WorldWideScience

Sample records for evaluating point forecasts

  1. AN EVALUATION OF POINT AND DENSITY FORECASTS FOR SELECTED EU FARM GATE MILK PRICES

    Directory of Open Access Journals (Sweden)

    Dennis Bergmann

    2018-01-01

    Full Text Available Fundamental changes to the common agricultural policy (CAP have led to greater market orientation which in turn has resulted in sharply increased variability of EU farm gate milk prices and thus farmers’ income. In this market environment reliable forecasts of farm gate milk prices are extremely important as farmers can make improved decisions with regards to cash flow management and budget preparation. In addition these forecasts may be used in setting fixed priced contracts between dairy farmers and processors thus providing certainty and reducing risk. In this study both point and density forecasts from various time series models for farm gate milk prices in Germany, Ireland and for an average EU price series are evaluated using a rolling window framework. Additionally forecasts of the individual models are combined using different combination schemes. The results of the out of sample evaluation show that ARIMA type models perform well on short forecast horizons (1 to 3 month while the structural time series approach performs well on longer forecast horizons (12 month. Finally combining individual forecasts of different models significantly improves the forecast performance for all forecast horizons.

  2. Marine Point Forecasts

    Science.gov (United States)

    will link to the zone forecast and then allow further zooming to the point of interest whereas on the Honolulu, HI Chicago, IL Northern Indiana, IN Lake Charles, LA New Orleans, LA Boston, MA Caribou, ME

  3. Power plant site evaluation, electric energy demand forecasts - Douglas Point Site. Volume 3. Final report

    International Nuclear Information System (INIS)

    Wilson, J.W.

    1975-07-01

    This is part of a series of reports containing an evaluation of the proposed Douglas Point nuclear generating station site located on the Potomac River in Maryland 30 miles south of Washington, D.C. This report contains chapters on the Potomac Electric Power Company's market, forecasting future demand, modelling, a residential demand model, a nonresidential demand model, the Southern Maryland Electric Cooperative Model, short term predictive accuracy, and total system requirements

  4. On density forecast evaluation

    NARCIS (Netherlands)

    Diks, C.

    2008-01-01

    Traditionally, probability integral transforms (PITs) have been popular means for evaluating density forecasts. For an ideal density forecast, the PITs should be uniformly distributed on the unit interval and independent. However, this is only a necessary condition, and not a sufficient one, as

  5. Evaluation of Probabilistic Disease Forecasts.

    Science.gov (United States)

    Hughes, Gareth; Burnett, Fiona J

    2017-10-01

    The statistical evaluation of probabilistic disease forecasts often involves calculation of metrics defined conditionally on disease status, such as sensitivity and specificity. However, for the purpose of disease management decision making, metrics defined conditionally on the result of the forecast-predictive values-are also important, although less frequently reported. In this context, the application of scoring rules in the evaluation of probabilistic disease forecasts is discussed. An index of separation with application in the evaluation of probabilistic disease forecasts, described in the clinical literature, is also considered and its relation to scoring rules illustrated. Scoring rules provide a principled basis for the evaluation of probabilistic forecasts used in plant disease management. In particular, the decomposition of scoring rules into interpretable components is an advantageous feature of their application in the evaluation of disease forecasts.

  6. Evaluating long term forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Lady, George M. [Department of Economics, College of Liberal Arts, Temple University, Philadelphia, PA 19122 (United States)

    2010-03-15

    The U.S. Department of Energy's Energy Information Administration (EIA), and its predecessor organizations, has published projections of U.S. energy production, consumption, distribution and prices annually for over 30 years. A natural issue to raise in evaluating the projections is an assessment of their accuracy compared to eventual outcomes. A related issue is the determination of the sources of 'error' in the projections that are due to differences between the actual versus realized values of the associated assumptions. One way to do this would be to run the computer-based model from which the projections are derived at the time the projected values are realized, using actual rather than assumed values for model assumptions; and, compare these results to the original projections. For long term forecasts, this approach would require that the model's software and hardware configuration be archived and available for many years, possibly decades, into the future. Such archival creates many practical problems; and, in general, it is not being done. This paper reports on an alternative approach for evaluating the projections. In the alternative approach, the model is run many times for cases in which important assumptions are changed individually and in combinations. A database is assembled from the solutions and a regression analysis is conducted for each important projected variable with the associated assumptions chosen as exogenous variables. When actual data are eventually available, the regression results are then used to estimate the sources of the differences in the projections of the endogenous variables compared to their eventual outcomes. The results presented here are for residential and commercial sector natural gas and electricity consumption. (author)

  7. Forecasting Tools Point to Fishing Hotspots

    Science.gov (United States)

    2009-01-01

    Private weather forecaster WorldWinds Inc. of Slidell, Louisiana has employed satellite-gathered oceanic data from Marshall Space Flight Center to create a service that is every fishing enthusiast s dream. The company's FishBytes system uses information about sea surface temperature and chlorophyll levels to forecast favorable conditions for certain fish populations. Transmitting the data to satellite radio subscribers, FishBytes provides maps that guide anglers to the areas they are most likely to make their favorite catch.

  8. Forecasting Macedonian Business Cycle Turning Points Using Qual Var Model

    Directory of Open Access Journals (Sweden)

    Petrovska Magdalena

    2016-09-01

    Full Text Available This paper aims at assessing the usefulness of leading indicators in business cycle research and forecast. Initially we test the predictive power of the economic sentiment indicator (ESI within a static probit model as a leading indicator, commonly perceived to be able to provide a reliable summary of the current economic conditions. We further proceed analyzing how well an extended set of indicators performs in forecasting turning points of the Macedonian business cycle by employing the Qual VAR approach of Dueker (2005. In continuation, we evaluate the quality of the selected indicators in pseudo-out-of-sample context. The results show that the use of survey-based indicators as a complement to macroeconomic data work satisfactory well in capturing the business cycle developments in Macedonia.

  9. Sand Point, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sand Point, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  10. Point Reyes, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Point Reyes, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  11. Toke Point, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Toke Point, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  12. Star point centroid algorithm based on background forecast

    Science.gov (United States)

    Wang, Jin; Zhao, Rujin; Zhu, Nan

    2014-09-01

    The calculation of star point centroid is a key step of improving star tracker measuring error. A star map photoed by APS detector includes several noises which have a great impact on veracity of calculation of star point centroid. Through analysis of characteristic of star map noise, an algorithm of calculation of star point centroid based on background forecast is presented in this paper. The experiment proves the validity of the algorithm. Comparing with classic algorithm, this algorithm not only improves veracity of calculation of star point centroid, but also does not need calibration data memory. This algorithm is applied successfully in a certain star tracker.

  13. On the Economic Evaluation of Volatility Forecasts

    DEFF Research Database (Denmark)

    Voev, Valeri

    We analyze the applicability of economic criteria for volatility forecast evaluation based on unconditional measures of portfolio performance. The main theoretical finding is that such unconditional measures generally fail to rank conditional forecasts correctly due to the presence of a bias term...... driven by the variability of the conditional mean and portfolio weights. Simulations and a small empirical study suggest that the bias can be empirically substantial and lead to distortions in forecast evaluation. An important implication is that forecasting superiority of models using high frequency...

  14. Status of mineral resources evaluation and forecast

    International Nuclear Information System (INIS)

    Ma Hanfeng; Li Ziying; Luo Yi; Li Shengxiang; Sun Wenpeng

    2007-01-01

    The work of resources evaluation and forecast is a focus to the governments of every country in the world, it is related to the establishment of strategic policy on the national mineral resources. In order to quantitatively evaluate the general potential of uranium resources in China and better forecast uranium deposits, this paper briefly introduces the method of evaluating total amount of mineral resources, especially 6 usual prospective methods which are recommended in international geology comparison programs, as well as principle of usual mineral resources quantitative prediction and its steps. The work history of mineral resources evaluation and forecast is reviewed concisely. Advantages and disadvantages of each method, their application field and condition are also explained briefly. At last, the history of uranium resources evaluation and forecast in China and its status are concisely outlined. (authors)

  15. Evaluating Extensions to Coherent Mortality Forecasting Models

    Directory of Open Access Journals (Sweden)

    Syazreen Shair

    2017-03-01

    Full Text Available Coherent models were developed recently to forecast the mortality of two or more sub-populations simultaneously and to ensure long-term non-divergent mortality forecasts of sub-populations. This paper evaluates the forecast accuracy of two recently-published coherent mortality models, the Poisson common factor and the product-ratio functional models. These models are compared to each other and the corresponding independent models, as well as the original Lee–Carter model. All models are applied to age-gender-specific mortality data for Australia and Malaysia and age-gender-ethnicity-specific data for Malaysia. The out-of-sample forecast error of log death rates, male-to-female death rate ratios and life expectancy at birth from each model are compared and examined across groups. The results show that, in terms of overall accuracy, the forecasts of both coherent models are consistently more accurate than those of the independent models for Australia and for Malaysia, but the relative performance differs by forecast horizon. Although the product-ratio functional model outperforms the Poisson common factor model for Australia, the Poisson common factor is more accurate for Malaysia. For the ethnic groups application, ethnic-coherence gives better results than gender-coherence. The results provide evidence that coherent models are preferable to independent models for forecasting sub-populations’ mortality.

  16. Forecasting Global Rainfall for Points Using ECMWF's Global Ensemble and Its Applications in Flood Forecasting

    Science.gov (United States)

    Pillosu, F. M.; Hewson, T.; Mazzetti, C.

    2017-12-01

    Prediction of local extreme rainfall has historically been the remit of nowcasting and high resolution limited area modelling, which represent only limited areas, may not be spatially accurate, give reasonable results only for limited lead times (based statistical post-processing software ("ecPoint-Rainfall, ecPR", operational in 2017) that uses ECMWF Ensemble (ENS) output to deliver global probabilistic rainfall forecasts for points up to day 10. Firstly, ecPR applies a new notion of "remote calibration", which 1) allows us to replicate a multi-centennial training period using only one year of data, and 2) provides forecasts for anywhere in the world. Secondly, the software applies an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals, and of where biases in the model can be improved upon. A long-term verification has shown that the post-processed rainfall has better reliability and resolution at every lead time if compared with ENS, and for large totals, ecPR outputs have the same skill at day 5 that the raw ENS has at day 1 (ROC area metric). ecPR could be used as input for hydrological models if its probabilistic output is modified accordingly to the inputs requirements for hydrological models. Indeed, ecPR does not provide information on where the highest total is likely to occur inside the gridbox, nor on the spatial distribution of rainfall values nearby. "Scenario forecasts" could be a solution. They are derived from locating the rainfall peak in sensitive positions (e.g. urban areas), and then redistributing the remaining quantities in the gridbox modifying traditional spatial correlation characterization methodologies (e.g. variogram analysis) in order to take account, for instance, of the type of rainfall forecast (stratiform, convective). Such an approach could be a turning point in the field of medium-range global real-time riverine flood forecasts. This presentation will

  17. FORECASTING OF PERFORMANCE EVALUATION OF NEW VEHICLES

    Directory of Open Access Journals (Sweden)

    O. S. Krasheninin

    2016-12-01

    Full Text Available Purpose. The research work focuses on forecasting of performance evaluation of the tractive and non-tractive vehicles that will satisfy and meet the needs and requirements of the railway industry, which is constantly evolving. Methodology. Analysis of the technical condition of the existing fleet of rolling stock (tractive and non-tractive of Ukrainian Railways shows a substantial reduction that occurs in connection with its moral and physical wear and tear, as well as insufficient and limited purchase of new units of the tractive and non-tractive rolling stock in the desired quantity. In this situation there is a necessity of search of the methods for determination of rolling stock technical characteristics. One of such urgent and effective measures is to conduct forecasting of the defining characteristics of the vehicles based on the processes of their reproduction in conditions of limited resources using a continuous exponential function. The function of the growth rate of the projected figure degree for the vehicle determines the logistic characteristic that with unlimited resources has the form of an exponent, and with low ones – that of a line. Findings. The data obtained according to the proposed method allowed determining the expected (future value, that is the ratio of load to volume of the body for non-tractive rolling stock (gondola cars and weight-to-power for tractive rolling stock, the degree of forecast reliability and the standard forecast error, which show high prediction accuracy for the completed procedure. As a result, this will allow estimating the required characteristics of vehicles in the forecast year with high accuracy. Originality. The concept of forecasting the characteristics of the vehicles for decision-making on the evaluation of their prospects was proposed. Practical value. The forecasting methodology will reliably determine the technical parameters of tractive and non-tractive rolling stock, which will meet

  18. Non-parametric probabilistic forecasts of wind power: required properties and evaluation

    DEFF Research Database (Denmark)

    Pinson, Pierre; Nielsen, Henrik Aalborg; Møller, Jan Kloppenborg

    2007-01-01

    of a single or a set of quantile forecasts. The required and desirable properties of such probabilistic forecasts are defined and a framework for their evaluation is proposed. This framework is applied for evaluating the quality of two statistical methods producing full predictive distributions from point...

  19. Evaluation of the performance of DIAS ionospheric forecasting models

    Directory of Open Access Journals (Sweden)

    Tsagouri Ioanna

    2011-08-01

    Full Text Available Nowcasting and forecasting ionospheric products and services for the European region are regularly provided since August 2006 through the European Digital upper Atmosphere Server (DIAS, http://dias.space.noa.gr. Currently, DIAS ionospheric forecasts are based on the online implementation of two models: (i the solar wind driven autoregression model for ionospheric short-term forecast (SWIF, which combines historical and real-time ionospheric observations with solar-wind parameters obtained in real time at the L1 point from NASA ACE spacecraft, and (ii the geomagnetically correlated autoregression model (GCAM, which is a time series forecasting method driven by a synthetic geomagnetic index. In this paper we investigate the operational ability and the accuracy of both DIAS models carrying out a metrics-based evaluation of their performance under all possible conditions. The analysis was established on the systematic comparison between models’ predictions with actual observations obtained over almost one solar cycle (1998–2007 at four European ionospheric locations (Athens, Chilton, Juliusruh and Rome and on the comparison of the models’ performance against two simple prediction strategies, the median- and the persistence-based predictions during storm conditions. The results verify operational validity for both models and quantify their prediction accuracy under all possible conditions in support of operational applications but also of comparative studies in assessing or expanding the current ionospheric forecasting capabilities.

  20. Applications of the gambling score in evaluating earthquake predictions and forecasts

    Science.gov (United States)

    Zhuang, Jiancang; Zechar, Jeremy D.; Jiang, Changsheng; Console, Rodolfo; Murru, Maura; Falcone, Giuseppe

    2010-05-01

    This study presents a new method, namely the gambling score, for scoring the performance earthquake forecasts or predictions. Unlike most other scoring procedures that require a regular scheme of forecast and treat each earthquake equally, regardless their magnitude, this new scoring method compensates the risk that the forecaster has taken. Starting with a certain number of reputation points, once a forecaster makes a prediction or forecast, he is assumed to have betted some points of his reputation. The reference model, which plays the role of the house, determines how many reputation points the forecaster can gain if he succeeds, according to a fair rule, and also takes away the reputation points bet by the forecaster if he loses. This method is also extended to the continuous case of point process models, where the reputation points betted by the forecaster become a continuous mass on the space-time-magnitude range of interest. For discrete predictions, we apply this method to evaluate performance of Shebalin's predictions made by using the Reverse Tracing of Precursors (RTP) algorithm and of the outputs of the predictions from the Annual Consultation Meeting on Earthquake Tendency held by China Earthquake Administration. For the continuous case, we use it to compare the probability forecasts of seismicity in the Abruzzo region before and after the L'aquila earthquake based on the ETAS model and the PPE model.

  1. Short-Term and Long-Term Forecasting for the 3D Point Position Changing by Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Eleni-Georgia Alevizakou

    2018-03-01

    Full Text Available Forecasting is one of the most growing areas in most sciences attracting the attention of many researchers for more extensive study. Therefore, the goal of this study is to develop an integrated forecasting methodology based on an Artificial Neural Network (ANN, which is a modern and attractive intelligent technique. The final result is to provide short-term and long-term forecasts for point position changing, i.e., the displacement or deformation of the surface they belong to. The motivation was the combination of two thoughts, the insertion of the forecasting concept in Geodesy as in the most scientific disciplines (e.g., Economics, Medicine and the desire to know the future position of any point on a construction or on the earth’s crustal. This methodology was designed to be accurate, stable and general for different kind of geodetic data. The basic procedure consists of the definition of the forecasting problem, the preliminary data analysis (data pre-processing, the definition of the most suitable ANN, its evaluation using the proper criteria and finally the production of forecasts. The methodology gives particular emphasis on the stages of the pre-processing and the evaluation. Additionally, the importance of the prediction intervals (PI is emphasized. A case study, which includes geodetic data from the year 2003 to the year 2016—namely X, Y, Z coordinates—is implemented. The data were acquired by 1000 permanent Global Navigation Satellite System (GNSS stations. During this case study, 2016 ANNs—with different hyper-parameters—are trained and tested for short-term forecasting and 2016 for long-term forecasting, for each of the GNSS stations. In addition, other conventional statistical forecasting methods are used for the same purpose using the same data set. Finally the most appropriate Non-linear Autoregressive Recurrent network (NAR or Non-linear Autoregressive with eXogenous inputs (NARX for the forecasting of 3D point

  2. Hydro-meteorological evaluation of downscaled global ensemble rainfall forecasts

    Science.gov (United States)

    Gaborit, Étienne; Anctil, François; Fortin, Vincent; Pelletier, Geneviève

    2013-04-01

    Ensemble rainfall forecasts are of high interest for decision making, as they provide an explicit and dynamic assessment of the uncertainty in the forecast (Ruiz et al. 2009). However, for hydrological forecasting, their low resolution currently limits their use to large watersheds (Maraun et al. 2010). In order to bridge this gap, various implementations of the statistic-stochastic multi-fractal downscaling technique presented by Perica and Foufoula-Georgiou (1996) were compared, bringing Environment Canada's global ensemble rainfall forecasts from a 100 by 70-km resolution down to 6 by 4-km, while increasing each pixel's rainfall variance and preserving its original mean. For comparison purposes, simpler methods were also implemented such as the bi-linear interpolation, which disaggregates global forecasts without modifying their variance. The downscaled meteorological products were evaluated using different scores and diagrams, from both a meteorological and a hydrological view points. The meteorological evaluation was conducted comparing the forecasted rainfall depths against nine days of observed values taken from Québec City rain gauge database. These 9 days present strong precipitation events occurring during the summer of 2009. For the hydrologic evaluation, the hydrological models SWMM5 and (a modified version of) GR4J were implemented on a small 6 km2 urban catchment located in the Québec City region. Ensemble hydrologic forecasts with a time step of 3 hours were then performed over a 3-months period of the summer of 2010 using the original and downscaled ensemble rainfall forecasts. The most important conclusions of this work are that the overall quality of the forecasts was preserved during the disaggregation procedure and that the disaggregated products using this variance-enhancing method were of similar quality than bi-linear interpolation products. However, variance and dispersion of the different members were, of course, much improved for the

  3. Evaluating Forecasting Models for Unemployment Rates by Gender in Selected European Countries

    Directory of Open Access Journals (Sweden)

    Ksenija Dumičić

    2017-03-01

    Full Text Available The unemployment can be considered as one of the main economic problems. The aim of this article is to examine the differences in male and female unemployment rates in selected European countries and to predict their future trends by using different statistical forecasting models. Furthermore, the impact of adding a new data point on the selection of the most appropriate statistical forecasting model and on the overall forecasting errors values is also evaluated. Male and female unemployment rates are observed for twelve European countries in the period from 1991 to 2014. Four statistical forecasting models have been selected and applied and the most appropriate model is considered to be the one with the lowest overall forecasting errors values. The analysis has shown that in the period from 1991 to 2014 the decreasing trend of unemployment rates in the short-run is forecasted for more Eastern Balkan than the EU-28 countries. An additional data point for male and female unemployment rates in 2014 led to somewhat smaller forecasting errors in more than half of the observed countries. However, the additional data point does not necessarily improve forecasting performances of the used statistical forecasting models.

  4. Choice of Sample Split in Out-of-Sample Forecast Evaluation

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Timmermann, Allan

    , while conversely the power of forecast evaluation tests is strongest with long out-of-sample periods. To deal with size distortions, we propose a test statistic that is robust to the effect of considering multiple sample split points. Empirical applications to predictabil- ity of stock returns......Out-of-sample tests of forecast performance depend on how a given data set is split into estimation and evaluation periods, yet no guidance exists on how to choose the split point. Empirical forecast evaluation results can therefore be difficult to interpret, particularly when several values...... and inflation demonstrate that out-of-sample forecast evaluation results can critically depend on how the sample split is determined....

  5. Evaluating FOMC forecast ranges: an interval data approach

    OpenAIRE

    Henning Fischer; Marta García-Bárzana; Peter Tillmann; Peter Winker

    2012-01-01

    The Federal Open Market Committee (FOMC) of the U.S. Federal Reserve publishes the range of members' forecasts for key macroeconomic variables, but not the distribution of forecasts within this range. To evaluate these projections, previous papers compare the midpoint of the ranges with the realized outcome. This paper proposes a new approach to forecast evaluation that takes account of the interval nature of projections. It is shown that using the conventional Mincer-Zarnowitz approach to ev...

  6. A travel time forecasting model based on change-point detection method

    Science.gov (United States)

    LI, Shupeng; GUANG, Xiaoping; QIAN, Yongsheng; ZENG, Junwei

    2017-06-01

    Travel time parameters obtained from road traffic sensors data play an important role in traffic management practice. A travel time forecasting model is proposed for urban road traffic sensors data based on the method of change-point detection in this paper. The first-order differential operation is used for preprocessing over the actual loop data; a change-point detection algorithm is designed to classify the sequence of large number of travel time data items into several patterns; then a travel time forecasting model is established based on autoregressive integrated moving average (ARIMA) model. By computer simulation, different control parameters are chosen for adaptive change point search for travel time series, which is divided into several sections of similar state.Then linear weight function is used to fit travel time sequence and to forecast travel time. The results show that the model has high accuracy in travel time forecasting.

  7. Ideal point error for model assessment in data-driven river flow forecasting

    Directory of Open Access Journals (Sweden)

    C. W. Dawson

    2012-08-01

    Full Text Available When analysing the performance of hydrological models in river forecasting, researchers use a number of diverse statistics. Although some statistics appear to be used more regularly in such analyses than others, there is a distinct lack of consistency in evaluation, making studies undertaken by different authors or performed at different locations difficult to compare in a meaningful manner. Moreover, even within individual reported case studies, substantial contradictions are found to occur between one measure of performance and another. In this paper we examine the ideal point error (IPE metric – a recently introduced measure of model performance that integrates a number of recognised metrics in a logical way. Having a single, integrated measure of performance is appealing as it should permit more straightforward model inter-comparisons. However, this is reliant on a transferrable standardisation of the individual metrics that are combined to form the IPE. This paper examines one potential option for standardisation: the use of naive model benchmarking.

  8. Evaluation of official tropical cyclone landfall forecast issued by India ...

    Indian Academy of Sciences (India)

    Here an attempt is made to evaluate the TC landfall forecast issued by IMD during. 2003–2013 (11 years) by ... cast performance and the relative performance of individual .... Environmental Prediction (NCEP) GFS and some ensemble means ...

  9. Evaluating dynamic covariance matrix forecasting and portfolio optimization

    OpenAIRE

    Sendstad, Lars Hegnes; Holten, Dag Martin

    2012-01-01

    In this thesis we have evaluated the covariance forecasting ability of the simple moving average, the exponential moving average and the dynamic conditional correlation models. Overall we found that a dynamic portfolio can gain significant improvements by implementing a multivariate GARCH forecast. We further divided the global investment universe into sectors and regions in order to investigate the relative portfolio performance of several asset allocation strategies with both variance and c...

  10. Evaluating Downscaling Methods for Seasonal Climate Forecasts over East Africa

    Science.gov (United States)

    Roberts, J. Brent; Robertson, Franklin R.; Bosilovich, Michael; Lyon, Bradfield; Funk, Chris

    2013-01-01

    The U.S. National Multi-Model Ensemble seasonal forecasting system is providing hindcast and real-time data streams to be used in assessing and improving seasonal predictive capacity. The NASA / USAID SERVIR project, which leverages satellite and modeling-based resources for environmental decision making in developing nations, is focusing on the evaluation of NMME forecasts specifically for use in impact modeling within hub regions including East Africa, the Hindu Kush-Himalayan (HKH) region and Mesoamerica. One of the participating models in NMME is the NASA Goddard Earth Observing System (GEOS5). This work will present an intercomparison of downscaling methods using the GEOS5 seasonal forecasts of temperature and precipitation over East Africa. The current seasonal forecasting system provides monthly averaged forecast anomalies. These anomalies must be spatially downscaled and temporally disaggregated for use in application modeling (e.g. hydrology, agriculture). There are several available downscaling methodologies that can be implemented to accomplish this goal. Selected methods include both a non-homogenous hidden Markov model and an analogue based approach. A particular emphasis will be placed on quantifying the ability of different methods to capture the intermittency of precipitation within both the short and long rain seasons. Further, the ability to capture spatial covariances will be assessed. Both probabilistic and deterministic skill measures will be evaluated over the hindcast period

  11. ANALYSIS OF FORECASTING METHODS FROM THE POINT OF VIEW OF EARLY WARNING CONCEPT IN PROJECT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Florin POPESCU

    2017-12-01

    Full Text Available Early warning system (EWS based on a reliable forecasting process has become a critical component of the management of large complex industrial projects in the globalized transnational environment. The purpose of this research is to critically analyze the forecasting methods from the point of view of early warning, choosing those useful for the construction of EWS. This research addresses complementary techniques, using Bayesian Networks, which addresses both uncertainties and causality in project planning and execution, with the goal of generating early warning signals for project managers. Even though Bayesian networks have been widely used in a range of decision-support applications, their application as early warning systems for project management is still new.

  12. Evaluation of probabilistic forecasts with the scoringRules package

    Science.gov (United States)

    Jordan, Alexander; Krüger, Fabian; Lerch, Sebastian

    2017-04-01

    Over the last decades probabilistic forecasts in the form of predictive distributions have become popular in many scientific disciplines. With the proliferation of probabilistic models arises the need for decision-theoretically principled tools to evaluate the appropriateness of models and forecasts in a generalized way in order to better understand sources of prediction errors and to improve the models. Proper scoring rules are functions S(F,y) which evaluate the accuracy of a forecast distribution F , given that an outcome y was observed. In coherence with decision-theoretical principles they allow to compare alternative models, a crucial ability given the variety of theories, data sources and statistical specifications that is available in many situations. This contribution presents the software package scoringRules for the statistical programming language R, which provides functions to compute popular scoring rules such as the continuous ranked probability score for a variety of distributions F that come up in applied work. For univariate variables, two main classes are parametric distributions like normal, t, or gamma distributions, and distributions that are not known analytically, but are indirectly described through a sample of simulation draws. For example, ensemble weather forecasts take this form. The scoringRules package aims to be a convenient dictionary-like reference for computing scoring rules. We offer state of the art implementations of several known (but not routinely applied) formulas, and implement closed-form expressions that were previously unavailable. Whenever more than one implementation variant exists, we offer statistically principled default choices. Recent developments include the addition of scoring rules to evaluate multivariate forecast distributions. The use of the scoringRules package is illustrated in an example on post-processing ensemble forecasts of temperature.

  13. Evaluation of official tropical cyclone track forecast over north Indian ...

    Indian Academy of Sciences (India)

    algorithms, techniques and observing systems;. • Evaluation of ... available forecast techniques, perhaps including stratification into ... an important factor in the overall decision pro- cess relative to ...... infrared and water vapour based imageries and products. ... Meteorology, IMD for his support and encourage- ment to carry ...

  14. Transport project evaluation: feasibility risk assessment and scenario forecasting

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2017-01-01

    This paper presents a new approach to transport project assessment in terms of feasibility risk assessment and reference class forecasting. Conventionally, transport project assessment is based upon a Cost-Benefit Analysis (CBA) where evaluation criteria such as Benefit Cost Ratios (BCR...... on the preliminary construction cost estimates. Hereafter, a quantitative risk analysis is provided making use of Monte Carlo simulation. This approach facilitates random input parameters based upon reference class forecasting, hence, a parameter data fit has been performed in order to obtain validated probability...... Scenario Forecasting (RSF) frame. The RSF is anchored in the cost-benefit analysis; thus, it provides decision-makers with a quantitative mean of assessing the transport infrastructure project. First, the RSF method introduces uncertainties within the CBA by applying Optimism Bias uplifts...

  15. Evaluation of TIGGE Ensemble Forecasts of Precipitation in Distinct Climate Regions in Iran

    Science.gov (United States)

    Aminyavari, Saleh; Saghafian, Bahram; Delavar, Majid

    2018-04-01

    The application of numerical weather prediction (NWP) products is increasing dramatically. Existing reports indicate that ensemble predictions have better skill than deterministic forecasts. In this study, numerical ensemble precipitation forecasts in the TIGGE database were evaluated using deterministic, dichotomous (yes/no), and probabilistic techniques over Iran for the period 2008-16. Thirteen rain gauges spread over eight homogeneous precipitation regimes were selected for evaluation. The Inverse Distance Weighting and Kriging methods were adopted for interpolation of the prediction values, downscaled to the stations at lead times of one to three days. To enhance the forecast quality, NWP values were post-processed via Bayesian Model Averaging. The results showed that ECMWF had better scores than other products. However, products of all centers underestimated precipitation in high precipitation regions while overestimating precipitation in other regions. This points to a systematic bias in forecasts and demands application of bias correction techniques. Based on dichotomous evaluation, NCEP did better at most stations, although all centers overpredicted the number of precipitation events. Compared to those of ECMWF and NCEP, UKMO yielded higher scores in mountainous regions, but performed poorly at other selected stations. Furthermore, the evaluations showed that all centers had better skill in wet than in dry seasons. The quality of post-processed predictions was better than those of the raw predictions. In conclusion, the accuracy of the NWP predictions made by the selected centers could be classified as medium over Iran, while post-processing of predictions is recommended to improve the quality.

  16. Electricity price forecasting in deregulated markets: A review and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Sanjeev Kumar; Saini, Lalit Mohan; Kumar, Ashwani [Department of Electrical Engineering, National Institute of Technology, Kurukshetra, Haryana (India)

    2009-01-15

    The main methodologies used in electricity price forecasting have been reviewed in this paper. The following price-forecasting techniques have been covered: (i) stochastic time series, (ii) causal models, and (iii) artificial intelligence based models. The quantitative analysis of the work done by various authors has been presented based on (a) time horizon for prediction, (b) input variables, (c) output variables, (d) results, (e) data points used for analysis, (f) preprocessing technique employed, and (g) architecture of the model. The results have been presented in the form of tables for ease of comparison. Classification of various price-influencing factors used by different researchers has been done and put for reference. Application of various models as applied to different electricity markets is also presented for consideration. (author)

  17. Electricity price forecasting in deregulated markets: A review and evaluation

    International Nuclear Information System (INIS)

    Aggarwal, Sanjeev Kumar; Saini, Lalit Mohan; Kumar, Ashwani

    2009-01-01

    The main methodologies used in electricity price forecasting have been reviewed in this paper. The following price-forecasting techniques have been covered: (i) stochastic time series, (ii) causal models, and (iii) artificial intelligence based models. The quantitative analysis of the work done by various authors has been presented based on (a) time horizon for prediction, (b) input variables, (c) output variables, (d) results, (e) data points used for analysis, (f) preprocessing technique employed, and (g) architecture of the model. The results have been presented in the form of tables for ease of comparison. Classification of various price-influencing factors used by different researchers has been done and put for reference. Application of various models as applied to different electricity markets is also presented for consideration. (author)

  18. Evaluating information in multiple horizon forecasts. The DOE's energy price forecasts

    International Nuclear Information System (INIS)

    Sanders, Dwight R.; Manfredo, Mark R.; Boris, Keith

    2009-01-01

    The United States Department of Energy's (DOE) quarterly price forecasts for energy commodities are examined to determine the incremental information provided at the one-through four-quarter forecast horizons. A direct test for determining information content at alternative forecast horizons, developed by Vuchelen and Gutierrez [Vuchelen, J. and Gutierrez, M.-I. 'A Direct Test of the Information Content of the OECD Growth Forecasts.' International Journal of Forecasting. 21(2005):103-117.], is used. The results suggest that the DOE's price forecasts for crude oil, gasoline, and diesel fuel do indeed provide incremental information out to three-quarters ahead, while natural gas and electricity forecasts are informative out to the four-quarter horizon. In contrast, the DOE's coal price forecasts at two-, three-, and four-quarters ahead provide no incremental information beyond that provided for the one-quarter horizon. Recommendations of how to use these results for making forecast adjustments is also provided. (author)

  19. Evaluation of Nonparametric Probabilistic Forecasts of Wind Power

    DEFF Research Database (Denmark)

    Pinson, Pierre; Møller, Jan Kloppenborg; Nielsen, Henrik Aalborg, orlov 31.07.2008

    Predictions of wind power production for horizons up to 48-72 hour ahead comprise a highly valuable input to the methods for the daily management or trading of wind generation. Today, users of wind power predictions are not only provided with point predictions, which are estimates of the most...... likely outcome for each look-ahead time, but also with uncertainty estimates given by probabilistic forecasts. In order to avoid assumptions on the shape of predictive distributions, these probabilistic predictions are produced from nonparametric methods, and then take the form of a single or a set...

  20. Evaluation and Quality Control for the Copernicus Seasonal Forecast Systems

    Science.gov (United States)

    Manubens, N.; Hunter, A.; Bedia, J.; Bretonnière, P. A.; Bhend, J.; Doblas-Reyes, F. J.

    2017-12-01

    The EU funded Copernicus Climate Change Service (C3S) will provide authoritative information about past, current and future climate for a wide range of users, from climate scientists to stakeholders from a wide range of sectors including insurance, energy or transport. It has been recognized that providing information about the products' quality and provenance is paramount to establish trust in the service and allow users to make best use of the available information. This presentation outlines the work being conducted within the Quality Assurance for Multi-model Seasonal Forecast Products project (QA4Seas). The aim of QA4Seas is to develop a strategy for the evaluation and quality control (EQC) of the multi-model seasonal forecasts provided by C3S. First, we present the set of guidelines the data providers must comply with, ensuring the data is fully traceable and harmonized across data sets. Second, we discuss the ongoing work on defining a provenance and metadata model that is able to encode such information, and that can be extended to describe the steps followed to obtain the final verification products such as maps and time series of forecast quality measures. The metadata model is based on the Resource Description Framework W3C standard, being thus extensible and reusable. It benefits from widely adopted vocabularies to describe data provenance and workflows, as well as from expert consensus and community-support for the development of the verification and downscaling specific ontologies. Third, we describe the open source software being developed to generate fully reproducible and certifiable seasonal forecast products, which also attaches provenance and metadata information to the verification measures and enables the user to visually inspect the quality of the C3S products. QA4Seas is seeking collaboration with similar initiatives, as well as extending the discussion to interested parties outside the C3S community to share experiences and establish global

  1. Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods

    Directory of Open Access Journals (Sweden)

    Han Lin Shang

    2011-07-01

    Full Text Available Using the age- and sex-specific data of 14 developed countries, we compare the point and interval forecast accuracy and bias of ten principal component methods for forecasting mortality rates and life expectancy. The ten methods are variants and extensions of the Lee-Carter method. Based on one-step forecast errors, the weighted Hyndman-Ullah method provides the most accurate point forecasts of mortality rates and the Lee-Miller method is the least biased. For the accuracy and bias of life expectancy, the weighted Hyndman-Ullah method performs the best for female mortality and the Lee-Miller method for male mortality. While all methods underestimate variability in mortality rates, the more complex Hyndman-Ullah methods are more accurate than the simpler methods. The weighted Hyndman-Ullah method provides the most accurate interval forecasts for mortality rates, while the robust Hyndman-Ullah method provides the best interval forecast accuracy for life expectancy.

  2. Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico

    OpenAIRE

    Johansson, Michael A.; Reich, Nicholas G.; Hota, Aditi; Brownstein, John S.; Santillana, Mauricio

    2016-01-01

    Dengue viruses, which infect millions of people per year worldwide, cause large epidemics that strain healthcare systems. Despite diverse efforts to develop forecasting tools including autoregressive time series, climate-driven statistical, and mechanistic biological models, little work has been done to understand the contribution of different components to improved prediction. We developed a framework to assess and compare dengue forecasts produced from different types of models and evaluate...

  3. High-frequency volatility combine forecast evaluations: An empirical study for DAX

    Directory of Open Access Journals (Sweden)

    Wen Cheong Chin

    2017-01-01

    Full Text Available This study aims to examine the benefits of combining realized volatility, higher power variation volatility and nearest neighbour truncation volatility in the forecasts of financial stock market of DAX. A structural break heavy-tailed heterogeneous autoregressive model under the heterogeneous market hypothesis specification is employed to capture the stylized facts of high-frequency empirical data. Using selected averaging forecast methods, the forecast weights are assigned based on the simple average, simple median, least squares and mean square error. The empirical results indicated that the combination of forecasts in general shown superiority under four evaluation criteria regardless which proxy is set as the actual volatility. As a conclusion, we summarized that the forecast performance is influenced by three factors namely the types of volatility proxy, forecast methods (individual or averaging forecast and lastly the type of actual forecast value used in the evaluation criteria.

  4. Evaluation of statistical models for forecast errors from the HBV model

    Science.gov (United States)

    Engeland, Kolbjørn; Renard, Benjamin; Steinsland, Ingelin; Kolberg, Sjur

    2010-04-01

    SummaryThree statistical models for the forecast errors for inflow into the Langvatn reservoir in Northern Norway have been constructed and tested according to the agreement between (i) the forecast distribution and the observations and (ii) median values of the forecast distribution and the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order auto-regressive model was constructed for the forecast errors. The parameters were conditioned on weather classes. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order auto-regressive model was constructed for the forecast errors. For the third model positive and negative errors were modeled separately. The errors were first NQT-transformed before conditioning the mean error values on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: we wanted (a) the forecast distribution to be reliable; (b) the forecast intervals to be narrow; (c) the median values of the forecast distribution to be close to the observed values. Models 1 and 2 gave almost identical results. The median values improved the forecast with Nash-Sutcliffe R eff increasing from 0.77 for the original forecast to 0.87 for the corrected forecasts. Models 1 and 2 over-estimated the forecast intervals but gave the narrowest intervals. Their main drawback was that the distributions are less reliable than Model 3. For Model 3 the median values did not fit well since the auto-correlation was not accounted for. Since Model 3 did not benefit from the potential variance reduction that lies in bias estimation and removal it gave on average wider forecasts intervals than the two other models. At the same time Model 3 on average slightly under-estimated the forecast intervals, probably explained by the use of average measures to evaluate the fit.

  5. THE ACCURACY AND BIAS EVALUATION OF THE USA UNEMPLOYMENT RATE FORECASTS. METHODS TO IMPROVE THE FORECASTS ACCURACY

    Directory of Open Access Journals (Sweden)

    MIHAELA BRATU (SIMIONESCU

    2012-12-01

    Full Text Available In this study some alternative forecasts for the unemployment rate of USA made by four institutions (International Monetary Fund (IMF, Organization for Economic Co-operation and Development (OECD, Congressional Budget Office (CBO and Blue Chips (BC are evaluated regarding the accuracy and the biasness. The most accurate predictions on the forecasting horizon 201-2011 were provided by IMF, followed by OECD, CBO and BC.. These results were gotten using U1 Theil’s statistic and a new method that has not been used before in literature in this context. The multi-criteria ranking was applied to make a hierarchy of the institutions regarding the accuracy and five important accuracy measures were taken into account at the same time: mean errors, mean squared error, root mean squared error, U1 and U2 statistics of Theil. The IMF, OECD and CBO predictions are unbiased. The combined forecasts of institutions’ predictions are a suitable strategy to improve the forecasts accuracy of IMF and OECD forecasts when all combination schemes are used, but INV one is the best. The filtered and smoothed original predictions based on Hodrick-Prescott filter, respectively Holt-Winters technique are a good strategy of improving only the BC expectations. The proposed strategies to improve the accuracy do not solve the problem of biasness. The assessment and improvement of forecasts accuracy have an important contribution in growing the quality of decisional process.

  6. Updating the FORECAST formative evaluation approach and some implications for ameliorating theory failure, implementation failure, and evaluation failure

    Science.gov (United States)

    Katz, Jason; Wandersman, Abraham; Goodman, Robert M.; Griffin, Sarah; Wilson, Dawn K.; Schillaci, Michael

    2013-01-01

    Historically, there has been considerable variability in how formative evaluation has been conceptualized and practiced. FORmative Evaluation Consultation And Systems Technique (FORECAST) is a formative evaluation approach that develops a set of models and processes that can be used across settings and times, while allowing for local adaptations and innovations. FORECAST integrates specific models and tools to improve limitations in program theory, implementation, and evaluation. In the period since its initial use in a federally funded community prevention project in the early 1990s, evaluators have incorporated important formative evaluation innovations into FORECAST, including the integration of feedback loops and proximal outcome evaluation. In addition, FORECAST has been applied in a randomized community research trial. In this article, we describe updates to FORECAST and the implications of FORECAST for ameliorating failures in program theory, implementation, and evaluation. PMID:23624204

  7. Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes

    DEFF Research Database (Denmark)

    Draxl, Caroline; Hahmann, Andrea N.; Pena Diaz, Alfredo

    2014-01-01

    with different PBL parameterizations at one coastal site over western Denmark. The evaluation focuses on determining which PBL parameterization performs best for wind energy forecasting, and presenting a validation methodology that takes into account wind speed at different heights. Winds speeds at heights...... regarding wind energy at these levels partly depends on the formulation and implementation of planetary boundary layer (PBL) parameterizations in these models. This study evaluates wind speeds and vertical wind shears simulated by theWeather Research and Forecasting model using seven sets of simulations...

  8. Evaluation of streamflow forecast for the National Water Model of U.S. National Weather Service

    Science.gov (United States)

    Rafieeinasab, A.; McCreight, J. L.; Dugger, A. L.; Gochis, D.; Karsten, L. R.; Zhang, Y.; Cosgrove, B.; Liu, Y.

    2016-12-01

    The National Water Model (NWM), an implementation of the community WRF-Hydro modeling system, is an operational hydrologic forecasting model for the contiguous United States. The model forecasts distributed hydrologic states and fluxes, including soil moisture, snowpack, ET, and ponded water. In particular, the NWM provides streamflow forecasts at more than 2.7 million river reaches for three forecast ranges: short (15 hr), medium (10 days), and long (30 days). In this study, we verify short and medium range streamflow forecasts in the context of the verification of their respective quantitative precipitation forecasts/forcing (QPF), the High Resolution Rapid Refresh (HRRR) and the Global Forecast System (GFS). The streamflow evaluation is performed for summer of 2016 at more than 6,000 USGS gauges. Both individual forecasts and forecast lead times are examined. Selected case studies of extreme events aim to provide insight into the quality of the NWM streamflow forecasts. A goal of this comparison is to address how much streamflow bias originates from precipitation forcing bias. To this end, precipitation verification is performed over the contributing areas above (and between assimilated) USGS gauge locations. Precipitation verification is based on the aggregated, blended StageIV/StageII data as the "reference truth". We summarize the skill of the streamflow forecasts, their skill relative to the QPF, and make recommendations for improving NWM forecast skill.

  9. Demand Forecasting: An Evaluation of DODs Accuracy Metric and Navys Procedures

    Science.gov (United States)

    2016-06-01

    dataset ci = unit cost for item i fi = demand forecast for item i 28 ai = actual demand for item i A close look at fCIMIP metric reveals a...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT DEMAND FORECASTING : AN EVALUATION OF DOD’S ACCURACY...June 2016 3. REPORT TYPE AND DATES COVERED MBA professional report 4. TITLE AND SUBTITLE DEMAND FORECASTING : AN EVALUATION OF DOD’S ACCURACY

  10. Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2014-07-01

    Full Text Available The scientific evaluation methodology for the forecast accuracy of wind power forecasting models is an important issue in the domain of wind power forecasting. However, traditional forecast evaluation criteria, such as Mean Squared Error (MSE and Mean Absolute Error (MAE, have limitations in application to some degree. In this paper, a modern evaluation criterion, the Diebold-Mariano (DM test, is introduced. The DM test can discriminate the significant differences of forecasting accuracy between different models based on the scheme of quantitative analysis. Furthermore, the augmented DM test with rolling windows approach is proposed to give a more strict forecasting evaluation. By extending the loss function to an asymmetric structure, the asymmetric DM test is proposed. Case study indicates that the evaluation criteria based on DM test can relieve the influence of random sample disturbance. Moreover, the proposed augmented DM test can provide more evidence when the cost of changing models is expensive, and the proposed asymmetric DM test can add in the asymmetric factor, and provide practical evaluation of wind power forecasting models. It is concluded that the two refined DM tests can provide reference to the comprehensive evaluation for wind power forecasting models.

  11. Evaluating Forecasts, Narratives and Policy Using a Test of Invariance

    Directory of Open Access Journals (Sweden)

    Jennifer L. Castle

    2017-09-01

    Full Text Available Economic policy agencies produce forecasts with accompanying narratives, and base policy changes on the resulting anticipated developments in the target variables. Systematic forecast failure, defined as large, persistent deviations of the outturns from the numerical forecasts, can make the associated narrative false, which would in turn question the validity of the entailed policy implementation. We establish when systematic forecast failure entails failure of the accompanying narrative, which we call forediction failure, and when that in turn implies policy invalidity. Most policy regime changes involve location shifts, which can induce forediction failure unless the policy variable is super exogenous in the policy model. We propose a step-indicator saturation test to check in advance for invariance to policy changes. Systematic forecast failure, or a lack of invariance, previously justified by narratives reveals such stories to be economic fiction.

  12. Evaluation of multiple emission point facilities

    International Nuclear Information System (INIS)

    Miltenberger, R.P.; Hull, A.P.; Strachan, S.; Tichler, J.

    1988-01-01

    In 1970, the New York State Department of Environmental Conservation (NYSDEC) assumed responsibility for the environmental aspect of the state's regulatory program for by-product, source, and special nuclear material. The major objective of this study was to provide consultation to NYSDEC and the US NRC to assist NYSDEC in determining if broad-based licensed facilities with multiple emission points were in compliance with NYCRR Part 380. Under this contract, BNL would evaluate a multiple emission point facility, identified by NYSDEC, as a case study. The review would be a nonbinding evaluation of the facility to determine likely dispersion characteristics, compliance with specified release limits, and implementation of the ALARA philosophy regarding effluent release practices. From the data collected, guidance as to areas of future investigation and the impact of new federal regulations were to be developed. Reported here is the case study for the University of Rochester, Strong Memorial Medical Center and Riverside Campus

  13. Ex-post evaluations of demand forecast accuracy

    DEFF Research Database (Denmark)

    Nicolaisen, Morten Skou; Driscoll, Patrick Arthur

    2014-01-01

    Travel demand forecasts play a crucial role in the preparation of decision support to policy makers in the field of transport planning. The results feed directly into impact appraisals such as cost benefit analyses and environmental impact assessments, which are mandatory for large public works...... projects in many countries. Over the last couple of decades there has been an increasing attention to the lack of demand forecast accuracy, but since data availability for comprehensive ex- post appraisals is problematic, such studies are still relatively rare. The present paper presents a review...... of the largest ex-post studies of demand forecast accuracy for transport infrastructure projects. The focus is twofold; to provide an overview of observed levels of demand forecast inaccuracy and to explore the primary explanations offered for the observed inaccuracy. Inaccuracy in the form of both bias...

  14. Empirical evaluation of a forecasting model for successful facilitation ...

    African Journals Online (AJOL)

    During 2000 the annual Facilitator Customer Satisfaction Survey was ... the forecasting model is successful concerning the CSI value and a high positive linear ... namely that of human behaviour to incorporate other influences than just the ...

  15. Evaluation and Application of the Weather Research and Forecast Model

    National Research Council Canada - National Science Library

    Passner, Jeffrey E

    2007-01-01

    ... by the U.S. Army Research Laboratory (ARL) to determine how accurate and robust the model is under a variety of meteorological conditions, with an emphasis on fine resolution, short-range forecasts in complex terrain...

  16. Using forecast modelling to evaluate treatment effects in single-group interrupted time series analysis.

    Science.gov (United States)

    Linden, Ariel

    2018-05-11

    Interrupted time series analysis (ITSA) is an evaluation methodology in which a single treatment unit's outcome is studied serially over time and the intervention is expected to "interrupt" the level and/or trend of that outcome. ITSA is commonly evaluated using methods which may produce biased results if model assumptions are violated. In this paper, treatment effects are alternatively assessed by using forecasting methods to closely fit the preintervention observations and then forecast the post-intervention trend. A treatment effect may be inferred if the actual post-intervention observations diverge from the forecasts by some specified amount. The forecasting approach is demonstrated using the effect of California's Proposition 99 for reducing cigarette sales. Three forecast models are fit to the preintervention series-linear regression (REG), Holt-Winters (HW) non-seasonal smoothing, and autoregressive moving average (ARIMA)-and forecasts are generated into the post-intervention period. The actual observations are then compared with the forecasts to assess intervention effects. The preintervention data were fit best by HW, followed closely by ARIMA. REG fit the data poorly. The actual post-intervention observations were above the forecasts in HW and ARIMA, suggesting no intervention effect, but below the forecasts in the REG (suggesting a treatment effect), thereby raising doubts about any definitive conclusion of a treatment effect. In a single-group ITSA, treatment effects are likely to be biased if the model is misspecified. Therefore, evaluators should consider using forecast models to accurately fit the preintervention data and generate plausible counterfactual forecasts, thereby improving causal inference of treatment effects in single-group ITSA studies. © 2018 John Wiley & Sons, Ltd.

  17. Evaluation of bias-correction methods for ensemble streamflow volume forecasts

    Directory of Open Access Journals (Sweden)

    T. Hashino

    2007-01-01

    Full Text Available Ensemble prediction systems are used operationally to make probabilistic streamflow forecasts for seasonal time scales. However, hydrological models used for ensemble streamflow prediction often have simulation biases that degrade forecast quality and limit the operational usefulness of the forecasts. This study evaluates three bias-correction methods for ensemble streamflow volume forecasts. All three adjust the ensemble traces using a transformation derived with simulated and observed flows from a historical simulation. The quality of probabilistic forecasts issued when using the three bias-correction methods is evaluated using a distributions-oriented verification approach. Comparisons are made of retrospective forecasts of monthly flow volumes for a north-central United States basin (Des Moines River, Iowa, issued sequentially for each month over a 48-year record. The results show that all three bias-correction methods significantly improve forecast quality by eliminating unconditional biases and enhancing the potential skill. Still, subtle differences in the attributes of the bias-corrected forecasts have important implications for their use in operational decision-making. Diagnostic verification distinguishes these attributes in a context meaningful for decision-making, providing criteria to choose among bias-correction methods with comparable skill.

  18. Performance Evaluation of the Naval Research Laboratory COAMPS on the Forecast of Typhoon Herb in the Western Pacific in 1996

    National Research Council Canada - National Science Library

    Peng, Melinda

    1997-01-01

    ... Herb that hit Taiwan island and caused severe damage. Performance of the COAMPS on the track forecast, wind and precipitation forecast, and interaction of the typhoon with topography is evaluated and analyzed.

  19. Application of the nonlinear time series prediction method of genetic algorithm for forecasting surface wind of point station in the South China Sea with scatterometer observations

    International Nuclear Information System (INIS)

    Zhong Jian; Dong Gang; Sun Yimei; Zhang Zhaoyang; Wu Yuqin

    2016-01-01

    The present work reports the development of nonlinear time series prediction method of genetic algorithm (GA) with singular spectrum analysis (SSA) for forecasting the surface wind of a point station in the South China Sea (SCS) with scatterometer observations. Before the nonlinear technique GA is used for forecasting the time series of surface wind, the SSA is applied to reduce the noise. The surface wind speed and surface wind components from scatterometer observations at three locations in the SCS have been used to develop and test the technique. The predictions have been compared with persistence forecasts in terms of root mean square error. The predicted surface wind with GA and SSA made up to four days (longer for some point station) in advance have been found to be significantly superior to those made by persistence model. This method can serve as a cost-effective alternate prediction technique for forecasting surface wind of a point station in the SCS basin. (paper)

  20. Retrospective Evaluation of the Long-Term CSEP-Italy Earthquake Forecasts

    Science.gov (United States)

    Werner, M. J.; Zechar, J. D.; Marzocchi, W.; Wiemer, S.

    2010-12-01

    On 1 August 2009, the global Collaboratory for the Study of Earthquake Predictability (CSEP) launched a prospective and comparative earthquake predictability experiment in Italy. The goal of the CSEP-Italy experiment is to test earthquake occurrence hypotheses that have been formalized as probabilistic earthquake forecasts over temporal scales that range from days to years. In the first round of forecast submissions, members of the CSEP-Italy Working Group presented eighteen five-year and ten-year earthquake forecasts to the European CSEP Testing Center at ETH Zurich. We considered the twelve time-independent earthquake forecasts among this set and evaluated them with respect to past seismicity data from two Italian earthquake catalogs. Here, we present the results of tests that measure the consistency of the forecasts with the past observations. Besides being an evaluation of the submitted time-independent forecasts, this exercise provided insight into a number of important issues in predictability experiments with regard to the specification of the forecasts, the performance of the tests, and the trade-off between the robustness of results and experiment duration.

  1. Retrospective evaluation of the five-year and ten-year CSEP-Italy earthquake forecasts

    Directory of Open Access Journals (Sweden)

    Stefan Wiemer

    2010-11-01

    Full Text Available On August 1, 2009, the global Collaboratory for the Study of Earthquake Predictability (CSEP launched a prospective and comparative earthquake predictability experiment in Italy. The goal of this CSEP-Italy experiment is to test earthquake occurrence hypotheses that have been formalized as probabilistic earthquake forecasts over temporal scales that range from days to years. In the first round of forecast submissions, members of the CSEP-Italy Working Group presented 18 five-year and ten-year earthquake forecasts to the European CSEP Testing Center at ETH Zurich. We have considered here the twelve time-independent earthquake forecasts among this set, and evaluated them with respect to past seismicity data from two Italian earthquake catalogs. We present the results of the tests that measure the consistencies of the forecasts according to past observations. As well as being an evaluation of the time-independent forecasts submitted, this exercise provides insight into a number of important issues in predictability experiments with regard to the specification of the forecasts, the performance of the tests, and the trade-off between robustness of results and experiment duration. We conclude with suggestions for the design of future earthquake predictability experiments.

  2. Evaluation of the NCEP CFSv2 45-day Forecasts for Predictability of Intraseasonal Tropical Storm Activities

    Science.gov (United States)

    Schemm, J. E.; Long, L.; Baxter, S.

    2013-12-01

    Evaluation of the NCEP CFSv2 45-day Forecasts for Predictability of Intraseasonal Tropical Storm Activities Jae-Kyung E. Schemm, Lindsey Long and Stephen Baxter Climate Prediction Center, NCEP/NWS/NOAA Predictability of intraseasonal tropical storm (TS) activities is assessed using the 1999-2010 CFSv2 hindcast suite. Weekly TS activities in the CFSv2 45-day forecasts were determined using the TS detection and tracking method devised by Carmago and Zebiak (2002). The forecast periods are divided into weekly intervals for Week 1 through Week 6, and also the 30-day mean. The TS activities in those intervals are compared to the observed activities based on the NHC HURDAT and JTWC Best Track datasets. The CFSv2 45-day hindcast suite is made of forecast runs initialized at 00, 06, 12 and 18Z every day during the 1999 - 2010 period. For predictability evaluation, forecast TS activities are analyzed based on 20-member ensemble forecasts comprised of 45-day runs made during the most recent 5 days prior to the verification period. The forecast TS activities are evaluated in terms of the number of storms, genesis locations and storm tracks during the weekly periods. The CFSv2 forecasts are shown to have a fair level of skill in predicting the number of storms over the Atlantic Basin with the temporal correlation scores ranging from 0.73 for Week 1 forecasts to 0.63 for Week 6, and the average RMS errors ranging from 0.86 to 1.07 during the 1999-2010 hurricane season. Also, the forecast track density distribution and false alarm statistics are compiled using the hindcast analyses. In real-time applications of the intraseasonal TS activity forecasts, the climatological TS forecast statistics will be used to make the model bias corrections in terms of the storm counts, track distribution and removal of false alarms. An operational implementation of the weekly TS activity prediction is planned for early 2014 to provide an objective input for the CPC's Global Tropical Hazards

  3. Development of an Adaptable Display and Diagnostic System for the Evaluation of Tropical Cyclone Forecasts

    Science.gov (United States)

    Kucera, P. A.; Burek, T.; Halley-Gotway, J.

    2015-12-01

    NCAR's Joint Numerical Testbed Program (JNTP) focuses on the evaluation of experimental forecasts of tropical cyclones (TCs) with the goal of developing new research tools and diagnostic evaluation methods that can be transitioned to operations. Recent activities include the development of new TC forecast verification methods and the development of an adaptable TC display and diagnostic system. The next generation display and diagnostic system is being developed to support evaluation needs of the U.S. National Hurricane Center (NHC) and broader TC research community. The new hurricane display and diagnostic capabilities allow forecasters and research scientists to more deeply examine the performance of operational and experimental models. The system is built upon modern and flexible technology that includes OpenLayers Mapping tools that are platform independent. The forecast track and intensity along with associated observed track information are stored in an efficient MySQL database. The system provides easy-to-use interactive display system, and provides diagnostic tools to examine forecast track stratified by intensity. Consensus forecasts can be computed and displayed interactively. The system is designed to display information for both real-time and for historical TC cyclones. The display configurations are easily adaptable to meet the needs of the end-user preferences. Ongoing enhancements include improving capabilities for stratification and evaluation of historical best tracks, development and implementation of additional methods to stratify and compute consensus hurricane track and intensity forecasts, and improved graphical display tools. The display is also being enhanced to incorporate gridded forecast, satellite, and sea surface temperature fields. The presentation will provide an overview of the display and diagnostic system development and demonstration of the current capabilities.

  4. A Point System to Forecast Hepatocellular Carcinoma Risk Before and After Treatment Among Persons with Chronic Hepatitis C.

    Science.gov (United States)

    Xing, Jian; Spradling, Philip R; Moorman, Anne C; Holmberg, Scott D; Teshale, Eyasu H; Rupp, Loralee B; Gordon, Stuart C; Lu, Mei; Boscarino, Joseph A; Schmidt, Mark A; Trinacty, Connie M; Xu, Fujie

    2017-11-01

    Risk of hepatocellular carcinoma (HCC) may be difficult to determine in the clinical setting. Develop a scoring system to forecast HCC risk among patients with chronic hepatitis C. Using data from the Chronic Hepatitis Cohort Study collected during 2005-2014, we derived HCC risk scores for males and females using an extended Cox model with aspartate aminotransferase-to-platelet ratio index (APRI) as a time-dependent variables and mean Kaplan-Meier survival functions from patient data at two study sites, and used data collected at two separate sites for external validation. For model calibration, we used the Greenwood-Nam-D'Agostino goodness-of-fit statistic to examine differences between predicted and observed risk. Of 12,469 patients (1628 with a history of sustained viral response [SVR]), 504 developed HCC; median follow-up was 6 years. Final predictors in the model included age, alcohol abuse, interferon-based treatment response, and APRI. Point values, ranging from -3 to 14 (males) and -3 to 12 (females), were established using hazard ratios of the predictors aligned with 1-, 3-, and 5-year Kaplan-Meier survival probabilities of HCC. Discriminatory capacity was high (c-index 0.82 males and 0.84 females) and external calibration demonstrated no differences between predicted and observed HCC risk for 1-, 3-, and 5-year forecasts among males (all p values >0.97) and for 3- and 5-year risk among females (all p values >0.87). This scoring system, based on age, alcohol abuse history, treatment response, and APRI, can be used to forecast up to a 5-year risk of HCC among hepatitis C patients before and after SVR.

  5. Evaluating Potential Tipping Points of Antarctic basins

    Science.gov (United States)

    Durand, G.; Sainan, S.; Pattyn, F.; Jourdain, N.

    2017-12-01

    Antarctica is currently loosing mass and its forthcoming contribution to sea-level rise could substantially increase during the coming centuries. This is essentially due to geometrical constraints, i.e., in regions where grounded ice lies on a bedrock below sea-level sloping down towards the interior of the ice sheet (retrograde slope). For such a configuration the ice sheet is considered potentially unstable, as suggested by theory. However, recent observations on accelerated grounding-line retreat and new insights in modeling Pine Island and Thwaites glaciers give evidence that such self-sustained retreat, called marine ice sheet instability (MISI), has already been on its way. Although West Antarctica appears to be the most vulnerable region for MISI occurrence, similar topographic configurations are also observed in East Antarctica, in the Wilkes Basin in particular. Therefore, evaluating the MISI potential at a pan-Antarctic scale is becoming a priority. Here, using the f.ETISh ice sheet model, an ensemble of simulations of the entire contemporary Antarctic ice sheet has been carried out. In particular, we investigate the debuttressing of ice shelves required to initiate MISI for each coastal region around Antarctica by forcing the model with realistic sub-shelf melt pulses of varying duration and amplitude. We further identify the currently grounded areas where the outlet glaciers could hardly stabilize, the Amundsen Sea Sector being the more prone to large self-sustained retreats. On the contrary, the ability of Cook and Ninnis ice shelves to recover after large perturbations and enough buttress upstream outlet glaciers tends to limit self-sustained retreat of the sector. For each basin, rates of contribution to sea-level rise are discussed together with the RCPs and time when tipping points could be reached and MISI triggered.

  6. Evaluation of CFSV2 Forecast Skill for Indian Summer Monsoon Sub-Seasonal Characteristics

    Science.gov (United States)

    S, S. A.; Ghosh, S.

    2015-12-01

    Prediction of sub seasonal monsoon characteristics of Indian Summer Monsoon (ISM) is highly crucial for agricultural planning and water resource management. The Climate forecast System version 2 (CFS V2), the state of the art coupled climate model developed by NCEP, is currently being employed for the seasonal and extended range forecasts of ISM. Even though CFSV2 is a fully coupled ocean- atmosphere- land model with advanced physics, increased resolution and refined initialisation, its ISM forecasts, in terms of seasonal mean and variability needs improvement. Numerous works have been done for verifying the CFSV2 forecasts in terms of the seasonal mean, its mean and variability, active and break spells, and El Nino Southern Oscillation (ENSO) - monsoon interactions. Most of these works are based on either rain fall strength or rainfall based indices. Here we evaluate the skill of CFS v2 model in forecasting the various sub seasonal features of ISM, viz., the onset and withdrawal days of monsoon that are determined using circulation based indices, the Monsoon Intra Seasonal Oscillations (MISO), and Indian Ocean and Pacific Ocean sea surface temperatures. The MISO index, we use here, is based on zonal wind at 850 hPa and Outgoing Long wave Radiation (OLR) anomalies. With this work, we aim at assessing the skill of the model in simulating the large scale circulation patterns and their variabilities within the monsoon season. Variabilities in these large scale circulation patterns are primarily responsible for the variabilities in the seasonal monsoon strength and its temporal distribution across the season. We find that the model can better forecast the large scale circulation and than the actual precipitation. Hence we suggest that seasonal rainfall forecasts can be improved by the statistical downscaling of CFSV2 forecasts by incorporating the established relationships between the well forecasted large scale variables and monsoon precipitation.

  7. Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast

    Science.gov (United States)

    Masselink, Thomas; Schluessel, P.

    1995-12-01

    Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.

  8. Stochastic rainfall-runoff forecasting: parameter estimation, multi-step prediction, and evaluation of overflow risk

    DEFF Research Database (Denmark)

    Löwe, Roland; Mikkelsen, Peter Steen; Madsen, Henrik

    2014-01-01

    Probabilistic runoff forecasts generated by stochastic greybox models can be notably useful for the improvement of the decision-making process in real-time control setups for urban drainage systems because the prediction risk relationships in these systems are often highly nonlinear. To date...... the identification of models for cases with noisy in-sewer observations. For the prediction of the overflow risk, no improvement was demonstrated through the application of stochastic forecasts instead of point predictions, although this result is thought to be caused by the notably simplified setup used...

  9. Electron-density critical points analysis and catastrophe theory to forecast structure instability in periodic solids.

    Science.gov (United States)

    Merli, Marcello; Pavese, Alessandro

    2018-03-01

    The critical points analysis of electron density, i.e. ρ(x), from ab initio calculations is used in combination with the catastrophe theory to show a correlation between ρ(x) topology and the appearance of instability that may lead to transformations of crystal structures, as a function of pressure/temperature. In particular, this study focuses on the evolution of coalescing non-degenerate critical points, i.e. such that ∇ρ(x c ) = 0 and λ 1 , λ 2 , λ 3 ≠ 0 [λ being the eigenvalues of the Hessian of ρ(x) at x c ], towards degenerate critical points, i.e. ∇ρ(x c ) = 0 and at least one λ equal to zero. The catastrophe theory formalism provides a mathematical tool to model ρ(x) in the neighbourhood of x c and allows one to rationalize the occurrence of instability in terms of electron-density topology and Gibbs energy. The phase/state transitions that TiO 2 (rutile structure), MgO (periclase structure) and Al 2 O 3 (corundum structure) undergo because of pressure and/or temperature are here discussed. An agreement of 3-5% is observed between the theoretical model and experimental pressure/temperature of transformation.

  10. Evaluation of quantitative precipitation forecasts by TIGGE ensembles for south China during the presummer rainy season

    Science.gov (United States)

    Huang, Ling; Luo, Yali

    2017-08-01

    Based on The Observing System Research and Predictability Experiment Interactive Grand Global Ensemble (TIGGE) data set, this study evaluates the ability of global ensemble prediction systems (EPSs) from the European Centre for Medium-Range Weather Forecasts (ECMWF), U.S. National Centers for Environmental Prediction, Japan Meteorological Agency (JMA), Korean Meteorological Administration, and China Meteorological Administration (CMA) to predict presummer rainy season (April-June) precipitation in south China. Evaluation of 5 day forecasts in three seasons (2013-2015) demonstrates the higher skill of probability matching forecasts compared to simple ensemble mean forecasts and shows that the deterministic forecast is a close second. The EPSs overestimate light-to-heavy rainfall (0.1 to 30 mm/12 h) and underestimate heavier rainfall (>30 mm/12 h), with JMA being the worst. By analyzing the synoptic situations predicted by the identified more skillful (ECMWF) and less skillful (JMA and CMA) EPSs and the ensemble sensitivity for four representative cases of torrential rainfall, the transport of warm-moist air into south China by the low-level southwesterly flow, upstream of the torrential rainfall regions, is found to be a key synoptic factor that controls the quantitative precipitation forecast. The results also suggest that prediction of locally produced torrential rainfall is more challenging than prediction of more extensively distributed torrential rainfall. A slight improvement in the performance is obtained by shortening the forecast lead time from 30-36 h to 18-24 h to 6-12 h for the cases with large-scale forcing, but not for the locally produced cases.

  11. Evaluation of weather forecast systems for storm surge modeling in the Chesapeake Bay

    Science.gov (United States)

    Garzon, Juan L.; Ferreira, Celso M.; Padilla-Hernandez, Roberto

    2018-01-01

    Accurate forecast of sea-level heights in coastal areas depends, among other factors, upon a reliable coupling of a meteorological forecast system to a hydrodynamic and wave system. This study evaluates the predictive skills of the coupled circulation and wind-wave model system (ADCIRC+SWAN) for simulating storm tides in the Chesapeake Bay, forced by six different products: (1) Global Forecast System (GFS), (2) Climate Forecast System (CFS) version 2, (3) North American Mesoscale Forecast System (NAM), (4) Rapid Refresh (RAP), (5) European Center for Medium-Range Weather Forecasts (ECMWF), and (6) the Atlantic hurricane database (HURDAT2). This evaluation is based on the hindcasting of four events: Irene (2011), Sandy (2012), Joaquin (2015), and Jonas (2016). By comparing the simulated water levels to observations at 13 monitoring stations, we have found that the ADCIR+SWAN System forced by the following: (1) the HURDAT2-based system exhibited the weakest statistical skills owing to a noteworthy overprediction of the simulated wind speed; (2) the ECMWF, RAP, and NAM products captured the moment of the peak and moderately its magnitude during all storms, with a correlation coefficient ranging between 0.98 and 0.77; (3) the CFS system exhibited the worst averaged root-mean-square difference (excepting HURDAT2); (4) the GFS system (the lowest horizontal resolution product tested) resulted in a clear underprediction of the maximum water elevation. Overall, the simulations forced by NAM and ECMWF systems induced the most accurate results best accuracy to support water level forecasting in the Chesapeake Bay during both tropical and extra-tropical storms.

  12. Evaluation of Maximum a Posteriori Estimation as Data Assimilation Method for Forecasting Infiltration-Inflow Affected Urban Runoff with Radar Rainfall Input

    Directory of Open Access Journals (Sweden)

    Jonas W. Pedersen

    2016-09-01

    Full Text Available High quality on-line flow forecasts are useful for real-time operation of urban drainage systems and wastewater treatment plants. This requires computationally efficient models, which are continuously updated with observed data to provide good initial conditions for the forecasts. This paper presents a way of updating conceptual rainfall-runoff models using Maximum a Posteriori estimation to determine the most likely parameter constellation at the current point in time. This is done by combining information from prior parameter distributions and the model goodness of fit over a predefined period of time that precedes the forecast. The method is illustrated for an urban catchment, where flow forecasts of 0–4 h are generated by applying a lumped linear reservoir model with three cascading reservoirs. Radar rainfall observations are used as input to the model. The effects of different prior standard deviations and lengths of the auto-calibration period on the resulting flow forecast performance are evaluated. We were able to demonstrate that, if properly tuned, the method leads to a significant increase in forecasting performance compared to a model without continuous auto-calibration. Delayed responses and erratic behaviour in the parameter variations are, however, observed and the choice of prior distributions and length of auto-calibration period is not straightforward.

  13. On evaluation of ensemble precipitation forecasts with observation-based ensembles

    Directory of Open Access Journals (Sweden)

    S. Jaun

    2007-04-01

    Full Text Available Spatial interpolation of precipitation data is uncertain. How important is this uncertainty and how can it be considered in evaluation of high-resolution probabilistic precipitation forecasts? These questions are discussed by experimental evaluation of the COSMO consortium's limited-area ensemble prediction system COSMO-LEPS. The applied performance measure is the often used Brier skill score (BSS. The observational references in the evaluation are (a analyzed rain gauge data by ordinary Kriging and (b ensembles of interpolated rain gauge data by stochastic simulation. This permits the consideration of either a deterministic reference (the event is observed or not with 100% certainty or a probabilistic reference that makes allowance for uncertainties in spatial averaging. The evaluation experiments show that the evaluation uncertainties are substantial even for the large area (41 300 km2 of Switzerland with a mean rain gauge distance as good as 7 km: the one- to three-day precipitation forecasts have skill decreasing with forecast lead time but the one- and two-day forecast performances differ not significantly.

  14. Application research for 4D technology in flood forecasting and evaluation

    Science.gov (United States)

    Li, Ziwei; Liu, Yutong; Cao, Hongjie

    1998-08-01

    In order to monitor the region which disaster flood happened frequently in China, satisfy the great need of province governments for high accuracy monitoring and evaluated data for disaster and improve the efficiency for repelling disaster, under the Ninth Five-year National Key Technologies Programme, the method was researched for flood forecasting and evaluation using satellite and aerial remoted sensed image and land monitor data. The effective and practicable flood forecasting and evaluation system was established and DongTing Lake was selected as the test site. Modern Digital photogrammetry, remote sensing and GIS technology was used in this system, the disastrous flood could be forecasted and loss can be evaluated base on '4D' (DEM -- Digital Elevation Model, DOQ -- Digital OrthophotoQuads, DRG -- Digital Raster Graph, DTI -- Digital Thematic Information) disaster background database. The technology of gathering and establishing method for '4D' disaster environment background database, application technology for flood forecasting and evaluation based on '4D' background data and experimental results for DongTing Lake test site were introduced in detail in this paper.

  15. Evaluations of Extended-Range tropical Cyclone Forecasts in the Western North Pacific by using the Ensemble Reforecasts: Preliminary Results

    Science.gov (United States)

    Tsai, Hsiao-Chung; Chen, Pang-Cheng; Elsberry, Russell L.

    2017-04-01

    The objective of this study is to evaluate the predictability of the extended-range forecasts of tropical cyclone (TC) in the western North Pacific using reforecasts from National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) during 1996-2015, and from the Climate Forecast System (CFS) during 1999-2010. Tsai and Elsberry have demonstrated that an opportunity exists to support hydrological operations by using the extended-range TC formation and track forecasts in the western North Pacific from the ECMWF 32-day ensemble. To demonstrate this potential for the decision-making processes regarding water resource management and hydrological operation in Taiwan reservoir watershed areas, special attention is given to the skill of the NCEP GEFS and CFS models in predicting the TCs affecting the Taiwan area. The first objective of this study is to analyze the skill of NCEP GEFS and CFS TC forecasts and quantify the forecast uncertainties via verifications of categorical binary forecasts and probabilistic forecasts. The second objective is to investigate the relationships among the large-scale environmental factors [e.g., El Niño Southern Oscillation (ENSO), Madden-Julian Oscillation (MJO), etc.] and the model forecast errors by using the reforecasts. Preliminary results are indicating that the skill of the TC activity forecasts based on the raw forecasts can be further improved if the model biases are minimized by utilizing these reforecasts.

  16. Fisher matrix forecast on cosmological parameters from the dark energy survey 2-point angular correlation function

    Energy Technology Data Exchange (ETDEWEB)

    Sobreira, F.; Rosenfeld, R. [Universidade Estadual Paulista Julio de Mesquita Filho (IFT/UNESP), Sao Paulo, SP (Brazil). Inst. Fisica Teorica; Simoni, F. de; Costa, L.A.N. da; Gaia, M.A.G.; Ramos, B.; Ogando, R.; Makler, M. [Laboratorio Interinstitucional de e-Astronomia (LIneA), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text: We study the cosmological constraints expected for the upcoming project Dark Energy Survey (DES) with the full functional form of the 2-point angular correlation function. The angular correlation function model applied in this work includes the effects of linear redshift-space distortion, photometric redshift errors (assumed to be Gaussian) and non-linearities prevenient from gravitational infall. The Fisher information matrix is constructed with the full covariance matrix, which takes the correlation between nearby redshift shells in a proper manner. The survey was sliced into 20 redshift shells in the range 0:4 {<=} z {<=} 1:40 with a variable angular scale in order to search only the scale around the signal from the baryon acoustic oscillation, therefore well within the validity of the non-linear model employed. We found that under those assumptions and with a flat {Lambda}CDM WMAP7 fiducial model, the DES will be able to constrain the dark energy equation of state parameter w with a precision of {approx} 20% and the cold dark matter with {approx} 11% when marginalizing over the other 25 parameters (bias is treated as a free parameter for each shell). When applying WMAP7 priors on {Omega}{sub baryon}, {Omega} c{sub dm}, n{sub s}, and HST priors on the Hubble parameter, w is constrained with {approx} 9% precision. This shows that the full shape of the angular correlation function with DES data will be a powerful probe to constrain cosmological parameters. (author)

  17. Power plant asset market evaluations: Forecasting the costs of power production

    Energy Technology Data Exchange (ETDEWEB)

    Lefton, S.A.; Grunsrud, G.P. [Aptech Engineering Services, Inc., Sunnyvale, CA (United States)

    1998-12-31

    This presentation discusses the process of evaluating and valuing power plants for sale. It describes a method to forecast the future costs at a power plant using a portion of the past fixed costs, variable energy costs, and most importantly the variable cycling-related wear-and-tear costs. The presentation then discusses how to best determine market share, expected revenues, and then to forecast plant future costs based on future expected unit cycling operations. The presentation concludes with a section on recommendations to power plant buyers or sellers on how to manage the power plant asset and how to increase its market value. (orig.) 4 refs.

  18. Power plant asset market evaluations: Forecasting the costs of power production

    Energy Technology Data Exchange (ETDEWEB)

    Lefton, S A; Grunsrud, G P [Aptech Engineering Services, Inc., Sunnyvale, CA (United States)

    1999-12-31

    This presentation discusses the process of evaluating and valuing power plants for sale. It describes a method to forecast the future costs at a power plant using a portion of the past fixed costs, variable energy costs, and most importantly the variable cycling-related wear-and-tear costs. The presentation then discusses how to best determine market share, expected revenues, and then to forecast plant future costs based on future expected unit cycling operations. The presentation concludes with a section on recommendations to power plant buyers or sellers on how to manage the power plant asset and how to increase its market value. (orig.) 4 refs.

  19. Power plant asset market evaluations: Forecasting the costs of power production

    International Nuclear Information System (INIS)

    Lefton, S.A.; Grunsrud, G.P.

    1998-01-01

    This presentation discusses the process of evaluating and valuing power plants for sale. It describes a method to forecast the future costs at a power plant using a portion of the past fixed costs, variable energy costs, and most importantly the variable cycling-related wear-and-tear costs. The presentation then discusses how to best determine market share, expected revenues, and then to forecast plant future costs based on future expected unit cycling operations. The presentation concludes with a section on recommendations to power plant buyers or sellers on how to manage the power plant asset and how to increase its market value. (orig.) 4 refs

  20. Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil

    Science.gov (United States)

    Lowe, Rachel; Coelho, Caio AS; Barcellos, Christovam; Carvalho, Marilia Sá; Catão, Rafael De Castro; Coelho, Giovanini E; Ramalho, Walter Massa; Bailey, Trevor C; Stephenson, David B; Rodó, Xavier

    2016-01-01

    Recently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics. DOI: http://dx.doi.org/10.7554/eLife.11285.001 PMID:26910315

  1. The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

    Science.gov (United States)

    Zavodsky, Bradley; Kozlowski, Danielle; Case, Jonathan; Molthan, Andrew

    2012-01-01

    Short-term Prediction Research and Transition (SPoRT) seeks to improve short-term, regional weather forecasts using unique NASA products and capabilities SPoRT has developed a unique, real-time configuration of the NASA Unified Weather Research and Forecasting (WRF)WRF (ARW) that integrates all SPoRT modeling research data: (1) 2-km SPoRT Sea Surface Temperature (SST) Composite, (2) 3-km LIS with 1-km Greenness Vegetation Fraction (GVFs) (3) 45-km AIRS retrieved profiles. Transitioned this real-time forecast to NOAA's Hazardous Weather Testbed (HWT) as deterministic model at Experimental Forecast Program (EFP). Feedback from forecasters/participants and internal evaluation of SPoRT-WRF shows a cool, dry bias that appears to suppress convection likely related to methodology for assimilation of AIRS profiles Version 2 of the SPoRT-WRF will premier at the 2012 EFP and include NASA physics, cycling data assimilation methodology, better coverage of precipitation forcing, and new GVFs

  2. Evaluation of Real-Time Convection-Permitting Precipitation Forecasts in China During the 2013-2014 Summer Season

    Science.gov (United States)

    Zhu, Kefeng; Xue, Ming; Zhou, Bowen; Zhao, Kun; Sun, Zhengqi; Fu, Peiling; Zheng, Yongguang; Zhang, Xiaoling; Meng, Qingtao

    2018-01-01

    Forecasts at a 4 km convection-permitting resolution over China during the summer season have been produced with the Weather Research and Forecasting model at Nanjing University since 2013. Precipitation forecasts from 2013 to 2014 are evaluated with dense rain gauge observations and compared with operational global model forecasts. Overall, the 4 km forecasts show very good agreement with observations over most parts of China, outperforming global forecasts in terms of spatial distribution, intensity, and diurnal variation. Quantitative evaluations with the Gilbert skill score further confirm the better performance of the 4 km forecasts over global forecasts for heavy precipitation, especially for the thresholds of 100 and 150 mm d-1. Besides bulk characteristics, the representations of some unique features of summer precipitation in China under the influence of the East Asian summer monsoon are further evaluated. These include the northward progression and southward retreat of the main rainband through the summer season, the diurnal variations of precipitation, and the meridional and zonal propagation of precipitation episodes associated with background synoptic flow and the embedded mesoscale convective systems. The 4 km forecast is able to faithfully reproduce most of the features while overprediction of afternoon convection near the southern China coast is found to be a main deficiency that requires further investigations.

  3. Robust forecast comparison

    OpenAIRE

    Jin, Sainan; Corradi, Valentina; Swanson, Norman

    2015-01-01

    Forecast accuracy is typically measured in terms of a given loss function. However, as a consequence of the use of misspecified models in multiple model comparisons, relative forecast rankings are loss function dependent. This paper addresses this issue by using a novel criterion for forecast evaluation which is based on the entire distribution of forecast errors. We introduce the concepts of general-loss (GL) forecast superiority and convex-loss (CL) forecast superiority, and we establish a ...

  4. Evaluation of climatic forecasts of rainfall for the Tlaxcala State (Mexico): 1998-2002

    Energy Technology Data Exchange (ETDEWEB)

    Gay Garcia, C. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D.F. (Mexico); Hernandez Vazquez, M.; Jimenez Lopez, J. [Centro de Investigaciones en Ciencias Biologicas, Universidad Autonoma de Tlaxcala, Tlaxcala (Mexico); Lezama Gutierrez, J. [Departamento de Agrobiologia, Universidad Autonoma de Tlaxcala, Tlaxcala (Mexico); Magana Rueda, V.O.; Morales Acoltzi, T. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, UNAM, Mexico, D.F. (Mexico); Orozco Flores, S. [Centro de Investigaciones en Ciencias Biologicas, Universidad Autonoma de Tlaxcala, Tlaxcala (Mexico)

    2004-07-01

    During the second semester of 1997 the Project Utilizacion de pronosticos climaticos para actividades agricolas de Tlaxcala was instrumented with the purpose of aiding decision making in agricultural activities in the estate of Tlaxcala, Mexico. The main objective of the project was to characterize extreme values of precipitation associated with El Nino/La Nina events, to produce useful forecasts for decision making. This was achieved through close contacts with the farmers whose specific needs were taken into account to the extent possible. In a sense such forecasts became forecasts watched over by producers. The method of ensemble of analogs was applied to historical data. The evaluation of annual and monthly forecasts is presented here. The results show that knowledge about the regional climate has been gained as it is reflected by the skill of the method to forecast. The forecast for the region, for the year 2003 is analyzed in terms of the precipitation anomalies. [Spanish] En el segundo semestre de 1997, se implemento el proyecto de investigacion Utilizacion de pronosticos climaticos para actividades agricolas en el estado de Tlaxcala. El objetivo principal del proyecto original fue el de caracterizar valores extremos de precipitacion asociados a los eventos El Nino/La Nina, producir pronosticos mensuales de precipitacion que fueran practicos en la toma de decisiones para los cultivos de temporal. Esto ultimo fue discutido con los productores cuyas necesidades y sugerencias fueron tomadas en cuenta, considerando un pronostico lo mas extendido posible. De esta manera los pronosticos se tornaron Pronosticos vigilados por los productores. El metodo de ensamble de analogos observados fue aplicado para generar los pronosticos de 1998-2002. La evaluacion de los pronosticos anuales y mensuales se presenta aqui. Los resultados muestran que se ha ganado conocimiento acerca del clima regional, como se refleja en la habilidad del metodo para pronosticar. Por ultimo, se

  5. A real-time evaluation and demonstration of strategies for 'Over-The-Loop' ensemble streamflow forecasting in US watersheds

    Science.gov (United States)

    Wood, Andy; Clark, Elizabeth; Mendoza, Pablo; Nijssen, Bart; Newman, Andy; Clark, Martyn; Nowak, Kenneth; Arnold, Jeffrey

    2017-04-01

    Many if not most national operational streamflow prediction systems rely on a forecaster-in-the-loop approach that require the hands-on-effort of an experienced human forecaster. This approach evolved from the need to correct for long-standing deficiencies in the models and datasets used in forecasting, and the practice often leads to skillful flow predictions despite the use of relatively simple, conceptual models. Yet the 'in-the-loop' forecast process is not reproducible, which limits opportunities to assess and incorporate new techniques systematically, and the effort required to make forecasts in this way is an obstacle to expanding forecast services - e.g., though adding new forecast locations or more frequent forecast updates, running more complex models, or producing forecast and hindcasts that can support verification. In the last decade, the hydrologic forecasting community has begun develop more centralized, 'over-the-loop' systems. The quality of these new forecast products will depend on their ability to leverage research in areas including earth system modeling, parameter estimation, data assimilation, statistical post-processing, weather and climate prediction, verification, and uncertainty estimation through the use of ensembles. Currently, many national operational streamflow forecasting and water management communities have little experience with the strengths and weaknesses of over-the-loop approaches, even as such systems are beginning to be deployed operationally in centers such as ECMWF. There is thus a need both to evaluate these forecasting advances and to demonstrate their potential in a public arena, raising awareness in forecast user communities and development programs alike. To address this need, the US National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the US Army Corps of Engineers, using the NCAR 'System for Hydromet Analysis Research and Prediction Applications

  6. Evaluating the Predictability of South-East Asian Floods Using ECMWF and GloFAS Forecasts

    Science.gov (United States)

    Pillosu, F. M.

    2017-12-01

    Between July and September 2017, the monsoon season caused widespread heavy rainfall and severe floods across countries in South-East Asia, notably in India, Nepal and Bangladesh, with deadly consequences. According to the U.N., in Bangladesh 140 people lost their lives and 700,000 homes were destroyed; in Nepal at least 143 people died, and more than 460,000 people were forced to leave their homes; in India there were 726 victims of flooding and landslides, 3 million people were affected by the monsoon floods and 2000 relief camps were established. Monsoon season happens regularly every year in South Asia, but local authorities reported the last monsoon season as the worst in several years. What made the last monsoon season particularly severe in certain regions? Are these causes clear from the forecasts? Regarding the meteorological characterization of the event, an analysis of forecasts from the European Centre for Medium-Range Weather Forecast (ECMWF) for different lead times (from seasonal to short range) will be shown to evaluate how far in advance this event was predicted and start discussion on what were the factors that led to such a severe event. To illustrate hydrological aspects, forecasts from the Global Flood Awareness System (GloFAS) will be shown. GloFAS is developed at ECMWF in co-operation with the European Commission's Joint Research Centre (JRC) and with the support of national authorities and research institutions such as the University of Reading. It will become operational at the end of 2017 as part of the Copernicus Emergency Management Service. GloFAS couples state-of-the-art weather forecasts with a hydrological model to provide a cross-border system with early flood guidance information to help humanitarian agencies and national hydro-meteorological services to strengthen and improve forecasting capacity, preparedness and mitigation of natural hazards. In this case GloFAS has shown good potential to become a useful tool for better and

  7. Evaluating uncertainty estimates in hydrologic models: borrowing measures from the forecast verification community

    Directory of Open Access Journals (Sweden)

    K. J. Franz

    2011-11-01

    Full Text Available The hydrologic community is generally moving towards the use of probabilistic estimates of streamflow, primarily through the implementation of Ensemble Streamflow Prediction (ESP systems, ensemble data assimilation methods, or multi-modeling platforms. However, evaluation of probabilistic outputs has not necessarily kept pace with ensemble generation. Much of the modeling community is still performing model evaluation using standard deterministic measures, such as error, correlation, or bias, typically applied to the ensemble mean or median. Probabilistic forecast verification methods have been well developed, particularly in the atmospheric sciences, yet few have been adopted for evaluating uncertainty estimates in hydrologic model simulations. In the current paper, we overview existing probabilistic forecast verification methods and apply the methods to evaluate and compare model ensembles produced from two different parameter uncertainty estimation methods: the Generalized Uncertainty Likelihood Estimator (GLUE, and the Shuffle Complex Evolution Metropolis (SCEM. Model ensembles are generated for the National Weather Service SACramento Soil Moisture Accounting (SAC-SMA model for 12 forecast basins located in the Southeastern United States. We evaluate the model ensembles using relevant metrics in the following categories: distribution, correlation, accuracy, conditional statistics, and categorical statistics. We show that the presented probabilistic metrics are easily adapted to model simulation ensembles and provide a robust analysis of model performance associated with parameter uncertainty. Application of these methods requires no information in addition to what is already available as part of traditional model validation methodology and considers the entire ensemble or uncertainty range in the approach.

  8. Project Evaluation and Cash Flow Forecasting by Stochastic Simulation

    Directory of Open Access Journals (Sweden)

    Odd A. Asbjørnsen

    1983-10-01

    Full Text Available The net present value of a discounted cash flow is used to evaluate projects. It is shown that the LaPlace transform of the cash flow time function is particularly useful when the cash flow profiles may be approximately described by ordinary linear differential equations in time. However, real cash flows are stochastic variables due to the stochastic nature of the disturbances during production.

  9. Evaluation of Optimized WRF Precipitation Forecast over a Complex Topography Region during Flood Season

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2016-11-01

    Full Text Available In recent years, the Weather Research and Forecast (WRF model has been utilized to generate quantitative precipitation forecasts with higher spatial and temporal resolutions. However, factors including horizontal resolution, domain size, and the physical parameterization scheme have a strong impact on the dynamic downscaling ability of the WRF model. In this study, the influence of these factors has been analyzed in precipitation forecasting for the Xijiang Basin, southern China—a region with complex topography. The results indicate that higher horizontal resolutions always result in higher Critical Success Indexes (CSI, but higher biases as well. Meanwhile, the precipitation forecast skills are also influenced by the combination of microphysics parameterization scheme and cumulus convective parameterization scheme. On the basis of these results, an optimized configuration of the WRF model is built in which the horizontal resolution is 10 km, the microphysics parameterization is the Lin scheme, and the cumulus convective parameterization is the Betts–Miller–Janjic scheme. This configuration is then evaluated by simulating the daily weather during the 2013–2014 flood season. The high Critical Success Index scores and low biases at various thresholds and lead times confirm the high accuracy of the optimized WRF model configuration for Xijiang Basin. However, the performance of the WRF model varies from different sub-basins due to the complexity of the mesoscale convective system (MCS over this region.

  10. Development and evaluation of the operational Air-Quality forecast model for Austria ALARO-CAMx

    Science.gov (United States)

    Flandorfer, Claudia; Hirtl, Marcus; Krüger, Bernd C.

    2014-05-01

    The Air-Quality model for Austria (AQA) is operated at ZAMG in cooperation with the University of Natural Resources and Life Sciences (BOKU) in Vienna by order of the regional governments since 2005. The modeling system is currently a combination of the meteorological model ALARO and the photochemical dispersion model CAMx. Two modeling domains are used with the highest resolution (5 km) in the alpine region. Various extensions with external data sources have been conducted in the past to improve the daily forecasts of the model. Since 2013 O3- and PM10-observations from the Austrian measurement network have been assimilated daily using optimum interpolation. Dynamic chemical boundary conditions are obtained from Air-Quality forecasts provided by ECMWF in the frame of MACC-II. Additionally the latest available high resolved emission inventories for Austria are combined with TNO and EMEP data. The biogenic emissions are provided by the SMOKE model. ZAMG provides daily forecasts of O3, PM10 and NO2 to the regional governments of Austria. The evaluation of these forecasts is done for the summer 2013 with the main focus on the forecasts of ozone. The measurements of the Air-Quality stations are compared with the punctual forecasts at the sites of the station and with the area forecasts for every province of Austria. In the summer of 2013, two heat waves occurred. The first very short heat wave was in June 2013. During this period one exceedance of the alert threshold value for ozone occurred. The second heat wave took place from the end of July to the mid of August. Due to very high temperatures (new temperature record for Austria measured in Bad Deutsch-Altenburg with 40.5°C) and long dryness episodes the information threshold value has been exceeded several times in the eastern regions of Austria. The alert threshold value has been exceeded one time in this period. For the evaluation, the results for the second heat wave episode in Eastern Austria will be discussed

  11. Forecasting and evaluations of crude oil processing and oil derivatives consumption in Republic of Macedonia up to 2000 year

    International Nuclear Information System (INIS)

    Janevski, Risto

    1998-01-01

    Elaboration of various analysis in an energetic field is a quite usual, but inevitable action, procedure and investigation. Also, in a field of crude oil processing and oil derivatives consumption these analyses are a base for making a various range of forecasting and evaluations. How many of these forecasting and evaluations will be credible it depends mostly of diligent, precise and accurate data and experiences in the previous years. This part refers to forecasting and evaluations of crude oil processing and oil derivatives consumption in a short period up to 2000 year in Republic of Macedonia. (Author)

  12. Subscriber Number Forecasting Tool Based on Subscriber Attribute Distribution for Evaluating Improvement Strategies

    OpenAIRE

    Hiramatsu, Ayako; Shono, Yuji; Oiso, Hiroaki; Komoda, Norihisa

    2005-01-01

    In this paper, a subscriber number forecasting tool that evaluates quiz game mobile content improvement strategies is developed. Unsubscription rates depend on such subscriber attributes such as consecutive months, stages, rankings, and so on. In addition, content providers can anticipate change in unsubscription rates for each content improvement strategy. However, subscriber attributes change dynamically. Therefore, a method that deals with dynamic subscriber attribute changes is proposed. ...

  13. Evaluating sub-seasonal skill in probabilistic forecasts of Atmospheric Rivers and associated extreme events

    Science.gov (United States)

    Subramanian, A. C.; Lavers, D.; Matsueda, M.; Shukla, S.; Cayan, D. R.; Ralph, M.

    2017-12-01

    Atmospheric rivers (ARs) - elongated plumes of intense moisture transport - are a primary source of hydrological extremes, water resources and impactful weather along the West Coast of North America and Europe. There is strong demand in the water management, societal infrastructure and humanitarian sectors for reliable sub-seasonal forecasts, particularly of extreme events, such as floods and droughts so that actions to mitigate disastrous impacts can be taken with sufficient lead-time. Many recent studies have shown that ARs in the Pacific and the Atlantic are modulated by large-scale modes of climate variability. Leveraging the improved understanding of how these large-scale climate modes modulate the ARs in these two basins, we use the state-of-the-art multi-model forecast systems such as the North American Multi-Model Ensemble (NMME) and the Subseasonal-to-Seasonal (S2S) database to help inform and assess the probabilistic prediction of ARs and related extreme weather events over the North American and European West Coasts. We will present results from evaluating probabilistic forecasts of extreme precipitation and AR activity at the sub-seasonal scale. In particular, results from the comparison of two winters (2015-16 and 2016-17) will be shown, winters which defied canonical El Niño teleconnection patterns over North America and Europe. We further extend this study to analyze probabilistic forecast skill of AR events in these two basins and the variability in forecast skill during certain regimes of large-scale climate modes.

  14. Evaluation of terrestrial photogrammetric point clouds derived from thermal imagery

    Science.gov (United States)

    Metcalf, Jeremy P.; Olsen, Richard C.

    2016-05-01

    Computer vision and photogrammetric techniques have been widely applied to digital imagery producing high density 3D point clouds. Using thermal imagery as input, the same techniques can be applied to infrared data to produce point clouds in 3D space, providing surface temperature information. The work presented here is an evaluation of the accuracy of 3D reconstruction of point clouds produced using thermal imagery. An urban scene was imaged over an area at the Naval Postgraduate School, Monterey, CA, viewing from above as with an airborne system. Terrestrial thermal and RGB imagery were collected from a rooftop overlooking the site using a FLIR SC8200 MWIR camera and a Canon T1i DSLR. In order to spatially align each dataset, ground control points were placed throughout the study area using Trimble R10 GNSS receivers operating in RTK mode. Each image dataset is processed to produce a dense point cloud for 3D evaluation.

  15. Multiple "buy buttons" in the brain: Forecasting chocolate sales at point-of-sale based on functional brain activation using fMRI.

    Science.gov (United States)

    Kühn, Simone; Strelow, Enrique; Gallinat, Jürgen

    2016-08-01

    We set out to forecast consumer behaviour in a supermarket based on functional magnetic resonance imaging (fMRI). Data was collected while participants viewed six chocolate bar communications and product pictures before and after each communication. Then self-reports liking judgement were collected. fMRI data was extracted from a priori selected brain regions: nucleus accumbens, medial orbitofrontal cortex, amygdala, hippocampus, inferior frontal gyrus, dorsomedial prefrontal cortex assumed to contribute positively and dorsolateral prefrontal cortex and insula were hypothesized to contribute negatively to sales. The resulting values were rank ordered. After our fMRI-based forecast an instore test was conducted in a supermarket on n=63.617 shoppers. Changes in sales were best forecasted by fMRI signal during communication viewing, second best by a comparison of brain signal during product viewing before and after communication and least by explicit liking judgements. The results demonstrate the feasibility of applying neuroimaging methods in a relatively small sample to correctly forecast sales changes at point-of-sale. Copyright © 2016. Published by Elsevier Inc.

  16. Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China

    Directory of Open Access Journals (Sweden)

    C. W. Dawson

    2002-01-01

    Full Text Available While engineers have been quantifying rainfall-runoff processes since the mid-19th century, it is only in the last decade that artificial neural network models have been applied to the same task. This paper evaluates two neural networks in this context: the popular multilayer perceptron (MLP, and the radial basis function network (RBF. Using six-hourly rainfall-runoff data for the River Yangtze at Yichang (upstream of the Three Gorges Dam for the period 1991 to 1993, it is shown that both neural network types can simulate river flows beyond the range of the training set. In addition, an evaluation of alternative RBF transfer functions demonstrates that the popular Gaussian function, often used in RBF networks, is not necessarily the ‘best’ function to use for river flow forecasting. Comparisons are also made between these neural networks and conventional statistical techniques; stepwise multiple linear regression, auto regressive moving average models and a zero order forecasting approach. Keywords: Artificial neural network, multilayer perception, radial basis function, flood forecasting

  17. Evaluation of precipitation forecasts from 3D-Var and hybrid GSI-based system during Indian summer monsoon 2015

    Science.gov (United States)

    Singh, Sanjeev Kumar; Prasad, V. S.

    2018-02-01

    This paper presents a systematic investigation of medium-range rainfall forecasts from two versions of the National Centre for Medium Range Weather Forecasting (NCMRWF)-Global Forecast System based on three-dimensional variational (3D-Var) and hybrid analysis system namely, NGFS and HNGFS, respectively, during Indian summer monsoon (June-September) 2015. The NGFS uses gridpoint statistical interpolation (GSI) 3D-Var data assimilation system, whereas HNGFS uses hybrid 3D ensemble-variational scheme. The analysis includes the evaluation of rainfall fields and comparisons of rainfall using statistical score such as mean precipitation, bias, correlation coefficient, root mean square error and forecast improvement factor. In addition to these, categorical scores like Peirce skill score and bias score are also computed to describe particular aspects of forecasts performance. The comparison results of mean precipitation reveal that both the versions of model produced similar large-scale feature of Indian summer monsoon rainfall for day-1 through day-5 forecasts. The inclusion of fully flow-dependent background error covariance significantly improved the wet biases in HNGFS over the Indian Ocean. The forecast improvement factor and Peirce skill score in the HNGFS have also found better than NGFS for day-1 through day-5 forecasts.

  18. Forecasting Ability But No Profitability: An Empirical Evaluation of Genetic Algorithm-optimised Technical Trading Rules

    OpenAIRE

    Pereira, Robert

    1999-01-01

    This paper evaluates the performance of several popular technical trading rules applied to the Australian share market. The optimal trading rule parameter values over the in-sample period of 4/1/82 to 31/12/89 are found using a genetic algorithm. These optimal rules are then evaluated in terms of their forecasting ability and economic profitability during the out-of-sample period from 2/1/90 to the 31/12/97. The results indicate that the optimal rules outperform the benchmark given by a risk-...

  19. Oil-points - Designers means to evaluate sustainability of concepts

    DEFF Research Database (Denmark)

    Bey, Niki; Lenau, Torben Anker

    1998-01-01

    Designers have an essential influence on product design and are therefore one target group for environmental evaluation methods. This implies, that such evaluation methods have to meet designers requirements. Evaluation of sustainability of products is often done using formal Life Cycle Assessment....... This is investigated by means of three case studies where environmental impact is estimated using the EDIP method, the Eco-indicator 95 method, and the Oil Point method proposed by the authors. It is found that the results obtained using Oil Points are in acceptable conformity with the results obtained with more...

  20. Evaluation of Wind Power Forecasts from the Vermont Weather Analytics Center and Identification of Improvements

    Energy Technology Data Exchange (ETDEWEB)

    Optis, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George N. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-02-02

    The goal of this analysis was to assess the wind power forecast accuracy of the Vermont Weather Analytics Center (VTWAC) forecast system and to identify potential improvements to the forecasts. Based on the analysis at Georgia Mountain, the following recommendations for improving forecast performance were made: 1. Resolve the significant negative forecast bias in February-March 2017 (50% underprediction on average) 2. Improve the ability of the forecast model to capture the strong diurnal cycle of wind power 3. Add ability for forecast model to assess internal wake loss, particularly at sites where strong diurnal shifts in wind direction are present. Data availability and quality limited the robustness of this forecast assessment. A more thorough analysis would be possible given a longer period of record for the data (at least one full year), detailed supervisory control and data acquisition data for each wind plant, and more detailed information on the forecast system input data and methodologies.

  1. Production forecasting and economic evaluation of horizontal wells completed in natural fractured reservoirs

    International Nuclear Information System (INIS)

    Evans, R. D.

    1996-01-01

    A technique for optimizing recovery of hydrocarbons from naturally fractured reservoirs using horizontal well technology was proposed. The technique combines inflow performance analysis, production forecasting and economic considerations, and is based on material balance analysis and linear approximations of reservoir fluid properties as functions of reservoir pressure. An economic evaluation model accounting for the time value of cash flow, interest and inflation rates, is part of the package. Examples of using the technique have been demonstrated. The method is also applied to a gas well producing from a horizontal wellbore intersecting discrete natural fractures. 11 refs., 2 tabs,. 10 figs

  2. Results from Evaluations of Gridded CrIS/ATMS Visualization for Operational Forecasting

    Science.gov (United States)

    Stevens, E.; Zavodsky, B.; Dostalek, J.; Berndt, E.; Hoese, D.; White, K.; Bowlan, M.; Gambacorta, A.; Wheeler, A.; Haisley, C.; Smith, N.

    2017-12-01

    For forecast challenges which require diagnosis of the three-dimensional atmosphere, current observations, such as radiosondes, may not offer enough information. Satellite data can help fill the spatial and temporal gaps between soundings. In particular, temperature and moisture retrievals from the NOAA-Unique Combined Atmospheric Processing System (NUCAPS), which combines infrared soundings from the Cross-track Infrared Sounder (CrIS) with the Advanced Technology Microwave Sounder (ATMS) to retrieve profiles of temperature and moisture. NUCAPS retrievals are available in a wide swath with approximately 45-km spatial resolution at nadir and a local Equator crossing time of 1:30 A.M./P.M. enabling three-dimensional observations at asynoptic times. This abstract focuses on evaluation of a new visualization for NUCAPS within the operational National Weather Service Advanced Weather Interactive Processing System (AWIPS) decision support system that allows these data to be viewed in gridded horizontal maps or vertical cross sections. Two testbed evaluations have occurred in 2017: a Cold Air Aloft (CAA) evaluation at the Alaska Center Weather Service Unit and a Convective Potential evaluation at the NOAA Hazardous Weather Testbed. For CAA, at high latitudes during the winter months, the air at altitudes used by passenger and cargo aircraft can reach temperatures cold enough (-65°C) to begin to freeze jet fuel, and Gridded NUCAPS visualization was shown to help fill in the spatial and temporal gaps in data-sparse areas across the Alaskan airspace by identifying the 3D spatial extent of cold air features. For convective potential, understanding the vertical distribution of temperature and moisture is also very important for forecasting the potential for convection related to severe weather such as lightning, large hail, and tornadoes. The Gridded NUCAPS visualization was shown to aid forecasters in understanding temperature and moisture characteristics at critical levels

  3. Forecasting methodologies for Ganoderma spore concentration using combined statistical approaches and model evaluations

    Science.gov (United States)

    Sadyś, Magdalena; Skjøth, Carsten Ambelas; Kennedy, Roy

    2016-04-01

    High concentration levels of Ganoderma spp. spores were observed in Worcester, UK, during 2006-2010. These basidiospores are known to cause sensitization due to the allergen content and their small dimensions. This enables them to penetrate the lower part of the respiratory tract in humans. Establishment of a link between occurring symptoms of sensitization to Ganoderma spp. and other basidiospores is challenging due to lack of information regarding spore concentration in the air. Hence, aerobiological monitoring should be conducted, and if possible extended with the construction of forecast models. Daily mean concentration of allergenic Ganoderma spp. spores in the atmosphere of Worcester was measured using 7-day volumetric spore sampler through five consecutive years. The relationships between the presence of spores in the air and the weather parameters were examined. Forecast models were constructed for Ganoderma spp. spores using advanced statistical techniques, i.e. multivariate regression trees and artificial neural networks. Dew point temperature along with maximum temperature was the most important factor influencing the presence of spores in the air of Worcester. Based on these two major factors and several others of lesser importance, thresholds for certain levels of fungal spore concentration, i.e. low (0-49 s m-3), moderate (50-99 s m-3), high (100-149 s m-3) and very high (150 < n s m-3), could be designated. Despite some deviation in results obtained by artificial neural networks, authors have achieved a forecasting model, which was accurate (correlation between observed and predicted values varied from r s = 0.57 to r s = 0.68).

  4. Online evaluation of point-of-interest recommendation systems

    NARCIS (Netherlands)

    Dean-Hall, A.; Clarke, C.L.A.; Kamps, J.; Kiseleva, J.

    2015-01-01

    In this work we describe a system to evaluate multiple point- of-interest recommendation systems. In this system each recommendation service will be exposed online and crowd-sourced assessors will interact with merged results from multiple services, which are responding to suggestion requests live,

  5. The strategy of professional forecasting

    DEFF Research Database (Denmark)

    Ottaviani, Marco; Sørensen, Peter Norman

    2006-01-01

    We develop and compare two theories of professional forecasters’ strategic behavior. The first theory, reputational cheap talk, posits that forecasters endeavor to convince the market that they are well informed. The market evaluates their forecasting talent on the basis of the forecasts...... and the realized state. If the market expects forecasters to report their posterior expectations honestly, then forecasts are shaded toward the prior mean. With correct market expectations, equilibrium forecasts are imprecise but not shaded. The second theory posits that forecasters compete in a forecasting...... contest with pre-specified rules. In a winner-take-all contest, equilibrium forecasts are excessively differentiated...

  6. Noise evaluation of a point autofocus surface topography measuring instrument

    Science.gov (United States)

    Maculotti, Giacomo; Feng, Xiaobing; Galetto, Maurizio; Leach, Richard

    2018-06-01

    In this work, the measurement noise of a point autofocus surface topography measuring instrument is evaluated, as the first step towards establishing a route to traceability for this type of instrument. The evaluation is based on the determination of the metrological characteristics for noise as outlined in draft ISO specification standards by using a calibrated optical flat. The static noise and repeatability of the autofocus sensor are evaluated. The influence of environmental disturbances on the measured surface topography and the built-in software to compensate for such influences are also investigated. The instrument was found to have a measurement noise of approximately 2 nm or, when expressed with the measurement bandwidth, 0.4 nm for a single-point measurement.

  7. The development and evaluation of a hydrological seasonal forecast system prototype for predicting spring flood volumes in Swedish rivers

    Science.gov (United States)

    Foster, Kean; Bertacchi Uvo, Cintia; Olsson, Jonas

    2018-05-01

    Hydropower makes up nearly half of Sweden's electrical energy production. However, the distribution of the water resources is not aligned with demand, as most of the inflows to the reservoirs occur during the spring flood period. This means that carefully planned reservoir management is required to help redistribute water resources to ensure optimal production and accurate forecasts of the spring flood volume (SFV) is essential for this. The current operational SFV forecasts use a historical ensemble approach where the HBV model is forced with historical observations of precipitation and temperature. In this work we develop and test a multi-model prototype, building on previous work, and evaluate its ability to forecast the SFV in 84 sub-basins in northern Sweden. The hypothesis explored in this work is that a multi-model seasonal forecast system incorporating different modelling approaches is generally more skilful at forecasting the SFV in snow dominated regions than a forecast system that utilises only one approach. The testing is done using cross-validated hindcasts for the period 1981-2015 and the results are evaluated against both climatology and the current system to determine skill. Both the multi-model methods considered showed skill over the reference forecasts. The version that combined the historical modelling chain, dynamical modelling chain, and statistical modelling chain performed better than the other and was chosen for the prototype. The prototype was able to outperform the current operational system 57 % of the time on average and reduce the error in the SFV by ˜ 6 % across all sub-basins and forecast dates.

  8. Evaluating lidar point densities for effective estimation of aboveground biomass

    Science.gov (United States)

    Wu, Zhuoting; Dye, Dennis G.; Stoker, Jason M.; Vogel, John M.; Velasco, Miguel G.; Middleton, Barry R.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) was recently established to provide airborne lidar data coverage on a national scale. As part of a broader research effort of the USGS to develop an effective remote sensing-based methodology for the creation of an operational biomass Essential Climate Variable (Biomass ECV) data product, we evaluated the performance of airborne lidar data at various pulse densities against Landsat 8 satellite imagery in estimating above ground biomass for forests and woodlands in a study area in east-central Arizona, U.S. High point density airborne lidar data, were randomly sampled to produce five lidar datasets with reduced densities ranging from 0.5 to 8 point(s)/m2, corresponding to the point density range of 3DEP to provide national lidar coverage over time. Lidar-derived aboveground biomass estimate errors showed an overall decreasing trend as lidar point density increased from 0.5 to 8 points/m2. Landsat 8-based aboveground biomass estimates produced errors larger than the lowest lidar point density of 0.5 point/m2, and therefore Landsat 8 observations alone were ineffective relative to airborne lidar for generating a Biomass ECV product, at least for the forest and woodland vegetation types of the Southwestern U.S. While a national Biomass ECV product with optimal accuracy could potentially be achieved with 3DEP data at 8 points/m2, our results indicate that even lower density lidar data could be sufficient to provide a national Biomass ECV product with accuracies significantly higher than that from Landsat observations alone.

  9. A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    Directory of Open Access Journals (Sweden)

    V. A. Bell

    2017-09-01

    Full Text Available Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts from the GloSea5 model (1996 to 2009 are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region. Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 % in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows, whereas for the 3-month ahead lead time, GloSea5 forecasts account for  ∼ 70

  10. Evaluation of the product ratio coherent model in forecasting mortality rates and life expectancy at births by States

    Science.gov (United States)

    Shair, Syazreen Niza; Yusof, Aida Yuzi; Asmuni, Nurin Haniah

    2017-05-01

    Coherent mortality forecasting models have recently received increasing attention particularly in their application to sub-populations. The advantage of coherent models over independent models is the ability to forecast a non-divergent mortality for two or more sub-populations. One of the coherent models was recently developed by [1] known as the product-ratio model. This model is an extension version of the functional independent model from [2]. The product-ratio model has been applied in a developed country, Australia [1] and has been extended in a developing nation, Malaysia [3]. While [3] accounted for coherency of mortality rates between gender and ethnic group, the coherency between states in Malaysia has never been explored. This paper will forecast the mortality rates of Malaysian sub-populations according to states using the product ratio coherent model and its independent version— the functional independent model. The forecast accuracies of two different models are evaluated using the out-of-sample error measurements— the mean absolute forecast error (MAFE) for age-specific death rates and the mean forecast error (MFE) for the life expectancy at birth. We employ Malaysian mortality time series data from 1991 to 2014, segregated by age, gender and states.

  11. Evaluation of the fast orthogonal search method for forecasting chloride levels in the Deltona groundwater supply (Florida, USA)

    Science.gov (United States)

    El-Jaat, Majda; Hulley, Michael; Tétreault, Michel

    2018-02-01

    Despite the broad impact and importance of saltwater intrusion in coastal aquifers, little research has been directed towards forecasting saltwater intrusion in areas where the source of saltwater is uncertain. Saline contamination in inland groundwater supplies is a concern for numerous communities in the southern US including the city of Deltona, Florida. Furthermore, conventional numerical tools for forecasting saltwater contamination are heavily dependent on reliable characterization of the physical characteristics of underlying aquifers, information that is often absent or challenging to obtain. To overcome these limitations, a reliable alternative data-driven model for forecasting salinity in a groundwater supply was developed for Deltona using the fast orthogonal search (FOS) method. FOS was applied on monthly water-demand data and corresponding chloride concentrations at water supply wells. Groundwater salinity measurements from Deltona water supply wells were applied to evaluate the forecasting capability and accuracy of the FOS model. Accurate and reliable groundwater salinity forecasting is necessary to support effective and sustainable coastal-water resource planning and management. The available (27) water supply wells for Deltona were randomly split into three test groups for the purposes of FOS model development and performance assessment. Based on four performance indices (RMSE, RSR, NSEC, and R), the FOS model proved to be a reliable and robust forecaster of groundwater salinity. FOS is relatively inexpensive to apply, is not based on rigorous physical characterization of the water supply aquifer, and yields reliable estimates of groundwater salinity in active water supply wells.

  12. Evaluation of snowmelt simulation in the Weather Research and Forecasting model

    Science.gov (United States)

    Jin, Jiming; Wen, Lijuan

    2012-05-01

    The objective of this study is to better understand and improve snowmelt simulations in the advanced Weather Research and Forecasting (WRF) model by coupling it with the Community Land Model (CLM) Version 3.5. Both WRF and CLM are developed by the National Center for Atmospheric Research. The automated Snow Telemetry (SNOTEL) station data over the Columbia River Basin in the northwestern United States are used to evaluate snowmelt simulations generated with the coupled WRF-CLM model. These SNOTEL data include snow water equivalent (SWE), precipitation, and temperature. The simulations cover the period of March through June 2002 and focus mostly on the snowmelt season. Initial results show that when compared to observations, WRF-CLM significantly improves the simulations of SWE, which is underestimated when the release version of WRF is coupled with the Noah and Rapid Update Cycle (RUC) land surface schemes, in which snow physics is oversimplified. Further analysis shows that more realistic snow surface energy allocation in CLM is an important process that results in improved snowmelt simulations when compared to that in Noah and RUC. Additional simulations with WRF-CLM at different horizontal spatial resolutions indicate that accurate description of topography is also vital to SWE simulations. WRF-CLM at 10 km resolution produces the most realistic SWE simulations when compared to those produced with coarser spatial resolutions in which SWE is remarkably underestimated. The coupled WRF-CLM provides an important tool for research and forecasts in weather, climate, and water resources at regional scales.

  13. A Bayesian modelling method for post-processing daily sub-seasonal to seasonal rainfall forecasts from global climate models and evaluation for 12 Australian catchments

    Directory of Open Access Journals (Sweden)

    A. Schepen

    2018-03-01

    Full Text Available Rainfall forecasts are an integral part of hydrological forecasting systems at sub-seasonal to seasonal timescales. In seasonal forecasting, global climate models (GCMs are now the go-to source for rainfall forecasts. For hydrological applications however, GCM forecasts are often biased and unreliable in uncertainty spread, and calibration is therefore required before use. There are sophisticated statistical techniques for calibrating monthly and seasonal aggregations of the forecasts. However, calibration of seasonal forecasts at the daily time step typically uses very simple statistical methods or climate analogue methods. These methods generally lack the sophistication to achieve unbiased, reliable and coherent forecasts of daily amounts and seasonal accumulated totals. In this study, we propose and evaluate a Rainfall Post-Processing method for Seasonal forecasts (RPP-S, which is based on the Bayesian joint probability modelling approach for calibrating daily forecasts and the Schaake Shuffle for connecting the daily ensemble members of different lead times. We apply the method to post-process ACCESS-S forecasts for 12 perennial and ephemeral catchments across Australia and for 12 initialisation dates. RPP-S significantly reduces bias in raw forecasts and improves both skill and reliability. RPP-S forecasts are also more skilful and reliable than forecasts derived from ACCESS-S forecasts that have been post-processed using quantile mapping, especially for monthly and seasonal accumulations. Several opportunities to improve the robustness and skill of RPP-S are identified. The new RPP-S post-processed forecasts will be used in ensemble sub-seasonal to seasonal streamflow applications.

  14. A Bayesian modelling method for post-processing daily sub-seasonal to seasonal rainfall forecasts from global climate models and evaluation for 12 Australian catchments

    Science.gov (United States)

    Schepen, Andrew; Zhao, Tongtiegang; Wang, Quan J.; Robertson, David E.

    2018-03-01

    Rainfall forecasts are an integral part of hydrological forecasting systems at sub-seasonal to seasonal timescales. In seasonal forecasting, global climate models (GCMs) are now the go-to source for rainfall forecasts. For hydrological applications however, GCM forecasts are often biased and unreliable in uncertainty spread, and calibration is therefore required before use. There are sophisticated statistical techniques for calibrating monthly and seasonal aggregations of the forecasts. However, calibration of seasonal forecasts at the daily time step typically uses very simple statistical methods or climate analogue methods. These methods generally lack the sophistication to achieve unbiased, reliable and coherent forecasts of daily amounts and seasonal accumulated totals. In this study, we propose and evaluate a Rainfall Post-Processing method for Seasonal forecasts (RPP-S), which is based on the Bayesian joint probability modelling approach for calibrating daily forecasts and the Schaake Shuffle for connecting the daily ensemble members of different lead times. We apply the method to post-process ACCESS-S forecasts for 12 perennial and ephemeral catchments across Australia and for 12 initialisation dates. RPP-S significantly reduces bias in raw forecasts and improves both skill and reliability. RPP-S forecasts are also more skilful and reliable than forecasts derived from ACCESS-S forecasts that have been post-processed using quantile mapping, especially for monthly and seasonal accumulations. Several opportunities to improve the robustness and skill of RPP-S are identified. The new RPP-S post-processed forecasts will be used in ensemble sub-seasonal to seasonal streamflow applications.

  15. Spatial electric load forecasting

    CERN Document Server

    Willis, H Lee

    2002-01-01

    Containing 12 new chapters, this second edition contains offers increased-coverage of weather correction and normalization of forecasts, anticipation of redevelopment, determining the validity of announced developments, and minimizing risk from over- or under-planning. It provides specific examples and detailed explanations of key points to consider for both standard and unusual utility forecasting situations, information on new algorithms and concepts in forecasting, a review of forecasting pitfalls and mistakes, case studies depicting challenging forecast environments, and load models illustrating various types of demand.

  16. Evaluation of medium-range ensemble flood forecasting based on calibration strategies and ensemble methods in Lanjiang Basin, Southeast China

    Science.gov (United States)

    Liu, Li; Gao, Chao; Xuan, Weidong; Xu, Yue-Ping

    2017-11-01

    Ensemble flood forecasts by hydrological models using numerical weather prediction products as forcing data are becoming more commonly used in operational flood forecasting applications. In this study, a hydrological ensemble flood forecasting system comprised of an automatically calibrated Variable Infiltration Capacity model and quantitative precipitation forecasts from TIGGE dataset is constructed for Lanjiang Basin, Southeast China. The impacts of calibration strategies and ensemble methods on the performance of the system are then evaluated. The hydrological model is optimized by the parallel programmed ε-NSGA II multi-objective algorithm. According to the solutions by ε-NSGA II, two differently parameterized models are determined to simulate daily flows and peak flows at each of the three hydrological stations. Then a simple yet effective modular approach is proposed to combine these daily and peak flows at the same station into one composite series. Five ensemble methods and various evaluation metrics are adopted. The results show that ε-NSGA II can provide an objective determination on parameter estimation, and the parallel program permits a more efficient simulation. It is also demonstrated that the forecasts from ECMWF have more favorable skill scores than other Ensemble Prediction Systems. The multimodel ensembles have advantages over all the single model ensembles and the multimodel methods weighted on members and skill scores outperform other methods. Furthermore, the overall performance at three stations can be satisfactory up to ten days, however the hydrological errors can degrade the skill score by approximately 2 days, and the influence persists until a lead time of 10 days with a weakening trend. With respect to peak flows selected by the Peaks Over Threshold approach, the ensemble means from single models or multimodels are generally underestimated, indicating that the ensemble mean can bring overall improvement in forecasting of flows. For

  17. Accounting for the inaccuracies in demand forecasts and construction cost estimations in transport project evaluation

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2014-01-01

    For decades researchers have claimedthat particularly demand forecasts and construction cost estimations are assigned with/affected by a large degree of uncertainty. Massively, articles,research documents and reports agree that there exists a tendencytowards underestimating the costs...... in demand and cost estimations and hence the evaluation of transport infrastructure projects. Currently, research within this area is scarce and scattered with no commonagreement on how to embed and operationalise the huge amount of empiricaldata that exist within the frame of Optimism Bias. Therefore...... convertingdeterministic benefit-cost ratios (BCRs) into stochasticinterval results. A new data collection (2009–2013) forms the empirical basis for any risk simulation embeddedwithin the so-calledUP database (UNITE project database),revealing the inaccuracy of both construction costs and demandforecasts. Accordingly...

  18. Economic evaluation of short-term wind power forecast in ERCOT. Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Orwig, Kirsten D.; Hodge, Bri-Mathias; Brinkman, Greg; Ela, Erik; Milligan, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Banunarayanan, Venkat; Nasir, Saleh [ICF International, Fairfax, VA (United States); Freedman, Jeff [AWS Truepower, Albany, NY (United States)

    2012-07-01

    A number of wind energy integration studies have investigated the monetary value of using day-ahead wind power forecasts for grid operation decisions. Historically, these studies have shown that large cost savings could be gained by grid operators implementing the forecasts in their system operations. To date, none of these studies have investigated the value of shorter term (0- to 6-h ahead) wind power forecasts. In 2010, the Department of Energy and the National Oceanic and Atmospheric Administration partnered to form the Wind Forecasting Improvement Project (WFIP) to fund improvements in short-term wind forecasts and determine the economic value of these improvements to grid operators. In this work, we discuss the preliminary results of the economic benefit analysis portion of the WFIP for the Electric Reliability Council of Texas. The improvements seen in the wind forecasts are examined and the economic results of a production cost model simulation are analyzed. (orig.)

  19. Evaluation Of Statistical Models For Forecast Errors From The HBV-Model

    Science.gov (United States)

    Engeland, K.; Kolberg, S.; Renard, B.; Stensland, I.

    2009-04-01

    Three statistical models for the forecast errors for inflow to the Langvatn reservoir in Northern Norway have been constructed and tested according to how well the distribution and median values of the forecasts errors fit to the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order autoregressive model was constructed for the forecast errors. The parameters were conditioned on climatic conditions. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order autoregressive model was constructed for the forecast errors. For the last model positive and negative errors were modeled separately. The errors were first NQT-transformed before a model where the mean values were conditioned on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: We wanted a) the median values to be close to the observed values; b) the forecast intervals to be narrow; c) the distribution to be correct. The results showed that it is difficult to obtain a correct model for the forecast errors, and that the main challenge is to account for the auto-correlation in the errors. Model 1 and 2 gave similar results, and the main drawback is that the distributions are not correct. The 95% forecast intervals were well identified, but smaller forecast intervals were over-estimated, and larger intervals were under-estimated. Model 3 gave a distribution that fits better, but the median values do not fit well since the auto-correlation is not properly accounted for. If the 95% forecast interval is of interest, Model 2 is recommended. If the whole distribution is of interest, Model 3 is recommended.

  20. Two Different Points of View through Artificial Intelligence and Vector Autoregressive Models for Ex Post and Ex Ante Forecasting

    Directory of Open Access Journals (Sweden)

    Alev Dilek Aydin

    2015-01-01

    Full Text Available The ANN method has been applied by means of multilayered feedforward neural networks (MLFNs by using different macroeconomic variables such as the exchange rate of USD/TRY, gold prices, and the Borsa Istanbul (BIST 100 index based on monthly data over the period of January 2000 and September 2014 for Turkey. Vector autoregressive (VAR method has also been applied with the same variables for the same period of time. In this study, different from other studies conducted up to the present, ENCOG machine learning framework has been used along with JAVA programming language in order to constitute the ANN. The training of network has been done by resilient propagation method. The ex post and ex ante estimates obtained by the ANN method have been compared with the results obtained by the econometric forecasting method of VAR. Strikingly, our findings based on the ANN method reveal that there is a possibility of financial distress or a financial crisis in Turkey starting from October 2017. The results which were obtained with the method of VAR also support the results of ANN method. Additionally, our results indicate that the ANN approach has more superior prediction performance than the VAR method.

  1. Two Different Points of View through Artificial Intelligence and Vector Autoregressive Models for Ex Post and Ex Ante Forecasting.

    Science.gov (United States)

    Aydin, Alev Dilek; Caliskan Cavdar, Seyma

    2015-01-01

    The ANN method has been applied by means of multilayered feedforward neural networks (MLFNs) by using different macroeconomic variables such as the exchange rate of USD/TRY, gold prices, and the Borsa Istanbul (BIST) 100 index based on monthly data over the period of January 2000 and September 2014 for Turkey. Vector autoregressive (VAR) method has also been applied with the same variables for the same period of time. In this study, different from other studies conducted up to the present, ENCOG machine learning framework has been used along with JAVA programming language in order to constitute the ANN. The training of network has been done by resilient propagation method. The ex post and ex ante estimates obtained by the ANN method have been compared with the results obtained by the econometric forecasting method of VAR. Strikingly, our findings based on the ANN method reveal that there is a possibility of financial distress or a financial crisis in Turkey starting from October 2017. The results which were obtained with the method of VAR also support the results of ANN method. Additionally, our results indicate that the ANN approach has more superior prediction performance than the VAR method.

  2. Evaluating the spatio-temporal performance of sky imager based solar irradiance analysis and forecasts

    Science.gov (United States)

    Schmidt, T.; Kalisch, J.; Lorenz, E.; Heinemann, D.

    2015-10-01

    Clouds are the dominant source of variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the world-wide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a shortest-term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A two month dataset with images from one sky imager and high resolutive GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series in different cloud scenarios. Overall, the sky imager based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depend strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.

  3. Evaluation of ensemble precipitation forecasts generated through post-processing in a Canadian catchment

    Directory of Open Access Journals (Sweden)

    S. K. Jha

    2018-03-01

    Full Text Available Flooding in Canada is often caused by heavy rainfall during the snowmelt period. Hydrologic forecast centers rely on precipitation forecasts obtained from numerical weather prediction (NWP models to enforce hydrological models for streamflow forecasting. The uncertainties in raw quantitative precipitation forecasts (QPFs are enhanced by physiography and orography effects over a diverse landscape, particularly in the western catchments of Canada. A Bayesian post-processing approach called rainfall post-processing (RPP, developed in Australia (Robertson et al., 2013; Shrestha et al., 2015, has been applied to assess its forecast performance in a Canadian catchment. Raw QPFs obtained from two sources, Global Ensemble Forecasting System (GEFS Reforecast 2 project, from the National Centers for Environmental Prediction, and Global Deterministic Forecast System (GDPS, from Environment and Climate Change Canada, are used in this study. The study period from January 2013 to December 2015 covered a major flood event in Calgary, Alberta, Canada. Post-processed results show that the RPP is able to remove the bias and reduce the errors of both GEFS and GDPS forecasts. Ensembles generated from the RPP reliably quantify the forecast uncertainty.

  4. An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting

    Directory of Open Access Journals (Sweden)

    F. Anctil

    2009-11-01

    Full Text Available Hydrological forecasting consists in the assessment of future streamflow. Current deterministic forecasts do not give any information concerning the uncertainty, which might be limiting in a decision-making process. Ensemble forecasts are expected to fill this gap.

    In July 2007, the Meteorological Service of Canada has improved its ensemble prediction system, which has been operational since 1998. It uses the GEM model to generate a 20-member ensemble on a 100 km grid, at mid-latitudes. This improved system is used for the first time for hydrological ensemble predictions. Five watersheds in Quebec (Canada are studied: Chaudière, Châteauguay, Du Nord, Kénogami and Du Lièvre. An interesting 17-day rainfall event has been selected in October 2007. Forecasts are produced in a 3 h time step for a 3-day forecast horizon. The deterministic forecast is also available and it is compared with the ensemble ones. In order to correct the bias of the ensemble, an updating procedure has been applied to the output data. Results showed that ensemble forecasts are more skilful than the deterministic ones, as measured by the Continuous Ranked Probability Score (CRPS, especially for 72 h forecasts. However, the hydrological ensemble forecasts are under dispersed: a situation that improves with the increasing length of the prediction horizons. We conjecture that this is due in part to the fact that uncertainty in the initial conditions of the hydrological model is not taken into account.

  5. Evaluation of ensemble precipitation forecasts generated through post-processing in a Canadian catchment

    Science.gov (United States)

    Jha, Sanjeev K.; Shrestha, Durga L.; Stadnyk, Tricia A.; Coulibaly, Paulin

    2018-03-01

    Flooding in Canada is often caused by heavy rainfall during the snowmelt period. Hydrologic forecast centers rely on precipitation forecasts obtained from numerical weather prediction (NWP) models to enforce hydrological models for streamflow forecasting. The uncertainties in raw quantitative precipitation forecasts (QPFs) are enhanced by physiography and orography effects over a diverse landscape, particularly in the western catchments of Canada. A Bayesian post-processing approach called rainfall post-processing (RPP), developed in Australia (Robertson et al., 2013; Shrestha et al., 2015), has been applied to assess its forecast performance in a Canadian catchment. Raw QPFs obtained from two sources, Global Ensemble Forecasting System (GEFS) Reforecast 2 project, from the National Centers for Environmental Prediction, and Global Deterministic Forecast System (GDPS), from Environment and Climate Change Canada, are used in this study. The study period from January 2013 to December 2015 covered a major flood event in Calgary, Alberta, Canada. Post-processed results show that the RPP is able to remove the bias and reduce the errors of both GEFS and GDPS forecasts. Ensembles generated from the RPP reliably quantify the forecast uncertainty.

  6. Assessing High-Resolution Weather Research and Forecasting (WRF) Forecasts Using an Object-Based Diagnostic Evaluation

    Science.gov (United States)

    2014-02-01

    Operational Model Archive and Distribution System ( NOMADS ). The RTMA product was generated using a 2-D variational method to assimilate point weather...observations and satellite-derived measurements (National Weather Service, 2013). The products were downloaded using the NOMADS General Regularly...of the completed WRF run" read Start_Date echo $Start_Date echo " " echo "Enter 2- digit , zulu, observation hour (HH) for remapping" read oHH

  7. Evaluation of operational forecast model of aerosol transportation using ceilometer network measurements

    Science.gov (United States)

    Chan, Ka Lok; Wiegner, Matthias; Flentje, Harald; Mattis, Ina; Wagner, Frank; Gasteiger, Josef; Geiß, Alexander

    2017-04-01

    Due to technical improvements of ceilometers in recent years, ceilometer measurements are not only limited to determine cloud base heights but also providing information on the vertical aerosol distribution. Therefore, several national weather services implemented ceilometer networks. These measurements are e.g. valuable for the evaluation of the chemical transport model simulations. In this study, we present comparisons of European Centre for Medium-Range Weather Forecast Integrated Forecast System (ECMWF-IFS) model simulation of aerosol backscatter coefficients with ceilometer network measurements operated by the German weather service (DWD) . Five different types of aerosol are available in the model simulations which include two natural aerosols, sea salt and dust. The other three aerosol types, i.e. sulfate, organic carbon and black carbon, have significant anthropogenic contributions. As the model output provides mass mixing ratios of the above mentioned types of aerosol and the ceilometers measure attenuated backscatter (β∗) provided that calibration took place, it is necessary to determine a common physical quantity for the comparison. We have chosen the aerosol backscatter coefficient (β) for this purpose. The β-profiles are calculated from the mass mixing ratios of the model output assuming the inherent aerosol microphysics properties. It shall be emphasized that in the model calculations, all particles are assumed to be spherical. We have examined the sensitivity of the intercomparison on the hygroscopic growth of particles and on the role of particle shape. Our results show that the hygroscopic growth of particle is crucial (up to a factor of 22) in converting the model output to backscatter coefficient profiles whereas the effect of non-sphericity of dust particles is comparably small (˜44%). Furthermore, the calibration of the ceilometer signals can be an issue. The agreements between modeled and retrieved β-profiles show different

  8. Evaluation for Long Term PM10 Concentration Forecasting using Multi Linear Regression (MLR and Principal Component Regression (PCR Models

    Directory of Open Access Journals (Sweden)

    Samsuri Abdullah

    2016-07-01

    Full Text Available Air pollution in Peninsular Malaysia is dominated by particulate matter which is demonstrated by having the highest Air Pollution Index (API value compared to the other pollutants at most part of the country. Particulate Matter (PM10 forecasting models development is crucial because it allows the authority and citizens of a community to take necessary actions to limit their exposure to harmful levels of particulates pollution and implement protection measures to significantly improve air quality on designated locations. This study aims in improving the ability of MLR using PCs inputs for PM10 concentrations forecasting. Daily observations for PM10 in Kuala Terengganu, Malaysia from January 2003 till December 2011 were utilized to forecast PM10 concentration levels. MLR and PCR (using PCs input models were developed and the performance was evaluated using RMSE, NAE and IA. Results revealed that PCR performed better than MLR due to the implementation of PCA which reduce intricacy and eliminate data multi-collinearity.

  9. Forecasting the State of Health of Electric Vehicle Batteries to Evaluate the Viability of Car Sharing Practices

    Directory of Open Access Journals (Sweden)

    Ivana Semanjski

    2016-12-01

    Full Text Available Car-sharing practices are introducing electric vehicles (EVs into their fleet. However, the literature suggests that at this point shared EV systems are failing to reach satisfactory commercial viability. A potential reason for this is the effect of higher vehicle usage, which is characteristic of car sharing, and the implications on the battery’s state of health (SoH. In this paper, we forecast the SoH of two identical EVs being used in different car-sharing practices. For this purpose, we use real life transaction data from charging stations and different EV sensors. The results indicate that insight into users’ driving and charging behavior can provide a valuable point of reference for car-sharing system designers. In particular, the forecasting results show that the moment when an EV battery reaches its theoretical end of life can differ in as much as a quarter of the time when vehicles are shared under different conditions.

  10. Performance evaluation of ionospheric time delay forecasting models using GPS observations at a low-latitude station

    Science.gov (United States)

    Sivavaraprasad, G.; Venkata Ratnam, D.

    2017-07-01

    Ionospheric delay is one of the major atmospheric effects on the performance of satellite-based radio navigation systems. It limits the accuracy and availability of Global Positioning System (GPS) measurements, related to critical societal and safety applications. The temporal and spatial gradients of ionospheric total electron content (TEC) are driven by several unknown priori geophysical conditions and solar-terrestrial phenomena. Thereby, the prediction of ionospheric delay is challenging especially over Indian sub-continent. Therefore, an appropriate short/long-term ionospheric delay forecasting model is necessary. Hence, the intent of this paper is to forecast ionospheric delays by considering day to day, monthly and seasonal ionospheric TEC variations. GPS-TEC data (January 2013-December 2013) is extracted from a multi frequency GPS receiver established at K L University, Vaddeswaram, Guntur station (geographic: 16.37°N, 80.37°E; geomagnetic: 7.44°N, 153.75°E), India. An evaluation, in terms of forecasting capabilities, of three ionospheric time delay models - an Auto Regressive Moving Average (ARMA) model, Auto Regressive Integrated Moving Average (ARIMA) model, and a Holt-Winter's model is presented. The performances of these models are evaluated through error measurement analysis during both geomagnetic quiet and disturbed days. It is found that, ARMA model is effectively forecasting the ionospheric delay with an accuracy of 82-94%, which is 10% more superior to ARIMA and Holt-Winter's models. Moreover, the modeled VTEC derived from International Reference Ionosphere, IRI (IRI-2012) model and new global TEC model, Neustrelitz TEC Model (NTCM-GL) have compared with forecasted VTEC values of ARMA, ARIMA and Holt-Winter's models during geomagnetic quiet days. The forecast results are indicating that ARMA model would be useful to set up an early warning system for ionospheric disturbances at low latitude regions.

  11. Trade Balances of the Asian Countries under Crisis: Forecast and Evaluation

    Directory of Open Access Journals (Sweden)

    Ingyo Cheong

    1998-06-01

    Full Text Available To overcome the financial crisis, we need to do some reform, such as to change the governmental and non-governmental structure, make sure the policy to be transparent, and remove restrictions, etc. All these measures can restore the confidence of foreign investors towards Korea. But to make balance of the trade surplus and keep foreign exchange reserve at a reasonable level, ensure foreign exchange and the security of financial department is one of the most urgent topics. Since the deep relationship of economy among countries in North-East Asia, financial crisis is not only the problem in Korea. It is already expended to the whole North-East Asia. This thesis shows the idea that we can forecast surplus in the trade balance scale, enlarge the trade balance of South Korea and activate export. It also shows that instead of the increase of export, the surplus is caused by the decrease of import. At this point of view, the number of surplus is not true. If the investment keeps decreasing like this, the foundation of Korean Economy will collapse.

  12. Evaluation of the Plant-Craig stochastic convection scheme in an ensemble forecasting system

    Science.gov (United States)

    Keane, R. J.; Plant, R. S.; Tennant, W. J.

    2015-12-01

    The Plant-Craig stochastic convection parameterization (version 2.0) is implemented in the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison with the standard convection scheme with a simple stochastic element only, from random parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are assessed. The Plant-Craig parameterization is found to improve probabilistic forecast measures, particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is neutral, although the Plant-Craig scheme does deliver improvements when forecasts are made over larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing, for which convective precipitation is likely to be less predictable.

  13. Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system

    International Nuclear Information System (INIS)

    Fang, Tingting; Lahdelma, Risto

    2016-01-01

    Highlights: • Social factor is considered for the linear regression models besides weather file. • Simultaneously optimize all the coefficients for linear regression models. • SARIMA combined with linear regression is used to forecast the heat demand. • The accuracy for both linear regression and time series models are evaluated. - Abstract: Forecasting heat demand is necessary for production and operation planning of district heating (DH) systems. In this study we first propose a simple regression model where the hourly outdoor temperature and wind speed forecast the heat demand. Weekly rhythm of heat consumption as a social component is added to the model to significantly improve the accuracy. The other type of model is the seasonal autoregressive integrated moving average (SARIMA) model with exogenous variables as a combination to take weather factors, and the historical heat consumption data as depending variables. One outstanding advantage of the model is that it peruses the high accuracy for both long-term and short-term forecast by considering both exogenous factors and time series. The forecasting performance of both linear regression models and time series model are evaluated based on real-life heat demand data for the city of Espoo in Finland by out-of-sample tests for the last 20 full weeks of the year. The results indicate that the proposed linear regression model (T168h) using 168-h demand pattern with midweek holidays classified as Saturdays or Sundays gives the highest accuracy and strong robustness among all the tested models based on the tested forecasting horizon and corresponding data. Considering the parsimony of the input, the ease of use and the high accuracy, the proposed T168h model is the best in practice. The heat demand forecasting model can also be developed for individual buildings if automated meter reading customer measurements are available. This would allow forecasting the heat demand based on more accurate heat consumption

  14. Evaluating the Contribution of NASA Remotely-Sensed Data Sets on a Convection-Allowing Forecast Model

    Science.gov (United States)

    Zavodsky, Bradley T.; Case, Jonathan L.; Molthan, Andrew L.

    2012-01-01

    The Short-term Prediction Research and Transition (SPoRT) Center is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service forecast offices. SPoRT provides real-time NASA products and capabilities to help its partners address specific operational forecast challenges. One challenge that forecasters face is using guidance from local and regional deterministic numerical models configured at convection-allowing resolution to help assess a variety of mesoscale/convective-scale phenomena such as sea-breezes, local wind circulations, and mesoscale convective weather potential on a given day. While guidance from convection-allowing models has proven valuable in many circumstances, the potential exists for model improvements by incorporating more representative land-water surface datasets, and by assimilating retrieved temperature and moisture profiles from hyper-spectral sounders. In order to help increase the accuracy of deterministic convection-allowing models, SPoRT produces real-time, 4-km CONUS forecasts using a configuration of the Weather Research and Forecasting (WRF) model (hereafter SPoRT-WRF) that includes unique NASA products and capabilities including 4-km resolution soil initialization data from the Land Information System (LIS), 2-km resolution SPoRT SST composites over oceans and large water bodies, high-resolution real-time Green Vegetation Fraction (GVF) composites derived from the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and retrieved temperature and moisture profiles from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI). NCAR's Model Evaluation Tools (MET) verification package is used to generate statistics of model performance compared to in situ observations and rainfall analyses for three months during the summer of 2012 (June-August). Detailed analyses of specific severe weather outbreaks during the summer

  15. Evaluation of Ensemble Water Supply and Demands Forecasts for Water Management in the Klamath River Basin

    Science.gov (United States)

    Broman, D.; Gangopadhyay, S.; McGuire, M.; Wood, A.; Leady, Z.; Tansey, M. K.; Nelson, K.; Dahm, K.

    2017-12-01

    The Upper Klamath River Basin in south central Oregon and north central California is home to the Klamath Irrigation Project, which is operated by the Bureau of Reclamation and provides water to around 200,000 acres of agricultural lands. The project is managed in consideration of not only water deliveries to irrigators, but also wildlife refuge water demands, biological opinion requirements for Endangered Species Act (ESA) listed fish, and Tribal Trust responsibilities. Climate change has the potential to impact water management in terms of volume and timing of water and the ability to meet multiple objectives. Current operations use a spreadsheet-based decision support tool, with water supply forecasts from the National Resources Conservation Service (NRCS) and California-Nevada River Forecast Center (CNRFC). This tool is currently limited in its ability to incorporate in ensemble forecasts, which offer the potential for improved operations by quantifying forecast uncertainty. To address these limitations, this study has worked to develop a RiverWare based water resource systems model, flexible enough to use across multiple decision time-scales, from short-term operations out to long-range planning. Systems model development has been accompanied by operational system development to handle data management and multiple modeling components. Using a set of ensemble hindcasts, this study seeks to answer several questions: A) Do a new set of ensemble streamflow forecasts have additional skill beyond what?, and allow for improved decision making under changing conditions? B) Do net irrigation water requirement forecasts developed in this project to quantify agricultural demands and reservoir evaporation forecasts provide additional benefits to decision making beyond water supply forecasts? C) What benefit do ensemble forecasts have in the context of water management decisions?

  16. Evaluating the spatio-temporal performance of sky-imager-based solar irradiance analysis and forecasts

    Science.gov (United States)

    Schmidt, Thomas; Kalisch, John; Lorenz, Elke; Heinemann, Detlev

    2016-03-01

    Clouds are the dominant source of small-scale variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the worldwide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a very short term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A 2-month data set with images from one sky imager and high-resolution GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series into different cloud scenarios. Overall, the sky-imager-based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depends strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability, which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.

  17. Evaluating the spatio-temporal performance of sky-imager-based solar irradiance analysis and forecasts

    Directory of Open Access Journals (Sweden)

    T. Schmidt

    2016-03-01

    Full Text Available Clouds are the dominant source of small-scale variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the worldwide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a very short term global horizontal irradiance (GHI forecast experiment based on hemispheric sky images. A 2-month data set with images from one sky imager and high-resolution GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series into different cloud scenarios. Overall, the sky-imager-based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depends strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1–2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability, which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.

  18. Evaluating the Effectiveness of DART® Buoy Networks Based on Forecast Accuracy

    Science.gov (United States)

    Percival, Donald B.; Denbo, Donald W.; Gica, Edison; Huang, Paul Y.; Mofjeld, Harold O.; Spillane, Michael C.; Titov, Vasily V.

    2018-03-01

    A performance measure for a DART® tsunami buoy network has been developed. DART® buoys are used to detect tsunamis, but the full potential of the data they collect is realized through accurate forecasts of inundations caused by the tsunamis. The performance measure assesses how well the network achieves its full potential through a statistical analysis of simulated forecasts of wave amplitudes outside an impact site and a consideration of how much the forecasts are degraded in accuracy when one or more buoys are inoperative. The analysis uses simulated tsunami amplitude time series collected at each buoy from selected source segments in the Short-term Inundation Forecast for Tsunamis database and involves a set for 1000 forecasts for each buoy/segment pair at sites just offshore of selected impact communities. Random error-producing scatter in the time series is induced by uncertainties in the source location, addition of real oceanic noise, and imperfect tidal removal. Comparison with an error-free standard leads to root-mean-square errors (RMSEs) for DART® buoys located near a subduction zone. The RMSEs indicate which buoy provides the best forecast (lowest RMSE) for sections of the zone, under a warning-time constraint for the forecasts of 3 h. The analysis also shows how the forecasts are degraded (larger minimum RMSE among the remaining buoys) when one or more buoys become inoperative. The RMSEs provide a way to assess array augmentation or redesign such as moving buoys to more optimal locations. Examples are shown for buoys off the Aleutian Islands and off the West Coast of South America for impact sites at Hilo HI and along the US West Coast (Crescent City CA and Port San Luis CA, USA). A simple measure (coded green, yellow or red) of the current status of the network's ability to deliver accurate forecasts is proposed to flag the urgency of buoy repair.

  19. Evaluating the Effectiveness of DART® Buoy Networks Based on Forecast Accuracy

    Science.gov (United States)

    Percival, Donald B.; Denbo, Donald W.; Gica, Edison; Huang, Paul Y.; Mofjeld, Harold O.; Spillane, Michael C.; Titov, Vasily V.

    2018-04-01

    A performance measure for a DART® tsunami buoy network has been developed. DART® buoys are used to detect tsunamis, but the full potential of the data they collect is realized through accurate forecasts of inundations caused by the tsunamis. The performance measure assesses how well the network achieves its full potential through a statistical analysis of simulated forecasts of wave amplitudes outside an impact site and a consideration of how much the forecasts are degraded in accuracy when one or more buoys are inoperative. The analysis uses simulated tsunami amplitude time series collected at each buoy from selected source segments in the Short-term Inundation Forecast for Tsunamis database and involves a set for 1000 forecasts for each buoy/segment pair at sites just offshore of selected impact communities. Random error-producing scatter in the time series is induced by uncertainties in the source location, addition of real oceanic noise, and imperfect tidal removal. Comparison with an error-free standard leads to root-mean-square errors (RMSEs) for DART® buoys located near a subduction zone. The RMSEs indicate which buoy provides the best forecast (lowest RMSE) for sections of the zone, under a warning-time constraint for the forecasts of 3 h. The analysis also shows how the forecasts are degraded (larger minimum RMSE among the remaining buoys) when one or more buoys become inoperative. The RMSEs provide a way to assess array augmentation or redesign such as moving buoys to more optimal locations. Examples are shown for buoys off the Aleutian Islands and off the West Coast of South America for impact sites at Hilo HI and along the US West Coast (Crescent City CA and Port San Luis CA, USA). A simple measure (coded green, yellow or red) of the current status of the network's ability to deliver accurate forecasts is proposed to flag the urgency of buoy repair.

  20. Forecasting Temporal and Spatial Climatological Influence for Land Suitability Evaluation in Bentota Sri Lanka

    Directory of Open Access Journals (Sweden)

    Gayani Ranasinghe

    2017-01-01

    Full Text Available Climate change has raised much concern regarding its impacts on future land use planning, varying by region, time, and socio-economic development path. The principle purpose of land suitability evaluation is to predict the potential and limitation of the land for crop production and other land uses. This study was carried out to predict the temperature and rainfall trends as one of the major factor for evaluating land suitability. Climatic data such as monthly mean temperature, total monthly rainfall, maximum daily rainfall and total annual rainfall during last 30 years of all weather stations located in Bentota River basin was collected and analyzed applying time series analysis, correlation analysis and Manna Kendall trend test methods. Spatial distribution of forecast rainfall values was illustrated applying Arc GIS software. The findings revealed that monthly mean temperature and maximum daily rainfall had a general increasing trend whereas, total monthly rainfall and total annual rainfall showed a general decreasing trend in  Bentota area. It was indicated relatively high rainfall situations during May and October while low rainfall situations during January and February by occurring flood situation in once per five year. During Yala season the area will be received comparatively more rainfall (331mm than Maha season (300mm in future. Community and the farmers in this area can be aware about the anticipated spatial distribution of total monthly rainfall during two major seasons and flood occurrence periods. Decision makers should evaluate land suitability of Bentota area by considering above climatological influences and its spatial distribution pattern that identified as major outcome of this research. The approach and the methodology adopted in this study will be useful for other researchers, agriculturalist and planners to identify the future climatological influences and its spatial distribution pattern for land suitability evaluations

  1. Evaluation of energy fluxes in the NCEP climate forecast system version 2.0 (CFSv2)

    Science.gov (United States)

    Rai, Archana; Saha, Subodh Kumar

    2018-01-01

    The energy fluxes at the surface and top of the atmosphere (TOA) from a long free run by the NCEP climate forecast system version 2.0 (CFSv2) are validated against several observation and reanalysis datasets. This study focuses on the annual mean energy fluxes and tries to link it with the systematic cold biases in the 2 m air temperature, particularly over the land regions. The imbalance in the long term mean global averaged energy fluxes are also evaluated. The global averaged imbalance at the surface and at the TOA is found to be 0.37 and 6.43 Wm-2, respectively. It is shown that CFSv2 overestimates the land surface albedo, particularly over the snow region, which in turn contributes to the cold biases in 2 m air temperature. On the other hand, surface albedo is highly underestimated over the coastal region around Antarctica and that may have contributed to the warm bias over that oceanic region. This study highlights the need for improvements in the parameterization of snow/sea-ice albedo scheme for a realistic simulation of surface temperature and that may have implications on the global energy imbalance in the model.

  2. Evaluation of Operational Wave Forecasts for the Northeastern Coast of Taiwan

    Directory of Open Access Journals (Sweden)

    Beng-Chun Lee

    2010-01-01

    Full Text Available An operational regional wave forecasting system was established to fulfill the demands of maritime engineering applications on the northeastern coast of Taiwan. This Mixed system consisted of a nested SWAN numerical wave model and experienced marine meteorologists who were sent to the construction site as the in situ predictors to validate output from the numerical model so as to improve the forecasting accuracy.

  3. Retrospective Evaluation of the Five-Year and Ten-Year CSEP-Italy Earthquake Forecasts

    OpenAIRE

    Werner, M. J.; Zechar, J. D.; Marzocchi, W.; Wiemer, S.

    2010-01-01

    On 1 August 2009, the global Collaboratory for the Study of Earthquake Predictability (CSEP) launched a prospective and comparative earthquake predictability experiment in Italy. The goal of the CSEP-Italy experiment is to test earthquake occurrence hypotheses that have been formalized as probabilistic earthquake forecasts over temporal scales that range from days to years. In the first round of forecast submissions, members of the CSEP-Italy Working Group presented eighteen five-year and ten...

  4. Open Zinc Freezing-Point Cell Assembly and Evaluation

    Science.gov (United States)

    Žužek, V.; Batagelj, V.; Drnovšek, J.; Bojkovski, J.

    2014-07-01

    An open metal freezing-point cell design has been developed in the Laboratory of Metrology and Quality. According to our design, a zinc cell was successfully assembled. The paper presents the needed parts for the cell, the cleaning process, and sealing of the cell. The assembled cell was then evaluated by comparison with two commercial closed zinc cells of different manufacturers. The freezing plateaus of the cells were measured, and a direct cell comparison was made. It was shown that the assembled open cell performed better than the used closed cell and was close to the brand new closed cell. The nominal purity of the zinc used for the open cell was 7 N, but the freezing plateau measurement suggests a higher impurity concentration. It was assumed that the zinc was contaminated to some extent during the process of cutting as its original shape was an irregular cylinder. The uncertainty due to impurities for the assembled cell is estimated to be 0.3 mK. Furthermore, the immersion profile and the pressure coefficient were measured. Both results are close to their theoretical values.

  5. Evaluation of cloud properties in the NOAA/NCEP global forecast system using multiple satellite products

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyelim [University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States); Li, Zhanqing [University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States); Beijing Normal University, State Key Laboratory of Earth Surface Processes and Resource Ecology, GCESS, Beijing (China)

    2012-12-15

    Knowledge of cloud properties and their vertical structure is important for meteorological studies due to their impact on both the Earth's radiation budget and adiabatic heating within the atmosphere. The objective of this study is to evaluate bulk cloud properties and vertical distribution simulated by the US National Oceanic and Atmospheric Administration National Centers for Environmental Prediction Global Forecast System (GFS) using three global satellite products. Cloud variables evaluated include the occurrence and fraction of clouds in up to three layers, cloud optical depth, liquid water path, and ice water path. Cloud vertical structure data are retrieved from both active (CloudSat/CALIPSO) and passive sensors and are subsequently compared with GFS model results. In general, the GFS model captures the spatial patterns of hydrometeors reasonably well and follows the general features seen in satellite measurements, but large discrepancies exist in low-level cloud properties. More boundary layer clouds over the interior continents were generated by the GFS model whereas satellite retrievals showed more low-level clouds over oceans. Although the frequencies of global multi-layer clouds from observations are similar to those from the model, latitudinal variations show discrepancies in terms of structure and pattern. The modeled cloud optical depth over storm track region and subtropical region is less than that from the passive sensor and is overestimated for deep convective clouds. The distributions of ice water path (IWP) agree better with satellite observations than do liquid water path (LWP) distributions. Discrepancies in LWP/IWP distributions between observations and the model are attributed to differences in cloud water mixing ratio and mean relative humidity fields, which are major control variables determining the formation of clouds. (orig.)

  6. Analysis and evaluation of forecasting methods and tools to predict future demand for secondary chemical-biological configuration items

    OpenAIRE

    Ritchey, Chris D.

    2013-01-01

    Approved for public release; distribution is unlimited As the Engineering Support Activity (ESA) for numerous consumable Chemical Biological items managed by the Defense Logistics Agency (DLA), Edgewood Chemical Biological Center (ECBC) must be able to complete reviews of all procurement packages within 15 calendar days. With such little lead time, it would be very beneficial if ECBC had the ability to forecast when DLA procurement actions will occur. This thesis presents an evaluation of ...

  7. A Diagnostics Tool to detect ensemble forecast system anomaly and guide operational decisions

    Science.gov (United States)

    Park, G. H.; Srivastava, A.; Shrestha, E.; Thiemann, M.; Day, G. N.; Draijer, S.

    2017-12-01

    The hydrologic community is moving toward using ensemble forecasts to take uncertainty into account during the decision-making process. The New York City Department of Environmental Protection (DEP) implements several types of ensemble forecasts in their decision-making process: ensemble products for a statistical model (Hirsch and enhanced Hirsch); the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) forecasts based on the classical Ensemble Streamflow Prediction (ESP) technique; and the new NWS Hydrologic Ensemble Forecasting Service (HEFS) forecasts. To remove structural error and apply the forecasts to additional forecast points, the DEP post processes both the AHPS and the HEFS forecasts. These ensemble forecasts provide mass quantities of complex data, and drawing conclusions from these forecasts is time-consuming and difficult. The complexity of these forecasts also makes it difficult to identify system failures resulting from poor data, missing forecasts, and server breakdowns. To address these issues, we developed a diagnostic tool that summarizes ensemble forecasts and provides additional information such as historical forecast statistics, forecast skill, and model forcing statistics. This additional information highlights the key information that enables operators to evaluate the forecast in real-time, dynamically interact with the data, and review additional statistics, if needed, to make better decisions. We used Bokeh, a Python interactive visualization library, and a multi-database management system to create this interactive tool. This tool compiles and stores data into HTML pages that allows operators to readily analyze the data with built-in user interaction features. This paper will present a brief description of the ensemble forecasts, forecast verification results, and the intended applications for the diagnostic tool.

  8. Evaluation of stratocumulus cloud prediction in the Met Office forecast model during VOCALS-REx

    Directory of Open Access Journals (Sweden)

    S. J. Abel

    2010-11-01

    Full Text Available Observations in the subtropical southeast Pacific obtained during the VOCALS-REx field experiment are used to evaluate the representation of stratocumulus cloud in the Met Office forecast model and to identify key areas where model biases exist. Marked variations in the large scale structure of the cloud field were observed during the experiment on both day-to-day and on diurnal timescales. In the remote maritime region the model is shown to have a good representation of synoptically induced variability in both cloud cover and marine boundary layer depth. Satellite observations show a strong diurnal cycle in cloud fraction and liquid water path in the stratocumulus with enhanced clearances of the cloud deck along the Chilean and Peruvian coasts on certain days. The model accurately simulates the phase of the diurnal cycle but is unable to capture the coastal clearing of cloud. Observations along the 20° S latitude line show a gradual increase in the depth of the boundary layer away from the coast. This trend is well captured by the model (typical low bias of 200 m although significant errors exist at the coast where the model marine boundary layer is too shallow and moist. Drizzle in the model responds to changes in liquid water path in a manner that is consistent with previous ship-borne observations in the region although the intensity of this drizzle is likely to be too high, particularly in the more polluted coastal region where higher cloud droplet number concentrations are typical. Another mode of variability in the cloud field that the model is unable to capture are regions of pockets of open cellular convection embedded in the overcast stratocumulus deck and an example of such a feature that was sampled during VOCALS-REx is shown.

  9. The Use of the Data Assimilation Research Testbed for Initializing and Evaluating IPCC Decadal Forecasts

    Science.gov (United States)

    Raeder, K.; Anderson, J. L.; Lauritzen, P. H.; Hoar, T. J.; Collins, N.

    2010-12-01

    DART (www.image.ucar.edu/DAReS/DART) is a general purpose, freely available, ensemble Kalman filter, data assimilation system, which is being used to generate state-of-the-art, partially coupled, ocean-atmosphere re-analyses in support of the decadal predictions planned for the next IPCC report. The resulting gridded product is directly comparable to the state variables output by POP and CAM (oceanic and atmospheric components of NCAR's Community Earth System Model climate model) because those are the assimilating models. Other models could also benefit from comparison against these reanalyses, since the ocean analyses are at the leading edge of ocean state estimation, and the atmospheric analyses are competitive with operational centers'. Such comparisons can reveal model biases and predictability characteristics, and do so in a quantitative way, since the ensemble nature of the analyses provides an objective estimate of the analysis error. The analyses will also be used as initial conditions for the decadal forecasts because they are the most realistic available. The generation of such analyses has revealed errors in model formulation for several versions of the finite volume core CAM, which has led to model improvements in each case. New models can be incorporated into DART in a matter of weeks, allowing them to be compared directly against available observations. The observations currently used in the assimilations include, for the ocean; temperature and salinity from the World Ocean Database (floats, drifters, moorings, autonomous pinipeds, and others), and for the atmosphere; temperature and winds from radiosondes, satellite drift winds, ACARS and aircraft. Observations of ocean currents and atmospheric moisture and pressure are also available. Global Positioning System profiles of atmospheric temperature and moisture are available for recent years. All that is required to add new observations to the suite is the forward operator, which generates an estimate

  10. Forecast Combinations

    OpenAIRE

    Timmermann, Allan G

    2005-01-01

    Forecast combinations have frequently been found in empirical studies to produce better forecasts on average than methods based on the ex-ante best individual forecasting model. Moreover, simple combinations that ignore correlations between forecast errors often dominate more refined combination schemes aimed at estimating the theoretically optimal combination weights. In this paper we analyse theoretically the factors that determine the advantages from combining forecasts (for example, the d...

  11. Forecast combinations

    OpenAIRE

    Aiolfi, Marco; Capistrán, Carlos; Timmermann, Allan

    2010-01-01

    We consider combinations of subjective survey forecasts and model-based forecasts from linear and non-linear univariate specifications as well as multivariate factor-augmented models. Empirical results suggest that a simple equal-weighted average of survey forecasts outperform the best model-based forecasts for a majority of macroeconomic variables and forecast horizons. Additional improvements can in some cases be gained by using a simple equal-weighted average of survey and model-based fore...

  12. Toward Seasonal Forecasting of Global Droughts: Evaluation over USA and Africa

    Science.gov (United States)

    Wood, Eric; Yuan, Xing; Roundy, Joshua; Sheffield, Justin; Pan, Ming

    2013-04-01

    Extreme hydrologic events in the form of droughts are significant sources of social and economic damage. In the United States according to the National Climatic Data Center, the losses from drought exceed US210 billion during 1980-2011, and account for about 24% of all losses from major weather disasters. Internationally, especially for the developing world, drought has had devastating impacts on local populations through food insecurity and famine. Providing reliable drought forecasts with sufficient early warning will help the governments to move from the management of drought crises to the management of drought risk. After working on drought monitoring and forecasting over the USA for over 10 years, the Princeton land surface hydrology group is now developing a global drought monitoring and forecasting system using a dynamical seasonal climate-hydrologic LSM-model (CHM) approach. Currently there is an active debate on the merits of the CHM-based seasonal hydrologic forecasts as compared to Ensemble Streamflow Prediction (ESP). We use NCEP's operational forecast system, the Climate Forecast System version 2 (CFSv2) and its previous version CFSv1, to investigate the value of seasonal climate model forecasts by conducting a set of 27-year seasonal hydrologic hindcasts over the USA. Through Bayesian downscaling, climate models have higher squared correlation (R2) and smaller error than ESP for monthly precipitation averaged over major river basins across the USA, and the forecasts conditional on ENSO show further improvements (out to four months) over river basins in the southern USA. All three approaches have plausible predictions of soil moisture drought frequency over central USA out to six months because of strong soil moisture memory, and seasonal climate models provide better results over central and eastern USA. The R2 of drought extent is higher for arid basins and for the forecasts initiated during dry seasons, but significant improvements from CFSv2 occur

  13. Evaluation of induced seismicity forecast models in the Induced Seismicity Test Bench

    Science.gov (United States)

    Király, Eszter; Gischig, Valentin; Zechar, Jeremy; Doetsch, Joseph; Karvounis, Dimitrios; Wiemer, Stefan

    2016-04-01

    Induced earthquakes often accompany fluid injection, and the seismic hazard they pose threatens various underground engineering projects. Models to monitor and control induced seismic hazard with traffic light systems should be probabilistic, forward-looking, and updated as new data arrive. Here, we propose an Induced Seismicity Test Bench to test and rank such models. We apply the test bench to data from the Basel 2006 and Soultz-sous-Forêts 2004 geothermal stimulation projects, and we assess forecasts from two models that incorporate a different mix of physical understanding and stochastic representation of the induced sequences: Shapiro in Space (SiS) and Hydraulics and Seismics (HySei). SiS is based on three pillars: the seismicity rate is computed with help of the seismogenic index and a simple exponential decay of the seismicity; the magnitude distribution follows the Gutenberg-Richter relation; and seismicity is distributed in space based on smoothing seismicity during the learning period with 3D Gaussian kernels. The HySei model describes seismicity triggered by pressure diffusion with irreversible permeability enhancement. Our results show that neither model is fully superior to the other. HySei forecasts the seismicity rate well, but is only mediocre at forecasting the spatial distribution. On the other hand, SiS forecasts the spatial distribution well but not the seismicity rate. The shut-in phase is a difficult moment for both models in both reservoirs: the models tend to underpredict the seismicity rate around, and shortly after, shut-in. Ensemble models that combine HySei's rate forecast with SiS's spatial forecast outperform each individual model.

  14. Real-time bias-adjusted O 3 and PM 2.5 air quality index forecasts and their performance evaluations over the continental United States

    Science.gov (United States)

    Kang, Daiwen; Mathur, Rohit; Trivikrama Rao, S.

    2010-06-01

    The National Air Quality Forecast Capacity (NAQFC) system, which links NOAA's North American Mesoscale (NAM) meteorological model with EPA's Community Multiscale Air Quality (CMAQ) model, provided operational ozone (O 3) and experimental fine particular matter (PM 2.5) forecasts over the continental United States (CONUS) during 2008. This paper describes the implementation of a real-time Kalman Filter (KF) bias-adjustment technique to improve the accuracy of O 3 and PM 2.5 forecasts at discrete monitoring locations. The operational surface-level O 3 and PM 2.5 forecasts from the NAQFC system were post-processed by the KF bias-adjusted technique using near real-time hourly O 3 and PM 2.5 observations obtained from EPA's AIRNow measurement network. The KF bias-adjusted forecasts were created daily, providing 24-h hourly bias-adjusted forecasts for O 3 and PM 2.5 at all AIRNow monitoring sites within the CONUS domain. The bias-adjustment post-processing implemented in this study requires minimal computational cost; requiring less than 10 min of CPU on a single processor Linux machine to generate 24-h hourly bias-adjusted forecasts over the entire CONUS domain. The results show that the real-time KF bias-adjusted forecasts for both O 3 and PM 2.5 have performed as well as or even better than the previous studies when the same technique was applied to the historical O 3 and PM 2.5 time series from archived AQF in earlier years. Compared to the raw forecasts, the KF forecasts displayed significant improvement in the daily maximum 8-h O 3 and daily mean PM 2.5 forecasts in terms of both discrete (i.e., reduced errors, increased correlation coefficients, and index of agreement) and categorical (increased hit rate and decreased false alarm ratio) evaluation metrics at almost all locations during the study period in 2008.

  15. Evaluation of point mutations in dystrophin gene in Iranian ...

    Indian Academy of Sciences (India)

    5Department of Biology, Science and Research Branch, Islamic Azad ... Dystrophin protein is found ... Duchenne and Becker muscular dystrophy; neuromuscular disorder; point mutation. ..... modern diagnostic techniques to a large cohort.

  16. Evaluation of the point-centred-quarter method of sampling ...

    African Journals Online (AJOL)

    -quarter method.The parameter which was most efficiently sampled was species composition relativedensity) with 90% replicate similarity being achieved with 100 point-centred-quarters. However, this technique cannot be recommended, even ...

  17. The Variance-covariance Method using IOWGA Operator for Tourism Forecast Combination

    Directory of Open Access Journals (Sweden)

    Liangping Wu

    2014-08-01

    Full Text Available Three combination methods commonly used in tourism forecasting are the simple average method, the variance-covariance method and the discounted MSFE method. These methods assign the different weights that can not change at each time point to each individual forecasting model. In this study, we introduce the IOWGA operator combination method which can overcome the defect of previous three combination methods into tourism forecasting. Moreover, we further investigate the performance of the four combination methods through the theoretical evaluation and the forecasting evaluation. The results of the theoretical evaluation show that the IOWGA operator combination method obtains extremely well performance and outperforms the other forecast combination methods. Furthermore, the IOWGA operator combination method can be of well forecast performance and performs almost the same to the variance-covariance combination method for the forecasting evaluation. The IOWGA operator combination method mainly reflects the maximization of improving forecasting accuracy and the variance-covariance combination method mainly reflects the decrease of the forecast error. For future research, it may be worthwhile introducing and examining other new combination methods that may improve forecasting accuracy or employing other techniques to control the time for updating the weights in combined forecasts.

  18. Evaluating the performance of the Lee-Carter method and its variants in modelling and forecasting Malaysian mortality

    Science.gov (United States)

    Zakiyatussariroh, W. H. Wan; Said, Z. Mohammad; Norazan, M. R.

    2014-12-01

    This study investigated the performance of the Lee-Carter (LC) method and it variants in modeling and forecasting Malaysia mortality. These include the original LC, the Lee-Miller (LM) variant and the Booth-Maindonald-Smith (BMS) variant. These methods were evaluated using Malaysia's mortality data which was measured based on age specific death rates (ASDR) for 1971 to 2009 for overall population while those for 1980-2009 were used in separate models for male and female population. The performance of the variants has been examined in term of the goodness of fit of the models and forecasting accuracy. Comparison was made based on several criteria namely, mean square error (MSE), root mean square error (RMSE), mean absolute deviation (MAD) and mean absolute percentage error (MAPE). The results indicate that BMS method was outperformed in in-sample fitting for overall population and when the models were fitted separately for male and female population. However, in the case of out-sample forecast accuracy, BMS method only best when the data were fitted to overall population. When the data were fitted separately for male and female, LCnone performed better for male population and LM method is good for female population.

  19. Structuring Process Evaluation to Forecast Use and Sustainability of an Intervention: Theory and Data From the Efficacy Trial for Lunch Is in the Bag.

    Science.gov (United States)

    Roberts-Gray, Cindy; Sweitzer, Sara J; Ranjit, Nalini; Potratz, Christa; Rood, Magdalena; Romo-Palafox, Maria Jose; Byrd-Williams, Courtney E; Briley, Margaret E; Hoelscher, Deanna M

    2017-08-01

    A cluster-randomized trial at 30 early care and education centers (Intervention = 15, waitlist Control = 15) showed the Lunch Is in the Bag intervention increased parents' packing of fruits, vegetables, and whole grains in their preschool children's bag lunches (parent-child dyads = 351 Intervention, 282 Control). To examine the utility of structuring the trial's process evaluation to forecast use, sustainability, and readiness of the intervention for wider dissemination and implementation. Pretrial, the research team simulated user experience to forecast use of the intervention. Multiattribute evaluation of user experience measured during the trial assessed use and sustainability of the intervention. Thematic analysis of posttrial interviews with users evaluated sustained use and readiness for wider dissemination. Moderate use was forecast by the research team. Multiattribute evaluation of activity logs, surveys, and observations during the trial indicated use consistent with the forecast except that prevalence of parents reading the newsletters was greater (83% vs. 50%) and hearing their children talk about the classroom was less (4% vs. 50%) than forecast. Early care and education center-level likelihood of sustained use was projected to be near zero. Posttrial interviews indicated use was sustained at zero centers. Structuring the efficacy trial's process evaluation as a progression of assessments of user experience produced generally accurate forecasts of use and sustainability of the intervention at the trial sites. This approach can assist interpretation of trial outcomes, aid decisions about dissemination of the intervention, and contribute to translational science for improving health.

  20. Initial evaluations of a Gulf of Mexico/Caribbean ocean forecast system in the context of the Deepwater Horizon disaster

    Science.gov (United States)

    Zaron, Edward D.; Fitzpatrick, Patrick J.; Cross, Scott L.; Harding, John M.; Bub, Frank L.; Wiggert, Jerry D.; Ko, Dong S.; Lau, Yee; Woodard, Katharine; Mooers, Christopher N. K.

    2015-12-01

    In response to the Deepwater Horizon (DwH) oil spill event in 2010, the Naval Oceanographic Office deployed a nowcast-forecast system covering the Gulf of Mexico and adjacent Caribbean Sea that was designated Americas Seas, or AMSEAS, which is documented in this manuscript. The DwH disaster provided a challenge to the application of available ocean-forecast capabilities, and also generated a historically large observational dataset. AMSEAS was evaluated by four complementary efforts, each with somewhat different aims and approaches: a university research consortium within an Integrated Ocean Observing System (IOOS) testbed; a petroleum industry consortium, the Gulf of Mexico 3-D Operational Ocean Forecast System Pilot Prediction Project (GOMEX-PPP); a British Petroleum (BP) funded project at the Northern Gulf Institute in response to the oil spill; and the Navy itself. Validation metrics are presented in these different projects for water temperature and salinity profiles, sea surface wind, sea surface temperature, sea surface height, and volume transport, for different forecast time scales. The validation found certain geographic and time biases/errors, and small but systematic improvements relative to earlier regional and global modeling efforts. On the basis of these positive AMSEAS validation studies, an oil spill transport simulation was conducted using archived AMSEAS nowcasts to examine transport into the estuaries east of the Mississippi River. This effort captured the influences of Hurricane Alex and a non-tropical cyclone off the Louisiana coast, both of which pushed oil into the western Mississippi Sound, illustrating the importance of the atmospheric influence on oil spills such as DwH.

  1. Legibility Evaluation Using Point-of-regard Measurement

    Science.gov (United States)

    Saito, Daisuke; Saito, Keiichi; Saito, Masao

    Web site visibility has become important because of the rapid dissemination of World Wide Web, and combinations of foreground and background colors are crucial in providing high visibility. In our previous studies, the visibilities of several web-safe color combinations were examined using a psychological method. In those studies, simple stimuli were used because of experimental restriction. In this paper, legibility of sentences on web sites was examined using a psychophisiological method, point-of-regard measurement, to obtain other practical data. Ten people with normal color sensations ranging from ages 21 to 29 were recruited. The number of characters per line in each page was arranged in the same number, and the four representative achromatic web-safe colors, that is, #000000, #666666, #999999 and #CCCCCC, were examined. The reading time per character and the gaze time per line were obtained from point-of-regard measurement, and the normalized with the reading time and the gaze time of the three colors were calculated and compared. As the results, it was shown that the time of reading and gaze become long at the same ratio when the contrast decreases by point-of-regard measurement. Therefore, it was indicated that the legibility of color combinations could be estimated by point-of-regard measurement.

  2. Evaluation of the dew point cooling technology; Beoordeling technologie dauwpuntskoeling

    Energy Technology Data Exchange (ETDEWEB)

    Bootsveld, N.R.; Afink, J. [TNO Milieu, Energie en Procesinnovatie TNO-MEP, Amersfoort (Netherlands); Uges, P.G.H. (ed.) [Standex Periodieken, Veenendaal (Netherlands)

    2003-01-01

    Results of measurements on an indirect adiabatic dew point cooling system are presented and discussed. The cooling system has been developed by ComfortAir, Raalte, Netherlands. [Dutch] De meetresultaten van door ComfortAir in samenwerking met TNO-MEP uitgevoerde metingen aan een indirect werkende adiabatische dauwpuntkoeler worden gepresenteerd en besproken.

  3. Evaluation of null-point detection methods on simulation data

    Science.gov (United States)

    Olshevsky, Vyacheslav; Fu, Huishan; Vaivads, Andris; Khotyaintsev, Yuri; Lapenta, Giovanni; Markidis, Stefano

    2014-05-01

    We model the measurements of artificial spacecraft that resemble the configuration of CLUSTER propagating in the particle-in-cell simulation of turbulent magnetic reconnection. The simulation domain contains multiple isolated X-type null-points, but the majority are O-type null-points. Simulations show that current pinches surrounded by twisted fields, analogous to laboratory pinches, are formed along the sequences of O-type nulls. In the simulation, the magnetic reconnection is mainly driven by the kinking of the pinches, at spatial scales of several ion inertial lentghs. We compute the locations of magnetic null-points and detect their type. When the satellites are separated by the fractions of ion inertial length, as it is for CLUSTER, they are able to locate both the isolated null-points, and the pinches. We apply the method to the real CLUSTER data and speculate how common are pinches in the magnetosphere, and whether they play a dominant role in the dissipation of magnetic energy.

  4. Evaluation of correlative nuclear data at certain energy point

    International Nuclear Information System (INIS)

    Zhang Jianhua; Liu Tingjin.

    1993-01-01

    A method to process correlative nuclear data at certain energy point is presented. The corresponding processing code has also been developed. Using the code, the effects of the correlation have been discussed in detail for the cases of the two and three data. (3 figs.)

  5. Design and evaluation of pointing devices; Gestaltung und Evaluation von koordinatengebenden Interaktionsgeraeten

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, L.; Zuehlke, D. [Kaiserslautern Univ. (Germany)

    2002-07-01

    Pointing devices e.g. the computer mouse are gaining considerable importance in modern human-machine-systems as a major part of the interaction interface between human beings and machines. During the dialogues with window-based operating systems the human being - the user - moves the cursor to a certain position on the screen by means of pointing devices. Microsoft products like WINDOWS have asserted themselves in the meantime in office applications and are currently conquering the market of industrial control systems as well. In office applications the mouse has become established as the most important pointing device for interaction. However, an 'office mouse' is not really suitable in a manufacturing environment. Only a few investigations exist evaluating alternatives to the mouse, which are suitable for industrial applications. At the Center of Human-Machine-Interaction (ZMMI) of the Institute of Production Automation (pak) at the University of Kaiserslautern a comparative investigation was carried out for alternative pointing devices like mouse, mousepad, mousebutton, mousestick, trackball, joystick, touchscreen, digitizing tablet and keyboard to determine their industrial suitability. This paper presents the methods of investigation and the most important results. The known Fitts' law model is mainly used in the field of HCl for office applications in order to evaluate interaction devices. This paper presents the new method DEVICE and is applied in the field of HMI for the evaluation of pointing devices. Tests with DEVICE and Fitts' method were conducted with machine operators under industrial environments to determine the suitability of thirty different pointing devices. The comparison between DEVICE and Fitts' law model shows that the results of certain partial tests correlate with each other. DEVICE can be used as substitute for Fitts' law model and offers additional parameters such as e.g. error rates and pointing deviation

  6. How important is an apology to you? Forecasting errors in evaluating the value of apologies.

    Science.gov (United States)

    De Cremer, David; Pillutla, Madan M; Folmer, Chris Reinders

    2011-01-01

    Apologies are commonly used to deal with transgressions in relationships. Results to date, however, indicate that the positive effects of apologies vary widely, and the match between people's judgments of apologies and the true value of apologies has not been studied. Building on the affective and behavioral forecasting literature, we predicted that people would overestimate how much they value apologies in reality. Across three experimental studies, our results showed that after having been betrayed by another party (or after imagining this to be the case), people (a) rated the value of an apology much more highly when they imagined receiving an apology than when they actually received an apology and (b) displayed greater trusting behavior when they imagined receiving an apology than when they actually received an apology. These results suggest that people are prone to forecasting errors regarding the effectiveness of an apology and that they tend to overvalue the impact of receiving one.

  7. Forecasting Skill

    Science.gov (United States)

    1981-01-01

    for the third and fourth day precipitation forecasts. A marked improvement was shown for the consensus 24 hour precipitation forecast, and small... Zuckerberg (1980) found a small long term skill increase in forecasts of heavy snow events for nine eastern cities. Other National Weather Service...and maximum temperature) are each awarded marks 2, 1, or 0 according to whether the forecast is correct, 8 - *- -**■*- ———"—- - -■ t0m 1 MM—IB I

  8. Ecological forecasts: An emerging imperative

    Science.gov (United States)

    James S. Clark; Steven R. Carpenter; Mary Barber; Scott Collins; Andy Dobson; Jonathan A. Foley; David M. Lodge; Mercedes Pascual; Roger Pielke; William Pizer; Cathy Pringle; Walter V. Reid; Kenneth A. Rose; Osvaldo Sala; William H. Schlesinger; Diana H. Wall; David Wear

    2001-01-01

    Planning and decision-making can be improved by access to reliable forecasts of ecosystem state, ecosystem services, and natural capital. Availability of new data sets, together with progress in computation and statistics, will increase our ability to forecast ecosystem change. An agenda that would lead toward a capacity to produce, evaluate, and communicate forecasts...

  9. Evaluating machine-learning techniques for recruitment forecasting of seven North East Atlantic fish species

    KAUST Repository

    Fernandes, José Antonio

    2015-01-01

    The effect of different factors (spawning biomass, environmental conditions) on recruitment is a subject of great importance in the management of fisheries, recovery plans and scenario exploration. In this study, recently proposed supervised classification techniques, tested by the machine-learning community, are applied to forecast the recruitment of seven fish species of North East Atlantic (anchovy, sardine, mackerel, horse mackerel, hake, blue whiting and albacore), using spawning, environmental and climatic data. In addition, the use of the probabilistic flexible naive Bayes classifier (FNBC) is proposed as modelling approach in order to reduce uncertainty for fisheries management purposes. Those improvements aim is to improve probability estimations of each possible outcome (low, medium and high recruitment) based in kernel density estimation, which is crucial for informed management decision making with high uncertainty. Finally, a comparison between goodness-of-fit and generalization power is provided, in order to assess the reliability of the final forecasting models. It is found that in most cases the proposed methodology provides useful information for management whereas the case of horse mackerel is an example of the limitations of the approach. The proposed improvements allow for a better probabilistic estimation of the different scenarios, i.e. to reduce the uncertainty in the provided forecasts.

  10. Evaluation of Forecasted Southeast Pacific Stratocumulus in the NCAR, GFDL and ECMWF Models

    Energy Technology Data Exchange (ETDEWEB)

    Hannay, C; Williamson, D L; Hack, J J; Kiehl, J T; Olson, J G; Klein, S A; Bretherton, C S; K?hler, M

    2008-01-24

    We examine forecasts of Southeast Pacific stratocumulus at 20S and 85W during the East Pacific Investigation of Climate (EPIC) cruise of October 2001 with the ECMWF model, the Atmospheric Model (AM) from GFDL, the Community Atmosphere Model (CAM) from NCAR, and the CAM with a revised atmospheric boundary layer formulation from the University of Washington (CAM-UW). The forecasts are initialized from ECMWF analyses and each model is run for 3 days to determine the differences with the EPIC field data. Observations during the EPIC cruise show a stable and well-mixed boundary layer under a sharp inversion. The inversion height and the cloud layer have a strong and regular diurnal cycle. A key problem common to the four models is that the forecasted planetary boundary layer (PBL) height is too low when compared to EPIC observations. All the models produce a strong diurnal cycle in the Liquid Water Path (LWP) but there are large differences in the amplitude and the phase compared to the EPIC observations. This, in turn, affects the radiative fluxes at the surface. There is a large spread in the surface energy budget terms amongst the models and large discrepancies with observational estimates. Single Column Model (SCM) experiments with the CAM show that the vertical pressure velocity has a large impact on the PBL height and LWP. Both the amplitude of the vertical pressure velocity field and its vertical structure play a significant role in the collapse or the maintenance of the PBL.

  11. The use of Bayesian networks for nanoparticle risk forecasting: model formulation and baseline evaluation.

    Science.gov (United States)

    Money, Eric S; Reckhow, Kenneth H; Wiesner, Mark R

    2012-06-01

    We describe the use of Bayesian networks as a tool for nanomaterial risk forecasting and develop a baseline probabilistic model that incorporates nanoparticle specific characteristics and environmental parameters, along with elements of exposure potential, hazard, and risk related to nanomaterials. The baseline model, FINE (Forecasting the Impacts of Nanomaterials in the Environment), was developed using expert elicitation techniques. The Bayesian nature of FINE allows for updating as new data become available, a critical feature for forecasting risk in the context of nanomaterials. The specific case of silver nanoparticles (AgNPs) in aquatic environments is presented here (FINE(AgNP)). The results of this study show that Bayesian networks provide a robust method for formally incorporating expert judgments into a probabilistic measure of exposure and risk to nanoparticles, particularly when other knowledge bases may be lacking. The model is easily adapted and updated as additional experimental data and other information on nanoparticle behavior in the environment become available. The baseline model suggests that, within the bounds of uncertainty as currently quantified, nanosilver may pose the greatest potential risk as these particles accumulate in aquatic sediments. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Forecasting risk along a river basin using a probabilistic and deterministic model for environmental risk assessment of effluents through ecotoxicological evaluation and GIS.

    Science.gov (United States)

    Gutiérrez, Simón; Fernandez, Carlos; Barata, Carlos; Tarazona, José Vicente

    2009-12-20

    This work presents a computer model for Risk Assessment of Basins by Ecotoxicological Evaluation (RABETOX). The model is based on whole effluent toxicity testing and water flows along a specific river basin. It is capable of estimating the risk along a river segment using deterministic and probabilistic approaches. The Henares River Basin was selected as a case study to demonstrate the importance of seasonal hydrological variations in Mediterranean regions. As model inputs, two different ecotoxicity tests (the miniaturized Daphnia magna acute test and the D.magna feeding test) were performed on grab samples from 5 waste water treatment plant effluents. Also used as model inputs were flow data from the past 25 years, water velocity measurements and precise distance measurements using Geographical Information Systems (GIS). The model was implemented into a spreadsheet and the results were interpreted and represented using GIS in order to facilitate risk communication. To better understand the bioassays results, the effluents were screened through SPME-GC/MS analysis. The deterministic model, performed each month during one calendar year, showed a significant seasonal variation of risk while revealing that September represents the worst-case scenario with values up to 950 Risk Units. This classifies the entire area of study for the month of September as "sublethal significant risk for standard species". The probabilistic approach using Monte Carlo analysis was performed on 7 different forecast points distributed along the Henares River. A 0% probability of finding "low risk" was found at all forecast points with a more than 50% probability of finding "potential risk for sensitive species". The values obtained through both the deterministic and probabilistic approximations reveal the presence of certain substances, which might be causing sublethal effects in the aquatic species present in the Henares River.

  13. Evaluation of Dynamical Downscaling Resolution Effect on Wind Energy Forecast Value for a Wind Farm in Central Sweden

    DEFF Research Database (Denmark)

    Rosgaard, Martin Haubjerg; Hahmann, Andrea N.; Nielsen, Torben Skov

    accuracy metric evaluated for wind speed data consistently translates to an improvement for wind power. For two time series describing the temporal development of the same variable, though by different means, it is assumed that phase errors account for most of the departure from perfect correlation between...... the two time series. Results on limited-area NWP model performance, with focus on the 12th to 48th forecast hour horizon relevant for Elspot auction bidding on the Nord Pool Spot market [2], are presented....

  14. Evaluation of sequential images for photogrammetrically point determination

    Science.gov (United States)

    Kowalczyk, M.

    2011-12-01

    Close range photogrammetry encounters many problems with reconstruction of objects three-dimensional shape. Relative orientation parameters of taken photos makes usually key role leading to right solution of this problem. Automation of technology process is hardly performed due to recorded scene complexity and configuration of camera positions. This configuration makes the process of joining photos into one set usually impossible automatically. Application of camcorder is the solution widely proposed in literature for support in 3D models creation. Main advantages of this tool are connected with large number of recorded images and camera positions. Exterior orientation changes barely between two neighboring frames. Those features of film sequence gives possibilities for creating models with basic algorithms, working faster and more robust, than with remotely taken photos. The first part of this paper presents results of experiments determining interior orientation parameters of some sets of frames, presenting three-dimensional test field. This section describes calibration repeatability of film frames taken from camcorder. It is important due to stability of interior camera geometric parameters. Parametric model of systematical errors was applied for correcting images. Afterwards a short film of the same test field had been taken for determination of check points group. This part has been done for controlling purposes of camera application in measurement tasks. Finally there are presented some results of experiments which compare determination of recorded object points in 3D space. In common digital photogrammetry, where separate photos are used, first levels of image pyramids are taken to connect with feature based matching. This complicated process creates a lot of emergencies, which can produce false detections of image similarities. In case of digital film camera, authors of publications avoid this dangerous step, going straightly to area based matching, aiming

  15. Evaluating hydrological response to forecasted land-use change—scenario testing with the automated geospatial watershed assessment (AGWA) tool

    Science.gov (United States)

    Kepner, William G.; Semmens, Darius J.; Hernandez, Mariano; Goodrich, David C.

    2009-01-01

    Envisioning and evaluating future scenarios has emerged as a critical component of both science and social decision-making. The ability to assess, report, map, and forecast the life support functions of ecosystems is absolutely critical to our capacity to make informed decisions to maintain the sustainable nature of our ecosystem services now and into the future. During the past two decades, important advances in the integration of remote imagery, computer processing, and spatial-analysis technologies have been used to develop landscape information that can be integrated with hydrologic models to determine long-term change and make predictive inferences about the future. Two diverse case studies in northwest Oregon (Willamette River basin) and southeastern Arizona (San Pedro River) were examined in regard to future land use scenarios relative to their impact on surface water conditions (e.g., sediment yield and surface runoff) using hydrologic models associated with the Automated Geospatial Watershed Assessment (AGWA) tool. The base reference grid for land cover was modified in both study locations to reflect stakeholder preferences 20 to 60 yrs into the future, and the consequences of landscape change were evaluated relative to the selected future scenarios. The two studies provide examples of integrating hydrologic modeling with a scenario analysis framework to evaluate plausible future forecasts and to understand the potential impact of landscape change on ecosystem services.

  16. Use of Data Denial Experiments to Evaluate ESA Forecast Sensitivity Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Zack, J; Natenberg, E J; Knowe, G V; Manobianco, J; Waight, K; Hanley, D; Kamath, C

    2011-09-13

    The overall goal of this multi-phased research project known as WindSENSE is to develop an observation system deployment strategy that would improve wind power generation forecasts. The objective of the deployment strategy is to produce the maximum benefit for 1- to 6-hour ahead forecasts of wind speed at hub-height ({approx}80 m). In this phase of the project the focus is on the Mid-Columbia Basin region which encompasses the Bonneville Power Administration (BPA) wind generation area shown in Figure 1 that includes Klondike, Stateline, and Hopkins Ridge wind plants. The Ensemble Sensitivity Analysis (ESA) approach uses data generated by a set (ensemble) of perturbed numerical weather prediction (NWP) simulations for a sample time period to statistically diagnose the sensitivity of a specified forecast variable (metric) for a target location to parameters at other locations and prior times referred to as the initial condition (IC) or state variables. The ESA approach was tested on the large-scale atmospheric prediction problem by Ancell and Hakim 2007 and Torn and Hakim 2008. ESA was adapted and applied at the mesoscale by Zack et al. (2010a, b, and c) to the Tehachapi Pass, CA (warm and cools seasons) and Mid-Colombia Basin (warm season only) wind generation regions. In order to apply the ESA approach at the resolution needed at the mesoscale, Zack et al. (2010a, b, and c) developed the Multiple Observation Optimization Algorithm (MOOA). MOOA uses a multivariate regression on a few select IC parameters at one location to determine the incremental improvement of measuring multiple variables (representative of the IC parameters) at various locations. MOOA also determines how much information from each IC parameter contributes to the change in the metric variable at the target location. The Zack et al. studies (2010a, b, and c), demonstrated that forecast sensitivity can be characterized by well-defined, localized patterns for a number of IC variables such as 80-m

  17. DEWEPS - Development and Evaluation of new Wind forecasting tools with an Ensemble Prediction System

    Energy Technology Data Exchange (ETDEWEB)

    Moehrlen, C.; Joergensen, Jess

    2012-02-15

    There is an ongoing trend of increased privatization in the handling of renewable energy. This trend is required to ensure an efficient energy system, where improvements that make economic sense are prioritised. The reason why centralized forecasting can be a challenge in that matter is that the TSOs tend to optimize on physical error rather than cost. Consequently, the market is likely to speculate against the TSO, which in turn increases the cost of balancing. A privatized pool of wind and/or solar power is more difficult to speculate against, because the optimization criteria is unpredictable due to subjective risk considerations that may be taken into account at any time. Although there is and additional level of costs for the trading of the private volume, it can be argued that competition will accelerate efficiency from an economic perspective. The amount of power put into the market will become less predictable, when the wind power spot market bid takes place on the basis of a risk consideration in addition to the forecast information itself. The scope of this project is to contribute to more efficient wind power integration targeted both to centralised and decentralised cost efficient IT solutions, which will complement each other in market based energy systems. The DEWEPS project resulted in an extension of the number of Ensemble forecasts, an incremental trade strategy for balancing unpredictable power production, and an IT platform for efficient handling of power generation units. Together, these three elements contribute to less need for reserves, more capacity in the market, and thus more competition. (LN)

  18. A global flash flood forecasting system

    Science.gov (United States)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial

  19. Evaluating Point of Sale Tobacco Marketing Using Behavioral Laboratory Methods

    Science.gov (United States)

    Robinson, Jason D.; Drobes, David J.; Brandon, Thomas H.; Wetter, David W.; Cinciripini, Paul M.

    2018-01-01

    With passage of the 2009 Family Smoking Prevention and Tobacco Control Act, the FDA has authority to regulate tobacco advertising. As bans on traditional advertising venues and promotion of tobacco products have grown, a greater emphasis has been placed on brand exposure and price promotion in displays of products at the point-of-sale (POS). POS marketing seeks to influence attitudes and behavior towards tobacco products using a variety of explicit and implicit messaging approaches. Behavioral laboratory methods have the potential to provide the FDA with a strong scientific base for regulatory actions and a model for testing future manipulations of POS advertisements. We review aspects of POS marketing that potentially influence smoking behavior, including branding, price promotions, health claims, the marketing of emerging tobacco products, and tobacco counter-advertising. We conceptualize how POS marketing potentially influence individual attention, memory, implicit attitudes, and smoking behavior. Finally, we describe specific behavioral laboratory methods that can be adapted to measure the impact of POS marketing on these domains.

  20. Evaluation of global monitoring and forecasting systems at Mercator Océan

    Directory of Open Access Journals (Sweden)

    J.-M. Lellouche

    2013-01-01

    Full Text Available Since December 2010, the MyOcean global analysis and forecasting system has consisted of the Mercator Océan NEMO global 1/4° configuration with a 1/12° nested model over the Atlantic and the Mediterranean. The open boundary data for the nested configuration come from the global 1/4° configuration at 20° S and 80° N.

    The data are assimilated by means of a reduced-order Kalman filter with a 3-D multivariate modal decomposition of the forecast error. It includes an adaptive-error estimate and a localization algorithm. A 3-D-Var scheme provides a correction for the slowly evolving large-scale biases in temperature and salinity. Altimeter data, satellite sea surface temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. In addition to the quality control performed by data producers, the system carries out a proper quality control on temperature and salinity vertical profiles in order to minimise the risk of erroneous observed profiles being assimilated in the model.

    This paper describes the recent systems used by Mercator Océan and the validation procedure applied to current MyOcean systems as well as systems under development. The paper shows how refinements or adjustments to the system during the validation procedure affect its quality. Additionally, we show that quality checks (in situ, drifters and data sources (satellite sea surface temperature have as great an impact as the system design (model physics and assimilation parameters. The results of the scientific assessment are illustrated with diagnostics over the year 2010 mainly, assorted with time series over the 2007–2011 period. The validation procedure demonstrates the accuracy of MyOcean global products, whose quality is stable over time. All monitoring systems are close to altimetric observations with a forecast RMS difference of 7 cm. The update of the mean

  1. Experimental evaluation of wind turbines maximum power point tracking controllers

    International Nuclear Information System (INIS)

    Camblong, H.; Martinez de Alegria, I.; Rodriguez, M.; Abad, G.

    2006-01-01

    Wind energy technology has experienced important improvements this last decade. The transition from fixed speed to variable speed wind turbines has been a significant element of these improvements. It has allowed adapting the turbine rotational speed to the wind speed variations with the aim of optimizing the aerodynamic efficiency. A classic controller that has slow dynamics relative to the mechanical dynamics of the drive train is implemented in commercial wind turbines. The objective of the work related in this paper has been to evaluate the implementation, on a test bench, of a controller whose dynamics can be adjusted to be faster and to compare in particular its aerodynamic efficiency with the conventional controller. In theory, the higher dynamics of the non-classic controller has to lead to a better efficiency. A 180 kW wind turbine whose simulation model has been validated with field data is emulated on an 18 kW test bench. The emulator has also been validated. Test bench trials are a very useful step between numerical simulation and trials on the real system because they allow analyzing some phenomena that may not appear in simulations without endangering the real system. The trials on the test bench show that the non-conventional controller leads to a higher aerodynamic efficiency and that this is offset by higher mechanical torque and electric power fluctuations. Nevertheless, the amplitudes of these fluctuations are relatively low compared to their rated values

  2. Load forecasting

    International Nuclear Information System (INIS)

    Mak, H.

    1995-01-01

    Slides used in a presentation at The Power of Change Conference in Vancouver, BC in April 1995 about the changing needs for load forecasting were presented. Technological innovations and population increase were said to be the prime driving forces behind the changing needs in load forecasting. Structural changes, market place changes, electricity supply planning changes, and changes in planning objectives were other factors discussed. It was concluded that load forecasting was a form of information gathering, that provided important market intelligence

  3. Evaluating the applicability of using daily forecasts from seasonal prediction systems (SPSs) for agriculture: a case study of Nepal's Terai with the NCEP CFSv2

    Science.gov (United States)

    Jha, Prakash K.; Athanasiadis, Panos; Gualdi, Silvio; Trabucco, Antonio; Mereu, Valentina; Shelia, Vakhtang; Hoogenboom, Gerrit

    2018-03-01

    Ensemble forecasts from dynamic seasonal prediction systems (SPSs) have the potential to improve decision-making for crop management to help cope with interannual weather variability. Because the reliability of crop yield predictions based on seasonal weather forecasts depends on the quality of the forecasts, it is essential to evaluate forecasts prior to agricultural applications. This study analyses the potential of Climate Forecast System version 2 (CFSv2) in predicting the Indian summer monsoon (ISM) for producing meteorological variables relevant to crop modeling. The focus area was Nepal's Terai region, and the local hindcasts were compared with weather station and reanalysis data. The results showed that the CFSv2 model accurately predicts monthly anomalies of daily maximum and minimum air temperature (Tmax and Tmin) as well as incoming total surface solar radiation (Srad). However, the daily climatologies of the respective CFSv2 hindcasts exhibit significant systematic biases compared to weather station data. The CFSv2 is less capable of predicting monthly precipitation anomalies and simulating the respective intra-seasonal variability over the growing season. Nevertheless, the observed daily climatologies of precipitation fall within the ensemble spread of the respective daily climatologies of CFSv2 hindcasts. These limitations in the CFSv2 seasonal forecasts, primarily in precipitation, restrict the potential application for predicting the interannual variability of crop yield associated with weather variability. Despite these limitations, ensemble averaging of the simulated yield using all CFSv2 members after applying bias correction may lead to satisfactory yield predictions.

  4. Evaluating the Impact of AIRS Observations on Regional Forecasts at the SPoRT Center

    Science.gov (United States)

    Zavodsky, Bradley

    2011-01-01

    NASA Short-term Prediction Research and Transition (SPoRT) Center collaborates with operational partners of different sizes and operational goals to improve forecasts using targeted projects and data sets. Modeling and DA activities focus on demonstrating utility of NASA data sets and capabilities within operational systems. SPoRT has successfully assimilated the Atmospheric Infrared Sounder (AIRS) radiance and profile data. A collaborative project is underway with the Joint Center for Satellite Data Assimilation (JCSDA) to use AIRS profiles to better understand the impact of AIRS radiances assimilated within Gridpoint Statistical Interpolation (GSI) in hopes of engaging the operational DA community in a reassessment of assimilation methodologies to more effectively assimilate hyperspectral radiances.

  5. Evaluation of TRMM satellite-based precipitation indexes for flood forecasting over Riyadh City, Saudi Arabia

    Science.gov (United States)

    Tekeli, Ahmet Emre; Fouli, Hesham

    2016-10-01

    Floods are among the most common disasters harming humanity. In particular, flash floods cause hazards to life, property and any type of structures. Arid and semi-arid regions are equally prone to flash floods like regions with abundant rainfall. Despite rareness of intensive and frequent rainfall events over Kingdom of Saudi Arabia (KSA); an arid/semi-arid region, occasional flash floods occur and result in large amounts of damaging surface runoff. The flooding of 16 November, 2013 in Riyadh; the capital city of KSA, resulted in killing some people and led to much property damage. The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) Real Time (RT) data (3B42RT) are used herein for flash flood forecasting. 3B42RT detected high-intensity rainfall events matching with the distribution of observed floods over KSA. A flood early warning system based on exceedance of threshold limits on 3B42RT data is proposed for Riyadh. Three different indexes: Constant Threshold (CT), Cumulative Distribution Functions (CDF) and Riyadh Flood Precipitation Index (RFPI) are developed using 14-year 3B42RT data from 2000 to 2013. RFPI and CDF with 90% captured the three major flooding events that occurred in February 2005, May 2010 and November 2013 in Riyadh. CT with 3 mm/h intensity indicated the 2013 flooding, but missed those of 2005 and 2010. The methodology implemented herein is a first-step simple and accurate way for flash flood forecasting over Riyadh. The simplicity of the methodology enables its applicability for the TRMM follow-on missions like Global Precipitation Measurement (GPM) mission.

  6. Evaluation of Enhanced High Resolution MODIS/AMSR-E SSTs and the Impact on Regional Weather Forecast

    Science.gov (United States)

    Schiferl, Luke D.; Fuell, Kevin K.; Case, Jonathan L.; Jedlovec, Gary J.

    2010-01-01

    Over the last few years, the NASA Short-term Prediction Research and Transition (SPoRT) Center has been generating a 1-km sea surface temperature (SST) composite derived from retrievals of the Moderate Resolution Imaging Spectroradiometer (MODIS) for use in operational diagnostics and regional model initialization. With the assumption that the day-to-day variation in the SST is nominal, individual MODIS passes aboard the Earth Observing System (EOS) Aqua and Terra satellites are used to create and update four composite SST products each day at 0400, 0700, 1600, and 1900 UTC, valid over the western Atlantic and Caribbean waters. A six month study from February to August 2007 over the marine areas surrounding southern Florida was conducted to compare the use of the MODIS SST composite versus the Real-Time Global SST analysis to initialize the Weather Research and Forecasting (WRF) model. Substantial changes in the forecast heat fluxes were seen at times in the marine boundary layer, but relatively little overall improvement was measured in the sensible weather elements. The limited improvement in the WRF model forecasts could be attributed to the diurnal changes in SST seen in the MODIS SST composites but not accounted for by the model. Furthermore, cloud contamination caused extended periods when individual passes of MODIS were unable to update the SSTs, leading to substantial SST latency and a cool bias during the early summer months. In order to alleviate the latency problems, the SPoRT Center recently enhanced its MODIS SST composite by incorporating information from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) instruments as well as the Operational Sea Surface Temperature and Sea Ice Analysis. These enhancements substantially decreased the latency due to cloud cover and improved the bias and correlation of the composites at available marine point observations. While these enhancements improved upon the modeled cold bias using the original MODIS SSTs

  7. Tsunami Forecasting in the Atlantic Basin

    Science.gov (United States)

    Knight, W. R.; Whitmore, P.; Sterling, K.; Hale, D. A.; Bahng, B.

    2012-12-01

    The mission of the West Coast and Alaska Tsunami Warning Center (WCATWC) is to provide advance tsunami warning and guidance to coastal communities within its Area-of-Responsibility (AOR). Predictive tsunami models, based on the shallow water wave equations, are an important part of the Center's guidance support. An Atlantic-based counterpart to the long-standing forecasting ability in the Pacific known as the Alaska Tsunami Forecast Model (ATFM) is now developed. The Atlantic forecasting method is based on ATFM version 2 which contains advanced capabilities over the original model; including better handling of the dynamic interactions between grids, inundation over dry land, new forecast model products, an optional non-hydrostatic approach, and the ability to pre-compute larger and more finely gridded regions using parallel computational techniques. The wide and nearly continuous Atlantic shelf region presents a challenge for forecast models. Our solution to this problem has been to develop a single unbroken high resolution sub-mesh (currently 30 arc-seconds), trimmed to the shelf break. This allows for edge wave propagation and for kilometer scale bathymetric feature resolution. Terminating the fine mesh at the 2000m isobath keeps the number of grid points manageable while allowing for a coarse (4 minute) mesh to adequately resolve deep water tsunami dynamics. Higher resolution sub-meshes are then included around coastal forecast points of interest. The WCATWC Atlantic AOR includes eastern U.S. and Canada, the U.S. Gulf of Mexico, Puerto Rico, and the Virgin Islands. Puerto Rico and the Virgin Islands are in very close proximity to well-known tsunami sources. Because travel times are under an hour and response must be immediate, our focus is on pre-computing many tsunami source "scenarios" and compiling those results into a database accessible and calibrated with observations during an event. Seismic source evaluation determines the order of model pre

  8. Evaluating 5 and 8 pH-point titrations for measuring VFA in full-scale ...

    African Journals Online (AJOL)

    2012-02-24

    Feb 24, 2012 ... An evaluation of 5 and 8 pH-point titrimetric methods for determining volatile ... energy source, is of interest, and has been implemented at ... distribution of the carbon produced. ... key indicator in evaluating the operation of anaerobic systems, ... cally distributed around the dissociation points (pKa) of the.

  9. Against all odds -- Probabilistic forecasts and decision making

    Science.gov (United States)

    Liechti, Katharina; Zappa, Massimiliano

    2015-04-01

    In the city of Zurich (Switzerland) the setting is such that the damage potential due to flooding of the river Sihl is estimated to about 5 billion US dollars. The flood forecasting system that is used by the administration for decision making runs continuously since 2007. It has a time horizon of max. five days and operates at hourly time steps. The flood forecasting system includes three different model chains. Two of those are run by the deterministic NWP models COSMO-2 and COSMO-7 and one is driven by the probabilistic NWP COSMO-Leps. The model chains are consistent since February 2010, so five full years are available for the evaluation for the system. The system was evaluated continuously and is a very nice example to present the added value that lies in probabilistic forecasts. The forecasts are available on an online-platform to the decision makers. Several graphical representations of the forecasts and forecast-history are available to support decision making and to rate the current situation. The communication between forecasters and decision-makers is quite close. To put it short, an ideal situation. However, an event or better put a non-event in summer 2014 showed that the knowledge about the general superiority of probabilistic forecasts doesn't necessarily mean that the decisions taken in a specific situation will be based on that probabilistic forecast. Some years of experience allow gaining confidence in the system, both for the forecasters and for the decision-makers. Even if from the theoretical point of view the handling during crisis situation is well designed, a first event demonstrated that the dialog with the decision-makers still lacks of exercise during such situations. We argue, that a false alarm is a needed experience to consolidate real-time emergency procedures relying on ensemble predictions. A missed event would probably also fit, but, in our case, we are very happy not to report about this option.

  10. Evaluation of Statistical Methods for Modeling Historical Resource Production and Forecasting

    Science.gov (United States)

    Nanzad, Bolorchimeg

    This master's thesis project consists of two parts. Part I of the project compares modeling of historical resource production and forecasting of future production trends using the logit/probit transform advocated by Rutledge (2011) with conventional Hubbert curve fitting, using global coal production as a case study. The conventional Hubbert/Gaussian method fits a curve to historical production data whereas a logit/probit transform uses a linear fit to a subset of transformed production data. Within the errors and limitations inherent in this type of statistical modeling, these methods provide comparable results. That is, despite that apparent goodness-of-fit achievable using the Logit/Probit methodology, neither approach provides a significant advantage over the other in either explaining the observed data or in making future projections. For mature production regions, those that have already substantially passed peak production, results obtained by either method are closely comparable and reasonable, and estimates of ultimately recoverable resources obtained by either method are consistent with geologically estimated reserves. In contrast, for immature regions, estimates of ultimately recoverable resources generated by either of these alternative methods are unstable and thus, need to be used with caution. Although the logit/probit transform generates high quality-of-fit correspondence with historical production data, this approach provides no new information compared to conventional Gaussian or Hubbert-type models and may have the effect of masking the noise and/or instability in the data and the derived fits. In particular, production forecasts for immature or marginally mature production systems based on either method need to be regarded with considerable caution. Part II of the project investigates the utility of a novel alternative method for multicyclic Hubbert modeling tentatively termed "cycle-jumping" wherein overlap of multiple cycles is limited. The

  11. Evaluation of 2-point, 3-point, and 6-point Dixon magnetic resonance imaging with flexible echo timing for muscle fat quantification.

    Science.gov (United States)

    Grimm, Alexandra; Meyer, Heiko; Nickel, Marcel D; Nittka, Mathias; Raithel, Esther; Chaudry, Oliver; Friedberger, Andreas; Uder, Michael; Kemmler, Wolfgang; Quick, Harald H; Engelke, Klaus

    2018-06-01

    The purpose of this study is to evaluate and compare 2-point (2pt), 3-point (3pt), and 6-point (6pt) Dixon magnetic resonance imaging (MRI) sequences with flexible echo times (TE) to measure proton density fat fraction (PDFF) within muscles. Two subject groups were recruited (G1: 23 young and healthy men, 31 ± 6 years; G2: 50 elderly men, sarcopenic, 77 ± 5 years). A 3-T MRI system was used to perform Dixon imaging on the left thigh. PDFF was measured with six Dixon prototype sequences: 2pt, 3pt, and 6pt sequences once with optimal TEs (in- and opposed-phase echo times), lower resolution, and higher bandwidth (optTE sequences) and once with higher image resolution (highRes sequences) and shortest possible TE, respectively. Intra-fascia PDFF content was determined. To evaluate the comparability among the sequences, Bland-Altman analysis was performed. The highRes 6pt Dixon sequences served as reference as a high correlation of this sequence to magnetic resonance spectroscopy has been shown before. The PDFF difference between the highRes 6pt Dixon sequence and the optTE 6pt, both 3pt, and the optTE 2pt was low (between 2.2% and 4.4%), however, not to the highRes 2pt Dixon sequence (33%). For the optTE sequences, difference decreased with the number of echoes used. In conclusion, for Dixon sequences with more than two echoes, the fat fraction measurement was reliable with arbitrary echo times, while for 2pt Dixon sequences, it was reliable with dedicated in- and opposed-phase echo timing. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Seasonal Drought Forecasting for Latin America Using the ECMWF S4 Forecast System

    Directory of Open Access Journals (Sweden)

    Hugo Carrão

    2018-06-01

    Full Text Available Meaningful seasonal prediction of drought conditions is key information for end-users and water managers, particularly in Latin America where crop and livestock production are key for many regional economies. However, there are still not many studies of the feasibility of such a forecasts at continental level in the region. In this study, precipitation predictions from the European Centre for Medium Range Weather (ECMWF seasonal forecast system S4 are combined with observed precipitation data to generate forecasts of the standardized precipitation index (SPI for Latin America, and their skill is evaluated over the hindcast period 1981–2010. The value-added utility in using the ensemble S4 forecast to predict the SPI is identified by comparing the skill of its forecasts with a baseline skill based solely on their climatological characteristics. As expected, skill of the S4-generated SPI forecasts depends on the season, location, and the specific aggregation period considered (the 3- and 6-month SPI were evaluated. Added skill from the S4 for lead times equaling the SPI accumulation periods is primarily present in regions with high intra-annual precipitation variability, and is found mostly for the months at the end of the dry seasons for 3-month SPI, and half-yearly periods for 6-month SPI. The ECMWF forecast system behaves better than the climatology for clustered grid points in the North of South America, the Northeast of Argentina, Uruguay, southern Brazil and Mexico. The skillful regions are similar for the SPI3 and -6, but become reduced in extent for the severest SPI categories. Forecasting different magnitudes of meteorological drought intensity on a seasonal time scale still remains a challenge. However, the ECMWF S4 forecasting system does capture the occurrence of drought events for the aforementioned regions and seasons reasonably well. In the near term, the largest advances in the prediction of meteorological drought for Latin

  13. Evaluation of Improved Pushback Forecasts Derived from Airline Ground Operations Data

    Science.gov (United States)

    Carr, Francis; Theis, Georg; Feron, Eric; Clarke, John-Paul

    2003-01-01

    Accurate and timely predictions of airline pushbacks can potentially lead to improved performance of automated decision-support tools for airport surface traffic, thus reducing the variability and average duration of costly airline delays. One factor which affects the realization of these benefits is the level of uncertainty inherent in the turn processes. To characterize this inherent uncertainty, three techniques are developed for predicting time-to-go until pushback as a function of available ground-time; elapsed ground-time; and the status (not-started/in-progress/completed) of individual turn processes (cleaning, fueling, etc.). These techniques are tested against a large and detailed dataset covering approximately l0(exp 4) real-world turn operations obtained through collaboration with Deutsche Lufthansa AG. Even after the dataset is filtered to obtain a sample of turn operations with minimal uncertainty, the standard deviation of forecast error for all three techniques is lower-bounded away from zero, indicating that turn operations have a significant stochastic component. This lower-bound result shows that decision-support tools must be designed to incorporate robust mechanisms for coping with pushback demand stochasticity, rather than treating the pushback demand process as a known deterministic input.

  14. Developing and Evaluating RGB Composite MODIS Imagery for Applications in National Weather Service Forecast Offices

    Science.gov (United States)

    Oswald, Hayden; Molthan, Andrew L.

    2011-01-01

    Satellite remote sensing has gained widespread use in the field of operational meteorology. Although raw satellite imagery is useful, several techniques exist which can convey multiple types of data in a more efficient way. One of these techniques is multispectral compositing. The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed two multispectral satellite imagery products which utilize data from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra and Aqua satellites, based upon products currently generated and used by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT). The nighttime microphysics product allows users to identify clouds occurring at different altitudes, but emphasizes fog and low cloud detection. This product improves upon current spectral difference and single channel infrared techniques. Each of the current products has its own set of advantages for nocturnal fog detection, but each also has limiting drawbacks which can hamper the analysis process. The multispectral product combines each current product with a third channel difference. Since the final image is enhanced with color, it simplifies the fog identification process. Analysis has shown that the nighttime microphysics imagery product represents a substantial improvement to conventional fog detection techniques, as well as provides a preview of future satellite capabilities to forecasters.

  15. State-space adjustment of radar rainfall and skill score evaluation of stochastic volume forecasts in urban drainage systems

    DEFF Research Database (Denmark)

    Löwe, Roland; Mikkelsen, Peter Steen; Rasmussen, Michael Robdrup

    2013-01-01

    Merging of radar rainfall data with rain gauge measurements is a common approach to overcome problems in deriving rain intensities from radar measurements. We extend an existing approach for adjustment of C-band radar data using state-space models and use the resulting rainfall intensities as input...... improves runoff forecasts compared with using the original radar data and that rain gauge measurements as forecast input are also outperformed. Combining the data merging approach with short-term rainfall forecasting algorithms may result in further improved runoff forecasts that can be used in real time...

  16. Gas and electric power 2003. Evolution of the energy panorama in Europe: evaluation, forecasting and precautions

    International Nuclear Information System (INIS)

    Boigegrain, R.; Tran Thiet, J.P.; Givry, L.; Lapierre, A.; Vivies, P. de; Brelle, B.; Vedrenne, Ph.; Didier, E.; Munch, P.; Rodrigues, St.; Lermusieau, Ph.; Macchiati, A.; Lamboley, Ph.; Bouchard, G.; Canetti, J.; Bresson, Th. de; Chevalier, J.M.; Saint Andre, B.; Werquin, A.; Mouton, F.R.; Boulanger, Ph.; Vivies, P. de; Terzian, P.

    2003-11-01

    This 12. international congress on gas and electricity covers the following topics: 1 - change in the energy panorama in Europe: statement, forecasting and precautions: fusions, acquisitions, partnerships and their consequences; evolution of the regulation: actors, decisions and time delays (regulation of electricity and gas in Europe - convergencies and divergences; specificities of the French gas and electricity markets and their perspectives of evolution; focus on the 2003 highlights: the January 3, 2003 law, about 20 new decrees and the 2. gas directive); market regulation: new missions, powers and limitations of the different actors (mission, power and place of regulation authorities today and their possible evolution, status competences extension towards gas; consequences of the introduction of the adjustment mechanism, new stakes of power transportation networks; stakes for gas transport and storage in France and in Europe); spot markets and suitable solutions for industrialists (short-term management of risks; juridical and legal precautions to take before starting a power trade activity; short- and medium-term risk management possibilities; 2 - markets opening and new strategies of energy purchase and selling: strategies of foreign actors in France and opportunities for French actors abroad (market opening and its stakes, specificities and opportunities of the energy market in Italy; challenges and opportunities of gas markets opening in Europe: the Ruhrgas approach; stakes of the French market opening: experience feedback of Endesa Europe); repositioning of activities (the new position of Gaz de France (GdF); the deregulated market: risks and opportunities); changing of supplier or partnerships power (towards commercial repositioning); round table: regulators, suppliers, purchasers: are you ready? The congress ends with a practical training course emceed by Endesa: the French electricity and gas markets in the European context; the management of the

  17. Scenario Analysis: Evaluating Biodiversity Response to Forecasted Land-Use Change in the San Pedro River Basin (U.S.-Mexico)

    Science.gov (United States)

    Envisioning and evaluating future scenarios has emerged as a critical component of both science and social decision-making. The ability to assess, report, map, and forecast the life support functions of ecosystems is absolutely critical to our capacity to make informed decisions...

  18. Evaluation of the Weather Research and Forecasting mesoscale model for GABLS3: Impact of boundary-layer schemes, boundary conditions and spin-up

    NARCIS (Netherlands)

    Kleczek, M.A.; Steeneveld, G.J.; Holtslag, A.A.M.

    2014-01-01

    We evaluated the performance of the three-dimensional Weather Research and Forecasting (WRF) mesoscale model, specifically the performance of the planetary boundary-layer (PBL) parametrizations. For this purpose, Cabauw tower observations were used, with the study extending beyond the third GEWEX

  19. Development of an Adaptive Forecasting System: A Case Study of a PC Manufacturer in South Korea

    Directory of Open Access Journals (Sweden)

    Chihyun Jung

    2016-03-01

    Full Text Available We present a case study of the development of an adaptive forecasting system for a leading personal computer (PC manufacturer in South Korea. It is widely accepted that demand forecasting for products with short product life cycles (PLCs is difficult, and the PLC of a PC is generally very short. The firm has various types of products, and the volatile demand patterns differ by product. Moreover, we found that different departments have different requirements when it comes to the accuracy, point-of-time and range of the forecasts. We divide the demand forecasting process into three stages depending on the requirements and purposes. The systematic forecasting process is then introduced to improve the accuracy of demand forecasting and to meet the department-specific requirements. Moreover, a newly devised short-term forecasting method is presented, which utilizes the long-term forecasting results of the preceding stages. We evaluate our systematic forecasting methods based on actual sales data from the PC manufacturer, where our forecasting methods have been implemented.

  20. Analytical evaluation of a new point of care system for measuring cardiac Troponin I

    NARCIS (Netherlands)

    Kemper, D.W.; Semjonow, V.; de Theije, F.; Keizer, D.; van Lippen, L.; Mair, J.; Wille, B.; Christ, M.; Geijer, F.; Hausfater, P.; Pariente, D.; Scharnhorst, V.; Curvers, J.; Nieuwenhuis, J.

    2017-01-01

    OBJECTIVES: Point-of-care cardiac troponin testing with adequate analytical performances has the potential to improve chest pain patients flow in the emergency department. We present the analytical evaluation of the newly developed Philips Minicare cTnI point-of-care immunoassay. DESIGN & METHODS:

  1. Evaluation of point-of-care tests for detecting microalbuminuria in ...

    African Journals Online (AJOL)

    Evaluation of point-of-care tests for detecting microalbuminuria in diabetic patients. ... creatinine (modified Jaffe) and albumin-to-creatinine ratio (ACR). Results: Linear regression analysis demonstrated a good correlation for the HemoCue® ...

  2. Extended performance evaluation based on DEA a multidimensional point of view

    CERN Document Server

    Neumann, Ludmila

    2017-01-01

    This book introduces new methodological developments of Data Envelopment Analysis (DEA) that satisfy the demands of business practice and provide a multidimensional point of view on the evaluation of organizational performance.

  3. SUMMARY AND EVALUATION OF STARTUP AND OPERATING EXPERIENCE AT INDIAN POINT STATION

    Energy Technology Data Exchange (ETDEWEB)

    Freyberg, R. H.; Prestele, J. A.

    1963-09-15

    A description of the Indian Point Power Station is given aiong with a summary and evaluation of startup and operating experience. Equipment failures and problems and various corrective measures are also outlined. (C.E.S.)

  4. Point of Maintenance Ruggedized Operational Device Evaluation and Observation Test Report

    National Research Council Canada - National Science Library

    Gorman, Megan

    2002-01-01

    .... The Ruggedized Operational Device Evaluation and Observation (RODEO) test examined hardware packaging, software user interface, and environmental factors associated with the usability of potential Point of Maintenance (POMx) electronic tools...

  5. On robust forecasting of autoregressive time series under censoring

    OpenAIRE

    Kharin, Y.; Badziahin, I.

    2009-01-01

    Problems of robust statistical forecasting are considered for autoregressive time series observed under distortions generated by interval censoring. Three types of robust forecasting statistics are developed; meansquare risk is evaluated for the developed forecasting statistics. Numerical results are given.

  6. Evaluation of Dynamical Downscaling Resolution Effect on Wind Energy Forecast Value for a Wind Farm in Central Sweden

    DEFF Research Database (Denmark)

    Rosgaard, Martin Haubjerg; Hahmann, Andrea N.; Nielsen, Torben Skov

    2014-01-01

    energy. The present study aims to quantify value added to wind energy forecasts in the 12-48 hour leadtime by downscaling global numerical weather prediction (NWP) data from the National Centers for Environmental Prediction Global Forecast System (GFS) using the limited-area NWP model described...

  7. Post LANDSAT D Advanced Concept Evaluation (PLACE). [with emphasis on mission planning, technological forecasting, and user requirements

    Science.gov (United States)

    1977-01-01

    An outline is given of the mission objectives and requirements, system elements, system concepts, technology requirements and forecasting, and priority analysis for LANDSAT D. User requirements and mission analysis and technological forecasting are emphasized. Mission areas considered include agriculture, range management, forestry, geology, land use, water resources, environmental quality, and disaster assessment.

  8. Exposure Forecaster

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Exposure Forecaster Database (ExpoCastDB) is EPA's database for aggregating chemical exposure information and can be used to help with chemical exposure...

  9. Strategic Forecasting

    DEFF Research Database (Denmark)

    Duus, Henrik Johannsen

    2016-01-01

    Purpose: The purpose of this article is to present an overview of the area of strategic forecasting and its research directions and to put forward some ideas for improving management decisions. Design/methodology/approach: This article is conceptual but also informed by the author’s long contact...... and collaboration with various business firms. It starts by presenting an overview of the area and argues that the area is as much a way of thinking as a toolbox of theories and methodologies. It then spells out a number of research directions and ideas for management. Findings: Strategic forecasting is seen...... as a rebirth of long range planning, albeit with new methods and theories. Firms should make the building of strategic forecasting capability a priority. Research limitations/implications: The article subdivides strategic forecasting into three research avenues and suggests avenues for further research efforts...

  10. Evaluating Weather Research and Forecasting Model Sensitivity to Land and Soil Conditions Representative of Karst Landscapes

    Science.gov (United States)

    Johnson, Christopher M.; Fan, Xingang; Mahmood, Rezaul; Groves, Chris; Polk, Jason S.; Yan, Jun

    2018-03-01

    Due to their particular physiographic, geomorphic, soil cover, and complex surface-subsurface hydrologic conditions, karst regions produce distinct land-atmosphere interactions. It has been found that floods and droughts over karst regions can be more pronounced than those in non-karst regions following a given rainfall event. Five convective weather events are simulated using the Weather Research and Forecasting model to explore the potential impacts of land-surface conditions on weather simulations over karst regions. Since no existing weather or climate model has the ability to represent karst landscapes, simulation experiments in this exploratory study consist of a control (default land-cover/soil types) and three land-surface conditions, including barren ground, forest, and sandy soils over the karst areas, which mimic certain karst characteristics. Results from sensitivity experiments are compared with the control simulation, as well as with the National Centers for Environmental Prediction multi-sensor precipitation analysis Stage-IV data, and near-surface atmospheric observations. Mesoscale features of surface energy partition, surface water and energy exchange, the resulting surface-air temperature and humidity, and low-level instability and convective energy are analyzed to investigate the potential land-surface impact on weather over karst regions. We conclude that: (1) barren ground used over karst regions has a pronounced effect on the overall simulation of precipitation. Barren ground provides the overall lowest root-mean-square errors and bias scores in precipitation over the peak-rain periods. Contingency table-based equitable threat and frequency bias scores suggest that the barren and forest experiments are more successful in simulating light to moderate rainfall. Variables dependent on local surface conditions show stronger contrasts between karst and non-karst regions than variables dominated by large-scale synoptic systems; (2) significant

  11. Determination of reliability of express forecasting evaluation of radiometric enriching ability of non-ferrous ores

    International Nuclear Information System (INIS)

    Kirpishchikov, S.P.

    1991-01-01

    Use of the data of nuclear physical methods of sampling and logging enables to improve reliability of evaluation of radiometric enriching ability of ores, as well as to evaluate quantitatively this reliability. This problem may be solved by using some concepts of geostatistics. The presented results enable to conclude, that the data of nuclear-physical methods of sampling and logging can provide high reliability of evaluation of radiometric enriching ability of non-ferrous ores and their geometrization by technological types

  12. DeMand: A tool for evaluating and comparing device-level demand and supply forecast models

    DEFF Research Database (Denmark)

    Neupane, Bijay; Siksnys, Laurynas; Pedersen, Torben Bach

    2016-01-01

    Fine-grained device-level predictions of both shiftable and non-shiftable energy demand and supply is vital in order to take advantage of Demand Response (DR) for efficient utilization of Renewable Energy Sources. The selection of an effective device-level load forecast model is a challenging task......, mainly due to the diversity of the models and the lack of proper tools and datasets that can be used to validate them. In this paper, we introduce the DeMand system for fine-tuning, analyzing, and validating the device-level forecast models. The system offers several built-in device-level measurement...... datasets, forecast models, features, and errors measures, thus semi-automating most of the steps of the forecast model selection and validation process. This paper presents the architecture and data model of the DeMand system; and provides a use-case example on how one particular forecast model...

  13. CETF Space Station payload pointing system design and analysis feasibility study. [Critical Evaluation Task Force

    Science.gov (United States)

    Smagala, Tom; Mcglew, Dave

    1988-01-01

    The expected pointing performance of an attached payload coupled to the Critical Evaluation Task Force Space Station via a payload pointing system (PPS) is determined. The PPS is a 3-axis gimbal which provides the capability for maintaining inertial pointing of a payload in the presence of disturbances associated with the Space Station environment. A system where the axes of rotation were offset from the payload center of mass (CM) by 10 in. in the Z axis was studied as well as a system having the payload CM offset by only 1 inch. There is a significant improvement in pointing performance when going from the 10 in. to the 1 in. gimbal offset.

  14. A dynamic method to forecast the wheel slip for antilock braking system and its experimental evaluation.

    Science.gov (United States)

    Oniz, Yesim; Kayacan, Erdal; Kaynak, Okyay

    2009-04-01

    The control of an antilock braking system (ABS) is a difficult problem due to its strongly nonlinear and uncertain characteristics. To overcome this difficulty, the integration of gray-system theory and sliding-mode control is proposed in this paper. This way, the prediction capabilities of the former and the robustness of the latter are combined to regulate optimal wheel slip depending on the vehicle forward velocity. The design approach described is novel, considering that a point, rather than a line, is used as the sliding control surface. The control algorithm is derived and subsequently tested on a quarter vehicle model. Encouraged by the simulation results indicating the ability to overcome the stated difficulties with fast convergence, experimental results are carried out on a laboratory setup. The results presented indicate the potential of the approach in handling difficult real-time control problems.

  15. Forecasting metal prices: Do forecasters herd?

    DEFF Research Database (Denmark)

    Pierdzioch, C.; Rulke, J. C.; Stadtmann, G.

    2013-01-01

    We analyze more than 20,000 forecasts of nine metal prices at four different forecast horizons. We document that forecasts are heterogeneous and report that anti-herding appears to be a source of this heterogeneity. Forecaster anti-herding reflects strategic interactions among forecasters...

  16. Entropy Based Test Point Evaluation and Selection Method for Analog Circuit Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2014-01-01

    Full Text Available By simplifying tolerance problem and treating faulty voltages on different test points as independent variables, integer-coded table technique is proposed to simplify the test point selection process. Usually, simplifying tolerance problem may induce a wrong solution while the independence assumption will result in over conservative result. To address these problems, the tolerance problem is thoroughly considered in this paper, and dependency relationship between different test points is considered at the same time. A heuristic graph search method is proposed to facilitate the test point selection process. First, the information theoretic concept of entropy is used to evaluate the optimality of test point. The entropy is calculated by using the ambiguous sets and faulty voltage distribution, determined by component tolerance. Second, the selected optimal test point is used to expand current graph node by using dependence relationship between the test point and graph node. Simulated results indicate that the proposed method more accurately finds the optimal set of test points than other methods; therefore, it is a good solution to minimize the size of the test point set. To simplify and clarify the proposed method, only catastrophic and some specific parametric faults are discussed in this paper.

  17. IFIS Model-Plus: A Web-Based GUI for Visualization, Comparison and Evaluation of Distributed Flood Forecasts and Hindcasts

    Science.gov (United States)

    Krajewski, W. F.; Della Libera Zanchetta, A.; Mantilla, R.; Demir, I.

    2017-12-01

    This work explores the use of hydroinformatics tools to provide an user friendly and accessible interface for executing and assessing the output of realtime flood forecasts using distributed hydrological models. The main result is the implementation of a web system that uses an Iowa Flood Information System (IFIS)-based environment for graphical displays of rainfall-runoff simulation results for both real-time and past storm events. It communicates with ASYNCH ODE solver to perform large-scale distributed hydrological modeling based on segmentation of the terrain into hillslope-link hydrologic units. The cyber-platform also allows hindcast of model performance by testing multiple model configurations and assumptions of vertical flows in the soils. The scope of the currently implemented system is the entire set of contributing watersheds for the territory of the state of Iowa. The interface provides resources for visualization of animated maps for different water-related modeled states of the environment, including flood-waves propagation with classification of flood magnitude, runoff generation, surface soil moisture and total water column in the soil. Additional tools for comparing different model configurations and performing model evaluation by comparing to observed variables at monitored sites are also available. The user friendly interface has been published to the web under the URL http://ifis.iowafloodcenter.org/ifis/sc/modelplus/.

  18. An Evaluation of a High-Resolution Operational Wave Forecasting System in the Adriatic Sea

    Science.gov (United States)

    2009-01-01

    1226 Office of Counsel,Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only), Code 703o 4 VO-oV 4/2...examine and evaluate wind-wave modeling capability (Cavaleri et al., 1989). Many institutions run global and regional atmospheric and wave models...limited-area model (LAM) built on the basis of the global model IFS/ARPEGE (ARPEGE - Action de Recherche Petite Echelle Grande Echelle, 1FS - Integrated

  19. National program of fight against the climate change. 2. annual evaluation and forecasting

    International Nuclear Information System (INIS)

    2002-01-01

    This conference discussed the actions realized in the framework of the National Plan of Fight against the Climatic Change (PNLCC). The first part presents the problem, the evaluation of the PNLCC application and the control tools. the second part is devoted to the transport sector and the second to the buildings and the electric power demand control. The last part deals with the prospective and the challenges of the PNLCC. (A.L.B.)

  20. Evaluation of melting point of UO2 by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Arima, Tatsumi; Idemitsu, Kazuya; Inagaki, Yaohiro; Tsujita, Yuichi; Kinoshita, Motoyasu; Yakub, Eugene

    2009-01-01

    The melting point of UO 2 has been evaluated by molecular dynamics simulation (MD) in terms of interatomic potential, pressure and Schottky defect concentration. The Born-Mayer-Huggins potentials with or without a Morse potential were explored in the present study. Two-phase simulation whose supercell at the initial state consisted of solid and liquid phases gave the melting point comparable to the experimental data using the potential proposed by Yakub. The heat of fusion was determined by the difference in enthalpy at the melting point. In addition, MD calculations showed that the melting point increased with pressure applied to the system. Thus, the Clausius-Clapeyron equation was verified. Furthermore, MD calculations clarified that an addition of Schottky defects, which generated the local disorder in the UO 2 crystal, lowered the melting point.

  1. Improved DEA Cross Efficiency Evaluation Method Based on Ideal and Anti-Ideal Points

    Directory of Open Access Journals (Sweden)

    Qiang Hou

    2018-01-01

    Full Text Available A new model is introduced in the process of evaluating efficiency value of decision making units (DMUs through data envelopment analysis (DEA method. Two virtual DMUs called ideal point DMU and anti-ideal point DMU are combined to form a comprehensive model based on the DEA method. The ideal point DMU is taking self-assessment system according to efficiency concept. The anti-ideal point DMU is taking other-assessment system according to fairness concept. The two distinctive ideal point models are introduced to the DEA method and combined through using variance ration. From the new model, a reasonable result can be obtained. Numerical examples are provided to illustrate the new constructed model and certify the rationality of the constructed model through relevant analysis with the traditional DEA model.

  2. Novel evaluation metrics for sparse spatio-temporal point process hotspot predictions - a crime case study

    OpenAIRE

    Adepeju, M.; Rosser, G.; Cheng, T.

    2016-01-01

    Many physical and sociological processes are represented as discrete events in time and space. These spatio-temporal point processes are often sparse, meaning that they cannot be aggregated and treated with conventional regression models. Models based on the point process framework may be employed instead for prediction purposes. Evaluating the predictive performance of these models poses a unique challenge, as the same sparseness prevents the use of popular measures such as the root mean squ...

  3. Evaluation of a 3D point cloud tetrahedral tomographic reconstruction method

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, N F; Sitek, A, E-mail: nfp4@bwh.harvard.ed, E-mail: asitek@bwh.harvard.ed [Department of Radiology, Brigham and Women' s Hospital-Harvard Medical School Boston, MA (United States)

    2010-09-21

    Tomographic reconstruction on an irregular grid may be superior to reconstruction on a regular grid. This is achieved through an appropriate choice of the image space model, the selection of an optimal set of points and the use of any available prior information during the reconstruction process. Accordingly, a number of reconstruction-related parameters must be optimized for best performance. In this work, a 3D point cloud tetrahedral mesh reconstruction method is evaluated for quantitative tasks. A linear image model is employed to obtain the reconstruction system matrix and five point generation strategies are studied. The evaluation is performed using the recovery coefficient, as well as voxel- and template-based estimates of bias and variance measures, computed over specific regions in the reconstructed image. A similar analysis is performed for regular grid reconstructions that use voxel basis functions. The maximum likelihood expectation maximization reconstruction algorithm is used. For the tetrahedral reconstructions, of the five point generation methods that are evaluated, three use image priors. For evaluation purposes, an object consisting of overlapping spheres with varying activity is simulated. The exact parallel projection data of this object are obtained analytically using a parallel projector, and multiple Poisson noise realizations of these exact data are generated and reconstructed using the different point generation strategies. The unconstrained nature of point placement in some of the irregular mesh-based reconstruction strategies has superior activity recovery for small, low-contrast image regions. The results show that, with an appropriately generated set of mesh points, the irregular grid reconstruction methods can out-perform reconstructions on a regular grid for mathematical phantoms, in terms of the performance measures evaluated.

  4. Evaluation of a 3D point cloud tetrahedral tomographic reconstruction method

    Science.gov (United States)

    Pereira, N. F.; Sitek, A.

    2010-09-01

    Tomographic reconstruction on an irregular grid may be superior to reconstruction on a regular grid. This is achieved through an appropriate choice of the image space model, the selection of an optimal set of points and the use of any available prior information during the reconstruction process. Accordingly, a number of reconstruction-related parameters must be optimized for best performance. In this work, a 3D point cloud tetrahedral mesh reconstruction method is evaluated for quantitative tasks. A linear image model is employed to obtain the reconstruction system matrix and five point generation strategies are studied. The evaluation is performed using the recovery coefficient, as well as voxel- and template-based estimates of bias and variance measures, computed over specific regions in the reconstructed image. A similar analysis is performed for regular grid reconstructions that use voxel basis functions. The maximum likelihood expectation maximization reconstruction algorithm is used. For the tetrahedral reconstructions, of the five point generation methods that are evaluated, three use image priors. For evaluation purposes, an object consisting of overlapping spheres with varying activity is simulated. The exact parallel projection data of this object are obtained analytically using a parallel projector, and multiple Poisson noise realizations of these exact data are generated and reconstructed using the different point generation strategies. The unconstrained nature of point placement in some of the irregular mesh-based reconstruction strategies has superior activity recovery for small, low-contrast image regions. The results show that, with an appropriately generated set of mesh points, the irregular grid reconstruction methods can out-perform reconstructions on a regular grid for mathematical phantoms, in terms of the performance measures evaluated.

  5. Evaluation of a 3D point cloud tetrahedral tomographic reconstruction method

    International Nuclear Information System (INIS)

    Pereira, N F; Sitek, A

    2010-01-01

    Tomographic reconstruction on an irregular grid may be superior to reconstruction on a regular grid. This is achieved through an appropriate choice of the image space model, the selection of an optimal set of points and the use of any available prior information during the reconstruction process. Accordingly, a number of reconstruction-related parameters must be optimized for best performance. In this work, a 3D point cloud tetrahedral mesh reconstruction method is evaluated for quantitative tasks. A linear image model is employed to obtain the reconstruction system matrix and five point generation strategies are studied. The evaluation is performed using the recovery coefficient, as well as voxel- and template-based estimates of bias and variance measures, computed over specific regions in the reconstructed image. A similar analysis is performed for regular grid reconstructions that use voxel basis functions. The maximum likelihood expectation maximization reconstruction algorithm is used. For the tetrahedral reconstructions, of the five point generation methods that are evaluated, three use image priors. For evaluation purposes, an object consisting of overlapping spheres with varying activity is simulated. The exact parallel projection data of this object are obtained analytically using a parallel projector, and multiple Poisson noise realizations of these exact data are generated and reconstructed using the different point generation strategies. The unconstrained nature of point placement in some of the irregular mesh-based reconstruction strategies has superior activity recovery for small, low-contrast image regions. The results show that, with an appropriately generated set of mesh points, the irregular grid reconstruction methods can out-perform reconstructions on a regular grid for mathematical phantoms, in terms of the performance measures evaluated.

  6. ERROR DISTRIBUTION EVALUATION OF THE THIRD VANISHING POINT BASED ON RANDOM STATISTICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    C. Li

    2012-07-01

    Full Text Available POS, integrated by GPS / INS (Inertial Navigation Systems, has allowed rapid and accurate determination of position and attitude of remote sensing equipment for MMS (Mobile Mapping Systems. However, not only does INS have system error, but also it is very expensive. Therefore, in this paper error distributions of vanishing points are studied and tested in order to substitute INS for MMS in some special land-based scene, such as ground façade where usually only two vanishing points can be detected. Thus, the traditional calibration approach based on three orthogonal vanishing points is being challenged. In this article, firstly, the line clusters, which parallel to each others in object space and correspond to the vanishing points, are detected based on RANSAC (Random Sample Consensus and parallelism geometric constraint. Secondly, condition adjustment with parameters is utilized to estimate nonlinear error equations of two vanishing points (VX, VY. How to set initial weights for the adjustment solution of single image vanishing points is presented. Solving vanishing points and estimating their error distributions base on iteration method with variable weights, co-factor matrix and error ellipse theory. Thirdly, under the condition of known error ellipses of two vanishing points (VX, VY and on the basis of the triangle geometric relationship of three vanishing points, the error distribution of the third vanishing point (VZ is calculated and evaluated by random statistical simulation with ignoring camera distortion. Moreover, Monte Carlo methods utilized for random statistical estimation are presented. Finally, experimental results of vanishing points coordinate and their error distributions are shown and analyzed.

  7. Error Distribution Evaluation of the Third Vanishing Point Based on Random Statistical Simulation

    Science.gov (United States)

    Li, C.

    2012-07-01

    POS, integrated by GPS / INS (Inertial Navigation Systems), has allowed rapid and accurate determination of position and attitude of remote sensing equipment for MMS (Mobile Mapping Systems). However, not only does INS have system error, but also it is very expensive. Therefore, in this paper error distributions of vanishing points are studied and tested in order to substitute INS for MMS in some special land-based scene, such as ground façade where usually only two vanishing points can be detected. Thus, the traditional calibration approach based on three orthogonal vanishing points is being challenged. In this article, firstly, the line clusters, which parallel to each others in object space and correspond to the vanishing points, are detected based on RANSAC (Random Sample Consensus) and parallelism geometric constraint. Secondly, condition adjustment with parameters is utilized to estimate nonlinear error equations of two vanishing points (VX, VY). How to set initial weights for the adjustment solution of single image vanishing points is presented. Solving vanishing points and estimating their error distributions base on iteration method with variable weights, co-factor matrix and error ellipse theory. Thirdly, under the condition of known error ellipses of two vanishing points (VX, VY) and on the basis of the triangle geometric relationship of three vanishing points, the error distribution of the third vanishing point (VZ) is calculated and evaluated by random statistical simulation with ignoring camera distortion. Moreover, Monte Carlo methods utilized for random statistical estimation are presented. Finally, experimental results of vanishing points coordinate and their error distributions are shown and analyzed.

  8. The Oil Point Method - A tool for indicative environmental evaluation in material and process selection

    DEFF Research Database (Denmark)

    Bey, Niki

    2000-01-01

    to three essential assessment steps, the method enables rough environmental evaluations and supports in this way material- and process-related decision-making in the early stages of design. In its overall structure, the Oil Point Method is related to Life Cycle Assessment - except for two main differences...... of environmental evaluation and only approximate information about the product and its life cycle. This dissertation addresses this challenge in presenting a method, which is tailored to these requirements of designers - the Oil Point Method (OPM). In providing environmental key information and confining itself...

  9. Evaluation of Tsunami-HySEA for tsunami forecasting at selected locations in U.S.

    Science.gov (United States)

    Gonzalez Vida, J. M., Sr.; Ortega, S.; Castro, M. J.; de la Asuncion, M.; Arcas, D.

    2017-12-01

    The GPU-based Tsunami-HySEA model (Macias, J. et al., Pure and Applied Geophysics, 1-37, 2017, Lynett, P. et al., Ocean modeling, 114, 2017) is used to test four tsunami events: the January, 13, 2007 earthquake in Kuril islands (Mw 8.1), the September, 29, 2009 earthquake in Samoa (Mw 8.3), the February, 27, 2010 earthquake in Chile (Mw 9.8) and the March, 11, 2011 earthquake in Tohoku (Mw 9.0). Initial conditions have been provided by NOAA Center for Tsunami Research (NCTR) obtained from DART inversion results. All simulations have been performed using a global 4 arc-min grid of the Ocean Pacific and three nested-meshes levels around the selected locations. Wave amplitudes time series have been computed at selected tide gauges located at each location and maximum amplitudes compared with both MOST model results and observations where they are available. In addition, inundation also has been computed at selected U.S. locations for the 2011 Tohoku and 2009 Samoa events under the assumption of a steady mean high water level. Finally, computational time is also evaluated in order to study the operational capabilities of Tsunami-HySEA for these kind of events. Ackowledgements: This work has been funded by WE133R16SE1418 contract between PMEL (NOAA) and the Universidad de Málaga (Spain).

  10. Eight attention points when evaluating large-scale public sector reforms

    DEFF Research Database (Denmark)

    Hansen, Morten Balle; Breidahl, Karen Nielsen; Furubo, Jan-Eric

    2017-01-01

    This chapter analyses the challenges related to evaluations of large-scale public sector reforms. It is based on a meta-evaluation of the evaluation of the reform of the Norwegian Labour Market and Welfare Administration (the NAV-reform) in Norway, which entailed both a significant reorganization...... sector reforms. Based on the analysis, eight crucial points of attention when evaluating large-scale public sector reforms are elaborated. We discuss their reasons and argue that other countries will face the same challenges and thus can learn from the experiences of Norway....

  11. Bayesian flood forecasting methods: A review

    Science.gov (United States)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been

  12. Evaluation of high-resolution forecasts with the non-hydrostaticnumerical weather prediction model Lokalmodell for urban air pollutionepisodes in Helsinki, Oslo and Valencia

    Directory of Open Access Journals (Sweden)

    B. Fay

    2006-01-01

    Full Text Available The operational numerical weather prediction model Lokalmodell LM with 7,km horizontal resolution was evaluated for forecasting meteorological conditions during observed urban air pollution episodes. The resolution was increased to experimental 2.8 km and 1.1 km resolution by one-way interactive nesting without introducing urbanisation of physiographic parameters or parameterisations. The episodes examined are two severe winter inversion-induced episodes in Helsinki in December 1995 and Oslo in January 2003, three suspended dust episodes in spring and autumn in Helsinki and Oslo, and a late-summer photochemical episode in the Valencia area. The evaluation was basically performed against observations and radiosoundings and focused on the LM skill at forecasting the key meteorological parameters characteristic for the specific episodes. These included temperature inversions, atmospheric stability and low wind speeds for the Scandinavian episodes and the development of mesoscale recirculations in the Valencia area. LM forecasts often improved due to higher model resolution especially in mountainous areas like Oslo and Valencia where features depending on topography like temperature, wind fields and mesoscale valley circulations were better described. At coastal stations especially in Helsinki, forecast gains were due to the improved physiographic parameters (land fraction, soil type, or roughness length. The Helsinki and Oslo winter inversions with extreme nocturnal inversion strengths of 18°C were not sufficiently predicted with all LM resolutions. In Helsinki, overprediction of surface temperatures and low-level wind speeds basically led to underpredicted inversion strength. In the Oslo episode, the situation was more complex involving erroneous temperature advection and mountain-induced effects for the higher resolutions. Possible explanations include the influence of the LM treatment of snow cover, sea ice and stability-dependence of transfer

  13. Probabilistic Electricity Price Forecasting Models by Aggregation of Competitive Predictors

    Directory of Open Access Journals (Sweden)

    Claudio Monteiro

    2018-04-01

    Full Text Available This article presents original probabilistic price forecasting meta-models (PPFMCP models, by aggregation of competitive predictors, for day-ahead hourly probabilistic price forecasting. The best twenty predictors of the EEM2016 EPF competition are used to create ensembles of hourly spot price forecasts. For each hour, the parameter values of the probability density function (PDF of a Beta distribution for the output variable (hourly price can be directly obtained from the expected and variance values associated to the ensemble for such hour, using three aggregation strategies of predictor forecasts corresponding to three PPFMCP models. A Reliability Indicator (RI and a Loss function Indicator (LI are also introduced to give a measure of uncertainty of probabilistic price forecasts. The three PPFMCP models were satisfactorily applied to the real-world case study of the Iberian Electricity Market (MIBEL. Results from PPFMCP models showed that PPFMCP model 2, which uses aggregation by weight values according to daily ranks of predictors, was the best probabilistic meta-model from a point of view of mean absolute errors, as well as of RI and LI. PPFMCP model 1, which uses the averaging of predictor forecasts, was the second best meta-model. PPFMCP models allow evaluations of risk decisions based on the price to be made.

  14. Evaluation of the Agricultural Non-point Source Pollution in Chongqing Based on PSR Model

    Institute of Scientific and Technical Information of China (English)

    Hanwen; ZHANG; Xinli; MOU; Hui; XIE; Hong; LU; Xingyun; YAN

    2014-01-01

    Through a series of exploration based on PSR framework model,for the purpose of building a suitable Chongqing agricultural nonpoint source pollution evaluation index system model framework,combined with the presence of Chongqing specific agro-environmental issues,we build a agricultural non-point source pollution assessment index system,and then study the agricultural system pressure,agro-environmental status and human response in total 3 major categories,develope an agricultural non-point source pollution evaluation index consisting of 3 criteria indicators and 19 indicators. As can be seen from the analysis,pressures and responses tend to increase and decrease linearly,state and complex have large fluctuations,and their fluctuations are similar mainly due to the elimination of pressures and impact,increasing the impact for agricultural non-point source pollution.

  15. Normalized Point Source Sensitivity for Off-Axis Optical Performance Evaluation of the Thirty Meter Telescope

    Science.gov (United States)

    Seo, Byoung-Joon; Nissly, Carl; Troy, Mitchell; Angeli, George

    2010-01-01

    The Normalized Point Source Sensitivity (PSSN) has previously been defined and analyzed as an On-Axis seeing-limited telescope performance metric. In this paper, we expand the scope of the PSSN definition to include Off-Axis field of view (FoV) points and apply this generalized metric for performance evaluation of the Thirty Meter Telescope (TMT). We first propose various possible choices for the PSSN definition and select one as our baseline. We show that our baseline metric has useful properties including the multiplicative feature even when considering Off-Axis FoV points, which has proven to be useful for optimizing the telescope error budget. Various TMT optical errors are considered for the performance evaluation including segment alignment and phasing, segment surface figures, temperature, and gravity, whose On-Axis PSSN values have previously been published by our group.

  16. Probabilistic Forecasts of Solar Irradiance by Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Iversen, Jan Emil Banning; Morales González, Juan Miguel; Møller, Jan Kloppenborg

    2014-01-01

    approach allows for characterizing both the interdependence structure of prediction errors of short-term solar irradiance and their predictive distribution. Three different stochastic differential equation models are first fitted to a training data set and subsequently evaluated on a one-year test set...... included in probabilistic forecasts may be paramount for decision makers to efficiently make use of this uncertain and variable generation. In this paper, a stochastic differential equation framework for modeling the uncertainty associated with the solar irradiance point forecast is proposed. This modeling...

  17. A data-assimilative ocean forecasting system for the Prince William sound and an evaluation of its performance during sound Predictions 2009

    Science.gov (United States)

    Farrara, John D.; Chao, Yi; Li, Zhijin; Wang, Xiaochun; Jin, Xin; Zhang, Hongchun; Li, Peggy; Vu, Quoc; Olsson, Peter Q.; Schoch, G. Carl; Halverson, Mark; Moline, Mark A.; Ohlmann, Carter; Johnson, Mark; McWilliams, James C.; Colas, Francois A.

    2013-07-01

    The development and implementation of a three-dimensional ocean modeling system for the Prince William Sound (PWS) is described. The system consists of a regional ocean model component (ROMS) forced by output from a regional atmospheric model component (the Weather Research and Forecasting Model, WRF). The ROMS ocean model component has a horizontal resolution of 1km within PWS and utilizes a recently-developed multi-scale 3DVAR data assimilation methodology along with freshwater runoff from land obtained via real-time execution of a digital elevation model. During the Sound Predictions Field Experiment (July 19-August 3, 2009) the system was run in real-time to support operations and incorporated all available real-time streams of data. Nowcasts were produced every 6h and a 48-h forecast was performed once a day. In addition, a sixteen-member ensemble of forecasts was executed on most days. All results were published at a web portal (http://ourocean.jpl.nasa.gov/PWS) in real time to support decision making.The performance of the system during Sound Predictions 2009 is evaluated. The ROMS results are first compared with the assimilated data as a consistency check. RMS differences of about 0.7°C were found between the ROMS temperatures and the observed vertical profiles of temperature that are assimilated. The ROMS salinities show greater discrepancies, tending to be too salty near the surface. The overall circulation patterns observed throughout the Sound are qualitatively reproduced, including the following evolution in time. During the first week of the experiment, the weather was quite stormy with strong southeasterly winds. This resulted in strong north to northwestward surface flow in much of the central PWS. Both the observed drifter trajectories and the ROMS nowcasts showed strong surface inflow into the Sound through the Hinchinbrook Entrance and strong generally northward to northwestward flow in the central Sound that was exiting through the Knight

  18. Power plant site evaluation - Douglas Point site. Volume 1, part 2. Final report

    International Nuclear Information System (INIS)

    1977-11-01

    This is part of a series of reports containing an evaluation of the proposed Douglas Point nuclear generating station site located on the Potomac River in Maryland 30 miles south of Washington, DC. This report contains sections on cooling tower air emissions, noise impacts, transmission line effects, radiation from normal releases, site features affecting radiological accidents, and meteorology

  19. Point-of-Care Ultrasound in the Evaluation of Pyogenic Flexor Tenosynovitis.

    Science.gov (United States)

    Cohen, Stephanie G; Beck, Sierra C

    2015-11-01

    A 4-year-old girl presented to the emergency department for evaluation of finger swelling after a dog bite. Point-of-care ultrasound was used to diagnose pyogenic flexor tenosynovitis of the digit after visualizing a fluid collection within the flexor tendon sheath. The patient underwent emergent incision and drainage of the digit with good outcome.

  20. Evaluating Change in Behavioral Preferences: Multidimensional Scaling Single-Ideal Point Model

    Science.gov (United States)

    Ding, Cody

    2016-01-01

    The purpose of the article is to propose a multidimensional scaling single-ideal point model as a method to evaluate changes in individuals' preferences under the explicit methodological framework of behavioral preference assessment. One example is used to illustrate the approach for a clear idea of what this approach can accomplish.

  1. Evaluation of the i-STAT point-of-care analyzer in critically ill adult patients.

    NARCIS (Netherlands)

    Steinfelder-Visscher, J.; Teerenstra, S.; Klein Gunnewiek, J.M.T.; Weerwind, P.W.

    2008-01-01

    Point-of-care analyzers may benefit therapeutic decision making by reducing turn-around-time for samples. This is especially true when biochemical parameters exceed the clinical reference range, in which acute and effective treatment is essential. We therefore evaluated the analytical performance of

  2. A Systematic Approach to Process Evaluation in the Central Oklahoma Turning Point (COTP) Partnership

    Science.gov (United States)

    Tolma, Eleni L.; Cheney, Marshall K.; Chrislip, David D.; Blankenship, Derek; Troup, Pam; Hann, Neil

    2011-01-01

    Formation is an important stage of partnership development. Purpose: To describe the systematic approach to process evaluation of a Turning Point initiative in central Oklahoma during the formation stage. The nine-month collaborative effort aimed to develop an action plan to promote health. Methods: A sound planning framework was used in the…

  3. Forecast model for the evaluation of economic resources employed in the health care of patients with HIV infection

    Directory of Open Access Journals (Sweden)

    Sacchi P

    2012-05-01

    Full Text Available Paolo Sacchi1, Savino FA Patruno1, Raffaele Bruno1, Serena Maria Benedetta Cima1, Pietro Previtali2, Alessia Franchini2, Luca Nicolini3, Carla Rognoni4, Lucia Sacchi5, Riccardo Bellazzi4, Gaetano Filice11Divisione di Malattie Infettive e Tropicali - Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; 2Università degli Studi di Pavia – Facoltà di Economia, Pavia, Italy; 3Controllo di Gestione Fondazione IRCCS Policlinico San Matteo di Pavia, Pavia, Italy; 4Dipartimento di Informatica e Sistemistica, Universita' degli Studi di Pavia, Pavia, Italy; 5Department of Information Systems and Computing, Brunel University, London, UKBackground and aims: The total health care cost for human immunodeficiency virus (HIV patients has constantly grown in recent years. To date, there is no information about how this trend will behave over the next few years. The aim of the present study is to define a pharmacoeconomic model for the forecast of the costs of a group of chronically treated patients followed over the period 2004–2009.Methods: A pharmacoeconomics model was built to describe the probability of transition among different health states and to modify the therapy over time. A Markov model was applied to evaluate the temporal evolution of the average cost. The health care resources exploited during hospitalization were analyzed by using an “activity-based costing” method.Results: The Markov model showed that the mean total cost, after an initial increase, tended to remain stable. A total of 20 clinical records were examined. The average daily cost for each patient was EUR 484.42, with a cost for admission of EUR 6781.88.Conclusion: The treatment of HIV infection in compliance with the guidelines is also effective from the payer perspective, as it allows a good health condition to be maintained and reduces the need and the costs of hospitalizations.Keywords: health care cost, HIV, Markov model, activity-based costing

  4. Flood Forecasting Based on TIGGE Precipitation Ensemble Forecast

    Directory of Open Access Journals (Sweden)

    Jinyin Ye

    2016-01-01

    Full Text Available TIGGE (THORPEX International Grand Global Ensemble was a major part of the THORPEX (Observing System Research and Predictability Experiment. It integrates ensemble precipitation products from all the major forecast centers in the world and provides systematic evaluation on the multimodel ensemble prediction system. Development of meteorologic-hydrologic coupled flood forecasting model and early warning model based on the TIGGE precipitation ensemble forecast can provide flood probability forecast, extend the lead time of the flood forecast, and gain more time for decision-makers to make the right decision. In this study, precipitation ensemble forecast products from ECMWF, NCEP, and CMA are used to drive distributed hydrologic model TOPX. We focus on Yi River catchment and aim to build a flood forecast and early warning system. The results show that the meteorologic-hydrologic coupled model can satisfactorily predict the flow-process of four flood events. The predicted occurrence time of peak discharges is close to the observations. However, the magnitude of the peak discharges is significantly different due to various performances of the ensemble prediction systems. The coupled forecasting model can accurately predict occurrence of the peak time and the corresponding risk probability of peak discharge based on the probability distribution of peak time and flood warning, which can provide users a strong theoretical foundation and valuable information as a promising new approach.

  5. Forecasting Brassica rapa: Merging climate models with genotype specific process models for evaluation whole species response to climate change.

    Science.gov (United States)

    Pleban, J. R.; Mackay, D. S.; Ewers, B. E.; Weinig, C.; Guadagno, C. L.

    2016-12-01

    Human society has modified agriculture management practices and utilized a variety of breeding approaches to adapt to changing environments. Presently a dual pronged challenge has emerged as environmental change is occurring more rapidly while the demand of population growth on food supply is rising. Knowledge of how current agricultural practices will respond to these challenges can be informed through crafted prognostic modeling approaches. Amongst the uncertainties associated with forecasting agricultural production in a changing environment is evaluation of the responses across the existing genotypic diversity of crop species. Mechanistic models of plant productivity provide a means of genotype level parameterization allowing for a prognostic evaluation of varietal performance under changing climate. Brassica rapa represents an excellent species for this type of investigation because of its wide cultivation as well as large morphological and physiological diversity. We incorporated genotypic parameterization of B. rapa genotypes based on unique CO2 assimilation strategies, vulnerabilities to cavitation, and root to leaf area relationships into the TREES model. Three climate drivers, following the "business-as-usual" greenhouse gas emissions scenario (RCP 8.5) from Coupled Model Intercomparison Project, Phase 5 (CMIP5) were considered: temperature (T) along with associated changes in vapor pressure deficit (VPD), increasing CO2, as well as alternatives in irrigation regime across a temporal scale of present day to 2100. Genotypic responses to these drivers were evaluated using net primary productivity (NPP) and percent loss hydraulic conductance (PLC) as a measure of tolerance for a particular watering regime. Genotypic responses to T were witnessed as water demand driven by increases in VPD at 2050 and 2100 drove some genotypes to greater PLC and in a subset of these saw periodic decreases in NPP during a growing season. Genotypes able to withstand the greater

  6. Challenges of teacher-based clinical evaluation from nursing students' point of view: Qualitative content analysis.

    Science.gov (United States)

    Sadeghi, Tabandeh; Seyed Bagheri, Seyed Hamid

    2017-01-01

    Clinical evaluation is very important in the educational system of nursing. One of the most common methods of clinical evaluation is evaluation by the teacher, but the challenges that students would face in this evaluation method, have not been mentioned. Thus, this study aimed to explore the experiences and views of nursing students about the challenges of teacher-based clinical evaluation. This study was a descriptive qualitative study with a qualitative content analysis approach. Data were gathered through semi-structured focused group sessions with undergraduate nursing students who were passing their 8 th semester at Rafsanjan University of Medical Sciences. Date were analyzed using Graneheim and Lundman's proposed method. Data collection and analysis were concurrent. According to the findings, "factitious evaluation" was the main theme of study that consisted of three categories: "Personal preferences," "unfairness" and "shirking responsibility." These categories are explained using quotes derived from the data. According to the results of this study, teacher-based clinical evaluation would lead to factitious evaluation. Thus, changing this approach of evaluation toward modern methods of evaluation is suggested. The finding can help nursing instructors to get a better understanding of the nursing students' point of view toward this evaluation approach and as a result could be planning for changing of this approach.

  7. Forecasts: uncertain, inaccurate and biased?

    DEFF Research Database (Denmark)

    Nicolaisen, Morten Skou; Ambrasaite, Inga; Salling, Kim Bang

    2012-01-01

    Cost Benefit Analysis (CBA) is the dominating methodology for appraisal of transport infrastructure projects across the globe. In order to adequately assess the costs and benefits of such projects two types of forecasts are crucial to the validity of the appraisal. First are the forecasts of cons....... It is recommended that more attention is given to monitoring completed projects so future forecasts can benefit from better data availability through systematic ex-post evaluations, and an example of how to utilize such data in practice is presented.......Cost Benefit Analysis (CBA) is the dominating methodology for appraisal of transport infrastructure projects across the globe. In order to adequately assess the costs and benefits of such projects two types of forecasts are crucial to the validity of the appraisal. First are the forecasts...... of construction costs, which account for the majority of total project costs. Second are the forecasts of travel time savings, which account for the majority of total project benefits. The latter of these is, inter alia, determined by forecasts of travel demand, which we shall use as a proxy for the forecasting...

  8. Gambling scores for earthquake predictions and forecasts

    Science.gov (United States)

    Zhuang, Jiancang

    2010-04-01

    This paper presents a new method, namely the gambling score, for scoring the performance earthquake forecasts or predictions. Unlike most other scoring procedures that require a regular scheme of forecast and treat each earthquake equally, regardless their magnitude, this new scoring method compensates the risk that the forecaster has taken. Starting with a certain number of reputation points, once a forecaster makes a prediction or forecast, he is assumed to have betted some points of his reputation. The reference model, which plays the role of the house, determines how many reputation points the forecaster can gain if he succeeds, according to a fair rule, and also takes away the reputation points betted by the forecaster if he loses. This method is also extended to the continuous case of point process models, where the reputation points betted by the forecaster become a continuous mass on the space-time-magnitude range of interest. We also calculate the upper bound of the gambling score when the true model is a renewal process, the stress release model or the ETAS model and when the reference model is the Poisson model.

  9. Evaluating the impact of improvements to the FLAMBE smoke source model on forecasts of aerosol distribution from NAAPS

    Science.gov (United States)

    Hyer, E. J.; Reid, J. S.

    2006-12-01

    As more forecast models aim to include aerosol and chemical species, there is a need for source functions for biomass burning emissions that are accurate, robust, and operable in real-time. NAAPS is a global aerosol forecast model running every six hours and forecasting distributions of biomass burning, industrial sulfate, dust, and sea salt aerosols. This model is run operationally by the U.S. Navy as an aid to planning. The smoke emissions used as input to the model are calculated from the data collected by the FLAMBE system, driven by near-real-time active fire data from GOES WF_ABBA and MODIS Rapid Response. The smoke source function uses land cover data to predict properties of detected fires based on literature data from experimental burns. This scheme is very sensitive to the choice of land cover data sets. In areas of rapid land cover change, the use of static land cover data can produce artifactual changes in emissions unrelated to real changes in fire patterns. In South America, this change may be as large as 40% over five years. We demonstrate the impact of a modified land cover scheme on FLAMBE emissions and NAAPS forecasts, including a fire size algorithm developed using MODIS burned area data. We also describe the effects of corrections to emissions estimates for cloud and satellite coverage. We outline areas where existing data sources are incomplete and improvements are required to achieve accurate modeling of biomass burning emissions in real time.

  10. Evaluation of maximum power point tracking in hydrokinetic energy conversion systems

    Directory of Open Access Journals (Sweden)

    Jahangir Khan

    2015-11-01

    Full Text Available Maximum power point tracking is a mature control issue for wind, solar and other systems. On the other hand, being a relatively new technology, detailed discussion on power tracking of hydrokinetic energy conversion systems are generally not available. Prior to developing sophisticated control schemes for use in hydrokinetic systems, existing know-how in wind or solar technologies can be explored. In this study, a comparative evaluation of three generic classes of maximum power point scheme is carried out. These schemes are (a tip speed ratio control, (b power signal feedback control, and (c hill climbing search control. In addition, a novel concept for maximum power point tracking: namely, extremum seeking control is introduced. Detailed and validated system models are used in a simulation environment. Potential advantages and drawbacks of each of these schemes are summarised.

  11. Evaluation of three Monte Carlo estimation schemes for flux at a point

    International Nuclear Information System (INIS)

    Kalli, H.J.; Cashwell, E.D.

    1977-09-01

    Three Monte Carlo estimation schemes were studied to avoid the difficulties caused by the (1/r 2 ) singularity in the expression of the normal next-event estimator (NEE) for the flux at a point. A new, fast, once-more collided flux estimator (OMCFE) scheme, based on a very simple probability density function (p.d.f.) of the distance to collision in the selection of the intermediate collision points, is proposed. This kind of p.d.f. of the collision distance is used in two nonanalog schemes using the NEE. In these two schemes, which have principal similarities to some schemes proposed earlier in the literature, the (1/r 2 ) singularity is canceled by incorporating the singularity into the p.d.f. of the collision points. This is achieved by playing a suitable nonanalog game in the neighborhood of the detector points. The three schemes were tested in a monoenergetic, homogeneous infinite-medium problem, then were evaluated in a point-cross-section problem by using the Monte Carlo code MCNG. 10 figures

  12. Explicit evaluation of covariant one-loop four-point amplitude for open fermionic string

    International Nuclear Information System (INIS)

    Yamamoto, Hisashi; Nakazawa, Naohito.

    1986-11-01

    We carry out the explicit evaluation of the covariant one-loop amplitude with four massless external bosons for open fermionic string by the operator formalism. The resulting expression of the amplitude completely coincides with that of the light-cone new formalism for type-I superstring theory, providing the explicit demonstration for the one-loop equivalence of the old and new formalisms for the open superstring theory at the four-point interacting level. (author)

  13. Test and evaluation of the Fort St. Vrain dew point moisture monitor system

    International Nuclear Information System (INIS)

    Block, G.A.; Del Bene, J.V. Jr.; Gitterman, M.; Hastings, G.A.; Hawkins, W.M.; Hinz, R.F.; McCue, D.E.; Swanson, L.L.; Vavrina, J.; Zwetzig, G.B.

    1975-01-01

    Descriptions are given of the Fort St. Vrain Dew Point Moisture Monitor (DPMM) System; the bases for the DPMM system response time requirements for safety related functions at the required reactor operating conditions; the results and evaluation of recent testing which measured the performance of the current system at simulated operating conditions; predicted response times for reactor power operation from 0 to 100 percent and a modification to provide improved response times for low-load and plant start-up conditions

  14. Evaluation of the performance of a meso-scale NWP model to forecast solar irradiance on Reunion Island for photovoltaic power applications

    Science.gov (United States)

    Kalecinski, Natacha; Haeffelin, Martial; Badosa, Jordi; Periard, Christophe

    2013-04-01

    Solar photovoltaic power is a predominant source of electrical power on Reunion Island, regularly providing near 30% of electrical power demand for a few hours per day. However solar power on Reunion Island is strongly modulated by clouds in small temporal and spatial scales. Today regional regulations require that new solar photovoltaic plants be combined with storage systems to reduce electrical power fluctuations on the grid. Hence cloud and solar irradiance forecasting becomes an important tool to help optimize the operation of new solar photovoltaic plants on Reunion Island. Reunion Island, located in the South West of the Indian Ocean, is exposed to persistent trade winds, most of all in winter. In summer, the southward motion of the ITCZ brings atmospheric instabilities on the island and weakens trade winds. This context together with the complex topography of Reunion Island, which is about 60 km wide, with two high summits (3070 and 2512 m) connected by a 1500 m plateau, makes cloudiness very heterogeneous. High cloudiness variability is found between mountain and coastal areas and between the windward, leeward and lateral regions defined with respect to the synoptic wind direction. A detailed study of local dynamics variability is necessary to better understand cloud life cycles around the island. In the presented work, our approach to explore the short-term solar irradiance forecast at local scales is to use the deterministic output from a meso-scale numerical weather prediction (NWP) model, AROME, developed by Meteo France. To start we evaluate the performance of the deterministic forecast from AROME by using meteorological measurements from 21 meteorological ground stations widely spread around the island (and with altitudes from 8 to 2245 m). Ground measurements include solar irradiation, wind speed and direction, relative humidity, air temperature, precipitation and pressure. Secondly we study in the model the local dynamics and thermodynamics that

  15. Bayesian analyses of seasonal runoff forecasts

    Science.gov (United States)

    Krzysztofowicz, R.; Reese, S.

    1991-12-01

    Forecasts of seasonal snowmelt runoff volume provide indispensable information for rational decision making by water project operators, irrigation district managers, and farmers in the western United States. Bayesian statistical models and communication frames have been researched in order to enhance the forecast information disseminated to the users, and to characterize forecast skill from the decision maker's point of view. Four products are presented: (i) a Bayesian Processor of Forecasts, which provides a statistical filter for calibrating the forecasts, and a procedure for estimating the posterior probability distribution of the seasonal runoff; (ii) the Bayesian Correlation Score, a new measure of forecast skill, which is related monotonically to the ex ante economic value of forecasts for decision making; (iii) a statistical predictor of monthly cumulative runoffs within the snowmelt season, conditional on the total seasonal runoff forecast; and (iv) a framing of the forecast message that conveys the uncertainty associated with the forecast estimates to the users. All analyses are illustrated with numerical examples of forecasts for six gauging stations from the period 1971 1988.

  16. Forecasting longitudinal changes in oropharyngeal tumor morphology throughout the course of head and neck radiation therapy

    International Nuclear Information System (INIS)

    Yock, Adam D.; Kudchadker, Rajat J.; Rao, Arvind; Dong, Lei; Beadle, Beth M.; Garden, Adam S.; Court, Laurence E.

    2014-01-01

    Purpose: To create models that forecast longitudinal trends in changing tumor morphology and to evaluate and compare their predictive potential throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe 35 gross tumor volumes (GTVs) throughout the course of intensity-modulated radiation therapy for oropharyngeal tumors. The feature vectors comprised the coordinates of the GTV centroids and a description of GTV shape using either interlandmark distances or a spherical harmonic decomposition of these distances. The change in the morphology feature vector observed at 33 time points throughout the course of treatment was described using static, linear, and mean models. Models were adjusted at 0, 1, 2, 3, or 5 different time points (adjustment points) to improve prediction accuracy. The potential of these models to forecast GTV morphology was evaluated using leave-one-out cross-validation, and the accuracy of the models was compared using Wilcoxon signed-rank tests. Results: Adding a single adjustment point to the static model without any adjustment points decreased the median error in forecasting the position of GTV surface landmarks by the largest amount (1.2 mm). Additional adjustment points further decreased the forecast error by about 0.4 mm each. Selection of the linear model decreased the forecast error for both the distance-based and spherical harmonic morphology descriptors (0.2 mm), while the mean model decreased the forecast error for the distance-based descriptor only (0.2 mm). The magnitude and statistical significance of these improvements decreased with each additional adjustment point, and the effect from model selection was not as large as that from adding the initial points. Conclusions: The authors present models that anticipate longitudinal changes in tumor morphology using various models and model adjustment schemes. The accuracy of these models depended on their form, and the utility of these models

  17. Frost Forecasting for Fruitgrowers

    Science.gov (United States)

    Martsolf, J. D.; Chen, E.

    1983-01-01

    Progress in forecasting from satellite data reviewed. University study found data from satellites displayed in color and used to predict frost are valuable aid to agriculture. Study evaluated scheme to use Earth-temperature data from Geostationary Operational Environmental Satellite in computer model that determines when and where freezing temperatures endanger developing fruit crops, such as apples, peaches and cherries in spring and citrus crops in winter.

  18. Time Series UAV Image-Based Point Clouds for Landslide Progression Evaluation Applications.

    Science.gov (United States)

    Al-Rawabdeh, Abdulla; Moussa, Adel; Foroutan, Marzieh; El-Sheimy, Naser; Habib, Ayman

    2017-10-18

    Landslides are major and constantly changing threats to urban landscapes and infrastructure. It is essential to detect and capture landslide changes regularly. Traditional methods for monitoring landslides are time-consuming, costly, dangerous, and the quality and quantity of the data is sometimes unable to meet the necessary requirements of geotechnical projects. This motivates the development of more automatic and efficient remote sensing approaches for landslide progression evaluation. Automatic change detection involving low-altitude unmanned aerial vehicle image-based point clouds, although proven, is relatively unexplored, and little research has been done in terms of accounting for volumetric changes. In this study, a methodology for automatically deriving change displacement rates, in a horizontal direction based on comparisons between extracted landslide scarps from multiple time periods, has been developed. Compared with the iterative closest projected point (ICPP) registration method, the developed method takes full advantage of automated geometric measuring, leading to fast processing. The proposed approach easily processes a large number of images from different epochs and enables the creation of registered image-based point clouds without the use of extensive ground control point information or further processing such as interpretation and image correlation. The produced results are promising for use in the field of landslide research.

  19. [Evaluation of a new blood gas analysis system: RapidPoint 500(®)].

    Science.gov (United States)

    Nicolas, Thierry; Cabrolier, Nadège; Bardonnet, Karine; Davani, Siamak

    2013-01-01

    We present here evaluation of a new blood gas analysis system, RapidPoint 500(®) (Siemens Healthcare Diagnostics). The aim of this research was to compare the ergonomics and analytical performances of this analyser with those of the RapidLab 1265 for the following parameters: pH, partial oxygen pressure, partial carbon dioxide pressure, sodium, potassium, ionized calcium, lactate and the CO-oximetry parameters: hemoglobin, oxyhemoglobin, carboxyhemoglobin, methemoglobin, reduced hemoglobin, neonatal bilirubin; as well as with the Dimension Vista 500 results for chloride and glucose. The Valtec protocol, recommended by the French Society of Clinical Biology (SFBC), was used to analyze the study results. The experiment was carried out over a period of one month in the Department of medical biochemistry. One hundred sixty five samples from adult patients admitted to the ER or hospitalized in intensive care were tested. The RapidPoint 500(®) was highly satisfactory from an ergonomic point of view. Intra-and inter- assay coefficients of variation (CV) with the three control levels were below those recommended by the SFBC for all parameters, and the comparative study gave coefficients of determination higher than 0.91. Taken together, the RapidPoint 500(®) appears fully satisfactory in terms of ergonomics and analytical performance.

  20. kosh Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kpdt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kewr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kiso Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kpga Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kbkw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. ktcl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. pgwt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kpsp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kbih Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kdnl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kart Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kilm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kpne Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kabi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. ptpn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kblf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. panc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kpbi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kgdv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kcmx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kdls Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. koaj Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. krhi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kbpk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. khuf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kbpi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. ktrk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kwmc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. katy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. tjmz Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kdet Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kcxp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kbur Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. krkd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. pawg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kloz Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kcec Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kdec Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. paor Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kavl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kdrt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kstl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kbfi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. khsv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. pafa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kekn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. tncm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kith Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kgnv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. ktoi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kgso Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. nstu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kmgm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. khib Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. pavd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kfar Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kluk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kwwr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. klse Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. ksts Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. koth Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kbfl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. ksgf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kpkb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. krog Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kbjc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. ksea Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kbwi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kftw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kpuw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kabq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. ksny Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. khio Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. klaf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kfoe Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. ksmx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kipt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. klch Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kink Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. krut Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kbli Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kaoo Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. klit Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. ktup Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. ktop Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. klax Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kprc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. katl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kmcn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kogb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kama Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. ptkk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kiwa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kavp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kdca Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kbwg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kdfw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kssi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. pahn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. ksrq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kpvd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kisp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kttd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. pmdy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kont Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kyng Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kcwa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kflg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. krsw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kmyl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. krbg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kril Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. ksus Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. padq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kbil Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. krfd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kdug Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. ktix Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kcod Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kslk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kgfl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kguc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kmlu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kbff Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. ksmn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kdro Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kmce Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. ktpa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kmot Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kcre Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. klws Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kotm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. khqm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kabr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. klal Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kelp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kecg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. khbg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kpbf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. konp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. pkwa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. ktvf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. paga Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. khks Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kdsm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kpsm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kgrb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kgmu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. papg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kbgm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. pamc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. klrd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. ksan Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. patk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kowb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. klru Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kfxe Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kjct Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kcrg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. paaq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kaex Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. klbx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kmia Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kpit Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kcrw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. paen Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kast Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kuin Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kmht Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kcys Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kflo Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. pakn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. pabt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. krdg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. khdn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kjac Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kphx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. Evaluation of thermal physical properties for fast reactor fuels. Melting point and thermal conductivities

    International Nuclear Information System (INIS)

    Kato, Masato; Morimoto, Kyoichi; Komeno, Akira; Nakamichi, Shinya; Kashimura, Motoaki; Abe, Tomoyuki; Uno, Hiroki; Ogasawara, Masahiro; Tamura, Tetsuya; Sugata, Hirotada; Sunaoshi, Takeo; Shibata, Kazuya

    2006-10-01

    Japan Atomic Energy Agency has developed a fast breeder reactor (FBR), and plutonium and uranium mixed oxide (MOX) having low density and 20-30%Pu content has used as a fuel of the FBR, Monju. In plutonium, Americium has been accumulated during long-term storage, and Am content will be increasing up to 2-3% in the MOX. It is essential to evaluate the influence of Am content on physical properties of MOX on the development of FBR in the future. In this study melting points and thermal conductivities which are important data on the fuel design were measured systematically in wide range of composition, and the effects of Am accumulated were evaluated. The solidus temperatures of MOX were measured as a function of Pu content, oxygen to metal ratio (O/M) and Am content using thermal arrest technique. The sample was sealed in a tungsten capsule in vacuum for measuring solidus temperature. In the measurements of MOX with Pu content of more than 30%, a rhenium inner capsule was used to prevent the reaction between MOX and tungsten. In the results, it was confirmed that the melting points of MOX decrease with as an increase of Pu content and increase slightly with a decrease of O/M ratio. The effect of Am content on the fuel design was negligible small in the range of Am content up to 3%. Thermal conductivities of MOX were evaluated from thermal diffusivity measured by laser flash method and heat capacity calculated by Neumann- Kopp's law. The thermal conductivity of MOX decreased slightly in the temperature of less than 1173K with increasing Am content. The effect of Am accumulated in long-term storage fuel was evaluated from melting points and thermal conductivities measured in this study. It is concluded that the increase of Am in the fuel barely affect the fuel design in the range of less than 3%Am content. (author)

  19. EVALUATION MODEL FOR PAVEMENT SURFACE DISTRESS ON 3D POINT CLOUDS FROM MOBILE MAPPING SYSTEM

    Directory of Open Access Journals (Sweden)

    K. Aoki

    2012-07-01

    Full Text Available This paper proposes a methodology to evaluate the pavement surface distress for maintenance planning of road pavement using 3D point clouds from Mobile Mapping System (MMS. The issue on maintenance planning of road pavement requires scheduled rehabilitation activities for damaged pavement sections to keep high level of services. The importance of this performance-based infrastructure asset management on actual inspection data is globally recognized. Inspection methodology of road pavement surface, a semi-automatic measurement system utilizing inspection vehicles for measuring surface deterioration indexes, such as cracking, rutting and IRI, have already been introduced and capable of continuously archiving the pavement performance data. However, any scheduled inspection using automatic measurement vehicle needs much cost according to the instruments’ specification or inspection interval. Therefore, implementation of road maintenance work, especially for the local government, is difficult considering costeffectiveness. Based on this background, in this research, the methodologies for a simplified evaluation for pavement surface and assessment of damaged pavement section are proposed using 3D point clouds data to build urban 3D modelling. The simplified evaluation results of road surface were able to provide useful information for road administrator to find out the pavement section for a detailed examination and for an immediate repair work. In particular, the regularity of enumeration of 3D point clouds was evaluated using Chow-test and F-test model by extracting the section where the structural change of a coordinate value was remarkably achieved. Finally, the validity of the current methodology was investigated by conducting a case study dealing with the actual inspection data of the local roads.

  20. A Forecast Model for Unemployment by Education

    DEFF Research Database (Denmark)

    Tranæs, Torben; Larsen, Anders Holm; Groes, Niels

    1994-01-01

    We present a dynamic forecast model for the labour market: demand for labour by education and the distribution of labour by education among industries are determined endogenously with overall demand by industry given exogenously. The model is derived from a simple behavioural equation based on a ...... for educational groups, where the initial forecast year is a change point for unemployment....

  1. A Wind Forecasting System for Energy Application

    Science.gov (United States)

    Courtney, Jennifer; Lynch, Peter; Sweeney, Conor

    2010-05-01

    Accurate forecasting of available energy is crucial for the efficient management and use of wind power in the national power grid. With energy output critically dependent upon wind strength there is a need to reduce the errors associated wind forecasting. The objective of this research is to get the best possible wind forecasts for the wind energy industry. To achieve this goal, three methods are being applied. First, a mesoscale numerical weather prediction (NWP) model called WRF (Weather Research and Forecasting) is being used to predict wind values over Ireland. Currently, a gird resolution of 10km is used and higher model resolutions are being evaluated to establish whether they are economically viable given the forecast skill improvement they produce. Second, the WRF model is being used in conjunction with ECMWF (European Centre for Medium-Range Weather Forecasts) ensemble forecasts to produce a probabilistic weather forecasting product. Due to the chaotic nature of the atmosphere, a single, deterministic weather forecast can only have limited skill. The ECMWF ensemble methods produce an ensemble of 51 global forecasts, twice a day, by perturbing initial conditions of a 'control' forecast which is the best estimate of the initial state of the atmosphere. This method provides an indication of the reliability of the forecast and a quantitative basis for probabilistic forecasting. The limitation of ensemble forecasting lies in the fact that the perturbed model runs behave differently under different weather patterns and each model run is equally likely to be closest to the observed weather situation. Models have biases, and involve assumptions about physical processes and forcing factors such as underlying topography. Third, Bayesian Model Averaging (BMA) is being applied to the output from the ensemble forecasts in order to statistically post-process the results and achieve a better wind forecasting system. BMA is a promising technique that will offer calibrated

  2. Statistical Correction of Air Temperature Forecasts for City and Road Weather Applications

    Science.gov (United States)

    Mahura, Alexander; Petersen, Claus; Sass, Bent; Gilet, Nicolas

    2014-05-01

    that the CPU time required for the operational procedure is relatively short (less than 15 minutes including a large time spent for interpolation). These also showed that in order to start correction of forecasts there is no need to have a long-term pre-historical data (containing forecasts and observations) and, at least, a couple of weeks will be sufficient when a new observational station is included and added to the forecast point. Note for the road weather application, the operationalization of the statistical correction of the road surface temperature forecasts (for the RWM system daily hourly runs covering forecast length up to 5 hours ahead) for the Danish road network (for about 400 road stations) was also implemented, and it is running in a test mode since Sep 2013. The method can also be applied for correction of the dew point temperature and wind speed (as a part of observations/ forecasts at synoptical stations), where these both meteorological parameters are parts of the proposed system of equations. The evaluation of the method performance for improvement of the wind speed forecasts is planned as well, with considering possibilities for the wind direction improvements (which is more complex due to multi-modal types of such data distribution). The method worked for the entire domain of mainland Denmark (tested for 60 synoptical and 395 road stations), and hence, it can be also applied for any geographical point within this domain, as through interpolation to about 100 cities' locations (for Danish national byvejr forecasts). Moreover, we can assume that the same method can be used in other geographical areas. The evaluation for other domains (with a focus on Greenland and Nordic countries) is planned. In addition, a similar approach might be also tested for statistical correction of concentrations of chemical species, but such approach will require additional elaboration and evaluation.

  3. Evaluation of the leap motion controller as a new contact-free pointing device.

    Science.gov (United States)

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2014-12-24

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8% for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller's performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC.

  4. Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device

    Directory of Open Access Journals (Sweden)

    Daniel Bachmann

    2014-12-01

    Full Text Available This paper presents a Fitts’ law-based analysis of the user’s performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8% for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller’s performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC.

  5. Evaluation of the i-STAT point-of-care analyzer in critically ill adult patients.

    Science.gov (United States)

    Steinfelder-Visscher, Jacoline; Teerenstra, Steven; Gunnewiek, Jacqueline M T Klein; Weerwind, Patrick W

    2008-03-01

    Point-of-care analyzers may benefit therapeutic decision making by reducing turn-around-time for samples. This is especially true when biochemical parameters exceed the clinical reference range, in which acute and effective treatment is essential. We therefore evaluated the analytical performance of the i-STAT point-of-care analyzer in two critically ill adult patient populations. During a 3-month period, 48 blood samples from patients undergoing cardiac surgery with cardiopulmonary bypass (CPB) and 42 blood samples from non-cardiac patients who needed intensive care treatment were analyzed on both the i-STAT analyzer (CPB and non-CPB mode, respectively) and our laboratory analyzers (RapidLab 865/Sysmex XE-2100 instrument). The agreement analysis for quantitative data was used to compare i-STAT to RapidLab for blood gas/electrolytes and for hematocrit with the Sysmex instrument. Point-of-care electrolytes and blood gases had constant deviation, except for pH, pO2, and hematocrit. A clear linear trend in deviation of i-STAT from RapidLab was noticed for pH during CPB (r = 0.32, p = .03) and for pO2 > 10 kPa during CPB (r = -0.59, p pO2 pO2 pO2 range (10.6 pO2 range below 25% (n = 11) using the i-STAT. The i-STAT analyzer is suitable for point-of-care testing of electrolytes and blood gases in critically ill patients, except for high pO2. However, the discrepancy in hematocrit bias shows that accuracy established in one patient population cannot be automatically extrapolated to other patient populations, thus stressing the need for separate evaluation.

  6. A Laboratory-Based Evaluation of Four Rapid Point-of-Care Tests for Syphilis

    Science.gov (United States)

    Causer, Louise M.; Kaldor, John M.; Fairley, Christopher K.; Donovan, Basil; Karapanagiotidis, Theo; Leslie, David E.; Robertson, Peter W.; McNulty, Anna M.; Anderson, David; Wand, Handan; Conway, Damian P.; Denham, Ian; Ryan, Claire; Guy, Rebecca J.

    2014-01-01

    Background Syphilis point-of-care tests may reduce morbidity and ongoing transmission by increasing the proportion of people rapidly treated. Syphilis stage and co-infection with HIV may influence test performance. We evaluated four commercially available syphilis point-of-care devices in a head-to-head comparison using sera from laboratories in Australia. Methods Point-of-care tests were evaluated using sera stored at Sydney and Melbourne laboratories. Sensitivity and specificity were calculated by standard methods, comparing point-of-care results to treponemal immunoassay (IA) reference test results. Additional analyses by clinical syphilis stage, HIV status, and non-treponemal antibody titre were performed. Non-overlapping 95% confidence intervals (CI) were considered statistically significant differences in estimates. Results In total 1203 specimens were tested (736 IA-reactive, 467 IA-nonreactive). Point-of-care test sensitivities were: Determine 97.3%(95%CI:95.8–98.3), Onsite 92.5%(90.3–94.3), DPP 89.8%(87.3–91.9) and Bioline 87.8%(85.1–90.0). Specificities were: Determine 96.4%(94.1–97.8), Onsite 92.5%(90.3–94.3), DPP 98.3%(96.5–99.2), and Bioline 98.5%(96.8–99.3). Sensitivity of the Determine test was 100% for primary and 100% for secondary syphilis. The three other tests had reduced sensitivity among primary (80.4–90.2%) compared to secondary syphilis (94.3–98.6%). No significant differences in sensitivity were observed by HIV status. Test sensitivities were significantly higher among high-RPR titre (RPR≥8) (range: 94.6–99.5%) than RPR non-reactive infections (range: 76.3–92.9%). Conclusions The Determine test had the highest sensitivity overall. All tests were most sensitive among high-RPR titre infections. Point-of-care tests have a role in syphilis control programs however in developed countries with established laboratory infrastructures, the lower sensitivities of some tests observed in primary syphilis suggest these would

  7. Multi point of care instrument evaluation for use in anti-retroviral clinics in South Africa.

    Science.gov (United States)

    Gounden, Verena; George, Jaya

    2012-01-01

    South Africa has the largest prevalence of HIV infected individuals in the world. The introduction of point of care testing to anti-retroviral (ARV) clinic sites is hoped to fast track initiation of patients on ARVs and to allow for earlier recognition of adverse effects such as dyslipidaemia, renal and hepatic dysfunction. We evaluated six instruments for the following analytes: glucose, lactate, creatinine, cholesterol, triglycerides, HDL-cholesterol, alanine transaminase (ALT), and glycated haemoglobin. Comparisons with the central laboratory analyser were performed as well as precision studies. A scoring system was developed by the authors to evaluate the instruments in terms of analytical performance, cost, ease of use, and other operational characteristics. As one of the goals of the placement of these instruments was that their operation was simple enough to be used by non-laboratory staff, ease of use contributed a large proportion to the final scoring. Analytical performance of the POC analysers were generally similar, however, there were significant differences in operational characteristics and ease of use. Bias for the different analytes when compared to the laboratory analyser ranged from -27% to 14%. Calculated total errors for all analytes except for HDL cholesterol were within total allowable error recommendations. The two instruments (Roche Reflotron and Cholestech LDX) with the highest overall total points achieved the highest scores for ease of use. This pilot study has led to the development of a scoring system for the evaluation of POC instruments.

  8. Forecaster Behaviour and Bias in Macroeconomic Forecasts

    OpenAIRE

    Roy Batchelor

    2007-01-01

    This paper documents the presence of systematic bias in the real GDP and inflation forecasts of private sector forecasters in the G7 economies in the years 1990–2005. The data come from the monthly Consensus Economics forecasting service, and bias is measured and tested for significance using parametric fixed effect panel regressions and nonparametric tests on accuracy ranks. We examine patterns across countries and forecasters to establish whether the bias reflects the inefficient use of i...

  9. Precise and efficient evaluation of gravimetric quantities at arbitrarily scattered points in space

    Science.gov (United States)

    Ivanov, Kamen G.; Pavlis, Nikolaos K.; Petrushev, Pencho

    2017-12-01

    Gravimetric quantities are commonly represented in terms of high degree surface or solid spherical harmonics. After EGM2008, such expansions routinely extend to spherical harmonic degree 2190, which makes the computation of gravimetric quantities at a large number of arbitrarily scattered points in space using harmonic synthesis, a very computationally demanding process. We present here the development of an algorithm and its associated software for the efficient and precise evaluation of gravimetric quantities, represented in high degree solid spherical harmonics, at arbitrarily scattered points in the space exterior to the surface of the Earth. The new algorithm is based on representation of the quantities of interest in solid ellipsoidal harmonics and application of the tensor product trigonometric needlets. A FORTRAN implementation of this algorithm has been developed and extensively tested. The capabilities of the code are demonstrated using as examples the disturbing potential T, height anomaly ζ , gravity anomaly Δ g , gravity disturbance δ g , north-south deflection of the vertical ξ , east-west deflection of the vertical η , and the second radial derivative T_{rr} of the disturbing potential. After a pre-computational step that takes between 1 and 2 h per quantity, the current version of the software is capable of computing on a standard PC each of these quantities in the range from the surface of the Earth up to 544 km above that surface at speeds between 20,000 and 40,000 point evaluations per second, depending on the gravimetric quantity being evaluated, while the relative error does not exceed 10^{-6} and the memory (RAM) use is 9.3 GB.

  10. Day-Ahead Wind Power Forecasting Using a Two-Stage Hybrid Modeling Approach Based on SCADA and Meteorological Information, and Evaluating the Impact of Input-Data Dependency on Forecasting Accuracy

    Directory of Open Access Journals (Sweden)

    Dehua Zheng

    2017-12-01

    Full Text Available The power generated by wind generators is usually associated with uncertainties, due to the intermittency of wind speed and other weather variables. This creates a big challenge for transmission system operators (TSOs and distribution system operators (DSOs in terms of connecting, controlling and managing power networks with high-penetration wind energy. Hence, in these power networks, accurate wind power forecasts are essential for their reliable and efficient operation. They support TSOs and DSOs in enhancing the control and management of the power network. In this paper, a novel two-stage hybrid approach based on the combination of the Hilbert-Huang transform (HHT, genetic algorithm (GA and artificial neural network (ANN is proposed for day-ahead wind power forecasting. The approach is composed of two stages. The first stage utilizes numerical weather prediction (NWP meteorological information to predict wind speed at the exact site of the wind farm. The second stage maps actual wind speed vs. power characteristics recorded by SCADA. Then, the wind speed forecast in the first stage for the future day is fed to the second stage to predict the future day’s wind power. Comparative selection of input-data parameter sets for the forecasting model and impact analysis of input-data dependency on forecasting accuracy have also been studied. The proposed approach achieves significant forecasting accuracy improvement compared with three other artificial intelligence-based forecasting approaches and a benchmark model using the smart persistence method.

  11. Weather forecast

    CERN Document Server

    Courtier, P

    1994-02-07

    Weather prediction is performed using the numerical model of the atmosphere evolution.The evolution equations are derived from the Navier Stokes equation for the adiabatic part but the are very much complicated by the change of phase of water, the radiation porocess and the boundary layer.The technique used operationally is described. Weather prediction is an initial value problem and accurate initial conditions need to be specified. Due to the small number of observations available (105 ) as compared to the dimension of the model state variable (107),the problem is largely underdetermined. Techniques of optimal control and inverse problems are used and have been adapted to the large dimension of our problem. our problem.The at mosphere is a chaotic system; the implication for weather prediction is discussed. Ensemble prediction is used operationally and the technique for generating initial conditions which lead to a numerical divergence of the subsequent forecasts is described.

  12. Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device

    OpenAIRE

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2014-01-01

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8 % for the LMC and 2.8% for the mouse device, movement times...

  13. Global evaluation of a semiempirical model for yield anomalies and application to within-season yield forecasting.

    Science.gov (United States)

    Schauberger, Bernhard; Gornott, Christoph; Wechsung, Frank

    2017-11-01

    Quantifying the influence of weather on yield variability is decisive for agricultural management under current and future climate anomalies. We extended an existing semiempirical modeling scheme that allows for such quantification. Yield anomalies, measured as interannual differences, were modeled for maize, soybeans, and wheat in the United States and 32 other main producer countries. We used two yield data sets, one derived from reported yields and the other from a global yield data set deduced from remote sensing. We assessed the capacity of the model to forecast yields within the growing season. In the United States, our model can explain at least two-thirds (63%-81%) of observed yield anomalies. Its out-of-sample performance (34%-55%) suggests a robust yield projection capacity when applied to unknown weather. Out-of-sample performance is lower when using remote sensing-derived yield data. The share of weather-driven yield fluctuation varies spatially, and estimated coefficients agree with expectations. Globally, the explained variance in yield anomalies based on the remote sensing data set is similar to the United States (71%-84%). But the out-of-sample performance is lower (15%-42%). The performance discrepancy is likely due to shortcomings of the remote sensing yield data as it diminishes when using reported yield anomalies instead. Our model allows for robust forecasting of yields up to 2 months before harvest for several main producer countries. An additional experiment suggests moderate yield losses under mean warming, assuming no major changes in temperature extremes. We conclude that our model can detect weather influences on yield anomalies and project yields with unknown weather. It requires only monthly input data and has a low computational demand. Its within-season yield forecasting capacity provides a basis for practical applications like local adaptation planning. Our study underlines high-quality yield monitoring and statistics as critical

  14. Strategies to Evaluate the Visibility Along AN Indoor Path in a Point Cloud Representation

    Science.gov (United States)

    Grasso, N.; Verbree, E.; Zlatanova, S.; Piras, M.

    2017-09-01

    Many research works have been oriented to the formulation of different algorithms for estimating the paths in indoor environments from three-dimensional representations of space. The architectural configuration, the actions that take place within it, and the location of some objects in the space influence the paths along which is it possible to move, as they may cause visibility problems. To overcome the visibility issue, different methods have been proposed which allow to identify the visible areas and from a certain point of view, but often they do not take into account the user's visual perception of the environment and not allow estimating how much may be complicated to follow a certain path. In the field of space syntax and cognitive science, it has been attempted to describe the characteristics of a building or an urban environment by the isovists and visibility graphs methods; some numerical properties of these representations allow to describe the space as for how it is perceived by a user. However, most of these studies are directed to analyze the environment in a two-dimensional space. In this paper we propose a method to evaluate in a quantitative way the complexity of a certain path within an environment represented by a three-dimensional point cloud, by the combination of some of the previously mentioned techniques, considering the space visible from a certain point of view, depending on the moving agent (pedestrian , people in wheelchairs, UAV, UGV, robot).

  15. Evaluation of the Transient Eddy Current Potential Drop of a Four Point Probe

    Science.gov (United States)

    Bowler, J. R.

    2009-03-01

    The transient electrical potential drop of a four point probe has been calculated for the case where a current pulse is injected into a conductive plate via two surface contact electrodes and the voltage measured between two other contact electrodes. The four contact points can be co-linear but this is not always case. For example, they can form a rectangle. Usually such probes carry direct current or alternating current and are used to measure electrical conductivity, crack dimensions or variations of conductivity and magnetic permeability with depth. However, the advantage of a current pulse excitation is that information on the variations of material properties with depth can be acquired rapidly and conveniently. What is needed is a means to infer material properties such as the conductivity variations with depth from the transient field measurements. Here, as an initial step in developing this analysis, we report on the evaluation of transient potential drop signals for four point probes on a homogeneous conductive plates.

  16. Discrete Model Predictive Control-Based Maximum Power Point Tracking for PV Systems: Overview and Evaluation

    DEFF Research Database (Denmark)

    Lashab, Abderezak; Sera, Dezso; Guerrero, Josep M.

    2018-01-01

    The main objective of this work is to provide an overview and evaluation of discrete model predictive controlbased maximum power point tracking (MPPT) for PV systems. A large number of MPC based MPPT methods have been recently introduced in the literature with very promising performance, however......, an in-depth investigation and comparison of these methods have not been carried out yet. Therefore, this paper has set out to provide an in-depth analysis and evaluation of MPC based MPPT methods applied to various common power converter topologies. The performance of MPC based MPPT is directly linked...... with the converter topology, and it is also affected by the accurate determination of the converter parameters, sensitivity to converter parameter variations is also investigated. The static and dynamic performance of the trackers are assessed according to the EN 50530 standard, using detailed simulation models...

  17. Forecasting Cryptocurrencies Financial Time Series

    DEFF Research Database (Denmark)

    Catania, Leopoldo; Grassi, Stefano; Ravazzolo, Francesco

    2018-01-01

    This paper studies the predictability of cryptocurrencies time series. We compare several alternative univariate and multivariate models in point and density forecasting of four of the most capitalized series: Bitcoin, Litecoin, Ripple and Ethereum. We apply a set of crypto–predictors and rely...

  18. Dual time point FDG PET imaging in evaluating pulmonary nodules with low FDG avidity

    International Nuclear Information System (INIS)

    Chen Xiang; Zhao Jinhua; Song Jianhua; Xing Yan; Wang Taisong; Qiao Wenli

    2010-01-01

    A standardized uptake value (SUV) of 2.5 is frequently used as criteria to evaluate pulmonary lesions. However, false results may occur. Some studies have shown the usefulness of delayed PET for improving accuracy, while others recently have shown fewer promising results. This study was designed to investigate the accuracy of dual time point (DTP) FDG PET imaging in the evaluation of pulmonary lesions with an initial SUV less than 2.5. DTP FDG PET studies were conducted about 1 and 2 hours after FDG injection, and pulmonary lesions with an initial SUV less than 2.5 were identified. Nodules with pathologic results or imaging follow up were included. The differences in SUV and retention index (RI) between benign and malignant pulmonary lesions were analyzed. Receiver operating characteristics (ROC) analysis was performed to evaluate the discriminating validity of SUV and RI. 51 lesions were finally included. A RI greater than 0% was observed in 64% of the benign lesions; 56% had a RI greater than 10%. Among the malignancies, 80.8% had a RI greater than 0%, and 61.5% had a RI greater than 10%. We found no significant differences in SUV and RI between benign and malignant lesions. The area under the ROC curve did not differ from 0.5 whether using SUV or the retention index. Utilizing a SUV increase of 10%, the sensitivity was 61.5%, specificity 44% and accuracy was 52.9%. Dual time point FDG PET may not be of benefit in the evaluation of pulmonary nodules with low FDG avidity. (authors)

  19. forecasting with nonlinear time series model: a monte-carlo

    African Journals Online (AJOL)

    PUBLICATIONS1

    erated recursively up to any step greater than one. For nonlinear time series model, point forecast for step one can be done easily like in the linear case but forecast for a step greater than or equal to ..... London. Franses, P. H. (1998). Time series models for business and Economic forecasting, Cam- bridge University press.

  20. Evaluation of new indigenous "point-of-care" ABO and Rh grouping device.

    Science.gov (United States)

    Tiwari, Aseem Kumar; Setya, Divya; Aggarwal, Geet; Arora, Dinesh; Dara, Ravi C; Ratan, Ankita; Bhardwaj, Gunjan; Acharya, Devi Prasad

    2018-01-01

    Erycard 2.0 is a "point-of-care" device that is primarily being used for patient blood grouping before transfusion. Erycard 2.0 was compared with conventional slide technology for accuracy and time taken for ABO and Rh forward grouping result with column agglutination technology (CAT) being the gold standard. Erycard 2.0 as a device was also evaluated for its stability under different storage conditions and stability of result till 48 h. In addition, grouping of hemolyzed samples was also tested with Erycard 2.0. Ease of use of Erycard 2.0 was evaluated with a survey among paramedical staff. Erycard 2.0 demonstrated 100% concordance with CAT as compared with slide technique (98.9%). Mean time taken per test by Erycard 2.0 and slide technique was 5.13 min and 1.7 min, respectively. After pretesting storage under different temperature and humidity conditions, Erycard 2.0 did not show any deviation from the result. The result did not change even after 48 h of testing and storage under room temperature. 100% concordance was recorded between pre- and post-hemolyzed blood grouping. Ease of use survey revealed that Erycard 2.0 was more acceptable to paramedical staff for its simplicity, objectivity, and performance than conventional slide technique. Erycard 2.0 can be used as "point-of-care" device for blood donor screening for ABO and Rh blood group and can possibly replace conventional slide technique.

  1. An industry perspective on the use of seasonal forecasts and weather information for evaluating sensitivities in traded commodity supply chains

    Science.gov (United States)

    Domeisen, Daniela; Slavov, Georgi

    2015-04-01

    Weather information on seasonal timescales is crucial to various end users, from the level of subsistence farming to the government level. Also the financial industry is ever more aware of and interested in the benefits that early and correctly interpreted forecast information provides. Straight forward and often cited applications include the estimation of rainfall and temperature anomalies for drought - prone agricultural areas producing traded commodities, as well as some of the rather direct impacts of weather on energy production. Governments, weather services, as well as both academia and private companies are working on tailoring climate and weather information to a growing number of customers. However, also other large markets, such as coal, iron ore, and gas, are crucially dependent on seasonal weather information and forecasts, while the needs are again very dependent on the direction of the predicted signal. So far, relatively few providers in climate services address these industries. All of these commodities show a strong seasonal and weather dependence, and an unusual winter or summer can crucially impact their demand and supply. To name a few impacts, gas is crucially driven by heating demand, iron ore excavation is dependent on the available water resources, and coal mining is dependent on winter temperatures and rainfall. This contribution will illustrate and provide an inside view of the type of climate and weather information needed for the various large commodity industries.

  2. Evaluation of the first seizure patient: Key points in the history and physical examination.

    Science.gov (United States)

    Nowacki, Tomasz A; Jirsch, Jeffrey D

    2017-07-01

    This review will present the history and physical examination as the launching point of the first seizure evaluation, from the initial characterization of the event, to the exclusion of alternative diagnoses, and then to the determination of specific acute or remote causes. Clinical features that may distinguish seizures from alternative diagnoses are discussed in detail, followed by a discussion of acute and remote first seizure etiologies. This review article is based on a discretionary selection of English language articles retrieved by a literature search in the PubMed database, and the authors' clinical experience. The first seizure is a dramatic event with often profound implications for patients and family members. The initial clinical evaluation focuses on an accurate description of the spell to confirm the diagnosis, along with careful scrutiny for previously unrecognized seizures that would change the diagnosis more definitively to one of epilepsy. The first seizure evaluation rests primarily on the clinical history, and to a lesser extent, the physical examination. Even in the era of digital EEG recording and neuroimaging, the initial clinical evaluation remains essential for the diagnosis, treatment, and prognostication of the first seizure. Copyright © 2016. Published by Elsevier Ltd.

  3. Evaluating Diagnostic Point-of-Care Tests in Resource-Limited Settings

    Science.gov (United States)

    Drain, Paul K; Hyle, Emily P; Noubary, Farzad; Freedberg, Kenneth A; Wilson, Douglas; Bishai, William; Rodriguez, William; Bassett, Ingrid V

    2014-01-01

    Diagnostic point-of-care (POC) testing is intended to minimize the time to obtain a test result, thereby allowing clinicians and patients to make an expeditious clinical decision. As POC tests expand into resource-limited settings (RLS), the benefits must outweigh the costs. To optimize POC testing in RLS, diagnostic POC tests need rigorous evaluations focused on relevant clinical outcomes and operational costs, which differ from evaluations of conventional diagnostic tests. Here, we reviewed published studies on POC testing in RLS, and found no clearly defined metric for the clinical utility of POC testing. Therefore, we propose a framework for evaluating POC tests, and suggest and define the term “test efficacy” to describe a diagnostic test’s capacity to support a clinical decision within its operational context. We also proposed revised criteria for an ideal diagnostic POC test in resource-limited settings. Through systematic evaluations, comparisons between centralized diagnostic testing and novel POC technologies can be more formalized, and health officials can better determine which POC technologies represent valuable additions to their clinical programs. PMID:24332389

  4. The evaluation of reflective learning from the nursing student's point of view: A mixed method approach.

    Science.gov (United States)

    Fernández-Peña, Rosario; Fuentes-Pumarola, Concepció; Malagón-Aguilera, M Carme; Bonmatí-Tomàs, Anna; Bosch-Farré, Cristina; Ballester-Ferrando, David

    2016-09-01

    Adapting university programmes to European Higher Education Area criteria has required substantial changes in curricula and teaching methodologies. Reflective learning (RL) has attracted growing interest and occupies an important place in the scientific literature on theoretical and methodological aspects of university instruction. However, fewer studies have focused on evaluating the RL methodology from the point of view of nursing students. To assess nursing students' perceptions of the usefulness and challenges of RL methodology. Mixed method design, using a cross-sectional questionnaire and focus group discussion. The research was conducted via self-reported reflective learning questionnaire complemented by focus group discussion. Students provided a positive overall evaluation of RL, highlighting the method's capacity to help them better understand themselves, engage in self-reflection about the learning process, optimize their strengths and discover additional training needs, along with searching for continuous improvement. Nonetheless, RL does not help them as much to plan their learning or identify areas of weakness or needed improvement in knowledge, skills and attitudes. Among the difficulties or challenges, students reported low motivation and lack of familiarity with this type of learning, along with concerns about the privacy of their reflective journals and about the grading criteria. In general, students evaluated RL positively. The results suggest areas of needed improvement related to unfamiliarity with the methodology, ethical aspects of developing a reflective journal and the need for clear evaluation criteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Short-term wind power forecasting: probabilistic and space-time aspects

    DEFF Research Database (Denmark)

    Tastu, Julija

    work deals with the proposal and evaluation of new mathematical models and forecasting methods for short-term wind power forecasting, accounting for space-time dynamics based on geographically distributed information. Different forms of power predictions are considered, starting from traditional point...... into the corresponding models are analysed. As a final step, emphasis is placed on generating space-time trajectories: this calls for the prediction of joint multivariate predictive densities describing wind power generation at a number of distributed locations and for a number of successive lead times. In addition......Optimal integration of wind energy into power systems calls for high quality wind power predictions. State-of-the-art forecasting systems typically provide forecasts for every location individually, without taking into account information coming from the neighbouring territories. It is however...

  6. Detecting, categorizing and forecasting large romps in wind farm power output using meteorological observations and WPPT

    DEFF Research Database (Denmark)

    Cutler, N.; Kay, M.; Jacka, K.

    2007-01-01

    The Wind Power Prediction Tool (WPPT) has been installed in Australia for the first time, to forecast the power output from the 65MW Roaring 40s Renewable Energy P/L Woolnorth Bluff Point wind form. This article analyses the general performance of WPPT as well as its performance during large romps...... (swings) in power output. In addition to this, detected large ramps are studied in detail and categorized. WPPT combines wind speed and direction forecasts from the Australian Bureau of Meteorology regional numerical weather prediction model, MesoLAPS, with real-time wind power observations to make hourly...... forecasts of the wind farm power output. The general performances of MesoLAPS and WPPTore evaluated over I year using the root mean square error (RMSE). The errors are significantly lower than for basic benchmark forecasts but higher than for many other WPPT installations, where the site conditions...

  7. Communicating uncertainty in hydrological forecasts: mission impossible?

    Science.gov (United States)

    Ramos, Maria-Helena; Mathevet, Thibault; Thielen, Jutta; Pappenberger, Florian

    2010-05-01

    Cascading uncertainty in meteo-hydrological modelling chains for forecasting and integrated flood risk assessment is an essential step to improve the quality of hydrological forecasts. Although the best methodology to quantify the total predictive uncertainty in hydrology is still debated, there is a common agreement that one must avoid uncertainty misrepresentation and miscommunication, as well as misinterpretation of information by users. Several recent studies point out that uncertainty, when properly explained and defined, is no longer unwelcome among emergence response organizations, users of flood risk information and the general public. However, efficient communication of uncertain hydro-meteorological forecasts is far from being a resolved issue. This study focuses on the interpretation and communication of uncertain hydrological forecasts based on (uncertain) meteorological forecasts and (uncertain) rainfall-runoff modelling approaches to decision-makers such as operational hydrologists and water managers in charge of flood warning and scenario-based reservoir operation. An overview of the typical flow of uncertainties and risk-based decisions in hydrological forecasting systems is presented. The challenges related to the extraction of meaningful information from probabilistic forecasts and the test of its usefulness in assisting operational flood forecasting are illustrated with the help of two case-studies: 1) a study on the use and communication of probabilistic flood forecasting within the European Flood Alert System; 2) a case-study on the use of probabilistic forecasts by operational forecasters from the hydroelectricity company EDF in France. These examples show that attention must be paid to initiatives that promote or reinforce the active participation of expert forecasters in the forecasting chain. The practice of face-to-face forecast briefings, focusing on sharing how forecasters interpret, describe and perceive the model output forecasted

  8. Point-of-Care Ultrasonography for Evaluation of Acute Dyspnea in the ED.

    Science.gov (United States)

    Zanobetti, Maurizio; Scorpiniti, Margherita; Gigli, Chiara; Nazerian, Peiman; Vanni, Simone; Innocenti, Francesca; Stefanone, Valerio T; Savinelli, Caterina; Coppa, Alessandro; Bigiarini, Sofia; Caldi, Francesca; Tassinari, Irene; Conti, Alberto; Grifoni, Stefano; Pini, Riccardo

    2017-06-01

    Acute dyspnea is a common symptom in the ED. The standard approach to dyspnea often relies on radiologic and laboratory results, causing excessive delay before adequate therapy is started. Use of an integrated point-of-care ultrasonography (PoCUS) approach can shorten the time needed to formulate a diagnosis, while maintaining an acceptable safety profile. Consecutive adult patients presenting with dyspnea and admitted after ED evaluation were prospectively enrolled. The gold standard was the final diagnosis assessed by two expert reviewers. Two physicians independently evaluated the patient; a sonographer performed an ultrasound evaluation of the lung, heart, and inferior vena cava, while the treating physician requested traditional tests as needed. Time needed to formulate the ultrasound and the ED diagnoses was recorded and compared. Accuracy and concordance of the ultrasound and the ED diagnoses were calculated. A total of 2,683 patients were enrolled. The average time needed to formulate the ultrasound diagnosis was significantly lower than that required for ED diagnosis (24 ± 10 min vs 186 ± 72 min; P = .025). The ultrasound and the ED diagnoses showed good overall concordance (κ = 0.71). There were no statistically significant differences in the accuracy of PoCUS and the standard ED evaluation for the diagnosis of acute coronary syndrome, pneumonia, pleural effusion, pericardial effusion, pneumothorax, and dyspnea from other causes. PoCUS was significantly more sensitive for the diagnosis of heart failure, whereas a standard ED evaluation performed better in the diagnosis of COPD/asthma and pulmonary embolism. PoCUS represents a feasible and reliable diagnostic approach to the patient with dyspnea, allowing a reduction in time to diagnosis. This protocol could help to stratify patients who should undergo a more detailed evaluation. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  9. National Forecast Charts

    Science.gov (United States)

    code. Press enter or select the go button to submit request Local forecast by "City, St" or Prediction Center on Twitter NCEP Quarterly Newsletter WPC Home Analyses and Forecasts National Forecast to all federal, state, and local government web resources and services. National Forecast Charts

  10. Are Forecast Updates Progressive?

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); Ph.H.B.F. Franses (Philip Hans); M.J. McAleer (Michael)

    2010-01-01

    textabstractMacro-economic forecasts typically involve both a model component, which is replicable, as well as intuition, which is non-replicable. Intuition is expert knowledge possessed by a forecaster. If forecast updates are progressive, forecast updates should become more accurate, on average,

  11. On probabilistic forecasting of wind power time-series

    DEFF Research Database (Denmark)

    Pinson, Pierre

    power dynamics. In both cases, the model parameters are adaptively and recursively estimated, time-adaptativity being the result of exponential forgetting of past observations. The probabilistic forecasting methodology is applied at the Horns Rev wind farm in Denmark, for 10-minute ahead probabilistic...... forecasting of wind power generation. Probabilistic forecasts generated from the proposed methodology clearly have higher skill than those obtained from a classical Gaussian assumption about wind power predictive densities. Corresponding point forecasts also exhibit significantly lower error criteria....

  12. Forecasting freight flows

    DEFF Research Database (Denmark)

    Lyk-Jensen, Stéphanie

    2011-01-01

    Trade patterns and transport markets are changing as a result of the growth and globalization of international trade, and forecasting future freight flow has to rely on trade forecasts. Forecasting freight flows is critical for matching infrastructure supply to demand and for assessing investment...... constitute a valuable input to freight models for forecasting future capacity problems.......Trade patterns and transport markets are changing as a result of the growth and globalization of international trade, and forecasting future freight flow has to rely on trade forecasts. Forecasting freight flows is critical for matching infrastructure supply to demand and for assessing investment...

  13. Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond

    DEFF Research Database (Denmark)

    Hong, Tao; Pinson, Pierre; Fan, Shu

    2016-01-01

    The energy industry has been going through a significant modernization process over the last decade. Its infrastructure is being upgraded rapidly. The supply, demand and prices are becoming more volatile and less predictable than ever before. Even its business model is being challenged fundamenta......The energy industry has been going through a significant modernization process over the last decade. Its infrastructure is being upgraded rapidly. The supply, demand and prices are becoming more volatile and less predictable than ever before. Even its business model is being challenged...... fundamentally. In this competitive and dynamic environment, many decision-making processes rely on probabilistic forecasts to quantify the uncertain future. Although most of the papers in the energy forecasting literature focus on point or singlevalued forecasts, the research interest in probabilistic energy...

  14. Response of Amazon Fires to the 2015/2016 El Niño and Evaluation of a Seasonal Fire Season Severity Forecast

    Science.gov (United States)

    Randerson, J. T.

    2016-12-01

    temporal pattern of fires within the Amazon during the 2016 dry season and evaluate the success of our forecast. As a part of this analysis, we will compare fires from 2016 with other years of extreme drought (i.e., 2005 and 2010), and assess how trends in land use, including regional changes in deforestation, modify El Niño-driven fire risk.

  15. Resource and Performance Evaluations of Fixed Point QRD-RLS Systolic Array through FPGA Implementation

    Science.gov (United States)

    Yokoyama, Yoshiaki; Kim, Minseok; Arai, Hiroyuki

    At present, when using space-time processing techniques with multiple antennas for mobile radio communication, real-time weight adaptation is necessary. Due to the progress of integrated circuit technology, dedicated processor implementation with ASIC or FPGA can be employed to implement various wireless applications. This paper presents a resource and performance evaluation of the QRD-RLS systolic array processor based on fixed-point CORDIC algorithm with FPGA. In this paper, to save hardware resources, we propose the shared architecture of a complex CORDIC processor. The required precision of internal calculation, the circuit area for the number of antenna elements and wordlength, and the processing speed will be evaluated. The resource estimation provides a possible processor configuration with a current FPGA on the market. Computer simulations assuming a fading channel will show a fast convergence property with a finite number of training symbols. The proposed architecture has also been implemented and its operation was verified by beamforming evaluation through a radio propagation experiment.

  16. Evaluation of factor for one-point venous blood sampling method based on the causality model

    International Nuclear Information System (INIS)

    Matsutomo, Norikazu; Onishi, Hideo; Kobara, Kouichi; Sasaki, Fumie; Watanabe, Haruo; Nagaki, Akio; Mimura, Hiroaki

    2009-01-01

    One-point venous blood sampling method (Mimura, et al.) can evaluate the regional cerebral blood flow (rCBF) value with a high degree of accuracy. However, the method is accompanied by complexity of technique because it requires a venous blood Octanol value, and its accuracy is affected by factors of input function. Therefore, we evaluated the factors that are used for input function to determine the accuracy input function and simplify the technique. The input function which uses the time-dependent brain count of 5 minutes, 15 minutes, and 25 minutes from administration, and the input function in which an objective variable is used as the artery octanol value to exclude the venous blood octanol value are created. Therefore, a correlation between these functions and rCBF value by the microsphere (MS) method is evaluated. Creation of a high-accuracy input function and simplification of technique are possible. The rCBF value obtained by the input function, the factor of which is a time-dependent brain count of 5 minutes from administration, and the objective variable is artery octanol value, had a high correlation with the MS method (y=0.899x+4.653, r=0.842). (author)

  17. Design and Evaluation of Large-Aperture Gallium Fixed-Point Blackbody

    Science.gov (United States)

    Khromchenko, V. B.; Mekhontsev, S. N.; Hanssen, L. M.

    2009-02-01

    To complement existing water bath blackbodies that now serve as NIST primary standard sources in the temperature range from 15 °C to 75 °C, a gallium fixed-point blackbody has been recently built. The main objectives of the project included creating an extended-area radiation source with a target emissivity of 0.9999 capable of operating either inside a cryo-vacuum chamber or in a standard laboratory environment. A minimum aperture diameter of 45 mm is necessary for the calibration of radiometers with a collimated input geometry or large spot size. This article describes the design and performance evaluation of the gallium fixed-point blackbody, including the calculation and measurements of directional effective emissivity, estimates of uncertainty due to the temperature drop across the interface between the pure metal and radiating surfaces, as well as the radiometrically obtained spatial uniformity of the radiance temperature and the melting plateau stability. Another important test is the measurement of the cavity reflectance, which was achieved by using total integrated scatter measurements at a laser wavelength of 10.6 μm. The result allows one to predict the performance under the low-background conditions of a cryo-chamber. Finally, results of the spectral radiance comparison with the NIST water-bath blackbody are provided. The experimental results are in good agreement with predicted values and demonstrate the potential of our approach. It is anticipated that, after completion of the characterization, a similar source operating at the water triple point will be constructed.

  18. Satisfaction with the local service point for care: results of an evaluation study

    Science.gov (United States)

    Esslinger, Adelheid Susanne; Macco, Katrin; Schmidt, Katharina

    2009-01-01

    Purpose The market of care increases and is characterized by complexity. Therefore, service points, such as the ‘Zentrale Anlaufstelle Pflege (ZAPf)’ in Nuremberg, are helpful for clients to get orientation. The purpose of the presentation is to show the results of an evaluation study about the clients' satisfaction with the offers of ZAPf. Study Satisfaction with service may be measured with the SERVQUAL concept introduced by Parasuraman et al. (1988). They found out five dimensions of quality (tangibles, reliability, responsiveness, assurances and empathy). We took these dimensions in our study. The study focuses on the quality of service and the benefits recognized by clients. In spring 2007, we conducted 67 interviews by phone, based on a half standardized questionnaire. Statistical analysis was conducted using SPSS. Results The clients want to get information about care in general, financial and legal aspects, alternative care arrangement (e.g. ambulant, long-term care) and typical age-related diseases. They show a high satisfaction with the service provided. Their benefits are to get information and advice, to strengthen the ability of decision taking, to cope with changing situations in life, and to develop solutions. Conclusions The results show that the quality of service is on a high level. Critical success factors are the interdisciplinary cooperation at the service point, based on a regularly and open exchange of information. Every member focuses on an optimal individual solution for the client. Local professional service points act as networkers and brokers. They serve not only for the clients' needs but also support the effective and efficient provision of optimized care.

  19. Short-Term Wind Speed Forecasting for Power System Operations

    KAUST Repository

    Zhu, Xinxin; Genton, Marc G.

    2012-01-01

    some statistical short-term wind speed forecasting models, including traditional time series approaches and more advanced space-time statistical models. It also discusses the evaluation of forecast accuracy, in particular, the need for realistic loss

  20. Evaluation of the Long-Term Stability and Temperature Coefficient of Dew-Point Hygrometers

    Science.gov (United States)

    Benyon, R.; Vicente, T.; Hernández, P.; De Rivas, L.; Conde, F.

    2012-09-01

    The continuous quest for improved specifications of optical dew-point hygrometers has raised customer expectations on the performance of these devices. In the absence of a long calibration history, users with a limited prior experience in the measurement of humidity, place reliance on manufacturer specifications to estimate long-term stability. While this might be reasonable in the case of measurement of electrical quantities, in humidity it can lead to optimistic estimations of uncertainty. This article reports a study of the long-term stability of some hygrometers and the analysis of their performance as monitored through regular calibration. The results of the investigations provide some typical, realistic uncertainties associated with the long-term stability of instruments used in calibration and testing laboratories. Together, these uncertainties can help in establishing initial contributions in uncertainty budgets, as well as in setting the minimum calibration requirements, based on the evaluation of dominant influence quantities.

  1. A dissipated energy comparison to evaluate fatigue resistance using 2-point bending

    Directory of Open Access Journals (Sweden)

    Cinzia Maggiore

    2014-02-01

    Full Text Available Fatigue is the main failure mode in pavement engineering. Typically, micro-cracks originate at the bottom of asphalt concrete layer due to horizontal tensile strains. Micro-cracks start to propagate towards the upper layers under repeated loading which can lead to pavement failure. Different methods are usually used to describe fatigue behavior in asphalt materials such as: phenomenological approach, fracture mechanics approach and dissipated energy approach. This paper presents a comparison of fatigue resistances calculated for different dissipated energy models using 2-point bending (2PB at IFSTTAR in Nantes. 2PB tests have been undertaken under different loading and environmental conditions in order to evaluate the properties of the mixtures (stiffness, dissipated energy, fatigue life and healing effect.

  2. Evaluation of new indigenous “point-of-care” ABO and Rh grouping device

    Science.gov (United States)

    Tiwari, Aseem Kumar; Setya, Divya; Aggarwal, Geet; Arora, Dinesh; Dara, Ravi C.; Ratan, Ankita; Bhardwaj, Gunjan; Acharya, Devi Prasad

    2018-01-01

    BACKGROUND: Erycard 2.0 is a “point-of-care” device that is primarily being used for patient blood grouping before transfusion. MATERIALS AND METHODS: Erycard 2.0 was compared with conventional slide technology for accuracy and time taken for ABO and Rh forward grouping result with column agglutination technology (CAT) being the gold standard. Erycard 2.0 as a device was also evaluated for its stability under different storage conditions and stability of result till 48 h. In addition, grouping of hemolyzed samples was also tested with Erycard 2.0. Ease of use of Erycard 2.0 was evaluated with a survey among paramedical staff. RESULTS: Erycard 2.0 demonstrated 100% concordance with CAT as compared with slide technique (98.9%). Mean time taken per test by Erycard 2.0 and slide technique was 5.13 min and 1.7 min, respectively. After pretesting storage under different temperature and humidity conditions, Erycard 2.0 did not show any deviation from the result. The result did not change even after 48 h of testing and storage under room temperature. 100% concordance was recorded between pre- and post-hemolyzed blood grouping. Ease of use survey revealed that Erycard 2.0 was more acceptable to paramedical staff for its simplicity, objectivity, and performance than conventional slide technique. CONCLUSION: Erycard 2.0 can be used as “point-of-care” device for blood donor screening for ABO and Rh blood group and can possibly replace conventional slide technique. PMID:29403211

  3. The forecaster's added value

    Science.gov (United States)

    Turco, M.; Milelli, M.

    2009-09-01

    To the authors' knowledge there are relatively few studies that try to answer this topic: "Are humans able to add value to computer-generated forecasts and warnings ?". Moreover, the answers are not always positive. In particular some postprocessing method is competitive or superior to human forecast (see for instance Baars et al., 2005, Charba et al., 2002, Doswell C., 2003, Roebber et al., 1996, Sanders F., 1986). Within the alert system of ARPA Piemonte it is possible to study in an objective manner if the human forecaster is able to add value with respect to computer-generated forecasts. Every day the meteorology group of the Centro Funzionale of Regione Piemonte produces the HQPF (Human QPF) in terms of an areal average for each of the 13 regional warning areas, which have been created according to meteo-hydrological criteria. This allows the decision makers to produce an evaluation of the expected effects by comparing these HQPFs with predefined rainfall thresholds. Another important ingredient in this study is the very dense non-GTS network of rain gauges available that makes possible a high resolution verification. In this context the most useful verification approach is the measure of the QPF and HQPF skills by first converting precipitation expressed as continuous amounts into ‘‘exceedance'' categories (yes-no statements indicating whether precipitation equals or exceeds selected thresholds) and then computing the performances for each threshold. In particular in this work we compare the performances of the latest three years of QPF derived from two meteorological models COSMO-I7 (the Italian version of the COSMO Model, a mesoscale model developed in the framework of the COSMO Consortium) and IFS (the ECMWF global model) with the HQPF. In this analysis it is possible to introduce the hypothesis test developed by Hamill (1999), in which a confidence interval is calculated with the bootstrap method in order to establish the real difference between the

  4. Comparative Evaluations of Randomly Selected Four Point-of-Care Glucometer Devices in Addis Ababa, Ethiopia.

    Science.gov (United States)

    Wolde, Mistire; Tarekegn, Getahun; Kebede, Tedla

    2018-05-01

    Point-of-care glucometer (PoCG) devices play a significant role in self-monitoring of the blood sugar level, particularly in the follow-up of high blood sugar therapeutic response. The aim of this study was to evaluate blood glucose test results performed with four randomly selected glucometers on diabetes and control subjects versus standard wet chemistry (hexokinase) methods in Addis Ababa, Ethiopia. A prospective cross-sectional study was conducted on randomly selected 200 study participants (100 participants with diabetes and 100 healthy controls). Four randomly selected PoCG devices (CareSens N, DIAVUE Prudential, On Call Extra, i-QARE DS-W) were evaluated against hexokinase method and ISO 15197:2003 and ISO 15197:2013 standards. The minimum and maximum blood sugar values were recorded by CareSens N (21 mg/dl) and hexokinase method (498.8 mg/dl), respectively. The mean sugar values of all PoCG devices except On Call Extra showed significant differences compared with the reference hexokinase method. Meanwhile, all four PoCG devices had strong positive relationship (>80%) with the reference method (hexokinase). On the other hand, none of the four PoCG devices fulfilled the minimum accuracy measurement set by ISO 15197:2003 and ISO 15197:2013 standards. In addition, the linear regression analysis revealed that all four selected PoCG overestimated the glucose concentrations. The overall evaluation of the selected four PoCG measurements were poorly correlated with standard reference method. Therefore, before introducing PoCG devices to the market, there should be a standardized evaluation platform for validation. Further similar large-scale studies on other PoCG devices also need to be undertaken.

  5. Research and application of a hybrid model based on dynamic fuzzy synthetic evaluation for establishing air quality forecasting and early warning system: A case study in China.

    Science.gov (United States)

    Xu, Yunzhen; Du, Pei; Wang, Jianzhou

    2017-04-01

    As the atmospheric environment pollution has been becoming more and more serious in China, it is highly desirable to develop a scientific and effective early warning system that plays a great significant role in analyzing and monitoring air quality. However, establishing a robust early warning system for warning the public in advance and ameliorating air quality is not only an extremely challenging task but also a public concerned problem for human health. Most previous studies are focused on improving the prediction accuracy, which usually ignore the significance of uncertainty information and comprehensive evaluation concerning air pollutants. Therefore, in this paper a novel robust early warning system was successfully developed, which consists of three modules: evaluation module, forecasting module and characteristics estimating module. In this system, a new dynamic fuzzy synthetic evaluation is proposed and applied to determine air quality levels and primary pollutants, which can be regarded as the research objectives; Moreover, to further mine and analyze the characteristics of air pollutants, four different distribution functions and interval forecasting method are also employed that can not only provide predictive range, confidence level and the other uncertain information of the pollutants future values, but also assist decision-makers in reducing and controlling the emissions of atmospheric pollutants. Case studies utilizing hourly PM 2.5 , PM 10 and SO 2 data collected from Tianjin and Shanghai in China are applied as illustrative examples to estimate the effectiveness and efficiency of the proposed system. Experimental results obviously indicated that the developed novel early warning system is much suitable for analyzing and monitoring air pollution, which can also add a novel viable option for decision-makers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Performance evaluation of the microINR® point-of-care INR-testing system.

    Science.gov (United States)

    Joubert, J; van Zyl, M C; Raubenheimer, J

    2018-04-01

    Point-of-care International Normalised Ratio (INR) testing is used frequently. We evaluated the microINR ® POC system for accuracy, precision and measurement repeatability, and investigated instrument and test chip variability and error rates. Venous blood INRs of 210 patients on warfarin were obtained with Thromborel ® S on the Sysmex CS-2100i ® analyser and compared with capillary blood microINR ® values. Precision was assessed using control materials. Measurement repeatability was calculated on 51 duplicate finger-prick INRs. Triplicate finger-prick INRs using three different instruments (30 patients) and three different test chip lots (29 patients) were used to evaluate instrument and test chip variability. Linear regression analysis of microINR ® and Sysmex CS2100i ® values showed a correlation coefficient of 0.96 (P < .0001) and a positive proportional bias of 4.4%. Dosage concordance was 93.8% and clinical agreement 95.7%. All acceptance criteria based on ISO standard 17593:2007 system accuracy requirements were met. Control material coefficients of variation (CV) varied from 6.2% to 16.7%. The capillary blood measurement repeatability CV was 7.5%. No significant instrument (P = .93) or test chip (P = .81) variability was found, and the error rate was low (2.8%). The microINR ® instrument is accurate and precise for monitoring warfarin therapy. © 2017 John Wiley & Sons Ltd.

  7. Laboratory Evaluation of the Alere q Point-of-Care System for Early Infant HIV Diagnosis.

    Science.gov (United States)

    Hsiao, Nei-yuan; Dunning, Lorna; Kroon, Max; Myer, Landon

    2016-01-01

    Early infant diagnosis (EID) and prompt linkage to care are critical to minimise the high morbidity and mortality associated with infant HIV infection. Attrition in the "EID cascade" is common; however, point-of-care (POC) EID assays with same-day result could facilitate prompt linkage of HIV-infected infant to treatment. Despite a number of POC EID assays in development, few have been independently evaluated and data on new technologies are urgently needed to inform policy. We compared Alere q 1/2 Detect POC system laboratory test characteristics with the local standard of care (SOC), Roche CAP/CTM HIV-1 qualitative PCR in an independent laboratory-based evaluation in Cape Town, South Africa. Routinely EID samples collected between November 2013 and September 2014 were each tested by both SOC and POC systems. Repeat testing was done to troubleshoot any discrepancy between POC and SOC results. Overall, 1098 children with a median age of 47 days (IQR, 42-117) were included. Birth PCR (age laboratory. The high specificity and thus high positive predictive value would suggest a positive POC result may be adequate for immediate infant ART initiation. While POC testing for EID may have particular utility for birth testing at delivery facilities, the lower sensitivity and error rate requires further attention, as does field implementation of POC EID technologies in other clinical care settings.

  8. Evaluating the sustainability of ceramic filters for point-of-use drinking water treatment.

    Science.gov (United States)

    Ren, Dianjun; Colosi, Lisa M; Smith, James A

    2013-10-01

    This study evaluates the social, economic, and environmental sustainability of ceramic filters impregnated with silver nanoparticles for point-of-use (POU) drinking water treatment in developing countries. The functional unit for this analysis was the amount of water consumed by a typical household over ten years (37,960 L), as delivered by either the POU technology or a centralized water treatment and distribution system. Results indicate that the ceramic filters are 3-6 times more cost-effective than the centralized water system for reduction of waterborne diarrheal illness among the general population and children under five. The ceramic filters also exhibit better environmental performance for four of five evaluated life cycle impacts: energy use, water use, global warming potential, and particulate matter emissions (PM10). For smog formation potential, the centralized system is preferable to the ceramic filter POU technology. This convergence of social, economic, and environmental criteria offers clear indication that the ceramic filter POU technology is a more sustainable choice for drinking water treatment in developing countries than the centralized treatment systems that have been widely adopted in industrialized countries.

  9. Flood forecasting and uncertainty of precipitation forecasts

    International Nuclear Information System (INIS)

    Kobold, Mira; Suselj, Kay

    2004-01-01

    The timely and accurate flood forecasting is essential for the reliable flood warning. The effectiveness of flood warning is dependent on the forecast accuracy of certain physical parameters, such as the peak magnitude of the flood, its timing, location and duration. The conceptual rainfall - runoff models enable the estimation of these parameters and lead to useful operational forecasts. The accurate rainfall is the most important input into hydrological models. The input for the rainfall can be real time rain-gauges data, or weather radar data, or meteorological forecasted precipitation. The torrential nature of streams and fast runoff are characteristic for the most of the Slovenian rivers. Extensive damage is caused almost every year- by rainstorms affecting different regions of Slovenia' The lag time between rainfall and runoff is very short for Slovenian territory and on-line data are used only for now casting. Forecasted precipitations are necessary for hydrological forecast for some days ahead. ECMWF (European Centre for Medium-Range Weather Forecasts) gives general forecast for several days ahead while more detailed precipitation data with limited area ALADIN/Sl model are available for two days ahead. There is a certain degree of uncertainty using such precipitation forecasts based on meteorological models. The variability of precipitation is very high in Slovenia and the uncertainty of ECMWF predicted precipitation is very large for Slovenian territory. ECMWF model can predict precipitation events correctly, but underestimates amount of precipitation in general The average underestimation is about 60% for Slovenian region. The predictions of limited area ALADIN/Si model up to; 48 hours ahead show greater applicability in hydrological forecasting. The hydrological models are sensitive to precipitation input. The deviation of runoff is much bigger than the rainfall deviation. Runoff to rainfall error fraction is about 1.6. If spatial and time distribution

  10. An automated method for the evaluation of the pointing accuracy of Sun-tracking devices

    Science.gov (United States)

    Baumgartner, Dietmar J.; Pötzi, Werner; Freislich, Heinrich; Strutzmann, Heinz; Veronig, Astrid M.; Rieder, Harald E.

    2017-03-01

    The accuracy of solar radiation measurements, for direct (DIR) and diffuse (DIF) radiation, depends significantly on the precision of the operational Sun-tracking device. Thus, rigid targets for instrument performance and operation have been specified for international monitoring networks, e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices that fulfill these accuracy requirements are available from various instrument manufacturers; however, none of the commercially available systems comprise an automatic accuracy control system allowing platform operators to independently validate the pointing accuracy of Sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system-independent, and cost-effective system for evaluating the pointing accuracy of Sun-tracking devices. We detail the monitoring system setup, its design and specifications, and the results from its application to the Sun-tracking system operated at the Kanzelhöhe Observatory (KSO) Austrian radiation monitoring network (ARAD) site. The results from an evaluation campaign from March to June 2015 show that the tracking accuracy of the device operated at KSO lies within BSRN specifications (i.e., 0.1° tracking accuracy) for the vast majority of observations (99.8 %). The evaluation of manufacturer-specified active-tracking accuracies (0.02°), during periods with direct solar radiation exceeding 300 W m-2, shows that these are satisfied in 72.9 % of observations. Tracking accuracies are highest during clear-sky conditions and on days where prevailing clear-sky conditions are interrupted by frontal movement; in these cases, we obtain the complete fulfillment of BSRN requirements and 76.4 % of observations within manufacturer-specified active-tracking accuracies. Limitations to tracking surveillance arise during overcast conditions and

  11. Experimental evaluation of ALS point cloud ground extraction over different land cover in the Malopolska Province

    Science.gov (United States)

    Korzeniowska, Karolina; Mandlburger, Gottfried; Klimczyk, Agata

    2013-04-01

    The paper presents an evaluation of different terrain point extraction algorithms for Airborne Laser Scanning (ALS) point clouds. The research area covers eight test sites in the Małopolska Province (Poland) with varying point density between 3-15points/m² and surface as well as land cover characteristics. In this paper the existing implementations of algorithms were considered. Approaches based on mathematical morphology, progressive densification, robust surface interpolation and segmentation were compared. From the group of morphological filters, the Progressive Morphological Filter (PMF) proposed by Zhang K. et al. (2003) in LIS software was evaluated. From the progressive densification filter methods developed by Axelsson P. (2000) the Martin Isenburg's implementation in LAStools software (LAStools, 2012) was chosen. The third group of methods are surface-based filters. In this study, we used the hierarchic robust interpolation approach by Kraus K., Pfeifer N. (1998) as implemented in SCOP++ (Trimble, 2012). The fourth group of methods works on segmentation. From this filtering concept the segmentation algorithm available in LIS was tested (Wichmann V., 2012). The main aim in executing the automatic classification for ground extraction was operating in default mode or with default parameters which were selected by the developers of the algorithms. It was assumed that the default settings were equivalent to the parameters on which the best results can be achieved. In case it was not possible to apply an algorithm in default mode, a combination of the available and most crucial parameters for ground extraction were selected. As a result of these analyses, several output LAS files with different ground classification were achieved. The results were described on the basis of qualitative and quantitative analyses, both being in a formal description. The classification differences were verified on point cloud data. Qualitative verification of ground extraction was

  12. Convergence estimates in probability and in expectation for discrete least squares with noisy evaluations at random points

    KAUST Repository

    Migliorati, Giovanni; Nobile, Fabio; Tempone, Raul

    2015-01-01

    We study the accuracy of the discrete least-squares approximation on a finite dimensional space of a real-valued target function from noisy pointwise evaluations at independent random points distributed according to a given sampling probability

  13. [Evaluation and prioritisation of the scientific research in Spain. Researchers' point of view].

    Science.gov (United States)

    María Martín-Moreno, José; Juan Toharia, José; Gutiérrez Fuentes, José Antonio

    2008-12-01

    The assessment and prioritisation of research activity are essential components of any Science, Technology and Industry System. Data on researchers' perspectives in this respect are scarce. The objective of this paper was to describe Spanish scientists' point of view on the current evaluation system in Spain and how they believe this system should be functionally structured. From the sampling frame formed by established Spanish scientists, listed in the databases of CSIC and FIS (Institute of Health Carlos III), clinical, biomedical-non clinical, and physics and chemical researchers were randomly selected. Two hundred and eleven interviews were carried out by means of a computer-assisted telephone interviewing system. Researchers expressed their acknowledgement of progress in the Spanish research field but made their wish clear to progress towards better scientific scenarios. In their assessment, they gave a score of 5.4 to scientific policy, as opposed to 9.4 when speaking about the goals, reflecting the desire for a better policy definition, with clear objectives, stable strategies and better coordination of R&D activities (the current coordination received a score of 3.9, while the desirable coordination was valued as high as 9.2). There was certain agreement regarding the need for a prioritisation criteria which preserves some degree of creativity by researchers. They also stated that they would like to see an independent research structure with social prestige and influence. The interviewed researchers believe that the evaluation of scientific activities is fundamental in formulating a sound scientific policy. Prioritisation should arise from appropriate evaluation. Strategies properly coordinated among all the stakeholders (including the private sector) should be fostered. Budget sufficiency, stability, and better organization of independent researchers should be the backbone of any strategy tailored to increase their capacity to influence future scientific

  14. Forecasting Enrollments with Fuzzy Time Series.

    Science.gov (United States)

    Song, Qiang; Chissom, Brad S.

    The concept of fuzzy time series is introduced and used to forecast the enrollment of a university. Fuzzy time series, an aspect of fuzzy set theory, forecasts enrollment using a first-order time-invariant model. To evaluate the model, the conventional linear regression technique is applied and the predicted values obtained are compared to the…

  15. Probabilistic electricity price forecasting with variational heteroscedastic Gaussian process and active learning

    International Nuclear Information System (INIS)

    Kou, Peng; Liang, Deliang; Gao, Lin; Lou, Jianyong

    2015-01-01

    Highlights: • A novel active learning model for the probabilistic electricity price forecasting. • Heteroscedastic Gaussian process that captures the local volatility of the electricity price. • Variational Bayesian learning that avoids over-fitting. • Active learning algorithm that reduces the computational efforts. - Abstract: Electricity price forecasting is essential for the market participants in their decision making. Nevertheless, the accuracy of such forecasting cannot be guaranteed due to the high variability of the price data. For this reason, in many cases, rather than merely point forecasting results, market participants are more interested in the probabilistic price forecasting results, i.e., the prediction intervals of the electricity price. Focusing on this issue, this paper proposes a new model for the probabilistic electricity price forecasting. This model is based on the active learning technique and the variational heteroscedastic Gaussian process (VHGP). It provides the heteroscedastic Gaussian prediction intervals, which effectively quantify the heteroscedastic uncertainties associated with the price data. Because the high computational effort of VHGP hinders its application to the large-scale electricity price forecasting tasks, we design an active learning algorithm to select a most informative training subset from the whole available training set. By constructing the forecasting model on this smaller subset, the computational efforts can be significantly reduced. In this way, the practical applicability of the proposed model is enhanced. The forecasting performance and the computational time of the proposed model are evaluated using the real-world electricity price data, which is obtained from the ANEM, PJM, and New England ISO

  16. Stochastic model of forecasting spare parts demand

    Directory of Open Access Journals (Sweden)

    Ivan S. Milojević

    2012-01-01

    hypothesis of the existence of phenomenon change trends, the next step in the methodology of forecasting is the determination of a specific growth curve that describes the regularity of the development in time. These curves of growth are obtained by the analytical representation (expression of dynamic lines. There are two basic stages in the process of expression and they are: - The choice of the type of curve the shape of which corresponds to the character of the dynamic order variation - the determination of the number of values (evaluation of the curve parameters. The most widespread method of forecasting is the trend extrapolation. The basis of the trend extrapolation is the continuing of past trends in the future. The simplicity of the trend extrapolation process, on the one hand, and the absence of other information on the other hand, are the main reasons why the trend extrapolation is used for forecasting. The trend extrapolation is founded on the following assumptions: - The phenomenon development can be presented as an evolutionary trajectory or trend, - General conditions that influenced the trend development in the past will not undergo substantial changes in the future. Spare parts demand forecasting is constantly being done in all warehouses, workshops, and at all levels. Without demand forecasting, neither planning nor decision making can be done. Demand forecasting is the input for determining the level of reserve, size of the order, ordering cycles, etc. The question that arises is the one of the reliability and accuracy of a forecast and its effects. Forecasting 'by feeling' is not to be dismissed if there is nothing better, but in this case, one must be prepared for forecasting failures that cause unnecessary accumulation of certain spare parts, and also a chronic shortage of other spare parts. All this significantly increases costs and does not provide a satisfactory supply of spare parts. The main problem of the application of this model is that each

  17. Issues in Forecasting CMEs

    Science.gov (United States)

    Pizzo, V. J.

    2017-12-01

    I will present my view of the current status of space weather forecasting abilities related to CMEs. This talk will address the large-scale aspects, but specifically not energetic particle phenomena. A key point is that all models, whether sophisticated numerical contraptions or quasi-empirical ones, are only as good as the data you feed them. Hence the emphasis will be on observations and analysis methods. First I will review where we stand with regard to the near-Sun quantitative data needed to drive any model, no matter how complex or simple-minded, and I will discuss technological roadblocks that suggest it may be some time before we see any meaningful improvements beyond what we have today. Then I cover issues related to characterizing CME propagation out through the corona and into interplanetary space, as well as to observational limitations in the vicinity of 1 AU. Since none of these observational constraints are likely to be resolved anytime soon, the real challenge is to make more informed use of what is available. Thus, this talk will focus on how we may identify and pursue the most profitable approaches, for both forecast and research applications. The discussion will highlight a number of promising leads, including those related to inclusion of solar backside information, joint magnetograph observations from L5 and Earth, how to use (not just run) ensembles, more rational use of HI observations, and suggestions for using cube-sats for deep space observations of CMEs and MCs.

  18. Evaluation of Maximum a Posteriori Estimation as Data Assimilation Method for Forecasting Infiltration-Inflow Affected Urban Runoff with Radar Rainfall Input

    DEFF Research Database (Denmark)

    Wied Pedersen, Jonas; Lund, Nadia Schou Vorndran; Borup, Morten

    2016-01-01

    High quality on-line flow forecasts are useful for real-time operation of urban drainage systems and wastewater treatment plants. This requires computationally efficient models, which are continuously updated with observed data to provide good initial conditions for the forecasts. This paper...... period of time that precedes the forecast. The method is illustrated for an urban catchment, where flow forecasts of 0–4 h are generated by applying a lumped linear reservoir model with three cascading reservoirs. Radar rainfall observations are used as input to the model. The effects of different prior...

  19. Fuel cycle forecasting - there are forecasts and there are forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Puechl, K H

    1975-12-01

    The FORECAST-NUCLEAR computer program described recognizes that forecasts are made to answer a variety of questions and, therefore, that no single forecast is universally appropriate. Also, it recognizes that no two individuals will completely agree as to the input data that are appropriate for obtaining an answer to even a single simple question. Accordingly, the program was written from a utilitarian standpoint: it allows working with multiple projections; data inputting is simple to allow game-playing; computation time is short to minimize the cost of 'what if' assessements; and detail is internally carried to allow meaningful analysis.

  20. Fuel cycle forecasting - there are forecasts and there are forecasts

    International Nuclear Information System (INIS)

    Puechl, K.H.

    1975-01-01

    The FORECAST-NUCLEAR computer program described recognizes that forecasts are made to answer a variety of questions and, therefore, that no single forecast is universally appropriate. Also, it recognizes that no two individuals will completely agree as to the input data that are appropriate for obtaining an answer to even a single simple question. Accordingly, the program was written from a utilitarian standpoint: it allows working with multiple projections; data inputting is simple to allow game-playing; computation time is short to minimize the cost of 'what if' assessements; and detail is internally carried to allow meaningful analysis. (author)