitation exercises using a sensory system for capturing the motions, where an algorithm will retrieve the trajectories of a patient's exercises, will perform data analysis by comparing the performed motions to a reference model of prescribed motions, and will send the analysis results to the patient's physician with recommendations for improvement. The modeling approach employs an artificial neural network, consisting of layers of recurrent neuron units and layers of neuron units for estimating a mixture density function over the spatio-temporal dependencies within the human motion sequences. Input data are sequences of motions related to a prescribed exercise by a physiotherapist to a patient, and recorded with a motion capture system. An autoencoder subnet is employed for reducing the dimensionality of captured sequences of human motions, complemented with a mixture density subnet for probabilistic modeling of the motion data using a mixture of Gaussian distributions. The proposed neural network architecture produced a model for sets of human motions represented with a mixture of Gaussian density functions. The mean log-likelihood of observed sequences was employed as a performance metric in evaluating the consistency of a subject's performance relative to the reference dataset of motions. A publically available dataset of human motions captured with Microsoft Kinect was used for validation of the proposed method. The article presents a novel approach for modeling and evaluation of human motions with a potential application in home-based physical therapy and rehabilitation. The described approach employs the recent progress in the field of

  3. Parallel search for conjunctions with stimuli in apparent motion.

    Science.gov (United States)

    Casco, C; Ganis, G

    1999-01-01

    A series of experiments was conducted to determine whether apparent motion tends to follow the similarity rule (i.e. is attribute-specific) and to investigate the underlying mechanism. Stimulus duration thresholds were measured during a two-alternative forced-choice task in which observers detected either the location or the motion direction of target groups defined by the conjunction of size and orientation. Target element positions were randomly chosen within a nominally defined rectangular subregion of the display (target region). The target region was presented either statically (followed by a 250 ms duration mask) or dynamically, displaced by a small distance (18 min of arc) from frame to frame. In the motion display, the position of both target and background elements was changed randomly from frame to frame within the respective areas to abolish spatial correspondence over time. Stimulus duration thresholds were lower in the motion than in the static task, indicating that target detection in the dynamic condition does not rely on the explicit identification of target elements in each static frame. Increasing the distractor-to-target ratio was found to reduce detectability in the static, but not in the motion task. This indicates that the perceptual segregation of the target is effortless and parallel with motion but not with static displays. The pattern of results holds regardless of the task or search paradigm employed. The detectability in the motion condition can be improved by increasing the number of frames and/or by reducing the width of the target area. Furthermore, parallel search in the dynamic condition can be conducted with both short-range and long-range motion stimuli. Finally, apparent motion of conjunctions is insufficient on its own to support location decision and is disrupted by random visual noise. Overall, these findings show that (i) the mechanism underlying apparent motion is attribute-specific; (ii) the motion system mediates temporal

  4. Motion-induced dose artifacts in helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bryan; Chen, Jeff; Battista, Jerry [London Regional Cancer Program, London Health Sciences Centre, London, ON (Canada); Kron, Tomas [Peter MacCallum Cancer Center, Melbourne (Australia)], E-mail: bryan.kim@lhsc.on.ca

    2009-10-07

    Tumor motion is a particular concern for a complex treatment modality such as helical tomotherapy, where couch position, gantry rotation and MLC leaf opening all change with time. In the present study, we have investigated the impact of tumor motion for helical tomotherapy, which could result in three distinct motion-induced dose artifacts, namely (1) dose rounding, (2) dose rippling and (3) IMRT leaf opening asynchronization effect. Dose rounding and dose rippling effects have been previously described, while the IMRT leaf opening asynchronization effect is a newly discovered motion-induced dose artifact. Dose rounding is the penumbral widening of a delivered dose distribution near the edges of a target volume along the direction of tumor motion. Dose rippling is a series of periodic dose peaks and valleys observed within the target region along the direction of couch motion, due to an asynchronous interplay between the couch motion and the longitudinal component of tumor motion. The IMRT leaf opening asynchronization effect is caused by an asynchronous interplay between the temporal patterns of leaf openings and tumor motion. The characteristics of each dose artifact were investigated individually as functions of target motion amplitude and period for both non-IMRT and IMRT helical tomotherapy cases, through computer simulation modeling and experimental verification. The longitudinal dose profiles generated by the simulation program agreed with the experimental data within {+-}0.5% and {+-}1.5% inside the PTV region for the non-IMRT and IMRT cases, respectively. The dose rounding effect produced a penumbral increase up to 20.5 mm for peak-to-peak target motion amplitudes ranging from 1.0 cm to 5.0 cm. Maximum dose rippling magnitude of 25% was calculated, when the target motion period approached an unusually high value of 10 s. The IMRT leaf opening asynchronization effect produced dose differences ranging from -29% to 7% inside the PTV region. This information

  5. Patellofemoral joint motion: Evaluation by ultrafast computed tomography

    International Nuclear Information System (INIS)

    Stanford, W.; Phelan, J.; Kathol, M.H.; Rooholamini, S.A.; El-Khoury, G.Y.; Palutsis, G.R.; Albright, J.P.

    1988-01-01

    Patellofemoral maltracking is a recognized cause of peripatellar pain. Clinicians currently rely on observation, palpation, and static radiographic images to evaluate the symptomatic patient. Ultrafast computed tomography (ultrafast CT) offers objective observations of the dynamic influences of muscle contraction on the patellofemoral joint as the knee is actively moved through a range of motion from 90 0 C flexion of full extension. This study reports our initial observations and establishes a range of normal values so that patients with a clinical suspicion of patellar maltracking may be evaluated. (orig./GDG)

  6. Patellofemoral joint motion: Evaluation by ultrafast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Stanford, W.; Phelan, J.; Kathol, M.H.; Rooholamini, S.A.; El-Khoury, G.Y.; Palutsis, G.R.; Albright, J.P.

    1988-10-01

    Patellofemoral maltracking is a recognized cause of peripatellar pain. Clinicians currently rely on observation, palpation, and static radiographic images to evaluate the symptomatic patient. Ultrafast computed tomography (ultrafast CT) offers objective observations of the dynamic influences of muscle contraction on the patellofemoral joint as the knee is actively moved through a range of motion from 90/sup 0/C flexion of full extension. This study reports our initial observations and establishes a range of normal values so that patients with a clinical suspicion of patellar maltracking may be evaluated. (orig./GDG).

  7. Three-dimensional analysis of relationship between relative orientation and motion modes

    Directory of Open Access Journals (Sweden)

    Fan Shijie

    2014-12-01

    Full Text Available Target motion modes have a close relationship with the relative orientation of missile-to-target in three-dimensional highly maneuvering target interception. From the perspective of relationship between the sensor coordinate system and the target body coordinate system, a basic model of sensor is stated and the definition of relative angular velocity between the two coordinate systems is introduced firstly. Then, the three-dimensional analytic expressions of relative angular velocity for different motion modes are derived and simplified by analyzing the influences of target centroid motion, rotation around centroid and relative motion. Finally, the relationships of the relative angular velocity directions and values with motion modes are discussed. Simulation results validate the rationality of the theoretical analysis. It is demonstrated that there are significant differences of the relative orientation in different motion modes which include luxuriant information about motion modes. The conclusions are significant for the research of motion mode identification, maneuver detection, maneuvering target tracking and interception using target signatures.

  8. Target motion measurement without implanted markers and its validation by comparison with manually obtained data

    International Nuclear Information System (INIS)

    Vences, Lucia; Wulf, Joern; Vordermark, Dirk; Sauer, Otto; Berlinger, Kajetan; Roth, Michael

    2005-01-01

    For an effective radiotherapy the exact tumor location must be determined. The localization has to take into account patient's setup position as well as internal organ motion. Among the different localization methods, the use of a computer tomography (CT) scanner in the therapy room has been proposed recently. Achieving a CT with the patient on the therapy couch, a patient's treatment position is captured. We present a method to locate tumor considering internal organ motion and displacements due to respiration. We tested the method with prostate and lung patients. The method found the most probable tumor position as well as, for high-mobility tumors located in the lung, its trajectory during the respiratory cycle. The results of this novel method were validated by comparison with manually determined target position

  9. Evaluation of COPD's diaphragm motion extracted from 4D-MRI

    Science.gov (United States)

    Swastika, Windra; Masuda, Yoshitada; Kawata, Naoko; Matsumoto, Koji; Suzuki, Toshio; Iesato, Ken; Tada, Yuji; Sugiura, Toshihiko; Tanabe, Nobuhiro; Tatsumi, Koichiro; Ohnishi, Takashi; Haneishi, Hideaki

    2015-03-01

    We have developed a method called intersection profile method to construct a 4D-MRI (3D+time) from time-series of 2D-MRI. The basic idea is to find the best matching of the intersection profile from the time series of 2D-MRI in sagittal plane (navigator slice) and time series of 2D-MRI in coronal plane (data slice). In this study, we use 4D-MRI to semiautomatically extract the right diaphragm motion of 16 subjects (8 healthy subjects and 8 COPD patients). The diaphragm motion is then evaluated quantitatively by calculating the displacement of each subjects and normalized it. We also generate phase-length map to view and locate paradoxical motion of the COPD patients. The quantitative results of the normalized displacement shows that COPD patients tend to have smaller displacement compared to healthy subjects. The average normalized displacement of total 8 COPD patients is 9.4mm and the average of normalized displacement of 8 healthy volunteers is 15.3mm. The generated phase-length maps show that not all of the COPD patients have paradoxical motion, however if it has paradoxical motion, the phase-length map is able to locate where does it occur.

  10. Contrast and assimilation in motion perception and smooth pursuit eye movements.

    Science.gov (United States)

    Spering, Miriam; Gegenfurtner, Karl R

    2007-09-01

    The analysis of visual motion serves many different functions ranging from object motion perception to the control of self-motion. The perception of visual motion and the oculomotor tracking of a moving object are known to be closely related and are assumed to be controlled by shared brain areas. We compared perceived velocity and the velocity of smooth pursuit eye movements in human observers in a paradigm that required the segmentation of target object motion from context motion. In each trial, a pursuit target and a visual context were independently perturbed simultaneously to briefly increase or decrease in speed. Observers had to accurately track the target and estimate target speed during the perturbation interval. Here we show that the same motion signals are processed in fundamentally different ways for perception and steady-state smooth pursuit eye movements. For the computation of perceived velocity, motion of the context was subtracted from target motion (motion contrast), whereas pursuit velocity was determined by the motion average (motion assimilation). We conclude that the human motion system uses these computations to optimally accomplish different functions: image segmentation for object motion perception and velocity estimation for the control of smooth pursuit eye movements.

  11. An evaluation of intrafraction motion of the prostate in the prone and supine positions using electromagnetic tracking

    International Nuclear Information System (INIS)

    Shah, Amish P.; Kupelian, Patrick A.; Willoughby, Twyla R.; Langen, Katja M.; Meeks, Sanford L.

    2011-01-01

    Purpose: To evaluate differences in target motion during prostate irradiation in the prone versus supine position using electromagnetic tracking to measure prostate mobility. Materials/methods: Twenty patients received prostate radiotherapy in the supine position utilizing the Calypso Localization System (registered) for prostate positioning and monitoring. For each patient, 10 treatment fractions were followed by a session in which the patient was repositioned prone, and prostate mobility was tracked. The fraction of time that the prostate was displaced by >3, 5, 7, and 10 mm was calculated for each patient, for both positions (400 tracking sessions). Results: Clear patterns of respiratory motion were seen in the prone tracks due to the influence of increased abdominal motion. Averaged over all patients, the prostate was displaced >3 and 5 mm for 37.8% and 10.1% of the total tracking time in the prone position, respectively. In the supine position, the prostate was displaced >3 and 5 mm for 12.6% and 2.9%, respectively. With both patient setups, inferior and posterior drifts of the prostate position were observed. Averaged over all prone tracking sessions, the prostate was displaced >3 mm in the posterior and inferior directions for 11.7% and 9.5% of the total time, respectively. Conclusions: With real-time tracking of the prostate, it is possible to study the effects of different setup positions on the prostate mobility. The percentage of time the prostate moved >3 and 5 mm was increased by a factor of three in the prone versus supine position. For larger displacements (>7 mm) no difference in prostate mobility was observed between prone and supine positions. To reduce rectal toxicity, radiotherapy in the prone position may be a suitable alternative provided respiratory motion is accounted for during treatment. Acute and late toxicity results remain to be evaluated for both patient positions.

  12. Evaluation of older driver head functional range of motion using portable immersive virtual reality.

    Science.gov (United States)

    Chen, Karen B; Xu, Xu; Lin, Jia-Hua; Radwin, Robert G

    2015-10-01

    The number of drivers over 65 years of age continues to increase. Although neck rotation range has been identified as a factor associated with self-reported crash history in older drivers, it was not consistently reported as indicators of older driver performance or crashes across previous studies. It is likely that drivers use neck and trunk rotation when driving, and therefore the functional range of motion (ROM) (i.e. overall rotation used during a task) of older drivers should be further examined. Evaluate older driver performance in an immersive virtual reality, simulated, dynamic driving blind spot target detection task. A cross-sectional laboratory study recruited twenty-six licensed drivers (14 young between 18 and 35 years, and 12 older between 65 to 75 years) from the local community. Participants were asked to detect targets by performing blind spot check movements while neck and trunk rotation was tracked. Functional ROM, target detection success, and time to detection were analyzed. In addition to neck rotation, older and younger drivers on average rotated their trunks 9.96° and 18.04°, respectively. The younger drivers generally demonstrated 15.6° greater functional ROM (p<.001), were nearly twice as successful in target detection due to target location (p=.008), and had 0.46 s less target detection time (p=.016) than the older drivers. Assessing older driver functional ROM may provide more comprehensive assessment of driving ability than neck ROM. Target detection success and time to detection may also be part of the aging process as these measures differed between driver groups. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Evaluation of tumor motion effect in canine model for diagnostic and radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sangkeun; Nam, Taewon; Kim, Kyeongmin [Molecular Imaging Research Center, Seoul (Korea, Republic of); Park, Seungwoo; Han, Suchul; Ji, Younghoon [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Park, Nohwon; Eom, Kidong [Konkuk Univ., Seoul (Korea, Republic of)

    2013-05-15

    The internal organs move up to 35mm maximum and it provides information and uncertainty that has been distorted in the diagnosis and treatment. Previous most studies for the effect of respiration have been performed with external monitoring systems but it cannot represent internal organ motion such as liver, pancreas, and lung. Positron emission tomography (PET) is more influenced by motion than computed tomography (CT) and magnetic resonance imaging (MRI) since measurement time for image acquisition is longer than CT and MRI. Thus, count of tumor is to be underestimated and region of tumor is to be overestimated. The first aim of this study was developing the artificial pulmonary nodule which can be performed non-invasive transplant into thorax of dogs and second is to assess the effect of respiratory motion on PET image with evaluating the applicability of the artificial model using dogs for diagnosis and treatment. The developed artificial pulmonary nodule showed reproducibility and motion effect as respiratory cycle and it was verified in PET images. Radiation dose estimated was not changed and was reduced slightly of 10 rpm and 15 rpm, respectively, in both of glass dosimeter and ion chamber. The developed artificial pulmonary nodule will be useful tool for evaluating respiratory motion and better research performance for diagnosis and treatment will be expected with performing simulated experiment using the nodule conducted in this study.

  14. Evaluating the Reproducibility of Motion Analysis Scanning of the Spine during Walking

    Directory of Open Access Journals (Sweden)

    Aaron Gipsman

    2014-01-01

    Full Text Available The Formetric 4D dynamic system (Diers International GmbH, Schlangenbad, Germany is a rasterstereography based imaging system designed to evaluate spinal deformity, providing radiation-free imaging of the position, rotation, and shape of the spine during the gait cycle. Purpose. This study was designed to evaluate whether repeated measurements with the Formetric 4D dynamic system would be reproducible with a standard deviation of less than +/− 3 degrees. This study looked at real-time segmental motion, measuring kyphosis, lordosis, trunk length, pelvic, and T4 and L1 vertebral body rotation. Methods. Twenty healthy volunteers each underwent 3 consecutive scans. Measurements for kyphosis, lordosis, trunk length, and rotations of T4, L1, and the pelvis were recorded for each trial. Results. The average standard deviations of same-day repeat measurements were within +/− 3 degrees with a range of 0.51 degrees to 2.3 degrees. Conclusions. The surface topography system calculated reproducible measurements with error ranges comparable to the current gold standard in dynamic spinal motion analysis. Therefore, this technique should be considered of high clinical value for reliably evaluating segmental motion and spinal curvatures and should further be evaluated in the setting of adolescent idiopathic scoliosis.

  15. Methodology to evaluate the site standard seismic motion for a nuclear facility

    International Nuclear Information System (INIS)

    Soares, W.A.

    1983-03-01

    An overall view of the subjects involved in the determination of the site standard seismic motion to a nuclear facility is presented. The main topics discussed are: basic priciples of seismic instrumentation; dynamic and spectral concepts; design earthquakes definitions; fundamentals of seismology; empirical curves developed from prior seismic data; avalable methodologies and recommended procedures to evaluate the site standard seismic motion. (E.G.) [pt

  16. Group-based Motion Detection for Energy-Efficient Localisation

    Directory of Open Access Journals (Sweden)

    Alban Cotillon

    2012-10-01

    Full Text Available Long-term outdoor localization remains challenging due to the high energy profiles of GPS modules. Duty cycling the GPS module combined with inertial sensors can improve energy consumption. However, inertial sensors that are kept active all the time can also drain mobile node batteries. This paper proposes duty cycling strategies for inertial sensors to maintain a target position accuracy and node lifetime. We present a method for duty cycling motion sensors according to features of movement events, and evaluate its energy and accuracy profile for an empirical data trace of cattle movement. We further introduce the concept of group-based duty cycling, where nodes that cluster together can share the burden of motion detection to reduce their duty cycles. Our evaluation shows that both variants of motion sensor duty cycling yield up to 78% improvement in overall node power consumption, and that the group-based method yields an additional 20% power reduction during periods of low mobility.

  17. Random Scenario Generation for a Multiple Target Tracking Environment Evaluation

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar

    2006-01-01

    , which were normally crossing targets, was to test the efficiency of the track splitting algorithm for different situations. However this approach only gives a measure of performance for a specific, possibly unrealistic, scenario and it was felt appropriate to develop procedures that would enable a more...... general performance assessment. Therefore, a random target motion scenario is adopted. Its implementation in particular for testing the track splitting algorithm using Kalman filters is used and a couple of tracking performance parameters are computed to investigate such random scenarios....

  18. Inelastic response evaluation of steel frame structure subjected to near-fault ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, In Kil; Kim, Hyung Kyu; Choun, Young Sun; Seo, Jeong Moon

    2004-04-01

    A survey on some of the Quaternary fault segments near the Korean nuclear power plants is ongoing. It is likely that these faults would be identified as active ones. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of nuclear power plants located near the fault. This study was performed to acquire overall knowledge of near-fault ground motions and evaluate inealstic response characteristics of near-fault ground motions. Although Korean peninsular is not located in the strong earthquake region, it is necessary to evaluate seismic safety of NPP for the earthquakes occurred in near-fault area with characteristics different from that of general far-fault earthquakes in order to improve seismic safety of existing NPP structures and equipment. As a result, for the seismic safety evaluation of NPP structures and equipment considering near-fault effects, this report will give many valuable information. In order to improve seismic safety of NPP structures and equipment against near-fault ground motions, it is necessary to consider inelastic response characteristics of near-fault ground motions in current design code. Also in Korea where these studies are immature yet, in the future more works of near-fault earthquakes must be accomplished.

  19. Fast Numerical Simulation of Focused Ultrasound Treatments During Respiratory Motion With Discontinuous Motion Boundaries.

    Science.gov (United States)

    Schwenke, Michael; Georgii, Joachim; Preusser, Tobias

    2017-07-01

    Focused ultrasound (FUS) is rapidly gaining clinical acceptance for several target tissues in the human body. Yet, treating liver targets is not clinically applied due to a high complexity of the procedure (noninvasiveness, target motion, complex anatomy, blood cooling effects, shielding by ribs, and limited image-based monitoring). To reduce the complexity, numerical FUS simulations can be utilized for both treatment planning and execution. These use-cases demand highly accurate and computationally efficient simulations. We propose a numerical method for the simulation of abdominal FUS treatments during respiratory motion of the organs and target. Especially, a novel approach is proposed to simulate the heating during motion by solving Pennes' bioheat equation in a computational reference space, i.e., the equation is mathematically transformed to the reference. The approach allows for motion discontinuities, e.g., the sliding of the liver along the abdominal wall. Implementing the solver completely on the graphics processing unit and combining it with an atlas-based ultrasound simulation approach yields a simulation performance faster than real time (less than 50-s computing time for 100 s of treatment time) on a modern off-the-shelf laptop. The simulation method is incorporated into a treatment planning demonstration application that allows to simulate real patient cases including respiratory motion. The high performance of the presented simulation method opens the door to clinical applications. The methods bear the potential to enable the application of FUS for moving organs.

  20. Assessing Respiration-Induced Tumor Motion and Internal Target Volume Using Four-Dimensional Computed Tomography for Radiotherapy of Lung Cancer

    International Nuclear Information System (INIS)

    Liu, H. Helen; Balter, Peter; Tutt, Teresa; Choi, Bum; Zhang, Joy; Wang, Catherine; Chi, Melinda; Luo Dershan; Pan Tinsu; Hunjan, Sandeep; Starkschall, George; Rosen, Isaac; Prado, Karl; Liao Zhongxing; Chang, Joe; Komaki, Ritsuko; Cox, James D.; Mohan, Radhe; Dong Lei

    2007-01-01

    Purpose: To assess three-dimensional tumor motion caused by respiration and internal target volume (ITV) for radiotherapy of lung cancer. Methods and Materials: Respiration-induced tumor motion was analyzed for 166 tumors from 152 lung cancer patients, 57.2% of whom had Stage III or IV non-small-cell lung cancer. All patients underwent four-dimensional computed tomography (4DCT) during normal breathing before treatment. The expiratory phase of 4DCT images was used as the reference set to delineate gross tumor volume (GTV). Gross tumor volumes on other respiratory phases and resulting ITVs were determined using rigid-body registration of 4DCT images. The association of GTV motion with various clinical and anatomic factors was analyzed statistically. Results: The proportions of tumors that moved >0.5 cm along the superior-inferior (SI), lateral, and anterior-posterior (AP) axes during normal breathing were 39.2%, 1.8%, and 5.4%, respectively. For 95% of the tumors, the magnitude of motion was less than 1.34 cm, 0.40 cm, and 0.59 cm along the SI, lateral, and AP directions. The principal component of tumor motion was in the SI direction, with only 10.8% of tumors moving >1.0 cm. The tumor motion was found to be associated with diaphragm motion, the SI tumor location in the lung, size of the GTV, and disease T stage. Conclusions: Lung tumor motion is primarily driven by diaphragm motion. The motion of locally advanced lung tumors is unlikely to exceed 1.0 cm during quiet normal breathing except for small lesions located in the lower half of the lung

  1. Shape representation modulating the effect of motion on visual search performance.

    Science.gov (United States)

    Yang, Lindong; Yu, Ruifeng; Lin, Xuelian; Liu, Na

    2017-11-02

    The effect of motion on visual search has been extensively investigated, but that of uniform linear motion of display on search performance for tasks with different target-distractor shape representations has been rarely explored. The present study conducted three visual search experiments. In Experiments 1 and 2, participants finished two search tasks that differed in target-distractor shape representations under static and dynamic conditions. Two tasks with clear and blurred stimuli were performed in Experiment 3. The experiments revealed that target-distractor shape representation modulated the effect of motion on visual search performance. For tasks with low target-distractor shape similarity, motion negatively affected search performance, which was consistent with previous studies. However, for tasks with high target-distractor shape similarity, if the target differed from distractors in that a gap with a linear contour was added to the target, and the corresponding part of distractors had a curved contour, motion positively influenced search performance. Motion blur contributed to the performance enhancement under dynamic conditions. The findings are useful for understanding the influence of target-distractor shape representation on dynamic visual search performance when display had uniform linear motion.

  2. Left ventricular wall motion abnormalities evaluated by factor analysis as compared with Fourier analysis

    International Nuclear Information System (INIS)

    Hirota, Kazuyoshi; Ikuno, Yoshiyasu; Nishikimi, Toshio

    1986-01-01

    Factor analysis was applied to multigated cardiac pool scintigraphy to evaluate its ability to detect left ventricular wall motion abnormalities in 35 patients with old myocardial infarction (MI), and in 12 control cases with normal left ventriculography. All cases were also evaluated by conventional Fourier analysis. In most cases with normal left ventriculography, the ventricular and atrial factors were extracted by factor analysis. In cases with MI, the third factor was obtained in the left ventricle corresponding to wall motion abnormality. Each case was scored according to the coincidence of findings of ventriculography and those of factor analysis or Fourier analysis. Scores were recorded for three items; the existence, location, and degree of asynergy. In cases of MI, the detection rate of asynergy was 94 % by factor analysis, 83 % by Fourier analysis, and the agreement in respect to location was 71 % and 66 %, respectively. Factor analysis had higher scores than Fourier analysis, but this was not significant. The interobserver error of factor analysis was less than that of Fourier analysis. Factor analysis can display locations and dynamic motion curves of asynergy, and it is regarded as a useful method for detecting and evaluating left ventricular wall motion abnormalities. (author)

  3. A Methodology for Evaluating the Hygroscopic Behavior of Wood in Adaptive Building Skins using Motion Grammar

    Science.gov (United States)

    El-Dabaa, Rana; Abdelmohsen, Sherif

    2018-05-01

    The challenge in designing kinetic architecture lies in the lack of applying computational design and human computer interaction to successfully design intelligent and interactive interfaces. The use of ‘programmable materials’ as specifically fabricated composite materials that afford motion upon stimulation is promising for low-cost low-tech systems for kinetic facades in buildings. Despite efforts to develop working prototypes, there has been no clear methodological framework for understanding and controlling the behavior of programmable materials or for using them for such purposes. This paper introduces a methodology for evaluating the motion acquired from programmed material – resulting from the hygroscopic behavior of wood – through ‘motion grammar’. Motion grammar typically allows for the explanation of desired motion control in a computationally tractable method. The paper analyzed and evaluated motion parameters related to the hygroscopic properties and behavior of wood, and introduce a framework for tracking and controlling wood as a programmable material for kinetic architecture.

  4. Advanced methods on the evaluation of design earthquake motions for important power constructions

    International Nuclear Information System (INIS)

    Higashi, Sadanori; Shiba, Yoshiaki; Sato, Hiroaki; Sato, Yusuke; Nakajima, Masato; Sakai, Michiya; Sato, Kiyotaka

    2009-01-01

    In this report, we compiled advanced methods on the evaluation of design earthquake motions for important power constructions such as nuclear power, thermal power, and hydroelectric power facilities. For the nuclear and hydroelectric power facilities, we developed an inversion method of broad-band (0.1-5Hz) source process and obtained valid results from applying the method to the 2007 Niigata-ken Chuetsu-oki earthquake (M6.8). We have also improved our modeling techniques of thick sedimentary layered structure such as the S-wave velocity modeling by using microtremor array measurement and the frequency dependent damping factor with a lower limit. For seismic isolation design for nuclear power facilities, we proposed a design pseudo-velocity response spectrum. For the thermal power facilities, we performed three-dimensional numerical simulation of Kanto Basin for a prediction relation of long-period ground motion. We also proposed the introduction of probabilistic approach into the deterministic evaluation flow of design earthquake motions and evaluated the effect of a great earthquake with a short return period on the seismic hazard in Miyagi Prefecture, Japan. (author)

  5. Evaluation of a video-based head motion tracking system for dedicated brain PET

    Science.gov (United States)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  6. Sustained attention to objects' motion sharpens position representations: Attention to changing position and attention to motion are distinct.

    Science.gov (United States)

    Howard, Christina J; Rollings, Victoria; Hardie, Amy

    2017-06-01

    In tasks where people monitor moving objects, such the multiple object tracking task (MOT), observers attempt to keep track of targets as they move amongst distracters. The literature is mixed as to whether observers make use of motion information to facilitate performance. We sought to address this by two means: first by superimposing arrows on objects which varied in their informativeness about motion direction and second by asking observers to attend to motion direction. Using a position monitoring task, we calculated mean error magnitudes as a measure of the precision with which target positions are represented. We also calculated perceptual lags versus extrapolated reports, which are the times at which positions of targets best match position reports. We find that the presence of motion information in the form of superimposed arrows made no difference to position report precision nor perceptual lag. However, when we explicitly instructed observers to attend to motion, we saw facilitatory effects on position reports and in some cases reports that best matched extrapolated rather than lagging positions for small set sizes. The results indicate that attention to changing positions does not automatically recruit attention to motion, showing a dissociation between sustained attention to changing positions and attention to motion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. 4D computed tomography scans for conformal thoracic treatment planning: is a single scan sufficient to capture thoracic tumor motion?

    Science.gov (United States)

    Tseng, Yolanda D.; Wootton, Landon; Nyflot, Matthew; Apisarnthanarax, Smith; Rengan, Ramesh; Bloch, Charles; Sandison, George; St. James, Sara

    2018-01-01

    Four dimensional computed tomography (4DCT) scans are routinely used in radiation therapy to determine the internal treatment volume for targets that are moving (e.g. lung tumors). The use of these studies has allowed clinicians to create target volumes based upon the motion of the tumor during the imaging study. The purpose of this work is to determine if a target volume based on a single 4DCT scan at simulation is sufficient to capture thoracic motion. Phantom studies were performed to determine expected differences between volumes contoured on 4DCT scans and those on the evaluation CT scans (slow scans). Evaluation CT scans acquired during treatment of 11 patients were compared to the 4DCT scans used for treatment planning. The images were assessed to determine if the target remained within the target volume determined during the first 4DCT scan. A total of 55 slow scans were compared to the 11 planning 4DCT scans. Small differences were observed in phantom between the 4DCT volumes and the slow scan volumes, with a maximum of 2.9%, that can be attributed to minor differences in contouring and the ability of the 4DCT scan to adequately capture motion at the apex and base of the motion trajectory. Larger differences were observed in the patients studied, up to a maximum volume difference of 33.4%. These results demonstrate that a single 4DCT scan is not adequate to capture all thoracic motion throughout treatment.

  8. UAS stealth: target pursuit at constant distance using a bio-inspired motion camouflage guidance law.

    Science.gov (United States)

    Strydom, Reuben; Srinivasan, Mandyam V

    2017-09-21

    The aim of this study is to derive a guidance law by which an unmanned aerial system(s) (UAS) can pursue a moving target at a constant distance, while concealing its own motion. We derive a closed-form solution for the trajectory of the UAS by imposing two key constraints: (1) the shadower moves in such a way as to be perceived as a stationary object by the shadowee, and (2) the distance between the shadower and shadowee is kept constant. Additionally, the theory presented in this paper considers constraints on the maximum achievable speed and acceleration of the shadower. Our theory is tested through Matlab simulations, which validate the camouflage strategy for both 2D and 3D conditions. Furthermore, experiments using a realistic vision-based implementation are conducted in a virtual environment, where the results demonstrate that even with noisy state information it is possible to remain well camouflaged using the constant distance motion camouflage technique.

  9. Dual respiratory and cardiac motion estimation in PET imaging: Methods design and quantitative evaluation.

    Science.gov (United States)

    Feng, Tao; Wang, Jizhe; Tsui, Benjamin M W

    2018-04-01

    The goal of this study was to develop and evaluate four post-reconstruction respiratory and cardiac (R&C) motion vector field (MVF) estimation methods for cardiac 4D PET data. In Method 1, the dual R&C motions were estimated directly from the dual R&C gated images. In Method 2, respiratory motion (RM) and cardiac motion (CM) were separately estimated from the respiratory gated only and cardiac gated only images. The effects of RM on CM estimation were modeled in Method 3 by applying an image-based RM correction on the cardiac gated images before CM estimation, the effects of CM on RM estimation were neglected. Method 4 iteratively models the mutual effects of RM and CM during dual R&C motion estimations. Realistic simulation data were generated for quantitative evaluation of four methods. Almost noise-free PET projection data were generated from the 4D XCAT phantom with realistic R&C MVF using Monte Carlo simulation. Poisson noise was added to the scaled projection data to generate additional datasets of two more different noise levels. All the projection data were reconstructed using a 4D image reconstruction method to obtain dual R&C gated images. The four dual R&C MVF estimation methods were applied to the dual R&C gated images and the accuracy of motion estimation was quantitatively evaluated using the root mean square error (RMSE) of the estimated MVFs. Results show that among the four estimation methods, Methods 2 performed the worst for noise-free case while Method 1 performed the worst for noisy cases in terms of quantitative accuracy of the estimated MVF. Methods 4 and 3 showed comparable results and achieved RMSE lower by up to 35% than that in Method 1 for noisy cases. In conclusion, we have developed and evaluated 4 different post-reconstruction R&C MVF estimation methods for use in 4D PET imaging. Comparison of the performance of four methods on simulated data indicates separate R&C estimation with modeling of RM before CM estimation (Method 3) to be

  10. Quantifying motion for pancreatic radiotherapy margin calculation

    International Nuclear Information System (INIS)

    Whitfield, Gillian; Jain, Pooja; Green, Melanie; Watkins, Gillian; Henry, Ann; Stratford, Julie; Amer, Ali; Marchant, Thomas; Moore, Christopher; Price, Patricia

    2012-01-01

    Background and purpose: Pancreatic radiotherapy (RT) is limited by uncertain target motion. We quantified 3D patient/organ motion during pancreatic RT and calculated required treatment margins. Materials and methods: Cone-beam computed tomography (CBCT) and orthogonal fluoroscopy images were acquired post-RT delivery from 13 patients with locally advanced pancreatic cancer. Bony setup errors were calculated from CBCT. Inter- and intra-fraction fiducial (clip/seed/stent) motion was determined from CBCT projections and orthogonal fluoroscopy. Results: Using an off-line CBCT correction protocol, systematic (random) setup errors were 2.4 (3.2), 2.0 (1.7) and 3.2 (3.6) mm laterally (left–right), vertically (anterior–posterior) and longitudinally (cranio-caudal), respectively. Fiducial motion varied substantially. Random inter-fractional changes in mean fiducial position were 2.0, 1.6 and 2.6 mm; 95% of intra-fractional peak-to-peak fiducial motion was up to 6.7, 10.1 and 20.6 mm, respectively. Calculated clinical to planning target volume (CTV–PTV) margins were 1.4 cm laterally, 1.4 cm vertically and 3.0 cm longitudinally for 3D conformal RT, reduced to 0.9, 1.0 and 1.8 cm, respectively, if using 4D planning and online setup correction. Conclusions: Commonly used CTV–PTV margins may inadequately account for target motion during pancreatic RT. Our results indicate better immobilisation, individualised allowance for respiratory motion, online setup error correction and 4D planning would improve targeting.

  11. Evaluation method for acoustic trapping performance by tracking motion of trapped microparticle

    Science.gov (United States)

    Lim, Hae Gyun; Ham Kim, Hyung; Yoon, Changhan

    2018-05-01

    We report a method to evaluate the performances of a single-beam acoustic tweezer using a high-frequency ultrasound transducer. The motion of a microparticle trapped by a 45-MHz single-element transducer was captured and analyzed to deduce the magnitude of trapping force. In the proposed method, the motion of a trapped microparticle was analyzed from a series of microscopy images to compute trapping force; thus, no additional equipment such as microfluidics is required. The method could be used to estimate the effective trapping force in an acoustic tweezer experiment to assess cell membrane deformability by attaching a microbead to the surface of a cell and tracking the motion of the trapped bead, which is similar to a bead-based assay that uses optical tweezers. The results showed that the trapping force increased with increasing acoustic intensity and duty factor, but the force eventually reached a plateau at a higher acoustic intensity. They demonstrated that this method could be used as a simple tool to evaluate the performance and to optimize the operating conditions of acoustic tweezers.

  12. Synthesis of High-Frequency Ground Motion Using Information Extracted from Low-Frequency Ground Motion

    Science.gov (United States)

    Iwaki, A.; Fujiwara, H.

    2012-12-01

    Broadband ground motion computations of scenario earthquakes are often based on hybrid methods that are the combinations of deterministic approach in lower frequency band and stochastic approach in higher frequency band. Typical computation methods for low-frequency and high-frequency (LF and HF, respectively) ground motions are the numerical simulations, such as finite-difference and finite-element methods based on three-dimensional velocity structure model, and the stochastic Green's function method, respectively. In such hybrid methods, LF and HF wave fields are generated through two different methods that are completely independent of each other, and are combined at the matching frequency. However, LF and HF wave fields are essentially not independent as long as they are from the same event. In this study, we focus on the relation among acceleration envelopes at different frequency bands, and attempt to synthesize HF ground motion using the information extracted from LF ground motion, aiming to propose a new method for broad-band strong motion prediction. Our study area is Kanto area, Japan. We use the K-NET and KiK-net surface acceleration data and compute RMS envelope at four frequency bands: 0.5-1.0 Hz, 1.0-2.0 Hz, 2.0-4.0 Hz, .0-8.0 Hz, and 8.0-16.0 Hz. Taking the ratio of the envelopes of adjacent bands, we find that the envelope ratios have stable shapes at each site. The empirical envelope-ratio characteristics are combined with low-frequency envelope of the target earthquake to synthesize HF ground motion. We have applied the method to M5-class earthquakes and a M7 target earthquake that occurred in the vicinity of Kanto area, and successfully reproduced the observed HF ground motion of the target earthquake. The method can be applied to a broad band ground motion simulation for a scenario earthquake by combining numerically-computed low-frequency (~1 Hz) ground motion with the empirical envelope ratio characteristics to generate broadband ground motion

  13. Difference in target definition using three different methods to include respiratory motion in radiotherapy of lung cancer.

    Science.gov (United States)

    Sloth Møller, Ditte; Knap, Marianne Marquard; Nyeng, Tine Bisballe; Khalil, Azza Ahmed; Holt, Marianne Ingerslev; Kandi, Maria; Hoffmann, Lone

    2017-11-01

    Minimizing the planning target volume (PTV) while ensuring sufficient target coverage during the entire respiratory cycle is essential for free-breathing radiotherapy of lung cancer. Different methods are used to incorporate the respiratory motion into the PTV. Fifteen patients were analyzed. Respiration can be included in the target delineation process creating a respiratory GTV, denoted iGTV. Alternatively, the respiratory amplitude (A) can be measured based on the 4D-CT and A can be incorporated in the margin expansion. The GTV expanded by A yielded GTV + resp, which was compared to iGTV in terms of overlap. Three methods for PTV generation were compared. PTV del (delineated iGTV expanded to CTV plus PTV margin), PTV σ (GTV expanded to CTV and A was included as a random uncertainty in the CTV to PTV margin) and PTV ∑ (GTV expanded to CTV, succeeded by CTV linear expansion by A to CTV + resp, which was finally expanded to PTV ∑ ). Deformation of tumor and lymph nodes during respiration resulted in volume changes between the respiratory phases. The overlap between iGTV and GTV + resp showed that on average 7% of iGTV was outside the GTV + resp implying that GTV + resp did not capture the tumor during the full deformable respiration cycle. A comparison of the PTV volumes showed that PTV σ was smallest and PTV Σ largest for all patients. PTV σ was in mean 14% (31 cm 3 ) smaller than PTV del , while PTV del was 7% (20 cm 3 ) smaller than PTV Σ . PTV σ yields the smallest volumes but does not ensure coverage of tumor during the full respiratory motion due to tumor deformation. Incorporating the respiratory motion in the delineation (PTV del ) takes into account the entire respiratory cycle including deformation, but at the cost, however, of larger treatment volumes. PTV Σ should not be used, since it incorporates the disadvantages of both PTV del and PTV σ .

  14. First online real-time evaluation of motion-induced 4D dose errors during radiotherapy delivery

    DEFF Research Database (Denmark)

    Ravkilde, Thomas; Skouboe, Simon; Hansen, Rune

    2018-01-01

    PURPOSE: In radiotherapy, dose deficits caused by tumor motion often far outweigh the discrepancies typically allowed in plan-specific quality assurance (QA). Yet, tumor motion is not usually included in present QA. We here present a novel method for online treatment verification by real......-time motion-including 4D dose reconstruction and dose evaluation and demonstrate its use during stereotactic body radiotherapy (SBRT) delivery with and without MLC tracking. METHODS: Five volumetric modulated arc therapy (VMAT) plans were delivered with and without MLC tracking to a motion stage carrying...... a Delta4 dosimeter. The VMAT plans have previously been used for (non-tracking) liver SBRT with intra-treatment tumor motion recorded by kilovoltage intrafraction monitoring (KIM). The motion stage reproduced the KIM-measured tumor motions in 3D while optical monitoring guided the MLC tracking. Linac...

  15. 4D in-beam positron emission tomography for verification of motion-compensated ion beam therapy

    International Nuclear Information System (INIS)

    Parodi, Katia; Saito, Nami; Chaudhri, Naved; Richter, Christian; Durante, Marco; Enghardt, Wolfgang; Rietzel, Eike; Bert, Christoph

    2009-01-01

    Purpose: Clinically safe and effective treatment of intrafractionally moving targets with scanned ion beams requires dedicated delivery techniques such as beam tracking. Apart from treatment delivery, also appropriate methods for validation of the actual tumor irradiation are highly desirable. In this contribution the feasibility of four-dimensionally (space and time) resolved, motion-compensated in-beam positron emission tomography (4DibPET) was addressed in experimental studies with scanned carbon ion beams. Methods: A polymethyl methracrylate block sinusoidally moving left-right in beam's eye view was used as target. Radiological depth changes were introduced by placing a stationary ramp-shaped absorber proximal of the moving target. Treatment delivery was compensated for motion by beam tracking. Time-resolved, motion-correlated in-beam PET data acquisition was performed during beam delivery with tracking the moving target and prolonged after beam delivery first with the activated target still in motion and, finally, with the target at rest. Motion-compensated 4DibPET imaging was implemented and the results were compared to a stationary reference irradiation of the same treatment field. Data were used to determine feasibility of 4DibPET but also to evaluate offline in comparison to in-beam PET acquisition. Results: 4D in-beam as well as offline PET imaging was found to be feasible and offers the possibility to verify the correct functioning of beam tracking. Motion compensation of the imaged β + -activity distribution allows recovery of the volumetric extension of the delivered field for direct comparison with the reference stationary condition. Observed differences in terms of lateral field extension and penumbra in the direction of motion were typically less than 1 mm for both imaging strategies in comparison to the corresponding reference distributions. However, in-beam imaging retained a better spatial correlation of the measured activity with the delivered

  16. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume

    International Nuclear Information System (INIS)

    Knybel, Lukas; Cvek, Jakub; Molenda, Lukas; Stieberova, Natalie; Feltl, David

    2016-01-01

    Purpose/Objective: To evaluate lung tumor motion during respiration and to describe factors affecting the range and variability of motion in patients treated with stereotactic ablative radiation therapy. Methods and Materials: Log file analysis from online respiratory tumor tracking was performed in 145 patients. Geometric tumor location in the lungs, tumor volume and origin (primary or metastatic), sex, and tumor motion amplitudes in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were recorded. Tumor motion variability during treatment was described using intrafraction/interfraction amplitude variability and tumor motion baseline changes. Tumor movement dependent on the tumor volume, position and origin, and sex were evaluated using statistical regression and correlation analysis. Results: After analysis of >500 hours of data, the highest rates of motion amplitudes, intrafraction/interfraction variation, and tumor baseline changes were in the SI direction (6.0 ± 2.2 mm, 2.2 ± 1.8 mm, 1.1 ± 0.9 mm, and −0.1 ± 2.6 mm). The mean motion amplitudes in the lower/upper geometric halves of the lungs were significantly different (P 15 mm were observed only in the lower geometric quarter of the lungs. Higher tumor motion amplitudes generated higher intrafraction variations (R=.86, P 3 mm indicated tumors contacting mediastinal structures or parietal pleura. On univariate analysis, neither sex nor tumor origin (primary vs metastatic) was an independent predictive factor of different movement patterns. Metastatic lesions in women, but not men, showed significantly higher mean amplitudes (P=.03) and variability (primary, 2.7 mm; metastatic, 4.9 mm; P=.002) than primary tumors. Conclusion: Online tracking showed significant irregularities in lung tumor movement during respiration. Motion amplitude was significantly lower in upper lobe tumors; higher interfraction amplitude variability indicated tumors in contact

  17. Real-time prediction of respiratory motion based on local regression methods

    International Nuclear Information System (INIS)

    Ruan, D; Fessler, J A; Balter, J M

    2007-01-01

    Recent developments in modulation techniques enable conformal delivery of radiation doses to small, localized target volumes. One of the challenges in using these techniques is real-time tracking and predicting target motion, which is necessary to accommodate system latencies. For image-guided-radiotherapy systems, it is also desirable to minimize sampling rates to reduce imaging dose. This study focuses on predicting respiratory motion, which can significantly affect lung tumours. Predicting respiratory motion in real-time is challenging, due to the complexity of breathing patterns and the many sources of variability. We propose a prediction method based on local regression. There are three major ingredients of this approach: (1) forming an augmented state space to capture system dynamics, (2) local regression in the augmented space to train the predictor from previous observation data using semi-periodicity of respiratory motion, (3) local weighting adjustment to incorporate fading temporal correlations. To evaluate prediction accuracy, we computed the root mean square error between predicted tumor motion and its observed location for ten patients. For comparison, we also investigated commonly used predictive methods, namely linear prediction, neural networks and Kalman filtering to the same data. The proposed method reduced the prediction error for all imaging rates and latency lengths, particularly for long prediction lengths

  18. A technique of using gated-CT images to determine internal target volume (ITV) for fractionated stereotactic lung radiotherapy

    International Nuclear Information System (INIS)

    Jin Jianyue; Ajlouni, Munther; Chen Qing; Yin, Fang-Fang; Movsas, Benjamin

    2006-01-01

    Background and purpose: To develop and evaluate a technique and procedure of using gated-CT images in combination with PET image to determine the internal target volume (ITV), which could reduce the planning target volume (PTV) with adequate target coverage. Patients and methods: A skin marker-based gating system connected to a regular single slice CT scanner was used for this study. A motion phantom with adjustable motion amplitude was used to evaluate the CT gating system. Specifically, objects of various sizes/shapes, considered as virtual tumors, were placed on the phantom to evaluate the number of phases of gated images required to determine the ITV while taking into account tumor size, shape and motion. A procedure of using gated-CT and PET images to define ITV for patients was developed and was tested in patients enrolled in an IRB approved protocol. Results: The CT gating system was capable of removing motion artifacts for target motion as large as 3-cm when it was gated at optimal phases. A phantom study showed that two gated-CT scans at the end of expiration and the end of inspiration would be sufficient to determine the ITV for tumor motion less than 1-cm, and another mid-phase scan would be required for tumors with 2-cm motion, especially for small tumors. For patients, the ITV encompassing visible tumors in all sets of gated-CT and regular spiral CT images seemed to be consistent with the target volume determined from PET images. PTV expanded from the ITV with a setup uncertainty margin had less volume than PTVs from spiral CT images with a 10-mm generalized margin or an individualized margin determined at fluoroscopy. Conclusions: A technique of determining the ITV using gated-CT images was developed and was clinically implemented successfully for fractionated stereotactic lung radiotherapy

  19. Carotid artery wall motion analysis from B-mode ultrasound using adaptive block matching: in silico evaluation and in vivo application

    International Nuclear Information System (INIS)

    Gastounioti, A; Stoitsis, J S; Nikita, K S; Golemati, S

    2013-01-01

    Valid risk stratification for carotid atherosclerotic plaques represents a crucial public health issue toward preventing fatal cerebrovascular events. Although motion analysis (MA) provides useful information about arterial wall dynamics, the identification of motion-based risk markers remains a significant challenge. Considering that the ability of a motion estimator (ME) to handle changes in the appearance of motion targets has a major effect on accuracy in MA, we investigated the potential of adaptive block matching (ABM) MEs, which consider changes in image intensities over time. To assure the validity in MA, we optimized and evaluated the ABM MEs in the context of a specially designed in silico framework. ABM FIRF2 , which takes advantage of the periodicity characterizing the arterial wall motion, was the most effective ABM algorithm, yielding a 47% accuracy increase with respect to the conventional block matching. The in vivo application of ABM FIRF2 revealed five potential risk markers: low movement amplitude of the normal part of the wall adjacent to the plaques in the radial (RMA PWL ) and longitudinal (LMA PWL ) directions, high radial motion amplitude of the plaque top surface (RMA PTS ), and high relative movement, expressed in terms of radial strain (RSI PL ) and longitudinal shear strain (LSSI PL ), between plaque top and bottom surfaces. The in vivo results were reproduced by OF LK(WLS) and ABM KF-K2 , MEs previously proposed by the authors and with remarkable in silico performances, thereby reinforcing the clinical values of the markers and the potential of those MEs. Future in vivo studies will elucidate with confidence the full potential of the markers. (paper)

  20. Visual gravitational motion and the vestibular system in humans

    Directory of Open Access Journals (Sweden)

    Francesco eLacquaniti

    2013-12-01

    Full Text Available The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.

  1. Visual gravitational motion and the vestibular system in humans.

    Science.gov (United States)

    Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka

    2013-12-26

    The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.

  2. The roles of non-retinotopic motions in visual search

    Directory of Open Access Journals (Sweden)

    Ryohei eNakayama

    2016-06-01

    Full Text Available In visual search, a moving target among stationary distracters is detected more rapidly and more efficiently than a static target among moving distracters. Here we examined how this search asymmetry depends on motion signals from three distinct coordinate system – retinal, relative, and spatiotopic (head/body-centered. Our search display consisted of a target element, distracters elements, and a fixation point tracked by observers. Each element was composed of a spatial carrier grating windowed by a Gaussian envelope, and the motions of carriers, windows, and fixation were manipulated independently and used in various combinations to decouple the respective effects of motion coordinates systems on visual search asymmetry. We found that retinal motion hardly contributes to reaction times and search slopes but that relative and spatiotopic motions contribute to them substantially. Results highlight the important roles of non-retinotopic motions for guiding observer attention in visual search.

  3. Information fusion performance evaluation for motion imagery data using mutual information: initial study

    Science.gov (United States)

    Grieggs, Samuel M.; McLaughlin, Michael J.; Ezekiel, Soundararajan; Blasch, Erik

    2015-06-01

    As technology and internet use grows at an exponential rate, video and imagery data is becoming increasingly important. Various techniques such as Wide Area Motion imagery (WAMI), Full Motion Video (FMV), and Hyperspectral Imaging (HSI) are used to collect motion data and extract relevant information. Detecting and identifying a particular object in imagery data is an important step in understanding visual imagery, such as content-based image retrieval (CBIR). Imagery data is segmented and automatically analyzed and stored in dynamic and robust database. In our system, we seek utilize image fusion methods which require quality metrics. Many Image Fusion (IF) algorithms have been proposed based on different, but only a few metrics, used to evaluate the performance of these algorithms. In this paper, we seek a robust, objective metric to evaluate the performance of IF algorithms which compares the outcome of a given algorithm to ground truth and reports several types of errors. Given the ground truth of a motion imagery data, it will compute detection failure, false alarm, precision and recall metrics, background and foreground regions statistics, as well as split and merge of foreground regions. Using the Structural Similarity Index (SSIM), Mutual Information (MI), and entropy metrics; experimental results demonstrate the effectiveness of the proposed methodology for object detection, activity exploitation, and CBIR.

  4. Evolution of motion uncertainty in rectal cancer: implications for adaptive radiotherapy

    Science.gov (United States)

    Kleijnen, Jean-Paul J. E.; van Asselen, Bram; Burbach, Johannes P. M.; Intven, Martijn; Philippens, Marielle E. P.; Reerink, Onne; Lagendijk, Jan J. W.; Raaymakers, Bas W.

    2016-01-01

    Reduction of motion uncertainty by applying adaptive radiotherapy strategies depends largely on the temporal behavior of this motion. To fully optimize adaptive strategies, insight into target motion is needed. The purpose of this study was to analyze stability and evolution in time of motion uncertainty of both the gross tumor volume (GTV) and clinical target volume (CTV) for patients with rectal cancer. We scanned 16 patients daily during one week, on a 1.5 T MRI scanner in treatment position, prior to each radiotherapy fraction. Single slice sagittal cine MRIs were made at the beginning, middle, and end of each scan session, for one minute at 2 Hz temporal resolution. GTV and CTV motion were determined by registering a delineated reference frame to time-points later in time. The 95th percentile of observed motion (dist95%) was taken as a measure of motion. The stability of motion in time was evaluated within each cine-MRI separately. The evolution of motion was investigated between the reference frame and the cine-MRIs of a single scan session and between the reference frame and the cine-MRIs of several days later in the course of treatment. This observed motion was then converted into a PTV-margin estimate. Within a one minute cine-MRI scan, motion was found to be stable and small. Independent of the time-point within the scan session, the average dist95% remains below 3.6 mm and 2.3 mm for CTV and GTV, respectively 90% of the time. We found similar motion over time intervals from 18 min to 4 days. When reducing the time interval from 18 min to 1 min, a large reduction in motion uncertainty is observed. A reduction in motion uncertainty, and thus the PTV-margin estimate, of 71% and 75% for CTV and tumor was observed, respectively. Time intervals of 15 and 30 s yield no further reduction in motion uncertainty compared to a 1 min time interval.

  5. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume

    Energy Technology Data Exchange (ETDEWEB)

    Knybel, Lukas [Department of Oncology, University Hospital Ostrava, Ostrava (Czech Republic); VŠB-Technical University of Ostrava, Ostrava (Czech Republic); Cvek, Jakub, E-mail: Jakub.cvek@fno.cz [Department of Oncology, University Hospital Ostrava, Ostrava (Czech Republic); Molenda, Lukas; Stieberova, Natalie; Feltl, David [Department of Oncology, University Hospital Ostrava, Ostrava (Czech Republic)

    2016-11-15

    Purpose/Objective: To evaluate lung tumor motion during respiration and to describe factors affecting the range and variability of motion in patients treated with stereotactic ablative radiation therapy. Methods and Materials: Log file analysis from online respiratory tumor tracking was performed in 145 patients. Geometric tumor location in the lungs, tumor volume and origin (primary or metastatic), sex, and tumor motion amplitudes in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were recorded. Tumor motion variability during treatment was described using intrafraction/interfraction amplitude variability and tumor motion baseline changes. Tumor movement dependent on the tumor volume, position and origin, and sex were evaluated using statistical regression and correlation analysis. Results: After analysis of >500 hours of data, the highest rates of motion amplitudes, intrafraction/interfraction variation, and tumor baseline changes were in the SI direction (6.0 ± 2.2 mm, 2.2 ± 1.8 mm, 1.1 ± 0.9 mm, and −0.1 ± 2.6 mm). The mean motion amplitudes in the lower/upper geometric halves of the lungs were significantly different (P<.001). Motion amplitudes >15 mm were observed only in the lower geometric quarter of the lungs. Higher tumor motion amplitudes generated higher intrafraction variations (R=.86, P<.001). Interfraction variations and baseline changes >3 mm indicated tumors contacting mediastinal structures or parietal pleura. On univariate analysis, neither sex nor tumor origin (primary vs metastatic) was an independent predictive factor of different movement patterns. Metastatic lesions in women, but not men, showed significantly higher mean amplitudes (P=.03) and variability (primary, 2.7 mm; metastatic, 4.9 mm; P=.002) than primary tumors. Conclusion: Online tracking showed significant irregularities in lung tumor movement during respiration. Motion amplitude was significantly lower in upper lobe

  6. Evaluation of vibratory ground motion at nuclear power plant sites

    International Nuclear Information System (INIS)

    Hofmann, R.B.; Greeves, J.T.

    1978-01-01

    The evaluation of vibratory ground motion at nuclear power plant sites requires the cooperative effort of scientists and engineers in several disciplines. These include seismology, geology, geotechnical engineering and structural engineering. The Geosciences Branch of the NRC Division of Site Safety and Environmental Analysis includes two sections, the Geology/Seismology Section and the Geotechnical Engineering Section

  7. Evaluation of motion and its effect on brain magnetic resonance image quality in children

    Energy Technology Data Exchange (ETDEWEB)

    Afacan, Onur; Erem, Burak; Roby, Diona P.; Prabhu, Sanjay P.; Warfield, Simon K. [Boston Children' s Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Roth, Noam; Roth, Amir [Robin Medical Inc., Baltimore, MD (United States)

    2016-11-15

    Motion artifacts pose significant problems for the acquisition of MR images in pediatric populations. To evaluate temporal motion metrics in MRI scanners and their effect on image quality in pediatric populations in neuroimaging studies. We report results from a large pediatric brain imaging study that shows the effect of motion on MRI quality. We measured motion metrics in 82 pediatric patients, mean age 13.4 years, in a T1-weighted brain MRI scan. As a result of technical difficulties, 5 scans were not included in the subsequent analyses. A radiologist graded the images using a 4-point scale ranging from clinically non-diagnostic because of motion artifacts to no motion artifacts. We used these grades to correlate motion parameters such as maximum motion, mean displacement from a reference point, and motion-free time with image quality. Our results show that both motion-free time (as a ratio of total scan time) and average displacement from a position at a fixed time (when the center of k-space was acquired) were highly correlated with image quality, whereas maximum displacement was not as good a predictor. Among the 77 patients whose motion was measured successfully, 17 had average displacements of greater than 0.5 mm, and 11 of those (14.3%) resulted in non-diagnostic images. Similarly, 14 patients (18.2%) had less than 90% motion-free time, which also resulted in non-diagnostic images. We report results from a large pediatric study to show how children and young adults move in the MRI scanner and the effect that this motion has on image quality. The results will help the motion-correction community in better understanding motion patterns in pediatric populations and how these patterns affect MR image quality. (orig.)

  8. Evaluation of motion and its effect on brain magnetic resonance image quality in children

    International Nuclear Information System (INIS)

    Afacan, Onur; Erem, Burak; Roby, Diona P.; Prabhu, Sanjay P.; Warfield, Simon K.; Roth, Noam; Roth, Amir

    2016-01-01

    Motion artifacts pose significant problems for the acquisition of MR images in pediatric populations. To evaluate temporal motion metrics in MRI scanners and their effect on image quality in pediatric populations in neuroimaging studies. We report results from a large pediatric brain imaging study that shows the effect of motion on MRI quality. We measured motion metrics in 82 pediatric patients, mean age 13.4 years, in a T1-weighted brain MRI scan. As a result of technical difficulties, 5 scans were not included in the subsequent analyses. A radiologist graded the images using a 4-point scale ranging from clinically non-diagnostic because of motion artifacts to no motion artifacts. We used these grades to correlate motion parameters such as maximum motion, mean displacement from a reference point, and motion-free time with image quality. Our results show that both motion-free time (as a ratio of total scan time) and average displacement from a position at a fixed time (when the center of k-space was acquired) were highly correlated with image quality, whereas maximum displacement was not as good a predictor. Among the 77 patients whose motion was measured successfully, 17 had average displacements of greater than 0.5 mm, and 11 of those (14.3%) resulted in non-diagnostic images. Similarly, 14 patients (18.2%) had less than 90% motion-free time, which also resulted in non-diagnostic images. We report results from a large pediatric study to show how children and young adults move in the MRI scanner and the effect that this motion has on image quality. The results will help the motion-correction community in better understanding motion patterns in pediatric populations and how these patterns affect MR image quality. (orig.)

  9. SU-F-I-15: Evaluation of a New MR-Compatible Respiratory Motion Device at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, A [Sunnybrook Research Institute, Toronto, ON (Canada); Sunnybrook Health Sciences Centre, Toronto, ON (Canada); Chugh, B; Keller, B [Sunnybrook Health Sciences Centre, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada); Sahgal, A; Song, W [Sunnybrook Research Institute, Toronto, ON (Canada); Sunnybrook Health Sciences Centre, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada)

    2016-06-15

    Purpose: Recent advances in MRI-guided radiotherapy has inspired the development of MRI-compatible motion devices that simulate patient periodic motion in the scanner, particularly respiratory motion. Most commercial devices rely on non MR-safe ferromagnetic stepper motors which are not practical for regular QA testing. This work evaluates the motion performance of a new fully MRI compatible respiratory motion device at 3T. Methods: The QUASAR™ MRI-compatible respiratory motion phantom has been recently developed by Modus QA Inc., London, ON, Canada. The prototype is constructed from diamagnetic materials with linear motion generated using MRI-compatible piezoelectric motors that can be safely inserted in the scanner bore. The tumor was represented by a fillable sphere and is attached to the linear motion generator. The spherical tumor-representative and its surroundings were filled with different concentrations of MnCl2 to produce realistic relaxation times. The motion was generated along the longitudinal (H/F) axis of the bore using sinusoidal reference waveform (amplitude = 15 mm, frequency 0.25 Hz). Imaging was then performed on 3T Philips Achieva using a 32-channel cardiac coil. Fast 2D spoiled gradient-echo was used with a spatial resolution of 1.8 × 1.8 mm{sup 2} and slice thickness of 4 mm. The motion waveform was then measured on the resultant image series by tracking the centroid of the sphere through the time series. This image-derived measured motion was compared to the software-generated reference waveform. Results: No visible distortions from the device were observed on the images. Excellent agreement between the measured and the reference waveforms were obtained. Negligible motion was observed in the lateral (R/L) direction. Conclusion: Our investigation demonstrates that this piezo-electric motor design is effective at simulating periodic motion and is a potential candidate for MRI-radiotherapy respiratory motion simulation. Future work should

  10. SU-F-I-15: Evaluation of a New MR-Compatible Respiratory Motion Device at 3T

    International Nuclear Information System (INIS)

    Soliman, A; Chugh, B; Keller, B; Sahgal, A; Song, W

    2016-01-01

    Purpose: Recent advances in MRI-guided radiotherapy has inspired the development of MRI-compatible motion devices that simulate patient periodic motion in the scanner, particularly respiratory motion. Most commercial devices rely on non MR-safe ferromagnetic stepper motors which are not practical for regular QA testing. This work evaluates the motion performance of a new fully MRI compatible respiratory motion device at 3T. Methods: The QUASAR™ MRI-compatible respiratory motion phantom has been recently developed by Modus QA Inc., London, ON, Canada. The prototype is constructed from diamagnetic materials with linear motion generated using MRI-compatible piezoelectric motors that can be safely inserted in the scanner bore. The tumor was represented by a fillable sphere and is attached to the linear motion generator. The spherical tumor-representative and its surroundings were filled with different concentrations of MnCl2 to produce realistic relaxation times. The motion was generated along the longitudinal (H/F) axis of the bore using sinusoidal reference waveform (amplitude = 15 mm, frequency 0.25 Hz). Imaging was then performed on 3T Philips Achieva using a 32-channel cardiac coil. Fast 2D spoiled gradient-echo was used with a spatial resolution of 1.8 × 1.8 mm 2 and slice thickness of 4 mm. The motion waveform was then measured on the resultant image series by tracking the centroid of the sphere through the time series. This image-derived measured motion was compared to the software-generated reference waveform. Results: No visible distortions from the device were observed on the images. Excellent agreement between the measured and the reference waveforms were obtained. Negligible motion was observed in the lateral (R/L) direction. Conclusion: Our investigation demonstrates that this piezo-electric motor design is effective at simulating periodic motion and is a potential candidate for MRI-radiotherapy respiratory motion simulation. Future work should focus

  11. Motion-Induced Blindness Using Increments and Decrements of Luminance

    Directory of Open Access Journals (Sweden)

    Stine Wm Wren

    2017-10-01

    Full Text Available Motion-induced blindness describes the disappearance of stationary elements of a scene when other, perhaps non-overlapping, elements of the scene are in motion. We measured the effects of increment (200.0 cd/m2 and decrement targets (15.0 cd/m2 and masks presented on a grey background (108.0 cd/m2, tapping into putative ON- and OFF-channels, on the rate of target disappearance psychophysically. We presented two-frame motion, which has coherent motion energy, and dynamic Glass patterns and dynamic anti-Glass patterns, which do not have coherent motion energy. Using the method of constant stimuli, participants viewed stimuli of varying durations (3.1 s, 4.6 s, 7.0 s, 11 s, or 16 s in a given trial and then indicated whether or not the targets vanished during that trial. Psychometric function midpoints were used to define absolute threshold mask duration for the disappearance of the target. 95% confidence intervals for threshold disappearance times were estimated using a bootstrap technique for each of the participants across two experiments. Decrement masks were more effective than increment masks with increment targets. Increment targets were easier to mask than decrement targets. Distinct mask pattern types had no effect, suggesting that perceived coherence contributes to the effectiveness of the mask. The ON/OFF dichotomy clearly carries its influence to the level of perceived motion coherence. Further, the asymmetry in the effects of increment and decrement masks on increment and decrement targets might lead one to speculate that they reflect the ‘importance’ of detecting decrements in the environment.

  12. Clinical evaluation of segmental wall motion by radionuclide cardioangiography in the patients with myocardial infarction

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Uehara, Toshiisa; Kozuka, Takahiro

    1980-01-01

    To detect segmental wall motion of left ventricle is useful to identify the size and location of infarcted area in coronary arteries diseases. In this study, segmental wall motion by radionuclide cardioangiography were evaluated to compare with contrast left ventriculography in fifty patients of myocardial infarction. Segmental wall motion in RAO position by first pass method, in LAO position by multi-gated method were evaluated using an Anger camera and on-line minicomputer system by following methods; ED, ES images, sequential images, edge display, regional ejection fraction and movie imaging system (MIS). The percent agreements of segmental wall motion by RI and LVG were 84% in 350 segments of 50 cases. In all segments, segments 4, 6, 7 were better agreements than other segments. For the degree of wall motion, skinesis and dyskinesis were good agreements in both methods, while hypokinesia was slightly poor agreement (62%). On the other hand, the size of infarction, that is, percent thallium defect area was good correlated with radionuclide left ventricular ejection fraction (r = -0.855 in anterior infarction, r = -0.646 in inferior infarction). From these data, wall motion was thought to be closely related with left ventricular function, therefore, regional ejection fraction in seven areas in left ventricular image was developed and compared with segmental wall motion in left ventriculogram according to the classification of A.H.A. Comittee Report. The value of regional ejection fraction is 0.29, 0.40, 0.60 in akinesis, hypokinesis and normal. In conclusion, radionuclide cardioangiography is useful in the detection of abnormal segmental wall motion as noninvasive methods. (author)

  13. Evaluation of high frequency ground motion effects on the seismic capacity of NPP equipments

    International Nuclear Information System (INIS)

    Choi, In Kil; Seo, Jeong Moon; Choun, Young Sun

    2003-04-01

    In this study, the uniform hazard spectrum for the example Korean nuclear power plants sites were developed and compared with various response spectra used in past seismic PRA and SMA. It shows that the high frequency ground motion effects should be considered in seismic safety evaluations. The floor response spectra were developed using the direct generation method that can develop the floor response spectra from the input response spectrum directly with only the dynamic properties of structures obtained from the design calculation. Most attachment of the equipments to the structure has a minimum distortion capacity. This makes it possible to drop the effective frequency of equipment to low frequency before it is severely damaged. The results of this study show that the high frequency ground motion effects on the floor response spectra were significant, and the effects should be considered in the SPRA and SMA for the equipments installed in a building. The high frequency ground motion effects are more important for the seismic capacity evaluation of functional failure modes. The high frequency ground motion effects on the structural failure of equipments that attached to the floor by welding can be reduced by the distortion capacity of welded anchorage

  14. Planning Target Margin Calculations for Prostate Radiotherapy Based on Intrafraction and Interfraction Motion Using Four Localization Methods

    International Nuclear Information System (INIS)

    Beltran, Chris; Herman, Michael G.; Davis, Brian J.

    2008-01-01

    Purpose: To determine planning target volume (PTV) margins for prostate radiotherapy based on the internal margin (IM) (intrafractional motion) and the setup margin (SM) (interfractional motion) for four daily localization methods: skin marks (tattoo), pelvic bony anatomy (bone), intraprostatic gold seeds using a 5-mm action threshold, and using no threshold. Methods and Materials: Forty prostate cancer patients were treated with external radiotherapy according to an online localization protocol using four intraprostatic gold seeds and electronic portal images (EPIs). Daily localization and treatment EPIs were obtained. These data allowed inter- and intrafractional analysis of prostate motion. The SM for the four daily localization methods and the IM were determined. Results: A total of 1532 fractions were analyzed. Tattoo localization requires a SM of 6.8 mm left-right (LR), 7.2 mm inferior-superior (IS), and 9.8 mm anterior-posterior (AP). Bone localization requires 3.1, 8.9, and 10.7 mm, respectively. The 5-mm threshold localization requires 4.0, 3.9, and 3.7 mm. No threshold localization requires 3.4, 3.2, and 3.2 mm. The intrafractional prostate motion requires an IM of 2.4 mm LR, 3.4 mm IS and AP. The PTV margin using the 5-mm threshold, including interobserver uncertainty, IM, and SM, is 4.8 mm LR, 5.4 mm IS, and 5.2 mm AP. Conclusions: Localization based on EPI with implanted gold seeds allows a large PTV margin reduction when compared with tattoo localization. Except for the LR direction, bony anatomy localization does not decrease the margins compared with tattoo localization. Intrafractional prostate motion is a limiting factor on margin reduction

  15. Evaluation of the leap motion controller as a new contact-free pointing device.

    Science.gov (United States)

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2014-12-24

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8% for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller's performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC.

  16. Synchronizing the tracking eye movements with the motion of a visual target: Basic neural processes.

    Science.gov (United States)

    Goffart, Laurent; Bourrelly, Clara; Quinet, Julie

    2017-01-01

    In primates, the appearance of an object moving in the peripheral visual field elicits an interceptive saccade that brings the target image onto the foveae. This foveation is then maintained more or less efficiently by slow pursuit eye movements and subsequent catch-up saccades. Sometimes, the tracking is such that the gaze direction looks spatiotemporally locked onto the moving object. Such a spatial synchronism is quite spectacular when one considers that the target-related signals are transmitted to the motor neurons through multiple parallel channels connecting separate neural populations with different conduction speeds and delays. Because of the delays between the changes of retinal activity and the changes of extraocular muscle tension, the maintenance of the target image onto the fovea cannot be driven by the current retinal signals as they correspond to past positions of the target. Yet, the spatiotemporal coincidence observed during pursuit suggests that the oculomotor system is driven by a command estimating continuously the current location of the target, i.e., where it is here and now. This inference is also supported by experimental perturbation studies: when the trajectory of an interceptive saccade is experimentally perturbed, a correction saccade is produced in flight or after a short delay, and brings the gaze next to the location where unperturbed saccades would have landed at about the same time, in the absence of visual feedback. In this chapter, we explain how such correction can be supported by previous visual signals without assuming "predictive" signals encoding future target locations. We also describe the basic neural processes which gradually yield the synchronization of eye movements with the target motion. When the process fails, the gaze is driven by signals related to past locations of the target, not by estimates to its upcoming locations, and a catch-up is made to reinitiate the synchronization. © 2017 Elsevier B.V. All rights

  17. Evaluation of Vocal Fold Motion Abnormalities: Are We All Seeing the Same Thing?

    Science.gov (United States)

    Madden, Lyndsay L; Rosen, Clark A

    2017-01-01

    Flexible laryngoscopy is the principle tool for the evaluation of vocal fold motion. As of yet, no consistent, unified outcome metric has been developed for vocal fold paralysis/immobility research. The goal of this study was to evaluate vocal fold motion assessment (inter- and intra-rater reliability) among general otolaryngologists and fellowship-trained laryngologists. Prospective video perceptual analysis study. Flexible laryngoscopic examinations, with sound, of 15 unique patient cases (20 seconds each) were sent to 10 general otolaryngologists and 10 fellowship-trained laryngologists blinded to clinical history. Reviewers were given written definitions of vocal fold mobility and immobility and two video examples. The cases included bilateral vocal fold mobility (six), unilateral vocal fold immobility (five), and unilateral vocal fold hypomobility (four). Five examinations were repeated to determine intra-rater reliability. Participants were asked to judge if there was or there was no purposeful motion, as described by written definitions, for each vocal fold (800 tokens in total). Twenty reviewers (100%) replied. Both general otolaryngologists and fellowship-trained laryngologists had an overall inter-rater reliability of 95%. Difference in inter-rater reliability between the two groups of raters was negligible: 95% for general otolaryngologists and 97.5% for fellowship-trained laryngologists. There was no variability in intra-rater reliability within either rater group (99%). Intra- and inter-rater agreement in determining whether the patient had purposeful vocal fold motion on flexible laryngoscopic examination was excellent in both groups. This study demonstrates that otolaryngologists can consistently and accurately judge the presence and the absence of vocal fold motion. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  18. Procedures for evaluation of vibratory ground motions of soil deposits at nuclear power plant sites

    International Nuclear Information System (INIS)

    1975-06-01

    According to USNRC requirements set forth in Appendix A, 10 CFR, Part 100, vibratory ground motion criteria for a nuclear plant must be based on local soil conditions, as well as on the seismicity, geology, and tectonics of the region. This report describes how such criteria can be developed by applying the latest technology associated with analytical predictions of site-dependent ground motions and with the use of composite spectra obtained from the current library of strong motion records. Recommended procedures for defining vibratory ground motion criteria contain the following steps: (1) geologic and seismologic studies; (2) site soils investigations; (3) site response sensitivity studies; (4) evaluation of local site response characteristics; (5) selection of site-matched records; and (6) appraisal and selection of seismic input criteria. An in-depth discussion of the engineering characteristics of earthquake ground motions including parameters used to characterize earthquakes and strong motion records, geologic factors that influence ground shaking, the current strong motion data base, and case histories of the effects of past earthquake events is presented. Next, geotechnical investigations of the seismologic, geologic, and site soil conditions required to develop vibratory motion criteria are briefly summarized. The current technology for establishing vibratory ground motion criteria at nuclear plant sites, including site-independent and site-dependent procedures that use data from strong motion records and from soil response analyses is described. (auth)

  19. Phantom investigation of 3D motion-dependent volume aliasing during CT simulation for radiation therapy planning

    International Nuclear Information System (INIS)

    Tanyi, James A; Fuss, Martin; Varchena, Vladimir; Lancaster, Jack L; Salter, Bill J

    2007-01-01

    To quantify volumetric and positional aliasing during non-gated fast- and slow-scan acquisition CT in the presence of 3D target motion. Single-slice fast, single-slice slow, and multi-slice fast scan helical CTs were acquired of dynamic spherical targets (1 and 3.15 cm in diameter), embedded in an anthropomorphic phantom. 3D target motions typical of clinically observed tumor motion parameters were investigated. Motion excursions included ± 5, ± 10, and ± 15 mm displacements in the S-I direction synchronized with constant displacements of ± 5 and ± 2 mm in the A-P and lateral directions, respectively. For each target, scan technique, and motion excursion, eight different initial motion-to-scan phase relationships were investigated. An anticipated general trend of target volume overestimation was observed. The mean percentage overestimation of the true physical target volume typically increased with target motion amplitude and decreasing target diameter. Slow-scan percentage overestimations were larger, and better approximated the time-averaged motion envelope, as opposed to fast-scans. Motion induced centroid misrepresentation was greater in the S-I direction for fast-scan techniques, and transaxial direction for the slow-scan technique. Overestimation is fairly uniform for slice widths < 5 mm, beyond which there is gross overestimation. Non-gated CT imaging of targets describing clinically relevant, 3D motion results in aliased overestimation of the target volume and misrepresentation of centroid location, with little or no correlation between the physical target geometry and the CT-generated target geometry. Slow-scan techniques are a practical method for characterizing time-averaged target position. Fast-scan techniques provide a more reliable, albeit still distorted, target margin

  20. Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device

    OpenAIRE

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2014-01-01

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8 % for the LMC and 2.8% for the mouse device, movement times...

  1. Evaluation of interpolation methods for surface-based motion compensated tomographic reconstruction for cardiac angiographic C-arm data

    International Nuclear Information System (INIS)

    Müller, Kerstin; Schwemmer, Chris; Hornegger, Joachim; Zheng Yefeng; Wang Yang; Lauritsch, Günter; Rohkohl, Christopher; Maier, Andreas K.; Schultz, Carl; Fahrig, Rebecca

    2013-01-01

    Purpose: For interventional cardiac procedures, anatomical and functional information about the cardiac chambers is of major interest. With the technology of angiographic C-arm systems it is possible to reconstruct intraprocedural three-dimensional (3D) images from 2D rotational angiographic projection data (C-arm CT). However, 3D reconstruction of a dynamic object is a fundamental problem in C-arm CT reconstruction. The 2D projections are acquired over a scan time of several seconds, thus the projection data show different states of the heart. A standard FDK reconstruction algorithm would use all acquired data for a filtered backprojection and result in a motion-blurred image. In this approach, a motion compensated reconstruction algorithm requiring knowledge of the 3D heart motion is used. The motion is estimated from a previously presented 3D dynamic surface model. This dynamic surface model results in a sparse motion vector field (MVF) defined at control points. In order to perform a motion compensated reconstruction, a dense motion vector field is required. The dense MVF is generated by interpolation of the sparse MVF. Therefore, the influence of different motion interpolation methods on the reconstructed image quality is evaluated. Methods: Four different interpolation methods, thin-plate splines (TPS), Shepard's method, a smoothed weighting function, and a simple averaging, were evaluated. The reconstruction quality was measured on phantom data, a porcine model as well as on in vivo clinical data sets. As a quality index, the 2D overlap of the forward projected motion compensated reconstructed ventricle and the segmented 2D ventricle blood pool was quantitatively measured with the Dice similarity coefficient and the mean deviation between extracted ventricle contours. For the phantom data set, the normalized root mean square error (nRMSE) and the universal quality index (UQI) were also evaluated in 3D image space. Results: The quantitative evaluation of all

  2. New inverse synthetic aperture radar algorithm for translational motion compensation

    Science.gov (United States)

    Bocker, Richard P.; Henderson, Thomas B.; Jones, Scott A.; Frieden, B. R.

    1991-10-01

    Inverse synthetic aperture radar (ISAR) is an imaging technique that shows real promise in classifying airborne targets in real time under all weather conditions. Over the past few years a large body of ISAR data has been collected and considerable effort has been expended to develop algorithms to form high-resolution images from this data. One important goal of workers in this field is to develop software that will do the best job of imaging under the widest range of conditions. The success of classifying targets using ISAR is predicated upon forming highly focused radar images of these targets. Efforts to develop highly focused imaging computer software have been challenging, mainly because the imaging depends on and is affected by the motion of the target, which in general is not precisely known. Specifically, the target generally has both rotational motion about some axis and translational motion as a whole with respect to the radar. The slant-range translational motion kinematic quantities must be first accurately estimated from the data and compensated before the image can be focused. Following slant-range motion compensation, the image is further focused by determining and correcting for target rotation. The use of the burst derivative measure is proposed as a means to improve the computational efficiency of currently used ISAR algorithms. The use of this measure in motion compensation ISAR algorithms for estimating the slant-range translational motion kinematic quantities of an uncooperative target is described. Preliminary tests have been performed on simulated as well as actual ISAR data using both a Sun 4 workstation and a parallel processing transputer array. Results indicate that the burst derivative measure gives significant improvement in processing speed over the traditional entropy measure now employed.

  3. Evaluation of motion management strategies based on required margins

    International Nuclear Information System (INIS)

    Sawkey, D; Svatos, M; Zankowski, C

    2012-01-01

    Strategies for delivering radiation to a moving lesion each require a margin to compensate for uncertainties in treatment. These motion margins have been determined here by separating the total uncertainty into components. Probability density functions for the individual sources of uncertainty were calculated for ten motion traces obtained from the literature. Motion margins required to compensate for the center of mass motion of the clinical treatment volume were found by convolving the individual sources of uncertainty. For measurements of position at a frequency of 33 Hz, system latency was the dominant source of positional uncertainty. Averaged over the ten motion traces, the motion margin for tracking with a latency of 200 ms was 4.6 mm. Gating with a duty cycle of 33% required a mean motion margin of 3.2–3.4 mm, and tracking with a latency of 100 ms required a motion margin of 3.1 mm. Feasible reductions in the effects of the sources of uncertainty, for example by using a simple prediction algorithm to anticipate the lesion position at the end of the latency period, resulted in a mean motion margin of 1.7 mm for tracking with a latency of 100 ms, 2.4 mm for tracking with a latency of 200 ms, and 2.1–2.2 mm for the gating strategies with duty cycles of 33%. A crossover tracking latency of 150 ms was found, below which tracking strategies could take advantage of narrower motion margins than gating strategies. The methods described here provide a means to guide selection of a motion management strategy for a given patient. (paper)

  4. Role of Alpha-band Oscillations in Spatial Updating across Whole Body Motion

    Directory of Open Access Journals (Sweden)

    Tjerk Peter Gutteling

    2016-05-01

    Full Text Available When moving around in the world, we have to keep track of important locations in our surroundings. In this process, called spatial updating, we must estimate our body motion and correct representations of memorized spatial locations in accordance with this motion. While the behavioral characteristics of spatial updating across whole body motion have been studied in detail, its neural implementation lacks detailed study. Here we use electro-encephalography (EEG to distinguish various spectral components of this process. Subjects gazed at a central body-fixed point in otherwise complete darkness, while a target was briefly flashed, either left or right from this point. Subjects had to remember the location of this target as either moving along with the body or remaining fixed in the world while being translated sideways on a passive motion platform. After the motion, subjects had to indicate the remembered target location in the instructed reference frame using a mouse response. While the body motion, as detected by the vestibular system, should not affect the representation of body-fixed targets, it should interact with the representation of a world-centered target to update its location relative to the body. We show that the initial presentation of the visual target induced a reduction of alpha band power in contralateral parieto-occipital areas, which evolved to a sustained increase during the subsequent memory period. Motion of the body led to a reduction of alpha band power in central parietal areas extending to lateral parieto-temporal areas, irrespective of whether the targets had to be memorized relative to world or body. When updating a world-fixed target, its internal representation shifts hemispheres, only when subjects’ behavioral responses suggested an update across the body midline. Our results suggest that parietal cortex is involved in both self-motion estimation and the selective application of this motion information to

  5. Evaluation of site effects on ground motions based on equivalent linear site response analysis and liquefaction potential in Chennai, south India

    Science.gov (United States)

    Nampally, Subhadra; Padhy, Simanchal; Trupti, S.; Prabhakar Prasad, P.; Seshunarayana, T.

    2018-05-01

    We study local site effects with detailed geotechnical and geophysical site characterization to evaluate the site-specific seismic hazard for the seismic microzonation of the Chennai city in South India. A Maximum Credible Earthquake (MCE) of magnitude 6.0 is considered based on the available seismotectonic and geological information of the study area. We synthesized strong ground motion records for this target event using stochastic finite-fault technique, based on a dynamic corner frequency approach, at different sites in the city, with the model parameters for the source, site, and path (attenuation) most appropriately selected for this region. We tested the influence of several model parameters on the characteristics of ground motion through simulations and found that stress drop largely influences both the amplitude and frequency of ground motion. To minimize its influence, we estimated stress drop after finite bandwidth correction, as expected from an M6 earthquake in Indian peninsula shield for accurately predicting the level of ground motion. Estimates of shear wave velocity averaged over the top 30 m of soil (V S30) are obtained from multichannel analysis of surface wave (MASW) at 210 sites at depths of 30 to 60 m below the ground surface. Using these V S30 values, along with the available geotechnical information and synthetic ground motion database obtained, equivalent linear one-dimensional site response analysis that approximates the nonlinear soil behavior within the linear analysis framework was performed using the computer program SHAKE2000. Fundamental natural frequency, Peak Ground Acceleration (PGA) at surface and rock levels, response spectrum at surface level for different damping coefficients, and amplification factors are presented at different sites of the city. Liquefaction study was done based on the V S30 and PGA values obtained. The major findings suggest show that the northeast part of the city is characterized by (i) low V S30 values

  6. Adaptive Motion Compensation in Radiotherapy

    CERN Document Server

    Murphy, Martin J

    2011-01-01

    External-beam radiotherapy has long been challenged by the simple fact that patients can (and do) move during the delivery of radiation. Recent advances in imaging and beam delivery technologies have made the solution--adapting delivery to natural movement--a practical reality. Adaptive Motion Compensation in Radiotherapy provides the first detailed treatment of online interventional techniques for motion compensation radiotherapy. This authoritative book discusses: Each of the contributing elements of a motion-adaptive system, including target detection and tracking, beam adaptation, and pati

  7. Computing proton dose to irregularly moving targets

    International Nuclear Information System (INIS)

    Phillips, Justin; Gueorguiev, Gueorgui; Grassberger, Clemens; Dowdell, Stephen; Paganetti, Harald; Sharp, Gregory C; Shackleford, James A

    2014-01-01

    Purpose: While four-dimensional computed tomography (4DCT) and deformable registration can be used to assess the dose delivered to regularly moving targets, there are few methods available for irregularly moving targets. 4DCT captures an idealized waveform, but human respiration during treatment is characterized by gradual baseline shifts and other deviations from a periodic signal. This paper describes a method for computing the dose delivered to irregularly moving targets based on 1D or 3D waveforms captured at the time of delivery. Methods: The procedure uses CT or 4DCT images for dose calculation, and 1D or 3D respiratory waveforms of the target position at time of delivery. Dose volumes are converted from their Cartesian geometry into a beam-specific radiological depth space, parameterized in 2D by the beam aperture, and longitudinally by the radiological depth. In this new frame of reference, the proton doses are translated according to the motion found in the 1D or 3D trajectory. These translated dose volumes are weighted and summed, then transformed back into Cartesian space, yielding an estimate of the dose that includes the effect of the measured breathing motion. The method was validated using a synthetic lung phantom and a single representative patient CT. Simulated 4DCT was generated for the phantom with 2 cm peak-to-peak motion. Results: A passively-scattered proton treatment plan was generated using 6 mm and 5 mm smearing for the phantom and patient plans, respectively. The method was tested without motion, and with two simulated breathing signals: a 2 cm amplitude sinusoid, and a 2 cm amplitude sinusoid with 3 cm linear drift in the phantom. The tumor positions were equally weighted for the patient calculation. Motion-corrected dose was computed based on the mid-ventilation CT image in the phantom and the peak exhale position in the patient. Gamma evaluation was 97.8% without motion, 95.7% for 2 cm sinusoidal motion, 95.7% with 3 cm drift in

  8. MotionExplorer: exploratory search in human motion capture data based on hierarchical aggregation.

    Science.gov (United States)

    Bernard, Jürgen; Wilhelm, Nils; Krüger, Björn; May, Thorsten; Schreck, Tobias; Kohlhammer, Jörn

    2013-12-01

    We present MotionExplorer, an exploratory search and analysis system for sequences of human motion in large motion capture data collections. This special type of multivariate time series data is relevant in many research fields including medicine, sports and animation. Key tasks in working with motion data include analysis of motion states and transitions, and synthesis of motion vectors by interpolation and combination. In the practice of research and application of human motion data, challenges exist in providing visual summaries and drill-down functionality for handling large motion data collections. We find that this domain can benefit from appropriate visual retrieval and analysis support to handle these tasks in presence of large motion data. To address this need, we developed MotionExplorer together with domain experts as an exploratory search system based on interactive aggregation and visualization of motion states as a basis for data navigation, exploration, and search. Based on an overview-first type visualization, users are able to search for interesting sub-sequences of motion based on a query-by-example metaphor, and explore search results by details on demand. We developed MotionExplorer in close collaboration with the targeted users who are researchers working on human motion synthesis and analysis, including a summative field study. Additionally, we conducted a laboratory design study to substantially improve MotionExplorer towards an intuitive, usable and robust design. MotionExplorer enables the search in human motion capture data with only a few mouse clicks. The researchers unanimously confirm that the system can efficiently support their work.

  9. Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device

    Directory of Open Access Journals (Sweden)

    Daniel Bachmann

    2014-12-01

    Full Text Available This paper presents a Fitts’ law-based analysis of the user’s performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8% for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller’s performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC.

  10. Influence of earthquake strong motion duration on nonlinear structural response

    International Nuclear Information System (INIS)

    Meskouris, K.

    1983-01-01

    The effects of motion duration on nonlinear structural response of high-rise, moment resisting frames are studied by subjecting shear beam models of a 10- and a 5-story frame to a series of synthetic accelerograms, all matching the same NEWMARK/HALL design spectrum. Two different hysteretic laws are used for the story springs, and calculations are carried out for target ductility values of 2 and 4. Maximum ductilities reached and energy-based damage indicators (maximum seismically input energy, hysteretically dissipated energy) are evaluated and correlated with the motion characteristics. A reasonable extrapolative determination of structural response characteristics based on these indicators seems possible. (orig.)

  11. PlanJury: probabilistic plan evaluation revisited

    Science.gov (United States)

    Witte, M.; Sonke, J.-J.; van Herk, M.

    2014-03-01

    Purpose: Over a decade ago, the 'Van Herk margin recipe paper' introduced plan evaluation through DVH statistics based on population distributions of systematic and random errors. We extended this work for structures with correlated uncertainties (e.g. lymph nodes or parotid glands), and considered treatment plans containing multiple (overlapping) dose distributions (e.g. conventional lymph node and hypo-fractionated tumor doses) for which different image guidance protocols may lead to correlated errors. Methods: A command-line software tool 'PlanJury' was developed which reads 3D dose and structure data exported from a treatment planning system. Uncertainties are specified by standard deviations and correlation coefficients. Parameters control the DVH statistics to be computed: e.g. the probability of reaching a DVH constraint, or the dose absorbed at given confidence in a (combined) volume. Code was written in C++ and parallelized using OpenMP. Testing geometries were constructed using idealized spherical volumes and dose distributions. Results: Negligible stochastic noise could be attained within two minutes computation time for a single target. The confidence to properly cover both of two targets was 90% for two synchronously moving targets, but decreased by 7% if the targets moved independently. For two partially covered organs at risk the confidence of at least one organ below the mean dose threshold was 40% for synchronous motion, 36% for uncorrelated motion, but only 20% for either of the organs separately. Two abutting dose distributions ensuring 91% confidence of proper target dose for correlated motions led to 28% lower confidence for uncorrelated motions as relative displacements between the doses resulted in cold spots near the target. Conclusions: Probabilistic plan evaluation can efficiently be performed for complicated treatment planning situations, thus providing important plan quality information unavailable in conventional PTV based evaluations.

  12. Detection of visual events along the apparent motion trace in patients with paranoid schizophrenia.

    Science.gov (United States)

    Sanders, Lia Lira Olivier; Muckli, Lars; de Millas, Walter; Lautenschlager, Marion; Heinz, Andreas; Kathmann, Norbert; Sterzer, Philipp

    2012-07-30

    Dysfunctional prediction in sensory processing has been suggested as a possible causal mechanism in the development of delusions in patients with schizophrenia. Previous studies in healthy subjects have shown that while the perception of apparent motion can mask visual events along the illusory motion trace, such motion masking is reduced when events are spatio-temporally compatible with the illusion, and, therefore, predictable. Here we tested the hypothesis that this specific detection advantage for predictable target stimuli on the apparent motion trace is reduced in patients with paranoid schizophrenia. Our data show that, although target detection along the illusory motion trace is generally impaired, both patients and healthy control participants detect predictable targets more often than unpredictable targets. Patients had a stronger motion masking effect when compared to controls. However, patients showed the same advantage in the detection of predictable targets as healthy control subjects. Our findings reveal stronger motion masking but intact prediction of visual events along the apparent motion trace in patients with paranoid schizophrenia and suggest that the sensory prediction mechanism underlying apparent motion is not impaired in paranoid schizophrenia. Copyright © 2012. Published by Elsevier Ireland Ltd.

  13. A margin-based analysis of the dosimetric impact of motion on step-and-shoot IMRT lung plans

    International Nuclear Information System (INIS)

    Waghorn, Benjamin J; Shah, Amish P; Rineer, Justin M; Langen, Katja M; Meeks, Sanford L

    2014-01-01

    Intrafraction motion during step-and-shoot (SNS) IMRT is known to affect the target dosimetry by a combination of dose blurring and interplay effects. These effects are typically managed by adding a margin around the target. A quantitative analysis was performed, assessing the relationship between target motion, margin size, and target dosimetry with the goal of introducing new margin recipes. A computational algorithm was used to calculate 1,174 motion-encoded dose distributions and DVHs within the patient’s CT dataset. Sinusoidal motion tracks were used simulating intrafraction motion for nine lung tumor patients, each with multiple margin sizes. D 95% decreased by less than 3% when the maximum target displacement beyond the margin experienced motion less than 5 mm in the superior-inferior direction and 15 mm in the anterior-posterior direction. For target displacements greater than this, D 95% decreased rapidly. Targets moving in excess of 5 mm outside the margin can cause significant changes to the target. D 95% decreased by up to 20% with target motion 10 mm outside the margin, with underdosing primarily limited to the target periphery. Multi-fractionated treatments were found to exacerbate target under-coverage. Margins several millimeters smaller than the maximum target displacement provided acceptable motion protection, while also allowing for reduced normal tissue morbidity

  14. Estimation of organ motion for gated PET imaging in small animal using artificial tumor

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Keun; Yu, Jung Woo; Lee, Yong Jin [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-10-15

    The image quality is lowered by reducing of contrast and signal due to breathing and heart motion when acquire Positron Emission Tomography (PET) image of small animal tumor. Therefore motion correction is required for betterment of quantitative estimation of tumor. The gated PET using external monitoring device is commonly used for motion correction. But that method has limitation by reason of detection from the outside. Therefore, we had devised the in-vivo motion assessment. In-vivo motion has been demonstrated in lung, liver and abdomen region of rats by coated molecular sieve. In PET image analysis, count and SNR were drawn in the target region. The motion compensation PET image for optimal gate number was confirmed by FWHM. Artificial motion evaluation of tumor using molecular sieve suggests possibility of motion correction modeling without external monitoring devices because it estimates real internal motion of lung, liver, and abdomen. The purpose of this study was to assess the optimal gates number for each region and to improve quantitative estimation of tumor

  15. Evaluation of segmental left ventricular wall motion by equilibrium gated radionuclide ventriculography.

    Science.gov (United States)

    Van Nostrand, D; Janowitz, W R; Holmes, D R; Cohen, H A

    1979-01-01

    The ability of equilibrium gated radionuclide ventriculography to detect segmental left ventricular (LV) wall motion abnormalities was determined in 26 patients undergoing cardiac catheterization. Multiple gated studies obtained in 30 degrees right anterior oblique and 45 degrees left anterior oblique projections, played back in a movie format, were compared to the corresponding LV ventriculograms. The LV wall in the two projections was divided into eight segments. Each segment was graded as normal, hypokinetic, akinetic, dyskinetic, or indeterminate. Thirteen percent of the segments in the gated images were indeterminate; 24 out of 27 of these were proximal or distal inferior wall segments. There was exact agreement in 86% of the remaining segments. The sensitivity of the radionuclide technique for detecting normal versus any abnormal wall motion was 71%, with a specificity of 99%. Equilibrium gated ventriculography is an excellent noninvasive technique for evaluating segmental LV wall motion. It is least reliable in assessing the proximal inferior wall and interventricular septum.

  16. A novel dental implant abutment with micro-motion capability--development and biomechanical evaluations.

    Science.gov (United States)

    Chen, Yen-Yin; Chen, Weng-Pin; Chang, Hao-Hueng; Huang, Shih-Hao; Lin, Chun-Pin

    2014-02-01

    The aim of this study was to develop a novel dental implant abutment with a micro-motion mechanism that imitates the biomechanical behavior of the periodontal ligament, with the goal of increasing the long-term survival rate of dental implants. Computer-aided design software was used to design a novel dental implant abutment with an internal resilient component with a micro-motion capability. The feasibility of the novel system was investigated via finite element analysis. Then, a prototype of the novel dental implant abutment was fabricated, and the mechanical behavior was evaluated. The results of the mechanical tests and finite element analysis confirmed that the novel dental implant abutment possessed the anticipated micro-motion capability. Furthermore, the nonlinear force-displacement behavior apparent in this micro-motion mechanism imitated the movement of a human tooth. The slope of the force-displacement curve of the novel abutment was approximately 38.5 N/mm before the 0.02-mm displacement and approximately 430 N/mm after the 0.03-mm displacement. The novel dental implant abutment with a micro-motion mechanism actually imitated the biomechanical behavior of a natural tooth and provided resilient function, sealing, a non-separation mechanism, and ease-of-use. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  17. WE-E-BRB-00: Motion Management for Pencil Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Strategies for treating thoracic and liver tumors using pencil beam scanning proton therapy Thoracic and liver tumors have not been treated with pencil beam scanning (PBS) proton therapy until recently. This is because of concerns about the significant interplay effects between proton spot scanning and patient’s respiratory motion. However, not all tumors have unacceptable magnitude of motion for PBS proton therapy. Therefore it is important to analyze the motion and understand the significance of the interplay effect for each patient. The factors that affect interplay effect and its washout include magnitude of motion, spot size, spot scanning sequence and speed. Selection of beam angle, scanning direction, repainting and fractionation can all reduce the interplay effect. An overview of respiratory motion management in PBS proton therapy including assessment of tumor motion and WET evaluation will be first presented. As thoracic tumors have very different motion patterns from liver tumors, examples would be provided for both anatomic sites. As thoracic tumors are typically located within highly heterogeneous environments, dose calculation accuracy is a concern for both treatment target and surrounding organs such as spinal cord or esophagus. Strategies for mitigating the interplay effect in PBS will be presented and the pros and cons of various motion mitigation strategies will be discussed. Learning Objectives: Motion analysis for individual patients with respect to interplay effect Interplay effect and mitigation strategies for treating thoracic/liver tumors with PBS Treatment planning margins for PBS The impact of proton dose calculation engines over heterogeneous treatment target and surrounding organs I have a current research funding from Varian Medical System under the master agreement between University of Pennsylvania and Varian; L. Lin, I have a current funding from Varian Medical System under the master agreement between University of Pennsylvania and

  18. WE-E-BRB-00: Motion Management for Pencil Beam Scanning Proton Therapy

    International Nuclear Information System (INIS)

    2016-01-01

    Strategies for treating thoracic and liver tumors using pencil beam scanning proton therapy Thoracic and liver tumors have not been treated with pencil beam scanning (PBS) proton therapy until recently. This is because of concerns about the significant interplay effects between proton spot scanning and patient’s respiratory motion. However, not all tumors have unacceptable magnitude of motion for PBS proton therapy. Therefore it is important to analyze the motion and understand the significance of the interplay effect for each patient. The factors that affect interplay effect and its washout include magnitude of motion, spot size, spot scanning sequence and speed. Selection of beam angle, scanning direction, repainting and fractionation can all reduce the interplay effect. An overview of respiratory motion management in PBS proton therapy including assessment of tumor motion and WET evaluation will be first presented. As thoracic tumors have very different motion patterns from liver tumors, examples would be provided for both anatomic sites. As thoracic tumors are typically located within highly heterogeneous environments, dose calculation accuracy is a concern for both treatment target and surrounding organs such as spinal cord or esophagus. Strategies for mitigating the interplay effect in PBS will be presented and the pros and cons of various motion mitigation strategies will be discussed. Learning Objectives: Motion analysis for individual patients with respect to interplay effect Interplay effect and mitigation strategies for treating thoracic/liver tumors with PBS Treatment planning margins for PBS The impact of proton dose calculation engines over heterogeneous treatment target and surrounding organs I have a current research funding from Varian Medical System under the master agreement between University of Pennsylvania and Varian; L. Lin, I have a current funding from Varian Medical System under the master agreement between University of Pennsylvania and

  19. Fault-tolerant feature-based estimation of space debris rotational motion during active removal missions

    Science.gov (United States)

    Biondi, Gabriele; Mauro, Stefano; Pastorelli, Stefano; Sorli, Massimo

    2018-05-01

    One of the key functionalities required by an Active Debris Removal mission is the assessment of the target kinematics and inertial properties. Passive sensors, such as stereo cameras, are often included in the onboard instrumentation of a chaser spacecraft for capturing sequential photographs and for tracking features of the target surface. A plenty of methods, based on Kalman filtering, are available for the estimation of the target's state from feature positions; however, to guarantee the filter convergence, they typically require continuity of measurements and the capability of tracking a fixed set of pre-defined features of the object. These requirements clash with the actual tracking conditions: failures in feature detection often occur and the assumption of having some a-priori knowledge about the shape of the target could be restrictive in certain cases. The aim of the presented work is to propose a fault-tolerant alternative method for estimating the angular velocity and the relative magnitudes of the principal moments of inertia of the target. Raw data regarding the positions of the tracked features are processed to evaluate corrupted values of a 3-dimentional parameter which entirely describes the finite screw motion of the debris and which primarily is invariant on the particular set of considered features of the object. Missing values of the parameter are completely restored exploiting the typical periodicity of the rotational motion of an uncontrolled satellite: compressed sensing techniques, typically adopted for recovering images or for prognostic applications, are herein used in a completely original fashion for retrieving a kinematic signal that appears sparse in the frequency domain. Due to its invariance about the features, no assumptions are needed about the target's shape and continuity of the tracking. The obtained signal is useful for the indirect evaluation of an attitude signal that feeds an unscented Kalman filter for the estimation of

  20. Evaluation of interpolation methods for surface-based motion compensated tomographic reconstruction for cardiac angiographic C-arm data

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Kerstin; Schwemmer, Chris; Hornegger, Joachim [Pattern Recognition Lab, Department of Computer Science, Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen 91058 (Germany); Zheng Yefeng; Wang Yang [Imaging and Computer Vision, Siemens Corporate Research, Princeton, New Jersey 08540 (United States); Lauritsch, Guenter; Rohkohl, Christopher; Maier, Andreas K. [Siemens AG, Healthcare Sector, Forchheim 91301 (Germany); Schultz, Carl [Thoraxcenter, Erasmus MC, Rotterdam 3000 (Netherlands); Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2013-03-15

    Purpose: For interventional cardiac procedures, anatomical and functional information about the cardiac chambers is of major interest. With the technology of angiographic C-arm systems it is possible to reconstruct intraprocedural three-dimensional (3D) images from 2D rotational angiographic projection data (C-arm CT). However, 3D reconstruction of a dynamic object is a fundamental problem in C-arm CT reconstruction. The 2D projections are acquired over a scan time of several seconds, thus the projection data show different states of the heart. A standard FDK reconstruction algorithm would use all acquired data for a filtered backprojection and result in a motion-blurred image. In this approach, a motion compensated reconstruction algorithm requiring knowledge of the 3D heart motion is used. The motion is estimated from a previously presented 3D dynamic surface model. This dynamic surface model results in a sparse motion vector field (MVF) defined at control points. In order to perform a motion compensated reconstruction, a dense motion vector field is required. The dense MVF is generated by interpolation of the sparse MVF. Therefore, the influence of different motion interpolation methods on the reconstructed image quality is evaluated. Methods: Four different interpolation methods, thin-plate splines (TPS), Shepard's method, a smoothed weighting function, and a simple averaging, were evaluated. The reconstruction quality was measured on phantom data, a porcine model as well as on in vivo clinical data sets. As a quality index, the 2D overlap of the forward projected motion compensated reconstructed ventricle and the segmented 2D ventricle blood pool was quantitatively measured with the Dice similarity coefficient and the mean deviation between extracted ventricle contours. For the phantom data set, the normalized root mean square error (nRMSE) and the universal quality index (UQI) were also evaluated in 3D image space. Results: The quantitative evaluation of

  1. Geographic miss of lung tumours due to respiratory motion: a comparison of 3D vs 4D PET/CT defined target volumes

    International Nuclear Information System (INIS)

    Callahan, Jason; Kron, Tomas; Siva, Shankar; Simoens, Nathalie; Edgar, Amanda; Everitt, Sarah; Schneider, Michal E; Hicks, Rodney J

    2014-01-01

    PET/CT scans acquired in the radiotherapy treatment position are typically performed without compensating for respiratory motion. The purpose of this study was to investigate geographic miss of lung tumours due to respiratory motion for target volumes defined on a standard 3D-PET/CT. 29 patients staged for pulmonary malignancy who completed both a 3D-PET/CT and 4D-PET/CT were included. A 3D-Gross Tumour Volume (GTV) was defined on the standard whole body PET/CT scan. Subsequently a 4D-GTV was defined on a 4D-PET/CT MIP. A 5 mm, 10 mm, 15 mm symmetrical and 15×10 mm asymmetrical Planning Target Volume (PTV) was created by expanding the 3D-GTV and 4D-GTV’s. A 3D conformal plan was generated and calculated to cover the 3D-PTV. The 3D plan was transferred to the 4D-PTV and analysed for geographic miss. Three types of miss were measured. Type 1: any part of the 4D-GTV outside the 3D-PTV. Type 2: any part of the 4D-PTV outside the 3D-PTV. Type 3: any part of the 4D-PTV receiving less than 95% of the prescribed dose. The lesion motion was measured to look at the association between lesion motion and geographic miss. When a standard 15 mm or asymmetrical PTV margin was used there were 1/29 (3%) Type 1 misses. This increased 7/29 (24%) for the 10 mm margin and 23/29 (79%) for a 5 mm margin. All patients for all margins had a Type 2 geographic miss. There was a Type 3 miss in 25 out of 29 cases in the 5, 10, and 15 mm PTV margin groups. The asymmetrical margin had one additional Type 3 miss. Pearson analysis showed a correlation (p < 0.01) between lesion motion and the severity of the different types of geographic miss. Without any form of motion suppression, the current standard of a 3D- PET/CT and 15 mm PTV margin employed for lung lesions has an increasing risk of significant geographic miss when tumour motion increases. Use of smaller asymmetric margins in the cranio-caudal direction does not comprise tumour coverage. Reducing PTV margins for volumes defined on 3D

  2. Motion compensation for MRI-guided radiotherapy

    NARCIS (Netherlands)

    Glitzner, M.

    2017-01-01

    Radiotherapy aims to deliver a lethal radiation dose to cancer cells immersed in the body using a high energetic photon beam. Due to physiologic motion of the human anatomy (e.g. caused by filling of internal organs or breathing), the target volume is under permanent motion during irradiation,

  3. Evaluating Effectiveness of Modeling Motion System Feedback in the Enhanced Hess Structural Model of the Human Operator

    Science.gov (United States)

    Zaychik, Kirill; Cardullo, Frank; George, Gary; Kelly, Lon C.

    2009-01-01

    In order to use the Hess Structural Model to predict the need for certain cueing systems, George and Cardullo significantly expanded it by adding motion feedback to the model and incorporating models of the motion system dynamics, motion cueing algorithm and a vestibular system. This paper proposes a methodology to evaluate effectiveness of these innovations by performing a comparison analysis of the model performance with and without the expanded motion feedback. The proposed methodology is composed of two stages. The first stage involves fine-tuning parameters of the original Hess structural model in order to match the actual control behavior recorded during the experiments at NASA Visual Motion Simulator (VMS) facility. The parameter tuning procedure utilizes a new automated parameter identification technique, which was developed at the Man-Machine Systems Lab at SUNY Binghamton. In the second stage of the proposed methodology, an expanded motion feedback is added to the structural model. The resulting performance of the model is then compared to that of the original one. As proposed by Hess, metrics to evaluate the performance of the models include comparison against the crossover models standards imposed on the crossover frequency and phase margin of the overall man-machine system. Preliminary results indicate the advantage of having the model of the motion system and motion cueing incorporated into the model of the human operator. It is also demonstrated that the crossover frequency and the phase margin of the expanded model are well within the limits imposed by the crossover model.

  4. Motion-encoded dose calculation through fluence/sinogram modification

    International Nuclear Information System (INIS)

    Lu, Weiguo; Olivera, Gustavo H.; Mackie, Thomas R.

    2005-01-01

    Conventional radiotherapy treatment planning systems rely on a static computed tomography (CT) image for planning and evaluation. Intra/inter-fraction patient motions may result in significant differences between the planned and the delivered dose. In this paper, we develop a method to incorporate the knowledge of intra/inter-fraction patient motion directly into the dose calculation. By decomposing the motion into a parallel (to beam direction) component and perpendicular (to beam direction) component, we show that the motion effects can be accounted for by simply modifying the fluence distribution (sinogram). After such modification, dose calculation is the same as those based on a static planning image. This method is superior to the 'dose-convolution' method because it is not based on 'shift invariant' assumption. Therefore, it deals with material heterogeneity and surface curvature very well. We test our method using extensive simulations, which include four phantoms, four motion patterns, and three plan beams. We compare our method with the 'dose-convolution' and the 'stochastic simulation' methods (gold standard). As for the homogeneous flat surface phantom, our method has similar accuracy as the 'dose-convolution' method. As for all other phantoms, our method outperforms the 'dose-convolution'. The maximum motion encoded dose calculation error using our method is within 4% of the gold standard. It is shown that a treatment planning system that is based on 'motion-encoded dose calculation' can incorporate random and systematic motion errors in a very simple fashion. Under this approximation, in principle, a planning target volume definition is not required, since it already accounts for the intra/inter-fraction motion variations and it automatically optimizes the cumulative dose rather than the single fraction dose

  5. Performance Evaluation of an Indoor Positioning Scheme Using Infrared Motion Sensors

    Directory of Open Access Journals (Sweden)

    Changqiang Jing

    2014-10-01

    Full Text Available Internet of Things (IoT for Smart Environments (SE is a new scenario that collects useful information and provides convenient services to humans via sensing and wireless communications. Infra-Red (IR motion sensors have recently been widely used for indoor lighting because they allow the system to detect whether a human is inside or outside the sensors’ range. In this paper, the performance of a position estimation scheme based on IR motion sensor is evaluated in an indoor SE. The experimental results show that we can track the dynamic position of a pedestrian in straight moving model as well as two dimensional models. Experimental results also show that higher performance in accuracy and dynamic tracking in real indoor environment can be achieved without other devices.

  6. Passive infrared motion sensing technology

    International Nuclear Information System (INIS)

    Doctor, A.P.

    1994-01-01

    In the last 10 years passive IR based (8--12 microns) motion sensing has matured to become the dominant method of volumetric space protection and surveillance. These systems currently cost less than $25 to produce and yet use traditionally expensive IR optics, filters, sensors and electronic circuitry. This IR application is quite interesting in that the volumes of systems produced and the costs and performance level required prove that there is potential for large scale commercial applications of IR technology. This paper will develop the basis and principles of operation of a staring motion sensor system using a technical approach. A model for the motion of the target is developed and compared to the background. The IR power difference between the target and the background as well as the optical requirements are determined from basic principles and used to determine the performance of the system. Low cost reflective and refractive IR optics and bandpass IR filters are discussed. The pyroelectric IR detector commonly used is fully discussed and characterized. Various schemes for ''false alarms'' have been developed and are also explained. This technology is also used in passive IR based motion sensors for other applications such as lighting control. These applications are also discussed. In addition the paper will discuss new developments in IR surveillance technology such as the use of linear motion sensing arrays. This presentation can be considered a ''primer'' on the art of Passive IR Motion Sensing as applied to Surveillance Technology

  7. A multicentre 'end to end' dosimetry audit of motion management (4DCT-defined motion envelope) in radiotherapy.

    Science.gov (United States)

    Palmer, Antony L; Nash, David; Kearton, John R; Jafari, Shakardokht M; Muscat, Sarah

    2017-12-01

    External dosimetry audit is valuable for the assurance of radiotherapy quality. However, motion management has not been rigorously audited, despite its complexity and importance for accuracy. We describe the first end-to-end dosimetry audit for non-SABR (stereotactic ablative body radiotherapy) lung treatments, measuring dose accumulation in a moving target, and assessing adequacy of target dose coverage. A respiratory motion lung-phantom with custom-designed insert was used. Dose was measured with radiochromic film, employing triple-channel dosimetry and uncertainty reduction. The host's 4DCT scan, outlining and planning techniques were used. Measurements with the phantom static and then moving at treatment delivery separated inherent treatment uncertainties from motion effects. Calculated and measured dose distributions were compared by isodose overlay, gamma analysis, and we introduce the concept of 'dose plane histograms' for clinically relevant interpretation of film dosimetry. 12 radiotherapy centres and 19 plans were audited: conformal, IMRT (intensity modulated radiotherapy) and VMAT (volumetric modulated radiotherapy). Excellent agreement between planned and static-phantom results were seen (mean gamma pass 98.7% at 3% 2 mm). Dose blurring was evident in the moving-phantom measurements (mean gamma pass 88.2% at 3% 2 mm). Planning techniques for motion management were adequate to deliver the intended moving-target dose coverage. A novel, clinically-relevant, end-to-end dosimetry audit of motion management strategies in radiotherapy is reported. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Evaluation of longitudinal loading of tank trains during motion in longitudinal changes of gradient

    Directory of Open Access Journals (Sweden)

    S.V. Myamlin

    2013-06-01

    Full Text Available Purpose. To research the tank train longitudinal loading during motion by track sections with changes of gradient. The trains of different length that consist of bogie tank wagons should be examined. Influence of cargo type on longitudinal loading of train during motion in concave section of track should be evaluated. Methodology. The level of the largest longitudinal forces was estimated by mathematical simulation. It was assumed that change of gradient is formed by two grades with baffle platforms, length 50 meters, so that the algebraic difference of limiting grades vary from 10‰ to 40‰, pitch 10‰. The initial speeds were 40, 60, 80, 100, 120 km/h. For evaluation of the longitudinal loading the regulating braking and motion "by coasting" was considered. For evaluation of buffing loads the entry to the concave gradient change of expanded train is considered, and in order to determine the quasi-static forces the compressed train is considered. Findings. As a result of calculations the dependencies of maximal longitudinal forces in the trains on the cargo type, the algebraic difference of the grades, the number of tank wagons, the initial speed, motion modes, and initial gaps condition in the train were obtained. Originality. The longitudinal loading of freight cars of different length formed by the similar bogie tank wagons with one locomotive was obtained. The locomotive is placed in the train head during motion in concave track sections with various algebraic difference of the grades "on coasting" and during the regulating braking mode. The obtained results can be used for parameters standardization of profile elevation of the track. Practical value. The obtained results show that during operation of tank trains on track sections of complex breakage the most dangerous is regulating braking of preliminary compressed trains during entering on concave parts of track. Level of the greatest buffing and quasi-static longitudinal forces is

  9. Development of Abdominal Compression Belt and Evaluation of the Efficiency for the Reduction of Respiratory Motion in SBRT

    International Nuclear Information System (INIS)

    Hwang, Seon Bung; Kim, Il Hwan; Kim, Woong; Im, Hyeong Seo; Gang, Jin Mook; Jeong, Seong Min; Kim, Gi Hwan; Lee, Ah Ram; Cho, Yura

    2011-01-01

    It's essential to minimize the tumor motion and identify the exact location of the lesions to achieve the improvement in radiation therapy efficiency during SBRT. In this study, we made the established compression belt to reduce respiratory motion and evaluated the usefulness of clinical application in SBRT. We analyzed the merits and demerits of the established compression belt to reduce the respiratory motion and improved the reproducibility and precision in use. To evaluate the usefulness of improved compression belt for respiratory motion reduction in SBRT, firstly, we reviewed the spiral CT images acquired in inspiration and expiration states of 8 lung cancer cases, respectively, and analyzed the three dimensional tumor motion related to respiration. To evaluate isodose distribution, secondly, we also made the special phantom using EBT2 film (Gafchronic, ISP, USA) and we prepared the robot (Cartesian Robot-2 Axis, FARARCM4H, Samsung Mechatronics, Korea) to reproduce three dimensional tumor motion. And analysis was made for isodose curves and two dimensional isodose profiles with reproducibility of respiratory motion on the basis of CT images. A respiratory motion reduction compression belt (Velcro type) that has convenient use and good reproducibility was developed. The moving differences of three dimensional tumor motion of lung cancer cases analyzed by CT images were mean 3.2 mm, 4.3 mm and 13 mm each in LR, AP and CC directions. The result of characteristic change in dose distribution using the phantom and rectangular coordinates robot showed that the distortion of isodose has great differences, mean length was 4.2 mm; the differences were 8.0% and 16.8% each for cranio-caudal and 8.1% and 10.9% each for left-right directions in underdose below the prescribed dose. In this study, we could develop the convenient and efficient compression belt that can make the organs' motion minimize. With this compression belt, we confirmed that underdose due to respiration

  10. Development of Abdominal Compression Belt and Evaluation of the Efficiency for the Reduction of Respiratory Motion in SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seon Bung; Kim, Il Hwan; Kim, Woong; Im, Hyeong Seo; Gang, Jin Mook; Jeong, Seong Min; Kim, Gi Hwan; Lee, Ah Ram [Dept. of Radiation and Oncology, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Cho, Yura [Dept. of Cyberknife, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-03-15

    It's essential to minimize the tumor motion and identify the exact location of the lesions to achieve the improvement in radiation therapy efficiency during SBRT. In this study, we made the established compression belt to reduce respiratory motion and evaluated the usefulness of clinical application in SBRT. We analyzed the merits and demerits of the established compression belt to reduce the respiratory motion and improved the reproducibility and precision in use. To evaluate the usefulness of improved compression belt for respiratory motion reduction in SBRT, firstly, we reviewed the spiral CT images acquired in inspiration and expiration states of 8 lung cancer cases, respectively, and analyzed the three dimensional tumor motion related to respiration. To evaluate isodose distribution, secondly, we also made the special phantom using EBT2 film (Gafchronic, ISP, USA) and we prepared the robot (Cartesian Robot-2 Axis, FARARCM4H, Samsung Mechatronics, Korea) to reproduce three dimensional tumor motion. And analysis was made for isodose curves and two dimensional isodose profiles with reproducibility of respiratory motion on the basis of CT images. A respiratory motion reduction compression belt (Velcro type) that has convenient use and good reproducibility was developed. The moving differences of three dimensional tumor motion of lung cancer cases analyzed by CT images were mean 3.2 mm, 4.3 mm and 13 mm each in LR, AP and CC directions. The result of characteristic change in dose distribution using the phantom and rectangular coordinates robot showed that the distortion of isodose has great differences, mean length was 4.2 mm; the differences were 8.0% and 16.8% each for cranio-caudal and 8.1% and 10.9% each for left-right directions in underdose below the prescribed dose. In this study, we could develop the convenient and efficient compression belt that can make the organs' motion minimize. With this compression belt, we confirmed that underdose due to

  11. Evaluation of the relationship between motion sickness symptomatology and blood pressure, heart rate, and body temperature

    Science.gov (United States)

    Graybiel, A.; Lackner, J. R.

    1980-01-01

    This study investigated the relationship between the development of symptoms of motion sickness and changes in blood pressure, heart rate, and body temperature. Twelve subjects were each evaluated four times using the vestibular-visual interaction test (Graybiel and Lackner, 1980). The results were analyzed both within and across individual subjects. Neither a systematic group nor consistent individual relationship was found between the physiological parameters and the appearance of symptoms of motion sickness. These findings suggest that biofeedback control of the physiological variables studied is not likely to prevent the expression of motion sickness symptomatology.

  12. Evaluation of respiratory and cardiac motion correction schemes in dual gated PET/CT cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lamare, F., E-mail: frederic.lamare@chu-bordeaux.fr; Fernandez, P. [Univ. Bordeaux, INCIA, UMR 5287, F-33400 Talence (France); CNRS, INCIA, UMR 5287, F-33400 Talence (France); Service de Médecine Nucléaire, Hôpital Pellegrin, CHU de Bordeaux, 33076 Bordeaux (France); Le Maitre, A.; Visvikis, D. [INSERM, UMR1101, LaTIM, Université de Bretagne Occidentale, 29609 Brest (France); Dawood, M.; Schäfers, K. P. [European Institute for Molecular Imaging, University of Münster, Mendelstr. 11, 48149 Münster (Germany); Rimoldi, O. E. [Vita-Salute University and Scientific Institute San Raffaele, Milan, Italy and CNR Istituto di Bioimmagini e Fisiologia Molecolare, Milan (Italy)

    2014-07-15

    Purpose: Cardiac imaging suffers from both respiratory and cardiac motion. One of the proposed solutions involves double gated acquisitions. Although such an approach may lead to both respiratory and cardiac motion compensation there are issues associated with (a) the combination of data from cardiac and respiratory motion bins, and (b) poor statistical quality images as a result of using only part of the acquired data. The main objective of this work was to evaluate different schemes of combining binned data in order to identify the best strategy to reconstruct motion free cardiac images from dual gated positron emission tomography (PET) acquisitions. Methods: A digital phantom study as well as seven human studies were used in this evaluation. PET data were acquired in list mode (LM). A real-time position management system and an electrocardiogram device were used to provide the respiratory and cardiac motion triggers registered within the LM file. Acquired data were subsequently binned considering four and six cardiac gates, or the diastole only in combination with eight respiratory amplitude gates. PET images were corrected for attenuation, but no randoms nor scatter corrections were included. Reconstructed images from each of the bins considered above were subsequently used in combination with an affine or an elastic registration algorithm to derive transformation parameters allowing the combination of all acquired data in a particular position in the cardiac and respiratory cycles. Images were assessed in terms of signal-to-noise ratio (SNR), contrast, image profile, coefficient-of-variation (COV), and relative difference of the recovered activity concentration. Results: Regardless of the considered motion compensation strategy, the nonrigid motion model performed better than the affine model, leading to higher SNR and contrast combined with a lower COV. Nevertheless, when compensating for respiration only, no statistically significant differences were

  13. Is perception of self-motion speed a necessary condition for intercepting a moving target while walking?

    Science.gov (United States)

    Morice, Antoine H P; Wallet, Grégory; Montagne, Gilles

    2014-04-30

    While it has been shown that the Global Optic Flow Rate (GOFR) is used in the control of self-motion speed, this study examined its relevance in the control of interceptive actions while walking. We asked participants to intercept approaching targets by adjusting their walking speed in a virtual environment, and predicted that the influence of the GOFR depended on their interception strategy. Indeed, unlike the Constant Bearing Angle (CBA), the Modified Required Velocity (MRV) strategy relies on the perception of self-displacement speed. On the other hand, the CBA strategy involves specific speed adjustments depending on the curvature of the target's trajectory, whereas the MRV does not. We hypothesized that one strategy is selected among the two depending on the informational content of the environment. We thus manipulated the curvature and display of the target's trajectory, and the relationship between physical walking speed and the GOFR (through eye height manipulations). Our results showed that when the target trajectory was not displayed, walking speed profiles were affected by curvature manipulations. Otherwise, walking speed profiles were less affected by curvature manipulations and were affected by the GOFR manipulations. Taken together, these results show that the use of the GOFR for intercepting a moving target while walking depends on the informational content of the environment. Finally we discuss the complementary roles of these two perceptual-motor strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. SU-E-J-133: Evaluation of Inter- and Intra-Fractional Pancreas Tumor Residual Motions with Abdominal Compression

    International Nuclear Information System (INIS)

    Li, Y; Shi, F; Tian, Z; Jia, X; Meyer, J; Jiang, S; Mao, W

    2014-01-01

    Purpose: Abdominal compression (AC) has been widely used to reduce pancreas motion due to respiration for pancreatic cancer patients undergoing stereotactic body radiotherapy (SBRT). However, the inter-fractional and intra-fractional patient motions may degrade the treatment. The purpose of this work is to study daily CBCT projections and 4DCT to evaluate the inter-fractional and intra-fractional pancreatic motions. Methods: As a standard of care at our institution, 4D CT scan was performed for treatment planning. At least two CBCT scans were performed for daily treatment. Retrospective studies were performed on patients with implanted internal fiducial markers or surgical clips. The initial motion pattern was obtained by extracting marker positions on every phase of 4D CT images. Daily motions were presented by marker positions on CBCT scan projection images. An adaptive threshold segmentation algorithm was used to extract maker positions. Both marker average positions and motion ranges were compared among three sets of scans, 4D CT, positioning CBCT, and conformal CBCT, for inter-fractional and intra-fractional motion variations. Results: Data from four pancreatic cancer patients were analyzed. These patients had three fiducial markers implanted. All patients were treated by an Elekta Synergy with single fraction SBRT. CBCT projections were acquired by XVI. Markers were successfully detected on most of the projection images. The inter-fractional changes were determined by 4D CT and the first CBCT while the intra-fractional changes were determined by multiple CBCT scans. It is found that the average motion range variations are within 2 mm, however, the average marker positions may drift by 6.5 mm. Conclusion: The patients respiratory motion variation for pancreas SBRT with AC was evaluated by detecting markers from CBCT projections and 4DCT, both the inter-fraction and intra-fraction motion range change is small but the drift of marker positions may be comparable

  15. Evaluation of a direct motion estimation/correction method in respiratory-gated PET/MRI with motion-adjusted attenuation.

    Science.gov (United States)

    Bousse, Alexandre; Manber, Richard; Holman, Beverley F; Atkinson, David; Arridge, Simon; Ourselin, Sébastien; Hutton, Brian F; Thielemans, Kris

    2017-06-01

    Respiratory motion compensation in PET/CT and PET/MRI is essential as motion is a source of image degradation (motion blur, attenuation artifacts). In previous work, we developed a direct method for joint image reconstruction/motion estimation (JRM) for attenuation-corrected (AC) respiratory-gated PET, which uses a single attenuation-map (μ-map). This approach was successfully implemented for respiratory-gated PET/CT, but since it relied on an accurate μ-map for motion estimation, the question of its applicability in PET/MRI is open. The purpose of this work is to investigate the feasibility of JRM in PET/MRI and to assess the robustness of the motion estimation when a degraded μ-map is used. We performed a series of JRM reconstructions from simulated PET data using a range of simulated Dixon MRI sequence derived μ-maps with wrong attenuation values in the lungs, from -100% (no attenuation) to +100% (double attenuation), as well as truncated arms. We compared the estimated motions with the one obtained from JRM in ideal conditions (no noise, true μ-map as an input). We also applied JRM on 4 patient datasets of the chest, 3 of them containing hot lesions. Patient list-mode data were gated using a principal component analysis method. We compared SUV max values of the JRM reconstructed activity images and non motion-corrected images. We also assessed the estimated motion fields by comparing the deformed JRM-reconstructed activity with individually non-AC reconstructed gates. Experiments on simulated data showed that JRM-motion estimation is robust to μ-map degradation in the sense that it produces motion fields similar to the ones obtained when using the true μ-map, regardless of the attenuation errors in the lungs (PET/MRI clinical datasets. It provides a potential alternative to existing methods where the motion fields are pre-estimated from separate MRI measurements. © 2017 University College London (UCL). Medical Physics published by Wiley Periodicals, Inc

  16. Motion dazzle and camouflage as distinct anti-predator defenses

    Directory of Open Access Journals (Sweden)

    Stevens Martin

    2011-11-01

    Full Text Available Abstract Background Camouflage patterns that hinder detection and/or recognition by antagonists are widely studied in both human and animal contexts. Patterns of contrasting stripes that purportedly degrade an observer's ability to judge the speed and direction of moving prey ('motion dazzle' are, however, rarely investigated. This is despite motion dazzle having been fundamental to the appearance of warships in both world wars and often postulated as the selective agent leading to repeated patterns on many animals (such as zebra and many fish, snake, and invertebrate species. Such patterns often appear conspicuous, suggesting that protection while moving by motion dazzle might impair camouflage when stationary. However, the relationship between motion dazzle and camouflage is unclear because disruptive camouflage relies on high-contrast markings. In this study, we used a computer game with human subjects detecting and capturing either moving or stationary targets with different patterns, in order to provide the first empirical exploration of the interaction of these two protective coloration mechanisms. Results Moving targets with stripes were caught significantly less often and missed more often than targets with camouflage patterns. However, when stationary, targets with camouflage markings were captured less often and caused more false detections than those with striped patterns, which were readily detected. Conclusions Our study provides the clearest evidence to date that some patterns inhibit the capture of moving targets, but that camouflage and motion dazzle are not complementary strategies. Therefore, the specific coloration that evolves in animals will depend on how the life history and ontogeny of each species influence the trade-off between the costs and benefits of motion dazzle and camouflage.

  17. Motion dazzle and camouflage as distinct anti-predator defenses.

    Science.gov (United States)

    Stevens, Martin; Searle, W Tom L; Seymour, Jenny E; Marshall, Kate L A; Ruxton, Graeme D

    2011-11-25

    Camouflage patterns that hinder detection and/or recognition by antagonists are widely studied in both human and animal contexts. Patterns of contrasting stripes that purportedly degrade an observer's ability to judge the speed and direction of moving prey ('motion dazzle') are, however, rarely investigated. This is despite motion dazzle having been fundamental to the appearance of warships in both world wars and often postulated as the selective agent leading to repeated patterns on many animals (such as zebra and many fish, snake, and invertebrate species). Such patterns often appear conspicuous, suggesting that protection while moving by motion dazzle might impair camouflage when stationary. However, the relationship between motion dazzle and camouflage is unclear because disruptive camouflage relies on high-contrast markings. In this study, we used a computer game with human subjects detecting and capturing either moving or stationary targets with different patterns, in order to provide the first empirical exploration of the interaction of these two protective coloration mechanisms. Moving targets with stripes were caught significantly less often and missed more often than targets with camouflage patterns. However, when stationary, targets with camouflage markings were captured less often and caused more false detections than those with striped patterns, which were readily detected. Our study provides the clearest evidence to date that some patterns inhibit the capture of moving targets, but that camouflage and motion dazzle are not complementary strategies. Therefore, the specific coloration that evolves in animals will depend on how the life history and ontogeny of each species influence the trade-off between the costs and benefits of motion dazzle and camouflage.

  18. Dosimetric Impact of Intrafractional Patient Motion in Pediatric Brain Tumor Patients

    International Nuclear Information System (INIS)

    Beltran, Chris; Trussell, John; Merchant, Thomas E.

    2010-01-01

    The purpose of this study was to determine the dosimetric consequences of intrafractional patient motion on the clinical target volume (CTV), spinal cord, and optic nerves for non-sedated pediatric brain tumor patients. The patients were immobilized for treatment using a customized thermoplastic full-face mask and bite-block attached to an array of reflectors. The array was optically tracked by infra-red cameras at a frequency of 10 Hz. Patients were localized based on skin/mask marks and weekly films were taken to ensure proper setup. Before each noncoplanar field was delivered, the deviation from baseline of the array was recorded. The systematic error (SE) and random error (RE) were calculated. Direct simulation of the intrafractional motion was used to quantify the dosimetric changes to the targets and critical structures. Nine patients utilizing the optical tracking system were evaluated. The patient cohort had a mean of 31 ± 1.5 treatment fractions; motion data were acquired for a mean of 26 ± 6.2 fractions. The mean age was 15.6 ± 4.1 years. The SE and RE were 0.4 and 1.1 mm in the posterior-anterior, 0.5 and 1.0 mm in left-right, and 0.6 and 1.3 mm in superior-inferior directions, respectively. The dosimetric effects of the motion on the CTV were negligible; however, the dose to the critical structures was increased. Patient motion during treatment does affect the dose to critical structures, therefore, planning risk volumes are needed to properly assess the dose to normal tissues. Because the motion did not affect the dose to the CTV, the 3-mm PTV margin used is sufficient to account for intrafractional motion, given the patient is properly localized at the start of treatment.

  19. AQUA-motion domain and metaphorization patterns in European Portuguese: AQUA-motion metaphor in AERO-motion and abstract domains

    Directory of Open Access Journals (Sweden)

    Hanna Jakubowicz Batoréo

    2016-03-01

    Full Text Available The AQUA-motion verbs – as studied by Majsak & Rahilina 2003 and 2007, Lander, Majsak & Rahilina [2005] 2008, 2012 and 2013, and Divjak & Lemmens 2007, and in European Portuguese (EP by Batoréo, 2007, 2008, 2009; Batoréo et al., 2007; Casadinho, 2007 – allow typically metaphorical uses, which we postulate can be organized in patterns. Our study shows that in European Portuguese there are two metaphorization patterns to be observed: (i AQUA-motion metaphor in AERO-motion domain and (ii AQUA-motion metaphor in abstract domain (e.g. abundance, arts, politics, etc.. In the first case, where the target domain of the metaphorization is the air, in EP we navigate through a crowd or we float in a waltz, whereas in the second, where it is abstract, we swim in money or in blood, and politicians navigate at sea or face floating currency in finances. In the present paper we survey the EP verbs of AQUA-motion metaphors in non-elicited data from electronically available language corpora (cf. Linguateca. In some cases comparisons are made with typologically diferent languages (as, e.g. Polish, cf. Prokofjeva’s 2007, Batoréo 2009.

  20. Evaluation and reduction of respiratory motion artifacts in small animal SPECT with GATE

    International Nuclear Information System (INIS)

    Lee, C.-L.; Park, S.-J.; Kim, H.-J.

    2015-01-01

    The degradation of image quality caused by respiration is a major impediment to accurate lesion detection in single photon emission computed tomography (SPECT) imaging. This study was performed to evaluate the effects of lung motion on image quantification. A small animal SPECT system with NaI(Tl) was modeled in the Geant4 application for tomographic emission (GATE) simulation for a lung lesion using a 4D mouse whole-body phantom. SPECT images were obtained using 120 projection views acquired from 0 o to 360 o with a 3 o step. Slices were reconstructed using ordered subsets expectation maximization (OS-EM) without attenuation correction with five iterations and four subsets. Image quality was compared between the static mode without respiratory motion, and dynamic mode with respiratory motion in terms of spatial resolution was measured by the full width at half maximum (FWHM), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). The FWHM of the non-gated image and the respiratory gated image were also compared. Spatial resolution improved as activity increased and lesion diameter decreased in the static and dynamic modes. The SNR and CNR increased significantly as lesion activity increased and lesion diameter decreased. Our results show that respiratory motion leads to reduced contrast and quantitative accuracy and that image quantification depends on both the amplitude and the pattern of the respiratory motion. We verified that respiratory motion can have a major effect on the accuracy of measurement of lung lesions and that respiratory gating can reduce activity smearing on SPECT images

  1. Restoration of non-uniform exposure motion blurred image

    Science.gov (United States)

    Luo, Yuanhong; Xu, Tingfa; Wang, Ningming; Liu, Feng

    2014-11-01

    Restoring motion-blurred image is the key technologies in the opto-electronic detection system. The imaging sensors such as CCD and infrared imaging sensor, which are mounted on the motion platforms, quickly move together with the platforms of high speed. As a result, the images become blur. The image degradation will cause great trouble for the succeeding jobs such as objects detection, target recognition and tracking. So the motion-blurred images must be restoration before detecting motion targets in the subsequent images. On the demand of the real weapon task, in order to deal with targets in the complex background, this dissertation uses the new theories in the field of image processing and computer vision to research the new technology of motion deblurring and motion detection. The principle content is as follows: 1) When the prior knowledge about degradation function is unknown, the uniform motion blurred images are restored. At first, the blur parameters, including the motion blur extent and direction of PSF(point spread function), are estimated individually in domain of logarithmic frequency. The direction of PSF is calculated by extracting the central light line of the spectrum, and the extent is computed by minimizing the correction between the fourier spectrum of the blurred image and a detecting function. Moreover, in order to remove the strip in the deblurred image, windows technique is employed in the algorithm, which makes the deblurred image clear. 2) According to the principle of infrared image non-uniform exposure, a new restoration model for infrared blurred images is developed. The fitting of infrared image non-uniform exposure curve is performed by experiment data. The blurred images are restored by the fitting curve.

  2. Motion management during IMAT treatment of mobile lung tumors-A comparison of MLC tracking and gated delivery

    DEFF Research Database (Denmark)

    Falk, Marianne; Pommer, Tobias; Keall, Paul

    2014-01-01

    Purpose:To compare real-time dynamic multileaf collimator (MLC) tracking, respiratory amplitude and phase gating, and no compensation for intrafraction motion management during intensity modulated arc therapy (IMAT). Methods: Motion management with MLC tracking and gating was evaluated for four...... tracking reduced the effects of the target movements, although the gated delivery showed a better dosimetric accuracy and enabled a larger reduction of the margins in some cases. MLC tracking did not prolong the treatment time compared to delivery with no motion compensation while gating had a considerably...... of the dosimetric error contributions showed that the gated delivery mainly had errors in target localization, while MLC tracking also had contributions from MLC leaf fitting and leaf adjustment. The average treatment time was about three times longer with gating compared to delivery with MLC tracking (that did...

  3. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Directory of Open Access Journals (Sweden)

    Steven David Rosenblatt

    Full Text Available A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37 participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001 and rotation (p0.1 for both. Thus, although a true moving visual field can induce self-motion, results of this

  4. A preliminary study of MR sickness evaluation using visual motion aftereffect for advanced driver assistance systems.

    Science.gov (United States)

    Nakajima, Sawako; Ino, Shuichi; Ifukube, Tohru

    2007-01-01

    Mixed Reality (MR) technologies have recently been explored in many areas of Human-Machine Interface (HMI) such as medicine, manufacturing, entertainment and education. However MR sickness, a kind of motion sickness is caused by sensory conflicts between the real world and virtual world. The purpose of this paper is to find out a new evaluation method of motion and MR sickness. This paper investigates a relationship between the whole-body vibration related to MR technologies and the motion aftereffect (MAE) phenomenon in the human visual system. This MR environment is modeled after advanced driver assistance systems in near-future vehicles. The seated subjects in the MR simulator were shaken in the pitch direction ranging from 0.1 to 2.0 Hz. Results show that MAE is useful for evaluation of MR sickness incidence. In addition, a method to reduce the MR sickness by auditory stimulation is proposed.

  5. SU-E-T-452: Impact of Respiratory Motion On Robustly-Optimized Intensity-Modulated Proton Therapy to Treat Lung Cancers

    International Nuclear Information System (INIS)

    Liu, W; Schild, S; Bues, M; Liao, Z; Sahoo, N; Park, P; Li, H; Li, Y; Li, X; Shen, J; Anand, A; Dong, L; Zhu, X; Mohan, R

    2014-01-01

    Purpose: We compared conventionally optimized intensity-modulated proton therapy (IMPT) treatment plans against the worst-case robustly optimized treatment plans for lung cancer. The comparison of the two IMPT optimization strategies focused on the resulting plans' ability to retain dose objectives under the influence of patient set-up, inherent proton range uncertainty, and dose perturbation caused by respiratory motion. Methods: For each of the 9 lung cancer cases two treatment plans were created accounting for treatment uncertainties in two different ways: the first used the conventional Method: delivery of prescribed dose to the planning target volume (PTV) that is geometrically expanded from the internal target volume (ITV). The second employed the worst-case robust optimization scheme that addressed set-up and range uncertainties through beamlet optimization. The plan optimality and plan robustness were calculated and compared. Furthermore, the effects on dose distributions of the changes in patient anatomy due to respiratory motion was investigated for both strategies by comparing the corresponding plan evaluation metrics at the end-inspiration and end-expiration phase and absolute differences between these phases. The mean plan evaluation metrics of the two groups were compared using two-sided paired t-tests. Results: Without respiratory motion considered, we affirmed that worst-case robust optimization is superior to PTV-based conventional optimization in terms of plan robustness and optimality. With respiratory motion considered, robust optimization still leads to more robust dose distributions to respiratory motion for targets and comparable or even better plan optimality [D95% ITV: 96.6% versus 96.1% (p=0.26), D5% - D95% ITV: 10.0% versus 12.3% (p=0.082), D1% spinal cord: 31.8% versus 36.5% (p =0.035)]. Conclusion: Worst-case robust optimization led to superior solutions for lung IMPT. Despite of the fact that robust optimization did not explicitly

  6. Gating treatment delivery QA based on a surrogate motion analysis

    International Nuclear Information System (INIS)

    Chojnowski, J.; Simpson, E.

    2011-01-01

    Full text: To develop a methodology to estimate intrafractional target position error during a phase-based gated treatment. Westmead Cancer Care Centre is using respiratory correlated phase-based gated beam delivery in the treatment of lung cancer. The gating technique is managed by the Varian Real-time Position Management (RPM) system, version 1.7.5. A 6-dot block is placed on the abdomen of the patient and acts as a surrogate for the target motion. During a treatment session, the motion of the surrogate can be recorded by RPM application. Analysis of the surrogate motion file by in-house developed software allows the intrafractional error of the treatment session to be computed. To validate the computed error, a simple test that involves the introduction of deliberate errors is performed. Errors of up to 1.1 cm are introduced to a metal marker placed on a surrogate using the Varian Breathing Phantom. The moving marker was scanned in prospective mode using a GE Lightspeed 16 CT scanner. Using the CT images, a difference of the marker position with and without introduced errors is compared to the calculated errors based on the surrogate motion. The average and standard deviation of a difference between calculated target position errors and measured introduced artificial errors of the marker position is 0.02 cm and 0.07 cm respectively. Conclusion The calculated target positional error based on surrogate motion analysis provides a quantitative measure of intrafractional target positional errors during treatment. Routine QA for gated treatment using surrogate motion analysis is relatively quick and simple.

  7. Individualized planning target volumes for intrafraction motion during hypofractionated intensity-modulated radiotherapy boost for prostate cancer

    International Nuclear Information System (INIS)

    Cheung, Patrick; Sixel, Katharina; Morton, Gerard; Loblaw, D. Andrew; Tirona, Romeo; Pang, Geordi; Choo, Richard; Szumacher, Ewa; DeBoer, Gerrit; Pignol, Jean-Philippe

    2005-01-01

    Purpose: The objective of the study was to access toxicities of delivering a hypofractionated intensity-modulated radiotherapy (IMRT) boost with individualized intrafraction planning target volume (PTV) margins and daily online correction for prostate position. Methods and materials: Phase I involved delivering 42 Gy in 21 fractions using three-dimensional conformal radiotherapy, followed by a Phase II IMRT boost of 30 Gy in 10 fractions. Digital fluoroscopy was used to measure respiratory-induced motion of implanted fiducial markers within the prostate. Electronic portal images were taken of fiducial marker positions before and after each fraction of radiotherapy during the first 9 days of treatment to calculate intrafraction motion. A uniform 10-mm PTV margin was used for the first phase of treatment. PTV margins for Phase II were patient-specific and were calculated from the respiratory and intrafraction motion data obtained from Phase I. The IMRT boost was delivered with daily online correction of fiducial marker position. Acute toxicity was measured using National Cancer Institute Common Toxicity Criteria, version 2.0. Results: In 33 patients who had completed treatment, the average PTV margin used during the hypofractionated IMRT boost was 3 mm in the lateral direction, 3 mm in the superior-inferior direction, and 4 mm in the anteroposterior direction. No patients developed acute Grade 3 rectal toxicity. Three patients developed acute Grade 3 urinary frequency and urgency. Conclusions: PTV margins can be reduced significantly with daily online correction of prostate position. Delivering a hypofractionated boost with this high-precision IMRT technique resulted in acceptable acute toxicity

  8. Structural Motion Grammar for Universal Use of Leap Motion: Amusement and Functional Contents Focused

    Directory of Open Access Journals (Sweden)

    Byungseok Lee

    2018-01-01

    Full Text Available Motions using Leap Motion controller are not standardized while the use of it is spreading in media contents. Each content defines its own motions, thereby creating confusion for users. Therefore, to alleviate user inconvenience, this study categorized the commonly used motion by Amusement and Functional Contents and defined the Structural Motion Grammar that can be universally used based on the classification. To this end, the Motion Lexicon was defined, which is a fundamental motion vocabulary, and an algorithm that enables real-time recognition of Structural Motion Grammar was developed. Moreover, the proposed method was verified by user evaluation and quantitative comparison tests.

  9. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Science.gov (United States)

    Rosenblatt, Steven David; Crane, Benjamin Thomas

    2015-01-01

    A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (pperception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion

  10. Automatic measurement of target crossing speed

    Science.gov (United States)

    Wardell, Mark; Lougheed, James H.

    1992-11-01

    The motion of ground vehicle targets after a ballistic round is launched can be a major source of inaccuracy for small (handheld) anti-armour weapon systems. A method of automatically measuring the crossing component to compensate the fire control solution has been devised and tested against various targets in a range of environments. A photodetector array aligned with the sight's horizontal reticle obtains scene features, which are digitized and processed to separate target from sight motion. Relative motion of the target against the background is briefly monitored to deduce angular crossing rate and a compensating lead angle is introduced into the aim point. Research to gather quantitative data and optimize algorithm performance is described, and some results from field testing are presented.

  11. Key motion characteristics of side-step movements in hip-hop dance and their effect on the evaluation by judges.

    Science.gov (United States)

    Sato, Nahoko; Nunome, Hiroyuki; Ikegami, Yasuo

    2016-06-01

    In hip-hop dance, the elements of motion that discriminate the skill levels of dancers and that influence the evaluations by judges have not been clearly identified. This study set out to extract these motion characteristics from the side-step movements of hip-hop dancing. Eight expert and eight non-expert dancers performed side-step movements, which were recorded using a motion capture system. Nine experienced judges evaluated the dancers' performances. Several parameters, including the range of motion (ROM) of the joint angles (neck, trunk, hip, knee, and face inclination) and phase delays between these angular motions were calculated. A quarter-cycle phase delay between the neck motion and other body parts, seen only in the expert dancers, is highlighted as an element that can distinguish dancers' skill levels. This feature of the expert dancers resulted in a larger ROM during the face inclination than that for the non-expert dancers. In addition, the experts exhibited a bottom-to-top segmental sequence in the horizontal direction while the non-experts did not demonstrate any such sequential motion. Of these kinematic parameters, only the ROM of the face inclination was highly correlated to the judging score and is regarded as being the most appealing element of the side-step movement.

  12. Seismic Hazard Assessment in Site Evaluation for Nuclear Installations: Ground Motion Prediction Equations and Site Response

    International Nuclear Information System (INIS)

    2016-07-01

    The objective of this publication is to provide the state-of-the-art practice and detailed technical elements related to ground motion evaluation by ground motion prediction equations (GMPEs) and site response in the context of seismic hazard assessments as recommended in IAEA Safety Standards Series No. SSG-9, Seismic Hazards in Site Evaluation for Nuclear Installations. The publication includes the basics of GMPEs, ground motion simulation, selection and adjustment of GMPEs, site characterization, and modelling of site response in order to improve seismic hazard assessment. The text aims at delineating the most important aspects of these topics (including current practices, criticalities and open problems) within a coherent framework. In particular, attention has been devoted to filling conceptual gaps. It is written as a reference text for trained users who are responsible for planning preparatory seismic hazard analyses for siting of all nuclear installations and/or providing constraints for anti-seismic design and retrofitting of existing structures

  13. Fuzzy Logic Unmanned Air Vehicle Motion Planning

    Directory of Open Access Journals (Sweden)

    Chelsea Sabo

    2012-01-01

    Full Text Available There are a variety of scenarios in which the mission objectives rely on an unmanned aerial vehicle (UAV being capable of maneuvering in an environment containing obstacles in which there is little prior knowledge of the surroundings. With an appropriate dynamic motion planning algorithm, UAVs would be able to maneuver in any unknown environment towards a target in real time. This paper presents a methodology for two-dimensional motion planning of a UAV using fuzzy logic. The fuzzy inference system takes information in real time about obstacles (if within the agent's sensing range and target location and outputs a change in heading angle and speed. The FL controller was validated, and Monte Carlo testing was completed to evaluate the performance. Not only was the path traversed by the UAV often the exact path computed using an optimal method, the low failure rate makes the fuzzy logic controller (FLC feasible for exploration. The FLC showed only a total of 3% failure rate, whereas an artificial potential field (APF solution, a commonly used intelligent control method, had an average of 18% failure rate. These results highlighted one of the advantages of the FLC method: its adaptability to complex scenarios while maintaining low control effort.

  14. Discrimination of curvature from motion during smooth pursuit eye movements and fixation.

    Science.gov (United States)

    Ross, Nicholas M; Goettker, Alexander; Schütz, Alexander C; Braun, Doris I; Gegenfurtner, Karl R

    2017-09-01

    Smooth pursuit and motion perception have mainly been investigated with stimuli moving along linear trajectories. Here we studied the quality of pursuit movements to curved motion trajectories in human observers and examined whether the pursuit responses would be sensitive enough to discriminate various degrees of curvature. In a two-interval forced-choice task subjects pursued a Gaussian blob moving along a curved trajectory and then indicated in which interval the curve was flatter. We also measured discrimination thresholds for the same curvatures during fixation. Motion curvature had some specific effects on smooth pursuit properties: trajectories with larger amounts of curvature elicited lower open-loop acceleration, lower pursuit gain, and larger catch-up saccades compared with less curved trajectories. Initially, target motion curvatures were underestimated; however, ∼300 ms after pursuit onset pursuit responses closely matched the actual curved trajectory. We calculated perceptual thresholds for curvature discrimination, which were on the order of 1.5 degrees of visual angle (°) for a 7.9° curvature standard. Oculometric sensitivity to curvature discrimination based on the whole pursuit trajectory was quite similar to perceptual performance. Oculometric thresholds based on smaller time windows were higher. Thus smooth pursuit can quite accurately follow moving targets with curved trajectories, but temporal integration over longer periods is necessary to reach perceptual thresholds for curvature discrimination. NEW & NOTEWORTHY Even though motion trajectories in the real world are frequently curved, most studies of smooth pursuit and motion perception have investigated linear motion. We show that pursuit initially underestimates the curvature of target motion and is able to reproduce the target curvature ∼300 ms after pursuit onset. Temporal integration of target motion over longer periods is necessary for pursuit to reach the level of precision found

  15. Motion field estimation for a dynamic scene using a 3D LiDAR.

    Science.gov (United States)

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-09-09

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  16. Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR

    Directory of Open Access Journals (Sweden)

    Qingquan Li

    2014-09-01

    Full Text Available This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  17. P1-17: Pseudo-Haptics Using Motion-in-Depth Stimulus and Second-Order Motion Stimulus

    Directory of Open Access Journals (Sweden)

    Shuichi Sato

    2012-10-01

    Full Text Available Modification of motion of the computer cursor during the manipulation by the observer evokes illusory haptic sensation (Lecuyer et al., 2004 ACM SIGCHI '04 239–246. This study investigates the pseudo-haptics using motion-in-depth and second-order motion. A stereoscopic display and a PHANTOM were used in the first experiment. A subject was asked to move a visual target at a constant speed in horizontal, vertical, or front-back direction. During the manipulation, the speed was reduced to 50% for 500 msec. The haptic sensation was measured using the magnitude estimation method. The result indicates that perceived haptic sensation from motion-in-depth was about 30% of that from horizontal or vertical motion. A 2D display and the PHANTOM were used in the second experiment. The motion cue was second order—in each frame, dots in a square patch reverses in contrast (i.e., all black dots become white and all white dots become black. The patch was moved in a horizontal direction. The result indicates that perceived haptic sensation from second-order motion was about 90% of that from first-order motion.

  18. Development and performance evaluation of a dynamic phantom for biological dosimetry of moving targets

    Science.gov (United States)

    Gemmel, A.; Bert, C.; Saito, N.; von Neubeck, C.; Iancu, G.; K-Weyrather, W.; Durante, M.; Rietzel, E.

    2010-06-01

    A dynamic phantom has been developed to allow for measurement of 3D cell survival distributions and the corresponding distributions of the RBE-weighted dose (RBED) in the presence of motion. The phantom consists of two 96-microwell plates holding Chinese hamster ovary cells inside a container filled with culture medium and is placed on a movable stage. Basic biological properties of the phantom were investigated without irradiation and after irradiation with a carbon ion beam, using both a stationary (reference) exposure and exposure during motion of the phantom perpendicular to the beam with beam tracking. There was no statistically significant difference between plating efficiency measured in the microwells with and without motion (0.75) and values reported in the literature. Mean differences between measured and calculated cell survival for these two irradiation modes were within ±5% of the target dose of 6 Gy (RBE).

  19. Development and performance evaluation of a dynamic phantom for biological dosimetry of moving targets

    Energy Technology Data Exchange (ETDEWEB)

    Gemmel, A; Bert, C; Saito, N; Von Neubeck, C; Iancu, G; K-Weyrather, W; Durante, M; Rietzel, E, E-mail: alexander.ag.gemmel@siemens.co [GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstr 1, 64291 Darmstadt (Germany)

    2010-06-07

    A dynamic phantom has been developed to allow for measurement of 3D cell survival distributions and the corresponding distributions of the RBE-weighted dose (RBED) in the presence of motion. The phantom consists of two 96-microwell plates holding Chinese hamster ovary cells inside a container filled with culture medium and is placed on a movable stage. Basic biological properties of the phantom were investigated without irradiation and after irradiation with a carbon ion beam, using both a stationary (reference) exposure and exposure during motion of the phantom perpendicular to the beam with beam tracking. There was no statistically significant difference between plating efficiency measured in the microwells with and without motion (0.75) and values reported in the literature. Mean differences between measured and calculated cell survival for these two irradiation modes were within {+-}5% of the target dose of 6 Gy (RBE).

  20. The Role of Seminal Vesicle Motion in Target Margin Assessment for Online Image-Guided Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Liang Jian; Wu Qiuwen; Yan Di

    2009-01-01

    Purpose: For patients with intermediate- and high-risk prostate cancer, the seminal vesicles (SVs) are included in the clinical target volume (CTV). The purposes of this study are to investigate interfraction motion characteristics of the SVs and determine proper margins for online computed tomography image guidance. Methods and Materials: Twenty-four patients, each with 16 daily helical computed tomography scans, were included in this study. A binary image mask was used for image registration to determine daily organ motion. Two online image-guided radiotherapy strategies (prostate only and prostate + SVs) were simulated in a hypofractionated scheme. Three margin designs were studied for both three-dimensional conformal radiotherapy and intensity-modulated radiotherapy (IMRT). In prostate-only guidance, Margin A was uniformly applied to the whole CTV, and Margin B was applied to the SVs with a fixed 3-mm prostate margin. In prostate plus SV guidance, Margin C was uniformly applied to the CTV. The minimum margins were sought to satisfy the criterion that minimum cumulative CTV dose be more than those of the planning target volume in the plan for greater than 95% of patients. Results: The prostate and SVs move significantly more in the anterior-posterior and superior-inferior than right-left directions. The anterior-posterior motion of the prostate and SVs correlated (R 2 = 0.7). The SVs move significantly more than the prostate. The minimum margins found were 2.5 mm for three-dimensional conformal radiotherapy and 4.5, 4.5, and 3.0 mm for Margins A, B, and C for IMRT, respectively. Margins for IMRT were larger, but the irradiated volume and doses to critical structures were smaller. Minimum margins of 4.5 mm to the SVs and 3 mm to the prostate are recommended for IMRT with prostate-only guidance. Conclusions: The SVs move independently from the prostate gland, and additional margins are necessary for image-guided radiotherapy

  1. Intra-fraction motion of larynx radiotherapy

    Science.gov (United States)

    Durmus, Ismail Faruk; Tas, Bora

    2018-02-01

    In early stage laryngeal radiotherapy, movement is an important factor. Thyroid cartilage can move from swallowing, breathing, sound and reflexes. The effects of this motion on the target volume (PTV) during treatment were examined. In our study, the target volume movement during the treatment for this purpose was examined. Thus, setup margins are re-evaluated and patient-based PTV margins are determined. Intrafraction CBCT was scanned in 246 fractions for 14 patients. During the treatment, the amount of deviation which could be lateral, vertical and longitudinal axis was determined. ≤ ± 0.1cm deviation; 237 fractions in the lateral direction, 202 fractions in the longitudinal direction, 185 fractions in the vertical direction. The maximum deviation values were found in the longitudinal direction. Intrafraction guide in laryngeal radiotherapy; we are sure of the correctness of the treatment, the target volume is to adjust the margin and dose more precisely, we control the maximum deviation of the target volume for each fraction. Although the image quality of intrafraction-CBCT scans was lower than the image quality of planning CT, they showed sufficient contrast for this work.

  2. Real-time optical tracking for motion compensated irradiation with scanned particle beams at CNAO

    Energy Technology Data Exchange (ETDEWEB)

    Fattori, G., E-mail: giovanni.fattori@psi.ch [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Seregni, M. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Pella, A. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Riboldi, M. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Capasso, L. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Donetti, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Ciocca, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Giordanengo, S. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Pullia, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Marchetto, F. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Baroni, G. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy)

    2016-08-11

    Purpose: We describe the interface developed at the National Center for Oncological Hadrontherapy in Pavia to provide the dose delivery systems with real time respiratory motion information captured with an optical tracking system. An experimental study is presented to assess the technical feasibility of the implemented organ motion compensation framework, by analyzing the film response when irradiated with proton beams. Methods: The motion monitoring solution is based on a commercial hardware for motion capture running in-house developed software for respiratory signal processing. As part of the integration, the latency of data transmission to the dose delivery system was experimentally quantified and accounted for by signal time prediction. A respiratory breathing phantom is presented and used to test tumor tracking based either on the optical measurement of the target position or internal-external correlation models and beam gating, as driven by external surrogates. Beam tracking was tested considering the full target motion excursion (25×18 mm), whereas it is limited to 6×2 mm in the gating window. The different motion mitigation strategies were evaluated by comparing the experimental film responses with respect to static irradiation conditions. Dose inhomogeneity (IC) and conformity (CI) are provided as main indexes for dose quality assessment considering the irradiation in static condition as reference. Results: We measured 20.6 ms overall latency for motion signal processing. Dose measurements showed that beam tracking largely preserved dose homogeneity and conformity, showing maximal IC and CI variations limited to +0.10 and −0.01 with respect to the static reference. Gating resulted in slightly larger discrepancies (ΔIC=+0.20, ΔCI=−0.13) due to uncompensated residual motion in the gating window. Conclusions: The preliminary beam tracking and gating results verified the functionality of the prototypal solution for organ motion compensation based on

  3. Real-time optical tracking for motion compensated irradiation with scanned particle beams at CNAO

    International Nuclear Information System (INIS)

    Fattori, G.; Seregni, M.; Pella, A.; Riboldi, M.; Capasso, L.; Donetti, M.; Ciocca, M.; Giordanengo, S.; Pullia, M.; Marchetto, F.; Baroni, G.

    2016-01-01

    Purpose: We describe the interface developed at the National Center for Oncological Hadrontherapy in Pavia to provide the dose delivery systems with real time respiratory motion information captured with an optical tracking system. An experimental study is presented to assess the technical feasibility of the implemented organ motion compensation framework, by analyzing the film response when irradiated with proton beams. Methods: The motion monitoring solution is based on a commercial hardware for motion capture running in-house developed software for respiratory signal processing. As part of the integration, the latency of data transmission to the dose delivery system was experimentally quantified and accounted for by signal time prediction. A respiratory breathing phantom is presented and used to test tumor tracking based either on the optical measurement of the target position or internal-external correlation models and beam gating, as driven by external surrogates. Beam tracking was tested considering the full target motion excursion (25×18 mm), whereas it is limited to 6×2 mm in the gating window. The different motion mitigation strategies were evaluated by comparing the experimental film responses with respect to static irradiation conditions. Dose inhomogeneity (IC) and conformity (CI) are provided as main indexes for dose quality assessment considering the irradiation in static condition as reference. Results: We measured 20.6 ms overall latency for motion signal processing. Dose measurements showed that beam tracking largely preserved dose homogeneity and conformity, showing maximal IC and CI variations limited to +0.10 and −0.01 with respect to the static reference. Gating resulted in slightly larger discrepancies (ΔIC=+0.20, ΔCI=−0.13) due to uncompensated residual motion in the gating window. Conclusions: The preliminary beam tracking and gating results verified the functionality of the prototypal solution for organ motion compensation based on

  4. WE-E-BRB-01: Personalized Motion Management Strategies for Pencil Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    Strategies for treating thoracic and liver tumors using pencil beam scanning proton therapy Thoracic and liver tumors have not been treated with pencil beam scanning (PBS) proton therapy until recently. This is because of concerns about the significant interplay effects between proton spot scanning and patient’s respiratory motion. However, not all tumors have unacceptable magnitude of motion for PBS proton therapy. Therefore it is important to analyze the motion and understand the significance of the interplay effect for each patient. The factors that affect interplay effect and its washout include magnitude of motion, spot size, spot scanning sequence and speed. Selection of beam angle, scanning direction, repainting and fractionation can all reduce the interplay effect. An overview of respiratory motion management in PBS proton therapy including assessment of tumor motion and WET evaluation will be first presented. As thoracic tumors have very different motion patterns from liver tumors, examples would be provided for both anatomic sites. As thoracic tumors are typically located within highly heterogeneous environments, dose calculation accuracy is a concern for both treatment target and surrounding organs such as spinal cord or esophagus. Strategies for mitigating the interplay effect in PBS will be presented and the pros and cons of various motion mitigation strategies will be discussed. Learning Objectives: Motion analysis for individual patients with respect to interplay effect Interplay effect and mitigation strategies for treating thoracic/liver tumors with PBS Treatment planning margins for PBS The impact of proton dose calculation engines over heterogeneous treatment target and surrounding organs I have a current research funding from Varian Medical System under the master agreement between University of Pennsylvania and Varian; L. Lin, I have a current funding from Varian Medical System under the master agreement between University of Pennsylvania and

  5. WE-E-BRB-01: Personalized Motion Management Strategies for Pencil Beam Scanning Proton Therapy

    International Nuclear Information System (INIS)

    Zhu, X.

    2016-01-01

    Strategies for treating thoracic and liver tumors using pencil beam scanning proton therapy Thoracic and liver tumors have not been treated with pencil beam scanning (PBS) proton therapy until recently. This is because of concerns about the significant interplay effects between proton spot scanning and patient’s respiratory motion. However, not all tumors have unacceptable magnitude of motion for PBS proton therapy. Therefore it is important to analyze the motion and understand the significance of the interplay effect for each patient. The factors that affect interplay effect and its washout include magnitude of motion, spot size, spot scanning sequence and speed. Selection of beam angle, scanning direction, repainting and fractionation can all reduce the interplay effect. An overview of respiratory motion management in PBS proton therapy including assessment of tumor motion and WET evaluation will be first presented. As thoracic tumors have very different motion patterns from liver tumors, examples would be provided for both anatomic sites. As thoracic tumors are typically located within highly heterogeneous environments, dose calculation accuracy is a concern for both treatment target and surrounding organs such as spinal cord or esophagus. Strategies for mitigating the interplay effect in PBS will be presented and the pros and cons of various motion mitigation strategies will be discussed. Learning Objectives: Motion analysis for individual patients with respect to interplay effect Interplay effect and mitigation strategies for treating thoracic/liver tumors with PBS Treatment planning margins for PBS The impact of proton dose calculation engines over heterogeneous treatment target and surrounding organs I have a current research funding from Varian Medical System under the master agreement between University of Pennsylvania and Varian; L. Lin, I have a current funding from Varian Medical System under the master agreement between University of Pennsylvania and

  6. Seismic Data for Evaluation of Ground Motion Hazards in Las Vegas in Support of Test Site Readiness Ground Motion

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A

    2008-01-16

    In this report we describe the data sets used to evaluate ground motion hazards in Las Vegas from nuclear tests at the Nevada Test Site. This analysis is presented in Rodgers et al. (2005, 2006) and includes 13 nuclear explosions recorded at the John Blume and Associates network, the Little Skull Mountain earthquake and a temporary deployment of broadband station in Las Vegas. The data are available in SAC format on CD-ROM as an appendix to this report.

  7. Using network properties to evaluate targeted immunization algorithms

    Directory of Open Access Journals (Sweden)

    Bita Shams

    2014-09-01

    Full Text Available Immunization of complex network with minimal or limited budget is a challenging issue for research community. In spite of much literature in network immunization, no comprehensive research has been conducted for evaluation and comparison of immunization algorithms. In this paper, we propose an evaluation framework for immunization algorithms regarding available amount of vaccination resources, goal of immunization program, and time complexity. The evaluation framework is designed based on network topological metrics which is extensible to all epidemic spreading model. Exploiting evaluation framework on well-known targeted immunization algorithms shows that in general, immunization based on PageRank centrality outperforms other targeting strategies in various types of networks, whereas, closeness and eigenvector centrality exhibit the worst case performance.

  8. Deficient Biological Motion Perception in Schizophrenia: Results from a Motion Noise Paradigm

    Directory of Open Access Journals (Sweden)

    Jejoong eKim

    2013-07-01

    Full Text Available Background: Schizophrenia patients exhibit deficient processing of perceptual and cognitive information. However, it is not well understood how basic perceptual deficits contribute to higher level cognitive problems in this mental disorder. Perception of biological motion, a motion-based cognitive recognition task, relies on both basic visual motion processing and social cognitive processing, thus providing a useful paradigm to evaluate the potentially hierarchical relationship between these two levels of information processing. Methods: In this study, we designed a biological motion paradigm in which basic visual motion signals were manipulated systematically by incorporating different levels of motion noise. We measured the performances of schizophrenia patients (n=21 and healthy controls (n=22 in this biological motion perception task, as well as in coherent motion detection, theory of mind, and a widely used biological motion recognition task. Results: Schizophrenia patients performed the biological motion perception task with significantly lower accuracy than healthy controls when perceptual signals were moderately degraded by noise. A more substantial degradation of perceptual signals, through using additional noise, impaired biological motion perception in both groups. Performance levels on biological motion recognition, coherent motion detection and theory of mind tasks were also reduced in patients. Conclusion: The results from the motion-noise biological motion paradigm indicate that in the presence of visual motion noise, the processing of biological motion information in schizophrenia is deficient. Combined with the results of poor basic visual motion perception (coherent motion task and biological motion recognition, the association between basic motion signals and biological motion perception suggests a need to incorporate the improvement of visual motion perception in social cognitive remediation.

  9. Effective Multi-Model Motion Tracking Under Multiple Team Member Actuators

    OpenAIRE

    Gu, Yang; Veloso, Manuela

    2009-01-01

    Motivated by the interactions between a team and the tracked target, we contribute a method to achieve efficient tracking through using a play-based motion model and combined vision and infrared sensory information. This method gives the robot a more exact task-specific motion model when executing different tactics over the tracked target (e.g. the ball) or collaborating with the tracked target (e.g. the team member). Then we represent the system in a compact dynamic Bayesian network and use ...

  10. Multi-Sensor Methods for Mobile Radar Motion Capture and Compensation

    Science.gov (United States)

    Nakata, Robert

    Remote sensing has many applications, including surveying and mapping, geophysics exploration, military surveillance, search and rescue and counter-terrorism operations. Remote sensor systems typically use visible image, infrared or radar sensors. Camera based image sensors can provide high spatial resolution but are limited to line-of-sight capture during daylight. Infrared sensors have lower resolution but can operate during darkness. Radar sensors can provide high resolution motion measurements, even when obscured by weather, clouds and smoke and can penetrate walls and collapsed structures constructed with non-metallic materials up to 1 m to 2 m in depth depending on the wavelength and transmitter power level. However, any platform motion will degrade the target signal of interest. In this dissertation, we investigate alternative methodologies to capture platform motion, including a Body Area Network (BAN) that doesn't require external fixed location sensors, allowing full mobility of the user. We also investigated platform stabilization and motion compensation techniques to reduce and remove the signal distortion introduced by the platform motion. We evaluated secondary ultrasonic and radar sensors to stabilize the platform resulting in an average 5 dB of Signal to Interference Ratio (SIR) improvement. We also implemented a Digital Signal Processing (DSP) motion compensation algorithm that improved the SIR by 18 dB on average. These techniques could be deployed on a quadcopter platform and enable the detection of respiratory motion using an onboard radar sensor.

  11. IMRT delivery to a moving target by dynamic MLC tracking: delivery for targets moving in two dimensions in the beam's eye view

    International Nuclear Information System (INIS)

    McQuaid, D; Webb, S

    2006-01-01

    A new modification of the dynamic multileaf collimator (dMLC) delivery technique for intensity-modulated therapy (IMRT) is outlined. This technique enables the tracking of a target moving through rigid-body translations in a 2D trajectory in the beam's eye view. The accuracy of the delivery versus that of deliveries with no tracking and of 1D tracking techniques is quantified with clinically derived intensity-modulated beams (IMBs). Leaf trajectories calculated in the target-reference frame were iteratively synchronized assuming regular target motion. This allowed the leaves defined in the lab-reference frame to simultaneously follow the target motion and to deliver the required IMB without violation of the leaf maximum-velocity constraint. The leaves are synchronized until the gradient of the leaf position at every instant is less than a calculated maximum. The delivered fluence in the target-reference frame was calculated with a simple primary-fluence model. The new 2D tracking technique was compared with the delivered fluence produced by no-tracking deliveries and by 1D tracking deliveries for 33 clinical IMBs. For the clinical IMBs normalized to a maximum fluence of 200 MUs, the rms difference between the desired and the delivered IMB was 15.6 ± 3.3 MU for the case of a no-tracking delivery, 7.9 ± 1.6 MU for the case where only the primary component of motion was corrected and 5.1 ± 1.1 MU for the 2D tracking delivery. The residual error is due to interpolation and sampling effects. The 2D tracking delivery technique requires an increase in the delivery time evaluated as between 0 and 50% of the unsynchronized delivery time for each beam with a mean increase of 13% for the IMBs tested. The 2D tracking dMLC delivery technique allows an optimized IMB to be delivered to moving targets with increased accuracy and with acceptable increases in delivery time. When combined with real-time knowledge of the target motion at delivery time, this technique facilitates

  12. Effect of interfractional shoulder motion on low neck nodal targets for patients treated using volume modulated arc therapy (VMAT

    Directory of Open Access Journals (Sweden)

    Kevin Casey

    2014-03-01

    Full Text Available Purpose: To quantify the dosimetric impact of interfractional shoulder motion on targets in the low neck for head and neck patients treated with volume modulated arc therapy (VMAT.Methods: Three patients with head and neck cancer were selected. All three required treatment to nodal regions in the low neck in addition to the primary tumor site. The patients were immobilized during simulation and treatment with a custom thermoplastic mask covering the head and shoulders. One VMAT plan was created for each patient utilizing two full 360° arcs and a second plan was created consisting of two superior VMAT arcs matched to an inferior static AP supraclavicular field. A CT-on-rails alignment verification was performed weekly during each patient’s treatment course. The weekly CT images were registered to the simulation CT and the target contours were deformed and applied to the weekly CT. The two VMAT plans were copied to the weekly CT datasets and recalculated to obtain the dose to the deformed low neck contours.Results: The average observed shoulder position shift in any single dimension relative to simulation was 2.5 mm. The maximum shoulder shift observed in a single dimension was 25.7 mm. Low neck target mean doses, normalized to simulation and averaged across all weekly recalculations were 0.996, 0.991, and 1.033 (Full VMAT plan and 0.986, 0.995, and 0.990 (Half-Beam VMAT plan for the three patients, respectively. The maximum observed deviation in target mean dose for any individual weekly recalculation was 6.5%, occurring with the Full VMAT plan for Patient 3.Conclusion: Interfractional variation in dose to low neck nodal regions was quantified for three head and neck patients treated with VMAT. Mean dose was 3.3% higher than planned for one patient using a Full VMAT plan. A Half-Beam technique is likely a safer choice when treating the supraclavicular region with VMAT.-------------------------------------------Cite this article as: Casey K

  13. Motion detection system with GPU acceleration for stereotactic radiosurgery

    International Nuclear Information System (INIS)

    Yamakawa, Takuya; Ogawa, Koichi; Iyatomi, Hitoshi; Usui, Keisuke; Kunieda, Etsuo; Shigematsu, Naoyuki

    2012-01-01

    Stereotactic radiosurgery is a non-invasive method for the treatment of tumors that employs a narrow, high-energy X-ray beam. In this form of therapy, the target region is intensively irradiated with the narrow beam, and any unexpected patient motion may therefore lead to undesirable irradiation of neighboring normal tissues and organs. To overcome this problem, we propose a contactless motion detection system with three USB cameras for use in stereotactic radiosurgery of the head and neck. In our system, the three cameras monitor images of the patient's nose and ears, and patient motion is detected using a template-matching method. If patient motion is detected, the system alerts the radiologist to turn off the beam. We reduced the effects of variations in the lighting in the irradiation room by employing USB cameras sensitive to infrared light. To detect movement in the acquired images, we use a template-matching method that is realized with general-purpose computing-on-graphics processing units. In this paper, we present an outline of our proposed motion detection system based on monitoring of images of the patient acquired with infrared USB cameras and a template-matching method. The performance of the system was evaluated under the same conditions as those used in actual radiation therapy of the head and neck. (author)

  14. Effect of the Target Motion Sampling temperature treatment method on the statistics and performance

    International Nuclear Information System (INIS)

    Viitanen, Tuomas; Leppänen, Jaakko

    2015-01-01

    Highlights: • Use of the Target Motion Sampling (TMS) method with collision estimators is studied. • The expected values of the estimators agree with NJOY-based reference. • In most practical cases also the variances of the estimators are unaffected by TMS. • Transport calculation slow-down due to TMS dominates the impact on figures-of-merit. - Abstract: Target Motion Sampling (TMS) is a stochastic on-the-fly temperature treatment technique that is being developed as a part of the Monte Carlo reactor physics code Serpent. The method provides for modeling of arbitrary temperatures in continuous-energy Monte Carlo tracking routines with only one set of cross sections stored in the computer memory. Previously, only the performance of the TMS method in terms of CPU time per transported neutron has been discussed. Since the effective cross sections are not calculated at any point of a transport simulation with TMS, reaction rate estimators must be scored using sampled cross sections, which is expected to increase the variances and, consequently, to decrease the figures-of-merit. This paper examines the effects of the TMS on the statistics and performance in practical calculations involving reaction rate estimation with collision estimators. Against all expectations it turned out that the usage of sampled response values has no practical effect on the performance of reaction rate estimators when using TMS with elevated basis cross section temperatures (EBT), i.e. the usual way. With 0 Kelvin cross sections a significant increase in the variances of capture rate estimators was observed right below the energy region of unresolved resonances, but at these energies the figures-of-merit could be increased using a simple resampling technique to decrease the variances of the responses. It was, however, noticed that the usage of the TMS method increases the statistical deviances of all estimators, including the flux estimator, by tens of percents in the vicinity of very

  15. Reduction of prostate intrafraction motion using gas-release rectal balloons

    International Nuclear Information System (INIS)

    Su Zhong; Zhao Tianyu; Li Zuofeng; Hoppe, Brad; Henderson, Randy; Mendenhall, William; Nichols, R. Charles; Marcus, Robert; Mendenhall, Nancy

    2012-01-01

    Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated with the van Herk formula of 2.5Σ+ 0.7σ to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior–inferior (SI) and anterior–posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left–right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.

  16. Reduction of prostate intrafraction motion using gas-release rectal balloons

    Energy Technology Data Exchange (ETDEWEB)

    Su Zhong; Zhao Tianyu; Li Zuofeng; Hoppe, Brad; Henderson, Randy; Mendenhall, William; Nichols, R. Charles; Marcus, Robert; Mendenhall, Nancy [Department of Radiation Oncology, University of Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States)

    2012-10-15

    Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated with the van Herk formula of 2.5{Sigma}+ 0.7{sigma} to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior-inferior (SI) and anterior-posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left-right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.

  17. An Adaptive Neural Mechanism for Acoustic Motion Perception with Varying Sparsity.

    Science.gov (United States)

    Shaikh, Danish; Manoonpong, Poramate

    2017-01-01

    Biological motion-sensitive neural circuits are quite adept in perceiving the relative motion of a relevant stimulus. Motion perception is a fundamental ability in neural sensory processing and crucial in target tracking tasks. Tracking a stimulus entails the ability to perceive its motion, i.e., extracting information about its direction and velocity. Here we focus on auditory motion perception of sound stimuli, which is poorly understood as compared to its visual counterpart. In earlier work we have developed a bio-inspired neural learning mechanism for acoustic motion perception. The mechanism extracts directional information via a model of the peripheral auditory system of lizards. The mechanism uses only this directional information obtained via specific motor behaviour to learn the angular velocity of unoccluded sound stimuli in motion. In nature however the stimulus being tracked may be occluded by artefacts in the environment, such as an escaping prey momentarily disappearing behind a cover of trees. This article extends the earlier work by presenting a comparative investigation of auditory motion perception for unoccluded and occluded tonal sound stimuli with a frequency of 2.2 kHz in both simulation and practice. Three instances of each stimulus are employed, differing in their movement velocities-0.5°/time step, 1.0°/time step and 1.5°/time step. To validate the approach in practice, we implement the proposed neural mechanism on a wheeled mobile robot and evaluate its performance in auditory tracking.

  18. Real-time high-speed motion blur compensation system based on back-and-forth motion control of galvanometer mirror.

    Science.gov (United States)

    Hayakawa, Tomohiko; Watanabe, Takanoshin; Ishikawa, Masatoshi

    2015-12-14

    We developed a novel real-time motion blur compensation system for the blur caused by high-speed one-dimensional motion between a camera and a target. The system consists of a galvanometer mirror and a high-speed color camera, without the need for any additional sensors. We controlled the galvanometer mirror with continuous back-and-forth oscillating motion synchronized to a high-speed camera. The angular speed of the mirror is given in real time within 10 ms based on the concept of background tracking and rapid raw Bayer block matching. Experiments demonstrated that our system captures motion-invariant images of objects moving at speeds up to 30 km/h.

  19. Straight-Line Target Tracking for Unmanned Surface Vehicles

    Directory of Open Access Journals (Sweden)

    Morten Breivik

    2008-10-01

    Full Text Available This paper considers the subject of straight-line target tracking for unmanned surface vehicles (USVs. Target-tracking represents motion control scenarios where no information about the target behavior is known in advance, i.e., the path that the target traverses is not defined apriori. Specifically, this work presents the design of a motion control system which enables an underactuated USV to track a target that moves in a straight line at high speed. The motion control system employs a guidance principle originally developed for interceptor missiles, as well as a novel velocity controller inspired by maneuverability and agility concepts found in fighter aircraft literature. The performance of the suggested design is illustrated through full-scale USV experiments in the Trondheimsfjord.

  20. Evaluation of Real-Time Hand Motion Tracking Using a Range Camera and the Mean-Shift Algorithm

    Science.gov (United States)

    Lahamy, H.; Lichti, D.

    2011-09-01

    Several sensors have been tested for improving the interaction between humans and machines including traditional web cameras, special gloves, haptic devices, cameras providing stereo pairs of images and range cameras. Meanwhile, several methods are described in the literature for tracking hand motion: the Kalman filter, the mean-shift algorithm and the condensation algorithm. In this research, the combination of a range camera and the simple version of the mean-shift algorithm has been evaluated for its capability for hand motion tracking. The evaluation was assessed in terms of position accuracy of the tracking trajectory in x, y and z directions in the camera space and the time difference between image acquisition and image display. Three parameters have been analyzed regarding their influence on the tracking process: the speed of the hand movement, the distance between the camera and the hand and finally the integration time of the camera. Prior to the evaluation, the required warm-up time of the camera has been measured. This study has demonstrated the suitability of the range camera used in combination with the mean-shift algorithm for real-time hand motion tracking but for very high speed hand movement in the traverse plane with respect to the camera, the tracking accuracy is low and requires improvement.

  1. Spot Weight Adaptation for Moving Target in Spot Scanning Proton Therapy.

    Science.gov (United States)

    Morel, Paul; Wu, Xiaodong; Blin, Guillaume; Vialette, Stéphane; Flynn, Ryan; Hyer, Daniel; Wang, Dongxu

    2015-01-01

    This study describes a real-time spot weight adaptation method in spot-scanning proton therapy for moving target or moving patient, so that the resultant dose distribution closely matches the planned dose distribution. The method proposed in this study adapts the weight (MU) of the delivering pencil beam to that of the target spot; it will actually hit during patient/target motion. The target spot that a certain delivering pencil beam may hit relies on patient monitoring and/or motion modeling using four-dimensional (4D) CT. After the adapted delivery, the required total weight [Monitor Unit (MU)] for this target spot is then subtracted from the planned value. With continuous patient motion and continuous spot scanning, the planned doses to all target spots will eventually be all fulfilled. In a proof-of-principle test, a lung case was presented with realistic temporal and motion parameters; the resultant dose distribution using spot weight adaptation was compared to that without using this method. The impact of the real-time patient/target position tracking or prediction was also investigated. For moderate motion (i.e., mean amplitude 0.5 cm), D95% to the planning target volume (PTV) was only 81.5% of the prescription (RX) dose; with spot weight adaptation PTV D95% achieves 97.7% RX. For large motion amplitude (i.e., 1.5 cm), without spot weight adaptation PTV D95% is only 42.9% of RX; with spot weight adaptation, PTV D95% achieves 97.7% RX. Larger errors in patient/target position tracking or prediction led to worse final target coverage; an error of 3 mm or smaller in patient/target position tracking is preferred. The proposed spot weight adaptation method was able to deliver the planned dose distribution and maintain target coverage when patient motion was involved. The successful implementation of this method would rely on accurate monitoring or prediction of patient/target motion.

  2. Spot Weight Adaptation for Moving Target in Spot Scanning Proton Therapy

    Directory of Open Access Journals (Sweden)

    Paul eMorel

    2015-05-01

    Full Text Available Purpose: This study describes a real-time spot weight adaptation method in spot-scanning proton therapy for moving target or moving patient, so that the resultant dose distribution closely matches the planned dose distribution. Materials and Methods: The method proposed in this study adapts the weight (MU of the delivering pencil beam to that of the target spot it will actually hit during patient/target motion. The target spot a certain delivering pencil beam may hit relies on patient monitoring and/or motion modeling using four-dimensional (4D CT. After the adapted delivery, the required total weight (MU for this target spot is then subtracted from the planned value. With continuous patient motion and continuous spot scanning, the planned doses to all target spots will eventually be all fulfilled. In a proof-of-principle test, a lung case was presented with realistic temporal and motion parameters; the resultant dose distribution using spot weight adaptation was compared to that without using this method. The impact of the real-time patient/target position tracking or prediction was also investigated.Results: For moderate motion (i.e., mean amplitude 0.5 cm, D95% to the planning target volume (PTV was only 81.5% of the prescription (RX dose; with spot weight adaptation PTV D95% achieves 97.7%RX. For large motion amplitude (i.e., 1.5 cm, without spot weight adaptation PTV D95% is only 42.9% of RX; with spot weight adaptation, PTV D95% achieves 97.7%RX. Larger errors in patient/target position tracking or prediction led to worse final target coverage; an error of 3mm or smaller in patient/target position tracking is preferred. Conclusion: The proposed spot weight adaptation method was able to deliver the planned dose distribution and maintain target coverage when patient motion was involved. The successful implementation of this method would rely on accurate monitoring or prediction of patient/target motion.

  3. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study.

    Science.gov (United States)

    Bowen, S R; Nyflot, M J; Herrmann, C; Groh, C M; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A

    2015-05-07

    Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [(18)F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10-20%, treatment planning errors were 5-10%, and treatment delivery errors were 5-30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5-10% in PET/CT imaging, PET/CT imaging to RT planning, and RT delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the magnitude

  4. Mental imagery of gravitational motion.

    Science.gov (United States)

    Gravano, Silvio; Zago, Myrka; Lacquaniti, Francesco

    2017-10-01

    There is considerable evidence that gravitational acceleration is taken into account in the interaction with falling targets through an internal model of Earth gravity. Here we asked whether this internal model is accessed also when target motion is imagined rather than real. In the main experiments, naïve participants grasped an imaginary ball, threw it against the ceiling, and caught it on rebound. In different blocks of trials, they had to imagine that the ball moved under terrestrial gravity (1g condition) or under microgravity (0g) as during a space flight. We measured the speed and timing of the throwing and catching actions, and plotted ball flight duration versus throwing speed. Best-fitting duration-speed curves estimate the laws of ball motion implicit in the participant's performance. Surprisingly, we found duration-speed curves compatible with 0g for both the imaginary 0g condition and the imaginary 1g condition, despite the familiarity with Earth gravity effects and the added realism of performing the throwing and catching actions. In a control experiment, naïve participants were asked to throw the imaginary ball vertically upwards at different heights, without hitting the ceiling, and to catch it on its way down. All participants overestimated ball flight durations relative to the durations predicted by the effects of Earth gravity. Overall, the results indicate that mental imagery of motion does not have access to the internal model of Earth gravity, but resorts to a simulation of visual motion. Because visual processing of accelerating/decelerating motion is poor, visual imagery of motion at constant speed or slowly varying speed appears to be the preferred mode to perform the tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Evaluation of motion measurement using cine MRI for image guided stereotactic body radiotherapy on a new phantom platform

    Science.gov (United States)

    Cai, Jing; Wang, Ziheng; Yin, Fang-Fang

    2011-01-01

    The objective of this study is to investigate accuracy of motion tracking of cine magnetic resonance imaging (MRI) for image-guided stereotactic body radiotherapy. A phantom platform was developed in this work to fulfill the goal. The motion phantom consisted of a platform, a solid thread, a motor and a control system that can simulate motion in various modes. To validate its reproducibility, the phantom platform was setup three times and imaged with fluoroscopy using an electronic portal imaging device (EPID) for the same motion profile. After the validation test, the phantom platform was evaluated using cine MRI at 2.5 frames/second on a 1.5T GE scanner using five different artificial profiles and five patient profiles. The above profiles were again measured with EPID fluoroscopy and used as references. Discrepancies between measured profiles from cine MRI and EPID were quantified using root-mean-square (RMS) and standard deviation (SD). Pearson’s product moment correlational analysis was used to test correlation. The standard deviation for the reproducibility test was 0.28 mm. The discrepancies (RMS) between all profiles measured by cine MRI and EPID fluoroscopy ranged from 0.30 to 0.49 mm for artificial profiles and ranged from 0.75 to 0.91 mm for five patient profiles. The cine MRI sequence could precisely track phantom motion and the proposed motion phantom was feasible to evaluate cine MRI accuracy. PMID:29296304

  6. Kernel density estimation-based real-time prediction for respiratory motion

    International Nuclear Information System (INIS)

    Ruan, Dan

    2010-01-01

    Effective delivery of adaptive radiotherapy requires locating the target with high precision in real time. System latency caused by data acquisition, streaming, processing and delivery control necessitates prediction. Prediction is particularly challenging for highly mobile targets such as thoracic and abdominal tumors undergoing respiration-induced motion. The complexity of the respiratory motion makes it difficult to build and justify explicit models. In this study, we honor the intrinsic uncertainties in respiratory motion and propose a statistical treatment of the prediction problem. Instead of asking for a deterministic covariate-response map and a unique estimate value for future target position, we aim to obtain a distribution of the future target position (response variable) conditioned on the observed historical sample values (covariate variable). The key idea is to estimate the joint probability distribution (pdf) of the covariate and response variables using an efficient kernel density estimation method. Then, the problem of identifying the distribution of the future target position reduces to identifying the section in the joint pdf based on the observed covariate. Subsequently, estimators are derived based on this estimated conditional distribution. This probabilistic perspective has some distinctive advantages over existing deterministic schemes: (1) it is compatible with potentially inconsistent training samples, i.e., when close covariate variables correspond to dramatically different response values; (2) it is not restricted by any prior structural assumption on the map between the covariate and the response; (3) the two-stage setup allows much freedom in choosing statistical estimates and provides a full nonparametric description of the uncertainty for the resulting estimate. We evaluated the prediction performance on ten patient RPM traces, using the root mean squared difference between the prediction and the observed value normalized by the

  7. Siamese convolutional networks for tracking the spine motion

    Science.gov (United States)

    Liu, Yuan; Sui, Xiubao; Sun, Yicheng; Liu, Chengwei; Hu, Yong

    2017-09-01

    Deep learning models have demonstrated great success in various computer vision tasks such as image classification and object tracking. However, tracking the lumbar spine by digitalized video fluoroscopic imaging (DVFI), which can quantitatively analyze the motion mode of spine to diagnose lumbar instability, has not yet been well developed due to the lack of steady and robust tracking method. In this paper, we propose a novel visual tracking algorithm of the lumbar vertebra motion based on a Siamese convolutional neural network (CNN) model. We train a full-convolutional neural network offline to learn generic image features. The network is trained to learn a similarity function that compares the labeled target in the first frame with the candidate patches in the current frame. The similarity function returns a high score if the two images depict the same object. Once learned, the similarity function is used to track a previously unseen object without any adapting online. In the current frame, our tracker is performed by evaluating the candidate rotated patches sampled around the previous frame target position and presents a rotated bounding box to locate the predicted target precisely. Results indicate that the proposed tracking method can detect the lumbar vertebra steadily and robustly. Especially for images with low contrast and cluttered background, the presented tracker can still achieve good tracking performance. Further, the proposed algorithm operates at high speed for real time tracking.

  8. Use of item response curves of the Force and Motion Conceptual Evaluation to compare Japanese and American students' views on force and motion

    Science.gov (United States)

    Ishimoto, Michi; Davenport, Glen; Wittmann, Michael C.

    2017-12-01

    Student views of force and motion reflect the personal experiences and physics education of the student. With a different language, culture, and educational system, we expect that Japanese students' views on force and motion might be different from those of American students. The Force and Motion Conceptual Evaluation (FMCE) is an instrument used to probe student views on force and motion. It was designed using research on American students, and, as such, the items might function differently for Japanese students. Preliminary results from a translated version indicated that Japanese students had similar misconceptions as those of American students. In this study, we used item response curves (IRCs) to make more detailed item-by-item comparisons. IRCs show the functioning of individual items across all levels of performance by plotting the proportion of each response as a function of the total score. Most of the IRCs showed very similar patterns on both correct and incorrect responses; however, a few of the plots indicate differences between the populations. The similar patterns indicate that students tend to interact with FMCE items similarly, despite differences in culture, language, and education. We speculate about the possible causes for the differences in some of the IRCs. This report is intended to show how IRCs can be used as a part of the validation process when making comparisons across languages and nationalities. Differences in IRCs can help to pinpoint artifacts of translation, contextual effects because of differences in culture, and perhaps intrinsic differences in student understanding of Newtonian motion.

  9. Use of item response curves of the Force and Motion Conceptual Evaluation to compare Japanese and American students’ views on force and motion

    Directory of Open Access Journals (Sweden)

    Michi Ishimoto

    2017-11-01

    Full Text Available Student views of force and motion reflect the personal experiences and physics education of the student. With a different language, culture, and educational system, we expect that Japanese students’ views on force and motion might be different from those of American students. The Force and Motion Conceptual Evaluation (FMCE is an instrument used to probe student views on force and motion. It was designed using research on American students, and, as such, the items might function differently for Japanese students. Preliminary results from a translated version indicated that Japanese students had similar misconceptions as those of American students. In this study, we used item response curves (IRCs to make more detailed item-by-item comparisons. IRCs show the functioning of individual items across all levels of performance by plotting the proportion of each response as a function of the total score. Most of the IRCs showed very similar patterns on both correct and incorrect responses; however, a few of the plots indicate differences between the populations. The similar patterns indicate that students tend to interact with FMCE items similarly, despite differences in culture, language, and education. We speculate about the possible causes for the differences in some of the IRCs. This report is intended to show how IRCs can be used as a part of the validation process when making comparisons across languages and nationalities. Differences in IRCs can help to pinpoint artifacts of translation, contextual effects because of differences in culture, and perhaps intrinsic differences in student understanding of Newtonian motion.

  10. The impact of respiratory motion and treatment technique on stereotactic body radiation therapy for liver cancer

    International Nuclear Information System (INIS)

    Wu, Q. Jackie; Thongphiew, Danthai; Wang Zhiheng; Chankong, Vira; Yin Fangfang

    2008-01-01

    Stereotactic body radiation therapy (SBRT), which delivers a much higher fractional dose than conventional treatment in only a few fractions, is an effective treatment for liver metastases. For patients who are treated under free-breathing conditions, however, respiration-induced tumor motion in the liver is a concern. Limited clinical information is available related to the impact of tumor motion and treatment technique on the dosimetric consequences. This study evaluated the dosimetric deviations between planned and delivered SBRT dose in the presence of tumor motion for three delivery techniques: three-dimensional conformal static beams (3DCRT), dynamic conformal arc (DARC), and intensity-modulated radiation therapy (IMRT). Five cases treated with SBRT for liver metastases were included in the study, with tumor motions ranging from 0.5 to 1.75 cm. For each case, three different treatment plans were developed using 3DCRT, DARC, and IMRT. The gantry/multileaf collimator (MLC) motion in the DARC plans and the MLC motion in the IMRT plans were synchronized to the patient's respiratory motion. Retrospectively sorted four-dimensional computed tomography image sets were used to determine patient-organ motion and to calculate the dose delivered during each respiratory phase. Deformable registration, using thin-plate-spline models, was performed to encode the tumor motion and deformation and to register the dose-per-phase to the reference phase images. The different dose distributions resulting from the different delivery techniques and motion ranges were compared to assess the effect of organ motion on dose delivery. Voxel dose variations occurred mostly in the high gradient regions, typically between the target volume and normal tissues, with a maximum variation up to 20%. The greatest CTV variation of all the plans was seen in the IMRT technique with the largest motion range (D99: -8.9%, D95: -8.3%, and D90: -6.3%). The greatest variation for all 3DCRT plans was less

  11. Does Motion Assessment With 4-Dimensional Computed Tomographic Imaging for Non–Small Cell Lung Cancer Radiotherapy Improve Target Volume Coverage?

    Directory of Open Access Journals (Sweden)

    Naseer Ahmed

    2017-03-01

    Full Text Available Introduction: Modern radiotherapy with 4-dimensional computed tomographic (4D-CT image acquisition for non–small cell lung cancer (NSCLC captures respiratory-mediated tumor motion to provide more accurate target delineation. This study compares conventional 3-dimensional (3D conformal radiotherapy (3DCRT plans generated with standard helical free-breathing CT (FBCT with plans generated on 4D-CT contoured volumes to determine whether target volume coverage is affected. Materials and methods: Fifteen patients with stage I to IV NSCLC were enrolled in the study. Free-breathing CT and 4D-CT data sets were acquired at the same simulation session and with the same immobilization. Gross tumor volume (GTV for primary and/or nodal disease was contoured on FBCT (GTV_3D. The 3DCRT plans were obtained, and the patients were treated according to our institution’s standard protocol using FBCT imaging. Gross tumor volume was contoured on 4D-CT for primary and/or nodal disease on all 10 respiratory phases and merged to create internal gross tumor volume (IGTV_4D. Clinical target volume margin was 5 mm in both plans, whereas planning tumor volume (PTV expansion was 1 cm axially and 1.5 cm superior/inferior for FBCT-based plans to incorporate setup errors and an estimate of respiratory-mediated tumor motion vs 8 mm isotropic margin for setup error only in all 4D-CT plans. The 3DCRT plans generated from the FBCT scan were copied on the 4D-CT data set with the same beam parameters. GTV_3D, IGTV_4D, PTV, and dose volume histogram from both data sets were analyzed and compared. Dice coefficient evaluated PTV similarity between FBCT and 4D-CT data sets. Results: In total, 14 of the 15 patients were analyzed. One patient was excluded as there was no measurable GTV. Mean GTV_3D was 115.3 cm 3 and mean IGTV_4D was 152.5 cm 3 ( P = .001. Mean PTV_3D was 530.0 cm 3 and PTV_4D was 499.8 cm 3 ( P = .40. Both gross primary and nodal disease analyzed separately were larger

  12. MO-FG-CAMPUS-JeP3-05: Evaluation of 4D CT-On-Rails Target Localization Methods for Free Breathing Liver Stereotactic Body Radiotherapy (SBRT)

    International Nuclear Information System (INIS)

    Fan, J; Lin, T; Jin, L; Chen, L; Veltchev, I; Wang, L; Eldib, A; Chibani, O; Wang, B; Price, R; Ma, C; Xu, Q

    2016-01-01

    Purpose: Liver SBRT patients unable to tolerate breath-hold for radiotherapy are treated free-breathing with image guidance. Target localization using 3D CBCT requires extra margins to accommodate the respiratory motion. The purpose of this study is to evaluate the accuracy and reproducibility of 4D CT-on-rails in target localization for free-breathing liver SBRT. Methods: A Siemens SOMATOM CT-on-Rails 4D with Anzai Pressure Belt system was used both as the simulation and the localization CT. Fiducial marker was placed close to the center of the target prior to the simulation. Amplitude based sorting was used in the scan. Eight or sixteen phases of reconstructed CT sets (depends on breathing pattern) can be sent to Velocity to create the maximum intensity projection (MIP) image set. Target ITV and fiducial ITV were drawn based on the MIP image. In patient localization, a 4D scan was taken with the same settings as the sim scan. Images were registered to match fiducial ITVs. Results: Ten liver cancer patients treated for 50Gy over 5 fractions, with amplitudes of breathing motion ranging from 4.3–14.5 mm, were analyzed in this study. Results show that the Intra & inter fraction variability in liver motion amplitude significantly less than the baseline inter-fraction shifts in liver position. 90% of amplitude change is less than 3 mm. The differences in the D99 and D95 GTV dose coverage between the 4D CT-on-Rails and the CBCT plan were small (within 5%) for all the selected cases. However, the average PTV volume by using the 4D CT-on-Rails is 37% less than the CBCT PTV volume. Conclusion: Simulation and Registration using 4D CT-on-Rails provides accurate target localization and is unaffected by larger breathing amplitudes as seen with 3D CBCT image registration. Localization with 4D CT-on-Rails can significantly reduce the PTV volume with sufficient tumor

  13. MO-FG-CAMPUS-JeP3-05: Evaluation of 4D CT-On-Rails Target Localization Methods for Free Breathing Liver Stereotactic Body Radiotherapy (SBRT)

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J; Lin, T; Jin, L; Chen, L; Veltchev, I; Wang, L; Eldib, A; Chibani, O; Wang, B; Price, R; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Xu, Q [MD Anderson Cancer Center at Cooper Mt Laurel, NJ (United States)

    2016-06-15

    Purpose: Liver SBRT patients unable to tolerate breath-hold for radiotherapy are treated free-breathing with image guidance. Target localization using 3D CBCT requires extra margins to accommodate the respiratory motion. The purpose of this study is to evaluate the accuracy and reproducibility of 4D CT-on-rails in target localization for free-breathing liver SBRT. Methods: A Siemens SOMATOM CT-on-Rails 4D with Anzai Pressure Belt system was used both as the simulation and the localization CT. Fiducial marker was placed close to the center of the target prior to the simulation. Amplitude based sorting was used in the scan. Eight or sixteen phases of reconstructed CT sets (depends on breathing pattern) can be sent to Velocity to create the maximum intensity projection (MIP) image set. Target ITV and fiducial ITV were drawn based on the MIP image. In patient localization, a 4D scan was taken with the same settings as the sim scan. Images were registered to match fiducial ITVs. Results: Ten liver cancer patients treated for 50Gy over 5 fractions, with amplitudes of breathing motion ranging from 4.3–14.5 mm, were analyzed in this study. Results show that the Intra & inter fraction variability in liver motion amplitude significantly less than the baseline inter-fraction shifts in liver position. 90% of amplitude change is less than 3 mm. The differences in the D99 and D95 GTV dose coverage between the 4D CT-on-Rails and the CBCT plan were small (within 5%) for all the selected cases. However, the average PTV volume by using the 4D CT-on-Rails is 37% less than the CBCT PTV volume. Conclusion: Simulation and Registration using 4D CT-on-Rails provides accurate target localization and is unaffected by larger breathing amplitudes as seen with 3D CBCT image registration. Localization with 4D CT-on-Rails can significantly reduce the PTV volume with sufficient tumor.

  14. Cooperative motion control for multi-target observation

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E.

    1997-08-01

    An important issue that arises in the automation of many security, surveillance, and reconnaissance tasks is that of monitoring (or observing) the movements of targets navigating in a bounded area of interest. A key research issue in these problems is that of sensor placement--determining where sensors should be located to maintain the targets in view. In complex applications involving limited-range sensors, the use of multiple sensors dynamically moving over time is required. In this paper, the author investigates the use of a cooperative team of autonomous sensor-based robots for the observation of multiple moving targets. The focus is primarily on developing the distributed control strategies that allow the robot team to attempt to minimize the total time in which targets escape observation by some robot team member in the area of interest. This paper first formalizes the problem and discusses related work. The author then presents a distributed approximate approach to solving this problem that combines low-level multi-robot control with higher-level reasoning control based on the ALLIANCE formalism. The effectiveness of the approach is analyzed by comparing it to three other feasible algorithms for cooperative control, showing the superiority of the approach for a large class of problems.

  15. Cooperative motion control for multi-target observation

    International Nuclear Information System (INIS)

    Parker, L.E.

    1997-01-01

    An important issue that arises in the automation of many security, surveillance, and reconnaissance tasks is that of monitoring (or observing) the movements of targets navigating in a bounded area of interest. A key research issue in these problems is that of sensor placement--determining where sensors should be located to maintain the targets in view. In complex applications involving limited-range sensors, the use of multiple sensors dynamically moving over time is required. In this paper, the author investigates the use of a cooperative team of autonomous sensor-based robots for the observation of multiple moving targets. The focus is primarily on developing the distributed control strategies that allow the robot team to attempt to minimize the total time in which targets escape observation by some robot team member in the area of interest. This paper first formalizes the problem and discusses related work. The author then presents a distributed approximate approach to solving this problem that combines low-level multi-robot control with higher-level reasoning control based on the ALLIANCE formalism. The effectiveness of the approach is analyzed by comparing it to three other feasible algorithms for cooperative control, showing the superiority of the approach for a large class of problems

  16. Magnetic Resonance Image Guided Radiation Therapy for External Beam Accelerated Partial-Breast Irradiation: Evaluation of Delivered Dose and Intrafractional Cavity Motion

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Sahaja; Fischer-Valuck, Benjamin W.; Mazur, Thomas R.; Curcuru, Austen; Sona, Karl; Kashani, Rojano; Green, Olga; Ochoa, Laura; Mutic, Sasa; Zoberi, Imran; Li, H. Harold; Thomas, Maria A., E-mail: mthomas@radonc.wustl.edu

    2016-11-15

    Purpose: To use magnetic resonance image guided radiation therapy (MR-IGRT) for accelerated partial-breast irradiation (APBI) to (1) determine intrafractional motion of the breast surgical cavity; and (2) assess delivered dose versus planned dose. Methods and Materials: Thirty women with breast cancer (stages 0-I) who underwent breast-conserving surgery were enrolled in a prospective registry evaluating APBI using a 0.35-T MR-IGRT system. Clinical target volume was defined as the surgical cavity plus a 1-cm margin (excluding chest wall, pectoral muscles, and 5 mm from skin). No additional margin was added for the planning target volume (PTV). A volumetric MR image was acquired before each fraction, and patients were set up to the surgical cavity as visualized on MR imaging. To determine the delivered dose for each fraction, the electron density map and contours from the computed tomography simulation were transferred to the pretreatment MR image via rigid registration. Intrafractional motion of the surgical cavity was determined by applying a tracking algorithm to the cavity contour as visualized on cine MR. Results: Median PTV volume was reduced by 52% when using no PTV margin compared with a 1-cm PTV margin used conventionally. The mean (± standard deviation) difference between planned and delivered dose to the PTV (V95) was 0.6% ± 0.1%. The mean cavity displacement in the anterior–posterior and superior–inferior directions was 0.6 ± 0.4 mm and 0.6 ± 0.3 mm, respectively. The mean margin required for at least 90% of the cavity to be contained by the margin for 90% of the time was 0.7 mm (5th-95th percentile: 0-2.7 mm). Conclusion: Minimal intrafractional motion was observed, and the mean difference between planned and delivered dose was less than 1%. Assessment of efficacy and cosmesis of this MR-guided APBI approach is under way.

  17. SU-E-J-42: Evaluation of Fiducial Markers for Ultrasound and X-Ray Images Used for Motion Tracking in Pancreas SBRT

    International Nuclear Information System (INIS)

    Ng, SK; Armour, E; Su, L; Zhang, Y; Wong, J; Ding, K; Iordachita, I; Sen, H Tutkun; Kazanzides, P; Bell, M Lediju

    2015-01-01

    Purpose Ultrasound tracking of target motion relies on visibility of vascular and/or anatomical landmark. However this is challenging when the target is located far from vascular structures or in organs that lack ultrasound landmark structure, such as in the case of pancreas cancer. The purpose of this study is to evaluate visibility, artifacts and distortions of fusion coils and solid gold markers in ultrasound, CT, CBCT and kV images to identify markers suitable for real-time ultrasound tracking of tumor motion in SBRT pancreas treatment. Methods Two fusion coils (1mm × 5mm and 1mm × 10 mm) and a solid gold marker (0.8mm × 10mm) were embedded in a tissue–like ultrasound phantom. The phantom (5cm × 12cm × 20cm) was prepared using water, gelatin and psyllium-hydrophilic-mucilloid fiber. Psylliumhydrophilic mucilloid acts as scattering medium to produce echo texture that simulates sonographic appearance of human tissue in ultrasound images while maintaining electron density close to that of water in CT images. Ultrasound images were acquired using 3D-ultrasound system with markers embedded at 5, 10 and 15mm depth from phantom surface. CT images were acquired using Philips Big Bore CT while CBCT and kV images were acquired with XVI-system (Elexta). Visual analysis was performed to compare visibility of the markers and visibility score (1 to 3) were assigned. Results All markers embedded at various depths are clearly visible (score of 3) in ultrasound images. Good visibility of all markers is observed in CT, CBCT and kV images. The degree of artifact produced by the markers in CT and CBCT images are indistinguishable. No distortion is observed in images from any modalities. Conclusion All markers are visible in images across all modalities in this homogenous tissue-like phantom. Human subject data is necessary to confirm the marker type suitable for real-time ultrasound tracking of tumor motion in SBRT pancreas treatment

  18. SU-E-J-42: Evaluation of Fiducial Markers for Ultrasound and X-Ray Images Used for Motion Tracking in Pancreas SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Ng, SK; Armour, E; Su, L; Zhang, Y; Wong, J; Ding, K [Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD (United States); Iordachita, I [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD (United States); Sen, H Tutkun; Kazanzides, P; Bell, M Lediju [Department of Computer Science, Johns Hopkins University, Baltimore, MD (United States)

    2015-06-15

    Purpose Ultrasound tracking of target motion relies on visibility of vascular and/or anatomical landmark. However this is challenging when the target is located far from vascular structures or in organs that lack ultrasound landmark structure, such as in the case of pancreas cancer. The purpose of this study is to evaluate visibility, artifacts and distortions of fusion coils and solid gold markers in ultrasound, CT, CBCT and kV images to identify markers suitable for real-time ultrasound tracking of tumor motion in SBRT pancreas treatment. Methods Two fusion coils (1mm × 5mm and 1mm × 10 mm) and a solid gold marker (0.8mm × 10mm) were embedded in a tissue–like ultrasound phantom. The phantom (5cm × 12cm × 20cm) was prepared using water, gelatin and psyllium-hydrophilic-mucilloid fiber. Psylliumhydrophilic mucilloid acts as scattering medium to produce echo texture that simulates sonographic appearance of human tissue in ultrasound images while maintaining electron density close to that of water in CT images. Ultrasound images were acquired using 3D-ultrasound system with markers embedded at 5, 10 and 15mm depth from phantom surface. CT images were acquired using Philips Big Bore CT while CBCT and kV images were acquired with XVI-system (Elexta). Visual analysis was performed to compare visibility of the markers and visibility score (1 to 3) were assigned. Results All markers embedded at various depths are clearly visible (score of 3) in ultrasound images. Good visibility of all markers is observed in CT, CBCT and kV images. The degree of artifact produced by the markers in CT and CBCT images are indistinguishable. No distortion is observed in images from any modalities. Conclusion All markers are visible in images across all modalities in this homogenous tissue-like phantom. Human subject data is necessary to confirm the marker type suitable for real-time ultrasound tracking of tumor motion in SBRT pancreas treatment.

  19. Preconceptions of Japanese Students Surveyed Using the Force and Motion Conceptual Evaluation

    Science.gov (United States)

    Ishimoto, Michi

    2010-07-01

    We assess the preconceptions of Japanese students about force and motion. The Force and Motion Conceptual Evaluation is a research-based, multiple-choice assessment of students' conceptual understanding of Newton's laws of motion and energy conservation. It is administered to determine the effectiveness of introductory mechanics curricula. In this study, the test was given to engineering students at the beginning of the first lecture of an introductory mechanics course for several years. Some students had minimal high school physics education, whereas the others had completed high school physics programs. To probe the students' preconceptions, we studied their test answers for each of the following categories: velocity, acceleration, Newton's first and second laws, Newton's third law, and energy conservation. We find that preconceptions, such as F ∝ mv, are prevalent among the students, regardless of their level of high school physics education. In the case of a collision between two objects, two preconceptions—a mass-dependent model and an action-dependent model—are prevalent. Typically, students combine the two models, with action dependency outweighing mass dependency. In the case of a sled sliding down a hill without friction at two heights and inclinations, a quarter of students used the height-dependent model to answer questions regarding speed and kinetic energy.

  20. Evaluation of modal pushover-based scaling of one component of ground motion: Tall buildings

    Science.gov (United States)

    Kalkan, Erol; Chopra, Anil K.

    2012-01-01

    Nonlinear response history analysis (RHA) is now increasingly used for performance-based seismic design of tall buildings. Required for nonlinear RHAs is a set of ground motions selected and scaled appropriately so that analysis results would be accurate (unbiased) and efficient (having relatively small dispersion). This paper evaluates accuracy and efficiency of recently developed modal pushover–based scaling (MPS) method to scale ground motions for tall buildings. The procedure presented explicitly considers structural strength and is based on the standard intensity measure (IM) of spectral acceleration in a form convenient for evaluating existing structures or proposed designs for new structures. Based on results presented for two actual buildings (19 and 52 stories, respectively), it is demonstrated that the MPS procedure provided a highly accurate estimate of the engineering demand parameters (EDPs), accompanied by significantly reduced record-to-record variability of the responses. In addition, the MPS procedure is shown to be superior to the scaling procedure specified in the ASCE/SEI 7-05 document.

  1. Economic evaluation of targeted cancer interventions: critical review and recommendations.

    Science.gov (United States)

    Elkin, Elena B; Marshall, Deborah A; Kulin, Nathalie A; Ferrusi, Ilia L; Hassett, Michael J; Ladabaum, Uri; Phillips, Kathryn A

    2011-10-01

    Scientific advances have improved our ability to target cancer interventions to individuals who will benefit most and spare the risks and costs to those who will derive little benefit or even be harmed. Several approaches are currently used for targeting interventions for cancer risk reduction, screening, and treatment, including risk prediction algorithms for identifying high-risk subgroups and diagnostic tests for tumor markers and germline genetic mutations. Economic evaluation can inform decisions about the use of targeted interventions, which may be more costly than traditional strategies. However, assessing the impact of a targeted intervention on costs and health outcomes requires explicit consideration of the method of targeting. In this study, we describe the importance of this principle by reviewing published cost-effectiveness analyses of targeted interventions in breast cancer. Few studies we identified explicitly evaluated the relationships among the method of targeting, the accuracy of the targeting test, and outcomes of the targeted intervention. Those that did found that characteristics of targeting tests had a substantial impact on outcomes. We posit that the method of targeting and the outcomes of a targeted intervention are inextricably linked and recommend that cost-effectiveness analyses of targeted interventions explicitly consider costs and outcomes of the method of targeting.

  2. MO-G-18C-03: Evaluation of Deformable Image Registration for Lung Motion Estimation Using Hyperpolarized Gas Tagging MRI

    International Nuclear Information System (INIS)

    Huang, Q; Zhang, Y; Liu, Y; Hu, L; Yin, F; Cai, J; Miller, W

    2014-01-01

    Purpose: Hyperpolarized gas (HP) tagging MRI is a novel imaging technique for direct measurement of lung motion during breathing. This study aims to quantitatively evaluate the accuracy of deformable image registration (DIR) in lung motion estimation using HP tagging MRI as references. Methods: Three healthy subjects were imaged using the HP MR tagging, as well as a high-resolution 3D proton MR sequence (TrueFISP) at the end-of-inhalation (EOI) and the end-of-exhalation (EOE). Ground truth of lung motion and corresponding displacement vector field (tDVF) was derived from HP tagging MRI by manually tracking the displacement of tagging grids between EOI and EOE. Seven different DIR methods were applied to the high-resolution TrueFISP MR images (EOI and EOE) to generate the DIR-based DVFs (dDVF). The DIR methods include Velocity (VEL), MIM, Mirada, multi-grid B-spline from Elastix (MGB) and 3 other algorithms from DIRART toolbox (Double Force Demons (DFD), Improved Lucas-Kanade (ILK), and Iterative Optical Flow (IOF)). All registrations were performed by independent experts. Target registration error (TRE) was calculated as tDVF – dDVF. Analysis was performed for the entire lungs, and separately for the upper and lower lungs. Results: Significant differences between tDVF and dDVF were observed. Besides the DFD and IOF algorithms, all other dDVFs showed similarity in deformation magnitude distribution but away from the ground truth. The average TRE for entire lung ranged 2.5−23.7mm (mean=8.8mm), depending on the DIR method and subject's breathing amplitude. Larger TRE (13.3–23.7mm) was found in subject with larger breathing amplitude of 45.6mm. TRE was greater in lower lung (2.5−33.9 mm, mean=12.4mm) than that in upper lung (2.5−11.9 mm, mean=5.8mm). Conclusion: Significant differences were observed in lung motion estimation between the HP gas tagging MRI method and the DIR methods, especially when lung motion is large. Large variation among different

  3. MO-G-18C-03: Evaluation of Deformable Image Registration for Lung Motion Estimation Using Hyperpolarized Gas Tagging MRI

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Q; Zhang, Y [Duke University, Durham, NC (United States); Liu, Y [Duke University (United States); Hu, L; Yin, F; Cai, J [Duke University Medical Center, Durham, NC (United States); Miller, W [University of Virginia, Charlottesville, VA (United States)

    2014-06-15

    Purpose: Hyperpolarized gas (HP) tagging MRI is a novel imaging technique for direct measurement of lung motion during breathing. This study aims to quantitatively evaluate the accuracy of deformable image registration (DIR) in lung motion estimation using HP tagging MRI as references. Methods: Three healthy subjects were imaged using the HP MR tagging, as well as a high-resolution 3D proton MR sequence (TrueFISP) at the end-of-inhalation (EOI) and the end-of-exhalation (EOE). Ground truth of lung motion and corresponding displacement vector field (tDVF) was derived from HP tagging MRI by manually tracking the displacement of tagging grids between EOI and EOE. Seven different DIR methods were applied to the high-resolution TrueFISP MR images (EOI and EOE) to generate the DIR-based DVFs (dDVF). The DIR methods include Velocity (VEL), MIM, Mirada, multi-grid B-spline from Elastix (MGB) and 3 other algorithms from DIRART toolbox (Double Force Demons (DFD), Improved Lucas-Kanade (ILK), and Iterative Optical Flow (IOF)). All registrations were performed by independent experts. Target registration error (TRE) was calculated as tDVF – dDVF. Analysis was performed for the entire lungs, and separately for the upper and lower lungs. Results: Significant differences between tDVF and dDVF were observed. Besides the DFD and IOF algorithms, all other dDVFs showed similarity in deformation magnitude distribution but away from the ground truth. The average TRE for entire lung ranged 2.5−23.7mm (mean=8.8mm), depending on the DIR method and subject's breathing amplitude. Larger TRE (13.3–23.7mm) was found in subject with larger breathing amplitude of 45.6mm. TRE was greater in lower lung (2.5−33.9 mm, mean=12.4mm) than that in upper lung (2.5−11.9 mm, mean=5.8mm). Conclusion: Significant differences were observed in lung motion estimation between the HP gas tagging MRI method and the DIR methods, especially when lung motion is large. Large variation among different

  4. Optimizing monoscopic kV fluoro acquisition for prostate intrafraction motion evaluation

    International Nuclear Information System (INIS)

    Adamson, Justus; Wu Qiuwen

    2009-01-01

    Monoscopic kV imaging during radiotherapy has been recently implemented for prostate intrafraction motion evaluation. However, the accuracy of 3D localization techniques from monoscopic imaging of prostate and the effect of acquisition parameters on the 3D accuracy have not been studied in detail, with imaging dose remaining a concern. In this paper, we investigate methods to optimize the kV acquisition parameters and imaging protocol to achieve improved 3D localization and 2D image registration accuracy for minimal imaging dose. Prostate motion during radiotherapy was simulated using existing cine-MRI measurements, and was used to investigate the accuracy of various 3D localization techniques and the effect of the kV acquisition protocol. We also investigated the relationship between mAs and the accuracy of the 2D image registration for localization of fiducial markers and we measured imaging dose for a 30 cm diameter phantom to evaluate the necessary dose to achieve acceptable image registration accuracy. Simulations showed that the error in assuming the shortest path to localize the prostate in 3D using monoscopic imaging during a typical IMRT fraction will be less than ∼1.5 mm for 95% of localizations, and will also depend on prostate motion distribution, treatment duration and image acquisition and treatment protocol. Most uncertainty cannot be reduced from higher imaging frequency or acquiring during gantry rotation between beams. Measured maximum surface dose to the cylindrical phantom from monoscopic kV intrafraction acquisitions varied between 0.4 and 5.5 mGy, depending on the acquisition protocol, and was lower than the required dose for CBCT (21.1 mGy). Imaging dose can be lowered by ∼15-40% when mAs is optimized with acquisition angle. Images acquired during MV beam delivery require increased mAs to obtain the same level of registration accuracy, with mAs/registration increasing roughly linearly with field size and dose rate.

  5. Evaluation of the RACON 15000 microwave motion detection system

    International Nuclear Information System (INIS)

    1979-01-01

    A series of tests was performed on the RACON 15000 motion detection system. The primary objectives of these tests were to determine sensor detection patterns and to quantitate the effects of intruder velocity. System susceptibility to fluorescent lights, oscillatory motion, and environmental factors was also examined

  6. TU-AB-BRB-02: Stochastic Programming Methods for Handling Uncertainty and Motion in IMRT Planning

    Energy Technology Data Exchange (ETDEWEB)

    Unkelbach, J. [Massachusetts General Hospital (United States)

    2015-06-15

    The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. The treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand

  7. Cumulative Lung Dose for Several Motion Management Strategies as a Function of Pretreatment Patient Parameters

    International Nuclear Information System (INIS)

    Hugo, Geoffrey D.; Campbell, Jonathon; Zhang Tiezhi; Yan Di

    2009-01-01

    Purpose: To evaluate patient parameters that may predict for relative differences in cumulative four-dimensional (4D) lung dose among several motion management strategies. Methods and Materials: Deformable image registration and dose accumulation were used to generate 4D treatment plans for 18 patients with 4D computed tomography scans. Three plans were generated to simulate breath hold at normal inspiration, target tracking with the beam aperture, and mid-ventilation aperture (control of the target at the mean daily position and application of an iteratively computed margin to compensate for respiration). The relative reduction in mean lung dose (MLD) between breath hold and mid-ventilation aperture (ΔMLD BH ) and between target tracking and mid-ventilation aperture (ΔMLD TT ) was calculated. Associations between these two variables and parameters of the lesion (excursion, size, location, and deformation) and dose distribution (local dose gradient near the target) were also calculated. Results: The largest absolute and percentage differences in MLD were 1.0 Gy and 21.5% between breath hold and mid-ventilation aperture. ΔMLD BH was significantly associated (p TT was significantly associated with excursion, deformation, and local dose gradient. A linear model was constructed to represent ΔMLD vs. excursion. For each 5 mm of excursion, target tracking reduced the MLD by 4% compared with the results of a mid-ventilation aperture plan. For breath hold, the reduction was 5% per 5 mm of excursion. Conclusions: The relative difference in MLD among different motion management strategies varied with patient and tumor characteristics for a given dosimetric target coverage. Tumor excursion is useful to aid in stratifying patients according to appropriate motion management strategies.

  8. Developing a Motion Comic for HIV/STD Prevention for Young People Ages 15-24, Part 1: Listening to Your Target Audience.

    Science.gov (United States)

    Willis, Leigh A; Kachur, Rachel; Castellanos, Ted J; Spikes, Pilgrim; Gaul, Zaneta J; Gamayo, Ashley C; Durham, Marcus; Jones, Sandra; Nichols, Kristen; Han Barthelemy, Solange; LaPlace, Lisa; Staatz, Colleen; Hogben, Matthew; Robinson, Susan; Brooks, John T; Sutton, Madeline Y

    2018-02-01

    Young people (15-24 years) in the United States are disproportionately affected by infection with human immunodeficiency virus (HIV) and sexually transmitted diseases (STD). Shortfalls in HIV/STD-related knowledge, attitudes, beliefs, and behavioral intentions (KABI) likely contribute to this discrepancy. In this report we describe our experience developing a novel means of health communication combining entertainment-education theory and recent technological advances to create a HIV/STD-focused "motion comic." We also report the audience satisfaction and acceptance of the intervention. We used the Health Belief Model (HBM), entertainment-education (EE) principles, and the Sabido Method (SM) and conducted three rounds of focus groups to develop a 38-minute HIV/STD focused motion comic for young people between the ages 15 and 24 years. Participants indicated that motion comics were an acceptable method of delivering HIV/STD prevention messages. They also expressed satisfaction with motion comics plot, story settings, the tone of humor, and drama. Our results suggest that motion comics are a viable new method of delivering health communication messages about HIV/STD and other public health issues, and warrant further development and broader evaluation.

  9. Breaking camouflage and detecting targets require optic flow and image structure information.

    Science.gov (United States)

    Pan, Jing Samantha; Bingham, Ned; Chen, Chang; Bingham, Geoffrey P

    2017-08-01

    Use of motion to break camouflage extends back to the Cambrian [In the Blink of an Eye: How Vision Sparked the Big Bang of Evolution (New York Basic Books, 2003)]. We investigated the ability to break camouflage and continue to see camouflaged targets after motion stops. This is crucial for the survival of hunting predators. With camouflage, visual targets and distracters cannot be distinguished using only static image structure (i.e., appearance). Motion generates another source of optical information, optic flow, which breaks camouflage and specifies target locations. Optic flow calibrates image structure with respect to spatial relations among targets and distracters, and calibrated image structure makes previously camouflaged targets perceptible in a temporally stable fashion after motion stops. We investigated this proposal using laboratory experiments and compared how many camouflaged targets were identified either with optic flow information alone or with combined optic flow and image structure information. Our results show that the combination of motion-generated optic flow and target-projected image structure information yielded efficient and stable perception of camouflaged targets.

  10. Evaluation of ground motion scaling methods for analysis of structural systems

    Science.gov (United States)

    O'Donnell, A. P.; Beltsar, O.A.; Kurama, Y.C.; Kalkan, E.; Taflanidis, A.A.

    2011-01-01

    Ground motion selection and scaling comprises undoubtedly the most important component of any seismic risk assessment study that involves time-history analysis. Ironically, this is also the single parameter with the least guidance provided in current building codes, resulting in the use of mostly subjective choices in design. The relevant research to date has been primarily on single-degree-of-freedom systems, with only a few studies using multi-degree-of-freedom systems. Furthermore, the previous research is based solely on numerical simulations with no experimental data available for the validation of the results. By contrast, the research effort described in this paper focuses on an experimental evaluation of selected ground motion scaling methods based on small-scale shake-table experiments of re-configurable linearelastic and nonlinear multi-story building frame structure models. Ultimately, the experimental results will lead to the development of guidelines and procedures to achieve reliable demand estimates from nonlinear response history analysis in seismic design. In this paper, an overview of this research effort is discussed and preliminary results based on linear-elastic dynamic response are presented. ?? ASCE 2011.

  11. TU-AB-BRB-00: New Methods to Ensure Target Coverage

    International Nuclear Information System (INIS)

    2015-01-01

    The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. The treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand

  12. Probabilistic evaluation of near-field ground motions due to buried-rupture earthquakes caused by undefined faults

    International Nuclear Information System (INIS)

    Shohei Motohashi; Katsumi Ebisawa; Masaharu Sakagmi; Kazuo Dan; Yasuhiro Ohtsuka; Takao Kagawa

    2005-01-01

    The Nuclear Safety Commission of Japan has been reviewing the current Guideline for Earthquake Resistant Design of Nuclear Power Plants since July 2001. According to recent earthquake research, one of the main issues in the review is the design earthquake motion due to close-by earthquakes caused by undefined faults. This paper proposes a probabilistic method for covering variations of earthquake magnitude and location of undefined faults by strong motion simulation technique based on fault models for scenario earthquakes, and describes probabilistic response spectra due to close-by scenario earthquakes caused by undefined faults. Horizontal uniform hazard spectra evaluated by a hybrid technique are compared with those evaluated by an empirical approach. The response spectra with a damping factor of 5% at 0.02 s simulated by the hybrid technique are about 160, 340, 570, and 800 cm/s/s for annual exceedance probabilities of 10 -3 , 10 -4 , 10 -5 , and 10 -6 , respectively, which are in good agreement with the response spectra evaluated by the empirical approach. It is also recognized that the response spectrum proposed by Kato et al. (2004) as the upper level of the strong motion records of buried-rupture earthquakes corresponded to the uniform hazard spectra between 10 -5 and 10 -4 in the period range shorter than 0.4 s. (authors)

  13. Development Of Translational Motion Of Unmanned Aerial Vehicle Using MATLAB

    Directory of Open Access Journals (Sweden)

    Thwe Thwe Htoo

    2015-08-01

    Full Text Available This research work describes the translational motion analysis of unmanned aerial vehicle UAV. Since the center of mass of the receiver is timevarying the equations are written in a reference frame that is geometrically fixed in the aircraft. Due to the fact that aerial vehicle simulation and control deal with the position and orientation of the UAV the equations of motion are derived in terms of the translational and rotational position and velocity with respect to the aircraft location. The formation relative motion control is a challenging problem due to the coupled translational and rotational dynamics. As the translational vector depends on the current attitude and its angular velocity and some of the attitude constraints also couple the position and attitude of the spacecraft it makes the formation control problem high dimensional. This work develops UAV stability conditions including translational vector maneuverability condition and included angle condition between the translational and the rotational motion of UAV system and then presents two methods to calculate the UAV attitude. Both of the two methods need first design the optimal trajectory of the translational vector and then use geometric and nonlinear programming methods to calculate the target trajectory. The validity of the proposed approach is demonstrated in a UAV by using MATLAB. The performance of the translational motion control is evaluated by the simulated results.

  14. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    International Nuclear Information System (INIS)

    Bowen, S R; Nyflot, M J; Meyer, J; Sandison, G A; Herrmann, C; Groh, C M; Wollenweber, S D; Stearns, C W; Kinahan, P E

    2015-01-01

    Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [ 18 F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/B mean ) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10–20%, treatment planning errors were 5–10%, and treatment delivery errors were 5–30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5–10% in PET/CT imaging, <5% in treatment planning, and <2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT

  15. Tumor trailing strategy for intensity-modulated radiation therapy of moving targets

    International Nuclear Information System (INIS)

    Trofimov, Alexei; Vrancic, Christian; Chan, Timothy C. Y.; Sharp, Gregory C.; Bortfeld, Thomas

    2008-01-01

    Internal organ motion during the course of radiation therapy of cancer affects the distribution of the delivered dose and, generally, reduces its conformality to the targeted volume. Previously proposed approaches aimed at mitigating the effect of internal motion in intensity-modulated radiation therapy (IMRT) included expansion of the target margins, motion-correlated delivery (e.g., respiratory gating, tumor tracking), and adaptive treatment plan optimization employing a probabilistic description of motion. We describe and test the tumor trailing strategy, which utilizes the synergy of motion-adaptive treatment planning and delivery methods. We regard the (rigid) target motion as a superposition of a relatively fast cyclic component (e.g., respiratory) and slow aperiodic trends (e.g., the drift of exhalation baseline). In the trailing approach, these two components of motion are decoupled and dealt with separately. Real-time motion monitoring is employed to identify the 'slow' shifts, which are then corrected by applying setup adjustments. The delivery does not track the target position exactly, but trails the systematic trend due to the delay between the time a shift occurs, is reliably detected, and, subsequently, corrected. The ''fast'' cyclic motion is accounted for with a robust motion-adaptive treatment planning, which allows for variability in motion parameters (e.g., mean and extrema of the tidal volume, variable period of respiration, and expiratory duration). Motion-surrogate data from gated IMRT treatments were used to provide probability distribution data for motion-adaptive planning and to test algorithms that identified systematic trends in the character of motion. Sample IMRT fields were delivered on a clinical linear accelerator to a programmable moving phantom. Dose measurements were performed with a commercial two-dimensional ion-chamber array. The results indicate that by reducing intrafractional motion variability, the trailing strategy

  16. Predictive local receptive fields based respiratory motion tracking for motion-adaptive radiotherapy.

    Science.gov (United States)

    Yubo Wang; Tatinati, Sivanagaraja; Liyu Huang; Kim Jeong Hong; Shafiq, Ghufran; Veluvolu, Kalyana C; Khong, Andy W H

    2017-07-01

    Extracranial robotic radiotherapy employs external markers and a correlation model to trace the tumor motion caused by the respiration. The real-time tracking of tumor motion however requires a prediction model to compensate the latencies induced by the software (image data acquisition and processing) and hardware (mechanical and kinematic) limitations of the treatment system. A new prediction algorithm based on local receptive fields extreme learning machines (pLRF-ELM) is proposed for respiratory motion prediction. All the existing respiratory motion prediction methods model the non-stationary respiratory motion traces directly to predict the future values. Unlike these existing methods, the pLRF-ELM performs prediction by modeling the higher-level features obtained by mapping the raw respiratory motion into the random feature space of ELM instead of directly modeling the raw respiratory motion. The developed method is evaluated using the dataset acquired from 31 patients for two horizons in-line with the latencies of treatment systems like CyberKnife. Results showed that pLRF-ELM is superior to that of existing prediction methods. Results further highlight that the abstracted higher-level features are suitable to approximate the nonlinear and non-stationary characteristics of respiratory motion for accurate prediction.

  17. Correlation between hip function and knee kinematics evaluated by three-dimensional motion analysis during lateral and medial side-hopping.

    Science.gov (United States)

    Itoh, Hiromitsu; Takiguchi, Kohei; Shibata, Yohei; Okubo, Satoshi; Yoshiya, Shinichi; Kuroda, Ryosuke

    2016-09-01

    [Purpose] Kinematic and kinetic characteristics of the limb during side-hopping and hip/knee interaction during this motion have not been clarified. The purposes of this study were to examine the biomechanical parameters of the knee during side hop and analyze its relationship with clinical measurements of hip function. [Subjects and Methods] Eleven male college rugby players were included. A three-dimensional motion analysis system was used to assess motion characteristics of the knee during side hop. In addition, hip range of motion and muscle strength were evaluated. Subsequently, the relationship between knee motion and the clinical parameters of the hip was analyzed. [Results] In the lateral touchdown phase, the knee was positioned in an abducted and externally rotated position, and increasing abduction moment was applied to the knee. An analysis of the interaction between knee motion and hip function showed that range of motion for hip internal rotation was significantly correlated with external rotation angle and external rotation/abduction moments of the knee during the lateral touchdown phase. [Conclusion] Range of motion for hip internal rotation should be taken into consideration for identifying the biomechanical characteristics in the side hop test results.

  18. UMCE-FM: Untethered Motion Capture Evaluation for Flightline Maintenance Support

    National Research Council Canada - National Science Library

    Kider, Jr., Joseph T; Stocker, Catherine R; Badler, Norman I

    2008-01-01

    .... The primary objective was to determine the potential of untethered motion capture capabilities for real-time human subject motion capture and performance data collection with full-scale physical props...

  19. SU-F-J-133: Adaptive Radiation Therapy with a Four-Dimensional Dose Calculation Algorithm That Optimizes Dose Distribution Considering Breathing Motion

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Algan, O; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [University of Central Oklahoma, Edmond, OK (United States)

    2016-06-15

    Purpose: To model patient motion and produce four-dimensional (4D) optimized dose distributions that consider motion-artifacts in the dose calculation during the treatment planning process. Methods: An algorithm for dose calculation is developed where patient motion is considered in dose calculation at the stage of the treatment planning. First, optimal dose distributions are calculated for the stationary target volume where the dose distributions are optimized considering intensity-modulated radiation therapy (IMRT). Second, a convolution-kernel is produced from the best-fitting curve which matches the motion trajectory of the patient. Third, the motion kernel is deconvolved with the initial dose distribution optimized for the stationary target to produce a dose distribution that is optimized in four-dimensions. This algorithm is tested with measured doses using a mobile phantom that moves with controlled motion patterns. Results: A motion-optimized dose distribution is obtained from the initial dose distribution of the stationary target by deconvolution with the motion-kernel of the mobile target. This motion-optimized dose distribution is equivalent to that optimized for the stationary target using IMRT. The motion-optimized and measured dose distributions are tested with the gamma index with a passing rate of >95% considering 3% dose-difference and 3mm distance-to-agreement. If the dose delivery per beam takes place over several respiratory cycles, then the spread-out of the dose distributions is only dependent on the motion amplitude and not affected by motion frequency and phase. This algorithm is limited to motion amplitudes that are smaller than the length of the target along the direction of motion. Conclusion: An algorithm is developed to optimize dose in 4D. Besides IMRT that provides optimal dose coverage for a stationary target, it extends dose optimization to 4D considering target motion. This algorithm provides alternative to motion management

  20. Visual Benefits in Apparent Motion Displays: Automatically Driven Spatial and Temporal Anticipation Are Partially Dissociated.

    Directory of Open Access Journals (Sweden)

    Merle-Marie Ahrens

    Full Text Available Many behaviourally relevant sensory events such as motion stimuli and speech have an intrinsic spatio-temporal structure. This will engage intentional and most likely unintentional (automatic prediction mechanisms enhancing the perception of upcoming stimuli in the event stream. Here we sought to probe the anticipatory processes that are automatically driven by rhythmic input streams in terms of their spatial and temporal components. To this end, we employed an apparent visual motion paradigm testing the effects of pre-target motion on lateralized visual target discrimination. The motion stimuli either moved towards or away from peripheral target positions (valid vs. invalid spatial motion cueing at a rhythmic or arrhythmic pace (valid vs. invalid temporal motion cueing. Crucially, we emphasized automatic motion-induced anticipatory processes by rendering the motion stimuli non-predictive of upcoming target position (by design and task-irrelevant (by instruction, and by creating instead endogenous (orthogonal expectations using symbolic cueing. Our data revealed that the apparent motion cues automatically engaged both spatial and temporal anticipatory processes, but that these processes were dissociated. We further found evidence for lateralisation of anticipatory temporal but not spatial processes. This indicates that distinct mechanisms may drive automatic spatial and temporal extrapolation of upcoming events from rhythmic event streams. This contrasts with previous findings that instead suggest an interaction between spatial and temporal attention processes when endogenously driven. Our results further highlight the need for isolating intentional from unintentional processes for better understanding the various anticipatory mechanisms engaged in processing behaviourally relevant stimuli with predictable spatio-temporal structure such as motion and speech.

  1. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    Science.gov (United States)

    Bowen, S R; Nyflot, M J; Hermann, C; Groh, C; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A

    2015-01-01

    Effective positron emission tomography/computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by 6 different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy (VMAT) were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses (EUD), and 2%-2mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10–20%, treatment planning errors were 5–10%, and treatment delivery errors were 5–30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5–10% in PET/CT imaging, PET/CT imaging to RT planning, and RT delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the

  2. MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.

    Science.gov (United States)

    Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik

    2016-01-01

    Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.

  3. Methods for Motion Correction Evaluation Using 18F-FDG Human Brain Scans on a High-Resolution PET Scanner

    DEFF Research Database (Denmark)

    Keller, Sune H.; Sibomana, Merence; Olesen, Oline Vinter

    2012-01-01

    Many authors have reported the importance of motion correction (MC) for PET. Patient motion during scanning disturbs kinetic analysis and degrades resolution. In addition, using misaligned transmission for attenuation and scatter correction may produce regional quantification bias in the reconstr......Many authors have reported the importance of motion correction (MC) for PET. Patient motion during scanning disturbs kinetic analysis and degrades resolution. In addition, using misaligned transmission for attenuation and scatter correction may produce regional quantification bias...... in the reconstructed emission images. The purpose of this work was the development of quality control (QC) methods for MC procedures based on external motion tracking (EMT) for human scanning using an optical motion tracking system. Methods: Two scans with minor motion and 5 with major motion (as reported...... (automated image registration) software. The following 3 QC methods were used to evaluate the EMT and AIR MC: a method using the ratio between 2 regions of interest with gray matter voxels (GM) and white matter voxels (WM), called GM/WM; mutual information; and cross correlation. Results: The results...

  4. Orientation tuning of contrast masking caused by motion streaks.

    Science.gov (United States)

    Apthorp, Deborah; Cass, John; Alais, David

    2010-08-01

    We investigated whether the oriented trails of blur left by fast-moving dots (i.e., "motion streaks") effectively mask grating targets. Using a classic overlay masking paradigm, we varied mask contrast and target orientation to reveal underlying tuning. Fast-moving Gaussian blob arrays elevated thresholds for detection of static gratings, both monoptically and dichoptically. Monoptic masking at high mask (i.e., streak) contrasts is tuned for orientation and exhibits a similar bandwidth to masking functions obtained with grating stimuli (∼30 degrees). Dichoptic masking fails to show reliable orientation-tuned masking, but dichoptic masks at very low contrast produce a narrowly tuned facilitation (∼17 degrees). For iso-oriented streak masks and grating targets, we also explored masking as a function of mask contrast. Interestingly, dichoptic masking shows a classic "dipper"-like TVC function, whereas monoptic masking shows no dip and a steeper "handle". There is a very strong unoriented component to the masking, which we attribute to transiently biased temporal frequency masking. Fourier analysis of "motion streak" images shows interesting differences between dichoptic and monoptic functions and the information in the stimulus. Our data add weight to the growing body of evidence that the oriented blur of motion streaks contributes to the processing of fast motion signals.

  5. Receptive fields for smooth pursuit eye movements and motion perception.

    Science.gov (United States)

    Debono, Kurt; Schütz, Alexander C; Spering, Miriam; Gegenfurtner, Karl R

    2010-12-01

    Humans use smooth pursuit eye movements to track moving objects of interest. In order to track an object accurately, motion signals from the target have to be integrated and segmented from motion signals in the visual context. Most studies on pursuit eye movements used small visual targets against a featureless background, disregarding the requirements of our natural visual environment. Here, we tested the ability of the pursuit and the perceptual system to integrate motion signals across larger areas of the visual field. Stimuli were random-dot kinematograms containing a horizontal motion signal, which was perturbed by a spatially localized, peripheral motion signal. Perturbations appeared in a gaze-contingent coordinate system and had a different direction than the main motion including a vertical component. We measured pursuit and perceptual direction discrimination decisions and found that both steady-state pursuit and perception were influenced most by perturbation angles close to that of the main motion signal and only in regions close to the center of gaze. The narrow direction bandwidth (26 angular degrees full width at half height) and small spatial extent (8 degrees of visual angle standard deviation) correspond closely to tuning parameters of neurons in the middle temporal area (MT). Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. An evaluation for spatial resolution, using a single target on a medical image

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Sung [Dept. of Radiotechnology, Cheju Halla University, Cheju (Korea, Republic of)

    2016-12-15

    Hitherto, spatial resolution has commonly been evaluated by test patterns or phantoms built on some specific distances (from close to far) between two objects (or double targets). This evaluation method's shortcoming is that resolution is restricted to target distances of phantoms made for test. Therefore, in order to solve the problem, this study proposes and verifies a new method to efficiently test spatial resolution with a single target. For the research I used PSF and JND to propose an idea to measure spatial resolution. After that, I made experiments by commonly used phantoms to verify my new evaluation hypothesis inferred from the above method. To analyse the hypothesis, I used LabVIEW program and got a line pixel from digital image. The result was identical to my spatial-resolution hypothesis inferred from a single target. The findings of the experiment proves only a single target can be enough to relatively evaluate spatial resolution on a digital image. In other words, the limit of the traditional spatial-resolution evaluation method, based on double targets, can be overcome by my new evaluation one using a single target.

  7. Respiratory lung motion analysis using a nonlinear motion correction technique for respiratory-gated lung perfusion SPECT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Haneishi, Hideaki; Iwanaga, Hideyuki; Suga, Kazuyoshi

    2007-01-01

    This study evaluated the respiratory motion of lungs using a nonlinear motion correction technique for respiratory-gated single photon emission computed tomography (SPECT) images. The motion correction technique corrects the respiratory motion of the lungs nonlinearly between two-phase images obtained by respiratory-gated SPECT. The displacement vectors resulting from respiration can be computed at every location of the lungs. Respiratory lung motion analysis is carried out by calculating the mean value of the body axis component of the displacement vector in each of the 12 small regions into which the lungs were divided. In order to enable inter-patient comparison, the 12 mean values were normalized by the length of the lung region along the direction of the body axis. This method was applied to 25 Technetium (Tc)-99m-macroaggregated albumin (MAA) perfusion SPECT images, and motion analysis results were compared with the diagnostic results. It was confirmed that the respiratory lung motion reflects the ventilation function. A statistically significant difference in the amount of the respiratory lung motion was observed between the obstructive pulmonary diseases and other conditions, based on an unpaired Student's t test (P<0.0001). A difference in the motion between normal lungs and lungs with a ventilation obstruction was detected by the proposed method. This method is effective for evaluating obstructive pulmonary diseases such as pulmonary emphysema and diffuse panbronchiolitis. (author)

  8. Experimental verification of a two-dimensional respiratory motion compensation system with ultrasound tracking technique in radiation therapy.

    Science.gov (United States)

    Ting, Lai-Lei; Chuang, Ho-Chiao; Liao, Ai-Ho; Kuo, Chia-Chun; Yu, Hsiao-Wei; Zhou, Yi-Liang; Tien, Der-Chi; Jeng, Shiu-Chen; Chiou, Jeng-Fong

    2018-05-01

    This study proposed respiratory motion compensation system (RMCS) combined with an ultrasound image tracking algorithm (UITA) to compensate for respiration-induced tumor motion during radiotherapy, and to address the problem of inaccurate radiation dose delivery caused by respiratory movement. This study used an ultrasound imaging system to monitor respiratory movements combined with the proposed UITA and RMCS for tracking and compensation of the respiratory motion. Respiratory motion compensation was performed using prerecorded human respiratory motion signals and also sinusoidal signals. A linear accelerator was used to deliver radiation doses to GAFchromic EBT3 dosimetry film, and the conformity index (CI), root-mean-square error, compensation rate (CR), and planning target volume (PTV) were used to evaluate the tracking and compensation performance of the proposed system. Human respiratory pattern signals were captured using the UITA and compensated by the RMCS, which yielded CR values of 34-78%. In addition, the maximum coronal area of the PTV ranged from 85.53 mm 2 to 351.11 mm 2 (uncompensated), which reduced to from 17.72 mm 2 to 66.17 mm 2 after compensation, with an area reduction ratio of up to 90%. In real-time monitoring of the respiration compensation state, the CI values for 85% and 90% isodose areas increased to 0.7 and 0.68, respectively. The proposed UITA and RMCS can reduce the movement of the tracked target relative to the LINAC in radiation therapy, thereby reducing the required size of the PTV margin and increasing the effect of the radiation dose received by the treatment target. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Robust object tracking techniques for vision-based 3D motion analysis applications

    Science.gov (United States)

    Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-04-01

    Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.

  10. Evaluation of a dietary targets monitor.

    Science.gov (United States)

    Lean, M E J; Anderson, A S; Morrison, C; Currall, J

    2003-05-01

    To evaluate a two-page food frequency list for use as a Dietary Targets Monitor in large scale surveys to quantify consumptions of the key foods groups targeted in health promotion. Intakes of fruit and vegetables, starchy foods and fish estimated from a validated food frequency questionnaire (FFQ) were compared with a short food frequency list (the Dietary Targets Monitor) specifically designed to assess habitual frequency of consumption of foods in relation to dietary targets which form the basis of a National (Scottish) Food and Health Policy. A total of 1085 adults aged 25-64 y from the Glasgow MONICA Study. : The two questionnaires both collected data on frequencies of food consumption for fruit and vegetables, starchy foods and fish. Comparing the two questionnaires, there were consistent biases, best expressed as ratios (FFQ:Dietary Targets Monitor) between the methods for fruit and vegetables (1.33, 95% CI 1.29, 1.38) and 'starchy foods' (1.08, 95% CI 1.05, 1.12), the DTM showing systematic under-reporting by men. For fish consumption, there was essentially no bias between the methods (0.99, 95% CI 0.94, 1.03). Using calibration factors to adjust for biases, the Dietary Targets Monitor indicated that 16% of the subjects were achieving the Scottish Diet food target (400 g/day) for fruit and vegetable consumption. Nearly one-third (32%) of the subjects were eating the recommended intakes of fish (three portions per week). The Dietary Targets Monitor measure of starchy foods consumption was calibrated using FFQ data to be able to make quantitative estimates: 20% of subjects were eating six or more portions of starchy food daily. A similar estimation of total fat intake and saturated fat intake (g/day) allowed the categorization of subjects as low, moderate or high fat consumers, with broad agreement between the methods. The levels of agreement demonstrated by Bland-Altman analysis, were insufficient to permit use of the adjusted DTM to estimate quantitative

  11. The Effectiveness of Simulator Motion in the Transfer of Performance on a Tracking Task Is Influenced by Vision and Motion Disturbance Cues.

    Science.gov (United States)

    Grundy, John G; Nazar, Stefan; O'Malley, Shannon; Mohrenshildt, Martin V; Shedden, Judith M

    2016-06-01

    To examine the importance of platform motion to the transfer of performance in motion simulators. The importance of platform motion in simulators for pilot training is strongly debated. We hypothesized that the type of motion (e.g., disturbance) contributes significantly to performance differences. Participants used a joystick to perform a target tracking task in a pod on top of a MOOG Stewart motion platform. Five conditions compared training without motion, with correlated motion, with disturbance motion, with disturbance motion isolated to the visual display, and with both correlated and disturbance motion. The test condition involved the full motion model with both correlated and disturbance motion. We analyzed speed and accuracy across training and test as well as strategic differences in joystick control. Training with disturbance cues produced critical behavioral differences compared to training without disturbance; motion itself was less important. Incorporation of disturbance cues is a potentially important source of variance between studies that do or do not show a benefit of motion platforms in the transfer of performance in simulators. Potential applications of this research include the assessment of the importance of motion platforms in flight simulators, with a focus on the efficacy of incorporating disturbance cues during training. © 2016, Human Factors and Ergonomics Society.

  12. Designing a compact MRI motion phantom

    Directory of Open Access Journals (Sweden)

    Schmiedel Max

    2016-09-01

    Full Text Available Even today, dealing with motion artifacts in magnetic resonance imaging (MRI is a challenging task. Image corruption due to spontaneous body motion complicates diagnosis. In this work, an MRI phantom for rigid motion is presented. It is used to generate motion-corrupted data, which can serve for evaluation of blind motion compensation algorithms. In contrast to commercially available MRI motion phantoms, the presented setup works on small animal MRI systems. Furthermore, retrospective gating is performed on the data, which can be used as a reference for novel motion compensation approaches. The motion of the signal source can be reconstructed using motor trigger signals and be utilized as the ground truth for motion estimation. The proposed setup results in motion corrected images. Moreover, the importance of preprocessing the MRI raw data, e.g. phase-drift correction, is demonstrated. The gained knowledge can be used to design an MRI phantom for elastic motion.

  13. Live Speech Driven Head-and-Eye Motion Generators.

    Science.gov (United States)

    Le, Binh H; Ma, Xiaohan; Deng, Zhigang

    2012-11-01

    This paper describes a fully automated framework to generate realistic head motion, eye gaze, and eyelid motion simultaneously based on live (or recorded) speech input. Its central idea is to learn separate yet interrelated statistical models for each component (head motion, gaze, or eyelid motion) from a prerecorded facial motion data set: 1) Gaussian Mixture Models and gradient descent optimization algorithm are employed to generate head motion from speech features; 2) Nonlinear Dynamic Canonical Correlation Analysis model is used to synthesize eye gaze from head motion and speech features, and 3) nonnegative linear regression is used to model voluntary eye lid motion and log-normal distribution is used to describe involuntary eye blinks. Several user studies are conducted to evaluate the effectiveness of the proposed speech-driven head and eye motion generator using the well-established paired comparison methodology. Our evaluation results clearly show that this approach can significantly outperform the state-of-the-art head and eye motion generation algorithms. In addition, a novel mocap+video hybrid data acquisition technique is introduced to record high-fidelity head movement, eye gaze, and eyelid motion simultaneously.

  14. A model for the pilot's use of motion cues in roll-axis tracking tasks

    Science.gov (United States)

    Levison, W. H.; Junker, A. M.

    1977-01-01

    Simulated target-following and disturbance-regulation tasks were explored with subjects using visual-only and combined visual and motion cues. The effects of motion cues on task performance and pilot response behavior were appreciably different for the two task configurations and were consistent with data reported in earlier studies for similar task configurations. The optimal-control model for pilot/vehicle systems provided a task-independent framework for accounting for the pilot's use of motion cues. Specifically, the availability of motion cues was modeled by augmenting the set of perceptual variables to include position, rate, acceleration, and accleration-rate of the motion simulator, and results were consistent with the hypothesis of attention-sharing between visual and motion variables. This straightforward informational model allowed accurate model predictions of the effects of motion cues on a variety of response measures for both the target-following and disturbance-regulation tasks.

  15. Seismic design and evaluation criteria based on target performance goals

    International Nuclear Information System (INIS)

    Murray, R.C.; Nelson, T.A.; Kennedy, R.P.; Short, S.A.

    1994-04-01

    The Department of Energy utilizes deterministic seismic design/evaluation criteria developed to achieve probabilistic performance goals. These seismic design and evaluation criteria are intended to apply equally to the design of new facilities and to the evaluation of existing facilities. In addition, the criteria are intended to cover design and evaluation of buildings, equipment, piping, and other structures. Four separate sets of seismic design/evaluation criteria have been presented each with a different performance goal. In all these criteria, earthquake loading is selected from seismic hazard curves on a probabilistic basis but seismic response evaluation methods and acceptable behavior limits are deterministic approaches with which design engineers are familiar. For analytical evaluations, conservatism has been introduced through the use of conservative inelastic demand-capacity ratios combined with ductile detailing requirements, through the use of minimum specified material strengths and conservative code capacity equations, and through the use of a seismic scale factor. For evaluation by testing or by experience data, conservatism has been introduced through the use of an increase scale factor which is applied to the prescribed design/evaluation input motion

  16. The precise adjustment of coil location for transcranial magnetic stimulation during dynamic motion.

    Science.gov (United States)

    Kitamura, Taku; Yaeshima, Katsutoshi; Yamamoto, Shin-Ichiro; Kawashima, Noritaka

    2013-01-01

    Transcranial magnetic stimulation (TMS) to the cerebral cortex is a major in vitro technique that is used in the field of neurophysiology. The magnitude of the motor-evoked potentials (MEP) that are elicited by TMS to the primary motor cortex reflect the excitability of the corticospinal pathway. MEPs are very sensitive to the scalp location of the stimulus coil, especially when corticospinal excitability is recorded during walking or other dynamic motions. In this study, we created a coil navigational system that consisted of three-dimensional motion analysis cameras, rigid bodies on the head and coil, and programming software. In order to evaluate the feasibility of the use of our system, pseudo TMS was applied during treadmill walking with or without the navigational system. As a result, we found that the variances due to coil location and/or distance from the target site were reduced with our system. This technique enabled us to realize high precision and accuracy in coil placement, even during dynamic motion.

  17. Management of respiratory motion in radiation oncology

    International Nuclear Information System (INIS)

    Vedam, Subrahmanya Sastry

    2003-01-01

    images obtained during simulation by reducing the motion artifacts typically seen during CT imaging. An analysis of several patient breathing patterns with (audio instructions and visual feedback) and without training, indicated that breathing training improved the reproducibility of amplitude and/or frequency of patient breathing cycles. A phantom based study by superposition of sinusoidal motion of a 'simulated' tumor onto the initial beam aperture as formed by the multileaf collimator revealed that target dose measurements obtained with such a motion synchronized setup were equivalent to those delivered to a static target by a static beam. An attempt to acquire respiration synchronized (4D) CT images of a motion phantom and a patient also yielded a 4D CT data set with reduced motion artifacts. Respiratory gated and respiration synchronized radiotherapy are both viable approaches to account for respiratory motion during radiotherapy. While respiratory gated radiotherapy has been successfully implemented in some centers, several technical advances are required for clinical implementation of respiration synchronized radiotherapy. Future applicability of either of the above approaches as routine treatment procedures will be determined by their potential clinical gains over currently available methods

  18. A 4D dose computation method to investigate motion interplay effects in scanned ion beam prostate therapy

    International Nuclear Information System (INIS)

    Ammazzalorso, F; Jelen, U

    2014-01-01

    In particle therapy, the interplay between beam scanning and target motion during treatment delivery may result in dose deterioration. Interplay effects have been studied for targets exhibiting periodic respiratory motion, however, they are not well understood for irregular motion patterns, such as those exhibited by the prostate. In this note, we propose and validate a 4D dose computation method, which enables estimation of effective dose delivered to the prostate by scanning ion beams in presence of intrafraction motion, as well as facilitates investigation of various motion interplay countermeasures. (note)

  19. Fish tracking by combining motion based segmentation and particle filtering

    Science.gov (United States)

    Bichot, E.; Mascarilla, L.; Courtellemont, P.

    2006-01-01

    In this paper, we suggest a new importance sampling scheme to improve a particle filtering based tracking process. This scheme relies on exploitation of motion segmentation. More precisely, we propagate hypotheses from particle filtering to blobs of similar motion to target. Hence, search is driven toward regions of interest in the state space and prediction is more accurate. We also propose to exploit segmentation to update target model. Once the moving target has been identified, a representative model is learnt from its spatial support. We refer to this model in the correction step of the tracking process. The importance sampling scheme and the strategy to update target model improve the performance of particle filtering in complex situations of occlusions compared to a simple Bootstrap approach as shown by our experiments on real fish tank sequences.

  20. Effects of head motion correction on the evaluation of endogenous dopamine release in striatum

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Cho, Sang Soo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun

    2004-01-01

    Neuroreceptor PET studies require 60-90 minutes to complete. Head motion of the subject increases the uncertainty in measured activity. In this study, the effects of the data-driven head motion correction on the evaluation of endogenous dopamine (DA) release in the striatum were investigated. [ 11 C]raclopride PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a monetary reward for 40 min. Dynamic frames acquired during the equilibrium condition (rest: 30-50 min, game: 70-90 min) were realigned to the first frame at resting condition. Intra-condition registration between the frames during both the rest and game condition were performed, and average image for each condition was created and registered with each other again (inter-condition registration). Resting PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the other one. Volumes of interest (VOl) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DA release was calculated as the percent change of BP after the video game. Changes in position and orientation of the striatum during the PET scan were observed before the head motion correction. BP values at resting condition were not changed significantly after the intra-condition registration. However, the BP values during the video game and DA release (PU: 29.2→3.9%, CA: 57.4→14.1%, ST: 17.7→0.6%) were significantly changed after the correction. The results suggest that overestimation of the DA release caused by the head motion during PET scan and misalignment of MRI-based VOl and the striatum in PET image was remedied by the data-driven head motion correction

  1. Effects of head motion correction on the evaluation of endogenous dopamine release in striatum

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Cho, Sang Soo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Neuroreceptor PET studies require 60-90 minutes to complete. Head motion of the subject increases the uncertainty in measured activity. In this study, the effects of the data-driven head motion correction on the evaluation of endogenous dopamine (DA) release in the striatum were investigated. [{sup 11}C]raclopride PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a monetary reward for 40 min. Dynamic frames acquired during the equilibrium condition (rest: 30-50 min, game: 70-90 min) were realigned to the first frame at resting condition. Intra-condition registration between the frames during both the rest and game condition were performed, and average image for each condition was created and registered with each other again (inter-condition registration). Resting PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the other one. Volumes of interest (VOl) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DA release was calculated as the percent change of BP after the video game. Changes in position and orientation of the striatum during the PET scan were observed before the head motion correction. BP values at resting condition were not changed significantly after the intra-condition registration. However, the BP values during the video game and DA release (PU: 29.2{yields}3.9%, CA: 57.4{yields}14.1%, ST: 17.7{yields}0.6%) were significantly changed after the correction. The results suggest that overestimation of the DA release caused by the head motion during PET scan and misalignment of MRI-based VOl and the striatum in PET image was remedied by the data-driven head motion correction.

  2. Comparative assessment of liver tumor motion using cine-magnetic resonance imaging versus 4-dimensional computed tomography.

    Science.gov (United States)

    Fernandes, Annemarie T; Apisarnthanarax, Smith; Yin, Lingshu; Zou, Wei; Rosen, Mark; Plastaras, John P; Ben-Josef, Edgar; Metz, James M; Teo, Boon-Keng

    2015-04-01

    To compare the extent of tumor motion between 4-dimensional CT (4DCT) and cine-MRI in patients with hepatic tumors treated with radiation therapy. Patients with liver tumors who underwent 4DCT and 2-dimensional biplanar cine-MRI scans during simulation were retrospectively reviewed to determine the extent of target motion in the superior-inferior, anterior-posterior, and lateral directions. Cine-MRI was performed over 5 minutes. Tumor motion from MRI was determined by tracking the centroid of the gross tumor volume using deformable image registration. Motion estimates from 4DCT were performed by evaluation of the fiducial, residual contrast (or liver contour) positions in each CT phase. Sixteen patients with hepatocellular carcinoma (n=11), cholangiocarcinoma (n=3), and liver metastasis (n=2) were reviewed. Cine-MRI motion was larger than 4DCT for the superior-inferior direction in 50% of patients by a median of 3.0 mm (range, 1.5-7 mm), the anterior-posterior direction in 44% of patients by a median of 2.5 mm (range, 1-5.5 mm), and laterally in 63% of patients by a median of 1.1 mm (range, 0.2-4.5 mm). Cine-MRI frequently detects larger differences in hepatic intrafraction tumor motion when compared with 4DCT most notably in the superior-inferior direction, and may be useful when assessing the need for or treating without respiratory management, particularly in patients with unreliable 4DCT imaging. Margins wider than the internal target volume as defined by 4DCT were required to encompass nearly all the motion detected by cine-MRI for some of the patients in this study. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. TU-F-BRB-02: Motion Artifacts and Suppression in MRI

    International Nuclear Information System (INIS)

    Zhong, X.

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  4. TU-F-BRB-00: MRI-Based Motion Management for RT

    International Nuclear Information System (INIS)

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  5. TU-F-BRB-00: MRI-Based Motion Management for RT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  6. TU-F-BRB-02: Motion Artifacts and Suppression in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, X. [Siemens (Germany)

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  7. COMPARATIVE EVALUATION OF FILTERS USED IN TRACKING AIR TARGETS

    Directory of Open Access Journals (Sweden)

    Y. I. Strekalovskaya

    2015-01-01

    Full Text Available Using an imitation model for a flow of heterogeneous air targets the comparative assessment of the αβ, αβγ and the Kalman filters efficiency is evaluated. In the case of slightly maneuvering target the difference in filters’ efficiency is statistically insignificant; in the case of sharp maneuvering the Kalman filter is significantly more precise.

  8. Motion-Base Simulator Evaluation of an Aircraft Using an External Vision System

    Science.gov (United States)

    Kramer, Lynda J.; Williams, Steven P.; Arthur, J. J.; Rehfeld, Sherri A.; Harrison, Stephanie

    2012-01-01

    Twelve air transport-rated pilots participated as subjects in a motion-base simulation experiment to evaluate the use of eXternal Vision Systems (XVS) as enabling technologies for future supersonic aircraft without forward facing windows. Three head-up flight display concepts were evaluated -a monochromatic, collimated Head-up Display (HUD) and a color, non-collimated XVS display with a field-of-view (FOV) equal to and also, one significantly larger than the collimated HUD. Approach, landing, departure, and surface operations were conducted. Additionally, the apparent angle-of-attack (AOA) was varied (high/low) to investigate the vertical field-of-view display requirements and peripheral, side window visibility was experimentally varied. The data showed that lateral approach tracking performance and lateral landing position were excellent regardless of AOA, display FOV, display collimation or whether peripheral cues were present. However, the data showed glide slope approach tracking appears to be affected by display size (i.e., FOV) and collimation. The monochrome, collimated HUD and color, uncollimated XVS with Full FOV display had (statistically equivalent) glide path performance improvements over the XVS with HUD FOV display. Approach path performance results indicated that collimation may not be a requirement for an XVS display if the XVS display is large enough and employs color. Subjective assessments of mental workload and situation awareness also indicated that an uncollimated XVS display may be feasible. Motion cueing appears to have improved localizer tracking and touchdown sink rate across all displays.

  9. Lung tumor motion change during stereotactic body radiotherapy (SBRT): an evaluation using MRI

    Science.gov (United States)

    Olivier, Kenneth R.; Li, Jonathan G.; Liu, Chihray; Newlin, Heather E.; Schmalfuss, Ilona; Kyogoku, Shinsuke; Dempsey, James F.

    2014-01-01

    The purpose of this study is to investigate changes in lung tumor internal target volume during stereotactic body radiotherapy treatment (SBRT) using magnetic resonance imaging (MRI). Ten lung cancer patients (13 tumors) undergoing SBRT (48 Gy over four consecutive days) were evaluated. Each patient underwent three lung MRI evaluations: before SBRT (MRI‐1), after fraction 3 of SBRT (MRI‐3), and three months after completion of SBRT (MRI‐3m). Each MRI consisted of T1‐weighted images in axial plane through the entire lung. A cone‐beam CT (CBCT) was taken before each fraction. On MRI and CBCT taken before fractions 1 and 3, gross tumor volume (GTV) was contoured and differences between the two volumes were compared. Median tumor size on CBCT before fractions 1 (CBCT‐1) and 3 (CBCT‐3) was 8.68 and 11.10 cm3, respectively. In 12 tumors, the GTV was larger on CBCT‐3 compared to CBCT‐1 (median enlargement, 1.56 cm3). Median tumor size on MRI‐1, MRI‐3, and MRI‐3m was 7.91, 11.60, and 3.33 cm3, respectively. In all patients, the GTV was larger on MRI‐3 compared to MRI‐1 (median enlargement, 1.54 cm3). In all patients, GTV was smaller on MRI‐3m compared to MRI‐1 (median shrinkage, 5.44 cm3). On CBCT and MRI, all patients showed enlargement of the GTV during the treatment week of SBRT, except for one patient who showed minimal shrinkage (0.86 cm3). Changes in tumor volume are unpredictable; therefore, motion and breathing must be taken into account during treatment planning, and image‐guided methods should be used, when treating with large fraction sizes. PACS number: 87.53.Ly PMID:24892328

  10. Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Juan [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Cai, Jing [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Wang, Hongjun [School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Chang, Zheng; Czito, Brian G. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Bashir, Mustafa R. [Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Palta, Manisha [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Yin, Fang-Fang, E-mail: fangfang.yin@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2014-11-15

    Purpose: To evaluate the relationship between liver tumor motion and diaphragm motion. Methods and Materials: Fourteen patients with hepatocellular carcinoma (10 of 14) or liver metastases (4 of 14) undergoing radiation therapy were included in this study. All patients underwent single-slice cine–magnetic resonance imaging simulations across the center of the tumor in 3 orthogonal planes. Tumor and diaphragm motion trajectories in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions were obtained using an in-house-developed normalized cross-correlation–based tracking technique. Agreement between the tumor and diaphragm motion was assessed by calculating phase difference percentage, intraclass correlation coefficient, and Bland-Altman analysis (Diff). The distance between the tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between the 2 motions. Results: Of all patients, the mean (±standard deviation) phase difference percentage values were 7.1% ± 1.1%, 4.5% ± 0.5%, and 17.5% ± 4.5% in the SI, AP, and ML directions, respectively. The mean intraclass correlation coefficient values were 0.98 ± 0.02, 0.97 ± 0.02, and 0.08 ± 0.06 in the SI, AP, and ML directions, respectively. The mean Diff values were 2.8 ± 1.4 mm, 2.4 ± 1.1 mm, and 2.2 ± 0.5 mm in the SI, AP, and ML directions, respectively. Tumor and diaphragm motions had high concordance when the distance between the tumor and tracked diaphragm area was small. Conclusions: This study showed that liver tumor motion had good correlation with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be used as a reliable surrogate for liver tumor motion.

  11. Quality assurance device for four-dimensional IMRT or SBRT and respiratory gating using patient-specific intrafraction motion kernels.

    Science.gov (United States)

    Nelms, Benjamin E; Ehler, Eric; Bragg, Henry; Tomé, Wolfgang A

    2007-09-17

    Emerging technologies such as four-dimensional computed tomography (4D CT) and implanted beacons are expected to allow clinicians to accurately model intrafraction motion and to quantitatively estimate internal target volumes (ITVs) for radiation therapy involving moving targets. In the case of intensity-modulated (IMRT) and stereotactic body radiation therapy (SBRT) delivery, clinicians must consider the interplay between the temporal nature of the modulation and the target motion within the ITV. A need exists for a 4D IMRT/SBRT quality assurance (QA) device that can incorporate and analyze customized intrafraction motion as it relates to dose delivery and respiratory gating. We built a 4D IMRT/SBRT prototype device and entered (X, Y, Z)(T) coordinates representing a motion kernel into a software application that 1. transformed the kernel into beam-specific two-dimensional (2D) motion "projections," 2. previewed the motion in real time, and 3. drove a recision X-Y motorized device that had, atop it, a mounted planar IMRT QA measurement device. The detectors that intersected the target in the beam's-eye-view of any single phase of the breathing cycle (a small subset of all the detectors) were defined as "target detectors" to be analyzed for dose uniformity between multiple fractions. Data regarding the use of this device to quantify dose variation fraction-to-fraction resulting from target motion (for several delivery modalities and with and without gating) have been recently published. A combined software and hardware solution for patient-customized 4D IMRT/SBRT QA is an effective tool for assessing IMRT delivery under conditions of intrafraction motion. The 4D IMRT QA device accurately reproduced the projected motion kernels for all beam's-eye-view motion kernels. This device has been proved to, effectively quantify the degradation in dose uniformity resulting from a moving target within a static planning target volume, and, integrate with a commercial

  12. Quality assurance device for four‐dimensional IMRT or SBRT and respiratory gating using patient‐specific intrafraction motion kernels

    Science.gov (United States)

    Ehler, Eric; Bragg, Henry; Tomé, Wolfgang A.

    2007-01-01

    Emerging technologies such as four‐dimensional computed tomography (4D CT) and implanted beacons are expected to allow clinicians to accurately model intrafraction motion and to quantitatively estimate internal target volumes (ITVs) for radiation therapy involving moving targets. In the case of intensity‐modulated (IMRT) and stereotactic body radiation therapy (SBRT) delivery, clinicians must consider the interplay between the temporal nature of the modulation and the target motion within the ITV. A need exists for a 4D IMRT/SBRT quality assurance (QA) device that can incorporate and analyze customized intrafraction motion as it relates to dose delivery and respiratory gating. We built a 4D IMRT/SBRT prototype device and entered (X, Y, Z)(T) coordinates representing a motion kernel into a software application that transformed the kernel into beam‐specific two‐dimensional (2D) motion “projections,”previewed the motion in real time, anddrove a precision X–Y motorized device that had, atop it, a mounted planar IMRT QA measurement device. The detectors that intersected the target in the beam's‐eye‐view of any single phase of the breathing cycle (a small subset of all the detectors) were defined as “target detectors” to be analyzed for dose uniformity between multiple fractions. Data regarding the use of this device to quantify dose variation fraction‐to‐fraction resulting from target motion (for several delivery modalities and with and without gating) have been recently published. A combined software and hardware solution for patient‐customized 4D IMRT/ SBRT QA is an effective tool for assessing IMRT delivery under conditions of intrafraction motion. The 4D IMRT QA device accurately reproduced the projected motion kernels for all beam's‐eye‐view motion kernels. This device has been proved to • effectively quantify the degradation in dose uniformity resulting from a moving target within a static planning target volume, and • integrate

  13. The evaluation study of high performance gas target system

    International Nuclear Information System (INIS)

    Hur, Min Goo; Yang, Seung Dae; Kim, Sang Wook

    2008-06-01

    The object of this study is a improvement of a gas target and targetry for increasing the radioisotope production yields. The main results are as follows 1. Improvement of beam entrance of the gas target : In this work, deep hole grid was designed for improvement of beam entrance. Using FEM(Finite Elements Method) analysis, it was verified that this design is more effective than the old one. 2. Improvement of target gas loading and withdrawing system : For the targetry, Helium gas and vacuum lines was installed for evaluating the production yields. Using these lines, it was proved that the recovery yields was improved and the residual impurity was reduced. 3. Improvement of target cooling efficiency : In case of the cylindrical target, it is more effective to use short length of target cavity for the high production yields. For improving the cooling efficiency, cooling fin was suggested to the target design. It is more effective to put the cooling fins inside the target cavity for the suppressed target pressure and density reduction effect during the proton beam irradiation. In conclusion, the target with fins inside the target cavity was better for high current irradiation and mass RI production

  14. The evaluation study of high performance gas target system

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Min Goo; Yang, Seung Dae; Kim, Sang Wook

    2008-06-15

    The object of this study is a improvement of a gas target and targetry for increasing the radioisotope production yields. The main results are as follows 1. Improvement of beam entrance of the gas target : In this work, deep hole grid was designed for improvement of beam entrance. Using FEM(Finite Elements Method) analysis, it was verified that this design is more effective than the old one. 2. Improvement of target gas loading and withdrawing system : For the targetry, Helium gas and vacuum lines was installed for evaluating the production yields. Using these lines, it was proved that the recovery yields was improved and the residual impurity was reduced. 3. Improvement of target cooling efficiency : In case of the cylindrical target, it is more effective to use short length of target cavity for the high production yields. For improving the cooling efficiency, cooling fin was suggested to the target design. It is more effective to put the cooling fins inside the target cavity for the suppressed target pressure and density reduction effect during the proton beam irradiation. In conclusion, the target with fins inside the target cavity was better for high current irradiation and mass RI production.

  15. Head motion evaluation and correction for PET scans with 18F-FDG in the Japanese Alzheimer's disease neuroimaging initiative (J-ADNI) multi-center study.

    Science.gov (United States)

    Ikari, Yasuhiko; Nishio, Tomoyuki; Makishi, Yoko; Miya, Yukari; Ito, Kengo; Koeppe, Robert A; Senda, Michio

    2012-08-01

    Head motion during 30-min (six 5-min frames) brain PET scans starting 30 min post-injection of FDG was evaluated together with the effect of post hoc motion correction between frames in J-ADNI multicenter study carried out in 24 PET centers on a total of 172 subjects consisting of 81 normal subjects, 55 mild cognitive impairment (MCI) and 36 mild Alzheimer's disease (AD) patients. Based on the magnitude of the between-frame co-registration parameters, the scans were classified into six levels (A-F) of motion degree. The effect of motion and its correction was evaluated using between-frame variation of the regional FDG uptake values on ROIs placed over cerebral cortical areas. Although AD patients tended to present larger motion (motion level E or F in 22 % of the subjects) than MCI (3 %) and normal (4 %) subjects, unignorable motion was observed in a small number of subjects in the latter groups as well. The between-frame coefficient of variation (SD/mean) was 0.5 % in the frontal, 0.6 % in the parietal and 1.8 % in the posterior cingulate ROI for the scans of motion level 1. The respective values were 1.5, 1.4, and 3.6 % for the scans of motion level F, but reduced by the motion correction to 0.5, 0.4 and 0.8 %, respectively. The motion correction changed the ROI value for the posterior cingulate cortex by 11.6 % in the case of severest motion. Substantial head motion occurs in a fraction of subjects in a multicenter setup which includes PET centers lacking sufficient experience in imaging demented patients. A simple frame-by-frame co-registration technique that can be applied to any PET camera model is effective in correcting for motion and improving quantitative capability.

  16. Impact of 4D image quality on the accuracy of target definition

    International Nuclear Information System (INIS)

    Nielson, Tim B.; Hansen, Christian R.; Westberg, Jonas; Hansen, Olfred; Brink, Carsten

    2016-01-01

    Delineation accuracy of target shape and position depends on the image quality. This study investigates whether the image quality on standard 4D systems has an influence comparable to the overall delineation uncertainty. A moving lung target was imaged using a dynamic thorax phantom on three different 4D computed tomography (CT) systems and a 4D cone beam CT (CBCT) system using pre-defined clinical scanning protocols. Peak-to-peak motion and target volume were registered using rigid registration and automatic delineation, respectively. A spatial distribution of the imaging uncertainty was calculated as the distance deviation between the imaged target and the true target shape. The measured motions were smaller than actual motions. There were volume differences of the imaged target between respiration phases. Imaging uncertainties of >0.4 cm were measured in the motion direction which showed that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV–CTV expansions (0.5–1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal imaged target shape.

  17. Impact of 4D image quality on the accuracy of target definition.

    Science.gov (United States)

    Nielsen, Tine Bjørn; Hansen, Christian Rønn; Westberg, Jonas; Hansen, Olfred; Brink, Carsten

    2016-03-01

    Delineation accuracy of target shape and position depends on the image quality. This study investigates whether the image quality on standard 4D systems has an influence comparable to the overall delineation uncertainty. A moving lung target was imaged using a dynamic thorax phantom on three different 4D computed tomography (CT) systems and a 4D cone beam CT (CBCT) system using pre-defined clinical scanning protocols. Peak-to-peak motion and target volume were registered using rigid registration and automatic delineation, respectively. A spatial distribution of the imaging uncertainty was calculated as the distance deviation between the imaged target and the true target shape. The measured motions were smaller than actual motions. There were volume differences of the imaged target between respiration phases. Imaging uncertainties of >0.4 cm were measured in the motion direction which showed that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV-CTV expansions (0.5-1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal imaged target shape.

  18. Research and development of a control system for multi axis cooperative motion based on PMAC

    Science.gov (United States)

    Guo, Xiao-xiao; Dong, Deng-feng; Zhou, Wei-hu

    2017-10-01

    Based on Programmable Multi-axes Controller (PMAC), a design of a multi axis motion control system for the simulator of spatial targets' dynamic optical properties is proposed. According to analysis the properties of spatial targets' simulator motion control system, using IPC as the main control layer, TurboPMAC2 as the control layer to meet coordinated motion control, data acquisition and analog output. A simulator using 5 servomotors which is connected with speed reducers to drive the output axis was implemented to simulate the motion of both the sun and the space target. Based on PMAC using PID and a notch filter algorithm, negative feedback, the speed and acceleration feed forward algorithm to satisfy the axis' requirements of the good stability and high precision at low speeds. In the actual system, it shows that the velocity precision is higher than 0.04 s ° and the precision of repetitive positioning is better than 0.006° when each axis is at a low-speed. Besides, the system achieves the control function of multi axis coordinated motion. The design provides an important technical support for detecting spatial targets, also promoting the theoretical research.

  19. Evaluation of a PSMA-targeted BNF nanoparticle construct

    Science.gov (United States)

    Behnam Azad, Babak; Banerjee, Sangeeta R.; Pullambhatla, Mrudula; Lacerda, Silvia; Foss, Catherine A.; Wang, Yuchuan; Ivkov, Robert; Pomper, Martin G.

    2015-02-01

    Early detection enables improved prognosis for prostate cancer (PCa). A promising target for imaging and therapy of PCa is the prostate-specific membrane antigen (PSMA), which exhibits both expression within the epithelium of PCa cells, and becomes internalized upon ligand binding. Here we report the synthesis of a PSMA-targeted bionized nanoferrite (BNF) nanoparticle and its biological evaluation in an experimental model of PCa. The BNF nanoparticle formulation exhibits properties conducive to targeted imaging such as stealth, prolonged circulation time and enhanced clearance from non-target sites. Optical imaging of the targeted BNF in vivo indicates preferential accumulation in PSMA+ tumors 4 h post-injection, suggesting target specificity. On the other hand, non-targeted nanoparticles exhibit lower uptake with similar accumulation in both PSMA+ and PSMA- tumors indicating tumor access without preferential accumulation. Imaging with single photon emission computed tomography (SPECT) and biodistribution studies of a modified construct indicate highest tumor accumulation at 48 h post-injection [4.3 +/- 0.4 percentage injected dose per gram of tissue (%ID g-1)], with tumor/blood and tumor/muscle ratios of 7.5 +/- 2.4 and 11.6 +/- 1.2 %ID g-1, respectively. Ex vivo fluorescence microscopy, Prussian blue staining, immunohistochemistry and biodistribution studies confirm enhanced nanoparticle uptake in PSMA+ tumors compared to those not expressing PSMA. The BNF nano-formulation described is promising for PSMA-targeted imaging applications in vivo.Early detection enables improved prognosis for prostate cancer (PCa). A promising target for imaging and therapy of PCa is the prostate-specific membrane antigen (PSMA), which exhibits both expression within the epithelium of PCa cells, and becomes internalized upon ligand binding. Here we report the synthesis of a PSMA-targeted bionized nanoferrite (BNF) nanoparticle and its biological evaluation in an experimental model of

  20. Development and Application of a Rubric for Evaluating Students' Performance on Newton's Laws of Motion

    Science.gov (United States)

    Kocakulah, Mustafa Sabri

    2010-01-01

    This study aims to develop and apply a rubric to evaluate the solutions of pre-service primary science teachers to questions about Newton's Laws of Motion. Two groups were taught the topic using the same teaching methods and administered four questions before and after teaching. Furthermore, 76 students in the experiment group were instructed…

  1. Impact of extraneous mispositioned events on motion-corrected brain SPECT images of freely moving animals

    International Nuclear Information System (INIS)

    Angelis, Georgios I.; Ryder, William J.; Bashar, Rezaul; Meikle, Steven R.; Fulton, Roger R.

    2014-01-01

    Purpose: Single photon emission computed tomography (SPECT) brain imaging of freely moving small animals would allow a wide range of important neurological processes and behaviors to be studied, which are normally inhibited by anesthetic drugs or precluded due to the animal being restrained. While rigid body motion of the head can be tracked and accounted for in the reconstruction, activity in the torso may confound brain measurements, especially since motion of the torso is more complex (i.e., nonrigid) and not well correlated with that of the head. The authors investigated the impact of mispositioned events and attenuation due to the torso on the accuracy of motion corrected brain images of freely moving mice. Methods: Monte Carlo simulations of a realistic voxelized mouse phantom and a dual compartment phantom were performed. Each phantom comprised a target and an extraneous compartment which were able to move independently of each other. Motion correction was performed based on the known motion of the target compartment only. Two SPECT camera geometries were investigated: a rotating single head detector and a stationary full ring detector. The effects of motion, detector geometry, and energy of the emitted photons (hence, attenuation) on bias and noise in reconstructed brain regions were evaluated. Results: The authors observed two main sources of bias: (a) motion-related inconsistencies in the projection data and (b) the mismatch between attenuation and emission. Both effects are caused by the assumption that the orientation of the torso is difficult to track and model, and therefore cannot be conveniently corrected for. The motion induced bias in some regions was up to 12% when no attenuation effects were considered, while it reached 40% when also combined with attenuation related inconsistencies. The detector geometry (i.e., rotating vs full ring) has a big impact on the accuracy of the reconstructed images, with the full ring detector being more

  2. Hierarchical Motion Control for a Team of Humanoid Soccer Robots

    Directory of Open Access Journals (Sweden)

    Seung-Joon Yi

    2016-02-01

    Full Text Available Robot soccer has become an effective benchmarking problem for robotics research as it requires many aspects of robotics including perception, self localization, motion planning and distributed coordination to work in uncertain and adversarial environments. Especially with humanoid robots that lack inherent stability, a capable and robust motion controller is crucial for generating walking and kicking motions without losing balance. In this paper, we describe the details of a motion controller to control a team of humanoid soccer robots, which consists of a hierarchy of controllers with different time frames and abstraction levels. A low level controller governs the real time control of each joint angle, either using target joint angles or target endpoint transforms. A mid-level controller handles bipedal locomotion and balancing of the robot. A high level controller decides the long term behavior of the robot, and finally the team level controller coordinates the behavior of a group of robots by means of asynchronous communication between the robots. The suggested motion system has been successfully used by many humanoid robot teams at the RoboCup international robot soccer competitions, which has awarded us five successful championships in a row.

  3. Target and peripheral dose from radiation sector motions accompanying couch repositioning of patient coordinates with the Gamma Knife® Perfexion™

    International Nuclear Information System (INIS)

    Tran, Tuan-Anh; Wu, Vincent; Malhotra, Harish; Steinman, James P.; Prasad, Dheerendra; Podgorsak, Matthew B.

    2011-01-01

    The GammaPlan ™ treatment planning system (TPS) does not fully account for shutter dose when multiple shots are required to deliver a patient’s treatment. The unaccounted exposures to the target site and its periphery are measured in this study. The collected data are compared to a similar effect from the Gamma Knife ® model 4C. A stereotactic head frame was attached to a Leksell ® 16 cm diameter spherical phantom; using a fiducial-box, CT images of the phantom were acquired and registered in the TPS. Measurements give the relationship of measured dose to the number of repositions with the patient positioning system (PPS) and to the collimator size. An absorbed dose of 10 Gy to the 50% isodose line was prescribed to the target site and all measurements were acquired with an ionization chamber. Measured dose increases with frequency of repositioning and with collimator size. As the radiation sectors transition between the beam on and beam off states, the target receives more shutter dose than the periphery. Shutter doses of 3.53±0.04 and 1.59±0.04 cGy/reposition to the target site are observed for the 16 and 8 mm collimators, respectively. The target periphery receives additional dose that varies depending on its position relative to the target. The radiation sector motions for the Gamma Knife ® Perfexion ™ result in an additional dose due to the shutter effect. The magnitude of this exposure is comparable to that measured for the model 4C

  4. Prescribing and evaluating target dose in dose-painting treatment plans

    DEFF Research Database (Denmark)

    Håkansson, Katrin; Specht, Lena; Aznar, Marianne C

    2014-01-01

    BACKGROUND: Assessment of target dose conformity in multi-dose-level treatment plans is challenging due to inevitable over/underdosage at the border zone between dose levels. Here, we evaluate different target dose prescription planning aims and approaches to evaluate the relative merit of such p......-painting and multi-dose-level plans. The tool can be useful for quality assurance of multi-center trials, and for visualizing the development of treatment planning in routine clinical practice....... of such plans. A quality volume histogram (QVH) tool for history-based evaluation is proposed. MATERIAL AND METHODS: Twenty head and neck cancer dose-painting plans with five prescription levels were evaluated, as well as clinically delivered simultaneous integrated boost (SIB) plans from 2010 and 2012. The QVH...

  5. Evaluation of feature detection algorithms for structure from motion

    CSIR Research Space (South Africa)

    Govender, N

    2009-11-01

    Full Text Available technique with an application to stereo vision,” in International Joint Conference on Artificial Intelligence, April 1981. [17] C.Tomasi and T.Kanade, “Detection and tracking of point fetaures,” Carnegie Mellon, Tech. Rep., April 1991. [18] P. Torr... Algorithms for Structure from Motion Natasha Govender Mobile Intelligent Autonomous Systems CSIR Pretoria Email: ngovender@csir.co.za Abstract—Structure from motion is a widely-used technique in computer vision to perform 3D reconstruction. The 3D...

  6. Characterization of Pancreatic Tumor Motion Using Cine MRI: Surrogates for Tumor Position Should Be Used With Caution

    International Nuclear Information System (INIS)

    Feng, Mary; Balter, James M.; Normolle, Daniel; Adusumilli, Saroja; Cao Yue; Chenevert, Thomas L.; Ben-Josef, Edgar

    2009-01-01

    Purpose: Our current understanding of intrafraction pancreatic tumor motion due to respiration is limited. In this study, we characterized pancreatic tumor motion and evaluated the application of several radiotherapy motion management strategies. Methods and Materials: Seventeen patients with unresectable pancreatic cancer were enrolled in a prospective internal review board-approved study and imaged during shallow free-breathing using cine MRI on a 3T scanner. Tumor borders were agreed on by a radiation oncologist and an abdominal MRI radiologist. Tumor motion and correlation with the potential surrogates of the diaphragm and abdominal wall were assessed. These data were also used to evaluate planning target volume margin construction, respiratory gating, and four-dimensional treatment planning for pancreatic tumors. Results: Tumor borders moved much more than expected. To provide 99% geometric coverage, margins of 20 mm inferiorly, 10 mm anteriorly, 7 mm superiorly, and 4 mm posteriorly are required. Tumor position correlated poorly with diaphragm and abdominal wall position, with patient-level Pearson correlation coefficients of -0.18-0.43. Sensitivity and specificity of gating with these surrogates was also poor, at 53%-68%, with overall error of 35%-38%, suggesting that the tumor may be underdosed and normal tissues overdosed. Conclusions: Motion of pancreatic tumor borders is highly variable between patients and larger than expected. There is substantial deformation with breathing, and tumor border position does not correlate well with abdominal wall or diaphragmatic position. Current motion management strategies may not account fully for tumor motion and should be used with caution.

  7. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Tatsuya [Department of Radiology, Juntendo University Urayasu Hospital, Chiba (Japan); Widder, Joachim; Dijk, Lisanne V. van [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Takegawa, Hideki [Department of Radiation Oncology, Kansai Medical University Hirakata Hospital, Osaka (Japan); Koizumi, Masahiko; Takashina, Masaaki [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka (Japan); Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru [Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Saito, Anneyuko I. [Department of Radiology, Juntendo University Urayasu Hospital, Chiba (Japan); Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Sasai, Keisuke [Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Veld, Aart A. van' t; Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Korevaar, Erik W., E-mail: e.w.korevaar@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2016-11-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D{sub 2} − D{sub 98}, where D{sub 2} and D{sub 98} are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. Results: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to <98% (clinical threshold) in 3 of 10 patients for robust 5-mm evaluations. However, the TC remained >98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. Conclusions: In robustly optimized IMPT for stage III NSCLC, the setup and range

  8. Moving target feature phenomenology data collection at China Lake

    Science.gov (United States)

    Gross, David C.; Hill, Jeff; Schmitz, James L.

    2002-08-01

    This paper describes the DARPA Moving Target Feature Phenomenology (MTFP) data collection conducted at the China Lake Naval Weapons Center's Junction Ranch in July 2001. The collection featured both X-band and Ku-band radars positioned on top of Junction Ranch's Parrot Peak. The test included seven targets used in eleven configurations with vehicle motion consisting of circular, straight-line, and 90-degree turning motion. Data was collected at 10-degree and 17-degree depression angles. Key parameters in the collection were polarization, vehicle speed, and road roughness. The collection also included a canonical target positioned at Junction Ranch's tilt-deck turntable. The canonical target included rotating wheels (military truck tire and civilian pick-up truck tire) and a flat plate with variable positioned corner reflectors. The canonical target was also used to simulate a rotating antenna and a vibrating plate. The target vehicles were instrumented with ARDS pods for differential GPS and roll, pitch and yaw measurements. Target motion was also documented using a video camera slaved to the X-band radar antenna and by a video camera operated near the target site.

  9. MO-C-17A-06: Online Adaptive Re-Planning to Account for Independent Motions Between Multiple Targets During Radiotherapy of Lung Cancer

    International Nuclear Information System (INIS)

    Liu, F; Tai, A; Ahunbay, E; Gore, E; Johnstone, C; Li, X

    2014-01-01

    Purpose: To quantify interfractional independent motions between multiple targets in radiotherapy (RT) of lung cancer, and to study the dosimetric benefits of an online adaptive replanning method to account for these variations. Methods: Ninety five diagnostic-quality daily CTs acquired for 9 lung cancer patients treated with IGRT using an in-room CT (CTVision, Siemens) were analyzed. On each daily CT set, contours of the targets (GTV, CTV, or involved nodes) and organs at risk were generated by populating the planning contours using an auto-segmentation tool (ABAS, Elekta) with manual editing. For each patient, an IMRT plan was generated based on the planning CT with a prescription dose of 60 Gy in 2Gy fractions. Three plans were generated and compared for each daily CT set: an IGRT (repositioning) plan by copying the original plan with the required shifts, an online adaptive plan by rapidly modifying the aperture shapes and segment weights of the original plan to conform to the daily anatomy, and a new fully re-optimized plan based on the daily CT using a planning system (Panther, Prowess). Results: The daily deviations of the distance between centers of masses of the targets from the plans varied daily from -10 to 8 mm with an average −0.9±4.1 mm (one standard deviation). The average CTV V100 are 99.0±0.7%, 97.9±2.8%, 99.0±0.6%, and 99.1±0.6%, and the lung V20 Gy 928±332 cc, 944±315 cc, 917±300 cc, and 891±295 cc for the original, repositioning, adaptive, and re-optimized plans, respectively. Wilcoxon signed-rank tests show that the adaptive plans are statistically significantly better than the repositioning plans and comparable with the reoptimized plans. Conclusion: There exist unpredictable, interfractional, relative volume changes and independent motions between multiple targets during lung cancer RT which cannot be accounted for by the current IGRT repositioning but can be corrected by the online adaptive replanning method

  10. MO-C-17A-06: Online Adaptive Re-Planning to Account for Independent Motions Between Multiple Targets During Radiotherapy of Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F; Tai, A; Ahunbay, E; Gore, E; Johnstone, C; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2014-06-15

    Purpose: To quantify interfractional independent motions between multiple targets in radiotherapy (RT) of lung cancer, and to study the dosimetric benefits of an online adaptive replanning method to account for these variations. Methods: Ninety five diagnostic-quality daily CTs acquired for 9 lung cancer patients treated with IGRT using an in-room CT (CTVision, Siemens) were analyzed. On each daily CT set, contours of the targets (GTV, CTV, or involved nodes) and organs at risk were generated by populating the planning contours using an auto-segmentation tool (ABAS, Elekta) with manual editing. For each patient, an IMRT plan was generated based on the planning CT with a prescription dose of 60 Gy in 2Gy fractions. Three plans were generated and compared for each daily CT set: an IGRT (repositioning) plan by copying the original plan with the required shifts, an online adaptive plan by rapidly modifying the aperture shapes and segment weights of the original plan to conform to the daily anatomy, and a new fully re-optimized plan based on the daily CT using a planning system (Panther, Prowess). Results: The daily deviations of the distance between centers of masses of the targets from the plans varied daily from -10 to 8 mm with an average −0.9±4.1 mm (one standard deviation). The average CTV V100 are 99.0±0.7%, 97.9±2.8%, 99.0±0.6%, and 99.1±0.6%, and the lung V20 Gy 928±332 cc, 944±315 cc, 917±300 cc, and 891±295 cc for the original, repositioning, adaptive, and re-optimized plans, respectively. Wilcoxon signed-rank tests show that the adaptive plans are statistically significantly better than the repositioning plans and comparable with the reoptimized plans. Conclusion: There exist unpredictable, interfractional, relative volume changes and independent motions between multiple targets during lung cancer RT which cannot be accounted for by the current IGRT repositioning but can be corrected by the online adaptive replanning method.

  11. Visual Search for Motion-Form Conjunctions: Selective Attention to Movement Direction.

    Science.gov (United States)

    Von Mühlenen, Adrian; Müller, Hermann J

    1999-07-01

    In 2 experiments requiring visual search for conjunctions of motion and form, the authors reinvestigated whether motion-based filtering (e.g., P. McLeod, J. Driver, Z. Dienes, & J. Crisp, 1991) is direction selective and whether cuing of the target direction promotes efficient search performance. In both experiments, the authors varied the number of movement directions in the display and the predictability of the target direction. Search was less efficient when items moved in multiple (2, 3, and 4) directions as compared with just 1 direction. Furthermore, precuing of the target direction facilitated the search, even with "wrap-around" displays, relatively more when items moved in multiple directions. The authors proposed 2 principles to explain that pattern of effects: (a) interference on direction computation between items moving in different directions (e.g., N. Qian & R. A. Andersen, 1994) and (b) selective direction tuning of motion detectors involving a receptive-field contraction (cf. J. Moran & R. Desimone, 1985; S. Treue & J. H. R. Maunsell, 1996).

  12. DMPDS: A Fast Motion Estimation Algorithm Targeting High Resolution Videos and Its FPGA Implementation

    Directory of Open Access Journals (Sweden)

    Gustavo Sanchez

    2012-01-01

    Full Text Available This paper presents a new fast motion estimation (ME algorithm targeting high resolution digital videos and its efficient hardware architecture design. The new Dynamic Multipoint Diamond Search (DMPDS algorithm is a fast algorithm which increases the ME quality when compared with other fast ME algorithms. The DMPDS achieves a better digital video quality reducing the occurrence of local minima falls, especially in high definition videos. The quality results show that the DMPDS is able to reach an average PSNR gain of 1.85 dB when compared with the well-known Diamond Search (DS algorithm. When compared to the optimum results generated by the Full Search (FS algorithm the DMPDS shows a lose of only 1.03 dB in the PSNR. On the other hand, the DMPDS reached a complexity reduction higher than 45 times when compared to FS. The quality gains related to DS caused an expected increase in the DMPDS complexity which uses 6.4-times more calculations than DS. The DMPDS architecture was designed focused on high performance and low cost, targeting to process Quad Full High Definition (QFHD videos in real time (30 frames per second. The architecture was described in VHDL and synthesized to Altera Stratix 4 and Xilinx Virtex 5 FPGAs. The synthesis results show that the architecture is able to achieve processing rates higher than 53 QFHD fps, reaching the real-time requirements. The DMPDS architecture achieved the highest processing rate when compared to related works in the literature. This high processing rate was obtained designing an architecture with a high operation frequency and low numbers of cycles necessary to process each block.

  13. Strategies to evaluate the impact of rectal volume on prostate motion during three-dimensional conformal radiotherapy for prostate cancer

    Directory of Open Access Journals (Sweden)

    Ana Paula Diniz Fortuna Poli

    2016-02-01

    Full Text Available Abstract Objective: To evaluate the rectal volume influence on prostate motion during three-dimensional conformal radiotherapy (3D-CRT for prostate cancer. Materials and Methods: Fifty-one patients with prostate cancer underwent a series of three computed tomography scans including an initial planning scan and two subsequent scans during 3D-CRT. The organs of interest were outlined. The prostate contour was compared with the initial CT images considering the anterior, posterior, superior, inferior and lateral edges of the organ. Variations in the anterior limits and volume of the rectum were assessed and correlated with prostate motion in the anteroposterior direction. Results: The maximum range of prostate motion was observed in the superoinferior direction, followed by the anteroposterior direction. A significant correlation was observed between prostate motion and rectal volume variation ( p = 0.037. A baseline rectal volume superior to 70 cm3 had a significant influence on the prostate motion in the anteroposterior direction ( p = 0.045. Conclusion: The present study showed a significant interfraction motion of the prostate during 3D-CRT with greatest variations in the superoinferior and anteroposterior directions, and that a large rectal volume influences the prostate motion with a cutoff value of 70 cm3. Therefore, the treatment of patients with a rectal volume > 70 cm3 should be re-planned with appropriate rectal preparation.

  14. Influence of Continuous Table Motion on Patient Breathing Patterns

    International Nuclear Information System (INIS)

    Wilbert, Juergen; Baier, Kurt; Richter, Anne; Herrmann, Christian; Ma Lei; Flentje, Michael; Guckenberger, Matthias

    2010-01-01

    Purpose: To investigate the influence of continuous table motion on patient breathing patterns for compensation of moving targets by a robotic treatment couch. Methods and Materials: Fifteen volunteers were placed on a robotic treatment couch, and the couch was moved on different breathing-correlated and -uncorrelated trajectories. External abdominal breathing motion of the patients was measured using an infrared camera system. The influence of table motion on breathing range and pattern was analyzed. Results: Continuous table motion was tolerated well by all test persons. Volunteers reacted differently to table motion. Four test persons showed no change of breathing range and pattern. Increased irregular breathing was observed in 4 patients; however, irregularity was not correlated with table motion. Only 4 test persons showed an increase in mean breathing amplitude of more than 2mm during motion of the couch. The mean cycle period decreased by more than 1 s for 2 test persons only. No abrupt changes in amplitude or cycle period could be observed. Conclusions: The observed small changes in breathing patterns support the application of motion compensation by a robotic treatment couch.

  15. Evaluation of adaptation to visually induced motion sickness based on the maximum cross-correlation between pulse transmission time and heart rate

    Directory of Open Access Journals (Sweden)

    Chiba Shigeru

    2007-09-01

    Full Text Available Abstract Background Computer graphics and virtual reality techniques are useful to develop automatic and effective rehabilitation systems. However, a kind of virtual environment including unstable visual images presented to wide field screen or a head mounted display tends to induce motion sickness. The motion sickness induced in using a rehabilitation system not only inhibits effective training but also may harm patients' health. There are few studies that have objectively evaluated the effects of the repetitive exposures to these stimuli on humans. The purpose of this study is to investigate the adaptation to visually induced motion sickness by physiological data. Methods An experiment was carried out in which the same video image was presented to human subjects three times. We evaluated changes of the intensity of motion sickness they suffered from by a subjective score and the physiological index ρmax, which is defined as the maximum cross-correlation coefficient between heart rate and pulse wave transmission time and is considered to reflect the autonomic nervous activity. Results The results showed adaptation to visually-induced motion sickness by the repetitive presentation of the same image both in the subjective and the objective indices. However, there were some subjects whose intensity of sickness increased. Thus, it was possible to know the part in the video image which related to motion sickness by analyzing changes in ρmax with time. Conclusion The physiological index, ρmax, will be a good index for assessing the adaptation process to visually induced motion sickness and may be useful in checking the safety of rehabilitation systems with new image technologies.

  16. Differential Motion Between Mediastinal Lymph Nodes and Primary Tumor in Radically Irradiated Lung Cancer Patients

    International Nuclear Information System (INIS)

    Schaake, Eva E.; Rossi, Maddalena M.G.; Buikhuisen, Wieneke A.; Burgers, Jacobus A.; Smit, Adrianus A.J.; Belderbos, José S.A.; Sonke, Jan-Jakob

    2014-01-01

    Purpose/Objective: In patients with locally advanced lung cancer, planning target volume margins for mediastinal lymph nodes and tumor after a correction protocol based on bony anatomy registration typically range from 1 to 1.5 cm. Detailed information about lymph node motion variability and differential motion with the primary tumor, however, is lacking from large series. In this study, lymph node and tumor position variability were analyzed in detail and correlated to the main carina to evaluate possible margin reduction. Methods and Materials: Small gold fiducial markers (0.35 × 5 mm) were placed in the mediastinal lymph nodes of 51 patients with non-small cell lung cancer during routine diagnostic esophageal or bronchial endoscopic ultrasonography. Four-dimensional (4D) planning computed tomographic (CT) and daily 4D cone beam (CB) CT scans were acquired before and during radical radiation therapy (66 Gy in 24 fractions). Each CBCT was registered in 3-dimensions (bony anatomy) and 4D (tumor, marker, and carina) to the planning CT scan. Subsequently, systematic and random residual misalignments of the time-averaged lymph node and tumor position relative to the bony anatomy and carina were determined. Additionally, tumor and lymph node respiratory amplitude variability was quantified. Finally, required margins were quantified by use of a recipe for dual targets. Results: Relative to the bony anatomy, systematic and random errors ranged from 0.16 to 0.32 cm for the markers and from 0.15 to 0.33 cm for the tumor, but despite similar ranges there was limited correlation (0.17-0.71) owing to differential motion. A large variability in lymph node amplitude between patients was observed, with an average motion of 0.56 cm in the cranial-caudal direction. Margins could be reduced by 10% (left-right), 27% (cranial-caudal), and 10% (anteroposterior) for the lymph nodes and −2%, 15%, and 7% for the tumor if an online carina registration protocol replaced a

  17. Motion tracking in the liver: Validation of a method based on 4D ultrasound using a nonrigid registration technique

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, Sinara, E-mail: sinara.vijayan@ntnu.no [Norwegian University of Science and Technology, 7491 Trondheim (Norway); Klein, Stefan [Norwegian University of Science and Technology, 7491 Trondheim, Norway and Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC, 3000 CA Rotterdam (Netherlands); Hofstad, Erlend Fagertun; Langø, Thomas [SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Lindseth, Frank [Norwegian University of Science and Technology, 7491 Trondheim, Norway and SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Ystgaard, Brynjulf [Department of Surgery, St. Olavs Hospital, 7030 Trondheim (Norway)

    2014-08-15

    Purpose: Treatments like radiotherapy and focused ultrasound in the abdomen require accurate motion tracking, in order to optimize dosage delivery to the target and minimize damage to critical structures and healthy tissues around the target. 4D ultrasound is a promising modality for motion tracking during such treatments. In this study, the authors evaluate the accuracy of motion tracking in the liver based on deformable registration of 4D ultrasound images. Methods: The offline analysis was performed using a nonrigid registration algorithm that was specifically designed for motion estimation from dynamic imaging data. The method registers the entire 4D image data sequence in a groupwise optimization fashion, thus avoiding a bias toward a specifically chosen reference time point. Three healthy volunteers were scanned over several breathing cycles (12 s) from three different positions and angles on the abdomen; a total of nine 4D scans for the three volunteers. Well-defined anatomic landmarks were manually annotated in all 96 time frames for assessment of the automatic algorithm. The error of the automatic motion estimation method was compared with interobserver variability. The authors also performed experiments to investigate the influence of parameters defining the deformation field flexibility and evaluated how well the method performed with a lower temporal resolution in order to establish the minimum frame rate required for accurate motion estimation. Results: The registration method estimated liver motion with an error of 1 mm (75% percentile over all datasets), which was lower than the interobserver variability of 1.4 mm. The results were only slightly dependent on the degrees of freedom of the deformation model. The registration error increased to 2.8 mm with an eight times lower temporal resolution. Conclusions: The authors conclude that the methodology was able to accurately track the motion of the liver in the 4D ultrasound data. The authors believe

  18. Real-time identification of vehicle motion-modes using neural networks

    Science.gov (United States)

    Wang, Lifu; Zhang, Nong; Du, Haiping

    2015-01-01

    A four-wheel ground vehicle has three body-dominated motion-modes, that is, bounce, roll, and pitch motion-modes. Real-time identification of these motion-modes can make vehicle suspensions, in particular, active suspensions, target on the dominant motion-mode and apply appropriate control strategies to improve its performance with less power consumption. Recently, a motion-mode energy method (MEM) was developed to identify the vehicle body motion-modes. However, this method requires the measurement of full vehicle states and road inputs, which are not always available in practice. This paper proposes an alternative approach to identify vehicle primary motion-modes with acceptable accuracy by employing neural networks (NNs). The effectiveness of the trained NNs is verified on a 10-DOF full-car model under various types of excitation inputs. The results confirm that the proposed method is effective in determining vehicle primary motion-modes with comparable accuracy to the MEM method. Experimental data is further used to validate the proposed method.

  19. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization

    Energy Technology Data Exchange (ETDEWEB)

    Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl [Siemens AG, Healthcare Sector, Siemensstrasse 1, 91301 Forchheim (Germany); Flohr, Thomas [Siemens AG, Healthcare Sector, Siemensstrasse 1, 91301 Forchheim (Germany); Institute of Diagnostic Radiology, Eberhard Karls University, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany)

    2013-03-15

    Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phase (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum

  20. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization

    International Nuclear Information System (INIS)

    Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl; Flohr, Thomas

    2013-01-01

    Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phase (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum

  1. A Terminal Guidance Law Based on Motion Camouflage Strategy of Air-to-Ground Missiles

    Directory of Open Access Journals (Sweden)

    Chang-sheng Gao

    2016-01-01

    Full Text Available A guidance law for attacking ground target based on motion camouflage strategy is proposed in this paper. According to the relative position between missile and target, the dual second-order dynamics model is derived. The missile guidance condition is given by analyzing the characteristic of motion camouflage strategy. Then, the terminal guidance law is derived by using the relative motion of missile and target and the guidance condition. In the process of derivation, the three-dimensional guidance law could be designed in a two-dimensional plane and the difficulty of guidance law design is reduced. A two-dimensional guidance law for three-dimensional space is derived by bringing the estimation for target maneuver. Finally, simulation for the proposed guidance law is taken and compared with pure proportional navigation. The simulation results demonstrate that the proposed guidance law can be applied to air-to-ground missiles.

  2. TU-F-BRB-03: Clinical Implementation of MR-Based Motion Management

    International Nuclear Information System (INIS)

    Glide-Hurst, C.

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  3. TU-F-BRB-03: Clinical Implementation of MR-Based Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    Glide-Hurst, C. [Henry Ford Health System (United States)

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  4. A Novel Markerless Technique to Evaluate Daily Lung Tumor Motion Based on Conventional Cone-Beam CT Projection Data

    International Nuclear Information System (INIS)

    Yang Yin; Zhong Zichun; Guo Xiaohu; Wang Jing; Anderson, John; Solberg, Timothy; Mao Weihua

    2012-01-01

    Purpose: In this study, we present a novel markerless technique, based on cone beam computed tomography (CBCT) raw projection data, to evaluate lung tumor daily motion. Method and Materials: The markerless technique, which uses raw CBCT projection data and locates tumors directly on every projection, consists of three steps. First, the tumor contour on the planning CT is used to create digitally reconstructed radiographs (DRRs) at every projection angle. Two sets of DRRs are created: one showing only the tumor, and another with the complete anatomy without the tumor. Second, a rigid two-dimensional image registration is performed to register the DRR set without the tumor to the CBCT projections. After the registration, the projections are subtracted from the DRRs, resulting in a projection dataset containing primarily tumor. Finally, a second registration is performed between the subtracted projection and tumor-only DRR. The methodology was evaluated using a chest phantom containing a moving tumor, and retrospectively in 4 lung cancer patients treated by stereotactic body radiation therapy. Tumors detected on projection images were compared with those from three-dimensional (3D) and four-dimensional (4D) CBCT reconstruction results. Results: Results in both static and moving phantoms demonstrate that the accuracy is within 1 mm. The subsequent application to 22 sets of CBCT scan raw projection data of 4 lung cancer patients includes about 11,000 projections, with the detected tumor locations consistent with 3D and 4D CBCT reconstruction results. This technique reveals detailed lung tumor motion and provides additional information than conventional 4D images. Conclusion: This technique is capable of accurately characterizing lung tumor motion on a daily basis based on a conventional CBCT scan. It provides daily verification of the tumor motion to ensure that these motions are within prior estimation and covered by the treatment planning volume.

  5. First Demonstration of Combined kV/MV Image-Guided Real-Time Dynamic Multileaf-Collimator Target Tracking

    International Nuclear Information System (INIS)

    Cho, Byungchul; Poulsen, Per R.; Sloutsky, Alex; Sawant, Amit; Keall, Paul J.

    2009-01-01

    Purpose: For intrafraction motion management, a real-time tracking system was developed by combining fiducial marker-based tracking via simultaneous kilovoltage (kV) and megavoltage (MV) imaging and a dynamic multileaf collimator (DMLC) beam-tracking system. Methods and Materials: The integrated tracking system employed a Varian Trilogy system equipped with kV/MV imaging systems and a Millennium 120-leaf MLC. A gold marker in elliptical motion (2-cm superior-inferior, 1-cm left-right, 10 cycles/min) was simultaneously imaged by the kV and MV imagers at 6.7 Hz and segmented in real time. With these two-dimensional projections, the tracking software triangulated the three-dimensional marker position and repositioned the MLC leaves to follow the motion. Phantom studies were performed to evaluate time delay from image acquisition to MLC adjustment, tracking error, and dosimetric impact of target motion with and without tracking. Results: The time delay of the integrated tracking system was ∼450 ms. The tracking error using a prediction algorithm was 0.9 ± 0.5 mm for the elliptical motion. The dose distribution with tracking showed better target coverage and less dose to surrounding region over no tracking. The failure rate of the gamma test (3%/3-mm criteria) was 22.5% without tracking but was reduced to 0.2% with tracking. Conclusion: For the first time, a complete tracking system combining kV/MV image-guided target tracking and DMLC beam tracking was demonstrated. The average geometric error was less than 1 mm, and the dosimetric error was negligible. This system is a promising method for intrafraction motion management.

  6. Effects of visual motion consistent or inconsistent with gravity on postural sway.

    Science.gov (United States)

    Balestrucci, Priscilla; Daprati, Elena; Lacquaniti, Francesco; Maffei, Vincenzo

    2017-07-01

    Vision plays an important role in postural control, and visual perception of the gravity-defined vertical helps maintaining upright stance. In addition, the influence of the gravity field on objects' motion is known to provide a reference for motor and non-motor behavior. However, the role of dynamic visual cues related to gravity in the control of postural balance has been little investigated. In order to understand whether visual cues about gravitational acceleration are relevant for postural control, we assessed the relation between postural sway and visual motion congruent or incongruent with gravity acceleration. Postural sway of 44 healthy volunteers was recorded by means of force platforms while they watched virtual targets moving in different directions and with different accelerations. Small but significant differences emerged in sway parameters with respect to the characteristics of target motion. Namely, for vertically accelerated targets, gravitational motion (GM) was associated with smaller oscillations of the center of pressure than anti-GM. The present findings support the hypothesis that not only static, but also dynamic visual cues about direction and magnitude of the gravitational field are relevant for balance control during upright stance.

  7. The image evaluation of iterative motion correction reconstruction algorithm PROPELLER T2-weighted imaging compared with MultiVane T2-weighted imaging

    Science.gov (United States)

    Lee, Suk-Jun; Yu, Seung-Man

    2017-08-01

    The purpose of this study was to evaluate the usefulness and clinical applications of MultiVaneXD which was applying iterative motion correction reconstruction algorithm T2-weighted images compared with MultiVane images taken with a 3T MRI. A total of 20 patients with suspected pathologies of the liver and pancreatic-biliary system based on clinical and laboratory findings underwent upper abdominal MRI, acquired using the MultiVane and MultiVaneXD techniques. Two reviewers analyzed the MultiVane and MultiVaneXD T2-weighted images qualitatively and quantitatively. Each reviewer evaluated vessel conspicuity by observing motion artifacts and the sharpness of the portal vein, hepatic vein, and upper organs. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated by one reviewer for quantitative analysis. The interclass correlation coefficient was evaluated to measure inter-observer reliability. There were significant differences between MultiVane and MultiVaneXD in motion artifact evaluation. Furthermore, MultiVane was given a better score than MultiVaneXD in abdominal organ sharpness and vessel conspicuity, but the difference was insignificant. The reliability coefficient values were over 0.8 in every evaluation. MultiVaneXD (2.12) showed a higher value than did MultiVane (1.98), but the difference was insignificant ( p = 0.135). MultiVaneXD is a motion correction method that is more advanced than MultiVane, and it produced an increased SNR, resulting in a greater ability to detect focal abdominal lesions.

  8. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    Arjen eAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  9. Independent and additive repetition priming of motion direction and color in visual search.

    Science.gov (United States)

    Kristjánsson, Arni

    2009-03-01

    Priming of visual search for Gabor patch stimuli, varying in color and local drift direction, was investigated. The task relevance of each feature varied between the different experimental conditions compared. When the target defining dimension was color, a large effect of color repetition was seen as well as a smaller effect of the repetition of motion direction. The opposite priming pattern was seen when motion direction defined the target--the effect of motion direction repetition was this time larger than for color repetition. Finally, when neither was task relevant, and the target defining dimension was the spatial frequency of the Gabor patch, priming was seen for repetition of both color and motion direction, but the effects were smaller than in the previous two conditions. These results show that features do not necessarily have to be task relevant for priming to occur. There is little interaction between priming following repetition of color and motion, these two features show independent and additive priming effects, most likely reflecting that the two features are processed at separate processing sites in the nervous system, consistent with previous findings from neuropsychology & neurophysiology. The implications of the findings for theoretical accounts of priming in visual search are discussed.

  10. Prospects of using a permanent magnetic end effector to despin and detumble an uncooperative target

    Science.gov (United States)

    Liu, Xiaoguang; Lu, Yong; Zhou, Yu; Yin, Yuanhao

    2018-04-01

    Space debris, such as defunct satellites and upper stages of rockets, becomes an uncooperative target after losing its attitude control and communication ability. In addition, tumbling motion can occur due to environmental perturbations and residual angular momentum prior to the object's end-of-mission. To minimize the collision risk during docking and capturing of the tumbling target, a non-contact method based on the eddy current effect is put forward to transmit the control torque to the tumbling target. The main idea is to induce a controllable torque on the conducting surface of the tumbling target using a rotational magnetic field generated by a Halbach rotor. The radial and axial Halbach rotors are used to damp the spinning and nutation motions of the target, respectively. The normal and tangential force are evaluated concerning the relative pose between the chaser and the target. A simplified dynamic model of the nutation damping and despinning processes is developed and the influences of the asymmetrical principal moments of inertia and transverse angular velocity are discussed. The numerical simulation results show that the designed Halbach rotor stabilized the target attitude within an acceptable time. The electromagnetic nutation damping and despinning method provides new solutions for the development of on-orbit capture technology.

  11. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    International Nuclear Information System (INIS)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom

    2015-01-01

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of

  12. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr [Department of Electrical Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-05-15

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of

  13. Motion correction in thoracic positron emission tomography

    CERN Document Server

    Gigengack, Fabian; Dawood, Mohammad; Schäfers, Klaus P

    2015-01-01

    Respiratory and cardiac motion leads to image degradation in Positron Emission Tomography (PET), which impairs quantification. In this book, the authors present approaches to motion estimation and motion correction in thoracic PET. The approaches for motion estimation are based on dual gating and mass-preserving image registration (VAMPIRE) and mass-preserving optical flow (MPOF). With mass-preservation, image intensity modulations caused by highly non-rigid cardiac motion are accounted for. Within the image registration framework different data terms, different variants of regularization and parametric and non-parametric motion models are examined. Within the optical flow framework, different data terms and further non-quadratic penalization are also discussed. The approaches for motion correction particularly focus on pipelines in dual gated PET. A quantitative evaluation of the proposed approaches is performed on software phantom data with accompanied ground-truth motion information. Further, clinical appl...

  14. Ambulatory measurement of knee motion and physical activity: preliminary evaluation of a smart activity monitor

    Directory of Open Access Journals (Sweden)

    Malchau Henrik

    2006-09-01

    Full Text Available Abstract Background There is currently a paucity of devices available for continuous, long-term monitoring of human joint motion. Non-invasive, inexpensive devices capable of recording human activity and joint motion have many applications for medical research. Such a device could be used to quantify range of motion outside the gait laboratory. The purpose of this study was to test the accuracy of the modified Intelligent Device for Energy Expenditure and Activity (IDEEA in measuring knee flexion angles, to detect different physical activities, and to quantify how often healthy subjects use deep knee flexion in the ambulatory setting. Methods We compared Biomotion Laboratory (BML "gold standard" data to simultaneous IDEEA measures of knee motion and gait, step up/down, and stair descent in 5 healthy subjects. In addition, we used a series of choreographed physical activities outside the BML to confirm the IDEEA's ability to accurately measure 7 commonly-performed physical activities. Subjects then continued data collection during ordinary activities outside the gait laboratory. Results Pooled correlations between the BML and IDEEA knee flexion angles were .97 +/- .03 for step up/down, .98 +/- .02 for stair descent, and .98 +/- .01 for gait. In the BML protocol, the IDEEA accurately identified gait, but was less accurate in identifying step up/down and stair descent. During sampling outside the BML, the IDEEA accurately detected walking, running, stair ascent, stair descent, standing, lying, and sitting. On average, subjects flexed their knees >120° for 0.17% of their data collection periods outside the BML. Conclusion The modified IDEEA system is a useful clinical tool for evaluating knee motion and multiple physical activities in the ambulatory setting. These five healthy subjects rarely flexed their knees >120°.

  15. Predicting the effects of organ motion on the dose delivered by dynamic intensity modulation

    International Nuclear Information System (INIS)

    Yu, C.X.; Jaffray, David; Martinez, A.A.; Wong, J.W.

    1997-01-01

    Purpose: Computer-optimized treatment plans, aimed to enhance tumor control and reduce normal tissue complication, generally require non-uniform beam intensities. One of the techniques for delivering intensity-modulated beams is the use of dynamic multileaf collimation, where the beam aperture and field shape change during irradiation. When intensity-modulated beams are delivered with dynamic collimation, intra-treatment organ motion may not only cause geometric misses at the field boundaries but also create hot and cold spots in the target. The mechanism for producing such effects has not been well understood. This study analyzes the dosimetric effects of intra-treatment organ motion on dynamic intensity modulation. A numerical method is developed for predicting the intensity distributions in a moving target before dose is delivered with dynamic intensity modulation. Material and Methods: In the numerical algorithm, the change in position and shape of the beam aperture with time were modeled as a three-dimensional 'tunnel', with the shape of the field aperture described in the x-y plane and its temporal position shown in the z-dimension. A point in the target had to be in the tunnel in order to receive irradiation and the dose to the point was proportional to the amount of time that this point stayed in the tunnel. Since each point in the target were analyzed separately, non-rigid body variations could easily be handled. The dependency of the dose variations on all parameters involved, including the speed of collimator motion, the frequency and amplitude of the target motion, and the size of the field segments, was analyzed. The algorithm was verified by irradiating moving phantoms with beams of dynamically modulated intensities. Predictions were also made for a treatment of a thoracic tumor using a dynamic wedge. The changes of target position with time were based on the MRI images of the chest region acquired using fast MRI scans in a cine fashion for a duration

  16. Evaluation of ride-quality and incidence of seasickness. 4. Motion sickness incidence and change of facial expression; Senpaku no norigokochi hyoka ni kansuru kenkyu ( 4 ). Norimonoyoi hasshoji no hyojo no henka

    Energy Technology Data Exchange (ETDEWEB)

    Arima, M.; Hirai, T.; Hosoda, R. [Osaka City Univ. (Japan)

    1998-12-31

    This paper studies the method of predicting and evaluating the motion sickness incidence from subject`s facial expressions during the whole-body exposure to oscillations. The facial expressions are recorded with a video camera which can measure them without invasion physiologically and mentally. Facial parameters, which are considered to relate to the motion sickness incidence, are selected, measured and analyzed quantitatively, and a method of evaluating the motion sickness incidence objectively from the facial expressions is proposed. Three facial expression parameters now selected to evaluate the motion sickness incidence are brow width, eye opening and mouth opening. It was clarified that the motion sickness incidence could be expressed joining the above parameters together. This paper consists of three sections, viz. Oscillation experiment for ride-quality evaluation, Measurement and analysis of facial expressions, and Modeling for evaluating facial expressions. 11 refs., 5 figs., 5 tabs.

  17. Strategies to evaluate the impact of rectal volume on prostate motion during three-dimensional conformal radiotherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Poli, Ana Paula Diniz Fortuna, E-mail: anapaulafortuna@yahoo.com.br [Universidade Estadual de Campinas (CAISM/UNICAMP), Campinas, SP (Brazil). Centro de Atencao Integrada a Saude da Mulher. Divisao de Radioterapia; Dias, Rodrigo Souza; Giordani, Adelmo Jose; Segreto, Helena Regina Comodo; Segreto, Roberto Araujo [Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP (Brazil). Escola Paulista de Medicina. Divisao de Radioterapia

    2016-01-15

    Objective: To evaluate the rectal volume influence on prostate motion during three-dimensional conformal radiotherapy (3D-CRT) for prostate cancer. Materials and Methods: Fifty-one patients with prostate cancer underwent a series of three computed tomography scans including an initial planning scan and two subsequent scans during 3D-CRT. The organs of interest were outlined. The prostate contour was compared with the initial CT images considering the anterior, posterior, superior, inferior and lateral edges of the organ. Variations in the anterior limits and volume of the rectum were assessed and correlated with prostate motion in the anteroposterior direction. Results: The maximum range of prostate motion was observed in the superoinferior direction, followed by the anteroposterior direction. A significant correlation was observed between prostate motion and rectal volume variation (p = 0.037). A baseline rectal volume superior to 70 cm{sup 3} had a significant influence on the prostate motion in the anteroposterior direction (p = 0.045). Conclusion: The present study showed a significant interfraction motion of the prostate during 3D-CRT with greatest variations in the superoinferior and anteroposterior directions, and that a large rectal volume influences the prostate motion with a cutoff value of 70 cm{sup 3}. Therefore, the treatment of patients with a rectal volume > 70 cm{sup 3} should be re-planned with appropriate rectal preparation. Keywords: Rectal volume; Prostate cancer; Three-dimensional conformal radiotherapy. (author)

  18. Example-Based Automatic Music-Driven Conventional Dance Motion Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Songhua [ORNL; Fan, Rukun [University of North Carolina, Chapel Hill; Geng, Weidong [Zhejiang University

    2011-04-21

    We introduce a novel method for synthesizing dance motions that follow the emotions and contents of a piece of music. Our method employs a learning-based approach to model the music to motion mapping relationship embodied in example dance motions along with those motions' accompanying background music. A key step in our method is to train a music to motion matching quality rating function through learning the music to motion mapping relationship exhibited in synchronized music and dance motion data, which were captured from professional human dance performance. To generate an optimal sequence of dance motion segments to match with a piece of music, we introduce a constraint-based dynamic programming procedure. This procedure considers both music to motion matching quality and visual smoothness of a resultant dance motion sequence. We also introduce a two-way evaluation strategy, coupled with a GPU-based implementation, through which we can execute the dynamic programming process in parallel, resulting in significant speedup. To evaluate the effectiveness of our method, we quantitatively compare the dance motions synthesized by our method with motion synthesis results by several peer methods using the motions captured from professional human dancers' performance as the gold standard. We also conducted several medium-scale user studies to explore how perceptually our dance motion synthesis method can outperform existing methods in synthesizing dance motions to match with a piece of music. These user studies produced very positive results on our music-driven dance motion synthesis experiments for several Asian dance genres, confirming the advantages of our method.

  19. Example-based automatic music-driven conventional dance motion synthesis.

    Science.gov (United States)

    Fan, Rukun; Xu, Songhua; Geng, Weidong

    2012-03-01

    We introduce a novel method for synthesizing dance motions that follow the emotions and contents of a piece of music. Our method employs a learning-based approach to model the music to motion mapping relationship embodied in example dance motions along with those motions' accompanying background music. A key step in our method is to train a music to motion matching quality rating function through learning the music to motion mapping relationship exhibited in synchronized music and dance motion data, which were captured from professional human dance performance. To generate an optimal sequence of dance motion segments to match with a piece of music, we introduce a constraint-based dynamic programming procedure. This procedure considers both music to motion matching quality and visual smoothness of a resultant dance motion sequence. We also introduce a two-way evaluation strategy, coupled with a GPU-based implementation, through which we can execute the dynamic programming process in parallel, resulting in significant speedup. To evaluate the effectiveness of our method, we quantitatively compare the dance motions synthesized by our method with motion synthesis results by several peer methods using the motions captured from professional human dancers' performance as the gold standard. We also conducted several medium-scale user studies to explore how perceptually our dance motion synthesis method can outperform existing methods in synthesizing dance motions to match with a piece of music. These user studies produced very positive results on our music-driven dance motion synthesis experiments for several Asian dance genres, confirming the advantages of our method.

  20. Fluctuations in Echo Level Associated with Changes in Target Aspect and Target Frequency Response (abstract only)

    NARCIS (Netherlands)

    Zampolli, M.; Ainslie, M.A.; Zon, T. van

    2011-01-01

    Ping-to-ping variations in echo level can be caused by time variations in sonar parameters (source level, orientation), target aspect, relative and absolute motion of sonar and target, and time varying environment (e.g. surface waves). Quantifying and understanding such fluctuations are important,

  1. Real-time prediction of respiratory motion based on a local dynamic model in an augmented space.

    Science.gov (United States)

    Hong, S-M; Jung, B-H; Ruan, D

    2011-03-21

    Motion-adaptive radiotherapy aims to deliver ablative radiation dose to the tumor target with minimal normal tissue exposure, by accounting for real-time target movement. In practice, prediction is usually necessary to compensate for system latency induced by measurement, communication and control. This work focuses on predicting respiratory motion, which is most dominant for thoracic and abdominal tumors. We develop and investigate the use of a local dynamic model in an augmented space, motivated by the observation that respiratory movement exhibits a locally circular pattern in a plane augmented with a delayed axis. By including the angular velocity as part of the system state, the proposed dynamic model effectively captures the natural evolution of respiratory motion. The first-order extended Kalman filter is used to propagate and update the state estimate. The target location is predicted by evaluating the local dynamic model equations at the required prediction length. This method is complementary to existing work in that (1) the local circular motion model characterizes 'turning', overcoming the limitation of linear motion models; (2) it uses a natural state representation including the local angular velocity and updates the state estimate systematically, offering explicit physical interpretations; (3) it relies on a parametric model and is much less data-satiate than the typical adaptive semiparametric or nonparametric method. We tested the performance of the proposed method with ten RPM traces, using the normalized root mean squared difference between the predicted value and the retrospective observation as the error metric. Its performance was compared with predictors based on the linear model, the interacting multiple linear models and the kernel density estimator for various combinations of prediction lengths and observation rates. The local dynamic model based approach provides the best performance for short to medium prediction lengths under relatively

  2. Characteristics of near-field earthquake ground motion

    International Nuclear Information System (INIS)

    Kim, H. K.; Choi, I. G.; Jeon, Y. S.; Seo, J. M.

    2002-01-01

    The near-field ground motions exhibit special response characteristics that are different from those of ordinary ground motions in the velocity and displacement response. This study first examines the characteristics of near-field ground motion depending on fault directivity and fault normal and parallel component. And the response spectra of the near field ground motion are statistically processed, and are compared with the Regulatory Guide 1.60 spectrum that is present design spectrum of the nuclear power plant. The response spectrum of the near filed ground motions shows large spectral velocity and displacement in the low frequency range. The spectral accelerations of near field ground motion are greatly amplified in the high frequency range for the rock site motions, and in the low frequency range for the soil site motions. As a result, the near field ground motion effects should be considered in the seismic design and seismic safety evaluation of the nuclear power plant structures and equipment

  3. Saccadic foveation of a moving visual target in the rhesus monkey.

    Science.gov (United States)

    Fleuriet, Jérome; Hugues, Sandrine; Perrinet, Laurent; Goffart, Laurent

    2011-02-01

    When generating a saccade toward a moving target, the target displacement that occurs during the period spanning from its detection to the saccade end must be taken into account to accurately foveate the target and to initiate its pursuit. Previous studies have shown that these saccades are characterized by a lower peak velocity and a prolonged deceleration phase. In some cases, a second peak eye velocity appears during the deceleration phase, presumably reflecting the late influence of a mechanism that compensates for the target displacement occurring before saccade end. The goal of this work was to further determine in the head restrained monkey the dynamics of this putative compensatory mechanism. A step-ramp paradigm, where the target motion was orthogonal to a target step occurring along the primary axes, was used to estimate from the generated saccades: a component induced by the target step and another one induced by the target motion. Resulting oblique saccades were compared with saccades to a static target with matched horizontal and vertical amplitudes. This study permitted to estimate the time taken for visual motion-related signals to update the programming and execution of saccades. The amplitude of the motion-related component was slightly hypometric with an undershoot that increased with target speed. Moreover, it matched with the eccentricity that the target had 40-60 ms before saccade end. The lack of significant difference in the delay between the onsets of the horizontal and vertical components between saccades directed toward a static target and those aimed at a moving target questions the late influence of the compensatory mechanism. The results are discussed within the framework of the "dual drive" and "remapping" hypotheses.

  4. Ride quality evaluation. IV - Models of subjective reaction to aircraft motion

    Science.gov (United States)

    Jacobson, I. D.; Richards, L. G.

    1978-01-01

    The paper examines models of human reaction to the motions typically experienced on short-haul aircraft flights. Data are taken on the regularly scheduled flights of four commercial airlines - three airplanes and one helicopter. The data base consists of: (1) a series of motion recordings distributed over each flight, each including all six degrees of freedom of motion; temperature, pressure, and noise are also recorded; (2) ratings of perceived comfort and satisfaction from the passengers on each flight; (3) moment-by-moment comfort ratings from a test subject assigned to each airplane; and (4) overall comfort ratings for each flight from the test subjects. Regression models are obtained for prediction of rated comfort from rms values for six degrees of freedom of motion. It is shown that the model C = 2.1 + 17.1 T + 17.2 V (T = transverse acceleration, V = vertical acceleration) gives a good fit to the airplane data but is less acceptable for the helicopter data.

  5. Effects of Respiratory Motion on Passively Scattered Proton Therapy Versus Intensity Modulated Photon Therapy for Stage III Lung Cancer: Are Proton Plans More Sensitive to Breathing Motion?

    International Nuclear Information System (INIS)

    Matney, Jason; Park, Peter C.; Bluett, Jaques; Chen, Yi Pei; Liu, Wei; Court, Laurence E.; Liao, Zhongxing; Li, Heng; Mohan, Radhe

    2013-01-01

    Purpose: To quantify and compare the effects of respiratory motion on paired passively scattered proton therapy (PSPT) and intensity modulated photon therapy (IMRT) plans; and to establish the relationship between the magnitude of tumor motion and the respiratory-induced dose difference for both modalities. Methods and Materials: In a randomized clinical trial comparing PSPT and IMRT, radiation therapy plans have been designed according to common planning protocols. Four-dimensional (4D) dose was computed for PSPT and IMRT plans for a patient cohort with respiratory motion ranging from 3 to 17 mm. Image registration and dose accumulation were performed using grayscale-based deformable image registration algorithms. The dose–volume histogram (DVH) differences (4D-3D [3D = 3-dimensional]) were compared for PSPT and IMRT. Changes in 4D-3D dose were correlated to the magnitude of tumor respiratory motion. Results: The average 4D-3D dose to 95% of the internal target volume was close to zero, with 19 of 20 patients within 1% of prescribed dose for both modalities. The mean 4D-3D between the 2 modalities was not statistically significant (P<.05) for all dose–volume histogram indices (mean ± SD) except the lung V5 (PSPT: +1.1% ± 0.9%; IMRT: +0.4% ± 1.2%) and maximum cord dose (PSPT: +1.5 ± 2.9 Gy; IMRT: 0.0 ± 0.2 Gy). Changes in 4D-3D dose were correlated to tumor motion for only 2 indices: dose to 95% planning target volume, and heterogeneity index. Conclusions: With our current margin formalisms, target coverage was maintained in the presence of respiratory motion up to 17 mm for both PSPT and IMRT. Only 2 of 11 4D-3D indices (lung V5 and spinal cord maximum) were statistically distinguishable between PSPT and IMRT, contrary to the notion that proton therapy will be more susceptible to respiratory motion. Because of the lack of strong correlations with 4D-3D dose differences in PSPT and IMRT, the extent of tumor motion was not an adequate predictor of potential

  6. Effects of Respiratory Motion on Passively Scattered Proton Therapy Versus Intensity Modulated Photon Therapy for Stage III Lung Cancer: Are Proton Plans More Sensitive to Breathing Motion?

    Energy Technology Data Exchange (ETDEWEB)

    Matney, Jason; Park, Peter C. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, Texas (United States); Bluett, Jaques [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chen, Yi Pei [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, Texas (United States); Liu, Wei; Court, Laurence E. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao, Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li, Heng [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe, E-mail: rmohan@mdanderson.org [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-11-01

    Purpose: To quantify and compare the effects of respiratory motion on paired passively scattered proton therapy (PSPT) and intensity modulated photon therapy (IMRT) plans; and to establish the relationship between the magnitude of tumor motion and the respiratory-induced dose difference for both modalities. Methods and Materials: In a randomized clinical trial comparing PSPT and IMRT, radiation therapy plans have been designed according to common planning protocols. Four-dimensional (4D) dose was computed for PSPT and IMRT plans for a patient cohort with respiratory motion ranging from 3 to 17 mm. Image registration and dose accumulation were performed using grayscale-based deformable image registration algorithms. The dose–volume histogram (DVH) differences (4D-3D [3D = 3-dimensional]) were compared for PSPT and IMRT. Changes in 4D-3D dose were correlated to the magnitude of tumor respiratory motion. Results: The average 4D-3D dose to 95% of the internal target volume was close to zero, with 19 of 20 patients within 1% of prescribed dose for both modalities. The mean 4D-3D between the 2 modalities was not statistically significant (P<.05) for all dose–volume histogram indices (mean ± SD) except the lung V5 (PSPT: +1.1% ± 0.9%; IMRT: +0.4% ± 1.2%) and maximum cord dose (PSPT: +1.5 ± 2.9 Gy; IMRT: 0.0 ± 0.2 Gy). Changes in 4D-3D dose were correlated to tumor motion for only 2 indices: dose to 95% planning target volume, and heterogeneity index. Conclusions: With our current margin formalisms, target coverage was maintained in the presence of respiratory motion up to 17 mm for both PSPT and IMRT. Only 2 of 11 4D-3D indices (lung V5 and spinal cord maximum) were statistically distinguishable between PSPT and IMRT, contrary to the notion that proton therapy will be more susceptible to respiratory motion. Because of the lack of strong correlations with 4D-3D dose differences in PSPT and IMRT, the extent of tumor motion was not an adequate predictor of potential

  7. Motion correction improves image quality of dGEMRIC in finger joints

    International Nuclear Information System (INIS)

    Miese, Falk; Kröpil, Patric; Ostendorf, Benedikt; Scherer, Axel; Buchbender, Christian; Quentin, Michael; Lanzman, Rotem S.; Blondin, Dirk; Schneider, Matthias; Bittersohl, Bernd; Zilkens, Christoph; Jellus, Vladimir; Mamisch, Tallal Ch.; Wittsack, Hans-Jörg

    2011-01-01

    Purpose: To assess motion artifacts in dGEMRIC of finger joints and to evaluate the effectiveness of motion correction. Materials and methods: In 40 subjects (26 patients with finger arthritis and 14 healthy volunteers) dGEMRIC of metacarpophalangeal joint II was performed. Imaging used a dual flip angle approach (TE 3.72 ms, TR 15 ms, flip angles 5° and 26°). Two sets of T1 maps were calculated for dGEMRIC analysis from the imaging data for each subject: one with and one without motion correction. To compare image quality, visual grading analysis and precision of dGEMRIC measurement of both dGEMRIC maps for each case were evaluated. Results: Motion artifacts were present in 82% (33/40) of uncorrected dGEMRIC maps. Motion artifacts were graded as severe or as rendering evaluation impossible in 43% (17/40) of uncorrected dGEMRIC maps. Motion corrected maps showed significantly less motion artifacts (P < 0.001) and were graded as evaluable in 97% (39/40) of cases. Precision was significantly higher in motion corrected images (coefficient of variation (CV = .176 ± .077), compared to uncorrected images (CV .445 ± .347) (P < .001). Motion corrected dGERMIC was different in volunteers and patients (P = .044), whereas uncorrected dGEMRIC was not (P = .234). Conclusion: Motion correction improves image quality, dGEMRIC measurement precision and diagnostic performance in dGEMRIC of finger joints.

  8. Target Trailing With Safe Navigation for Maritime Autonomous Surface Vehicles

    Science.gov (United States)

    Wolf, Michael; Kuwata, Yoshiaki; Zarzhitsky, Dimitri V.

    2013-01-01

    This software implements a motion-planning module for a maritime autonomous surface vehicle (ASV). The module trails a given target while also avoiding static and dynamic surface hazards. When surface hazards are other moving boats, the motion planner must apply International Regulations for Avoiding Collisions at Sea (COLREGS). A key subset of these rules has been implemented in the software. In case contact with the target is lost, the software can receive and follow a "reacquisition route," provided by a complementary system, until the target is reacquired. The programmatic intention is that the trailed target is a submarine, although any mobile naval platform could serve as the target. The algorithmic approach to combining motion with a (possibly moving) goal location, while avoiding local hazards, may be applicable to robotic rovers, automated landing systems, and autonomous airships. The software operates in JPL s CARACaS (Control Architecture for Robotic Agent Command and Sensing) software architecture and relies on other modules for environmental perception data and information on the predicted detectability of the target, as well as the low-level interface to the boat controls.

  9. Potentialities of the internal target station at the Nuclotron

    Energy Technology Data Exchange (ETDEWEB)

    Malakhov, A.I.; Afanasiev, S.V.; Anisimov, Yu.S.; Artiomov, A.S.; Bazilev, S.N.; Khrenov, A.N.; Kliman, J.; Krasnov, V.A.; Matousek, V.; Morhac, M. E-mail: fyzimiro@savba.sk; Starikov, A.Yu.; Shabunov, A.V.; Slepnev, V.M.; Turzo, I

    2000-02-01

    The potentialities of the internal target station used in physics experiments at the Nuclotron, as well as its construction, hardware and software configurations are described. The remote control of the station is performed by means of a PC and is based on operative presentation of the magnetic field cycle, the beam parameters and the target position on screen. Consequently, the space-time trajectory of motion of a chosen target can be determined in an interactive way by an operator. During the accelerator operation the motion is carried out by means of a stepper motor.

  10. Evaluation of the peak MA-6600L microwave motion detection system

    International Nuclear Information System (INIS)

    1979-02-01

    A series of tests was performed on the Peak MA-6600L motion detection system. The primary objectives of these tests were to determine sensor detection patterns and to quantitate the effects of intruder velocity. System susceptibility to fluorescent lights, oscillatory motion, and environmental factors was also examined

  11. Self-navigated 4D cartesian imaging of periodic motion in the body trunk using partial k-space compressed sensing.

    Science.gov (United States)

    Küstner, Thomas; Würslin, Christian; Schwartz, Martin; Martirosian, Petros; Gatidis, Sergios; Brendle, Cornelia; Seith, Ferdinand; Schick, Fritz; Schwenzer, Nina F; Yang, Bin; Schmidt, Holger

    2017-08-01

    To enable fast and flexible high-resolution four-dimensional (4D) MRI of periodic thoracic/abdominal motion for motion visualization or motion-corrected imaging. We proposed a Cartesian three-dimensional k-space sampling scheme that acquires a random combination of k-space lines in the ky/kz plane. A partial Fourier-like constraint compacts the sampling space to one half of k-space. The central k-space line is periodically acquired to allow an extraction of a self-navigated respiration signal used to populate a k-space of multiple breathing positions. The randomness of the acquisition (induced by periodic breathing pattern) yields a subsampled k-space that is reconstructed using compressed sensing. Local image evaluations (coefficient of variation and slope steepness through organs) reveal information about motion resolvability. Image quality is inspected by a blinded reading. Sequence and reconstruction method are made publicly available. The method is able to capture and reconstruct 4D images with high image quality and motion resolution within a short scan time of less than 2 min. These findings are supported by restricted-isometry-property analysis, local image evaluation, and blinded reading. The proposed method provides a clinical feasible setup to capture periodic respiratory motion with a fast acquisition protocol and can be extended by further surrogate signals to capture additional periodic motions. Retrospective parametrization allows for flexible tuning toward the targeted applications. Magn Reson Med 78:632-644, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Clinical Implementation of an Online Adaptive Plan-of-the-Day Protocol for Nonrigid Motion Management in Locally Advanced Cervical Cancer IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Heijkoop, Sabrina T., E-mail: s.heijkoop@erasmusmc.nl; Langerak, Thomas R.; Quint, Sandra; Bondar, Luiza; Mens, Jan Willem M.; Heijmen, Ben J.M.; Hoogeman, Mischa S.

    2014-11-01

    Purpose: To evaluate the clinical implementation of an online adaptive plan-of-the-day protocol for nonrigid target motion management in locally advanced cervical cancer intensity modulated radiation therapy (IMRT). Methods and Materials: Each of the 64 patients had four markers implanted in the vaginal fornix to verify the position of the cervix during treatment. Full and empty bladder computed tomography (CT) scans were acquired prior to treatment to build a bladder volume-dependent cervix-uterus motion model for establishment of the plan library. In the first phase of clinical implementation, the library consisted of one IMRT plan based on a single model-predicted internal target volume (mpITV), covering the target for the whole pretreatment observed bladder volume range, and a 3D conformal radiation therapy (3DCRT) motion-robust backup plan based on the same mpITV. The planning target volume (PTV) combined the ITV and nodal clinical target volume (CTV), expanded with a 1-cm margin. In the second phase, for patients showing >2.5-cm bladder-induced cervix-uterus motion during planning, two IMRT plans were constructed, based on mpITVs for empty-to-half-full and half-full-to-full bladder. In both phases, a daily cone beam CT (CBCT) scan was acquired to first position the patient based on bony anatomy and nodal targets and then select the appropriate plan. Daily post-treatment CBCT was used to verify plan selection. Results: Twenty-four and 40 patients were included in the first and second phase, respectively. In the second phase, 11 patients had two IMRT plans. Overall, an IMRT plan was used in 82.4% of fractions. The main reasons for selecting the motion-robust backup plan were uterus outside the PTV (27.5%) and markers outside their margin (21.3%). In patients with two IMRT plans, the half-full-to-full bladder plan was selected on average in 45% of the first 12 fractions, which was reduced to 35% in the last treatment fractions. Conclusions: The implemented

  13. Visuotactile motion congruence enhances gamma-band activity in visual and somatosensory cortices.

    Science.gov (United States)

    Krebber, Martin; Harwood, James; Spitzer, Bernhard; Keil, Julian; Senkowski, Daniel

    2015-08-15

    When touching and viewing a moving surface our visual and somatosensory systems receive congruent spatiotemporal input. Behavioral studies have shown that motion congruence facilitates interplay between visual and tactile stimuli, but the neural mechanisms underlying this interplay are not well understood. Neural oscillations play a role in motion processing and multisensory integration. They may also be crucial for visuotactile motion processing. In this electroencephalography study, we applied linear beamforming to examine the impact of visuotactile motion congruence on beta and gamma band activity (GBA) in visual and somatosensory cortices. Visual and tactile inputs comprised of gratings that moved either in the same or different directions. Participants performed a target detection task that was unrelated to motion congruence. While there were no effects in the beta band (13-21Hz), the power of GBA (50-80Hz) in visual and somatosensory cortices was larger for congruent compared with incongruent motion stimuli. This suggests enhanced bottom-up multisensory processing when visual and tactile gratings moved in the same direction. Supporting its behavioral relevance, GBA was correlated with shorter reaction times in the target detection task. We conclude that motion congruence plays an important role for the integrative processing of visuotactile stimuli in sensory cortices, as reflected by oscillatory responses in the gamma band. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Immunohistochemical evaluation of molecular radiotherapy target expression in neuroblastoma tissue

    Energy Technology Data Exchange (ETDEWEB)

    Gains, Jennifer E.; Gaze, Mark N. [University College London Hospitals NHS Foundation Trust, Department of Oncology, London (United Kingdom); Sebire, Neil J. [Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Pathology, London (United Kingdom); Moroz, Veronica; Wheatley, Keith [University of Birmingham, Cancer Research UK Clinical Trials Unit, Birmingham (United Kingdom)

    2018-03-15

    Neuroblastoma may be treated with molecular radiotherapy, {sup 131}I meta-Iodobenzylguanidine and {sup 177}Lu Lutetium DOTATATE, directed at distinct molecular targets: Noradrenaline Transporter Molecule (NAT) and Somatostatin Receptor (SSTR2), respectively. This study used immunohistochemistry to evaluate target expression in archival neuroblastoma tissue, to determine whether it might facilitate clinical use of molecular radiotherapy. Tissue bank samples of formalin fixed paraffin embedded neuroblastoma tissue from patients for whom clinical outcome data were available were sectioned and stained with haematoxylin and eosin, and monoclonal antibodies directed against NAT and SSTR2. Sections were examined blinded to clinical information and scored for the percentage and intensity of tumour cells stained. These data were analysed in conjunction with clinical data. Tissue from 75 patients was examined. Target expression scores varied widely between patients: NAT median 45%, inter-quartile range 25% - 65%; and SSTR2 median 55%, interquartile range 30% - 80%; and in some cases heterogeneity of expression between different parts of a tumour was observed. A weak positive correlation was observed between the expression scores of the different targets: correlation coefficient = 0.23, p = 0.05. MYCN amplified tumours had lower SSTR2 scores: mean difference 23% confidence interval 8% - 39%, p < 0.01. Survival did not differ by scores. As expression of both targets is variable and heterogeneous, imaging assessment of both may yield more clinical information than either alone. The clinical value of immunohistochemical assessment of target expression requires prospective evaluation. Variable target expression within a patient may contribute to treatment failure. (orig.)

  15. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Inoue, Tatsuya; Widder, Joachim; Dijk, Lisanne V. van; Takegawa, Hideki; Koizumi, Masahiko; Takashina, Masaaki; Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru; Saito, Anneyuko I.; Sasai, Keisuke; Veld, Aart A. van't; Langendijk, Johannes A.; Korevaar, Erik W.

    2016-01-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D_2 − D_9_8, where D_2 and D_9_8 are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. Results: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to 98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. Conclusions: In robustly optimized IMPT for stage III NSCLC, the setup and range uncertainties, breathing motion, and interplay effects have limited impact on target coverage, dose homogeneity, and

  16. Sensing Movement: Microsensors for Body Motion Measurement

    Directory of Open Access Journals (Sweden)

    Hansong Zeng

    2011-01-01

    Full Text Available Recognition of body posture and motion is an important physiological function that can keep the body in balance. Man-made motion sensors have also been widely applied for a broad array of biomedical applications including diagnosis of balance disorders and evaluation of energy expenditure. This paper reviews the state-of-the-art sensing components utilized for body motion measurement. The anatomy and working principles of a natural body motion sensor, the human vestibular system, are first described. Various man-made inertial sensors are then elaborated based on their distinctive sensing mechanisms. In particular, both the conventional solid-state motion sensors and the emerging non solid-state motion sensors are depicted. With their lower cost and increased intelligence, man-made motion sensors are expected to play an increasingly important role in biomedical systems for basic research as well as clinical diagnostics.

  17. Dominant region: a basic feature for group motion analysis and its application to teamwork evaluation in soccer games

    Science.gov (United States)

    Taki, Tsuyoshi; Hasegawa, Jun-ichi

    1998-12-01

    This paper proposes a basic feature for quantitative measurement and evaluation of group behavior of persons. This feature called 'dominant region' is a kind of sphere of influence for each person in the group. The dominant region is defined as a region in where the person can arrive earlier than any other persons and can be formulated as Voronoi region modified by replacing the distance function with a time function. This time function is calculated based on a computational model of moving ability of the person. As an application of the dominant region, we present a motion analysis system of soccer games. The purpose of this system is to evaluate the teamwork quantitatively based on movement of all the players in the game. From experiments using motion pictures of actual games, it is suggested that the proposed feature is useful for measurement and evaluation of group behavior in team sports. This basic feature may be applied to other team ball games, such as American football, basketball, handball and water polo.

  18. SU-E-J-110: Dosimetric Analysis of Respiratory Motion Based On Four-Dimensional Dose Accumulation in Liver Stereotactic Body Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S; Kim, D; Kim, T; Kim, K; Cho, M; Shin, D; Suh, T [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of); Kim, S [Virginia Commonwealth University, Richmond, VA (United States); Park, S [Uijeongbu St.Mary’s Hospital, GyeongGi-Do (Korea, Republic of)

    2015-06-15

    Purpose: Respiratory motion in thoracic and abdominal region could lead to significant underdosing of target and increased dose to healthy tissues. The aim of this study is to evaluate the dosimetric effect of respiratory motion in conventional 3D dose by comparing 4D deformable dose in liver stereotactic body radiotherapy (SBRT). Methods: Five patients who had previously treated liver SBRT were included in this study. Four-dimensional computed tomography (4DCT) images with 10 phases for all patients were acquired on multi-slice CT scanner (Siemens, Somatom definition). Conventional 3D planning was performed using the average intensity projection (AIP) images. 4D dose accumulation was calculated by summation of dose distribution for all phase images of 4DCT using deformable image registration (DIR) . The target volume and normal organs dose were evaluated with the 4D dose and compared with those from 3D dose. And also, Index of achievement (IOA) which assesses the consistency between planned dose and prescription dose was used to compare target dose distribution between 3D and 4D dose. Results: Although the 3D dose calculation considered the moving target coverage, significant differences of various dosimetric parameters between 4D and 3D dose were observed in normal organs and PTV. The conventional 3D dose overestimated dose to PTV, however, there was no significant difference for GTV. The average difference of IOA which become ‘1’ in an ideal case was 3.2% in PTV. The average difference of liver and duodenum was 5% and 16% respectively. Conclusion: 4D dose accumulation which can provide dosimetric effect of respiratory motion has a possibility to predict the more accurate delivered dose to target and normal organs and improve treatment accuracy. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the

  19. A continuous 4D motion model from multiple respiratory cycles for use in lung radiotherapy

    International Nuclear Information System (INIS)

    McClelland, Jamie R.; Blackall, Jane M.; Tarte, Segolene; Chandler, Adam C.; Hughes, Simon; Ahmad, Shahreen; Landau, David B.; Hawkes, David J.

    2006-01-01

    produce a combined prediction over the entire region of interest. We have performed a number of experiments to assess the accuracy of the nonrigid registration results and the motion model predictions. The individual slab models were evaluated by expert visual assessment and the tracking of easily identifiable anatomical points. The combined models were evaluated by calculating the discontinuities between the transformations at the slab boundaries. The experiments were performed on five patients with a total of 18 slabs between them. For the point tracking experiments, the mean distance between where a clinician manually identified a point and where the registration results located the point, the target registration error (TRE), was 1.3 mm. The mean distance between a manually identified point and the models prediction of the point's location, the target model error (TME), was 1.6 mm. The mean discontinuity between model predictions at the slab boundaries, the Continuity Error, was 2.2 mm. The results show that the motion models perform with a level of accuracy comparable to the slice thickness of 1.5 mm

  20. A computer-assisted test for the electrophysiological and psychophysical measurement of dynamic visual function based on motion contrast.

    Science.gov (United States)

    Wist, E R; Ehrenstein, W H; Schrauf, M; Schraus, M

    1998-03-13

    A new test is described that allows for electrophysiological and psychophysical measurement of visual function based on motion contrast. In a computer-generated random-dot display, completely camouflaged Landolt rings become visible only when dots within the target area are moved briefly while those of the background remain stationary. Thus, detection of contours and the location of the gap in the ring rely on motion contrast (form-from-motion) instead of luminance contrast. A standard version of this test has been used to assess visual performance in relation to age, in screening professional groups (truck drivers) and in clinical groups (glaucoma patients). Aside from this standard version, the computer program easily allows for various modifications. These include the option of a synchronizing trigger signal to allow for recording of time-locked motion-onset visual-evoked responses, the reversal of target and background motion, and the displacement of random-dot targets across stationary backgrounds. In all instances, task difficulty is manipulated by changing the percentage of moving dots within the target (or background). The present test offers a short, convenient method to probe dynamic visual functions relying on surprathreshold motion-contrast stimuli and complements other routine tests of form, contrast, depth, and color vision.

  1. Scaling earthquake ground motions for performance-based assessment of buildings

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.; Hamburger, R.O.

    2011-01-01

    The impact of alternate ground-motion scaling procedures on the distribution of displacement responses in simplified structural systems is investigated. Recommendations are provided for selecting and scaling ground motions for performance-based assessment of buildings. Four scaling methods are studied, namely, (1)geometric-mean scaling of pairs of ground motions, (2)spectrum matching of ground motions, (3)first-mode-period scaling to a target spectral acceleration, and (4)scaling of ground motions per the distribution of spectral demands. Data were developed by nonlinear response-history analysis of a large family of nonlinear single degree-of-freedom (SDOF) oscillators that could represent fixed-base and base-isolated structures. The advantages and disadvantages of each scaling method are discussed. The relationship between spectral shape and a ground-motion randomness parameter, is presented. A scaling procedure that explicitly considers spectral shape is proposed. ?? 2011 American Society of Civil Engineers.

  2. Combining Motion-Induced Blindness with Binocular Rivalry

    Directory of Open Access Journals (Sweden)

    K Jaworska

    2011-04-01

    Full Text Available Motion-induced blindness (MIB and binocular rivalry (BR are examples of multistable phenomena in which our perception varies despite constant retinal input. It has been suggested that both phenomena are related and share a common underlying mechanism. We tried to determine whether experimental manipulations of the target dot and the mask systematically affect MIB and BR in an experimental paradigm that can elicit both phenomena. Eighteen observers fixated the center of a split-screen stereo display that consisted of a distracter mask and a superimposed target dot with different colour (isoluminant Red/Green in corresponding peripheral areas of the left and right eye. Observers reported perceived colour and disappearance of the target dot by pressing and releasing corresponding keys. In a within-subjects design the mask was presented in rivalry or not—with orthogonal drift in the left and right eye or with the same drift in both eyes. In control conditions the mask remained stationary. In addition, the size of the target dot was varied (small, medium, and large. Our results suggest that MIB measured by normalized frequency and duration of target disappearance and BR measured by normalized frequency and duration of colour reversals of the target were both affected by motion in the mask. Surprisingly, binocular rivalry in the mask had only a small effect on BR of the target and virtually no effect on MIB. The overall pattern of normalized MIB and BR measures, however, differed across experimental conditions. In conclusion, the results show some degree of dissociation between MIB and BR. Further analyses will inform whether or not the two phenomena occur independently of each other.

  3. Current status of ground motions evaluation in seismic design guide for nuclear power facilities. Investigation on IAEA and US.NRC

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ito, Hiroshi; Hirata, Kazuta

    2009-01-01

    Recently, IAEA (International Atomic Energy Agency) and US.NRC (US. Nuclear Regulatory Commission) published several standards and technical reports on seismic design and safety evaluation for nuclear power facilities. This report summarizes the current status of the international guidelines on seismic design and safety evaluation for nuclear power facilities in order to explore the future research topics. The main results obtained are as follows: 1 IAEA: (1) In the safety standard series, two levels are defined as seismic design levels, and design earthquake ground motion is determined corresponding to each seismic design level. (2) A new framework on seismic design which consists of conventional deterministic method and risk-based method is discussed in the technical report although the framework is not adopted in the safety guidelines. 2 USA: (1) US.NRC discusses a performance-based seismic design framework which has been originally developed by the private organization (American Society of Civil Engineers). (2) Design earthquakes and earthquake ground motion are mainly evaluated and determined based on probabilistic seismic hazard evaluations. 3 Future works: It should be emphasized that IAEA and US.NRC have investigated the implementation of risk-based concept into seismic design. The implementation of risk-based concept into regulation and seismic design makes it possible to consider various uncertainties and to improve accountability. Therefore, we need to develop the methods for evaluating seismic risk of structures, and to correlate seismic margin and seismic risk quantitatively. Moreover, the probabilistic method of earthquake ground motions, that is required in the risk-based design, should be applied to sites in Japan. (author)

  4. Cervical motion assessment using virtual reality.

    Science.gov (United States)

    Sarig-Bahat, Hilla; Weiss, Patrice L; Laufer, Yocheved

    2009-05-01

    Repeated measures of cervical motion in asymptomatic subjects. To introduce a virtual reality (VR)-based assessment of cervical range of motion (ROM); to establish inter and intratester reliability of the VR-based assessment in comparison with conventional assessment in asymptomatic individuals; and to evaluate the effect of a single VR session on cervical ROM. Cervical ROM and clinical issues related to neck pain is frequently studied. A wide variety of methods is available for evaluation of cervical motion. To date, most methods rely on voluntary responses to an assessor's instructions. However, in day-to-day life, head movement is generally an involuntary response to multiple stimuli. Therefore, there is a need for a more functional assessment method, using sensory stimuli to elicit spontaneous neck motion. VR attributes may provide a methodology for achieving this goal. A novel method was developed for cervical motion assessment utilizing an electromagnetic tracking system and a VR game scenario displayed via a head mounted device. Thirty asymptomatic participants were assessed by both conventional and VR-based methods. Inter and intratester repeatability analyses were performed. The effect of a single VR session on ROM was evaluated. Both assessments showed non-biased results between tests and between testers (P > 0.1). Full-cycle repeatability coefficients ranged between 15.0 degrees and 29.2 degrees with smaller values for rotation and for the VR assessment. A single VR session significantly increased ROM, with largest effect found in the rotation direction. Inter and intratester reliability was supported for both the VR-based and the conventional methods. Results suggest better repeatability for the VR method, with rotation being more precise than flexion/extension. A single VR session was found to be effective in increasing cervical motion, possibly due to its motivating effect.

  5. Animation and radiobiological analysis of 3D motion in conformal radiotherapy.

    Science.gov (United States)

    MacKay, R I; Graham, P A; Moore, C J; Logue, J P; Sharrock, P J

    1999-07-01

    To allow treatment plans to be evaluated against the range of expected organ motion and set up error anticipated during treatment. Planning tools have been developed to allow concurrent animation and radiobiological analysis of three dimensional (3D) target and organ motion in conformal radiotherapy. Surfaces fitted to structures outlined on CT studies are projected onto pre-treatment images or onto megavoltage images collected during the patient treatment. Visual simulation of tumour and normal tissue movement is then performed by the application of three dimensional affine transformations, to the selected surface. Concurrent registration of the surface motion with the 3D dose distribution allows calculation of the change in dose to the volume. Realistic patterns of motion can be applied to the structure to simulate inter-fraction motion and set-up error. The biologically effective dose for the structure is calculated for each fraction as the surface moves over the course of the treatment and is used to calculate the normal tissue complication probability (NTCP) or tumour control probability (TCP) for the moving structure. The tool has been used to evaluate conformal therapy plans against set up measurements recorded during patient treatments. NTCP and TCP were calculated for a patient whose set up had been corrected after systematic deviations from plan geometry were measured during treatment, the effect of not making the correction were also assessed. TCP for the moving tumour was reduced if inadequate margins were set for the treatment. Modelling suggests that smaller margins could have been set for the set up corrected during the course of the treatment. The NTCP for the rectum was also higher for the uncorrected set up due to a more rectal tissue falling in the high dose region. This approach provides a simple way for clinical users to utilise information incrementally collected throughout the whole of a patient's treatment. In particular it is possible to

  6. Breathing-synchronized irradiation using stereoscopic kV-imaging to limit influence of interplay between leaf motion and organ motion in 3D-CRT and IMRT: Dosimetric verification and first clinical experience

    International Nuclear Information System (INIS)

    Verellen, Dirk; Tournel, Koen; Steene, Jan van de; Linthout, Nadine; Wauters, Tom; Vinh-Hung, Vincent; Storme, Guy

    2006-01-01

    Purpose: To verify the technical feasibility of a prototype developed for breathing-synchronized irradiation by phantom measurement and report on the first clinical experience of 3 patients. Methods and Materials: Adaptations to a commercially available image-guidance technique (Novalis Body/ExacTrac4.0; BrainLAB AG, Heimstetten, Germany) were implemented, allowing breathing-synchronized irradiation with the Novalis system. A simple phantom simulating a breathing pattern of 16 cycles per minute and covering a distance of 4 cm was introduced to assess the system's performance to: (1) trigger the linac at the right moment (using a hidden target in the form of a 3-mm metal beads mounted to the phantom); (2) assess the delivered dose in nongated and gated mode (using an ionization chamber mounted to the phantom); (3) evaluate dose blurring and interplay between organ motion and leaf motion when applying dynamic multileaf collimation (DMLC) intensity-modulated radiation therapy (IMRT) techniques (using radiographic film mounted to the phantom). The effect of motion was evaluated by importing the measured fluence maps generated by the linac into the treatment planning system and recalculating the resulting dose distribution from DMLC IMRT fluence patterns acquired in nongated and gated mode. The synchronized-breathing technique was applied to three clinical cases: one liver metastasis, one lung metastasis, and one primary lung tumor. Results: No measurable delay in the triggering of the linac can be observed based on the hidden target test. The ionization chamber measurements showed that the system is able to improve the dose absorption from 44% (in nongated mode) to 98% (in gated mode) for a small field irradiation (3 x 3 cm 2 ) of a moving target. Importing measured fluence maps generated for a realistic patient treatment and actually delivered by the linac into the treatment planning system yielded highly disturbed dose distributions in nongated delivery, whereas the

  7. Design and Evaluation of Accelerometer based Motional Feedback

    DEFF Research Database (Denmark)

    Schneider, Henrik; Pranjic, Emilio; Agerkvist, Finn T.

    2015-01-01

    and enable radical design changes in the loudspeaker which can lead to efficiency improvements. In combination this has motivated a revisit of the accelerometer based motional feedback technique. Experimental results on a 8 inch subwoofer show that the total harmonic distortion can be significantly reduced...

  8. Characteristics of Earthquake Ground Motion Attenuation in Korea and Japan

    International Nuclear Information System (INIS)

    Choi, In-Kil; Choun, Young-Sun; Nakajima, Masato; Ohtori, Yasuki; Yun, Kwan-Hee

    2006-01-01

    The characteristics of a ground motion attenuation in Korea and Japan were estimated by using the earthquake ground motions recorded at the equal distance observation station by KMA, K-NET and KiK-net of Korea and Japan. The ground motion attenuation equations proposed for Korea and Japan were evaluated by comparing the predicted value for the Fukuoka earthquake with the observed records. The predicted values from the attenuation equations show a good agreement with the observed records and each other. It can be concluded from this study that the ground motion attenuation equations can be used for the prediction of strong ground motion attenuation and for an evaluation of the attenuation equations proposed for Korea

  9. Target Response Adaptation for Correlation Filter Tracking

    KAUST Repository

    Bibi, Adel Aamer

    2016-09-16

    Most correlation filter (CF) based trackers utilize the circulant structure of the training data to learn a linear filter that best regresses this data to a hand-crafted target response. These circularly shifted patches are only approximations to actual translations in the image, which become unreliable in many realistic tracking scenarios including fast motion, occlusion, etc. In these cases, the traditional use of a single centered Gaussian as the target response impedes tracker performance and can lead to unrecoverable drift. To circumvent this major drawback, we propose a generic framework that can adaptively change the target response from frame to frame, so that the tracker is less sensitive to the cases where circular shifts do not reliably approximate translations. To do that, we reformulate the underlying optimization to solve for both the filter and target response jointly, where the latter is regularized by measurements made using actual translations. This joint problem has a closed form solution and thus allows for multiple templates, kernels, and multi-dimensional features. Extensive experiments on the popular OTB100 benchmark show that our target adaptive framework can be combined with many CF trackers to realize significant overall performance improvement (ranging from 3 %-13.5% in precision and 3.2 %-13% in accuracy), especially in categories where this adaptation is necessary (e.g. fast motion, motion blur, etc.). © Springer International Publishing AG 2016.

  10. Auditory Motion Elicits a Visual Motion Aftereffect.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  11. Auditory Motion Elicits a Visual Motion Aftereffect

    Directory of Open Access Journals (Sweden)

    Christopher C. Berger

    2016-12-01

    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  12. Two Simon tasks with different sources of conflict: an ERP study of motion- and location-based compatibility effects.

    Science.gov (United States)

    Galashan, Daniela; Wittfoth, Matthias; Fehr, Thorsten; Herrmann, Manfred

    2008-07-01

    Behavioral and electrophysiological correlates of two Simon tasks were examined using comparable stimuli but different task-irrelevant and conflict-inducing stimulus features. Whereas target shape was always the task-relevant stimulus attribute, either target location (location-based task) or motion direction within the target stimuli (motion-based task) was used as a source of conflict. Data from ten healthy participants who performed both tasks are presented. In the motion-based task the incompatible condition showed smaller P300 amplitudes at Pz than the compatible condition and the location-based task yielded a trend towards a reduced P300 amplitude in the incompatible condition. For both tasks, no P300 latency differences between the conditions were found at Pz. The results suggest that the motion-based task elicits behavioral and electrophysiological effects comparable with regular Simon tasks. As all stimuli in the motion-based Simon task were presented centrally the present data strongly argue against the attention-shifting account as an explanatory approach.

  13. Motion-induced blindness and microsaccades: cause and effect

    NARCIS (Netherlands)

    Bonneh, Y.S.; Donner, T.H.; Sagi, D.; Fried, M.; Heeger, D.J.; Arieli, A.

    2010-01-01

    It has been suggested that subjective disappearance of visual stimuli results from a spontaneous reduction of microsaccade rate causing image stabilization, enhanced adaptation, and a consequent fading. In motion-induced blindness (MIB), salient visual targets disappear intermittently when

  14. Dosimetric effect of intrafraction tumor motion in phase gated lung stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Zhao Bo; Yang Yong; Li Tianfang; Li Xiang; Heron, Dwight E.; Huq, M. Saiful

    2012-01-01

    Purpose: A major concern for lung intensity modulated radiation therapy delivery is the deviation of actually delivered dose distribution from the planned one due to simultaneous movements of multileaf collimator (MLC) leaves and tumor. For gated lung stereotactic body radiotherapy treatment (SBRT), the situation becomes even more complicated because of SBRT's characteristics such as fewer fractions, smaller target volume, higher dose rate, and extended fractional treatment time. The purpose of this work is to investigate the dosimetric effect of intrafraction tumor motion during gated lung SBRT delivery by reconstructing the delivered dose distribution with real-time tumor motion considered. Methods: The tumor motion data were retrieved from six lung patients. Each of them received three fractions of stereotactic radiotherapy treatments with Cyberknife Synchrony (Accuray, Sunnyvale, CA). Phase gating through an external surrogate was simulated with a gating window of 5 mm. The resulting residual tumor motion curves during gating (beam-on) were retrieved. Planning target volume (PTV) was defined as physician-contoured clinical target volume (CTV) surrounded by an isotropic 5 mm margin. Each patient was prescribed with 60 Gy/3 fractions. The authors developed an algorithm to reconstruct the delivered dose with tumor motion. The DMLC segments, mainly leaf position and segment weighting factor, were recalculated according to the probability density function of tumor motion curve. The new DMLC sequence file was imported back to treatment planning system to reconstruct the dose distribution. Results: Half of the patients in the study group experienced PTV D95% deviation up to 26% for fractional dose and 14% for total dose. CTV mean dose dropped by 1% with tumor motion. Although CTV is almost covered by prescribed dose with 5 mm margin, qualitative comparison on the dose distributions reveals that CTV is on the verge of underdose. The discrepancy happens due to tumor

  15. [Vestibular testing abnormalities in individuals with motion sickness].

    Science.gov (United States)

    Ma, Yan; Ou, Yongkang; Chen, Ling; Zheng, Yiqing

    2009-08-01

    To evaluate the vestibular function of motion sickness. VNG, which tests the vestibular function of horizontal semicircular canal, and CPT, which tests vestibulospinal reflex and judge proprioceptive, visual and vestibular status, were performed in 30 motion sickness patients and 20 healthy volunteers (control group). Graybiel score was recorded at the same time. Two groups' Graybiel score (12.67 +/- 11.78 vs 2.10 +/- 6.23; rank test P<0.05), caloric test labyrinth value [(19.02 +/- 8.59) degrees/s vs (13.58 +/- 5.25) degrees/s; t test P<0.05], caloric test labyrinth value of three patients in motion sickness group exceeded 75 degrees/s. In computerized posturography testing (CPT), motion sickness patients were central type (66.7%) and disperse type (23.3%); all of control group were central type. There was statistical significance in two groups' CTP area, and motion sickness group was obviously higher than control group. While stimulating vestibulum in CPT, there was abnormality (35%-50%) in motion sickness group and none in control group. Generally evaluating CPT, there was only 2 proprioceptive hypofunction, 3 visual hypofunction, and no vestibular hypofunction, but none hypofunction in control group. Motion sickness patients have high vestibular susceptible, some with vestibular hyperfunction. In posturography, a large number of motion sickness patients are central type but no vestibular hypofunction, but it is hard to keep balance when stimulating vestibulum.

  16. Using Simulated Ground Motions to Constrain Near-Source Ground Motion Prediction Equations in Areas Experiencing Induced Seismicity

    Science.gov (United States)

    Bydlon, S. A.; Dunham, E. M.

    2016-12-01

    Recent increases in seismic activity in historically quiescent areas such as Oklahoma, Texas, and Arkansas, including large, potentially induced events such as the 2011 Mw 5.6 Prague, OK, earthquake, have spurred the need for investigation into expected ground motions associated with these seismic sources. The neoteric nature of this seismicity increase corresponds to a scarcity of ground motion recordings within 50 km of earthquakes Mw 3.0 and greater, with increasing scarcity at larger magnitudes. Gathering additional near-source ground motion data will help better constraints on regional ground motion prediction equations (GMPEs) and will happen over time, but this leaves open the possibility of damaging earthquakes occurring before potential ground shaking and seismic hazard in these areas are properly understood. To aid the effort of constraining near-source GMPEs associated with induced seismicity, we integrate synthetic ground motion data from simulated earthquakes into the process. Using the dynamic rupture and seismic wave propagation code waveqlab3d, we perform verification and validation exercises intended to establish confidence in simulated ground motions for use in constraining GMPEs. We verify the accuracy of our ground motion simulator by performing the PEER/SCEC layer-over-halfspace comparison problem LOH.1 Validation exercises to ensure that we are synthesizing realistic ground motion data include comparisons to recorded ground motions for specific earthquakes in target areas of Oklahoma between Mw 3.0 and 4.0. Using a 3D velocity structure that includes a 1D structure with additional small-scale heterogeneity, the properties of which are based on well-log data from Oklahoma, we perform ground motion simulations of small (Mw 3.0 - 4.0) earthquakes using point moment tensor sources. We use the resulting synthetic ground motion data to develop GMPEs for small earthquakes in Oklahoma. Preliminary results indicate that ground motions can be amplified

  17. Atypical biological motion kinematics are represented by complementary lower-level and top-down processes during imitation learning.

    Science.gov (United States)

    Hayes, Spencer J; Dutoy, Chris A; Elliott, Digby; Gowen, Emma; Bennett, Simon J

    2016-01-01

    Learning a novel movement requires a new set of kinematics to be represented by the sensorimotor system. This is often accomplished through imitation learning where lower-level sensorimotor processes are suggested to represent the biological motion kinematics associated with an observed movement. Top-down factors have the potential to influence this process based on the social context, attention and salience, and the goal of the movement. In order to further examine the potential interaction between lower-level and top-down processes in imitation learning, the aim of this study was to systematically control the mediating effects during an imitation of biological motion protocol. In this protocol, we used non-human agent models that displayed different novel atypical biological motion kinematics, as well as a control model that displayed constant velocity. Importantly the three models had the same movement amplitude and movement time. Also, the motion kinematics were displayed in the presence, or absence, of end-state-targets. Kinematic analyses showed atypical biological motion kinematics were imitated, and that this performance was different from the constant velocity control condition. Although the imitation of atypical biological motion kinematics was not modulated by the end-state-targets, movement time was more accurate in the absence, compared to the presence, of an end-state-target. The fact that end-state targets modulated movement time accuracy, but not biological motion kinematics, indicates imitation learning involves top-down attentional, and lower-level sensorimotor systems, which operate as complementary processes mediated by the environmental context. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. DYNAMIC MAGNIFICATION OF BIOMECHANICAL SYSTEM MOTION

    Directory of Open Access Journals (Sweden)

    A. E. Pokatilov

    2017-01-01

    Full Text Available Methods for estimation of dynamic magnification pertaining to motion in biomechanics have been developed and approbаted in the paper. It has been ascertained that widely-used characteristics for evaluation of motion influence on mechanisms and machinery such as a dynamic coefficient and acceleration capacity factor become irrelevant while investigating human locomotion under elastic support conditions. The reason is an impossibility to compare human motion in case when there is a contact with elastic and rigid supports because while changing rigidity of the support exercise performing technique is also changing. In this case the technique still depends on a current state of a specific sportsman. Such situation is observed in sports gymnastics. Structure of kinematic and dynamic models for human motion has been investigated in the paper. It has been established that properties of an elastic support are reflected in models within two aspects: in an explicit form, when models have parameters of dynamic deformation for a gymnastic apparatus, and in an implicit form, when we have numerically changed parameters of human motion. The first part can be evaluated quantitatively while making comparison with calculations made in accordance with complete models. For this reason notions of selected and complete models have been introduced in the paper. It has been proposed to specify models for support and models of biomechanical system that represent models pertaining only to human locomotor system. It has been revealed that the selected models of support in kinematics and dynamics have structural difference. Kinematics specifies only parameters of elastic support deformation and dynamics specifies support parameters in an explicit form and additionally in models of human motion in an explicit form as well. Quantitative estimation of a dynamic motion magnification in kinematics and dynamics models has been given while using computing experiment for grand

  19. Blind retrospective motion correction of MR images.

    Science.gov (United States)

    Loktyushin, Alexander; Nickisch, Hannes; Pohmann, Rolf; Schölkopf, Bernhard

    2013-12-01

    Subject motion can severely degrade MR images. A retrospective motion correction algorithm, Gradient-based motion correction, which significantly reduces ghosting and blurring artifacts due to subject motion was proposed. The technique uses the raw data of standard imaging sequences; no sequence modifications or additional equipment such as tracking devices are required. Rigid motion is assumed. The approach iteratively searches for the motion trajectory yielding the sharpest image as measured by the entropy of spatial gradients. The vast space of motion parameters is efficiently explored by gradient-based optimization with a convergence guarantee. The method has been evaluated on both synthetic and real data in two and three dimensions using standard imaging techniques. MR images are consistently improved over different kinds of motion trajectories. Using a graphics processing unit implementation, computation times are in the order of a few minutes for a full three-dimensional volume. The presented technique can be an alternative or a complement to prospective motion correction methods and is able to improve images with strong motion artifacts from standard imaging sequences without requiring additional data. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.

  20. [An Introduction to A Newly-developed "Acupuncture Needle Manipulation Training-evaluation System" Based on Optical Motion Capture Technique].

    Science.gov (United States)

    Zhang, Ao; Yan, Xing-Ke; Liu, An-Guo

    2016-12-25

    In the present paper, the authors introduce a newly-developed "Acupuncture Needle Manipulation Training-evaluation System" based on optical motion capture technique. It is composed of two parts, sensor and software, and overcomes some shortages of mechanical motion capture technique. This device is able to analyze the data of operations of the pressing-hand and needle-insertion hand during acupuncture performance and its software contains personal computer (PC) version, Android version, and Internetwork Operating System (IOS) Apple version. It is competent in recording and analyzing information of any ope-rator's needling manipulations, and is quite helpful for teachers in teaching, training and examining students in clinical practice.

  1. Evaluering av Leap Motion kontrollern för visualisering av musik

    OpenAIRE

    Uvman, Oliver

    2016-01-01

    An experiment was carried out, attempting to ascertain whether the Leap Motion Controller can be a useful input device for dynamically controlling graphic visualizations, e.g. by artists who use video and interactive visual arts to enhance music performances. The Leap Motion Controller was found to be too unreliable to be used as the primary controller in a professional visual arts performance.

  2. Injection-depth-locking axial motion guided handheld micro-injector using CP-SSOCT.

    Science.gov (United States)

    Cheon, Gyeong Woo; Huang, Yong; Kwag, Hye Rin; Kim, Ki-Young; Taylor, Russell H; Gehlbach, Peter L; Kang, Jin U

    2014-01-01

    This paper presents a handheld micro-injector system using common-path swept source optical coherence tomography (CP-SSOCT) as a distal sensor with highly accurate injection-depth-locking. To achieve real-time, highly precise, and intuitive freehand control, the system used graphics processing unit (GPU) to process the oversampled OCT signal with high throughput and a smart customized motion monitoring control algorithm. A performance evaluation was conducted with 60-insertions and fluorescein dye injection tests to show how accurately the system can guide the needle and lock to the target depth. The evaluation tests show our system can guide the injection needle into the desired depth with 4.12 um average deviation error while injecting 50 nl of fluorescein dye.

  3. Parallel implementation and evaluation of motion estimation system algorithms on a distributed memory multiprocessor using knowledge based mappings

    Science.gov (United States)

    Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.

    1989-01-01

    Several techniques to perform static and dynamic load balancing techniques for vision systems are presented. These techniques are novel in the sense that they capture the computational requirements of a task by examining the data when it is produced. Furthermore, they can be applied to many vision systems because many algorithms in different systems are either the same, or have similar computational characteristics. These techniques are evaluated by applying them on a parallel implementation of the algorithms in a motion estimation system on a hypercube multiprocessor system. The motion estimation system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from different time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters. It is shown that the performance gains when these data decomposition and load balancing techniques are used are significant and the overhead of using these techniques is minimal.

  4. Evaluation of knee range of motion: Correlation between measurements using a universal goniometer and a smartphone goniometric application.

    Science.gov (United States)

    Dos Santos, Rafael Aparecido; Derhon, Viviane; Brandalize, Michelle; Brandalize, Danielle; Rossi, Luciano Pavan

    2017-07-01

    Goniometers are commonly used to measure range of motion in the musculoskeletal system. Recently smartphone goniometry applications have become available to clinicians. Compare angular measures using a universal goniometer and a smartphone application. Thirty four healthy women with at least 20° of limited range of motion regarding knee extension were recruited. Knee flexion angles of the dominant limb were measured with a universal goniometer and the ROM © goniometric application for the smartphone. Three trained examiners compared the two assessment tools. Strong correlations were found between the measures of the universal goniometer and smartphone application (Pearson's correlation and interclass correlation coefficient > 0.93). The measurements with both devices demonstrated low dispersion and little variation. Measurements obtained using the smartphone goniometric application analyzed are as reliable as those of a universal goniometer. This application is therefore a useful tool for the evaluation of knee range of motion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Evaluation of accuracy in target positions of multmodality imaging using brain phantom

    Energy Technology Data Exchange (ETDEWEB)

    Juh, R. H.; Suh, T. S.; Chung, Y. A. [The Catholic University of Korea, Seoul (Korea, Republic of)

    2002-07-01

    Determination of target positions in radiation therapy or radiosurgery is critical to the successful treatment. It is often difficult to recognize the target position only from single image modality since each image modality has unique image pattern and image distortion problem. The purpose of this study is to evaluate the accuracy of target positions with multimodality brain phantom. We obtained CT, MR, and SPECT scan images with the specially designed brain phantom. Brain phantom consists of brain for images and frame for localization. The phantom was a water fillable cylinder containing 58 axial layers of 2.0 mm thickness. Each layer allows water to permeate various regions to match gray matter to white matter of 1:1 ratio. Localization frame with 5mm inner diameter and 150/160 mm length were attached to the outside of the brain slice and inside of the phantom cylinder. The phantom was filled with 0.16 M CuSO{sub 4} solution for MRI scan, and distilled water for CT and 15mCi (555 MBq) Tc-99m for SPECT. Axial slice images and volume images including the targets and localizer were obtained for each modality. To evaluate the errors in target positions, the position of localization and target balls measured in SPECT were compared with MR and CT. Transformation parameters for translation, rotation and scaling were determined by surface matching each SPECT with MR and CT images. Multimodality phantom was very useful to evaluate the accuracy of target positions among the different types of image modality such as CT, MR and SPECT.

  6. Measurement of 3-D Vibrational Motion by Dynamic Photogrammetry Using Least-Square Image Matching for Sub-Pixel Targeting to Improve Accuracy

    Science.gov (United States)

    Lee, Hyoseong; Rhee, Huinam; Oh, Jae Hong; Park, Jin Ho

    2016-01-01

    This paper deals with an improved methodology to measure three-dimensional dynamic displacements of a structure by digital close-range photogrammetry. A series of stereo images of a vibrating structure installed with targets are taken at specified intervals by using two daily-use cameras. A new methodology is proposed to accurately trace the spatial displacement of each target in three-dimensional space. This method combines the correlation and the least-square image matching so that the sub-pixel targeting can be obtained to increase the measurement accuracy. Collinearity and space resection theory are used to determine the interior and exterior orientation parameters. To verify the proposed method, experiments have been performed to measure displacements of a cantilevered beam excited by an electrodynamic shaker, which is vibrating in a complex configuration with mixed bending and torsional motions simultaneously with multiple frequencies. The results by the present method showed good agreement with the measurement by two laser displacement sensors. The proposed methodology only requires inexpensive daily-use cameras, and can remotely detect the dynamic displacement of a structure vibrating in a complex three-dimensional defection shape up to sub-pixel accuracy. It has abundant potential applications to various fields, e.g., remote vibration monitoring of an inaccessible or dangerous facility. PMID:26978366

  7. Prediction of site specific ground motion for large earthquake

    International Nuclear Information System (INIS)

    Kamae, Katsuhiro; Irikura, Kojiro; Fukuchi, Yasunaga.

    1990-01-01

    In this paper, we apply the semi-empirical synthesis method by IRIKURA (1983, 1986) to the estimation of site specific ground motion using accelerograms observed at Kumatori in Osaka prefecture. Target earthquakes used here are a comparatively distant earthquake (Δ=95 km, M=5.6) caused by the YAMASAKI fault and a near earthquake (Δ=27 km, M=5.6). The results obtained are as follows. 1) The accelerograms from the distant earthquake (M=5.6) are synthesized using the aftershock records (M=4.3) for 1983 YAMASAKI fault earthquake whose source parameters have been obtained by other authors from the hypocentral distribution of the aftershocks. The resultant synthetic motions show a good agreement with the observed ones. 2) The synthesis for a near earthquake (M=5.6, we call this target earthquake) are made using a small earthquake which occurred in the neighborhood of the target earthquake. Here, we apply two methods for giving the parameters for synthesis. One method is to use the parameters of YAMASAKI fault earthquake which has the same magnitude as the target earthquake, and the other is to use the parameters obtained from several existing empirical formulas. The resultant synthetic motion with the former parameters shows a good agreement with the observed one, but that with the latter does not. 3) We estimate the source parameters from the source spectra of several earthquakes which have been observed in this site. Consequently we find that the small earthquakes (M<4) as Green's functions should be carefully used because the stress drops are not constant. 4) We propose that we should designate not only the magnitudes but also seismic moments of the target earthquake and the small earthquake. (J.P.N.)

  8. Separating complex compound patient motion tracking data using independent component analysis

    Science.gov (United States)

    Lindsay, C.; Johnson, K.; King, M. A.

    2014-03-01

    In SPECT imaging, motion from respiration and body motion can reduce image quality by introducing motion-related artifacts. A minimally-invasive way to track patient motion is to attach external markers to the patient's body and record their location throughout the imaging study. If a patient exhibits multiple movements simultaneously, such as respiration and body-movement, each marker location data will contain a mixture of these motions. Decomposing this complex compound motion into separate simplified motions can have the benefit of applying a more robust motion correction to the specific type of motion. Most motion tracking and correction techniques target a single type of motion and either ignore compound motion or treat it as noise. Few methods account for compound motion exist, but they fail to disambiguate super-position in the compound motion (i.e. inspiration in addition to body movement in the positive anterior/posterior direction). We propose a new method for decomposing the complex compound patient motion using an unsupervised learning technique called Independent Component Analysis (ICA). Our method can automatically detect and separate different motions while preserving nuanced features of the motion without the drawbacks of previous methods. Our main contributions are the development of a method for addressing multiple compound motions, the novel use of ICA in detecting and separating mixed independent motions, and generating motion transform with 12 DOFs to account for twisting and shearing. We show that our method works with clinical datasets and can be employed to improve motion correction in single photon emission computed tomography (SPECT) images.

  9. Modal-pushover-based ground-motion scaling procedure

    Science.gov (United States)

    Kalkan, Erol; Chopra, Anil K.

    2011-01-01

    Earthquake engineering is increasingly using nonlinear response history analysis (RHA) to demonstrate the performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. This paper presents a modal-pushover-based scaling (MPS) procedure to scale ground motions for use in a nonlinear RHA of buildings. In the MPS method, the ground motions are scaled to match to a specified tolerance, a target value of the inelastic deformation of the first-mode inelastic single-degree-of-freedom (SDF) system whose properties are determined by the first-mode pushover analysis. Appropriate for first-mode dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-mode SDF systems in selecting a subset of the scaled ground motions. Based on results presented for three actual buildings-4, 6, and 13-story-the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.

  10. An attempt to model the relationship between MMI attenuation and engineering ground-motion parameters using artificial neural networks and genetic algorithms

    Directory of Open Access Journals (Sweden)

    G-A. Tselentis

    2010-12-01

    Full Text Available Complex application domains involve difficult pattern classification problems. This paper introduces a model of MMI attenuation and its dependence on engineering ground motion parameters based on artificial neural networks (ANNs and genetic algorithms (GAs. The ultimate goal of this investigation is to evaluate the target-region applicability of ground-motion attenuation relations developed for a host region based on training an ANN using the seismic patterns of the host region. This ANN learning is based on supervised learning using existing data from past earthquakes. The combination of these two learning procedures (that is, GA and ANN allows us to introduce a new method for pattern recognition in the context of seismological applications. The performance of this new GA-ANN regression method has been evaluated using a Greek seismological database with satisfactory results.

  11. Real-time prediction and gating of respiratory motion in 3D space using extended Kalman filters and Gaussian process regression network

    Science.gov (United States)

    Bukhari, W.; Hong, S.-M.

    2016-03-01

    The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient’s breathing cycle. The algorithm, named EKF-GPRN+ , first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN+ prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN+ implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN+ . The experimental results show that the EKF-GPRN+ algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN+ algorithm can further reduce the prediction error by employing the gating function, albeit

  12. Real-time prediction and gating of respiratory motion in 3D space using extended Kalman filters and Gaussian process regression network

    International Nuclear Information System (INIS)

    Bukhari, W; Hong, S-M

    2016-01-01

    The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient’s breathing cycle. The algorithm, named EKF-GPRN +  , first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN + prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN + implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN +  . The experimental results show that the EKF-GPRN + algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN + algorithm can further reduce the prediction error by employing the gating function

  13. Nuclear resonant scattering of synchrotron radiation from nuclei in the Brownian motion

    International Nuclear Information System (INIS)

    Razdan, Ashok

    2003-01-01

    The time evolution of the coherent forward scattering of the synchrotron radiation for resonant nuclei in Brownian motion is studied. Apart from target thickness, the appearance of the dynamical beats also depends on 'α' which is the ratio of the harmonic force constant to the damping force constant of harmonic oscillator undergoing Brownian motion

  14. Prostate Bed Motion During Intensity-Modulated Radiotherapy Treatment

    International Nuclear Information System (INIS)

    Klayton, Tracy; Price, Robert; Buyyounouski, Mark K.; Sobczak, Mark; Greenberg, Richard; Li, Jinsheng; Keller, Lanea; Sopka, Dennis; Kutikov, Alexander; Horwitz, Eric M.

    2012-01-01

    Purpose: Conformal radiation therapy in the postprostatectomy setting requires accurate setup and localization of the prostatic fossa. In this series, we report prostate bed localization and motion characteristics, using data collected from implanted radiofrequency transponders. Methods and Materials: The Calypso four-dimensional localization system uses three implanted radiofrequency transponders for daily target localization and real-time tracking throughout a course of radiation therapy. We reviewed the localization and tracking reports for 20 patients who received ultrasonography-guided placement of Calypso transponders within the prostate bed prior to a course of intensity-modulated radiation therapy at Fox Chase Cancer Center. Results: At localization, prostate bed displacement relative to bony anatomy exceeded 5 mm in 9% of fractions in the anterior-posterior (A-P) direction and 21% of fractions in the superior-inferior (S-I) direction. The three-dimensional vector length from skin marks to Calypso alignment exceeded 1 cm in 24% of all 652 fractions with available setup data. During treatment, the target exceeded the 5-mm tracking limit for at least 30 sec in 11% of all fractions, generally in the A-P or S-I direction. In the A-P direction, target motion was twice as likely to move posteriorly, toward the rectum, than anteriorly. Fifteen percent of all treatments were interrupted for repositioning, and 70% of patients were repositioned at least once during their treatment course. Conclusion: Set-up errors and motion of the prostatic fossa during radiotherapy are nontrivial, leading to potential undertreatment of target and excess normal tissue toxicity if not taken into account during treatment planning. Localization and real-time tracking of the prostate bed via implanted Calypso transponders can be used to improve the accuracy of plan delivery.

  15. TU-F-BRB-01: Resolving and Characterizing Breathing Motion for Radiotherapy with MRI

    Energy Technology Data Exchange (ETDEWEB)

    Tryggestad, E. [Mayo Clinic (United States)

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  16. TU-F-BRB-01: Resolving and Characterizing Breathing Motion for Radiotherapy with MRI

    International Nuclear Information System (INIS)

    Tryggestad, E.

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  17. Inter-fraction variations in respiratory motion models

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, J R; Modat, M; Ourselin, S; Hawkes, D J [Centre for Medical Image Computing, University College London (United Kingdom); Hughes, S; Qureshi, A; Ahmad, S; Landau, D B, E-mail: j.mcclelland@cs.ucl.ac.uk [Department of Oncology, Guy' s and St Thomas' s Hospitals NHS Trust, London (United Kingdom)

    2011-01-07

    Respiratory motion can vary dramatically between the planning stage and the different fractions of radiotherapy treatment. Motion predictions used when constructing the radiotherapy plan may be unsuitable for later fractions of treatment. This paper presents a methodology for constructing patient-specific respiratory motion models and uses these models to evaluate and analyse the inter-fraction variations in the respiratory motion. The internal respiratory motion is determined from the deformable registration of Cine CT data and related to a respiratory surrogate signal derived from 3D skin surface data. Three different models for relating the internal motion to the surrogate signal have been investigated in this work. Data were acquired from six lung cancer patients. Two full datasets were acquired for each patient, one before the course of radiotherapy treatment and one at the end (approximately 6 weeks later). Separate models were built for each dataset. All models could accurately predict the respiratory motion in the same dataset, but had large errors when predicting the motion in the other dataset. Analysis of the inter-fraction variations revealed that most variations were spatially varying base-line shifts, but changes to the anatomy and the motion trajectories were also observed.

  18. Transient Severe Motion Artifact Related to Gadoxetate Disodium-Enhanced Liver MRI: Frequency and Risk Evaluation at a German Institution.

    Science.gov (United States)

    Well, Lennart; Rausch, Vanessa Hanna; Adam, Gerhard; Henes, Frank Oliver; Bannas, Peter

    2017-07-01

    Purpose  Varying frequencies (5 - 18 %) of contrast-related transient severe motion (TSM) imaging artifacts during gadoxetate disodium-enhanced arterial phase liver MRI have been reported. Since previous reports originated from the United States and Japan, we aimed to determine the frequency of TSM at a German institution and to correlate it with potential risk factors and previously published results. Materials and Methods  Two age- and sex-matched groups were retrospectively selected (gadoxetate disodium n = 89; gadobenate dimeglumine n = 89) from dynamic contrast-enhanced MRI examinations in a single center. Respiratory motion-related artifacts in non-enhanced and dynamic phases were assessed independently by two readers blinded to contrast agents on a 4-point scale. Scores of ≥ 3 were considered as severe motion artifacts. Severe motion artifacts in arterial phases were considered as TSM if scores in all other phases were risk factors for TSM were evaluated via logistic regression analysis. Results  For gadoxetate disodium, the mean score for respiratory motion artifacts was significantly higher in the arterial phase (2.2 ± 0.9) compared to all other phases (1.6 ± 0.7) (p risk factors (all p > 0.05). Conclusion  We revealed a high frequency of TSM after injection of gadoxetate disodium at a German institution, substantiating the importance of a diagnosis-limiting phenomenon that so far has only been reported from the United States and Japan. In accordance with previous studies, we did not identify associated risk factors for TSM. Key Points:   · Gadoxetate disodium causes TSM in a relevant number of patients.. · The frequency of TSM is similar between the USA, Japan and Germany.. · To date, no validated risk factors for TSM could be identified.. Citation Format · Well L, Rausch VH, Adam G et al. Transient Severe Motion Artifact Related to Gadoxetate Disodium-Enhanced Liver MRI: Frequency and Risk Evaluation at a

  19. Dynamic RSA for the evaluation of inducible micromotion of Oxford UKA during step-up and step-down motion.

    Science.gov (United States)

    Horsager, Kristian; Kaptein, Bart L; Rømer, Lone; Jørgensen, Peter B; Stilling, Maiken

    2017-06-01

    Background and purpose - Implant inducible micromotions have been suggested to reflect the quality of the fixation interface. We investigated the usability of dynamic RSA for evaluation of inducible micromotions of the Oxford Unicompartmental Knee Arthroplasty (UKA) tibial component, and evaluated factors that have been suggested to compromise the fixation, such as fixation method, component alignment, and radiolucent lines (RLLs). Patients and methods - 15 patients (12 men) with a mean age of 69 (55-86) years, with an Oxford UKA (7 cemented), were studied after a mean time in situ of 4.4 (3.6-5.1) years. 4 had tibial RLLs. Each patient was recorded with dynamic RSA (10 frames/second) during a step-up/step-down motion. Inducible micromotions were calculated for the tibial component with respect to the tibia bone. Postoperative component alignment was measured with model-based RSA and RLLs were measured on screened radiographs. Results - All tibial components showed inducible micromotions as a function of the step-cycle motion with a mean subsidence of up to -0.06 mm (95% CI: -0.10 to -0.03). Tibial component inducible micromotions were similar for cemented fixation and cementless fixation. Patients with tibial RLLs had 0.5° (95% CI: 0.18-0.81) greater inducible medio-lateral tilt of the tibial component. There was a correlation between postoperative posterior slope of the tibial plateau and inducible anterior-posterior tilt. Interpretation - All patients had inducible micromotions of the tibial component during step-cycle motion. RLLs and a high posterior slope increased the magnitude of inducible micromotions. This suggests that dynamic RSA is a valuable clinical tool for the evaluation of functional implant fixation.

  20. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment.

    Science.gov (United States)

    Kim, Hyun K; Park, Jaehyun; Choi, Yeongcheol; Choe, Mungyeong

    2018-05-01

    This study aims to develop a motion sickness measurement index in a virtual reality (VR) environment. The VR market is in an early stage of market formation and technological development, and thus, research on the side effects of VR devices such as simulator motion sickness is lacking. In this study, we used the simulator sickness questionnaire (SSQ), which has been traditionally used for simulator motion sickness measurement. To measure the motion sickness in a VR environment, 24 users performed target selection tasks using a VR device. The SSQ was administered immediately after each task, and the order of work was determined using the Latin square design. The existing SSQ was revised to develop a VR sickness questionnaire, which is used as the measurement index in a VR environment. In addition, the target selection method and button size were found to be significant factors that affect motion sickness in a VR environment. The results of this study are expected to be used for measuring and designing simulator sickness using VR devices in future studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Technical Note: Motion-perturbation method applied to dosimetry of dynamic MLC target tracking—A proof-of-concept

    Energy Technology Data Exchange (ETDEWEB)

    Feygelman, Vladimir, E-mail: vladimir.feygelman@moffitt.org; Tonner, Brian; Hunt, Dylan; Zhang, Geoffrey; Moros, Eduardo [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States); Stambaugh, Cassandra [Department of Physics, University of South Florida, Tampa, Florida 33612 (United States); Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States)

    2015-11-15

    Purpose: Previous studies show that dose to a moving target can be estimated using 4D measurement-guided dose reconstruction based on a process called virtual motion simulation, or VMS. A potential extension of VMS is to estimate dose during dynamic multileaf collimator (MLC)-tracking treatments. The authors introduce a modified VMS method and quantify its performance as proof-of-concept for tracking applications. Methods: Direct measurements with a moving biplanar diode array were used to verify accuracy of the VMS dose estimates. A tracking environment for variably sized circular MLC apertures was simulated by sending preprogrammed control points to the MLC while simultaneously moving the accelerator treatment table. Sensitivity of the method to simulated tracking latency (0–700 ms) was also studied. Potential applicability of VMS to fast changing beam apertures was evaluated by modeling, based on the demonstrated dependence of the cumulative dose on the temporal dose gradient. Results: When physical and virtual latencies were matched, the agreement rates (2% global/2 mm gamma) between the VMS and the biplanar dosimeter were above 96%. When compared to their own reference dose (0 induced latency), the agreement rates for VMS and biplanar array track closely up to 200 ms of induced latency with 10% low-dose cutoff threshold and 300 ms with 50% cutoff. Time-resolved measurements suggest that even in the modulated beams, the error in the cumulative dose introduced by the 200 ms VMS time resolution is not likely to exceed 0.5%. Conclusions: Based on current results and prior benchmarks of VMS accuracy, the authors postulate that this approach should be applicable to any MLC-tracking treatments where leaf speeds do not exceed those of the current Varian accelerators.

  2. Technical Note: Motion-perturbation method applied to dosimetry of dynamic MLC target tracking—A proof-of-concept

    International Nuclear Information System (INIS)

    Feygelman, Vladimir; Tonner, Brian; Hunt, Dylan; Zhang, Geoffrey; Moros, Eduardo; Stambaugh, Cassandra; Nelms, Benjamin E.

    2015-01-01

    Purpose: Previous studies show that dose to a moving target can be estimated using 4D measurement-guided dose reconstruction based on a process called virtual motion simulation, or VMS. A potential extension of VMS is to estimate dose during dynamic multileaf collimator (MLC)-tracking treatments. The authors introduce a modified VMS method and quantify its performance as proof-of-concept for tracking applications. Methods: Direct measurements with a moving biplanar diode array were used to verify accuracy of the VMS dose estimates. A tracking environment for variably sized circular MLC apertures was simulated by sending preprogrammed control points to the MLC while simultaneously moving the accelerator treatment table. Sensitivity of the method to simulated tracking latency (0–700 ms) was also studied. Potential applicability of VMS to fast changing beam apertures was evaluated by modeling, based on the demonstrated dependence of the cumulative dose on the temporal dose gradient. Results: When physical and virtual latencies were matched, the agreement rates (2% global/2 mm gamma) between the VMS and the biplanar dosimeter were above 96%. When compared to their own reference dose (0 induced latency), the agreement rates for VMS and biplanar array track closely up to 200 ms of induced latency with 10% low-dose cutoff threshold and 300 ms with 50% cutoff. Time-resolved measurements suggest that even in the modulated beams, the error in the cumulative dose introduced by the 200 ms VMS time resolution is not likely to exceed 0.5%. Conclusions: Based on current results and prior benchmarks of VMS accuracy, the authors postulate that this approach should be applicable to any MLC-tracking treatments where leaf speeds do not exceed those of the current Varian accelerators

  3. TH-CD-207A-12: Impacts of Inter- and Intra-Fractional Organ Motion for High-Risk Prostate Cancer Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hassan Rezaeian, N; Chi, Y; Zhou, Y; Tian, Z; Jiang, S; Hannan, R; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: We are conducting a clinical trial on stereotactic body radiation therapy (SBRT) for high-risk prostate cancer. Doses to three targets, prostate, intra-prostatic lesion, and pelvic lymph node (PLN) region, are escalated to three different levels via simultaneous integrated boost technique. Inter-/intra-fractional organ motions deteriorate planned dose distribution. This study aims at developing a dose reconstruction system to comprehensively understand the impacts of organ motion in our clinical trial. Methods: A 4D dose reconstruction system has been developed for this study. Using a GPU-based Monte-Carlo dose engine and delivery log file, the system is able to reconstruct dose on static or dynamic anatomy. For prostate and intra-prostatic targets, intra-fractional motion is the main concern. Motion trajectory acquired from Calypso in previously treated SBRT patients were used to perform 4D dose reconstructions. For pelvic target, inter-fractional motion is one concern. Eight patients, each with four cone beam CTs, were used to derive fractional motion. The delivered dose was reconstructed on the deformed anatomy. Dosimetric parameters for delivered dose distributions of the three targets were extracted and compared with planned levels. Results: For prostate intra-fractional motion, the mean 3D motion amplitude during beam delivery ranged from 1.5mm to 5.0mm and the average among all patients was 2.61mm. Inter-fractional motion for the PLN target was more significant. The average amplitude among patients was 4mm with the largest amplitude up to 9.6mm. The D95% deviation from planned level for prostate PTVs and GTVs are on average less than<0.1% and this deviation for intra-prostatic lesion PTVs and GTVs were more prominent. The dose at PLN was significantly affected with D{sub 95}% reduced by up to 44%. Conclusion: Intra-/inter-fractional organ motion is a concern for high-risk prostate SBRT, particularly for the PLN target. Our dose reconstruction

  4. The Dosimetric Consequences of Intensity Modulated Radiotherapy for Cervix Cancer: The Impact of Organ Motion, Deformation and Tumour Regression

    Science.gov (United States)

    Lim, Karen Siah Huey

    Hypothesis: In intensity modulated radiotherapy (IMRT) for cervix cancer, the dose received by the tumour target and surrounding normal tissues is significantly different to that indicated by a single static plan. Rationale: The optimal use of IMRT in cervix cancer requires a greater attention to clinical target volume (CTV) definition and tumour & normal organ motion to assure maximum tumour control with the fewest side effects. Research Aims: 1) Generate consensus CTV contouring guidelines for cervix cancer; 2) Evaluate intra-pelvic tumour and organ dynamics during radiotherapy; 3) Analyze the dose consequences of intra-pelvic organ dynamics on different radiotherapy strategies. Results: Consensus CTV definitions were generated using experts-in-the-field. Substantial changes in tumour volume and organ motion, resulted in significant reductions in accumulated dose to tumour targets and variability in accumulated dose to surrounding normal tissues. Significance: Formalized CTV definitions for cervix cancer is important in ensuring consistent standards of practice. Complex and unpredictable tumour and organ dynamics mandates daily soft-tissue image guidance if IMRT is used. To maximize the benefits of IMRT for cervix cancer, a strategy of adaptation is necessary.

  5. The impact of respiratory motion and active breathing control on the displacement of target area in patients with gastric cancer treated with post-operative radiotherapy

    International Nuclear Information System (INIS)

    Yu Xiaoli; Zhang Zhen; Gu Weilie; Hu Weigang; Zhu Ji; Cai Gang; Li Guichao; He Shaoqin

    2010-01-01

    Objective: To assess the impact of respiratory motion on the displacement of target area and to analyze the discrimination between free breathing and active breathing control (ABC) in patients with gastric cancer treated with post-operative radiotherapy. Methods: From January 2005 to November 2006, 22 patients with post-operatively confirmed gastric cancer were enrolled in this study. All diseases were T 3 / N +, staging II - IV. Patients were CT scanned and treated by radiation with the use of ABC. Image J software was used in image processing, motion measurement and data analysis. Surgical clips were implanted as fiducial marks in the tumor bed and lymphatic drainage area. The motion range of each clip was measured in the resultant-projection image. Motions of the clips in superior-inferior (S-I), right-left (R-L) and anterior-posterior (A-P) directions were determined from fluoroscopy movies obtained in the treatment position. Results: The motion ranges in S-I, R-L and A-P directions were 11.1 mam, 1.9 mm and 2.5 mm (F = 85.15, P = 0. 000) under free breathing, with 2.2 mm, 1.1 mm and 1.7 nun under ABC (F = 17.64, P = 0. 000), and the reduction of motion ranges was significant in both S-I and A-P directions (t = 4.36, P = 0. 000;t = 3.73,P = 0.000). When compared with under free-breathing, the motion ranges under ABC were kept unchanged in the same breathing phase of the same treatment fraction, while significant increased in different breathing phase in all three directions (t = - 4.36, P = 0. 000; t = - 3.52, P = 0.000; t =-3.79, P = 0. 000), with a numerical value of 3.7 mm, 1.6 mm and 2.8 mm, respectively (F = 19.46, P = 0. 000) . With ABC between different treatment fractions , the maximum displacements were 2.7 mm, 1.7 mm and 2.5 mm for the centre of the clip cluster (F =4.07,P =0. 019), and were 4.6 mm, 3.1 mm and 4.2 mm for the clips (F =5.17 ,P =0.007). The motion ranges were significant increased in all the three directions (t = - 4.09, P=0.000 ; t =-4

  6. Methods of determination of periods in the motion of asteroids

    Science.gov (United States)

    Bien, R.; Schubart, J.

    Numerical techniques for the analysis of fundamental periods in asteroidal motion are evaluated. The specific techniques evaluated were: the periodogram analysis procedure of Wundt (1980); Stumpff's (1937) system of algebraic transformations; and Labrouste's procedure. It is shown that the Labrouste procedure permitted sufficient isolation of single oscillations from the quasi-periodic process of asteroidal motion. The procedure was applied to the analysis of resonance in the motion of Trojan-type and Hilda-type asteroids, and some preliminary results are discussed.

  7. Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker

    International Nuclear Information System (INIS)

    Vedam, S.S.; Kini, V.R.; Keall, P.J.; Ramakrishnan, V.; Mostafavi, H.; Mohan, R.

    2003-01-01

    The aim of this work was to quantify the ability to predict intrafraction diaphragm motion from an external respiration signal during a course of radiotherapy. The data obtained included diaphragm motion traces from 63 fluoroscopic lung procedures for 5 patients, acquired simultaneously with respiratory motion signals (an infrared camera-based system was used to track abdominal wall motion). During these sessions, the patients were asked to breathe either (i) without instruction, (ii) with audio prompting, or (iii) using visual feedback. A statistical general linear model was formulated to describe the relationship between the respiration signal and diaphragm motion over all sessions and for all breathing training types. The model parameters derived from the first session for each patient were then used to predict the diaphragm motion for subsequent sessions based on the respiration signal. Quantification of the difference between the predicted and actual motion during each session determined our ability to predict diaphragm motion during a course of radiotherapy. This measure of diaphragm motion was also used to estimate clinical target volume (CTV) to planning target volume (PTV) margins for conventional, gated, and proposed four-dimensional (4D) radiotherapy. Results from statistical analysis indicated a strong linear relationship between the respiration signal and diaphragm motion (p<0.001) over all sessions, irrespective of session number (p=0.98) and breathing training type (p=0.19). Using model parameters obtained from the first session, diaphragm motion was predicted in subsequent sessions to within 0.1 cm (1 σ) for gated and 4D radiotherapy. Assuming a 0.4 cm setup error, superior-inferior CTV-PTV margins of 1.1 cm for conventional radiotherapy could be reduced to 0.8 cm for gated and 4D radiotherapy. The diaphragm motion is strongly correlated with the respiration signal obtained from the abdominal wall. This correlation can be used to predict diaphragm

  8. Mamizu climate policy: an evaluation of Japanese carbon emissions reduction targets

    International Nuclear Information System (INIS)

    Pielke, Roger A Jr

    2009-01-01

    This letter evaluates Japan's so-called 'Mamizu' climate policies proposed in mid-2009 in terms of the implied rates of decarbonization of the Japanese economy for short-term and long-term targets. The letter uses the Kaya identity to structure the evaluation, employing both a bottom up approach (based on projections of future Japanese population, economic growth, and technology) and a top down approach (deriving implied rates of decarbonization consistent with the targets and various rates of economic growth). Both approaches indicate that the Japanese economy would have to achieve rates of decarbonization of 2.6% to meet a 2020 target of reducing emissions by 15% below 2005 levels, and 5.0% to meet a 2050 target of an 80% reduction below 2005 levels. A target of 25% below 1990 emissions proposed by the opposition party (which subsequently formed a government following elections in August 2009) implies a rate of decarbonization of 4.6% annually to 2020. The letter argues that international criticism of Japanese Mamizu climate policy proposals as being too weak was unfounded, and if anything, the proposals may have been too ambitious. In either case, climate policy would be strengthened through the support of a diversity of approaches to decarbonization.

  9. Motion of the esophagus due to cardiac motion.

    Directory of Open Access Journals (Sweden)

    Jacob Palmer

    Full Text Available When imaging studies (e.g. CT are used to quantify morphological changes in an anatomical structure, it is necessary to understand the extent and source of motion which can give imaging artifacts (e.g. blurring or local distortion. The objective of this study was to assess the magnitude of esophageal motion due to cardiac motion. We used retrospective electrocardiogram-gated contrast-enhanced computed tomography angiography images for this study. The anatomic region from the carina to the bottom of the heart was taken at deep-inspiration breath hold with the patients' arms raised above their shoulders, in a position similar to that used for radiation therapy. The esophagus was delineated on the diastolic phase of cardiac motion, and deformable registration was used to sequentially deform the images in nearest-neighbor phases among the 10 cardiac phases, starting from the diastolic phase. Using the 10 deformation fields generated from the deformable registration, the magnitude of the extreme displacements was then calculated for each voxel, and the mean and maximum displacement was calculated for each computed tomography slice for each patient. The average maximum esophageal displacement due to cardiac motion for all patients was 5.8 mm (standard deviation: 1.6 mm, maximum: 10.0 mm in the transverse direction. For 21 of 26 patients, the largest esophageal motion was found in the inferior region of the heart; for the other patients, esophageal motion was approximately independent of superior-inferior position. The esophagus motion was larger at cardiac phases where the electrocardiogram R-wave occurs. In conclusion, the magnitude of esophageal motion near the heart due to cardiac motion is similar to that due to other sources of motion, including respiratory motion and intra-fraction motion. A larger cardiac motion will result into larger esophagus motion in a cardiac cycle.

  10. Superdiffusive motion of membrane-targeting C2 domains

    Science.gov (United States)

    Campagnola, Grace; Nepal, Kanti; Schroder, Bryce W.; Peersen, Olve B.; Krapf, Diego

    2015-12-01

    Membrane-targeting domains play crucial roles in the recruitment of signalling molecules to the plasma membrane. For most peripheral proteins, the protein-to-membrane interaction is transient. After proteins dissociate from the membrane they have been observed to rebind following brief excursions in the bulk solution. Such membrane hops can have broad implications for the efficiency of reactions on membranes. We study the diffusion of membrane-targeting C2 domains using single-molecule tracking in supported lipid bilayers. The ensemble-averaged mean square displacement (MSD) exhibits superdiffusive behaviour. However, traditional time-averaged MSD analysis of individual trajectories remains linear and does not reveal superdiffusion. Our observations are explained in terms of bulk excursions that introduce jumps with a heavy-tail distribution. These hopping events allow proteins to explore large areas in a short time. The experimental results are shown to be consistent with analytical models of bulk-mediated diffusion and numerical simulations.

  11. Impact of an intra-cycle motion correction algorithm on overall evaluability and diagnostic accuracy of computed tomography coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Pontone, Gianluca; Bertella, Erika; Baggiano, Andrea; Mushtaq, Saima; Loguercio, Monica; Segurini, Chiara; Conte, Edoardo; Beltrama, Virginia; Annoni, Andrea; Formenti, Alberto; Petulla, Maria; Trabattoni, Daniela; Pepi, Mauro [Centro Cardiologico Monzino, IRCCS, Milan (Italy); Andreini, Daniele; Montorsi, Piero; Bartorelli, Antonio L. [Centro Cardiologico Monzino, IRCCS, Milan (Italy); University of Milan, Department of Cardiovascular Sciences and Community Health, Milan (Italy); Guaricci, Andrea I. [University of Foggia, Department of Cardiology, Foggia (Italy)

    2016-01-15

    The aim of this study was to evaluate the impact of a novel intra-cycle motion correction algorithm (MCA) on overall evaluability and diagnostic accuracy of cardiac computed tomography coronary angiography (CCT). From a cohort of 900 consecutive patients referred for CCT for suspected coronary artery disease (CAD), we enrolled 160 (18 %) patients (mean age 65.3 ± 11.7 years, 101 male) with at least one coronary segment classified as non-evaluable for motion artefacts. The CCT data sets were evaluated using a standard reconstruction algorithm (SRA) and MCA and compared in terms of subjective image quality, evaluability and diagnostic accuracy. The mean heart rate during the examination was 68.3 ± 9.4 bpm. The MCA showed a higher Likert score (3.1 ± 0.9 vs. 2.5 ± 1.1, p < 0.001) and evaluability (94%vs.79 %, p < 0.001) than the SRA. In a 45-patient subgroup studied by clinically indicated invasive coronary angiography, specificity, positive predictive value and accuracy were higher in MCA vs. SRA in segment-based and vessel-based models, respectively (87%vs.73 %, 50%vs.34 %, 85%vs.73 %, p < 0.001 and 62%vs.28 %, 66%vs.51 % and 75%vs.57 %, p < 0.001). In a patient-based model, MCA showed higher accuracy vs. SCA (93%vs.76 %, p < 0.05). MCA can significantly improve subjective image quality, overall evaluability and diagnostic accuracy of CCT. (orig.)

  12. Radiotherapy beyond cancer: Target localization in real-time MRI and treatment planning for cardiac radiosurgery

    International Nuclear Information System (INIS)

    Ipsen, S.; Blanck, O.; Rades, D.; Oborn, B.; Bode, F.; Liney, G.; Hunold, P.; Schweikard, A.; Keall, P. J.

    2014-01-01

    Purpose: Atrial fibrillation (AFib) is the most common cardiac arrhythmia that affects millions of patients world-wide. AFib is usually treated with minimally invasive, time consuming catheter ablation techniques. While recently noninvasive radiosurgery to the pulmonary vein antrum (PVA) in the left atrium has been proposed for AFib treatment, precise target location during treatment is challenging due to complex respiratory and cardiac motion. A MRI linear accelerator (MRI-Linac) could solve the problems of motion tracking and compensation using real-time image guidance. In this study, the authors quantified target motion ranges on cardiac magnetic resonance imaging (MRI) and analyzed the dosimetric benefits of margin reduction assuming real-time motion compensation was applied. Methods: For the imaging study, six human subjects underwent real-time cardiac MRI under free breathing. The target motion was analyzed retrospectively using a template matching algorithm. The planning study was conducted on a CT of an AFib patient with a centrally located esophagus undergoing catheter ablation, representing an ideal case for cardiac radiosurgery. The target definition was similar to the ablation lesions at the PVA created during catheter treatment. Safety margins of 0 mm (perfect tracking) to 8 mm (untracked respiratory motion) were added to the target, defining the planning target volume (PTV). For each margin, a 30 Gy single fraction IMRT plan was generated. Additionally, the influence of 1 and 3 T magnetic fields on the treatment beam delivery was simulated using Monte Carlo calculations to determine the dosimetric impact of MRI guidance for two different Linac positions. Results: Real-time cardiac MRI showed mean respiratory target motion of 10.2 mm (superior–inferior), 2.4 mm (anterior–posterior), and 2 mm (left–right). The planning study showed that increasing safety margins to encompass untracked respiratory motion leads to overlapping structures even in the

  13. Radiotherapy beyond cancer: Target localization in real-time MRI and treatment planning for cardiac radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Ipsen, S. [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia and Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck 23562 (Germany); Blanck, O.; Rades, D. [Department of Radiation Oncology, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck 23562 (Germany); Oborn, B. [Illawarra Cancer Care Centre (ICCC), Wollongong, New South Wales 2500, Australia and Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, New South Wales 2500 (Australia); Bode, F. [Medical Department II, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck 23562 (Germany); Liney, G. [Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, New South Wales 2170 (Australia); Hunold, P. [Department of Radiology and Nuclear Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck 23562 (Germany); Schweikard, A. [Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck 23562 (Germany); Keall, P. J., E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006 (Australia)

    2014-12-15

    Purpose: Atrial fibrillation (AFib) is the most common cardiac arrhythmia that affects millions of patients world-wide. AFib is usually treated with minimally invasive, time consuming catheter ablation techniques. While recently noninvasive radiosurgery to the pulmonary vein antrum (PVA) in the left atrium has been proposed for AFib treatment, precise target location during treatment is challenging due to complex respiratory and cardiac motion. A MRI linear accelerator (MRI-Linac) could solve the problems of motion tracking and compensation using real-time image guidance. In this study, the authors quantified target motion ranges on cardiac magnetic resonance imaging (MRI) and analyzed the dosimetric benefits of margin reduction assuming real-time motion compensation was applied. Methods: For the imaging study, six human subjects underwent real-time cardiac MRI under free breathing. The target motion was analyzed retrospectively using a template matching algorithm. The planning study was conducted on a CT of an AFib patient with a centrally located esophagus undergoing catheter ablation, representing an ideal case for cardiac radiosurgery. The target definition was similar to the ablation lesions at the PVA created during catheter treatment. Safety margins of 0 mm (perfect tracking) to 8 mm (untracked respiratory motion) were added to the target, defining the planning target volume (PTV). For each margin, a 30 Gy single fraction IMRT plan was generated. Additionally, the influence of 1 and 3 T magnetic fields on the treatment beam delivery was simulated using Monte Carlo calculations to determine the dosimetric impact of MRI guidance for two different Linac positions. Results: Real-time cardiac MRI showed mean respiratory target motion of 10.2 mm (superior–inferior), 2.4 mm (anterior–posterior), and 2 mm (left–right). The planning study showed that increasing safety margins to encompass untracked respiratory motion leads to overlapping structures even in the

  14. Radiotherapy beyond cancer: target localization in real-time MRI and treatment planning for cardiac radiosurgery.

    Science.gov (United States)

    Ipsen, S; Blanck, O; Oborn, B; Bode, F; Liney, G; Hunold, P; Rades, D; Schweikard, A; Keall, P J

    2014-12-01

    Atrial fibrillation (AFib) is the most common cardiac arrhythmia that affects millions of patients world-wide. AFib is usually treated with minimally invasive, time consuming catheter ablation techniques. While recently noninvasive radiosurgery to the pulmonary vein antrum (PVA) in the left atrium has been proposed for AFib treatment, precise target location during treatment is challenging due to complex respiratory and cardiac motion. A MRI linear accelerator (MRI-Linac) could solve the problems of motion tracking and compensation using real-time image guidance. In this study, the authors quantified target motion ranges on cardiac magnetic resonance imaging (MRI) and analyzed the dosimetric benefits of margin reduction assuming real-time motion compensation was applied. For the imaging study, six human subjects underwent real-time cardiac MRI under free breathing. The target motion was analyzed retrospectively using a template matching algorithm. The planning study was conducted on a CT of an AFib patient with a centrally located esophagus undergoing catheter ablation, representing an ideal case for cardiac radiosurgery. The target definition was similar to the ablation lesions at the PVA created during catheter treatment. Safety margins of 0 mm (perfect tracking) to 8 mm (untracked respiratory motion) were added to the target, defining the planning target volume (PTV). For each margin, a 30 Gy single fraction IMRT plan was generated. Additionally, the influence of 1 and 3 T magnetic fields on the treatment beam delivery was simulated using Monte Carlo calculations to determine the dosimetric impact of MRI guidance for two different Linac positions. Real-time cardiac MRI showed mean respiratory target motion of 10.2 mm (superior-inferior), 2.4 mm (anterior-posterior), and 2 mm (left-right). The planning study showed that increasing safety margins to encompass untracked respiratory motion leads to overlapping structures even in the ideal scenario, compromising

  15. What women like: influence of motion and form on esthetic body perception

    Directory of Open Access Journals (Sweden)

    Valentina eCazzato

    2012-07-01

    Full Text Available Several studies have shown the distinct contribution of motion and form to the esthetic evaluation of female bodies. Here, we investigated how variations of implied motion and body size interact in the esthetic evaluation of female and male bodies in a sample of young healthy women. Participants provided attractiveness, beauty, and liking ratings for the shape and posture of virtual renderings of human bodies with variable body size and implied motion. The esthetic judgments for both shape and posture of human models were influenced by body size and implied motion, with a preference for thinner and more dynamic stimuli. Implied motion, however, attenuated the impact of extreme body size on the esthetic evaluation of body postures, and body size variations did not affect the preference for more dynamic stimuli. Results show that body form and action cues interact in esthetic perception, but the final esthetic appreciation of human bodies is predicted by a mixture of perceptual and affective evaluative components.

  16. Hand interception of occluded motion in humans: a test of model-based vs. on-line control.

    Science.gov (United States)

    La Scaleia, Barbara; Zago, Myrka; Lacquaniti, Francesco

    2015-09-01

    Two control schemes have been hypothesized for the manual interception of fast visual targets. In the model-free on-line control, extrapolation of target motion is based on continuous visual information, without resorting to physical models. In the model-based control, instead, a prior model of target motion predicts the future spatiotemporal trajectory. To distinguish between the two hypotheses in the case of projectile motion, we asked participants to hit a ball that rolled down an incline at 0.2 g and then fell in air at 1 g along a parabola. By varying starting position, ball velocity and trajectory differed between trials. Motion on the incline was always visible, whereas parabolic motion was either visible or occluded. We found that participants were equally successful at hitting the falling ball in both visible and occluded conditions. Moreover, in different trials the intersection points were distributed along the parabolic trajectories of the ball, indicating that subjects were able to extrapolate an extended segment of the target trajectory. Remarkably, this trend was observed even at the very first repetition of movements. These results are consistent with the hypothesis of model-based control, but not with on-line control. Indeed, ball path and speed during the occlusion could not be extrapolated solely from the kinematic information obtained during the preceding visible phase. The only way to extrapolate ball motion correctly during the occlusion was to assume that the ball would fall under gravity and air drag when hidden from view. Such an assumption had to be derived from prior experience. Copyright © 2015 the American Physiological Society.

  17. Step and shoot IMRT to mobile targets and techniques to mitigate the interplay effect

    International Nuclear Information System (INIS)

    Ehler, Eric D; Tome, Wolfgang A

    2009-01-01

    The purpose of this work is to evaluate a method to mitigate temporal dose variation due to the interplay effect as well as investigate the effect of randomly varying motion patterns. The multi-leaf collimator (MLC) settings from 5, 9 and 11 field step and shoot intensity modulated radiation therapy (IMRT) of non-small cell lung cancer (NSCLC) treatment plans with tumor motion of 1.53, 1.03 and 1.95 cm, respectively, were used. Static planar dose distributions were determined for each treatment field using the Planar Dose Module in the Pinnacle 3 treatment planning system. The MotionSIM XY/4D robotic diode array was used to recreate the tumor motion orthogonal to each treatment beam. Dose rate modulation was investigated as a method to mitigate temporal dose variation due to the interplay effect. Computer simulation was able to identify individual fields where interplay effects are greatest. Computer simulation and physical measurement have shown that temporal dose variation can be mitigated by the selection of the dose rate or by selective dose rate modulation within a given IMRT treatment field. Selective dose rate modulation within a given IMRT treatment field reduced temporal dose variation to levels comparable to whole field dose rate reduction, while also producing shorter radiation delivery times in six of the seven cases investigated. For the cases considered, the interplay effect did not appear to have a greater effect on hypofractionation compared to traditional fractionation even though fewer fractions were delivered. Randomized motion kernel variation was also considered. For this portion of the study, a nine field step and shoot IMRT configuration was considered with a 1.03 cm tumor motion rather than the five field case. In general, if the extent of the variant motion pattern was mostly contained within the target volume, limited impact on the temporal dose variation was observed. In cases where the variant motion kernels increasingly exceeded the

  18. Whole-Body Motion Planning for Humanoid Robots by Specifying Via-Points

    Directory of Open Access Journals (Sweden)

    ChangHyun Sung

    2013-07-01

    Full Text Available We design a framework about the planning of whole body motion for humanoid robots. Motion planning with various constraints is essential to success the task. In this research, we propose a motion planning method corresponding to various conditions for achieving the task. We specify some via-points to deal with the conditions for target achievement depending on various constraints. Together with certain constraints including task accomplishment, the via-point representation plays a crucial role in the optimization process of our method. Furthermore, the via-points as the optimization parameters are related to some physical conditions. We applied this method to generate the kicking motion of a humanoid robot HOAP-3. We have confirmed that the robot was able to complete the task of kicking a ball over an obstacle into a goal in addition to changing conditions of the location of a ball. These results show that the proposed motion planning method using via-point representation can increase articulation of the motion.

  19. Principal component analysis-based imaging angle determination for 3D motion monitoring using single-slice on-board imaging.

    Science.gov (United States)

    Chen, Ting; Zhang, Miao; Jabbour, Salma; Wang, Hesheng; Barbee, David; Das, Indra J; Yue, Ning

    2018-04-10

    Through-plane motion introduces uncertainty in three-dimensional (3D) motion monitoring when using single-slice on-board imaging (OBI) modalities such as cine MRI. We propose a principal component analysis (PCA)-based framework to determine the optimal imaging plane to minimize the through-plane motion for single-slice imaging-based motion monitoring. Four-dimensional computed tomography (4DCT) images of eight thoracic cancer patients were retrospectively analyzed. The target volumes were manually delineated at different respiratory phases of 4DCT. We performed automated image registration to establish the 4D respiratory target motion trajectories for all patients. PCA was conducted using the motion information to define the three principal components of the respiratory motion trajectories. Two imaging planes were determined perpendicular to the second and third principal component, respectively, to avoid imaging with the primary principal component of the through-plane motion. Single-slice images were reconstructed from 4DCT in the PCA-derived orthogonal imaging planes and were compared against the traditional AP/Lateral image pairs on through-plane motion, residual error in motion monitoring, absolute motion amplitude error and the similarity between target segmentations at different phases. We evaluated the significance of the proposed motion monitoring improvement using paired t test analysis. The PCA-determined imaging planes had overall less through-plane motion compared against the AP/Lateral image pairs. For all patients, the average through-plane motion was 3.6 mm (range: 1.6-5.6 mm) for the AP view and 1.7 mm (range: 0.6-2.7 mm) for the Lateral view. With PCA optimization, the average through-plane motion was 2.5 mm (range: 1.3-3.9 mm) and 0.6 mm (range: 0.2-1.5 mm) for the two imaging planes, respectively. The absolute residual error of the reconstructed max-exhale-to-inhale motion averaged 0.7 mm (range: 0.4-1.3 mm, 95% CI: 0.4-1.1 mm) using

  20. Ground motion characteristics of 2007 Niigata-ken Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Hijikata, Katsuichirou; Nishimura, Isao; Mizutani, Hiroyuki; Tokumitsu, Ryoichi; Mashimo, Mitsugu; Tanaka, Shinya

    2010-01-01

    Strong motion records of 2007 Niigata-ken Chuetsu-oki earthquake were examined in order to evaluate ground motion characteristics of the earthquake. Ground motions observed at Kashiwazaki Kariwa Nuclear Power Plant site were significantly larger than the response spectra evaluated on the basis of Noda et al. (2002), and the level of the ground motion observed at Arahama area (unit 1-4 side) was approximately twice as large as that at Ominato area (unit 5-7 side). Observation records of the offshore events other than the earthquake were also larger than the response spectra based on Noda et al. (2002), whereas records of the inland events were smaller than those. In addition, these characteristics were also observed in the vicinity of the site through the analysis of the ground motion records obtained by KiK-net. (author)

  1. Vestibular nuclei and cerebellum put visual gravitational motion in context.

    Science.gov (United States)

    Miller, William L; Maffei, Vincenzo; Bosco, Gianfranco; Iosa, Marco; Zago, Myrka; Macaluso, Emiliano; Lacquaniti, Francesco

    2008-04-01

    Animal survival in the forest, and human success on the sports field, often depend on the ability to seize a target on the fly. All bodies fall at the same rate in the gravitational field, but the corresponding retinal motion varies with apparent viewing distance. How then does the brain predict time-to-collision under gravity? A perspective context from natural or pictorial settings might afford accurate predictions of gravity's effects via the recovery of an environmental reference from the scene structure. We report that embedding motion in a pictorial scene facilitates interception of gravitational acceleration over unnatural acceleration, whereas a blank scene eliminates such bias. Functional magnetic resonance imaging (fMRI) revealed blood-oxygen-level-dependent correlates of these visual context effects on gravitational motion processing in the vestibular nuclei and posterior cerebellar vermis. Our results suggest an early stage of integration of high-level visual analysis with gravity-related motion information, which may represent the substrate for perceptual constancy of ubiquitous gravitational motion.

  2. Cervix Regression and Motion During the Course of External Beam Chemoradiation for Cervical Cancer

    International Nuclear Information System (INIS)

    Beadle, Beth M.; Jhingran, Anuja; Salehpour, Mohammad; Sam, Marianne; Iyer, Revathy B.; Eifel, Patricia J.

    2009-01-01

    Purpose: To evaluate the magnitude of cervix regression and motion during external beam chemoradiation for cervical cancer. Methods and Materials: Sixteen patients with cervical cancer underwent computed tomography scanning before, weekly during, and after conventional chemoradiation. Cervix volumes were calculated to determine the extent of cervix regression. Changes in the center of mass and perimeter of the cervix between scans were used to determine the magnitude of cervix motion. Maximum cervix position changes were calculated for each patient, and mean maximum changes were calculated for the group. Results: Mean cervical volumes before and after 45 Gy of external beam irradiation were 97.0 and 31.9 cc, respectively; mean volume reduction was 62.3%. Mean maximum changes in the center of mass of the cervix were 2.1, 1.6, and 0.82 cm in the superior-inferior, anterior-posterior, and right-left lateral dimensions, respectively. Mean maximum changes in the perimeter of the cervix were 2.3 and 1.3 cm in the superior and inferior, 1.7 and 1.8 cm in the anterior and posterior, and 0.76 and 0.94 cm in the right and left lateral directions, respectively. Conclusions: Cervix regression and internal organ motion contribute to marked interfraction variations in the intrapelvic position of the cervical target in patients receiving chemoradiation for cervical cancer. Failure to take these variations into account during the application of highly conformal external beam radiation techniques poses a theoretical risk of underdosing the target or overdosing adjacent critical structures

  3. Experimentally studied dynamic dose interplay does not meaningfully affect target dose in VMAT SBRT lung treatments

    Energy Technology Data Exchange (ETDEWEB)

    Stambaugh, Cassandra [Department of Physics, University of South Florida, Tampa, Florida 33612 (United States); Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Dilling, Thomas; Stevens, Craig; Latifi, Kujtim; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States)

    2013-09-15

    Purpose: The effects of respiratory motion on the tumor dose can be divided into the gradient and interplay effects. While the interplay effect is likely to average out over a large number of fractions, it may play a role in hypofractionated [stereotactic body radiation therapy (SBRT)] treatments. This subject has been extensively studied for intensity modulated radiation therapy but less so for volumetric modulated arc therapy (VMAT), particularly in application to hypofractionated regimens. Also, no experimental study has provided full four-dimensional (4D) dose reconstruction in this scenario. The authors demonstrate how a recently described motion perturbation method, with full 4D dose reconstruction, is applied to describe the gradient and interplay effects during VMAT lung SBRT treatments.Methods: VMAT dose delivered to a moving target in a patient can be reconstructed by applying perturbations to the treatment planning system-calculated static 3D dose. Ten SBRT patients treated with 6 MV VMAT beams in five fractions were selected. The target motion (motion kernel) was approximated by 3D rigid body translation, with the tumor centroids defined on the ten phases of the 4DCT. The motion was assumed to be periodic, with the period T being an average from the empirical 4DCT respiratory trace. The real observed tumor motion (total displacement ≤8 mm) was evaluated first. Then, the motion range was artificially increased to 2 or 3 cm. Finally, T was increased to 60 s. While not realistic, making T comparable to the delivery time elucidates if the interplay effect can be observed. For a single fraction, the authors quantified the interplay effect as the maximum difference in the target dosimetric indices, most importantly the near-minimum dose (D{sub 99%}), between all possible starting phases. For the three- and five-fractions, statistical simulations were performed when substantial interplay was found.Results: For the motion amplitudes and periods obtained from

  4. Monitoring core barrel motion by neutron noise diagnostics

    International Nuclear Information System (INIS)

    Por, G.

    1985-08-01

    The core barrel motion is detected by ionization chambers located around the reactor vessel. The method is based on the measurement of the neutron flux fluctuations. Calculations to determine the direction and the size of the motion are discussed. The identification of core barrel motion and its connection with the error of one of the main circulating pumps in the Rheinsberg nuclear power plant are described. Core barrel motion of 10 Hz with an amplitude less than 50 μm could be diagnozed at the Paks-1 reactor using the Dutch high accuracy evaluation system. (V.N.)

  5. Pharmacological and neurophysiological aspects of space/motion sickness

    Science.gov (United States)

    Lucot, James B.; Crampton, George H.

    1991-01-01

    A motorized motion testing device modeled after a Ferris wheel was constructed to perform motion sickness tests on cats. Details of the testing are presented, and some of the topics covered include the following: xylazine-induced emesis; analysis of the constituents of the cerebrospinal fluid (CSF) during motion sickness; evaluation of serotonin-1A (5-HT sub 1A) agonists; other 5HT receptors; antimuscarinic mechanisms; and antihistaminergic mechanisms. The ability of the following drugs to reduce motion sickness in the cats was examined: amphetamines, adenosinergic drugs, opioid antagonists, peptides, cannabinoids, cognitive enhancers (nootropics), dextromethorphan/sigma ligands, scopolamine, and diphenhydramine.

  6. Hydrodynamic motion of a heavy-ion-beam-heated plasma

    International Nuclear Information System (INIS)

    Jacoby, J.; Hoffmann, D.H.H.; Mueller, R.W.; Mahrt-Olt, K.; Arnold, R.C.; Schneider, V.; Maruhn, J.

    1990-01-01

    The first experimental study is reported of a plasma produced by a heavy-ion beam. Relevant parameters for heating with heavy ions are described, temperature and density of the plasma are determined, and the hydrodynamic motion in the target induced by the beam is studied. The measured temperature and the free-electron density are compared with a two-dimensional hydrodynamic-model calculation. In accordance with the model, a radial rarefaction wave reaching the center of the target was observed and the penetration velocity of the ion beam into the xenon-gas target was measured

  7. Illusory Speed is Retained in Memory during Invisible Motion

    Directory of Open Access Journals (Sweden)

    Luca Battaglini

    2013-05-01

    Full Text Available The brain can retain speed information in early visual short-term memory in an astonishingly precise manner. We investigated whether this (early visual memory system is active during the extrapolation of occluded motion and whether it reflects speed misperception due to contrast and size. Experiments 1A and 2A showed that reducing target contrast or increasing its size led to an illusory speed underestimation. Experiments 1B, 2B, and 3 showed that this illusory phenomenon is reflected in the memory of speed during occluded motion, independent of the range of visible speeds, of the length of the visible trajectory or the invisible trajectory, and of the type of task. These results suggest that illusory speed is retained in memory during invisible motion.

  8. Automated Navigation System based on Weapon-Target Assignment

    Directory of Open Access Journals (Sweden)

    Mohammad Khairudin

    2011-12-01

    Full Text Available Operating of weapon on the tank is mostly by manually. It is not desired performance for a critical operation. An automatic control system is required to operate the weapon with the target while maintaining the accuracy. In this paper has designed an automatic weapon control system using object image proccessing. Various an image processing methods used to improve the weapon accuracy to obtain the intended target. The method used in digital image processing is the Camshift motion tracking method. This method is compared with the Lucas Canade motion tracking method. This comparison is conducted to found more precise results between the two methods. Results of object image processing are used to control the direction of the weapon that towards the desired goal. The results show that the implementation of the Lucas Canade motion tracking method using fire simulation tools have been successful. The performance of the Lucas Canade motion tracking methods is better than the CamShift method. Using Lucas Canade method for weapon controller is accordance with the purposes.

  9. Difference in target definition using three different methods to include respiratory motion in radiotherapy of lung cancer

    DEFF Research Database (Denmark)

    Sloth Møller, Ditte; Knap, Marianne Marquard; Nyeng, Tine Bisballe

    2017-01-01

    : PTVσ yields the smallest volumes but does not ensure coverage of tumor during the full respiratory motion due to tumor deformation. Incorporating the respiratory motion in the delineation (PTVdel) takes into account the entire respiratory cycle including deformation, but at the cost, however, of larger...

  10. SU-E-T-622: Planning Technique for Passively-Scattered Involved-Node Proton Therapy of Mediastinal Lymphoma with Consideration of Cardiac Motion

    Energy Technology Data Exchange (ETDEWEB)

    Flampouri, S; Li, Z; Hoppe, B [University of Florida Health Proton Therapy Institute, Jacksonville, FL (United States)

    2015-06-15

    Purpose: To develop a treatment planning method for passively-scattered involved-node proton therapy of mediastinal lymphoma robust to breathing and cardiac motions. Methods: Beam-specific planning treatment volumes (bsPTV) are calculated for each proton field to incorporate pertinent uncertainties. Geometric margins are added laterally to each beam while margins for range uncertainty due to setup errors, breathing, and calibration curve uncertainties are added along each beam. The calculation of breathing motion and deformation effects on proton range includes all 4DCT phases. The anisotropic water equivalent margins are translated to distances on average 4DCT. Treatment plans are designed so each beam adequately covers the corresponding bsPTV. For targets close to the heart, cardiac motion effects on dosemaps are estimated by using a library of anonymous ECG-gated cardiac CTs (cCT). The cCT, originally contrast-enhanced, are partially overridden to allow meaningful proton dose calculations. Targets similar to the treatment targets are drawn on one or more cCT sets matching the anatomy of the patient. Plans based on the average cCT are calculated on individual phases, then deformed to the average and accumulated. When clinically significant dose discrepancies occur between planned and accumulated doses, the patient plan is modified to reduce the cardiac motion effects. Results: We found that bsPTVs as planning targets create dose distributions similar to the conventional proton planning distributions, while they are a valuable tool for visualization of the uncertainties. For large targets with variability in motion and depth, integral dose was reduced because of the anisotropic margins. In most cases, heart motion has a clinically insignificant effect on target coverage. Conclusion: A treatment planning method was developed and used for proton therapy of mediastinal lymphoma. The technique incorporates bsPTVs compensating for all common sources of uncertainties

  11. Unsupervised markerless 3-DOF motion tracking in real time using a single low-budget camera.

    Science.gov (United States)

    Quesada, Luis; León, Alejandro J

    2012-10-01

    Motion tracking is a critical task in many computer vision applications. Existing motion tracking techniques require either a great amount of knowledge on the target object or specific hardware. These requirements discourage the wide spread of commercial applications based on motion tracking. In this paper, we present a novel three degrees of freedom motion tracking system that needs no knowledge on the target object and that only requires a single low-budget camera that can be found installed in most computers and smartphones. Our system estimates, in real time, the three-dimensional position of a nonmodeled unmarked object that may be nonrigid, nonconvex, partially occluded, self-occluded, or motion blurred, given that it is opaque, evenly colored, enough contrasting with the background in each frame, and that it does not rotate. Our system is also able to determine the most relevant object to track in the screen. Our proposal does not impose additional constraints, therefore it allows a market-wide implementation of applications that require the estimation of the three position degrees of freedom of an object.

  12. Evaluation of the AN/GSS-20 motion detection system

    International Nuclear Information System (INIS)

    1979-01-01

    A series of tests was performed on the AN/GSS-20 motion detection system. The primary objectives of these tests were to determine sensor detection patterns and to quantitate the effects of intruder velocity. System susceptibility to environmental factors was also examined

  13. SU-E-J-181: Effect of Prostate Motion On Combined Brachytherapy and External Beam Dose Based On Daily Motion of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, V; McLaughlin, P [Providence Cancer Center, Southfield, MI (United States); University of Michigan, Ann Arbor, MI (United States); Ealbaj, J [University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Purpose: In this study, the adequacy of target expansions on the combined external beam and implant dose was examined based on the measured daily motion of the prostate. Methods: Thirty patients received an I–125 prostate implant prescribed to dose of 90Gy. This was followed by external beam to deliver a dose of 90Gyeq (external beam equivalent) to the prostate over 25 to 30 fractions. An ideal IMRT plan was developed by optimizing the external beam dose based on the delivered implant dose. The implant dose was converted to an equivalent external beam dose using the linear quadratic model. Patients were set up on the treatment table by daily orthogonal imaging and aligning the marker seeds in the prostate. Orthogonal images were obtained at the end of treatment to assess prostate intrafraction motion. Based on the observed motion of the markers between the initial and final images, 5 individual plans showing the actual dose delivered to the patient were calculated. A final true dose distribution was established based on summing the implant dose and the 5 external beam plans. Dose to the prostate, seminal vesicles, lymphnodes and normal tissues, rectal wall, urethra and lower sphincter were calculated and compared to ideal. On 18 patients who were sexually active, dose to the corpus cavernosum and internal pudendal artery was also calculated. Results: The average prostate motion in 3 orthogonal directions was less than 1 mm with a standard deviation of less than +2 mm. Dose and volume parameters showed that there was no decrease in dose to the targets and a marginal decrease in dose to in normal tissues. Conclusion: Dose delivered by seed implant moves with the prostate, decreasing the impact of intrafractions dose movement on actual dose delivered. Combined brachytherapy and external beam dose delivered to the prostate was not sensitive to prostate motion.

  14. Strong Earthquake Motion Estimates for Three Sites on the U.C. Riverside Campus; TOPICAL

    International Nuclear Information System (INIS)

    Archuleta, R.; Elgamal, A.; Heuze, F.; Lai, T.; Lavalle, D.; Lawrence, B.; Liu, P.C.; Matesic, L.; Park, S.; Riemar, M.; Steidl, J.; Vucetic, M.; Wagoner, J.; Yang, Z.

    2000-01-01

    The approach of the Campus Earthquake Program (CEP) is to combine the substantial expertise that exists within the UC system in geology, seismology, and geotechnical engineering, to estimate the earthquake strong motion exposure of UC facilities. These estimates draw upon recent advances in hazard assessment, seismic wave propagation modeling in rocks and soils, and dynamic soil testing. The UC campuses currently chosen for application of our integrated methodology are Riverside, San Diego, and Santa Barbara. The procedure starts with the identification of possible earthquake sources in the region and the determination of the most critical fault(s) related to earthquake exposure of the campus. Combined geological, geophysical, and geotechnical studies are then conducted to characterize each campus with specific focus on the location of particular target buildings of special interest to the campus administrators. We drill and geophysically log deep boreholes next to the target structure, to provide direct in-situ measurements of subsurface material properties, and to install uphole and downhole 3-component seismic sensors capable of recording both weak and strong motions. The boreholes provide access below the soil layers, to deeper materials that have relatively high seismic shear-wave velocities. Analyses of conjugate downhole and uphole records provide a basis for optimizing the representation of the low-strain response of the sites. Earthquake rupture scenarios of identified causative faults are combined with the earthquake records and with nonlinear soil models to provide site-specific estimates of strong motions at the selected target locations. The predicted ground motions are shared with the UC consultants, so that they can be used as input to the dynamic analysis of the buildings. Thus, for each campus targeted by the CEP project, the strong motion studies consist of two phases, Phase 1-initial source and site characterization, drilling, geophysical logging

  15. Evaluation of POE and instructor-led problem-solving approaches integrated into force and motion lecture classes using a model analysis technique

    International Nuclear Information System (INIS)

    Rakkapao, S; Pengpan, T; Srikeaw, S; Prasitpong, S

    2014-01-01

    This study aims to investigate the use of the predict–observe–explain (POE) approach integrated into large lecture classes on forces and motion. It is compared to the instructor-led problem-solving method using model analysis. The samples are science (SC, N = 420) and engineering (EN, N = 434) freshmen, from Prince of Songkla University, Thailand. Research findings from the force and motion conceptual evaluation indicate that the multimedia-supported POE method promotes students’ learning better than the problem-solving method, in particular for the velocity and acceleration concepts. There is a small shift of the students’ model states after the problem-solving instruction. Moreover, by using model analysis instructors are able to investigate students’ misconceptions and evaluate teaching methods. It benefits instructors in organizing subsequent instructional materials. (paper)

  16. Kinematic analysis of basic rhythmic movements of hip-hop dance: motion characteristics common to expert dancers.

    Science.gov (United States)

    Sato, Nahoko; Nunome, Hiroyuki; Ikegami, Yasuo

    2015-02-01

    In hip-hop dance contests, a procedure for evaluating performances has not been clearly defined, and objective criteria for evaluation are necessary. It is assumed that most hip-hop dance techniques have common motion characteristics by which judges determine the dancer's skill level. This study aimed to extract motion characteristics that may be linked to higher evaluations by judges. Ten expert and 12 nonexpert dancers performed basic rhythmic movements at a rate of 100 beats per minute. Their movements were captured using a motion capture system, and eight judges evaluated the performances. Four kinematic parameters, including the amplitude of the body motions and the phase delay, which indicates the phase difference between two joint angles, were calculated. The two groups showed no significant differences in terms of the amplitudes of the body motions. In contrast, the phase delay between the head motion and the other body parts' motions of expert dancers who received higher scores from the judges, which was approximately a quarter cycle, produced a loop-shaped motion of the head. It is suggested that this slight phase delay was related to the judges' evaluations and that these findings may help in constructing an objective evaluation system.

  17. Perceiving the target's state or state provoked by the target? An analysis of the descriptive and evaluative knowledge in person perception.

    Science.gov (United States)

    Mignon, Astrid; Mollaret, Patrick

    2012-12-01

    In line with the theory of traits as generalized affordances, the present article argues that target's states (TSs) and states provoked by a target (other's states (OSs) towards target) are two components of the meaning of traits referring, respectively, to a descriptive and to an evaluative knowledge of people. A preliminary study confirmed that TS and OS were equally representative of a trait. Two studies were designed to study the effects of practising the use of traits as either TS or OS categories (an induction procedure) on a subsequent person perception task, requiring participants to rate photographed targets on a series of traits. Results show that both the differentiation between targets and evaluative consistency of ratings were enhanced under the OS condition compared to TS and control (with no practice of traits) conditions. Importantly, Study 2 tends to show that the effects of the induction procedure are not limited to the practised traits but also generalize to unpractised traits. Implications of these findings for social perception research are discussed. ©2011 The British Psychological Society.

  18. MO-FG-BRA-07: Intrafractional Motion Effect Can Be Minimized in Tomotherapy Stereotactic Body Radiotherapy (SBRT)

    Energy Technology Data Exchange (ETDEWEB)

    Price, A; Chang, S; Matney, J; Wang, A; Lian, J [University of North Carolina, Chapel Hill, NC (United States); Chao, E [Accuray Incorporated, Madison, WI (United States)

    2016-06-15

    Purpose: Tomotherapy has unique challenges in handling intrafractional motion compared to conventional LINAC. In this study, we analyzed the impact of intrafractional motion on cumulative dosimetry using actual patient motion data and investigated real time jaw/MLC compensation approaches to minimize the motion-induced dose discrepancy in Tomotherapy SBRT treatment. Methods: Intrafractional motion data recorded in two CyberKnife lung treatment cases through fiducial tracking and two LINAC prostate cases through Calypso tracking were used in this study. For each treatment site, one representative case has an average motion (6mm) and one has a large motion (10mm for lung and 15mm for prostate). The cases were re-planned on Tomotherapy for SBRT. Each case was planned with 3 different jaw settings: 1cm static, 2.5cm dynamic, and 5cm dynamic. 4D dose accumulation software was developed to compute dose with the recorded motions and theoretically compensate motions by modifying original jaw and MLC to track the trajectory of the tumor. Results: PTV coverage in Tomotherapy SBRT for patients with intrafractional motion depends on motion type, amplitude and plan settings. For the prostate patient with large motion, PTV coverage changed from 97.2% (motion-free) to 47.1% (target motion-included), 96.6% to 58.5% and 96.3% to 97.8% for the 1cm static jaw, 2.5cm dynamic jaw and 5cm dynamic jaw setting, respectively. For the lung patient with large motion, PTV coverage discrepancies showed a similar trend of change. When the jaw and MLC compensation program was engaged, the motion compromised PTV coverage was recovered back to >95% for all cases and plans. All organs at risk (OAR) were spared with < 5% increase from original motion-free plans. Conclusion: Tomotherapy SBRT is less motion-impacted when 5cm dynamic jaw is used. Once the motion pattern is known, the jaw and MLC compensation program can largely minimize the compromised target coverage and OAR sparing.

  19. MO-FG-BRA-07: Intrafractional Motion Effect Can Be Minimized in Tomotherapy Stereotactic Body Radiotherapy (SBRT)

    International Nuclear Information System (INIS)

    Price, A; Chang, S; Matney, J; Wang, A; Lian, J; Chao, E

    2016-01-01

    Purpose: Tomotherapy has unique challenges in handling intrafractional motion compared to conventional LINAC. In this study, we analyzed the impact of intrafractional motion on cumulative dosimetry using actual patient motion data and investigated real time jaw/MLC compensation approaches to minimize the motion-induced dose discrepancy in Tomotherapy SBRT treatment. Methods: Intrafractional motion data recorded in two CyberKnife lung treatment cases through fiducial tracking and two LINAC prostate cases through Calypso tracking were used in this study. For each treatment site, one representative case has an average motion (6mm) and one has a large motion (10mm for lung and 15mm for prostate). The cases were re-planned on Tomotherapy for SBRT. Each case was planned with 3 different jaw settings: 1cm static, 2.5cm dynamic, and 5cm dynamic. 4D dose accumulation software was developed to compute dose with the recorded motions and theoretically compensate motions by modifying original jaw and MLC to track the trajectory of the tumor. Results: PTV coverage in Tomotherapy SBRT for patients with intrafractional motion depends on motion type, amplitude and plan settings. For the prostate patient with large motion, PTV coverage changed from 97.2% (motion-free) to 47.1% (target motion-included), 96.6% to 58.5% and 96.3% to 97.8% for the 1cm static jaw, 2.5cm dynamic jaw and 5cm dynamic jaw setting, respectively. For the lung patient with large motion, PTV coverage discrepancies showed a similar trend of change. When the jaw and MLC compensation program was engaged, the motion compromised PTV coverage was recovered back to >95% for all cases and plans. All organs at risk (OAR) were spared with < 5% increase from original motion-free plans. Conclusion: Tomotherapy SBRT is less motion-impacted when 5cm dynamic jaw is used. Once the motion pattern is known, the jaw and MLC compensation program can largely minimize the compromised target coverage and OAR sparing.

  20. Restoration of motion blurred images

    Science.gov (United States)

    Gaxiola, Leopoldo N.; Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.

    2017-08-01

    Image restoration is a classic problem in image processing. Image degradations can occur due to several reasons, for instance, imperfections of imaging systems, quantization errors, atmospheric turbulence, relative motion between camera or objects, among others. Motion blur is a typical degradation in dynamic imaging systems. In this work, we present a method to estimate the parameters of linear motion blur degradation from a captured blurred image. The proposed method is based on analyzing the frequency spectrum of a captured image in order to firstly estimate the degradation parameters, and then, to restore the image with a linear filter. The performance of the proposed method is evaluated by processing synthetic and real-life images. The obtained results are characterized in terms of accuracy of image restoration given by an objective criterion.

  1. Representation of visual gravitational motion in the human vestibular cortex.

    Science.gov (United States)

    Indovina, Iole; Maffei, Vincenzo; Bosco, Gianfranco; Zago, Myrka; Macaluso, Emiliano; Lacquaniti, Francesco

    2005-04-15

    How do we perceive the visual motion of objects that are accelerated by gravity? We propose that, because vision is poorly sensitive to accelerations, an internal model that calculates the effects of gravity is derived from graviceptive information, is stored in the vestibular cortex, and is activated by visual motion that appears to be coherent with natural gravity. The acceleration of visual targets was manipulated while brain activity was measured using functional magnetic resonance imaging. In agreement with the internal model hypothesis, we found that the vestibular network was selectively engaged when acceleration was consistent with natural gravity. These findings demonstrate that predictive mechanisms of physical laws of motion are represented in the human brain.

  2. Online 4D ultrasound guidance for real-time motion compensation by MLC tracking.

    Science.gov (United States)

    Ipsen, Svenja; Bruder, Ralf; O'Brien, Rick; Keall, Paul J; Schweikard, Achim; Poulsen, Per R

    2016-10-01

    With the trend in radiotherapy moving toward dose escalation and hypofractionation, the need for highly accurate targeting increases. While MLC tracking is already being successfully used for motion compensation of moving targets in the prostate, current real-time target localization methods rely on repeated x-ray imaging and implanted fiducial markers or electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging can yield volumetric data in real-time (3D + time = 4D) without ionizing radiation. The authors report the first results of combining these promising techniques-online 4D ultrasound guidance and MLC tracking-in a phantom. A software framework for real-time target localization was installed directly on a 4D ultrasound station and used to detect a 2 mm spherical lead marker inside a water tank. The lead marker was rigidly attached to a motion stage programmed to reproduce nine characteristic tumor trajectories chosen from large databases (five prostate, four lung). The 3D marker position detected by ultrasound was transferred to a computer program for MLC tracking at a rate of 21.3 Hz and used for real-time MLC aperture adaption on a conventional linear accelerator. The tracking system latency was measured using sinusoidal trajectories and compensated for by applying a kernel density prediction algorithm for the lung traces. To measure geometric accuracy, static anterior and lateral conformal fields as well as a 358° arc with a 10 cm circular aperture were delivered for each trajectory. The two-dimensional (2D) geometric tracking error was measured as the difference between marker position and MLC aperture center in continuously acquired portal images. For dosimetric evaluation, VMAT treatment plans with high and low modulation were delivered to a biplanar diode array dosimeter using the same trajectories. Dose measurements with and without MLC tracking were compared to a static reference dose using 3%/3 mm and 2

  3. A Concentric Tube Continuum Robot with Piezoelectric Actuation for MRI-Guided Closed-Loop Targeting

    Science.gov (United States)

    Su, Hao; Li, Gang; Rucker, D. Caleb; Webster, Robert J.; Fischer, Gregory S.

    2017-01-01

    This paper presents the design, modeling and experimental evaluation of a magnetic resonance imaging (MRI)-compatible concentric tube continuum robotic system. This system enables MRI-guided deployment of a precurved and steerable concentric tube continuum mechanism, and is suitable for clinical applications where a curved trajectory is needed. This compact 6 degree-of-freedom (DOF) robotic system is piezoelectrically-actuated, and allows simultaneous robot motion and imaging with no visually observable image artifact. The targeting accuracy is evaluated with optical tracking system and gelatin phantom under live MRI-guidance with Root Mean Square (RMS) errors of 1.94 and 2.17 mm respectively. Furthermore, we demonstrate that the robot has kinematic redundancy to reach the same target through different paths. This was evaluated in both free space and MRI-guided gelatin phantom trails, with RMS errors of 0.48 and 0.59 mm respectively. As the first of its kind, MRI-guided targeted concentric tube needle placements with ex vivo porcine liver are demonstrated with 4.64 mm RMS error through closed-loop control of the piezoelectrically-actuated robot. PMID:26983842

  4. A comparative cepstral based analysis of simulated and measured S-band and X-band radar Doppler spectra of human motion

    CSIR Research Space (South Africa)

    Van Eeden, WD

    2015-10-01

    Full Text Available targets. It is also shown that, whereas the motion of most body parts of a human target can be observed in the X-band data, only the main torso sway can be observed at S-band. This implies that X-band data is well suited to cepstrum based human motion...

  5. Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy

    International Nuclear Information System (INIS)

    Riley, Craig; Yang, Yong; Li, Tianfang; Zhang, Yongqian; Heron, Dwight E.; Huq, M. Saiful

    2014-01-01

    Purpose: Volumetric modulated arc therapy (VMAT) with gating capability has had increasing adoption in many clinics in the United States. In this new technique, dose rate, gantry rotation speed, and the leaf motion speed of multileaf collimators (MLCs) are modulated dynamically during gated beam delivery to achieve highly conformal dose coverage of the target and normal tissue sparing. Compared with the traditional gated intensity-modulated radiation therapy technique, this complicated beam delivery technique may result in larger dose errors due to the intrafraction tumor motion. The purpose of this work is to evaluate the dosimetric influence of the interplay effect for the respiration-gated VMAT technique (RapidArc, Varian Medical Systems, Palo Alto, CA). Our work consisted of two parts: (1) Investigate the interplay effect for different target residual errors during gated RapidArc delivery using a one-dimensional moving phantom capable of producing stable sinusoidal movement; (2) Evaluate the dosimetric influence in ten clinical patients’ treatment plans using a moving phantom driven with a patient-specific respiratory curve. Methods: For the first part of this study, four plans were created with a spherical target for varying residual motion of 0.25, 0.5, 0.75, and 1.0 cm. Appropriate gating windows were applied for each. The dosimetric effect was evaluated using EDR2 film by comparing the gated delivery with static delivery. For the second part of the project, ten gated lung stereotactic body radiotherapy cases were selected and reoptimized to be delivered by the gated RapidArc technique. These plans were delivered to a phantom, and again the gated treatments were compared to static deliveries by the same methods. Results: For regular sinusoidal motion, the dose delivered to the target was not substantially affected by the gating windows when evaluated with the gamma statistics, suggesting the interplay effect has a small role in respiratory-gated Rapid

  6. Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy.

    Science.gov (United States)

    Riley, Craig; Yang, Yong; Li, Tianfang; Zhang, Yongqian; Heron, Dwight E; Huq, M Saiful

    2014-01-01

    Volumetric modulated arc therapy (VMAT) with gating capability has had increasing adoption in many clinics in the United States. In this new technique, dose rate, gantry rotation speed, and the leaf motion speed of multileaf collimators (MLCs) are modulated dynamically during gated beam delivery to achieve highly conformal dose coverage of the target and normal tissue sparing. Compared with the traditional gated intensity-modulated radiation therapy technique, this complicated beam delivery technique may result in larger dose errors due to the intrafraction tumor motion. The purpose of this work is to evaluate the dosimetric influence of the interplay effect for the respiration-gated VMAT technique (RapidArc, Varian Medical Systems, Palo Alto, CA). Our work consisted of two parts: (1) Investigate the interplay effect for different target residual errors during gated RapidArc delivery using a one-dimensional moving phantom capable of producing stable sinusoidal movement; (2) Evaluate the dosimetric influence in ten clinical patients' treatment plans using a moving phantom driven with a patient-specific respiratory curve. For the first part of this study, four plans were created with a spherical target for varying residual motion of 0.25, 0.5, 0.75, and 1.0 cm. Appropriate gating windows were applied for each. The dosimetric effect was evaluated using EDR2 film by comparing the gated delivery with static delivery. For the second part of the project, ten gated lung stereotactic body radiotherapy cases were selected and reoptimized to be delivered by the gated RapidArc technique. These plans were delivered to a phantom, and again the gated treatments were compared to static deliveries by the same methods. For regular sinusoidal motion, the dose delivered to the target was not substantially affected by the gating windows when evaluated with the gamma statistics, suggesting the interplay effect has a small role in respiratory-gated RapidArc therapy. Varied results were

  7. Cervical Coupling Motion Characteristics in Healthy People Using a Wireless Inertial Measurement Unit

    Directory of Open Access Journals (Sweden)

    Hyunho Kim

    2013-01-01

    Full Text Available Objective. The objectives were to show the feasibility of a wireless microelectromechanical system inertial measurement unit (MEMS-IMU to assess the time-domain characteristics of cervical motion that are clinically useful to evaluate cervical spine movement. Methods. Cervical spine movements were measured in 18 subjects with wireless IMUs. All rotation data are presented in the Euler angle system. Amount of coupling motions was evaluated by calculating the average angle ratio and the maximum angle ratio of the coupling motion to the primary motion. Reliability is presented with intraclass correlation coefficients (ICC. Results. Entire time-domain characteristics of cervical motion were measured with developed MEMS-IMU system. Cervical range of motion (CROM and coupling motion range were measured with high ICCs. The acquired data and calculated parameters had similar tendency with the previous studies. Conclusions. We evaluated cervical motion with economic system using a wireless IMU of high reliability. We could directly measure the three-dimensional cervical motion in degrees in realtime. The characteristics measured by this system may provide a diagnostic basis for structural or functional dysfunction of cervical spine. This system is also useful to demonstrate the effectiveness of any intervention such as conventional medical treatment, and Korean medical treatment, exercise therapy.

  8. Evaluation of imaging of the ventilatory lung motion in pulmonary diseases

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Kanai, Hisakata; Tanaka, Masao; Hirayama, Jiro; Handa, Kenjiro

    1988-01-01

    Using perfusion lung scintigram with 99m Tc-macroaggregated albumin at maximal expiration (E) and inspiration (I), images of the motion of the regional pulmonary areas and lung margins during ventilation ((E-I)/I) was obtained in patients with various respiratory diseases. The image of (E-I)/I consisted of positive and negative components. The former component visualized the motion of the regional pulmonary areas that corresponded with the ventilatory amplitude of the videodensigram. The sum of the positive component of (E-I)/I in both lungs correlated with the vital capacity (n = 50, r = 0.62). It was 163.5 ± 52.5 in cases with a vital capacity of more than 3.01, 94.1 ± 61.5 in primary lung cancer, 89.2 ± 44.7 in chronic obstructive lung diseases and 69.0 ± 27.5 in diffuse interstitial pneumonia. The distribution pattern of pulmonary perfusion and the positive component of (E-I)/I matched fairly in many cases, but did not match in some cases. The negative component of (E-I)/I demonstrated the ventilatory motion of the lung margin and its decreased activity was shown in cases with hypoventilation of various causes including pleural diseases. The sum of the negative component of (E-I)/I in the both lungs correlated with the vital capacity (n = 50, r = 0.44). These results suggest that this technique is useful to estimate the regional pulmonary ventilatioin and motion of the lung margins. (author)

  9. A randomized clinical trial to compare the immediate effects of seated thoracic manipulation and targeted supine thoracic manipulation on cervical spine flexion range of motion and pain.

    Science.gov (United States)

    Karas, Steve; Olson Hunt, Megan J

    2014-05-01

    Randomized clinical trial. To determine the effectiveness of seated thoracic manipulation versus targeted supine thoracic manipulation on cervical spine pain and flexion range of motion (ROM). There is evidence that thoracic spine manipulation is an effective treatment for patients with cervical spine pain. This evidence includes a variety of techniques to manipulate the thoracic spine. Although each of them is effective, no research has compared techniques to determine which produces the best outcomes. A total of 39 patients with cervical spine pain were randomly assigned to either a seated thoracic manipulation or targeted supine thoracic manipulation group. Pain and flexion ROM measures were taken before and after the intervention. Pain reduction (post-treatment-pre-treatment) was significantly greater in those patients receiving the targeted supine thoracic manipulation compared to the seated thoracic manipulation (Pmanipulation group. The results of this study indicate that a targeted supine thoracic manipulation may be more effective in reducing cervical spine pain and improving cervical flexion ROM than a seated thoracic manipulation. Future studies should include a variety of patients and physical therapists (PTs) to validate our findings.

  10. MR-guided data framing for PET motion correction in simultaneous MR–PET: A preliminary evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ullisch, M.G., E-mail: m.ullisch@fz-juelich.de [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH (Germany); Scheins, J.; Weirich, C.; Rota Kops, E.; Celik, A.; Tellmann, L.; Stöcker, T.; Herzog, H.; Shah, N.J. [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH (Germany)

    2013-02-21

    Head motion can significantly degrade image quality of static and dynamic Positron Emission Tomography (PET) of the human brain. One method to regain acceptable image quality in the presence of motion is to include the correction for motion in the reconstruction process. When applying motion correction, the PET data can be segmented into discrete parts of similar head position, referred to as frames. This framing of the data can reduce the computational overhead necessary for motion correction during the reconstruction process by reducing the number of discrete head positions which have to be accounted for. Here a framing algorithm is presented which minimises residual motion in the framed data, while taking full advantage of the additional information provided by Magnetic Resonance Imaging (MRI) in a simultaneous MR–PET acquisition. In the work presented here information on motion is derived from EPI sequences acquired simultaneously with the PET data. A comparison to images reconstructed with regular framing show a more clearly delineated cortex due to increased contrast between grey matter and white matter. This improvement in image quality is achieved as well as a reduction in the number of frames, thereby reducing the reconstruction time. Preliminary data indicates an efficient reduction of residual intra-frame motion compared to regular framing.

  11. Validation of the Leap Motion Controller using markered motion capture technology.

    Science.gov (United States)

    Smeragliuolo, Anna H; Hill, N Jeremy; Disla, Luis; Putrino, David

    2016-06-14

    The Leap Motion Controller (LMC) is a low-cost, markerless motion capture device that tracks hand, wrist and forearm position. Integration of this technology into healthcare applications has begun to occur rapidly, making validation of the LMC׳s data output an important research goal. Here, we perform a detailed evaluation of the kinematic data output from the LMC, and validate this output against gold-standard, markered motion capture technology. We instructed subjects to perform three clinically-relevant wrist (flexion/extension, radial/ulnar deviation) and forearm (pronation/supination) movements. The movements were simultaneously tracked using both the LMC and a marker-based motion capture system from Motion Analysis Corporation (MAC). Adjusting for known inconsistencies in the LMC sampling frequency, we compared simultaneously acquired LMC and MAC data by performing Pearson׳s correlation (r) and root mean square error (RMSE). Wrist flexion/extension and radial/ulnar deviation showed good overall agreement (r=0.95; RMSE=11.6°, and r=0.92; RMSE=12.4°, respectively) with the MAC system. However, when tracking forearm pronation/supination, there were serious inconsistencies in reported joint angles (r=0.79; RMSE=38.4°). Hand posture significantly influenced the quality of wrist deviation (P<0.005) and forearm supination/pronation (P<0.001), but not wrist flexion/extension (P=0.29). We conclude that the LMC is capable of providing data that are clinically meaningful for wrist flexion/extension, and perhaps wrist deviation. It cannot yet return clinically meaningful data for measuring forearm pronation/supination. Future studies should continue to validate the LMC as updated versions of their software are developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A biomechanical modeling-guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction

    Science.gov (United States)

    Huang, Xiaokun; Zhang, You; Wang, Jing

    2018-02-01

    Reconstructing four-dimensional cone-beam computed tomography (4D-CBCT) images directly from respiratory phase-sorted traditional 3D-CBCT projections can capture target motion trajectory, reduce motion artifacts, and reduce imaging dose and time. However, the limited numbers of projections in each phase after phase-sorting decreases CBCT image quality under traditional reconstruction techniques. To address this problem, we developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, an iterative method that can reconstruct higher quality 4D-CBCT images from limited projections using an inter-phase intensity-driven motion model. However, the accuracy of the intensity-driven motion model is limited in regions with fine details whose quality is degraded due to insufficient projection number, which consequently degrades the reconstructed image quality in corresponding regions. In this study, we developed a new 4D-CBCT reconstruction algorithm by introducing biomechanical modeling into SMEIR (SMEIR-Bio) to boost the accuracy of the motion model in regions with small fine structures. The biomechanical modeling uses tetrahedral meshes to model organs of interest and solves internal organ motion using tissue elasticity parameters and mesh boundary conditions. This physics-driven approach enhances the accuracy of solved motion in the organ’s fine structures regions. This study used 11 lung patient cases to evaluate the performance of SMEIR-Bio, making both qualitative and quantitative comparisons between SMEIR-Bio, SMEIR, and the algebraic reconstruction technique with total variation regularization (ART-TV). The reconstruction results suggest that SMEIR-Bio improves the motion model’s accuracy in regions containing small fine details, which consequently enhances the accuracy and quality of the reconstructed 4D-CBCT images.

  13. Real-time prediction and gating of respiratory motion using an extended Kalman filter and Gaussian process regression

    International Nuclear Information System (INIS)

    Bukhari, W; Hong, S-M

    2015-01-01

    Motion-adaptive radiotherapy aims to deliver a conformal dose to the target tumour with minimal normal tissue exposure by compensating for tumour motion in real time. The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting and gating respiratory motion that utilizes a model-based and a model-free Bayesian framework by combining them in a cascade structure. The algorithm, named EKF-GPR + , implements a gating function without pre-specifying a particular region of the patient’s breathing cycle. The algorithm first employs an extended Kalman filter (LCM-EKF) to predict the respiratory motion and then uses a model-free Gaussian process regression (GPR) to correct the error of the LCM-EKF prediction. The GPR is a non-parametric Bayesian algorithm that yields predictive variance under Gaussian assumptions. The EKF-GPR + algorithm utilizes the predictive variance from the GPR component to capture the uncertainty in the LCM-EKF prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification allows us to pause the treatment beam over such instances. EKF-GPR + implements the gating function by using simple calculations based on the predictive variance with no additional detection mechanism. A sparse approximation of the GPR algorithm is employed to realize EKF-GPR + in real time. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPR + . The experimental results show that the EKF-GPR + algorithm effectively reduces the prediction error in a root-mean-square (RMS) sense by employing the gating function, albeit at the cost of a reduced duty cycle. As an example, EKF-GPR + reduces the patient-wise RMS error to 37%, 39% and 42

  14. Real-time prediction and gating of respiratory motion using an extended Kalman filter and Gaussian process regression

    Science.gov (United States)

    Bukhari, W.; Hong, S.-M.

    2015-01-01

    Motion-adaptive radiotherapy aims to deliver a conformal dose to the target tumour with minimal normal tissue exposure by compensating for tumour motion in real time. The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting and gating respiratory motion that utilizes a model-based and a model-free Bayesian framework by combining them in a cascade structure. The algorithm, named EKF-GPR+, implements a gating function without pre-specifying a particular region of the patient’s breathing cycle. The algorithm first employs an extended Kalman filter (LCM-EKF) to predict the respiratory motion and then uses a model-free Gaussian process regression (GPR) to correct the error of the LCM-EKF prediction. The GPR is a non-parametric Bayesian algorithm that yields predictive variance under Gaussian assumptions. The EKF-GPR+ algorithm utilizes the predictive variance from the GPR component to capture the uncertainty in the LCM-EKF prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification allows us to pause the treatment beam over such instances. EKF-GPR+ implements the gating function by using simple calculations based on the predictive variance with no additional detection mechanism. A sparse approximation of the GPR algorithm is employed to realize EKF-GPR+ in real time. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPR+. The experimental results show that the EKF-GPR+ algorithm effectively reduces the prediction error in a root-mean-square (RMS) sense by employing the gating function, albeit at the cost of a reduced duty cycle. As an example, EKF-GPR+ reduces the patient-wise RMS error to 37%, 39% and 42% in

  15. Real-time prediction and gating of respiratory motion using an extended Kalman filter and Gaussian process regression.

    Science.gov (United States)

    Bukhari, W; Hong, S-M

    2015-01-07

    Motion-adaptive radiotherapy aims to deliver a conformal dose to the target tumour with minimal normal tissue exposure by compensating for tumour motion in real time. The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting and gating respiratory motion that utilizes a model-based and a model-free Bayesian framework by combining them in a cascade structure. The algorithm, named EKF-GPR(+), implements a gating function without pre-specifying a particular region of the patient's breathing cycle. The algorithm first employs an extended Kalman filter (LCM-EKF) to predict the respiratory motion and then uses a model-free Gaussian process regression (GPR) to correct the error of the LCM-EKF prediction. The GPR is a non-parametric Bayesian algorithm that yields predictive variance under Gaussian assumptions. The EKF-GPR(+) algorithm utilizes the predictive variance from the GPR component to capture the uncertainty in the LCM-EKF prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification allows us to pause the treatment beam over such instances. EKF-GPR(+) implements the gating function by using simple calculations based on the predictive variance with no additional detection mechanism. A sparse approximation of the GPR algorithm is employed to realize EKF-GPR(+) in real time. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPR(+). The experimental results show that the EKF-GPR(+) algorithm effectively reduces the prediction error in a root-mean-square (RMS) sense by employing the gating function, albeit at the cost of a reduced duty cycle. As an example, EKF-GPR(+) reduces the patient-wise RMS error to 37%, 39% and

  16. Evaluating the influence of organ motion during photon vs. proton therapy for locally advanced prostate cancer using biological models

    DEFF Research Database (Denmark)

    Busch, Kia; G Andersen, Andreas; Casares-Magaz, Oscar

    2017-01-01

    beam angles for pelvic irradiation, we aimed to evaluate the influence of organ motion for PT using biological models, and to compare this with contemporary photon-based RT. MATERIAL AND METHODS: Eight locally advanced prostate cancer patients with a planning CT (pCT) and 8-9 repeated CT scans (r...

  17. Improved motion description for action classification

    Directory of Open Access Journals (Sweden)

    Mihir eJain

    2016-01-01

    Full Text Available Even though the importance of explicitly integrating motion characteristics in video descriptions has been demonstrated by several recent papers on action classification, our current work concludes that adequately decomposing visual motion into dominant and residual motions, i.e.: camera and scene motion, significantly improves action recognition algorithms. This holds true both for the extraction of the space-time trajectories and for computation of descriptors.We designed a new motion descriptor – the DCS descriptor – that captures additional information on local motion patterns enhancing results based on differential motion scalar quantities, divergence, curl and shear features. Finally, applying the recent VLAD coding technique proposed in image retrieval provides a substantial improvement for action recognition. These findings are complementary to each other and they outperformed all previously reported results by a significant margin on three challenging datasets: Hollywood 2, HMDB51 and Olympic Sports as reported in (Jain et al. (2013. These results were further improved by (Oneata et al. (2013; Wang and Schmid (2013; Zhu et al. (2013 through the use of the Fisher vector encoding. We therefore also employ Fisher vector in this paper and we further enhance our approach by combining trajectories from both optical flow and compensated flow. We as well provide additional details of DCS descriptors, including visualization. For extending the evaluation, a novel dataset with 101 action classes, UCF101, was added.

  18. The Role of Motion Concepts in Understanding Non-Motion Concepts

    Directory of Open Access Journals (Sweden)

    Omid Khatin-Zadeh

    2017-12-01

    Full Text Available This article discusses a specific type of metaphor in which an abstract non-motion domain is described in terms of a motion event. Abstract non-motion domains are inherently different from concrete motion domains. However, motion domains are used to describe abstract non-motion domains in many metaphors. Three main reasons are suggested for the suitability of motion events in such metaphorical descriptions. Firstly, motion events usually have high degrees of concreteness. Secondly, motion events are highly imageable. Thirdly, components of any motion event can be imagined almost simultaneously within a three-dimensional space. These three characteristics make motion events suitable domains for describing abstract non-motion domains, and facilitate the process of online comprehension throughout language processing. Extending the main point into the field of mathematics, this article discusses the process of transforming abstract mathematical problems into imageable geometric representations within the three-dimensional space. This strategy is widely used by mathematicians to solve highly abstract and complex problems.

  19. Satellite recovery - Attitude dynamics of the targets

    Science.gov (United States)

    Cochran, J. E., Jr.; Lahr, B. S.

    1986-01-01

    The problems of categorizing and modeling the attitude dynamics of uncontrolled artificial earth satellites which may be targets in recovery attempts are addressed. Methods of classification presented are based on satellite rotational kinetic energy, rotational angular momentum and orbit and on the type of control present prior to the benign failure of the control system. The use of approximate analytical solutions and 'exact' numerical solutions to the equations governing satellite attitude motions to predict uncontrolled attitude motion is considered. Analytical and numerical results are presented for the evolution of satellite attitude motions after active control termination.

  20. The influence of sleep deprivation and oscillating motion on sleepiness, motion sickness, and cognitive and motor performance.

    Science.gov (United States)

    Kaplan, Janna; Ventura, Joel; Bakshi, Avijit; Pierobon, Alberto; Lackner, James R; DiZio, Paul

    2017-01-01

    Our goal was to determine how sleep deprivation, nauseogenic motion, and a combination of motion and sleep deprivation affect cognitive vigilance, visual-spatial perception, motor learning and retention, and balance. We exposed four groups of subjects to different combinations of normal 8h sleep or 4h sleep for two nights combined with testing under stationary conditions or during 0.28Hz horizontal linear oscillation. On the two days following controlled sleep, all subjects underwent four test sessions per day that included evaluations of fatigue, motion sickness, vigilance, perceptual discrimination, perceptual learning, motor performance and learning, and balance. Sleep loss and exposure to linear oscillation had additive or multiplicative relationships to sleepiness, motion sickness severity, decreases in vigilance and in perceptual discrimination and learning. Sleep loss also decelerated the rate of adaptation to motion sickness over repeated sessions. Sleep loss degraded the capacity to compensate for novel robotically induced perturbations of reaching movements but did not adversely affect adaptive recovery of accurate reaching. Overall, tasks requiring substantial attention to cognitive and motor demands were degraded more than tasks that were more automatic. Our findings indicate that predicting performance needs to take into account in addition to sleep loss, the attentional demands and novelty of tasks, the motion environment in which individuals will be performing and their prior susceptibility to motion sickness during exposure to provocative motion stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.