WorldWideScience

Sample records for evaluating climate change

  1. Monitoring and Evaluation Toolkit for Climate Change Adaptation ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Many African countries, regions and organizations are making plans for climate change adaptation. If such plans are to be effective, they will need to be monitored and evaluated on an ongoing basis. This grant will support the integration of monitoring and evaluation (M&E) in climate change adaptation initiatives by ...

  2. Reading for Reliability: Preservice Teachers Evaluate Web Sources about Climate Change

    Science.gov (United States)

    Damico, James S.; Panos, Alexandra

    2016-01-01

    This study examined what happened when 65 undergraduate prospective secondary level teachers across content areas evaluated the reliability of four online sources about climate change: an oil company webpage, a news report, and two climate change organizations with competing views on climate change. The students evaluated the sources at three time…

  3. Evaluation of economic impact of climatic change on agro-forestry systems

    Directory of Open Access Journals (Sweden)

    Vittorio Gallerani

    Full Text Available Climate change has a strong influence on agro-forestry systems. Present estimations evisage that changes in climate patterns and extreme events connected to climate change will have greater impacts in the future. This paper seeks to illustrate the articulation of the problems concerning the economic evaluation of climate change, with particularly attention to open problems and future lines of research. Research on this topic, though using methods and approaches consolidated in the disciplines of resource economics and evaluation, still have several open problems, particularly in the field of multidisciplinary studies of the man-environmental relations, policy evaluation and development of decision support systems for decision makers.

  4. Evaluate prevailing climate change on Great Lakes water levels

    International Nuclear Information System (INIS)

    Islam, M.

    2009-01-01

    'Full text:'In this paper, results of a comprehensive water mass balance modeling for the Great Lakes against prevailing and different anticipated climate change scenarios would be presented. Modeling is done in evaluating the changes in the lake storages and then changes in the lake's water level considering present condition, uncertainty and variability of climate and hydrologic conditions in the future. Inflow-outflow and consequent changes in the five Great Lake's storages are simulated for the last 30 years and then projected to evaluate the changes in the lake storages for the next 50 years. From the predicted changes in the lake storage data, water level is calculated using mass to linear conversion equation. Modeling and analysis results are expected to be helpful in understanding the possible impacts of the climate change on the Great Lakes water environment and preparing strategic plan for the sustainable management of lake's water resources. From the recent past, it is observed that there is a depleting trend in the lakes water level and hence there is a potential threat to lake's water environment and uncertainty of the availability of quality and quantity of water for the future generations, especially against prevailing and anticipated climate changes. For this reason, it is an urgent issue of understanding and quantifying the potential impacts of climate change on the Great Lake's water levels and storages. (author)

  5. Evaluating U.S. States climate change initiatives

    International Nuclear Information System (INIS)

    Silva, P.

    2004-01-01

    This paper evaluates sub-federal efforts to mitigate climate change in the United States through a range of climate-relevant initiatives, identifying principal trends and detailing climate-relevant initiatives in several states. These strategies include renewable electricity mandates, State and regional greenhouse gas emissions inventories, mandatory greenhouse gas emissions reporting, State greenhouse gas emissions caps, greenhouse gas emissions reductions from motor vehicles, and greenhouse gas emissions cap-and-trade programs for electric generation in several States. Many municipalities in the United States are also pursuing a range of climate-relevant initiatives, those actions are beyond the scope of this paper, but it should be noted they also influence state and national consideration of climate-relevant initiatives in the United States. (author)

  6. Evaluating U.S. States climate change initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Silva, P

    2004-07-01

    This paper evaluates sub-federal efforts to mitigate climate change in the United States through a range of climate-relevant initiatives, identifying principal trends and detailing climate-relevant initiatives in several states. These strategies include renewable electricity mandates, State and regional greenhouse gas emissions inventories, mandatory greenhouse gas emissions reporting, State greenhouse gas emissions caps, greenhouse gas emissions reductions from motor vehicles, and greenhouse gas emissions cap-and-trade programs for electric generation in several States. Many municipalities in the United States are also pursuing a range of climate-relevant initiatives, those actions are beyond the scope of this paper, but it should be noted they also influence state and national consideration of climate-relevant initiatives in the United States. (author)

  7. Changing Climate, Challenging Choices: Identifying and Evaluating Climate Change Adaptation Options for Protected Areas Management in Ontario, Canada

    Science.gov (United States)

    Lemieux, Christopher J.; Scott, Daniel J.

    2011-10-01

    Climate change will pose increasingly significant challenges to managers of parks and other forms of protected areas around the world. Over the past two decades, numerous scientific publications have identified potential adaptations, but their suitability from legal, policy, financial, internal capacity, and other management perspectives has not been evaluated for any protected area agency or organization. In this study, a panel of protected area experts applied a Policy Delphi methodology to identify and evaluate climate change adaptation options across the primary management areas of a protected area agency in Canada. The panel identified and evaluated one hundred and sixty five (165) adaptation options for their perceived desirability and feasibility. While the results revealed a high level of agreement with respect to the desirability of adaptation options and a moderate level of capacity pertaining to policy formulation and management direction, a perception of low capacity for implementation in most other program areas was identified. A separate panel of senior park agency decision-makers used a multiple criterion decision-facilitation matrix to further evaluate the institutional feasibility of the 56 most desirable adaptation options identified by the initial expert panel and to prioritize them for consideration in a climate change action plan. Critically, only two of the 56 adaptation options evaluated by senior decision-makers were deemed definitely implementable, due largely to fiscal and internal capacity limitations. These challenges are common to protected area agencies in developed countries and pervade those in developing countries, revealing that limited adaptive capacity represents a substantive barrier to biodiversity conservation and other protected area management objectives in an era of rapid climate change.

  8. Welfare Evaluation and the Economic Impacts of Climate Change on ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Welfare Evaluation and the Economic Impacts of Climate Change on Water Supply ... In a context of positive economic growth, demand for water is expected to ... Socially equitable climate action is essential to strengthen the resilience of all ...

  9. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  10. Adaptation to climate change in agriculture: evaluation of options

    International Nuclear Information System (INIS)

    Dolan, A.H.; Smit, B.; Skinner, M.W.; Bradshaw, B.; Bryant, C.R.

    2001-01-01

    Adaptation was defined as the responses by stakeholders to actual or expected climatic stimuli or their effects to reduce vulnerability to adverse impacts or damage potential, or to realize opportunities associated with climate change. Planned policy initiatives representing change in the agricultural system were discussed in this report. An evaluation of adaptation options needed to be carried out before one could determine which adaptations should be promoted or implemented. The overall merit, suitability, utility or appropriateness of potential adaptation strategies or measures were examined. One interesting methodology was the Multiple Criteria Evaluation (MCE), which is designed to assess alternatives using more than one criterion. The criteria selected for this evaluation were: effectiveness, economic efficiency, flexibility, institutional compatibility, farmer implementation, and independent benefits. A selection of three adaptation options was made to better illustrate the utility of the evaluation framework., as follows: crop diversification, adoption of irrigation, and increase use of crop insurance. 122 refs., 6 tabs., 6 figs

  11. Contribution of the working group 2 to the fourth evaluation report of the inter government expert group on the climatic change. Evaluation 2007 of the climatic changes: impacts, adaptation and vulnerability

    International Nuclear Information System (INIS)

    2007-01-01

    This document exposes the results of the fourth evaluation report of the working group II of the inter government experts group on the climatic change. This evaluation presents the today scientific understanding of the climatic change impacts on the humans and their adaptation ability and vulnerability. It is based on the GIEC evaluations and new knowledge added since the third evaluation report. (A.L.B.)

  12. Evaluating Changes in Climate Literacy among Middle and High School Students who Participate in Climate Change Education Modules

    Science.gov (United States)

    DeWaters, J.; Powers, S.; Dhaniyala, S.; Small, M.

    2012-12-01

    Middle school (MS) and high school (HS) teachers have developed and taught instructional modules that were created through their participation in Clarkson University's NASA-funded Project-Based Global Climate Change Education project. A quantitative survey was developed to help evaluate the project's impact on students' climate literacy, which includes content knowledge as well as affective and behavioral attributes. Content objectives were guided primarily by the 2009 document, Climate Literacy: The Essential Principles of Climate Sciences. The survey was developed according to established psychometric principles and methodologies in the sociological and educational sciences which involved developing and evaluating a pool of survey items, adapted primarily from existing climate surveys and questionnaires; preparing, administering, and evaluating two rounds of pilot tests; and preparing a final instrument with revisions informed by both pilot assessments. The resulting survey contains three separate subscales: cognitive, affective, and behavioral, with five self-efficacy items embedded within the affective subscale. Cognitive items use a multiple choice format with one correct response; non-cognitive items use a 5-point Likert-type scale with options generally ranging from "strongly agree" to "strongly disagree" (affective), or "almost always" to "hardly ever" (behavioral). Three versions of the survey were developed and administered using an on-line Zoomerang™ platform to college students/adults; HS students; and MS students, respectively. Instrument validity was supported by using items drawn from existing surveys, by reviewing/applying prior research in climate literacy, and through comparative age-group analysis. The internal consistency reliability of each subscale, as measured by Cronbach's alpha, ranges from 0.78-0.86 (cognitive), 0.87-0.89 (affective) and 0.84-0.85 (behavioral), all satisfying generally accepted criteria for internal reliability of

  13. Evaluation of climate change impacts on energy demand

    DEFF Research Database (Denmark)

    Taseska, Verica; Markovska, Natasa; Callaway, John M.

    2012-01-01

    change and the energy demand in Macedonia. The analyses are conducted using the MARKAL (MARKet ALlocation)-Macedonia model, with a focus on energy demand in commercial and residential sectors (mainly for heating and cooling). Three different cases are developed: 1) Base Case, which gives the optimal...... electricity production mix, taking into account country’s development plans (without climate change); 2) Climate Change Damage Case, which introduces the climate changes by adjusting the heating and cooling degree days inputs, consistent with the existing national climate scenarios; and 3) Climate Change...... Adaptation Case, in which the optimal electricity generation mix is determined by allowing for endogenous capacity adjustments in the model. This modeling exercise will identify the changes in the energy demand and in electricity generation mix in the Adaptation Case, as well as climate change damages...

  14. Using Impact-Relevant Sensitivities to Efficiently Evaluate and Select Climate Change Scenarios

    Science.gov (United States)

    Vano, J. A.; Kim, J. B.; Rupp, D. E.; Mote, P.

    2014-12-01

    We outline an efficient approach to help researchers and natural resource managers more effectively use global climate model information in their long-term planning. The approach provides an estimate of the magnitude of change of a particular impact (e.g., summertime streamflow) from a large ensemble of climate change projections prior to detailed analysis. These estimates provide both qualitative information as an end unto itself (e.g., the distribution of future changes between emissions scenarios for the specific impact) and a judicious, defensible evaluation structure that can be used to qualitatively select a sub-set of climate models for further analysis. More specifically, the evaluation identifies global climate model scenarios that both (1) span the range of possible futures for the variable/s most important to the impact under investigation, and (2) come from global climate models that adequately simulate historical climate, providing plausible results for the future climate in the region of interest. To identify how an ecosystem process responds to projected future changes, we methodically sample, using a simple sensitivity analysis, how an impact variable (e.g., streamflow magnitude, vegetation carbon) responds locally to projected regional temperature and precipitation changes. We demonstrate our technique over the Pacific Northwest, focusing on two types of impacts each in three distinct geographic settings: (a) changes in streamflow magnitudes in critical seasons for water management in the Willamette, Yakima, and Upper Columbia River basins; and (b) changes in annual vegetation carbon in the Oregon and Washington Coast Ranges, Western Cascades, and Columbia Basin ecoregions.

  15. Robustness-based evaluation of hydropower infrastructure design under climate change

    Directory of Open Access Journals (Sweden)

    Mehmet Ümit Taner

    2017-01-01

    Full Text Available The conventional tools of decision-making in water resources infrastructure planning have been developed for problems with well-characterized uncertainties and are ill-suited for problems involving climate nonstationarity. In the past 20 years, a predict-then-act-based approach to the incorporation of climate nonstationarity has been widely adopted in which the outputs of bias-corrected climate model projections are used to evaluate planning options. However, the ambiguous nature of results has often proved unsatisfying to decision makers. This paper presents the use of a bottom-up, decision scaling framework for the evaluation of water resources infrastructure design alternatives regarding their robustness to climate change and expected value of performance. The analysis begins with an assessment of the vulnerability of the alternative designs under a wide domain of systematically-generated plausible future climates and utilizes downscaled climate projections ex post to inform likelihoods within a risk-based evaluation. The outcomes under different project designs are compared by way of a set of decision criteria, including the performance under the most likely future, expected value of performance across all evaluated futures and robustness. The method is demonstrated for the design of a hydropower system in sub-Saharan Africa and is compared to the results that would be found using a GCM-based, scenario-led analysis. The results indicate that recommendations from the decision scaling analysis can be substantially different from the scenario-led approach, alleviate common shortcomings related to the use of climate projections in water resources planning, and produce recommendations that are more robust to future climate uncertainty.

  16. Development of risk matrices for evaluating climatic change responses of forested habitats

    Science.gov (United States)

    Louis R. Iverson; Stephen N. Matthews; Anantha M. Prasad; Matthew P. Peters; Gary. Yohe

    2012-01-01

    We present an approach to assess and compare risk from climate change among multiple species through a risk matrix, in which managers can quickly prioritize for species that need to have strategies developed, evaluated further, or watched. We base the matrix upon earlier work towards the National Climate Assessment for potential damage to infrastructures from climate...

  17. Deducing Climatic Elasticity to Assess Projected Climate Change Impacts on Streamflow Change across China

    Science.gov (United States)

    Liu, Jianyu; Zhang, Qiang; Zhang, Yongqiang; Chen, Xi; Li, Jianfeng; Aryal, Santosh K.

    2017-10-01

    Climatic elasticity has been widely applied to assess streamflow responses to climate changes. To fully assess impacts of climate under global warming on streamflow and reduce the error and uncertainty from various control variables, we develop a four-parameter (precipitation, catchment characteristics n, and maximum and minimum temperatures) climatic elasticity method named PnT, based on the widely used Budyko framework and simplified Makkink equation. We use this method to carry out the first comprehensive evaluation of the streamflow response to potential climate change for 372 widely spread catchments in China. The PnT climatic elasticity was first evaluated for a period 1980-2000, and then used to evaluate streamflow change response to climate change based on 12 global climate models under Representative Concentration Pathway 2.6 (RCP2.6) and RCP 8.5 emission scenarios. The results show that (1) the PnT climatic elasticity method is reliable; (2) projected increasing streamflow takes place in more than 60% of the selected catchments, with mean increments of 9% and 15.4% under RCP2.6 and RCP8.5 respectively; and (3) uncertainties in the projected streamflow are considerable in several regions, such as the Pearl River and Yellow River, with more than 40% of the selected catchments showing inconsistent change directions. Our results can help Chinese policy makers to manage and plan water resources more effectively, and the PnT climatic elasticity should be applied to other parts of the world.

  18. Norwegian climate research. An evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    [English] In early 2011, the Norwegian Research Council (RCN) appointed a committee to review Norwegian climate research. The aim of the evaluation was to provide a critical review of Norwegian climate research in an international perspective and to recommend measures to enhance the quality, efficiency and relevance of future climate research. The Evaluation Committee met three times: in August and December 2011, and March 2012. RCN sent an invitation to 140 research organisations to participate by delivering background information on their climate research. Based on the initial response, 48 research units were invited to submit self-assessments and 37 research units responded. These were invited to hearings during the second meeting of the Evaluation Committee in December. In our judgement, a great majority of the most active research units are covered by this evaluation report. It should be emphasised that the evaluation concerned the Norwegian landscape of climate research rather than individual scientists or research units. Bibliometric analyses and social network analyses provided additional information. We are aware of problems in making comparisons across disciplinary publishing traditions, especially with regard to the differences between the natural and social sciences and the humanities. The Evaluation Committee also reviewed a number of governmental and RCN policy documents and conducted interviews with the chairs of the NORKLIMA Programme Steering Board and the Norwegian IPY Committee, as well as with staff members of RCN. Additional information was received from hearings organised by RCN with the science communities and various stakeholders in January 2012. For the purpose of this evaluation, climate research was divided into three broad thematic areas: 1. The climate system and climate change: research on climate variability and change in order to improve our capability of understanding climate and of projecting climate change for different time

  19. Evaluation of uncertainties in regional climate change simulations

    DEFF Research Database (Denmark)

    Pan, Z.; Christensen, J. H.; Arritt, R. W.

    2001-01-01

    , an atmosphere-ocean coupled general circulation model (GCM) current climate, and a future scenario of transient climate change. Common precipitation climatology features simulated by both models included realistic orographic precipitation, east-west transcontinental gradients, and reasonable annual cycles over...... to different subgrid scale processes in individual models. The ratio of climate change to biases, which we use as one measure of confidence in projected climate changes, is substantially larger than 1 in several seasons and regions while the ratios are always less than 1 in summer. The largest ratios among all...... regions are in California. Spatial correlation coefficients of precipitation were computed between simulation pairs in the 2x3 set. The climate change correlation is highest and the RCM performance correlation is lowest while boundary forcing and intermodel correlations are intermediate. The high spatial...

  20. Evaluation of technological measures to cope with climate change

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Hiroshi; Moriguchi, Yulchi [National Inst. for Environmental Studies, Onogawa Tsukuba (Japan)

    1993-12-31

    Because the global warming (climate change) is recognized as a highly probable phenomenon in the next century, the countermeasures to cope with this issue is really Important. International discussion Is progressing towards the conclusion of the treaty to stabilize global warming. Therefore, now is the time to take concrete action to reduce the emission to the greenhouse gases (GHG). To find the way to reduce the emission of the GHG, the procedure as next should be taken. (1) Systematic estimation of GHG emission (GHG analysis), (2) Identification of conventional and Innovative technologies, (3) Assessment of individual sectoral technologies, (4) Comprehensive evaluation of countermeasures as a whole. Both in the U.S.A. and Japan, this kind of research have been made independently. Among these processes, the standard methodologies should be established on the GHG analysis, the assessment of individual technologies and the comprehensive evaluation. From such a background, it is important to discuss the way to evaluate technological measures to cope with climate change between the specialist from the U.S.A. and Japan. And still required to search the possibility to establish a joint project between both countries.

  1. Eye tracking and climate change: How is climate literacy information processed?

    Science.gov (United States)

    Williams, C. C.; McNeal, K. S.

    2011-12-01

    The population of the Southeastern United States is perceived to be resistant to information regarding global climate change. The Climate Literacy Partnership in the Southeast (CLiPSE) project was formed to provide a resource for climate science information. As part of this project, we are evaluating the way that education materials influence the interpretation of climate change related information. At Mississippi State University, a study is being conducted examining how individuals from the Southeastern United States process climate change information and whether or not the interaction with such information impacts the interpretation of subsequent climate change related information. By observing the patterns both before and after an educational intervention, we are able to evaluate the effectiveness of the climate change information on an individual's interpretation of related information. Participants in this study view figures describing various types of climate change related information (CO2 emissions, sea levels, etc.) while their eye movements are tracked to determine a baseline for the way that they process this type of graphical data. Specifically, we are examining time spent viewing and number of fixations on critical portions of the figures prior to exposure to an educational document on climate change. Following the baseline period, we provide participants with portions of a computerized version of Climate Literacy: The Essential Principles of Climate Sciences that the participants read at their own pace while their eye movements are monitored. Participants are told that they will be given a test on the material after reading the resource. After reading the excerpt, participants are presented with a new set of climate change related figures to interpret (with eye tracking) along with a series of questions regarding information contained in the resource. We plan to evaluate changes that occur in the way that climate change related information is

  2. The Climate Change Education Evidence Base: Lessons Learned from NOAA's Monitoring and Evaluation Framework Implementation

    Science.gov (United States)

    Baek, J.

    2012-12-01

    Federal science mission agencies are under increased pressure to ensure that their STEM education investments accomplish several objectives, including the identification and use of evidence-based approaches. Climate change education and climate literacy programs fall under these broader STEM initiatives. This paper is designed as a primer for climate change education evaluators and researchers to understand the policy context on the use of evidence. Recent initiatives, that include the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), point to a need for shared goals and measurements amongst the climate change education community. The Tri-agency Climate Change Education (CCE) collaboration, which includes NSF, NASA, and NOAA, developed the Tri-Agency Climate Change Education Common Evaluation Framework Initiative Stakeholder Statement (2012). An excerpt: From the perspective of the tri-agency collaboration, and its individual agency members, the goal of the common framework is not to build a required evaluation scheme or a set of new requirements for our funded climate change education initiatives. Rather, the collaboration would be strengthened by the development of a framework that includes tools, instruments, and/or documentation to: ● Help the agencies see and articulate the relationships between the individual pieces of the tri-agency CCE portfolio; ● Guide the agencies in reporting on the progress, lessons learned, and impacts of the collaboration between the three agencies in developing a coordinated portfolio of climate education initiatives; and ● Help the individual projects, as part of this broader portfolio, understand where they fit into a larger picture. The accomplishments of this initiative to date have been based on the collaborative nature of evaluators the climate change education community within the tri-agency portfolio. While this

  3. Re-evaluating occupational heat stress in a changing climate.

    Science.gov (United States)

    Spector, June T; Sheffield, Perry E

    2014-10-01

    The potential consequences of occupational heat stress in a changing climate on workers, workplaces, and global economies are substantial. Occupational heat stress risk is projected to become particularly high in middle- and low-income tropical and subtropical regions, where optimal controls may not be readily available. This commentary presents occupational heat stress in the context of climate change, reviews its impacts, and reflects on implications for heat stress assessment and control. Future efforts should address limitations of existing heat stress assessment methods and generate economical, practical, and universal approaches that can incorporate data of varying levels of detail, depending on resources. Validation of these methods should be performed in a wider variety of environments, and data should be collected and analyzed centrally for both local and large-scale hazard assessments and to guide heat stress adaptation planning. Heat stress standards should take into account variability in worker acclimatization, other vulnerabilities, and workplace resources. The effectiveness of controls that are feasible and acceptable should be evaluated. Exposure scientists are needed, in collaboration with experts in other areas, to effectively prevent and control occupational heat stress in a changing climate. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  4. Performance Based Evaluation of Concrete Strength under Various Curing Conditions to Investigate Climate Change Effects

    Directory of Open Access Journals (Sweden)

    Tae-Kyun Kim

    2015-07-01

    Full Text Available Recently, the manifestation of global warming-induced climate change has been observed through super typhoons, heavy snowfalls, torrential rains, and extended heat waves. These climate changes have been occurring all over the world and natural disasters have caused severe damage and deterioration of concrete structures and infrastructure. In an effort to deal with these problems due to extreme and abnormal climate changes, studies have been conducted to develop construction technologies and design guidelines. Nevertheless, study results applicable to construction sites continue to be ineffective and insufficient. Therefore, this study proposes ways to cope with climate change by considering the effect of concrete curing condition variations on concrete material performance. More specifically, the 3-, 7- and 28-day compressive and split tensile strength properties of concrete mix cured under various climatic factors including temperature, relative humidity, wind speed, and sunlight exposure time were evaluated to determine whether the concrete meets the current design requirements. Thereafter, a performance based evaluation (PBE was performed using satisfaction probabilities based on the test values to understand the problems associated with the current mix proportion design practice and to identify countermeasures to deal with climate change-induced curing conditions.

  5. A model for evaluating stream temperature response to climate change in Wisconsin

    Science.gov (United States)

    Stewart, Jana S.; Westenbroek, Stephen M.; Mitro, Matthew G.; Lyons, John D.; Kammel, Leah E.; Buchwald, Cheryl A.

    2015-01-01

    Expected climatic changes in air temperature and precipitation patterns across the State of Wisconsin may alter future stream temperature and flow regimes. As a consequence of flow and temperature changes, the composition and distribution of fish species assemblages are expected to change. In an effort to gain a better understanding of how climatic changes may affect stream temperature, an approach was developed to predict and project daily summertime stream temperature under current and future climate conditions for 94,341 stream kilometers across Wisconsin. The approach uses a combination of static landscape characteristics and dynamic time-series climatic variables as input for an Artificial Neural Network (ANN) Model integrated with a Soil-Water-Balance (SWB) Model. Future climate scenarios are based on output from downscaled General Circulation Models (GCMs). The SWB model provided a means to estimate the temporal variability in groundwater recharge and provided a mechanism to evaluate the effect of changing air temperature and precipitation on groundwater recharge and soil moisture. The Integrated Soil-Water-Balance and Artificial Neural Network version 1 (SWB-ANNv1) Model was used to simulate daily summertime stream temperature under current (1990–2008) climate and explained 76 percent of the variation in the daily mean based on validation at 67 independent sites. Results were summarized as July mean water temperature, and individual stream segments were classified by thermal class (cold, cold transition, warm transition, and warm) for comparison of current (1990–2008) with future climate conditions.

  6. Multi-criteria evaluation of CMIP5 GCMs for climate change impact analysis

    Science.gov (United States)

    Ahmadalipour, Ali; Rana, Arun; Moradkhani, Hamid; Sharma, Ashish

    2017-04-01

    Climate change is expected to have severe impacts on global hydrological cycle along with food-water-energy nexus. Currently, there are many climate models used in predicting important climatic variables. Though there have been advances in the field, there are still many problems to be resolved related to reliability, uncertainty, and computing needs, among many others. In the present work, we have analyzed performance of 20 different global climate models (GCMs) from Climate Model Intercomparison Project Phase 5 (CMIP5) dataset over the Columbia River Basin (CRB) in the Pacific Northwest USA. We demonstrate a statistical multicriteria approach, using univariate and multivariate techniques, for selecting suitable GCMs to be used for climate change impact analysis in the region. Univariate methods includes mean, standard deviation, coefficient of variation, relative change (variability), Mann-Kendall test, and Kolmogorov-Smirnov test (KS-test); whereas multivariate methods used were principal component analysis (PCA), singular value decomposition (SVD), canonical correlation analysis (CCA), and cluster analysis. The analysis is performed on raw GCM data, i.e., before bias correction, for precipitation and temperature climatic variables for all the 20 models to capture the reliability and nature of the particular model at regional scale. The analysis is based on spatially averaged datasets of GCMs and observation for the period of 1970 to 2000. Ranking is provided to each of the GCMs based on the performance evaluated against gridded observational data on various temporal scales (daily, monthly, and seasonal). Results have provided insight into each of the methods and various statistical properties addressed by them employed in ranking GCMs. Further; evaluation was also performed for raw GCM simulations against different sets of gridded observational dataset in the area.

  7. An Integrated Approach to Evaluate Urban Adaptive Capacity to Climate Change

    Directory of Open Access Journals (Sweden)

    Qiangsheng Hu

    2018-04-01

    Full Text Available Climate change and accelerated urbanization have posed severe challenges to urban development, resulting in a growing series of climate and environmental problems that have a significant impact on industrial production and urban life. In a developing country such as China, more than 57% of the population lives in urban areas. It is vital for these cities to adapt to climate-induced risks. A better understanding of how to improve adaptive capacity could enhance the ability to achieve a desirable state when the city experiences stress. This paper used an integrated approach for evaluating the urban adaptive capacity to climate change. It developed the evaluation index system of urban adaptive capacity (UAC based on the driver–pressure–state–impact–response model (DPSIR, and adopted grey relational analysis (GRA and the entropy method to analyze the level of UAC in Changsha, the capital city of Hunan Province, from 2006 to 2015. The results revealed that the UAC of Changsha showed a significant increase from 2006 to 2015. Among the five first-grade indicators, the response dimension had the greatest influence on the improvement of UAC. The study may provide suggestions for adaptive capacity building and sustainable development in other urban areas.

  8. Adapting Indian Agriculture to Global Climate Change

    Indian Academy of Sciences (India)

    Adapting Indian Agriculture to Global Climate Change · Climate Change: Generic Implications for Agriculture · Controlled environment facilities at IARI used for evaluating model performance in future climate change scenarios · Slide 4 · Slide 5 · Global studies indicate considerable impact of climate change in tropics.

  9. Our knowledge on climate change

    International Nuclear Information System (INIS)

    Turkenburg, W.C.; Van Wijk, A.J.M.

    1991-01-01

    A workshop was organised to evaluate and discuss the report 'Scientific Assessment of Climate Change (1990)' of the Intergovernmental Panel on Climate Change (IPCC). Thirty prominent Dutch experts in the field attended the workshop. The introductions and discussions held on our knowledge of climatic change as a result of the growth of the greenhouse effect caused by the emission of greenhouse gases from human actions are presented. It is concluded that the IPCC-report shows in a clear and balanced way the certainties and uncertainties in our knowledge of climate change. There is a large chance that the earth's climate will change considerably, if the policy remains unamended. 15 figs., 2 apps

  10. The Evaluation of Climate Change Risks

    Directory of Open Access Journals (Sweden)

    Constantin POPESCU

    2012-11-01

    Full Text Available Nowadays, it is acknowledged that climatic changes represent a serious threat for the environment and, so, this problem has been approached at numerous conferences, conventions and summits. The climate is strongly influenced by the changes in the atmospheric concentrations of certain gases that hold the solar radiations on the Earth’s surface (the greenhouse effect. The water vapors and the carbon dioxide (CO2 present in the atmosphere have always generated a natural greenhouse effect, without which the Earth surface would be 33o C lower than it is today. Other greenhouse gases are: methane (CH4, nitrogen protoxide (N2O, and the halogenated compounds such as chlorofluorocarbons (CFCs. During the last hundred years, man’s activity has led to the increase of the atmospheric concentration of the greenhouse gases and of other pollutants, its consequence being the increase of the average global temperature. Although it has not been calculated exactly how much of this warming can be attributed to the greenhouse gases, there is evidence that human activity contributes to global warming. The main causes leading to the accentuation of the greenhouse effect are the burning of the fossil fuels, deforestations, cement production, waste disposal, refrigeration etc. The climatic changes triggered by the greenhouse gases will have consequences that have already made themselves visible, causing: the increase of the sea level and the possible flooding of the low areas; the melting of the icecap; the modification of the precipitations regime, with consequences like the increase of the floods and droughts frequency; changes in the occurrence of climatic extremes, especially in the occurrence of the high, extreme temperatures. All these will have a direct impact on ecosystems, health, some key economic sectors such as agriculture and on water resources.

  11. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn

    2011-01-01

    Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modeling...... framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7...

  12. Consideration of environmental change in the safety evaluation: Long-term climate scenarios in the Iberian Peninsula

    International Nuclear Information System (INIS)

    Recreo Jimenez, F.; Ruiz Rivas, C.

    1997-01-01

    The main objective of this report is twofold. On the one hand, to define the most likely sequences of climate states in the Iberian Peninsula for a period of 125 Ka into the future, to the next interglacial stage, 125 Ka AP; on the other hand, to establish potential climate scenarios during such a period of time determining also the variability ranges of primary climate and climate-related variables of interest to the post-closure performance assessment and underground repository safety evaluations. The report reviews the potential effects of environmental changes on the performance of underground radioactive waste repositories, emphasizing the consideration given to long-term climatic changes in radioactive waste disposal system safety evaluations. (Author)

  13. Social protection and climate change

    DEFF Research Database (Denmark)

    Johnson, Craig; Bansha Dulal, Hari; Prowse, Martin Philip

    2013-01-01

    This article lays the foundation for this special issue on social protection and climate change, introducing and evaluating the ways in which the individual articles contribute to our understanding of the subject.......This article lays the foundation for this special issue on social protection and climate change, introducing and evaluating the ways in which the individual articles contribute to our understanding of the subject....

  14. Development of climate change scenarios to evaluate the impacts of temperature change on the energy demand in south of Quebec

    International Nuclear Information System (INIS)

    Chamount, D.

    2008-01-01

    'Full text': In year 2000, Hydro-Quebec Distribution began to integrate temperature change in the planning of Quebec energy demand. With the evolution of knowledge in climate change science and the availability of larger ensemble of climate projections from GCMs (Global Climate Model), the methodology has progressively improved and uncertainties are now more efficiently taken into account. Inclusion of temperature evolution in the estimation of energy demand covers two issues : 1) the adjustment of climate normals as reference values and 2) integration of the climate change scenario in long term planning (horizon 2040). Recently, the analysis of an ensemble of climate simulations produced from 17 different GCMs forced by 3 emissions scenarios for a total of 39 projections, enabled these two aspects to be effectively addressed. Following the analysis the use of linear temperature increase on a monthly basis is recommended for the needs of addressing climate change impacts on energy demand. Higher slope values are obtained during winter while lower ones are present in summer. Heating and cooling degree days have then been calculated for an optimistic, median and pessimistic climate change scenario to evaluate economic impacts of temperature change on three energy sources: hydro-power, natural gas and heating oil. The evaluation was carried out taking into account not only the temperature change scenario but demographical and economical scenarios as well. Obviously, temperature increase will cause opposite effects for the winter and summer seasons (reducing energy demand for heating purpose during winter while increasing cooling demand during summer). However, comparing energy sources, combustibles might see a more important decrease than hydro-power. Overall, the net effect of temperature change on energy demand is quite small: a reduction of 2 to 3% is projected. (author)

  15. Land Use Change and Global Adaptations to Climate Change

    Directory of Open Access Journals (Sweden)

    Roxana Juliá

    2013-12-01

    Full Text Available This paper uses the World Trade Model with Climate Sensitive Land (WTMCL to evaluate possible future land-use changes associated with adaptations to climate change in a globalized world. In this approach, changes in regional agricultural production, which are based on comparative advantage, define patterns of land use change in agriculture in all regions of the world. We evaluate four scenarios that combine assumptions about future increases in food demand and future changes in land endowments of different productivities associated with climatic conditions: each scenario generates distinct patterns of regional specialization in the production of agricultural commodities and associated land-use change. The analysis also projects future food availability under the simulated conditions and the direction of likely changes in prices of the major agricultural commodity groups.

  16. Scaling Climate Change Communication for Behavior Change

    Science.gov (United States)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  17. Evaluating the impact of climate change on landslide occurrence, hazard, and risk: from global to regional scale.

    Science.gov (United States)

    Gariano, Stefano Luigi; Guzzetti, Fausto

    2017-04-01

    According to the fifth report of the Intergovernmental Panel on Climate Change, "warming of the climate system is unequivocal". The influence of climate changes on slope stability and landslides is also undisputable. Nevertheless, the quantitative evaluation of the impact of global warming, and the related changes in climate, on landslides remains a complex question to be solved. The evidence that climate and landslides act at only partially overlapping spatial and temporal scales complicates the evaluation. Different research fields, including e.g., climatology, physics, hydrology, geology, hydrogeology, geotechnics, soil science, environmental science, and social science, must be considered. Climatic, environmental, demographic, and economic changes are strictly correlated, with complex feedbacks, to landslide occurrence and variation. Thus, a holistic, multidisciplinary approach is necessary. We reviewed the literature on landslide-climate studies, and found a bias in their geographical distribution, with several studies centered in Europe and North America, and large parts of the world not investigated. We examined advantages and drawbacks of the approaches adopted to evaluate the effects of climate variations on landslides, including prospective modelling and retrospective methods that use landslide and climate records, and paleo-environmental information. We found that the results of landslide-climate studies depend more on the emission scenarios, the global circulation models, the regional climate models, and the methods to downscale the climate variables, than on the description of the variables controlling slope processes. Using ensembles of projections based on a range of emissions scenarios would reduce (or at least quantify) the uncertainties in the obtained results. We performed a preliminary global assessment of the future landslide impact, presenting a global distribution of the projected impact of climate change on landslide activity and abundance

  18. Impacts of climate change on fisheries

    DEFF Research Database (Denmark)

    Brander, Keith

    2010-01-01

    Evidence of the impacts of anthropogenic climate change on marine ecosystems is accumulating, but must be evaluated in the context of the "normal" climate cycles and variability which have caused fluctuations in fisheries throughout human history. The impacts on fisheries are due to a variety...... experimentally and in controlled conditions. Indirect effects act via ecosystem processes and changes in the production of food or abundance of competitors, predators and pathogens. Recent studies of the effects of climate on primary production are reviewed and the consequences for fisheries production...... are evaluated through regional examples. Regional examples are also used to show changes in distribution and phenology of plankton and fish, which are attributed to climate. The role of discontinuous and extreme events (regime shifts, exceptional warm periods) is discussed. Changes in fish population processes...

  19. America's Climate Choices: Informing an Effective Response to Climate Change (Invited)

    Science.gov (United States)

    Liverman, D. M.; McConnell, M. C.; Raven, P.

    2010-12-01

    At the request of Congress, the National Academy of Sciences convened a series of coordinated activities to provide advice on actions and strategies that the nation can take to respond to climate change. As part of this suite of activities, this study examines information needs and recommends ways the federal government can better inform responses by enhancing climate change and greenhouse gas information and reporting systems and by improving climate communication and education. Demand for better information to support climate-related decisions has grown rapidly as people, organizations, and governments have moved ahead with plans and actions to reduce greenhouse gas emissions and to adapt to the impacts of climate change. To meet this demand, good information systems and services are needed. Without such systems, decision makers cannot evaluate whether particular policies and actions are achieving their goals or should be modified. Although the many non-federal efforts to reduce emissions and/or adapt to future climate changes carry considerable potential to reduce risks related to climate change, there is currently no comprehensive way to assess the effectiveness of those efforts. In addition, the diverse climate change responses to date have resulted in a patchwork of regional, state, and local policies that has prompted many state and business leaders to call for the development of a more predictable and coherent policy environment at the federal level. This report demonstrates that the nation lacks comprehensive, robust, and credible information and reporting systems to inform climate choices and evaluate their effectiveness. This report also argues that decision makers can benefit from a systematic and iterative framework for responding to climate change, in which decisions and policies can be revised in light of new information and experience and that improved information and reporting systems allow for ongoing evaluation of responses to climate risks. The

  20. The development of climatic scenarios for assessing impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T; Tuomenvirta, H [Finnish Meteorological Inst., Helsinki (Finland); Posch, M [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1996-12-31

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  1. The development of climatic scenarios for assessing impacts of climate change

    International Nuclear Information System (INIS)

    Carter, T.; Tuomenvirta, H.; Posch, M.

    1995-01-01

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  2. The development of climatic scenarios for assessing impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T.; Tuomenvirta, H. [Finnish Meteorological Inst., Helsinki (Finland); Posch, M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1995-12-31

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  3. Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation.

    NARCIS (Netherlands)

    Matthews, R.B.; Kropff, M.J.; Horie, T.; Bachelet, D.

    1997-01-01

    The likely effects of climate change caused by increasing atmospheric carbon dioxide levels on rice production in Asia were evaluated using two rice crop simulation models, ORYZA1 and SIMRIW, running under fixed-change' climate scenarios and scenarios predicted for a doubled-CO2 (2xCO2) atmosphere

  4. AN EVALUATION OF FARMERS’ PERCEPTIONS OF AND ADAPTATION TO THE EFFECTS OF CLIMATE CHANGE IN KENYA

    Directory of Open Access Journals (Sweden)

    Hilary K. Ndambiri

    2013-07-01

    Full Text Available The study was carried out to evaluate how farmers in Kyuso District have perceived and adapted to climate change. Data was collected from 246 farmers from six locations sampled out through a multistage and simple random sampling procedure. The Heckman probit model was fitted to the data to avoid sample selection bias since not every farmer who may perceive climate change responds by adapting. The analysis revealed that 94% of farmers in Kyuso District had a perception that climate was changing and as a result, 85% of these farmers had responded by adapting. In this regard, age of the household head, gender, education, farm experience, household size, distance to the nearest market, access to irrigation water, local agro-ecology, on and off farm income, access to information on climate change through extension services, access to credit, changes in temperature and precipitation were found to have significant influence on the probability of farmers to perceive and/or adapt to climate change. With the level of perception to climate change being more than that of adaptation, the study suggests that more policy efforts should be geared towards helping farmers to adapt to climate change

  5. Holocene climate and environmental change in the Palliser Triangle: a geoscientific context for evaluating the impacts of climate change on the southern Canadian prairies

    Energy Technology Data Exchange (ETDEWEB)

    Lemmen, D. S.; Vance, R. E. [eds.

    1999-07-01

    The Palliser Triangle is the driest portion of the Canadian Prairies, and one of the most climatically sensitive regions in Canada. As proof of that, it has suffered severe droughts in the 1920s, 1930s and the 1980s. General climatic models predict that future global warming will be most pronounced in northern regions and continental interiors, including the Great Plains of North America. Evidence of warming is already present in the regional climate record, suggesting that the Palliser Triangle is likely to become even more arid, and drought frequency may increase. This volume contains 18 papers related to major objectives of a project involving the use of the unique paleoenvironmental records available in the Palliser Triangle to assess the impacts of future climate change. Two major objectives of the project are of particular focus: the reconstruction of the Holocene (post-glacial) climatic and hydrological changes, and the evaluation of the relationship between climate and landscape processes. Each paper is capable of standing on its own as a contribution to a specific geoscience discipline; by bringing them together in one regionally focused volume, the editors intend to highlight the need for interdisciplinary and multidisciplinary approaches to the study of global climate change issues. The first paper provides a broad summary of the major results, followed by nine papers devoted to records of past climate and hydrological change documented in paleolimnological and hydrogeological studies. The remaining eight papers focus on geomorphic processes in the Palliser Triangle, and on explanations of how these processes respond to climate forcing. Since each contribution can stand its own, each paper has its own abstract in English and French and its own bibliography. There is an author index for the volume as whole.

  6. Evaluation of long-term geological and climatic changes in the Spanish programme

    International Nuclear Information System (INIS)

    Torres, T.; Ortiz, J.E.; Cortes, A.; Delgado, A.

    2004-01-01

    The Bio-molecular Stratigraphy Laboratory of the Madrid School of Mines has been largely involved in the analysis of long-term paleo-environmental changes in the Iberian Peninsula during the Quaternary. Some of the research projects were UE funded: Paleo-climatological Revision of Climate Evolution in Western Mediterranean Region. Evaluation of Altered Scenarios, Evidence from Quaternary Infill Paleo-hydrogeology, Sequential Biosphere modelling function of Climate evolution models; Paleo-hydrogeological Data Analysis and Model Testing. Other projects were funded by the National Company for Radioactive Waste Management (ENRESA) and the Spanish Nuclear Safety Council (CSN): 'Paleo-climate reconstruction from Middle Pleistocene times through dating and isotopic analysis of tufa deposits'; 'Paleo-environmental evolution of the southern part of the Iberian Peninsula'; 'Paleo-climate'. On a minor scale the laboratory was also involved in the study of some argillaceous media: 'Organic Geochemistry of some deep Spanish argillaceous formations' and 'Effects of climatic change on the argillaceous series of the Duero and Ebro basins'. Here we will present some of the results obtained from tufa deposits analysis and paleo-environmental information from the Guadix-Baza Basin composite-stratigraphical-type-section study. (authors)

  7. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  8. Climate change. Managing the risks

    International Nuclear Information System (INIS)

    Swart, R.J.

    1994-01-01

    In order to address the key question if a targeted approach to climate change response is feasible, different aspects of this question are analyzed. First, the scientific and political aspects of different options to determine specific long-term objectives for climate change are evaluated on the basis of the current scientific insights and the experiences over the last 5 years to develop climate objectives. Preliminary directions for such objectives are given. Next, important analytical tools are discussed that can be applied to analyze the different options and their implications in detail. In order to evaluate the implications of mitigation options, strategies that are consistent with the preliminary climate goals are analyzed in the third part. In chapter 2, the concept of long-term environmental goals, derived from critical levels of climate change, is discussed. Also a historical perspective is provided. A new, systematic regionalized and risk-based approach to elaborate the ultimate objective of the Framework Convention on Climate Change is proposed. In chapter 3 scenarios and integrated models are discussed. Central is the description of scenarios that were developed with RlVM's Integrated Model to Assess the Greenhouse Effect (IMAGE) and the US-EPA's Atmospheric Stabilization Framework (ASF). In chapter 4 potential long-term international emissions control strategies for the different sources and sinks of the most important greenhouse gases are analyzed. Carbon dioxide from energy, carbon dioxide from deforestation, and non-CO 2 greenhouse gases are dealt with subsequently. The dissertation ends with general conclusions and recommendations for the further design of a targeted approach to climate change response, the development of analytical tools to support policy development in the area of climate change, and strategies that are consistent with preliminary long-term environmental goals. 66 figs., 8 tabs., 417 refs., 1 appendix

  9. Evaluation of the climate change impact on wind resources in Taiwan Strait

    International Nuclear Information System (INIS)

    Chang, Tsang-Jung; Chen, Chun-Lung; Tu, Yi-Long; Yeh, Hung-Te; Wu, Yu-Ting

    2015-01-01

    Highlights: • We propose a new statistical downscaling framework to evaluate the climate change impact on wind resources in Taiwan Strait. • The statistical model relates Weibull distribution parameters to output of a GCM model and regression coefficients. • Validation of the simulated wind speed distribution presents an acceptable agreement with meteorological data. • Three chosen GCMs show the same tendency that the eastern half of Taiwan Strait stores higher wind resources. - Abstract: A new statistical downscaling framework is proposed to evaluate the climate change impact on wind resources in Taiwan Strait. In this framework, a two-parameter Weibull distribution function is used to estimate the wind energy density distribution in the strait. An empirically statistical downscaling model that relates the Weibull parameters to output of a General Circulation Model (GCM) and regression coefficients is adopted. The regression coefficients are calculated using wind speed results obtained from a past climate (1981–2000) simulation reconstructed by a Weather Research and Forecasting (WRF) model. These WRF-reconstructed wind speed results are validated with data collected at a weather station on an islet inside the strait. The comparison shows that the probability distributions of the monthly wind speeds obtained from WRF-reconstructed and measured wind speed data are in acceptable agreement, with small discrepancies of 10.3% and 7.9% for the shape and scale parameters of the Weibull distribution, respectively. The statistical downscaling framework with output from three chosen GCMs (i.e., ECHAM5, CM2.1 and CGCM2.3.2) is applied to evaluate the wind energy density distribution in Taiwan Strait for three future climate periods of 2011–2040, 2041–2070, and 2071–2100. The results show that the wind energy density distributions in the future climate periods are higher in the eastern half of Taiwan Strait, but reduce slightly by 3% compared with that in the

  10. Responsible Climate Change Adaptation : Exploring, analysing and evaluating public and private responsibilities for urban adaptation to climate change

    NARCIS (Netherlands)

    Mees, Heleen

    2014-01-01

    Cities are vulnerable to climate change. To deal with climate change, city governments and private actors such as businesses and citizens need to adapt to its effects, such as sea level rise, storm surges, intense rainfall and heatwaves. However, adaptation planning and action is often hampered when

  11. Climate change

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this paper, the authors discuss in brief the magnitude and rate of past changes in climate and examine the various factors influencing climate in order to place the potential warming due to increasing greenhouse gas concentrations in context. Feedback mechanisms that can amplify or lessen imposed climate changes are discussed next. The overall sensitivity of climate to changes in forcing is then considered, followed by a discussion of the time-dependent response of the Earth system. The focus is on global temperature as an indicator for the magnitude of climatic change

  12. Climate change 101 : understanding and responding to global climate change

    Science.gov (United States)

    2009-01-01

    To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...

  13. Forecasting conditional climate-change using a hybrid approach

    Science.gov (United States)

    Esfahani, Akbar Akbari; Friedel, Michael J.

    2014-01-01

    A novel approach is proposed to forecast the likelihood of climate-change across spatial landscape gradients. This hybrid approach involves reconstructing past precipitation and temperature using the self-organizing map technique; determining quantile trends in the climate-change variables by quantile regression modeling; and computing conditional forecasts of climate-change variables based on self-similarity in quantile trends using the fractionally differenced auto-regressive integrated moving average technique. The proposed modeling approach is applied to states (Arizona, California, Colorado, Nevada, New Mexico, and Utah) in the southwestern U.S., where conditional forecasts of climate-change variables are evaluated against recent (2012) observations, evaluated at a future time period (2030), and evaluated as future trends (2009–2059). These results have broad economic, political, and social implications because they quantify uncertainty in climate-change forecasts affecting various sectors of society. Another benefit of the proposed hybrid approach is that it can be extended to any spatiotemporal scale providing self-similarity exists.

  14. Climate Change

    Science.gov (United States)

    Climate is the average weather in a place over a period of time. Climate change is major change in temperature, rainfall, snow, ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. ...

  15. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Solomon Z. Dobrowski; Sean A. Parks

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...

  16. Natural and anthropogenic climate change

    International Nuclear Information System (INIS)

    Ko, M.K.W.; Clough, S.A.; Molnar, G.I.; Iacono, M.; Wang, W.C.; State Univ. of New York, Albany, NY

    1992-03-01

    This report consists of two parts: (1) progress for the period 9/1/91--3/31/92 and (2) the plan for the remaining period 4/1/92--8/31/92. The project includes two tasks: atmospheric radiation and improvement of climate models to evaluate the climatic effects of radiation changes. The atmospheric radiation task includes four subtasks: (1) Intercomparison of Radiation Codes in Climate Models (ICRCCM), (2) analysis of the water vapor continuum using line-by-line calculations to develop a parameterization for use in climate models, (3) parameterization of longwave radiation and (4) climate/radiation interactions of desert aerosols. Our effort in this period is focused on the first three subtasks. The improvement of climate models to evaluate the subtasks: (1) general circulation model study and (2) 2- D model development and application

  17. Mitigating climate change: The Philippine case

    International Nuclear Information System (INIS)

    Garcia, J.L.L.

    1998-01-01

    The Government of the Philippines signed the UN Framework Convention on Climate change on June 12, 1992 and the Philippine Congress ratified it in 1994. The Philippine Government has also subsequently created the Inter-Agency Committee on Climate Change (IACCC). The GOP is currently preparing the Philippine Country Study to address climate change. The first phase of the work was financed by a grant from the US Country Studies Program which is led by the US Department of Energy. The Study includes the following elements: a) development of a National Inventory of GHG emission and Sinks; b) vulnerability assessment and evaluation of adaptations of coastal resources; c) identification of alternative programs and measures to promote mitigation and/or adaptation to climate change; d) public information and education campaign; and e) development of the National Action Plan on Climate Change. (au)

  18. MECCA coordinated research program: analysis of climate models uncertainties used for climatic changes study

    International Nuclear Information System (INIS)

    Caneill, J.Y.; Hakkarinen, C.

    1992-01-01

    An international consortium, called MECCA, (Model Evaluation Consortium for Climate Assessment) has been created in 1991 by different partners including electric utilities, government and academic groups to make available to the international scientific community, a super-computer facility for climate evolution studies. The first phase of the program consists to assess uncertainties of climate model simulations in the framework of global climate change studies. Fourteen scientific projects have been accepted on an international basis in this first phase. The second phase of the program will consist in the evaluation of a set of long climate simulations realized with coupled ocean/atmosphere models, in order to study the transient aspects of climate changes and the associated uncertainties. A particular attention will be devoted, on the consequences of these assessments on climate impact studies, and on the regional aspects of climate changes

  19. Understanding climatic change

    International Nuclear Information System (INIS)

    Fellous, J.L.; Gautier, C.; Andre, J.C.; Balstad, R.; Boucher, O.; Brasseur, G.; Chahine, M.T.; Chanin, M.L.; Ciais, P.; Corell, W.; Duplessy, J.C.; Hourcade, J.C.; Jouzel, J.; Kaufman, Y.J.; Laval, K.; Le Treut, H.; Minster, J.F.; Moore, B. III; Morel, P.; Rasool, S.I.; Remy, F.; Smith, R.C.; Somerville, R.C.J.; Wood, E.F.; Wood, H.; Wunsch, C.

    2007-01-01

    Climatic change is gaining ground and with no doubt is stimulated by human activities. It is therefore urgent to better understand its nature, importance and potential impacts. The chapters of this book have been written by US and French experts of the global warming question. After a description of the Intergovernmental Panel on Climate Change (IPCC, GIEC in French) consensus, they present the past and present researches on each of the main component of the climate system, on the question of climatic change impacts and on the possible answers. The conclusion summarizes the results of each chapter. Content: presentation of the IPCC; greenhouse effect, radiation balance and clouds; atmospheric aerosols and climatic change; global water cycle and climate; influence of climatic change on the continental hydrologic cycle; ocean and climate; ice and climate; global carbon cycle; about some impacts of climatic change on Europe and the Atlantic Ocean; interaction between atmospheric chemistry and climate; climate and society, the human dimension. (J.S.)

  20. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  1. Contribution of the working group 2 to the fourth evaluation report of the inter government expert group on the climatic change. Evaluation 2007 of the climatic changes: impacts, adaptation and vulnerability; Contribution du Groupe de travail 2 au quatrieme rapport d'evaluation du Groupe d'expert intergouvernemental sur l'evolution du climat. Bilan 2007 des changements climatiques: impacts, adaptation et vulnerabilite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This document exposes the results of the fourth evaluation report of the working group II of the inter government experts group on the climatic change. This evaluation presents the today scientific understanding of the climatic change impacts on the humans and their adaptation ability and vulnerability. It is based on the GIEC evaluations and new knowledge added since the third evaluation report. (A.L.B.)

  2. Arctic action against climatic changes

    International Nuclear Information System (INIS)

    Njaastad, Birgit

    2000-01-01

    The articles describes efforts to map the climatic changes in the Arctic regions through the Arctic Climate Impact Assessment Project which is a joint venture between eight Arctic countries: Denmark, Canada, the USA, Russia, Finland, Sweden and Norway. The project deals with the consequences of the changes such as the UV radiation due to diminishing ozone layers. The aims are: Evaluate and integrate existing knowledge in the field and evaluate and predict the consequences particularly on the environment both in the present and the future and produce reliable and useful information in order to aid the decision-making processes

  3. Signs of climate change in Nordic nature

    DEFF Research Database (Denmark)

    Mikkelsen, Maria; Jensen, Trine Susanne; Normander, Bo

    on population size and range of the polar bear, for example, are scarce, whereas data on the pollen season are extensive. Each indicator is evaluated using a number of quality criteria, including sensitivity to climate change, policy relevance and methodology. Although the indicator framework presented here has......Not only is the Earth's climate changing, our natural world is also being affected by the impact of rising temperatures and changes in climatic conditions. In order to track climate-related changes in Nordic ecosystems, we have identified a number of climate change sensitive indicators. We present...... a catalogue of 14 indicator-based signs that demonstrate the impact of climate change on terrestrial, marine and freshwater ecosystems in the different bio-geographical zones of the Nordic region. The indicators have been identified using a systematic and quality, criteria based approach to discern and select...

  4. Climate Change Education in Earth System Science

    Science.gov (United States)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  5. Climate change

    Science.gov (United States)

    Cronin, Thomas M.

    2016-01-01

    Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.

  6. Climate variability and climate change

    International Nuclear Information System (INIS)

    Rind, D.

    1990-01-01

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century

  7. Mid-term evaluation of the Climate Change Action Fund: Science, Impacts and Adaptation (SIA) block

    International Nuclear Information System (INIS)

    2001-11-01

    In 1998, the Climate Change Action Fund was established by the Government of Canada. Its budget represented 150 million dollars over a three year period, and was an additional 625 million dollars in the federal budget of February 2000 was allocated for climate change initiatives, of which 150 million dollars were earmarked over a three year period to the Climate Change Action Fund. To provide input for Treasury Board Submissions looking for funding approval in the future, it was necessary to conduct a mid-term evaluation focused on program performance to date. The period covered by the evaluation was September 2000 to the end of January 2001. This report examined the performance of the Science, Impact and Adaptation Block (SIA). Based on a series of interviews with representatives of Block managers, Technical and Executive Policy Committees, successful applicants, unsuccessful applicants and peer reviewers, as well as a review of the documentation maintained by SIA, it addressed the following issues: Block relevance, progress/success to date, and effectiveness in meeting the objectives. It was determined that the objectives displayed relevance to the climate change agenda of the federal government, progress to date was considered satisfactory, and most of the objectives should be met in a timely fashion. A summary of the findings was included in this document along with recommendations pertaining to the findings. 3 tabs., 1 fig

  8. Climate Change and Agricultural Vulnerability

    International Nuclear Information System (INIS)

    Fischer, G.; Shah, M.; Van Velthuizen, H.

    2002-08-01

    After the introduction Chapter 2 presents details of the ecological-economic analysis based on the FAO/IIASA agro-ecological zones (AEZ) approach for evaluation of biophysical limitations and agricultural production potentials, and IIASA's Basic Linked System (BLS) for analyzing the world's food economy and trade system. The BLS is a global general equilibrium model system for analyzing agricultural policies and food system prospects in an international setting. BLS views national agricultural systems as embedded in national economies, which interact with each other through trade at the international level. The combination of AEZ and BLS provides an integrated ecological-economic framework for the assessment of the impact of climate change. We consider climate scenarios based on experiments with four General Circulation Models (GCM), and we assess the four basic socioeconomic development pathways and emission scenarios as formulated by the Intergovernmental Panel on Climate Change (IPCC) in its Third Assessment Report. Chapter 3 presents the main AEZ results of the impact of climate change on agriculture. Results comprise environmental constraints to crop agriculture; climate variability and the variability of rain-fed cereal production; changes in potential agricultural land; changes in crop-production patterns; and the impact of climate change on cereal-production potential. Chapter 4 discusses the AEZ-BLS integrated ecological-economic analysis of climate change on the world food system. This includes quantification of scale and location of hunger, international agricultural trade, prices, production, land use, etc. It assesses trends in food production, trade, and consumption, and the impact on poverty and hunger of alternative development pathways and varying levels of climate change. Chapter 5 presents the main conclusions and policy implications of this study

  9. Evaluating the Impacts of Climate Change on Soil Erosion Rates in Central Mexico

    Directory of Open Access Journals (Sweden)

    Santos Martínez-Santiago

    2017-07-01

    Full Text Available Although water-eroded soil (WES resulting from human activities has been recognized as the leading global cause of land degradation, the soil erosion risks from climate change are not clear. Studies have reported that WES is the second most significant cause of soil loss in Mexico, and its future trajectory has not been sufficiently evaluated. The aims of this study are to 1 determine the impacts of climate change on WES and its distribution for the State of Aguascalientes, Mexico, and to 2 compare the present and future soil loss rates for the study unit (SU. The State of Aguascalientes is located in the “Region del Bajio.” The impact of climate change on WES was evaluated using the near-future divided world scenario (A2 presented in the IPCC Fourth Assessment Report. Daily temperature and precipitation data from 18 weather stations were downscaled to model historic laminar water erosion (HLWE and changes therein in the A2 near-future scenario for 2010–2039 (LWEScA2. Due to future changes in mean annual rainfall (MAR levels, a change in the LWEScA2 of between 1.6 and 8.9% could result in average soil losses up to 475.4 t ha-1 yr-1, representing a loss of slightly more than a 30-mm layer of mountain soil per year. The risk zones, classified as class 4 for LWE, are located to western of the State in part of municipalities of Calvillo, Jesus María, San José de Gracia y Cosio, where there are typical hills and falls with soil very sensitive to rain erosion.

  10. The British Climate Change Act: a critical evaluation and proposed alternative approach

    International Nuclear Information System (INIS)

    Pielke Jr, Roger A

    2009-01-01

    This paper evaluates the United Kingdom's Climate Change Act of 2008 in terms of the implied rates of decarbonization of the UK economy for a short-term and a long-term target established in law. The paper uses the Kaya identity to structure the evaluation, employing both a bottom up approach (based on projections of future UK population, economic growth, and technology) and a top down approach (deriving implied rates of decarbonization consistent with the targets and various rates of projected economic growth). Both approaches indicate that the UK economy would have to achieve annual rates of decarbonization in excess of 4 or 5%. To place these numbers in context, the UK would have to achieve the 2006 carbon efficiency of France by about 2015, a level of effort comparable to the building of about 30 new nuclear power plants, displacing an equivalent amount of fossil energy. The paper argues that the magnitude of the task implied by the UK Climate Change Act strongly suggests that it is on course to fail, and discusses implications.

  11. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    Cities rather than national governments take the lead in acting on climate change. Several cities have voluntarily created climate change plans to prevent and prepare for the effects of climate change. In the literature climate change has been examined as a multilevel governance area taking place...... around international networks. Despite the many initiatives taken by cities, existing research shows that the implementation of climate change actions is lacking. The reasons for this scarcity in practice are limited to general explanations in the literature, and studies focused on explaining...... the constraints on climate change planning at the local level are absent. To understand these constraints, this PhD thesis investigates the institutional dynamics that influence the process of the integration of climate change into planning practices at the local level in Denmark. The examination of integration...

  12. Upgrade and Design of Coastal Structures Exposed to Climate Changes

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Quvang Harck

    This thesis "Upgrade and Design of Coastal Structures Exposed to Climate Changes" evaluates the performance of existing types of structures when exposed to climate changes. This includes also the potential of using cost‐sharing multipurpose structures for protection against the effects of future...... climate changes. The thesis consists of three parts. The first part evaluates the performance of existing design formulae for estimation of wave actions on structures, especially in shallow water since these structures are most vulnerable to the rising sea water levels caused by climate changes. Existing...... of coastal protection structures, which are extended to a wider range of wave conditions, and which can be used to more accurately estimate the influence from climate changes. In the second part of the thesis, the extended and modified formulae are used in case studies to evaluate the influence from climate...

  13. Climate variability and climate change

    International Nuclear Information System (INIS)

    Rind, D.

    1991-01-01

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century. 19 refs.; 3 figs.; 2 tabs

  14. Evaluation of Water Quality Change of Brackish Lake in Snowy Cold Regions Accompanying Climate Change

    Science.gov (United States)

    Kudo, K.; Hasegawa, H.; Nakatsugawa, M.

    2017-12-01

    This study addresses evaluation of water quality change of brackish lake based on the estimation of hydrological quantities resulting from long-term hydrologic process accompanying climate change. For brackish lakes, such as Lake Abashiri in Eastern Hokkaido, there are concerns about water quality deterioration due to increases in water temperature and salinity. For estimating some hydrological quantities in the Abashiri River basin, including Lake Abashiri, we propose the following methods: 1) MRI-NHRCM20, a regional climate model based on the Representative Concentration Pathways adopted by IPCC AR5, 2) generalized extreme value distribution for correcting bias, 3) kriging adopted variogram for downscaling and 4) Long term Hydrologic Assessment model considering Snow process (LoHAS). In addition, we calculate the discharge from Abashiri River into Lake Abashiri by using estimated hydrological quantities and a tank model, and simulate impacts on water quality of Lake Abashiri due to climate change by setting necessary conditions, including the initial conditions of water temperature and water quality, the pollution load from the inflow rivers, the duration of ice cover and salt pale boundary. The result of the simulation of water quality indicates that climate change is expected to raise the water temperature of the lake surface by approximately 4°C and increase salinity of surface of the lake by approximately 4psu, also if salt pale boundary in the lake raises by approximately 2-m, the concentration of COD, T-N and T-P in the bottom of the lake might increase. The processes leading to these results are likely to be as follows: increased river water flows in along salt pale boundary in lake, causing dynamic flow of surface water; saline bottom water is entrained upward, where it mixes with surface water; and the shear force acting at salt pale boundary helps to increase the supply of salts from bottom saline water to the surface water. In the future, we will

  15. Scale interactions in economics: application to the evaluation of the economic damages of climatic change and of extreme events

    International Nuclear Information System (INIS)

    Hallegatte, S.

    2005-06-01

    Growth models, which neglect economic disequilibria, considered as temporary, are in general used to evaluate the damaging effects generated by climatic change. This work shows, through a series of modeling experiences, the importance of disequilibria and of endogenous variability of economy in the evaluation of damages due to extreme events and climatic change. It demonstrates the impossibility to separate the evaluation of damages from the representation of growth and of economic dynamics: the comfort losses will depend on both the nature and intensity of impacts and on the dynamics and situation of the economy to which they will apply. Thus, the uncertainties about the damaging effects of future climatic changes come from both scientific uncertainties and from uncertainties about the future organization of our economies. (J.S.)

  16. Climate Change | Page 15 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Home · Agriculture and Environment. Climate Change. Language English. Read more about Mobilizing the Private Sector for Adaptation Finance. Language English. Read more about Welfare Evaluation and the Economic Impacts of Climate Change on Water Supply and Demand in Chile, Colombia, and Bolivia. Language ...

  17. Vulnerability to Climate Change in Rural Nicaragua

    Science.gov (United States)

    Byrne, T. R.; Townshend, I.; Byrne, J. M.; McDaniel, S. A.

    2013-12-01

    While there is a growing recognition of the impact that climate change may have on human development, there has been a shift in focus from an impacts-led assessment approach towards a vulnerability-led assessment approach. This research operationalizes the IPCC's definition of vulnerability in a sub-national assessment to understand how different factors that shape vulnerability to climate change vary spatially across rural Nicaragua. The research utilizes the Food and Agriculture Organization of the United Nations' (FAO UN) CropWat model to evaluate how the annual yield of two of Nicaragua's staple crops may change under projected changes in temperature and precipitation. This analysis of agricultural sensitivity under exposure to climate change is then overlain with an indicator-based assessment of adaptive capacity in rural Nicaraguan farming households. Adaptive capacity was evaluated using household survey data from the 2001 National Household Survey on Living Standards Measurement, which was provided to us by the FAO UN. The result is a map representing current vulnerability to future climate change, and can serve as a basis for targeting policy interventions in rural Nicaragua.

  18. Upgrade and Design of Coastal Structures Exposed to Climate Changes

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Quvang Harck

    This thesis “Upgrade and Design of Coastal Structures Exposed to Climate Changes” evaluates the performance of existing types of structures when exposed to climate changes. This includes also the potential of using cost‐sharing multipurpose structures for protection against the effects of future...... climate changes. The thesis consists of three parts. The first part evaluates the performance of existing design formulae for estimation of wave actions on structures, especially in shallow water since these structures are most vulnerable to the rising sea water levels caused by climate changes. Existing...... of coastal protection structures, which are extended to a wider range of wave conditions, and which can be used to more accurately estimate the influence from climate changes. In the second part of the thesis, the extended and modified formulae are used in case studies to evaluate the influence from climate...

  19. Enhancing interdisciplinary climate change work through comprehensive evaluation

    Directory of Open Access Journals (Sweden)

    Jenna Klink

    2017-01-01

    Full Text Available This paper shares the details of an evaluation plan from an interdisciplinary climate change project that developed decision support tools (DSTs for agricultural advisors and farmers. It showcases how evaluation enhanced the project work by providing opportunities for the team to reflect on and use data to improve performance. The plan included both formative and summative approaches, team member interviews to assess team functioning, usability testing of DSTs, outreach and marketing campaign evaluation. Outreach evaluation included surveying those reached, monitoring project website traffic, and tracking and mapping outreach details. Marketing evaluation included pre-testing campaign materials, assessing open and click rates of email campaign, and monitoring associated traffic to website. The Useful to Usable (U2U team was generally high functioning, but team interviews allowed the evaluators and leaders to discern factors that were influencing intended outcomes, respond to needs, assign resources, and catalyze activities that were crucial in shaping the outcomes. Usability testing surfaced issues related to default values and search and help features that were addressed by the team and resulted in improved usability. Outreach evaluation found geographic and methodological gaps that were filled, resulting in more target audiences reached and more effective methods used (e.g., hands-on events. Marketing evaluation allowed for improving contact lists over time and improving campaign messaging before deployment. Evaluators and project leaders working on similar projects may adapt or utilize methods detailed in this paper, along with the recommendations, while designing and implementing improvement-oriented evaluation plans.

  20. Klimaschutz in China. Summary of experience from the existing environmental law relating to climate change and suggestions for China's climate change legislation

    International Nuclear Information System (INIS)

    Cao, Mingde

    2014-01-01

    This essay summarizes Chinese experiences from environmental law relating to climate change legislation and puts forward certain constructive advices, by a comprehensive and systematic examination of China's laws and policies in addressing the issue of climate change, and evaluation on their legal effects. On the basis of analysis and empirical research of this essay, it could be found that, there are many successful institutions in the existing policy systems and practices of China in respect of greenhouse gas emission reduction, including the planning and scheduling institution, the target responsibility institution, and the compulsory standard institution. These institutions should be amended, confirmed and fixed down in the laws, so as to bring their functions into full play. Simultaneously, climate change legislation should bring in and focus on promoting new institutions such as the institution of climate change environmental impact evaluation on construction projects, planning and policy strategies, carbon capture and storage technology promotion institution, carbon sinks trading or indemnification institution. Local governments have urgent demand for climate change legislation as well as obvious limitations, as a result, it is imperative for the launch of state-level comprehensive mode of climate change legislation. The basic principles of legislation may incorporate policy principles and introduce specific principles in the field. Furthermore, building a perfect administrative system and nailing down the legal responsibilities for addressing climate change are crucial for safeguarding the smooth implementation of laws. This study aims at providing early-stage preparations for China's climate change legislation, and a research foundation for drafting climate change laws. Research findings of this study involve three aspects, i.e. laws, policies and practice, by studying more than thirty resolutions of the general assembly of the United Nations, more than

  1. Statistically downscaled climate projections to support evaluating climate change risks for hydropower

    International Nuclear Information System (INIS)

    Brekke, L.

    2008-01-01

    This paper described a web-served public access archive of down-scaled climate projections developed as a tool for water managers of river and hydropower systems. The archive provided access to climate projection data at basin-relevant resolution and included an extensive compilation of down-scale climate projects designed to support risk-based adaptation planning. Downscaled translations of 112 contemporary climate projections produced using the World Climate Research Program's coupled model intercomparison project were also included. Datasets for the coupled model included temperature and precipitation, monthly time-steps, and geographic coverage for the United States and portions of Mexico and Canada. It was concluded that the archive will be used to develop risk-based studies on shifts in seasonal patterns, changes in mean annual runoff, and associated responses in water resources and hydroelectric power management. Case studies demonstrating reclamation applications of archive content and potential applications for hydroelectric power production impacts were included. tabs., figs

  2. The Role of Ethnographic Interviewing in Climate Change Evaluation Research: Investigating Intended and Unintended program effects

    Science.gov (United States)

    Lloro-Bidart, T.

    2012-12-01

    Ethnographic interviewing is an under-utilized tool in climate change evaluation research, even though it has the potential to serve as a powerful method of data collection. The utility of the ethnographic interview lies in its ability to elicit responses from program participants describing what a program is in practice, shedding light on both intended and unintended program impacts. Drawing on evaluation work involving a federally-funded climate change grant at the University of California, Riverside, I will discuss how to design an ethnographic interview protocol in an effort to share "best practices" with other climate change evaluators. Particular attention will be given to applying ethnographic approaches to various program types, even those differing from the one discussed. I will share some of the concrete findings from my work on this grant, to serve as examples of the kinds of data evaluators can collect when employing an ethnographic approach to interviewing. UC Riverside's climate change grant is multi-faceted, however the component studied ethnographically was a science fair mentoring program. About twenty K-12 students from high poverty, ethnically diverse schools who expressed an interest in participating in science fair were paired up with graduate student mentors to simultaneously research climate change and design authentic science fair projects to compete at various levels. Since one of the stated goals of the grant is to "stimulate…students to consider climate science as a career track through experiential education activities" I was particularly interested in how student experiences with the project might differ from school science which has historically "pushed out" ethnically diverse students like those in many of Riverside's schools. (In the program students are able to interact one-on-one with a mentor and in school settings there is typically one teacher for more than thirty students). I also sought to understand student perceptions of

  3. Evaluating Impacts of climate and land use changes on streamflow using SWAT and land use models based CESM1-CAM5 Climate scenarios

    Science.gov (United States)

    Lin, Tzu Ping; Lin, Yu Pin; Lien, Wan Yu

    2015-04-01

    Climate change projects have various levels of impacts on hydrological cycles around the world. The impact of climate change and uncertainty of climate projections from general circulation models (GCMs) from the Coupled Model Intercomparison Project (CMIP5) which has been just be released in Taiwan, 2014. Since the streamflow run into ocean directly due to the steep terrain and the rainfall difference between wet and dry seasons is apparent; as a result, the allocation water resource reasonable is very challenge in Taiwan, particularly under climate change. The purpose of this study was to evaluate the impacts of climate and land use changes on a small watershed in Taiwan. The AR5 General Circulation Models(GCM) output data was adopted in this study and was downscaled from the monthly to the daily weather data as the input data of hydrological model such as Soil and Water Assessment Tool (SWAT) model in this study. The spatially explicit land uses change model, the Conservation of Land Use and its Effects at Small regional extent (CLUE-s), was applied to simulate land use scenarios in 2020-2039. Combined climate and land use change scenarios were adopted as input data of the hydrological model, the SWAT model, to estimate the future streamflows. With the increasing precipitation, increasing urban area and decreasing agricultural and grass land, the annual streamflow in the most of twenty-three subbasins were also increased. Besides, due to the increasing rainfall in wet season and decreasing rainfall in dry season, the difference of streamflow between wet season and dry season are also increased. This result indicates a more stringent challenge on the water resource management in future. Therefore, impacts on water resource caused by climate change and land use change should be considered in water resource planning for the Datuan river watershed. Keywords: SWAT, GCM, CLUE-s, streamflow, climate change, land use change

  4. Conceptual Model of Climate Change Impacts at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual model of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).

  5. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  6. Cinematic climate change, a promising perspective on climate change communication.

    Science.gov (United States)

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions. © The Author(s) 2014.

  7. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  8. Managing climate change refugia for climate adaptation

    Science.gov (United States)

    Morelli, Toni L.; Jackson, Stephen T.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  9. Managing climate change risk : emerging financial sector expectations

    International Nuclear Information System (INIS)

    Williams, R.

    2004-01-01

    Engagement of the financial sector in the climate change debate is apparent, with social investors and advocacy groups launching 32 climate change related shareholder resolutions with American and Canadian energy companies in 2003. Eos Research and Consulting Ltd. recently conducted a study to examine emerging standards for how energy companies manage climate change related risks. A survey was conducted in the first part of the study to determine the environmental awareness of energy companies. Financial firms were asked whether they sought information concerning GHG inventories; projections of future emissions; action plans for addressing climate change and energy efficiency; evaluation of relative risk; estimation of cost of carbon; assessment of financial impact; evaluation of future regulations; and emissions trading activity. The second part of the study compared the response of 11 leading energy companies. The result was 2 opposing views on how climate change risks should be managed. The survey revealed that while most mainstream financial institutions are not paying much attention to climate change issues, socially responsible investment (SRI) investors are aware and working to factor climate change risk management information into their activities. In addition, SRI is growing at a faster pace than other investment segments, which may lead to greater future expectations for energy companies' climate change risk management efforts. It was concluded that the financial sector may emerge as an important source of direction that will guide energy companies in their future efforts to manage climate change risks. The five trends that contribute to the sector's emerging role are the continuing influence of advocacy groups; evolution of socially responsible approaches to investment; growing concerns for reputation; development of financial risk assessment approaches in terms of climate change; and, increase focus on corporate governance issues. 15 refs., 2 tabs., 1

  10. Late Quaternary changes in climate

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, K; Karlen, W [Stockholm Univ. (Sweden). Dept. of Physical Geography

    1998-12-01

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  11. Late Quaternary changes in climate

    International Nuclear Information System (INIS)

    Holmgren, K.; Karlen, W.

    1998-12-01

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  12. Climate Change 2014: Technical Summary

    Science.gov (United States)

    Field, Chrisopher B.; Barros, Vicente; Mach, Katherine; Mastrandrea, Michael; van Aalst, Maarten; Adger, Niel; Arent, Douglas J; Barnett, Jonathan; Betts, Richard; Bilir, Eren; Birkmann, Joern; Carmin, Joann; Chadee, Dave; Challinor, Andrew; Chaterjee, Monalisa; Cramer, Wolfgang; Davidson, Debra; Estrada, Yuka; Gatusso, Jean-Pierre; Hijioka, Yasuakai; Yohe, Gary; Hiza, Margaret; Hoegh-Guldberg, Ove; Huang, He-Qing; Insarov, Gregory; Jones, Roger; Kovats, Sari; Lankao, Patricia Romero; Larsen, Joan Nymand; Losada, Iñigo; Marengo, José; McLean, Roger; Mearns, Linda; Mechler, Reinhard; Morton, John; Niang, Isabelle; Oki, Taikan; Olwoch, Jane Mukarugwiza; Opondo, Maggie; Poloczanska, Elvira; Pörtner, Hans -O.; Reisinger, Andy; Revi, Aromar; Schmidt, Daniela; Shaw, Rebecca; Solecki, William; Stone, Dáithí; Stone, John; Strzepek, Ken; Suarez, Avelino G.; Tschakert, Petra; Valentini, Riccardo; Vicuna, Sebastian; Villamizar, Alicia; Vincent, Katharine; Warren, Rachel; White, Leslie; Wilbanks, Thomas; Wong, Poh Poh

    2014-01-01

    Human interference with the climate system is occurring (WGI AR5 SPM Section D.3; WGI AR5 Sections 2.2, 6.3, 10.3 to 10.6, 10.9). Climate change poses risks for human and natural systems. The assessment of impacts, adaptation, and vulnerability in the Working Group II contribution to the IPCC’s Fifth Assessment Report (WGII AR5) evaluates how patterns of risks and potential benefits are shifting due to climate change. It considers how impacts and risks related to climate change can be reduced and managed through adaptation and mitigation. The report assesses needs, options, opportunities, constraints, resilience, limits, and other aspects associated with adaptation. It recognizes that risks of climate change will vary across regions and populations, through space and time, dependent on myriad factors including the extent of adaptation and mitigation. For the past 2 decades, IPCC’s Working Group II has developed assessments of climate change impacts, adaptation, and vulnerability. The WGII AR5 builds from the WGII contribution to the IPCC’s Fourth Assessment Report (WGII AR4), published in 2007, and the Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX), published in 2012. It follows the Working Group I contribution to the AR5. The WGII AR5 is presented in two parts (Part A: Global and Sectoral Aspects, and Part B: Regional Aspects), reflecting the expanded literature basis and multidisciplinary approach, increased focus on societal impacts and responses, and continued regionally comprehensive coverage. [1.1 to 1.3] The number of scientific publications available for assessing climate change impacts, adaptation, and vulnerability more than doubled between 2005 and 2010, with especially rapid increases in publications related to adaptation, allowing for a more robust assessment that supports policymaking (high confidence). The diversity of the topics and regions covered has similarly expanded, as has

  13. Contribution of the working group 2 to the fourth evaluation report of the inter government expert group on the climatic change. Evaluation 2007 of the climatic changes: impacts, adaptation and vulnerability; Contribution du Groupe de travail 2 au quatrieme rapport d'evaluation du Groupe d'expert intergouvernemental sur l'evolution du climat. Bilan 2007 des changements climatiques: impacts, adaptation et vulnerabilite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This document exposes the results of the fourth evaluation report of the working group II of the inter government experts group on the climatic change. This evaluation presents the today scientific understanding of the climatic change impacts on the humans and their adaptation ability and vulnerability. It is based on the GIEC evaluations and new knowledge added since the third evaluation report. (A.L.B.)

  14. Changing heathlands in a changing climate

    DEFF Research Database (Denmark)

    Ransijn, Johannes

    Atmospheric CO2 concentrations and temperatures are rising and precipitation regimes are changing at global scale. How ecosystem will be affected by global climatic change is dependent on the responses of plants and plant communities. This thesis focuses on how climate change affects heathland...... plant communities. Many heathlands have shifted from dwarf shrub dominance to grass dominance and climatic change might affect the competitive balance between dwarf shrubs and grasses. We looked at heathland vegetation dynamics and heathland plant responses to climatic change at different spatial...... between C. vulgaris and D. flexuosa in the same climate change experiment and 5) a study where we compared the responses of shrubland plant communities to experimental warming and recurrent experimental droughts in seven climate change experiments across Europe. Heathland vegetation dynamics are slow...

  15. A history of the science and politics of climate change: the role of the Intergovernmental Panel on Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Bolin, B. [University of Stockholm, Stockholm (Sweden)

    2007-11-15

    In response to growing concern about human-induced global climate change, the UN Intergovernmental Panel on Climate Change (IPCC) was formed in 1988. Written by its first Chairman, this book is a unique overview of the history of the IPCC. It describes and evaluates the intricate interplay between key factors in the science and politics of climate change, the strategy that has been followed, and the regretfully slow pace in getting to grips with the uncertainties that have prevented earlier action being taken. The book also highlights the emerging conflict between establishing a sustainable global energy system and preventing a serious change in global climate. Contents are: Part I. The Early History of the Climate Change Issue: 1. Nineteenth century discoveries; 2. The natural carbon cycle and life on earth; 3. Global research initiatives in meteorology and climatology; 4. Early international assessments of climate change; Part II. The Climate Change Issue Becomes One of Global Concern: 5. Setting the stage; 6. The scientific basis for a climate convention; 7. Serving the Intergovernmental Negotiating Committee; 8. The Second IPP Assessment Report; 9. In the aftermath of the IPCC Second Assessment; 10. The Kyoto Protocol is agreed and a third assessment begun; 11. A decade of hesitance and slow progress; Part III. A Turning Point in Addressing Climate Change?: 12. Key scientific finding of prime political relevance; 13. Climate change and the future global energy supply system; Concluding remarks. 9 figs.

  16. Understanding the school 'climate': secondary school children and climate change

    International Nuclear Information System (INIS)

    Kovacs, Susan; Bernier, Sandrine; Blanchet, Aymeric; Derkenne, Chantal; Clement, Florence; Petitjean, Leslie

    2012-01-01

    held in the school under study. A critical description of the nature and content of communicated messages, activities and projects follows. Individual and collective initiatives which foster an interdisciplinary approach to climate change education are identified, as are the various obstacles to this approach, including organizational obstacles and the longstanding traditions of the French educational system which tend to hinder pedagogical innovation. Lastly, the reception of these projects and activities by school children in the second year of secondary school is analyzed. The results of this analysis are somewhat, but not always, encouraging. School children interviewed do not clearly understand the scientific phenomena surrounding climate change, and have difficulty considering this issue within its wider socio-political context. School children's interest in climate change and environmental science is largely dependent upon a perceived link with their own centers of interest or hobbies. School children express nonetheless the need for more and better adult mediation on the question of climate change, even though they see environmentally conscious behavior as contrary to the modern lifestyle of comfort that society offers them. Certain school projects and activities which had a particular impact on school children are discussed, in order to suggest criteria for evaluating the effectiveness (or non-effectiveness) of climate change projects in school. This study can be considered to be a tool for reflection and for the evaluation of the potential impact of climate change programs and messages produced for youngsters in school today

  17. Climate change and climate policy

    International Nuclear Information System (INIS)

    Alfsen, Knut H.; Kolshus, Hans H.; Torvanger, Asbjoern

    2000-08-01

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done to curtail the emission of

  18. A Evaluation of Effects on a Ecosystem and Countermeasures in accordance with Climate Change I- Forest Ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Ha; Jeon, Seong Woo; Choi, Jae Yong; Jeong Hwi Chol; Kim, Jeong Won [Korea Environment Institute, Seoul (Korea)

    2000-12-01

    Climate change requests a lot of changes in the existing life style and economic developing system, which form the foundation of modern culture and economic/social development. Especially, in Korea, whose economic basis is mainly dependent on fossil energy, it is expected that the change of policies on climate change have a bigger effect on many-sided fields including ecosystem than other nations. Therefore, even though all of the Government, academic organizations, and private organizations have made efforts to estimate effects of climate change and to prepare countermeasures, the focus has been on forecast and evaluation of the mutual effect between industrial/economic activities and climate change. Forecast of ecosystem change and preservation of ecosystem according to climate change is another political field to promote. However, such a field has not been promoted systematically in Korea. The Institute recognizing such a current state, as part of the policy on ecosystem preservation according to climate change, forecasted the effect on forest ecosystem, analyzed the economic effects according to the effect of forest ecosystem, and started this study to prepare the countermeasures of the Government-level. This study collected and analyzed international trend and necessary data to develop the model, which would be executed in future, and then suggested the selection and development of the model fitted to Korea. There could be differences between Institute's view and the Government/other institutes. However, such differences are caused by the different methods in capturing the effects of various ecosystems. Such various approaching methods will be of great help to estimate the correct effects and to establish the Government's policies as base data. I hope that this study cannot only be applied to analyze the effects of forest ecosystem according to climate change but contribute to enlarging the understanding of various problems according to climate

  19. Intertemporal evaluation criteria for climate change policy: the basic ethical issues

    OpenAIRE

    Buchholz, Wolfgang; Schymura, Michael

    2011-01-01

    The evaluation of long-term effects of climate change in cost-benefit analysis has a long tradition in environmental economics. Since the publication of the Stern Review in 2006 the debate about the "appropriate" discounting of future welfare and utility levels was revived and the most renowned scholars of the profession participated in this debate. But it seems that some contributions dealing with the Stern Review and the Review itself mixed up normative and positive issues to defend the own...

  20. Evaluating the sensitivity of Eurasian forest biomass to climate change using a dynamic vegetation model

    International Nuclear Information System (INIS)

    Shuman, J K; Shugart, H H

    2009-01-01

    Climate warming could strongly influence the structure and composition of the Eurasian boreal forest. Temperature related changes have occurred, including shifts in treelines and changes in regeneration. Dynamic vegetation models are well suited to the further exploration of the impacts that climate change may have on boreal forests. Using the individual-based gap model FAREAST, forest composition and biomass are simulated at over 2000 sites across Eurasia. Biomass output is compared to detailed forest data from a representative sample of Russian forests and a sensitivity analysis is performed to evaluate the impact that elevated temperatures and modified precipitation will have on forest biomass and composition in Eurasia. Correlations between model and forest inventory biomass are strong for several boreal tree species. A significant relationship is shown between altered precipitation and biomass. This analysis showed that a modest increase in temperature of 2 deg. C across 200 years had no significant effect on biomass; however further exploration with increased warming reflective of values measured within Siberia, or at an increased rate, are warranted. Overall, FAREAST accurately simulates forest biomass and composition at sites throughout a large geographic area with widely varying climatic conditions and produces reasonable biomass responses to simulated climatic shifts. These results indicate that this model is robust and useful in making predictions regarding the effect of future climate change on boreal forest structure across Eurasia.

  1. Methodological principles for the evaluation of impact of the variability and the climatic change in the human health, a statistical focus

    International Nuclear Information System (INIS)

    Ortiz Bulto, Paulo Lazaro; Vladimir Guevara, Antonio; Ulloa, Jacqueline; Aparicio, Marilyn

    2001-01-01

    Signal detection of climate variability or change and the evaluation of its specific effects, requires an understanding of the variations in the observed data, which describe the natural climate variability and change signals. It is also necessary to understand the complex interactions that make up the climate system. In the present work, an unusual methodological approach is taken to evaluate the effects and impacts of climate variability and change on the behaviour of different diseases, on the basis of practical experience of its application in four countries of the Caribbean, Central and South America: Cuba, Panama, Bolivia and Paraguay. For the determination of the climate signal change multivariate analysis techniques (empirical orthogonal functions) were used, combined with robust methods of time series decomposition (decomposition by median). They allowed us to describe the changes observed in the seasonal patterns of climate and epidemiological diseases for the period 1991-1999, with respect to the period 1961-1990. These results were used to build an autoregressive model with non-constant variance, with a climate index based on the signals obtained from the decompositions, which enters the model as an exogenous variable in order to make projections of the diseases

  2. Climatic change

    International Nuclear Information System (INIS)

    Perthuis, Ch. de; Delbosc, A.

    2009-01-01

    Received ideas about climatic change are a mixture of right and wrong information. The authors use these ideas as starting points to shade light on what we really know and what we believe to know. The book is divided in three main chapters: should we act in front of climatic change? How can we efficiently act? How can we equitably act? For each chapter a series of received ideas is analyzed in order to find those which can usefully contribute to mitigate the environmental, economical and social impacts of climatic change. (J.S.)

  3. Climate Change Assessments for Lakes Region of Turkey

    Directory of Open Access Journals (Sweden)

    Ayten Erol

    2012-07-01

    Full Text Available Climate change is one of the most important challenges for forestry. Forests are known to be most efficient natural tools to ensure availability and quality of water in many regions. Besides, planning of forest resources towards water quality and quantity is essential in countries that are expected to face with more frequent drought periods in the next decades due to climate change. Watershed management concept has been supposed as the primary tool to plan natural resources in a more efficient and sustainable way by both academicians and practitioners to mitigate and adapt climate change. Forest cover among other land use types provides the best regulating mechanism to mitigate erosion, sedimentation, desertification, and pollution. In addition, climate change can potentially affect forest stand dynamics by influencing the availability of water resources. Therefore, the amount of forest cover in a watershed is an indicator of climate change mitigation and adaptation. Climate change is a concern and risk for the sustainability of water resources in Lakes Region of Turkey. The objective of this study is to make a comprehensive assessment in lake watersheds of the Lakes region considering the forest cover. For this purpose, the study gives a general view of trends in climatic parameters using Mann Kendall trend test. The results showed that Mann Kendall trend test for temperature and precipitation data is not enough to evaluate the magnitude of potential changes of climate in terms of forest cover. Understanding impacts of changes in temperature and precipitation on forest cover, runoff data should be evaluated with temperature and precipitation for watersheds of forest areas in Lakes Region.

  4. A review of climate change effects on terrestrial rangeland birds

    Science.gov (United States)

    D. M. Finch; K. E. Bagne; M. M. Friggens; D. M. Smith; K. M. Brodhead

    2011-01-01

    We evaluated existing literature on predicted and known climate change effects on terrestrial rangeland birds. We asked the following questions: 1) How does climate change affect birds? 2) How will birds respond to climate change? 3) Are species already responding? 4) How will habitats be impacted?

  5. Climate change governance

    Energy Technology Data Exchange (ETDEWEB)

    Knieling, Joerg [HafenCity Univ. Hamburg (Germany). Urban Planning and Regional Development; Leal Filho, Walter (eds.) [HAW Hamburg (Germany). Research and Transfer Centre Applications of Life Science

    2013-07-01

    Climate change is a cause for concern both globally and locally. In order for it to be tackled holistically, its governance is an important topic needing scientific and practical consideration. Climate change governance is an emerging area, and one which is closely related to state and public administrative systems and the behaviour of private actors, including the business sector, as well as the civil society and non-governmental organisations. Questions of climate change governance deal both with mitigation and adaptation whilst at the same time trying to devise effective ways of managing the consequences of these measures across the different sectors. Many books have been produced on general matters related to climate change, such as climate modelling, temperature variations, sea level rise, but, to date, very few publications have addressed the political, economic and social elements of climate change and their links with governance. This book will address this gap. Furthermore, a particular feature of this book is that it not only presents different perspectives on climate change governance, but it also introduces theoretical approaches and brings these together with practical examples which show how main principles may be implemented in practice.

  6. Climate indices of Iran under climate change

    Directory of Open Access Journals (Sweden)

    alireza kochaki

    2009-06-01

    Full Text Available Global warming will affect all climatic variables and particularly rainfall patterns. The purpose of present investigation was to predict climatic parameters of Iran under future climate change and to compare them with the present conditions. For this reason, UKMO General Circulation Model was used for the year 2025 and 2050. By running the model, minimum and maximum monthly temperature and also maximum monthly rainfall for the representative climate stations were calculated and finally the effects of climate change on these variables based on pre-determined scenarios was evaluated. The results showed that averaged over all stations, mean temperature increase for spring in the year 2025 and 2050 will be 3.1 and 3.9, for summer 3.8 and 4.7, for autumn 2.3 and 3 and for winter 2.0 and 2.4 ºC, respectively. This increase will be more pronounced from North to the South and from East to the West parts of the country. Mean decrease in autumn rainfall for the target years of 2025 and 2050 will be 8 and 11 percent, respectively. This decrease is negligible for summer months. Length of dry season for the years 2025 and 2050 will be increased, respectively up to 214 and 223 days due to combined effects of increased temperature and decreased rainfall.

  7. International aspects of climate change: The intergovernmental panel on climate change

    International Nuclear Information System (INIS)

    Brydges, T.; Fenech, A.

    1990-01-01

    The impact of various international conferences concerning global climate change on international opinions and attitudes is discussed. A number of conferences over the past two decades have drawn attention to the large socio-economic consequences of climate change. There has been increasing attention given to the likely affect of anthropogenically derived greenhouse gases on the global climate. Some early uncertainty over the likely long term changes in global temperature have been replaced by a scientific consensus that global temperatures are increasing and will continue to do so into the next century. Public awareness of the possibility of climate change and severe socio-economic consequences has been increasing and was given a major impetus by the Toronto Conference on the Changing Atmosphere. An estimate of the possible time to solution of the climate change issue is given as 1988-2005, a span of 17 years. The Intergovernmental Panel on Climate Change has focused work into three working groups examining science, impacts and response strategies. 28 refs., 3 figs., 6 tabs

  8. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Vink, Martinus J.; Boezeman, Daan; Dewulf, Art; Termeer, Catrien J.A.M.

    2013-01-01

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  9. Klimaschutz in China. Summary of experience from the existing environmental law relating to climate change and suggestions for China's climate change legislation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Mingde [China Univ. of Political Science and Law, Peking (China). Climate Change and Natural Resources Law Center

    2014-07-01

    This essay summarizes Chinese experiences from environmental law relating to climate change legislation and puts forward certain constructive advices, by a comprehensive and systematic examination of China's laws and policies in addressing the issue of climate change, and evaluation on their legal effects. On the basis of analysis and empirical research of this essay, it could be found that, there are many successful institutions in the existing policy systems and practices of China in respect of greenhouse gas emission reduction, including the planning and scheduling institution, the target responsibility institution, and the compulsory standard institution. These institutions should be amended, confirmed and fixed down in the laws, so as to bring their functions into full play. Simultaneously, climate change legislation should bring in and focus on promoting new institutions such as the institution of climate change environmental impact evaluation on construction projects, planning and policy strategies, carbon capture and storage technology promotion institution, carbon sinks trading or indemnification institution. Local governments have urgent demand for climate change legislation as well as obvious limitations, as a result, it is imperative for the launch of state-level comprehensive mode of climate change legislation. The basic principles of legislation may incorporate policy principles and introduce specific principles in the field. Furthermore, building a perfect administrative system and nailing down the legal responsibilities for addressing climate change are crucial for safeguarding the smooth implementation of laws. This study aims at providing early-stage preparations for China's climate change legislation, and a research foundation for drafting climate change laws. Research findings of this study involve three aspects, i.e. laws, policies and practice, by studying more than thirty resolutions of the general assembly of the United Nations

  10. Serious Simulation Role-Playing Games for Transformative Climate Change Education: "World Climate" and "Future Climate"

    Science.gov (United States)

    Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.

    2012-12-01

    results of the earlier decisions, as simulated by C-ROADS. Preliminary evaluations show that both exercises have the potential to provide powerful learning experiences. University students who played World Climate in a climate change course cited it as one of the course activities "promoting the most learning." Students' responses on anonymous surveys and open-ended questions revealed that the experience affected them at visceral, as well as intellectual levels. All of the students recommended that the exercise be continued in future years and many felt that it was the most important learning experience of the semester. Similarly, understanding of climate change and the dynamics of the climate improved for the majority of Future Climate participants, and 90% of participants stated that they were more likely to take action to address climate change on a personal level because of their experience.

  11. Environmental impacts of climate change adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Enríquez-de-Salamanca, Álvaro, E-mail: aenriquez@draba.org [Universidad Nacional de Educación a Distancia (UNED)/Draba Ingeniería y Consultoría Medioambiental, Cañada Nueva, 13, 28200 San Lorenzo de El Escorial (Spain); Díaz-Sierra, Rubén, E-mail: sierra@dfmf.uned.es [Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Paseo Senda del Rey, 9, 28040 Madrid (Spain); Martín-Aranda, Rosa M., E-mail: rmartin@ccia.uned.es [Departamento de Química Inorgánica y Química Técnica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Paseo Senda del Rey, 9, 28040 Madrid (Spain); Santos, Maria J., E-mail: M.J.FerreiraDosSantos@uu.nl [Department of Innovation, Environmental and Energy Sciences, Utrecht University, Heidelberglaan 2, 3572 TC Utrecht (Netherlands)

    2017-05-15

    Climate change adaptation reduces adverse effects of climate change but may also have undesirable environmental impacts. However, these impacts are yet poorly defined and analysed in the existing literature. To complement this knowledge-gap, we reviewed the literature to unveil the relationship between climate change adaptation and environmental impact assessment, and the degree to which environmental impacts are included in climate change adaptation theory and practice. Our literature review showed that technical, social and economic perspectives on climate change adaptation receive much more attention than the environmental perspective. The scarce interest on the environmental impacts of adaptation may be attributed to (1) an excessive sectoral approach, with dominance of non-environmental perspectives, (2) greater interest in mitigation and direct climate change impacts rather than in adaptation impacts, (3) a tendency to consider adaptation as inherently good, and (4) subjective/preconceived notions on which measures are good or bad, without a comprehensive assessment. Environmental Assessment (EA) has a long established history as an effective tool to include environment into decision-making, although it does not yet guarantee a proper assessment of adaptation, because it is still possible to postpone or even circumvent the processes of assessing the impacts of climate adaptation. Our results suggest that there is a need to address adaptation proactively by including it in EA, to update current policy frameworks, and to demand robust and reliable evaluation of alternatives. Only through the full EA of adaptation measures can we improve our understanding of the primary and secondary impacts of adaptation to global environmental change. - Highlights: • Climate change adaptation may have undesirable environmental impacts. • The impacts of adaptation are yet poorly analysed in the literature. • There is an excessive sectoral approach to adaptation, mainly

  12. Environmental impacts of climate change adaptation

    International Nuclear Information System (INIS)

    Enríquez-de-Salamanca, Álvaro; Díaz-Sierra, Rubén; Martín-Aranda, Rosa M.; Santos, Maria J.

    2017-01-01

    Climate change adaptation reduces adverse effects of climate change but may also have undesirable environmental impacts. However, these impacts are yet poorly defined and analysed in the existing literature. To complement this knowledge-gap, we reviewed the literature to unveil the relationship between climate change adaptation and environmental impact assessment, and the degree to which environmental impacts are included in climate change adaptation theory and practice. Our literature review showed that technical, social and economic perspectives on climate change adaptation receive much more attention than the environmental perspective. The scarce interest on the environmental impacts of adaptation may be attributed to (1) an excessive sectoral approach, with dominance of non-environmental perspectives, (2) greater interest in mitigation and direct climate change impacts rather than in adaptation impacts, (3) a tendency to consider adaptation as inherently good, and (4) subjective/preconceived notions on which measures are good or bad, without a comprehensive assessment. Environmental Assessment (EA) has a long established history as an effective tool to include environment into decision-making, although it does not yet guarantee a proper assessment of adaptation, because it is still possible to postpone or even circumvent the processes of assessing the impacts of climate adaptation. Our results suggest that there is a need to address adaptation proactively by including it in EA, to update current policy frameworks, and to demand robust and reliable evaluation of alternatives. Only through the full EA of adaptation measures can we improve our understanding of the primary and secondary impacts of adaptation to global environmental change. - Highlights: • Climate change adaptation may have undesirable environmental impacts. • The impacts of adaptation are yet poorly analysed in the literature. • There is an excessive sectoral approach to adaptation, mainly

  13. assessing climate change impacts on river hydrology

    Indian Academy of Sciences (India)

    71

    model, Soil and Water Assessment Tool (SWAT), in order to evaluate the effect of climate. 24 change on rainfall ... to project future climate data based on the CO2 emission scenarios.The RCMs are of finer ..... Springer Science+Business. 2.

  14. General review on climate change problems: causes, potential effects

    International Nuclear Information System (INIS)

    Martellet, J.

    1991-01-01

    Greenhouse gases and greenhouse effect principles are reviewed and climate changes due to the human activities are discussed: identification of gases, human or natural causes, composition evolution in the atmosphere and relative roles of greenhouse gases. The various tools and calculations methods for evaluating the climate change due to greenhouse effect are presented. Several problems are stated: evolution of the climate structure in 2030, variations of the climatic extremes and the extreme phenomena, augmentation or diminution of the storms on a warmed planet, long term evolution of the climate. Some consequences of a climate change are reviewed: sea level raising, climate change effects on ecosystems. Precision and validity of these predictions are discussed; recommendations for diminishing the uncertainties are proposed

  15. Global vs climate change

    International Nuclear Information System (INIS)

    Watson, H.L.; Bach, M.C.; Goklany, I.M.

    1991-01-01

    The various agents of global change that will affect the state of natural resources 50-100 years from now are discussed. These include economic and population growth, technological progress, and climatic change. The importance of climatic change lies in its effects on natural resources and on human activities that depend on those resources. Other factors affecting those resources include the demand on those resources from an increasing population and from a growing economy, and a more efficient use of those resources that comes from technological changes and from the consequences of economic growth itself. It is shown that there is a considerable ability to adapt to climatic change, since humans already have an intrinsic ability to adapt to the wide variations in climates that already exist and since technological developments can make it easier to cope with climatic variability. It appears that agents other than climatic change are more significant to the future state of natural resources than climatic change. Criteria for selecting options for addressing climatic change are outlined. Technological change and economic growth are seen to be key response options, since the vulnerability to climatic change depends on economic resources and technological progress. Specific options to stimulate sustainable economic growth and technological progress are listed. 16 refs., 1 fig., 2 tabs

  16. Climate for change

    International Nuclear Information System (INIS)

    Newell, P.

    2000-01-01

    Climate for Change: Non-State Actors and the Global Politics of the Greenhouse provides a challenging explanation of the forces that have shaped the international global warming debate. Unlike existing books on the politics of climate change, this book concentrates on how non-stage actors, such as scientific, environmental and industry groups, as opposed to governmental organisations, affect political outcomes in global fora on climate change. It also provides insights in to the role of the media in influencing the agenda. The book draws on a range of analytical approaches to assess and explain the influence of these non-governmental organisations in the course of global climate change politics. The book will be of interest to all researchers and policy-makers associated with climate change, and will be used on university courses in international relations, politics and environmental studies. (Author)

  17. Economic Evaluation of Climate Change Impacts and Adaptation in Italy

    International Nuclear Information System (INIS)

    Gambarelli, G.; Goria, A.

    2004-07-01

    The paper deals with the social and economic dimensions of climate change impacts and adaptation in Italy. The ultimate aim of the paper is to provide policy makers and experts with a conceptual framework, as well as methodological and operational tools for dealing with climate change impacts and adaptation from an economic perspective. In order to do so, first a conceptual and theoretical framework of the economic assessment of climate change impacts is presented and the state of the art about impact assessment studies is briefly analysed. Then, the Italian case is taken into account, by underlying the main impacts and adaptation challenges that are likely to be implied by climate change in the next decades. The analysis of the Italian case is particularly addressed through the description of the methodology and results of two case studies. The first one, dealing mainly with impact assessment, is carried out at the national level and is part of a EC funded project on Weather Impacts on Natural, Social and Economic Systems (WISE). The second one is carried out at the local level and focuses on sea level rise impacts and adaptation in a plane south of Rome. The two case studies allow to propose simple and flexible methodologies for the economic impact assessment and the economic valuation of adaptation strategies

  18. Climate change

    International Nuclear Information System (INIS)

    2006-01-01

    This paper presented indicators of climate change for British Columbia (BC) with an emphasis on the coastal region. An overview of global effects of climate change was presented, as well as details of BC's current climate change action plan. Indicators examined in the paper for the BC coastal region included long-term trends in air temperature; long-term trends in precipitation; coastal ocean temperatures; sea levels on the BC coast; and the sensitivity of the BC coast to sea level rise and erosion. Data suggested that average air temperatures have become higher in many areas, and that Springtime temperatures have become warmer over the whole province. Winters have become drier in many areas of the province. Sea surface temperature has risen over the entire coast, with the North Coast and central Strait of Georgia showing the largest increases. Deep-water temperatures have also increased in 5 inlets on the South Coast. Results suggested that the direction and spatial pattern of the climate changes reported for British Columbia are consistent with broader trends in North America and the type of changes predicted by climate models for the region. Climate change will likely result in reduced snow-pack in southern BC. An earlier spring freshet on many snow-dominated river systems is anticipated as well as glacial retreat and disappearance. Warmer temperatures in some lakes and rivers are expected, as well as the increased frequency and severity of natural disturbances such as the pine mountain beetle. Large-scale shifts in ecosystems and the loss of certain ecosystems may also occur. BC's current climate plan includes cost effective actions that address GHG emissions and support efficient infrastructure and opportunities for innovation. Management programs for forest and agricultural lands have been initiated, as well as programs to reduce emissions from government operations. Research is also being conducted to understand the impacts of climate change on water

  19. Climate challenge 2012: growth and climate change - Socio-economical impacts of climate change. Conference proceedings

    International Nuclear Information System (INIS)

    Orange-Louboutin, Mylene; Robinet, Olivier; Delalande, Daniel; Reysset, Bertrand; De Perthuis, Christian; Le Treut, Herve; Cottenceau, Jean-Baptiste; Ayong, Alain; Daubaire, Aurelien; Gaudin, Thomas

    2012-01-01

    The contributions of this conference session proposed comments and discussion on the relationship between climate change and 'green' growth, on the status of scientific knowledge on climate change (from global to local), on the way to perform carbon print assessment and to decide which actions to implement, on the costs and opportunity of impacts of climate change, on the economy of adaptation, on the benefits and costs of the adaptation policy, and on impacts of climate change on employment in quantitative terms and in terms of profession types

  20. Evaluation of climate change impact on extreme hydrological event ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Changes in hydrological extremes will have implications on the design of future hydraulic structures, flood plain development, and water resource management. This study assesses the potential impact of climate change on extreme hydrological events in the Akaki River catchment area in and around Addis Ababa city.

  1. Evaluating the impacts of climate change on diurnal wind power cycles using multiple regional climate models

    KAUST Repository

    Goddard, Scott D.

    2015-05-01

    Electrical utility system operators must plan resources so that electricity supply matches demand throughout the day. As the proportion of wind-generated electricity in the US grows, changes in daily wind patterns have the potential either to disrupt the utility or increase the value of wind to the system over time. Wind power projects are designed to last many years, so at this timescale, climate change may become an influential factor on wind patterns. We examine the potential effects of climate change on the average diurnal power production cycles at 12 locations in North America by analyzing averaged and individual output from nine high-resolution regional climate models comprising historical (1971–1999) and future (2041–2069) periods. A semi-parametric mixed model is fit using cubic B-splines, and model diagnostics are checked. Then, a likelihood ratio test is applied to test for differences between the time periods in the seasonal daily averaged cycles, and agreement among the individual regional climate models is assessed. We investigate the significant changes by combining boxplots with a differencing approach and identify broad categories of changes in the amplitude, shape, and position of the average daily cycles. We then discuss the potential impact of these changes on wind power production.

  2. Climate change impacts on food system

    Science.gov (United States)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  3. Evaluating climate change mitigation potential of hydrochars: compounding insights from three different indicators

    DEFF Research Database (Denmark)

    Owsianiak, Mikołaj; Brooks, Jennifer; Renz, Michael

    2017-01-01

    beet, fava bean, onion and lucerne) and two different countries (Spain and Germany), and used three different indicators of climate change: global warming potential (GWP), global temperature change potential (GTP), and climate tipping potential (CTP). We found that although climate change benefits (GWP......) from just sequestration and temporary storage of carbon are sufficient to outweigh impacts stemming from hydrochar production and transportation to the field, even greater benefits stem from replacing climate-inefficient biowaste management treatment options, like composting in Spain. By contrast...

  4. Overview of the Kenya country studies on Climate Change Project

    International Nuclear Information System (INIS)

    Gacuhi, R.A.

    1998-01-01

    The general objective of the Kenya country study on climate change was to make a contribution to the global efforts of finding a solution to climatic change problem.The specific objectives were, Contribute to the development of national capacity to handle climatic changes issues, Assess the country's contribution to the atmospheric concentration of greenhouse gases (GHG's), Evaluate the vulnerability of various sensitive sectors to impacts of climate change, Generate information useful to the development of an overall national policy on climate change, Lay a foundation for development of national action plans and national communication required under the UNFCCC

  5. simulating rice yields under climate change scenarios using

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    The effects of climate change on rice production and yield cannot be overlooked in finding measures to increase production and yield. The CERES-Rice (Ver. 4.0) model was calibrated and evaluated for use in simulating rice yields under different climate change scenarios in Ghana using data from the Anum Valley ...

  6. Salt Marshes as Potential Indicatore of Global Climate Change

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairens, David; Jung, S.H.

    2011-01-01

    Coastal scientists postulate that salt marshes are significantly affected by dynamics of global climate. However, few studies have explicitly proposed a perspective that regards salt marshes as potential indicators of climate change. This review article evaluates the possibility of salt marshes...... as indicators of global climate change, focusing upon three major aspects: sedimentary, vegetation, and biogeochemical dynamics. The previous literature concerned with these aspects commonly argues that the primary impact of climate change on salt marshes occurs via sea-level variations, because hydrologic...... fluctuations regulate the frequency, duration, and depth of over-marsh flooding events. Sedimentary, floristic, and biogeochemical dynamics prove to be significantly influenced by sealevel changes regardless of climate zones, and hence, undoubtedly possess a potential for indicating climate signatures. However...

  7. Climate change and precipitation: Detecting changes Climate change and precipitation: Detecting changes

    International Nuclear Information System (INIS)

    Van Boxel, John H

    2001-01-01

    Precipitation is one of the most, if not the most important climate parameter In most studies on climate change the emphasis is on temperature and sea level rise. Often too little attention is given to precipitation. For a large part this is due to the large spatial en temporal variability of precipitation, which makes the detection of changes difficult. This paper describes methods to detect changes in precipitation. In order to arrive at statistically significant changes one must use long time series and spatial averages containing the information from several stations. In the Netherlands the average yearly precipitation increased by 11% during the 20th century .In the temperate latitudes on the Northern Hemisphere (40-60QN) the average increase was about 7% over the 20th century and the globally averaged precipitation increased by about 3%. During the 20th century 38% of the land surface of the earth became wetter, 42% experienced little change (less than 5% change) and 20% became dryer. More important than the average precipitation is the occurrence of extremes. In the Netherlands there is a tendency to more extreme precipitations, whereas the occurrence of relatively dry months has not changed. Also in many other countries increases in heavy precipitation events are observed. All climate models predict a further increase of mean global precipitation if the carbon dioxide concentration doubles. Nevertheless some areas get dryer, others have little change and consequently there are also areas where the increase is much more than the global average. On a regional scale however there are large differences between the models. Climate models do not yet provide adequate information on changes in extreme precipitations

  8. Climate Change and Algal Blooms =

    Science.gov (United States)

    Lin, Shengpan

    Algal blooms are new emerging hazards that have had important social impacts in recent years. However, it was not very clear whether future climate change causing warming waters and stronger storm events would exacerbate the algal bloom problem. The goal of this dissertation was to evaluate the sensitivity of algal biomass to climate change in the continental United States. Long-term large-scale observations of algal biomass in inland lakes are challenging, but are necessary to relate climate change to algal blooms. To get observations at this scale, this dissertation applied machine-learning algorithms including boosted regression trees (BRT) in remote sensing of chlorophyll-a with Landsat TM/ETM+. The results show that the BRT algorithm improved model accuracy by 15%, compared to traditional linear regression. The remote sensing model explained 46% of the total variance of the ground-measured chlorophyll- a in the first National Lake Assessment conducted by the US Environmental Protection Agency. That accuracy was ecologically meaningful to study climate change impacts on algal blooms. Moreover, the BRT algorithm for chlorophyll- a would not have systematic bias that is introduced by sediments and colored dissolved organic matter, both of which might change concurrently with climate change and algal blooms. This dissertation shows that the existing atmospheric corrections for Landsat TM/ETM+ imagery might not be good enough to improve the remote sensing of chlorophyll-a in inland lakes. After deriving long-term algal biomass estimates from Landsat TM/ETM+, time series analysis was used to study the relations of climate change and algal biomass in four Missouri reservoirs. The results show that neither temperature nor precipitation was the only factor that controlled temporal variation of algal biomass. Different reservoirs, even different zones within the same reservoir, responded differently to temperature and precipitation changes. These findings were further

  9. Climate Change, Politics and Religion: Australian Churchgoers’ Beliefs about Climate Change

    Directory of Open Access Journals (Sweden)

    Miriam Pepper

    2016-05-01

    Full Text Available A growing literature has sought to understand the relationships between religion, politics and views about climate change and climate change policy in the United States. However, little comparative research has been conducted in other countries. This study draws on data from the 2011 Australian National Church Life Survey to examine the beliefs of Australian churchgoers from some 20 denominations about climate change—whether or not it is real and whether it is caused by humans—and political factors that explain variation in these beliefs. Pentecostals, Baptist and Churches of Christ churchgoers, and people from the smallest Protestant denominations were less likely than other churchgoers to believe in anthropogenic climate change, and voting and hierarchical and individualistic views about society predicted beliefs. There was some evidence that these views function differently in relation to climate change beliefs depending on churchgoers’ degree of opposition to gay rights. These findings are of interest not only for the sake of international comparisons, but also in a context where Australia plays a role in international climate change politics that is disproportionate to its small population.

  10. Climate change and Public health: vulnerability, impacts, and adaptation

    Science.gov (United States)

    Guzzone, F.; Setegn, S.

    2013-12-01

    on public health and identify appropriate adaptation strategies. Several studies have evaluated the impact of climate change on health, which have included evaluating the current associations between the recent changes in climate, and the evidence base analysis of current, as well as projecting the future impacts of climate change on health. This study will document the use of building an integrated approach for sustainable management of climate, environmental, health surveillance and epidemiological data that will support the assessment of vulnerability, impact and adaption to climate change.

  11. A Framework for Benefit-Cost Analysis of Adaptation to Climate Change and Climate Variability

    International Nuclear Information System (INIS)

    Leary, N.A.

    1999-01-01

    The potential damages of climate change and climate variability are dependent upon the responses or adaptations that people make to their changing environment. By adapting the management of resources, the mix and methods of producing goods and services, choices of leisure activities, and other behavior, people can lessen the damages that would otherwise result. A framework for assessing the benefits and costs of adaptation to both climate change and climate variability is described in the paper. The framework is also suitable for evaluating the economic welfare effects of climate change, allowing for autonomous adaptation by private agents. The paper also briefly addresses complications introduced by uncertainty regarding the benefits of adaptation and irreversibility of investments in adaptation. When investment costs are irreversible and there is uncertainty about benefits, the usual net present value criterion for evaluating the investment gives the wrong decision. If delaying an adaptation project is possible, and if delay will permit learning about future benefits of adaptation, it may be preferable to delay the project even if the expected net present value is positive. Implications of this result for adaptation policy are discussed in the paper. 11 refs

  12. Climate changes your business

    International Nuclear Information System (INIS)

    2008-01-01

    Businesses face much bigger climate change costs than they realise. That is the conclusion of Climate Changes Your Business. The climate change risks that companies should be paying more attention to are physical risks, regulatory risks as well as risk to reputation and the emerging risk of litigation, says the report. It argues that the risks associated with climate change tend to be underestimated

  13. Assessing climate change impacts on water balance in the Mount

    Indian Academy of Sciences (India)

    A statistical downscaling known for producing station-scale climate information from GCM output was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water balance assessment of climate change ...

  14. Calibration, uncertainties and use of soybean crop simulation models for evaluating strategies to mitigate the effects of climate change in Southern Brazil

    OpenAIRE

    Rafael Battisti

    2016-01-01

    The water deficit is a major factor responsible for the soybean yield gap in Southern Brazil and tends to increase under climate change. Crop models are a tool that differ on levels of complexity and performance and can be used to evaluate strategies to manage crops, according the climate conditions. Based on that, the aims of this study were: to assess five soybean crop models and their ensemble; to evaluate the sensitivity of these models to systematic changes in climate; to assess soybean ...

  15. Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions.

    Science.gov (United States)

    Briner, Simon; Elkin, Ché; Huber, Robert

    2013-11-15

    Provisioning of ecosystem services (ES) in mountainous regions is predicted to be influenced by i) the direct biophysical impacts of climate change, ii) climate mediated land use change, and iii) socioeconomic driven changes in land use. The relative importance and the spatial distribution of these factors on forest and agricultural derived ES, however, is unclear, making the implementation of ES management schemes difficult. Using an integrated economic-ecological modeling framework, we evaluated the impact of these driving forces on the provision of forest and agricultural ES in a mountain region of southern Switzerland. Results imply that forest ES will be strongly influenced by the direct impact of climate change, but that changes in land use will have a comparatively small impact. The simulation of direct impacts of climate change affects forest ES at all elevations, while land use changes can only be found at high elevations. In contrast, changes to agricultural ES were found to be primarily due to shifts in economic conditions that alter land use and land management. The direct influence of climate change on agriculture is only predicted to be substantial at high elevations, while socioeconomic driven shifts in land use are projected to affect agricultural ES at all elevations. Our simulation results suggest that policy schemes designed to mitigate the negative impact of climate change on forests should focus on suitable adaptive management plans, accelerating adaptation processes for currently forested areas. To maintain provision of agricultural ES policy needs to focus on economic conditions rather than on supporting adaptation to new climate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Construction of climate change scenarios from transient climate change experiments for the IPCC impacts assessment

    International Nuclear Information System (INIS)

    Viner, D.; Hulme, M.; Raper, S.C.B.; Jones, P.D.

    1994-01-01

    This paper outlines the different methods which may be used for the construction of regional climate change scenarios. The main focus of the paper is the construction of global climate change scenarios from climate change experiments carried out using General Circulation Models (GCMS) An introduction to some GCM climate change experiments highlights the difference between model types and experiments (e.g., equilibrium or transient). The latest generation of climate change experiments has been performed using fully coupled ocean-atmosphere GCMS. These allow transient simulations of climate change to be performed with respect to a given greenhouse gas forcing scenario. There are, however, a number of problems with these simulations which pose difficulties for the construction of climate change scenarios for use in climate change impacts assessment. The characteristics of the transient climate change experiments which pose difficulties for the construction of climate change scenarios are discussed. Three examples of these problems are: different climate change experiments use different greenhouse gas concentration scenarios; the 'cold-start' problem makes it difficult to link future projections of climate change to a given calendar year; a drift of the climate is noticeable in the control simulations. In order to construct climate change scenarios for impacts assessment a method has therefore to be employed which addresses these problems. At present the climate modeling and climate change impacts communities are somewhat polarized in their approach to spatial scales. Current GCMs model the climate at resolutions larger than 2.5 x 3.75 degree, while the majority of impacts assessment studies are undertaken at scales below 50km (or 0.5 degree). This paper concludes by addressing the problems in bringing together these two different modeling perspectives by presenting a number of regional climate change scenarios. 35 refs., 8 figs., 2 tabs

  17. To widen the action tools against the climatic change by domestic projects. Evaluation report

    International Nuclear Information System (INIS)

    Arnaud, E.; Dominicis, A. de; Leguet, B.; Leseur, A.; Perthuis, Ch. de

    2005-11-01

    In the framework of the climatic change fight, each country aims to implement tools of emissions reduction. In France, the european system of CO 2 quotas exchange, applied on the more emitted installations, covers less than 30% of the national carbon emissions. The other 70% are free of taxes. The 'climate mission' realized an evaluation of the emission reduction in the case of a new policy aiming to develop domestic projects of emission control. This report presents the study and its conclusions: the domestic projects, the possibilities of these projects in the transportation agriculture and forests and building sectors, the implementing conditions

  18. Evaluation of probable maximum snow accumulation: Development of a methodology for climate change studies

    Science.gov (United States)

    Klein, Iris M.; Rousseau, Alain N.; Frigon, Anne; Freudiger, Daphné; Gagnon, Patrick

    2016-06-01

    Probable maximum snow accumulation (PMSA) is one of the key variables used to estimate the spring probable maximum flood (PMF). A robust methodology for evaluating the PMSA is imperative so the ensuing spring PMF is a reasonable estimation. This is of particular importance in times of climate change (CC) since it is known that solid precipitation in Nordic landscapes will in all likelihood change over the next century. In this paper, a PMSA methodology based on simulated data from regional climate models is developed. Moisture maximization represents the core concept of the proposed methodology; precipitable water being the key variable. Results of stationarity tests indicate that CC will affect the monthly maximum precipitable water and, thus, the ensuing ratio to maximize important snowfall events. Therefore, a non-stationary approach is used to describe the monthly maximum precipitable water. Outputs from three simulations produced by the Canadian Regional Climate Model were used to give first estimates of potential PMSA changes for southern Quebec, Canada. A sensitivity analysis of the computed PMSA was performed with respect to the number of time-steps used (so-called snowstorm duration) and the threshold for a snowstorm to be maximized or not. The developed methodology is robust and a powerful tool to estimate the relative change of the PMSA. Absolute results are in the same order of magnitude as those obtained with the traditional method and observed data; but are also found to depend strongly on the climate projection used and show spatial variability.

  19. Evaluating the sources of potential migrant species: implications under climate change

    Science.gov (United States)

    Ines Ibanez; James S. Clark; Michael C. Dietze

    2008-01-01

    As changes in climate become more apparent, ecologists face the challenge of predicting species responses to the new conditions. Most forecasts are based on climate envelopes (CE), correlative approaches that project future distributions on the basis of the current climate often assuming some dispersal lag. One major caveat with this approach is that it ignores the...

  20. Approaching to a model for evaluating of the vulnerability of the vegetable covers of Colombia in a possible climatic change using SIG

    International Nuclear Information System (INIS)

    Gutierrez Rey, Hilda Jeanneth

    2002-01-01

    This technical paper summarizes the gradual thesis Approach to a model for evaluating of the vulnerability of the vegetation covers in Colombia in face of a possible global climate change (Gutierrez, 2001). It present the methodologies and results of the construction of a prospective model using GIS (Geographical Information Systems) for evaluating the vulnerability of the vegetation covers of Colombia, in face of a possible global climate chance. The analysis of the vulnerability of the possible impact on vegetation and for identification of its vulnerability as a consequence of climate change was carried out by application of the method of direct function establishing, recommended by IPCC, Intergovernmental Panel on Climate Change (1999). An analysis of the displacement of Life Zones of Holdridge was made under a scenario with duplication of the CO 2 concentration in the atmosphere and identified vegetation affected by displacement. These results were adjusted to the bioclimatic and biogeographic conditions of the country. The Model of Vulnerability of the Vegetation Covers of Colombia was developed in Spatial Modeler Language, of Arc/lnfo and Erdas Imagine. This model is able to generate the spatial distribution of the climatic variables and Bioclimatic Units, under past, present and future climate scenarios, as well as to evaluate the degree of vulnerability of the vegetation covers of Colombia in face a climatic change. For the improvement of the model of Vulnerability, specially the intermediate products, it was subdivided in three Phases or Subsystems: In the First Phase or Present Subsystem, the sub models generate a Bioclimatic Zonification of the Life Zones of Holdridge, under a currently scenario of Climatic Line Base 1961-1990. In the Second Phase or Subsystem of Climate Change, the sub models develop a Bioclimatic Zonification of the Life Zones of Holdridge, under a future climate Scenario with duplication of the contained of the CO 2 in the atmosphere

  1. Northern peatlands in global climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, R.; Laine, J.; Vasander, H. [eds.] [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    Northern peatlands are important in regulating the global climate. While sequestering carbon dioxide, these peatlands release ca. 24-39 Tg methane annually to the atmosphere. This is 5-20 % of the annual anthropogenic methane emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level draw-down after land-use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Subsequent emissions of methane would decrease, whereas emissions of carbon dioxide and nitrous oxide would increase. Within the Finnish Research Programme on Climate Change (SILMU), the research project `Carbon Balance of Peatlands and Climate Change` (SUOSILMU) has been under progress since 1990. It is a co-operative research project, with research groups from the Universities of Helsinki and Joensuu, the Finnish Forest Research Institute, the National Public Health Institute and the Finnish Environment Agency. The research consortium of this project organised a workshop entitled `Northern Peatlands in Global Climatic Change - Hyytiaelae Revisited` October 8-12, 1995. The main objective of the workshop was to review the state of the art of the carbon cycling research in natural and managed peatlands. The role of peatlands in the greenhouse effect, their response and feedback to the predicted climate change, and the consequences of land-use changes were assessed, and the future research needs were evaluated. The latest information on the role of peatlands in the atmospheric change was given in 50 posters and 4 key lectures. Results of SUOSILMU projects were demonstrated during a 1-day field excursion to one of the intensive study sites, Lakkasuo near Hyytiaelae

  2. At a global scale, do climate change threatened species also face a greater number of non-climatic threats?

    Science.gov (United States)

    Fortini, Lucas B.; Dye, Kaipo

    2017-01-01

    For many species the threats of climate change occur in a context of multiple existing threats. Given the current focus of global change ecology in identifying and understanding species vulnerable to climate change, we performed a global analysis to characterize the multi-threat context for species threatened by climate change. Utilizing 30,053 species from the International Union for Conservation of Nature’s (IUCN) Red List of Threatened Species, we sought to evaluate if species threatened by climate change are more likely threatened by a greater number of non-climatic threats than species not threatened by climate change. Our results show that species threatened by climate change are generally impacted by 21% more non-climatic threats than species not threatened by climate change. Across all species, this pattern is related to IUCN risk status, where endangered species threatened by climate change face 33% more non-climatic threats than endangered species not threatened by climate change. With the clear challenges of assessing current and projected impacts of climate change on species and ecosystems, research often requires reductionist approaches that result in downplaying this multi-threat context. This cautionary note bears relevance beyond climate change threatened species as we also

  3. Impacts of climate variability and future climate change on harmful algal blooms and human health

    Science.gov (United States)

    Moore, Stephanie K; Trainer, Vera L; Mantua, Nathan J; Parker, Micaela S; Laws, Edward A; Backer, Lorraine C; Fleming, Lora E

    2008-01-01

    Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae. PMID:19025675

  4. Impacts of climate variability and future climate change on harmful algal blooms and human health.

    Science.gov (United States)

    Moore, Stephanie K; Trainer, Vera L; Mantua, Nathan J; Parker, Micaela S; Laws, Edward A; Backer, Lorraine C; Fleming, Lora E

    2008-11-07

    Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae.

  5. Climate change and high-resolution whole-building numerical modelling

    NARCIS (Netherlands)

    Blocken, B.J.E.; Briggen, P.M.; Schellen, H.L.; Hensen, J.L.M.

    2010-01-01

    This paper briefly discusses the need of high-resolution whole-building numerical modelling in the context of climate change. High-resolution whole-building numerical modelling can be used for detailed analysis of the potential consequences of climate change on buildings and to evaluate remedial

  6. Potential impacts of climate change and variability on groundwater ...

    African Journals Online (AJOL)

    Potential impacts of climate change and variability on groundwater resources in Nigeria. ... African Journal of Environmental Science and Technology ... of climate change induced groundwater impacts due to largely multi-scale local and regional heterogeneity, there is need to evaluate groundwater resources, quality and ...

  7. Hydrospatial Analysis of Inundation Patterns for a Restored Floodplain to Evaluate Potential Climate Change Impacts

    Science.gov (United States)

    Whipple, A. A.; Viers, J. H.

    2017-12-01

    Interaction between rivers and their floodplains create dynamic physical conditions supporting freshwater ecosystems. The natural flood regimes to which native species are adapted are often profoundly altered by interacting factors including water management, land use change, and climate change. Reintroducing dynamic flood regimes through enhancing river-floodplain connectivity is a common floodplain restoration objective. However, it is often difficult to determine how various actions (or a combination of actions), such as levee setbacks or environmental flow releases, will impact physical conditions relevant to ecological functions, such as depth, velocity, duration, timing, and connectivity, and how these might change in the future. Understanding changes to these dynamic conditions requires improved quantification of spatiotemporal variability of floodplain inundation patterns, in essence a floodplain's hydrospatial regime. The research presented here develops this concept by quantifying the hydrospatial regime of a floodplain along the lower Cosumnes River, California, both before and after levee-removal restoration, and uses this to evaluate how effects of restoration may be altered with changing hydrology due to climate change. This approach uses spatial analysis in R to summarize metrics based on estimated spatially-distributed depth and velocity, derived from 2D hydrodynamic modeling output for pre- and post-restoration conditions. This is performed for an historical and two future periods of daily flow of the largely unregulated Cosumnes River, driven by a subset of global climate models. We show that responses to restoration vary across the hydrospatial domain and further consider these differences in floodplain dynamics in relation to hydroclimatic change. This research refines expectations for restoration and overall provides readily applied methods to inform planning and management of floodplain ecosystems within the context of climate change

  8. Our changing climate

    International Nuclear Information System (INIS)

    Kandel, R.

    1990-01-01

    The author presents an overview of the changing climate. Attention is focused on the following: meteorology; weather; climate anomalies; changes in atmospheric composition and global warming; ozone; mathematical models; and climate and politics. In its conclusion, it asks researchers to stay out of a game in which, ultimately, neither science nor politics stands to gain anything

  9. Climatic Changes and Evaluation of Their Effects on Agriculture in Asian Monsoon Region- A project of GRENE-ei programs in Japan

    Science.gov (United States)

    Mizoguchi, M.; Matsumoto, J.; Takahashi, H. G.; Tanaka, K.; Kuwagata, T.

    2015-12-01

    It is important to predict climate change correctly in regional scale and to build adaptation measures and mitigation measures in the Asian monsoon region where more than 60 % of the world's population are living. The reliability of climate change prediction model is evaluated by the reproducibility of past climate in general. However, because there are many developing countries in the Asian monsoon region, adequate documentations of past climate which are needed to evaluate the climate reproducibility have not been prepared. In addition, at present it is difficult to get information on wide-area agricultural meteorological data which affect the growth of agricultural crops when considering the impact on agriculture of climate. Therefore, we have started a research project entitled "Climatic changes and evaluation of their effects on agriculture in Asian monsoon region (CAAM)" under the research framework of the Green Network of Excellence (GRENE) for the Japanese fiscal years from 2011 to 2015 supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT). This project aims to improve the reliability of future climate prediction and to develop the information platform which will be useful to design adaptation and mitigation strategies in agriculture against the predicted climatic changes in Asian monsoon regions. What is GRENE?Based on the new growth strategy which was approved by the Cabinet of Japan in June 2010, Green Network of Excellence program (GRENE) has started under MEXT from FY 2011. The objectives of this program are that the domestic leading universities work together strategically and promote a comprehensive human resource development and research of the highest level in the world while sharing research resources and research goals. In the field of environmental information, it is required that universities and research institutions, which are working on issues such as adaptation to climate change, cooperate to

  10. Climate change and skin disease.

    Science.gov (United States)

    Lundgren, Ashley D

    2018-04-01

    Despite commanding essentially universal scientific consensus, climate change remains a divisive and poorly understood topic in the United States. Familiarity with this subject is not just for climate scientists. The impact of climate change on human morbidity and mortality may be considerable; thus, physicians also should be knowledgeable in this realm. Climate change science can seem opaque and inferential, creating fertile ground for political polemics and undoubtedly contributing to confusion among the general public. This puts physicians in a pivotal position to facilitate a practical understanding of climate change in the public sphere by discussing changes in disease patterns and their possible relationship to a changing climate. This article provides a background on climate change for dermatologists and highlights how climate change may impact the management of skin disease across the United States.

  11. Incorporating Student Activities into Climate Change Education

    Science.gov (United States)

    Steele, H.; Kelly, K.; Klein, D.; Cadavid, A. C.

    2013-12-01

    atmospheric circulation with applications of the Lorenz model, explored the land-sea breeze problem with the Dynamics and Thermodynamics Circulation Model (DTDM), and developed simple radiative transfer models. Class projects explored the effects of varying the content of CO2 and CH4 in the atmosphere, as well as the properties of paleoclimates in atmospheric simulations using EdGCM. Initial assessment of student knowledge, attitudes, and behaviors associated with these activities, particularly about climate change, was measured. Pre- and post-course surveys provided student perspectives about the courses and their learning about remote sensing and climate change concepts. Student performance on the tutorials and course projects evaluated students' ability to learn and apply their knowledge about climate change and skills with remote sensing to assigned problems or proposed projects of their choice. Survey and performance data illustrated that the exercises were successful in meeting their intended learning objectives as well as opportunities for further refinement and expansion.

  12. Exploring the health context : a multimethod approach to climate change adaptation evaluation

    OpenAIRE

    Böckmann, Melanie

    2015-01-01

    Climate change is a major environmental Public Health issue of the 21st century. Extreme heat and cold, weather events such as flooding or storms, disease vector distribution changes, and increased pathogen loads in water might all put human health at risk. To protect health from inevitable changes, climate change adaptation strategies are implemented at local, national, and global level. Are these measures effectively reducing health risks? This dissertation explores multiple methods to eval...

  13. Predicted Changes in Climatic Niche and Climate Refugia of Conservation Priority Salamander Species in the Northeastern United States

    Directory of Open Access Journals (Sweden)

    William B. Sutton

    2014-12-01

    Full Text Available Global climate change represents one of the most extensive and pervasive threats to wildlife populations. Amphibians, specifically salamanders, are particularly susceptible to the effects of changing climates due to their restrictive physiological requirements and low vagility; however, little is known about which landscapes and species are vulnerable to climate change. Our study objectives included, (1 evaluating species-specific predictions (based on 2050 climate projections and vulnerabilities to climate change and (2 using collective species responses to identify areas of climate refugia for conservation priority salamanders in the northeastern United States. All evaluated salamander species were projected to lose a portion of their climatic niche. Averaged projected losses ranged from 3%–100% for individual species, with the Cow Knob Salamander (Plethodon punctatus, Cheat Mountain Salamander (Plethodon nettingi, Shenandoah Mountain Salamander (Plethodon virginia, Mabee’s Salamander (Ambystoma mabeei, and Streamside Salamander (Ambystoma barbouri predicted to lose at least 97% of their landscape-scale climatic niche. The Western Allegheny Plateau was predicted to lose the greatest salamander climate refugia richness (i.e., number of species with a climatically-suitable niche in a landscape patch, whereas the Central Appalachians provided refugia for the greatest number of species during current and projected climate scenarios. Our results can be used to identify species and landscapes that are likely to be further affected by climate change and potentially resilient habitats that will provide consistent climatic conditions in the face of environmental change.

  14. Quality Climate Change Professional Development Translates into Quality Climate Change Education (Invited)

    Science.gov (United States)

    Holzer, M. A.

    2013-12-01

    Perhaps one of the reasons we have so many climate change deniers in the United States is that to them climate change is not occurring. This is a valid claim about climate change deniers considering that the effects of climate change in the mid-latitudes are quite subtle as compared to those found in low-latitude and high-latitude regions. A mid-latitude classroom teacher is saddled with the challenge of enlightening students about our changing climate and empowering students to assist in making necessary lifestyle changes, all the while the students don't understand the urgency in doing so. Quality climate change data and resources from the Polar Regions and low latitudes, as well as connections to researchers from these regions help to bridge the understanding of our changing climate from the extreme latitudes to the mid-latitudes. Connecting science teachers with data, resources, and researchers is one way of ensuring our mid-latitude students understand the urgency in taking appropriate actions to adapt, mitigate, and show resilience. This presentation will highlight a few of the many impacts of an authentic research experience for teachers that not only provides teachers with data, resources, and researchers, but changes the way a science teacher teaches where the methods they use mirror the methods used by scientists. National projects like PolarTREC connect educators with the science of climate change as well as the reality of impacts of climate change. For example, research expeditions in the Arctic and in Antarctica connect teachers with the content and practices of climate change science preparing them to replicate their experiences with their students. A PolarTREC experience does not end with the close of the expedition. Teachers continue their connections with the program through their educator network, the integration of PolarTREC resources into their curriculums, and communications with their principal investigators either virtually or with school

  15. Trade and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Tamiotti, L.; Teh, R.; Kulacoglu, V. (World Trade Organization (WTO), Geneva (Switzerland)); Olhoff, A.; Simmons, B.; Abaza, H. (United Nations Environment Programme (UNEP) (Denmark))

    2009-06-15

    The Report aims to improve understanding about the linkages between trade and climate change. It shows that trade intersects with climate change in a multitude of ways. For example, governments may introduce a variety of policies, such as regulatory measures and economic incentives, to address climate change. This complex web of measures may have an impact on international trade and the multilateral trading system. The Report begins with a summary of the current state of scientific knowledge on climate change and on the options available for responding to the challenge of climate change. The scientific review is followed by a part on the economic aspects of the link between trade and climate change, and these two parts set the context for the subsequent parts of the Report, which looks at the policies introduced at both the international and national level to address climate change. The part on international policy responses to climate change describes multilateral efforts to reduce greenhouse gas emissions and to adapt to the effects of climate change, and also discusses the role of the current trade and environment negotiations in promoting trade in technologies that aim to mitigate climate change. The final part of the Report gives an overview of a range of national policies and measures that have been used in a number of countries to reduce greenhouse gas emissions and to increase energy efficiency. It presents key features in the design and implementation of these policies, in order to draw a clearer picture of their overall effect and potential impact on environmental protection, sustainable development and trade. It also gives, where appropriate, an overview of the WTO rules that may be relevant to such measures. (author)

  16. The climate is changing

    International Nuclear Information System (INIS)

    Alfsen, Knut H.

    2001-01-01

    The Intergovernmental Panel on Climate Change (IPCC) has finalized its Third Assessment Report. Among its conclusions is that we must expect continued changes in our climate, despite our efforts to reduce greenhouse gas emissions. Planning for and adapting to climate change are therefore necessary. As a starting point, CICERO has written this short note on expected impacts in Norway. The main conclusions are that (1) Adaptation to climate change is necessary (2) Substantial impacts are expected for several important sectors in Norway (3) The local and central authorities should now consider and start planning for adaptation measures. (4) There is still a need for more knowledge about potential impacts of climate change in Norway. (author)

  17. Greenhouse-gas-induced climatic change: A critical appraisal of simulations and observations

    International Nuclear Information System (INIS)

    Schlesinger, M.E.

    1990-01-01

    This book is the culmination of a Workshop on Greenhouse-Gas-Induced Climatic Change: A Critical Appraisal of Simulations and Observations which was held at the University of Massachusetts, Amherst, during 8--12 May 1989. The objectives of the Workshop were to: (1) present and evaluate the current status of climate model simulations of greenhouse-gas-induced changes of both the equilibrium and nonequilibrium (transient) climates; (2) present and assess the current status of the observations of global and regional climates from the beginning of the industrial revolution to the present, circa 1850 to 1989; (3) present reconstructions of climatic change during the last millennium to determine the ''natural variability'' of climate on the intra-century time scale; (4) critically evaluate whether or not the climate has changes from circa 1850 to 1989; and (5) compare the observations with the model simulations to ascertain whether a greenhouse-gas-induced climatic change has occurred and, if not, to estimate when in the future such a climatic change will likely become detectable against the background of the ''natural variability.''

  18. Mid-term evaluation of the Climate Change Action Fund : Public education and outreach (PEO) Block

    International Nuclear Information System (INIS)

    2001-11-01

    In February 1998, the Government of Canada established the Climate Change Action Fund (CCAF) to assist Canada in meeting its commitments under the Kyoto Protocol for the reduction of greenhouse gas emissions. The CCAF managed a budget of 150 million dollars over three years, and the Public Education and Outreach (PEO) Block was allocated 30 million dollars of that total for its operations. Its mandate was to increase public awareness and understanding on the topic of climate change, as well as providing the required information to effect reductions in the emissions of greenhouse gases and adapt to climate change. An evaluation into this program was conducted, and it covered the period September 2000 to January 20, 2001. To date, 152 projects have been approved, which represents an investment of approximately 17.5 million dollars. Approximately 6 million dollars have been spent on the awareness component, while government communication activities used approximately 3.1 million dollars. Staff and project management fees in support of the program account for the remaining funds. This report addressed the performance to date in meeting the objectives, and also included recommendations for improved effectiveness. PEO files and records, a report entitled Interim review of the Climate Change Action Fund PEO Program, interviews with Departmental representatives, and interviews with external stakeholder groups formed the basis for the findings and recommendations. It was determined that future direction represents the most critical issue facing the PEO block. 1 tab

  19. Climate Change Portal - Home Page

    Science.gov (United States)

    Science Partnerships Contact Us Take Action Climate change is already having significant and widespread of climate change. Business Businesses throughout California are taking action to address climate climate change impacts and informing policies to reduce greenhouse gases, adapt to changing environments

  20. Climate change and forest diseases

    Science.gov (United States)

    R.N. Sturrock; Susan Frankel; A. V. Brown; Paul Hennon; J. T. Kliejunas; K. J. Lewis; J. J. Worrall; A. J. Woods

    2011-01-01

    As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interactions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and...

  1. Climatic change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-02-15

    In spite of man's remarkable advances in technology, ultimately he is still dependent on the Earth's climatic system for food and fresh water. The recent occurrences in certain regions of the world of climatic extremes such as excessive rain or droughts and unseasonably high or low temperatures have led to speculation that a major climatic change is occurring on a global scale. Some point to the recent drop in temperatures in the northern hemisphere as an indication that the Earth is entering a new ice age. Others see a global warming trend that may be due to a build-up of carbon dioxide in the atmosphere. An authoritative report on the subject has been prepared by a World Meteorological Organization Panel of Experts on Climatic Change. Excerpts from the report are given. (author)

  2. Climatic change

    International Nuclear Information System (INIS)

    1977-01-01

    In spite of man's remarkable advances in technology, ultimately he is still dependent on the Earth's climatic system for food and fresh water. The recent occurrences in certain regions of the world of climatic extremes such as excessive rain or droughts and unseasonably high or low temperatures have led to speculation that a major climatic change is occurring on a global scale. Some point to the recent drop in temperatures in the northern hemisphere as an indication that the Earth is entering a new ice age. Others see a global warming trend that may be due to a build-up of carbon dioxide in the atmosphere. An authoritative report on the subject has been prepared by a World Meteorological Organization Panel of Experts on Climatic Change. Excerpts from the report are given. (author)

  3. Predicting vulnerabilities of North American shorebirds to climate change.

    Directory of Open Access Journals (Sweden)

    Hector Galbraith

    Full Text Available Despite an increase in conservation efforts for shorebirds, there are widespread declines of many species of North American shorebirds. We wanted to know whether these declines would be exacerbated by climate change, and whether relatively secure species might become at-risk species. Virtually all of the shorebird species breeding in the USA and Canada are migratory, which means climate change could affect extinction risk via changes on the breeding, wintering, and/or migratory refueling grounds, and that ecological synchronicities could be disrupted at multiple sites. To predict the effects of climate change on shorebird extinction risks, we created a categorical risk model complementary to that used by Partners-in-Flight and the U.S. Shorebird Conservation Plan. The model is based on anticipated changes in breeding, migration, and wintering habitat, degree of dependence on ecological synchronicities, migration distance, and degree of specialization on breeding, migration, or wintering habitat. We evaluated 49 species, and for 3 species we evaluated 2 distinct populations each, and found that 47 (90% taxa are predicted to experience an increase in risk of extinction. No species was reclassified into a lower-risk category, although 6 species had at least one risk factor decrease in association with climate change. The number of species that changed risk categories in our assessment is sensitive to how much of an effect of climate change is required to cause the shift, but even at its least sensitive, 20 species were at the highest risk category for extinction. Based on our results it appears that shorebirds are likely to be highly vulnerable to climate change. Finally, we discuss both how our approach can be integrated with existing risk assessments and potential future directions for predicting change in extinction risk due to climate change.

  4. Managing climate change refugia for climate adaptation

    Science.gov (United States)

    Toni Lyn Morelli; Christopher Daly; Solomon Z. Dobrowski; Deanna M. Dulen; Joseph L. Ebersole; Stephen T. Jackson; Jessica D. Lundquist; Connie Millar; Sean P. Maher; William B. Monahan; Koren R. Nydick; Kelly T. Redmond; Sarah C. Sawyer; Sarah Stock; Steven R. Beissinger

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that...

  5. Vulnerability of roads and associated structures to the effects of climate change

    International Nuclear Information System (INIS)

    Arisz, H.; Therrien, M.; Burrell, B.C.; LeBlanc, M.M.

    2009-01-01

    The vulnerability of roads and associated structures in the City of Greater Sudbury to the effects of climate change was evaluated using the Public Infrastructure Vulnerability Committee (PIEVC) Engineering Protocol for Climate Change Infrastructure Assessment. Study objectives were to evaluate the vulnerability of road-related infrastructure in Greater Sudbury to climate change, and to identify potential impediments to the application of the protocol in other municipalities. Based on the experience gained during this study, recommendations were provided with respect to the vulnerabilities of roads and associated structures to the predicted effects of climate change and the performance of vulnerability assessments. (author)

  6. Climate variability and vulnerability to climate change: a review

    Science.gov (United States)

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  7. Green cities, smart people and climate change

    Science.gov (United States)

    Mansouri Kouhestani, F.; Byrne, J. M.; Hazendonk, P.; Brown, M. B.; Harrison, T.

    2014-12-01

    Climate change will require substantial changes to urban environments. Cities are huge sources of greenhouse gases. Further, cities will suffer tremendously under climate change due to heat stresses, urban flooding, energy and water supply and demand changes, transportation problems, resource supply and demand and a host of other trials and tribulations. Cities that evolve most quickly and efficiently to deal with climate change will likely take advantage of the changes to create enjoyable, healthy and safer living spaces for families and communities. Technology will provide much of the capability to both mitigate and adapt our cities BUT education and coordination of citizen and community lifestyle likely offers equal opportunities to make our cities more sustainable and more enjoyable places to live. This work is the first phase of a major project evaluating urban mitigation and adaptation policies, programs and technologies. All options are considered, from changes in engineering, planning and management; and including a range of citizen and population-based lifestyle practices.

  8. National program of fight against the climate change. 2. annual evaluation and forecasting

    International Nuclear Information System (INIS)

    2002-01-01

    This conference discussed the actions realized in the framework of the National Plan of Fight against the Climatic Change (PNLCC). The first part presents the problem, the evaluation of the PNLCC application and the control tools. the second part is devoted to the transport sector and the second to the buildings and the electric power demand control. The last part deals with the prospective and the challenges of the PNLCC. (A.L.B.)

  9. Climate Change and Malaria

    OpenAIRE

    Goklany;, I. M.

    2004-01-01

    Sir David A. King's claim that "Climate change is the most severe problem that we are facing today—more serious even than the threat of terrorism" "Climate change is the most severe problem that we are facing today—more serious even than the threat of terrorism" ("Climate change

  10. Climate change and Finland. Summary of the Finnish research programme on climate change (SILMU)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Anthropogenic impacts on the Earth`s atmosphere are expected to cause significant global climate changes during the next few decades. These changes will have many consequences both in nature and on human activities. In order to investigate the implications of such changes in Finland, a six-year multidisciplinary national research programme on climate and global change, the Finnish Research Programme on Climate Change (SILMU), was initiated in 1990. The key research areas were: (1) quantification of the greenhouse effect and the magnitude of anticipated climate changes, (2) assessment of the effects of changing climate on terrestrial and aquatic ecosystems, and (3) development of mitigation and adaptation strategies

  11. Climate change and Finland. Summary of the Finnish research programme on climate change (SILMU)

    International Nuclear Information System (INIS)

    1996-01-01

    Anthropogenic impacts on the Earth's atmosphere are expected to cause significant global climate changes during the next few decades. These changes will have many consequences both in nature and on human activities. In order to investigate the implications of such changes in Finland, a six-year multidisciplinary national research programme on climate and global change, the Finnish Research Programme on Climate Change (SILMU), was initiated in 1990. The key research areas were: (1) quantification of the greenhouse effect and the magnitude of anticipated climate changes, (2) assessment of the effects of changing climate on terrestrial and aquatic ecosystems, and (3) development of mitigation and adaptation strategies

  12. Chatham Islands Climate Change

    International Nuclear Information System (INIS)

    Mullan, B.; Salinger, J.; Thompson, C.; Ramsay, D.; Wild, M.

    2005-06-01

    This brief report provides guidance on climate change specific to the Chatham Islands, to complement the information recently produced for local government by the Ministry for the Environment in 'Climate Change Effects and Impacts Assessment: A guidance manual for Local Government in New Zealand' and 'Coastal Hazards and Climate Change: A guidance manual for Local Government in New Zealand'. These previous reports contain a lot of generic information on climate change, and how to assess associated risks, that is relevant to the Chatham Islands Council.

  13. Evaluating the accuracy of climate change pattern emulation for low warming targets

    Science.gov (United States)

    Tebaldi, Claudia; Knutti, Reto

    2018-05-01

    Global climate policy is increasingly debating the value of very low warming targets, yet not many experiments conducted with global climate models in their fully coupled versions are currently available to help inform studies of the corresponding impacts. This raises the question whether a map of warming or precipitation change in a world 1.5 °C warmer than preindustrial can be emulated from existing simulations that reach higher warming targets, or whether entirely new simulations are required. Here we show that also for this type of low warming in strong mitigation scenarios, climate change signals are quite linear as a function of global temperature. Therefore, emulation techniques amounting to linear rescaling on the basis of global temperature change ratios (like simple pattern scaling) provide a viable way forward. The errors introduced are small relative to the spread in the forced response to a given scenario that we can assess from a multi-model ensemble. They are also small relative to the noise introduced into the estimates of the forced response by internal variability within a single model, which we can assess from either control simulations or initial condition ensembles. Challenges arise when scaling inadvertently reduces the inter-model spread or suppresses the internal variability, both important sources of uncertainty for impact assessment, or when the scenarios have very different characteristics in the composition of the forcings. Taking advantage of an available suite of coupled model simulations under low-warming and intermediate scenarios, we evaluate the accuracy of these emulation techniques and show that they are unlikely to represent a substantial contribution to the total uncertainty.

  14. Climate change adaptation in regulated water utilities

    Science.gov (United States)

    Vicuna, S.; Melo, O.; Harou, J. J.; Characklis, G. W.; Ricalde, I.

    2017-12-01

    Concern about climate change impacts on water supply systems has grown in recent years. However, there are still few examples of pro-active interventions (e.g. infrastructure investment or policy changes) meant to address plausible future changes. Deep uncertainty associated with climate impacts, future demands, and regulatory constraints might explain why utility planning in a range of contexts doesn't explicitly consider climate change scenarios and potential adaptive responses. Given the importance of water supplies for economic development and the cost and longevity of many water infrastructure investments, large urban water supply systems could suffer from lack of pro-active climate change adaptation. Water utilities need to balance the potential for high regret stranded assets on the one side, with insufficient supplies leading to potentially severe socio-economic, political and environmental failures on the other, and need to deal with a range of interests and constraints. This work presents initial findings from a project looking at how cities in Chile, the US and the UK are developing regulatory frameworks that incorporate utility planning under uncertainty. Considering for example the city of Santiago, Chile, recent studies have shown that although high scarcity cost scenarios are plausible, pre-emptive investment to guard from possible water supply failures is still remote and not accommodated by current planning practice. A first goal of the project is to compare and contrast regulatory approaches to utility risks considering climate change adaptation measures. Subsequently we plan to develop and propose a custom approach for the city of Santiago based on lessons learned from other contexts. The methodological approach combines institutional assessment of water supply regulatory frameworks with simulation-based decision-making under uncertainty approaches. Here we present initial work comparing the regulatory frameworks in Chile, UK and USA evaluating

  15. Forecasting Brassica rapa: Merging climate models with genotype specific process models for evaluation whole species response to climate change.

    Science.gov (United States)

    Pleban, J. R.; Mackay, D. S.; Ewers, B. E.; Weinig, C.; Guadagno, C. L.

    2016-12-01

    Human society has modified agriculture management practices and utilized a variety of breeding approaches to adapt to changing environments. Presently a dual pronged challenge has emerged as environmental change is occurring more rapidly while the demand of population growth on food supply is rising. Knowledge of how current agricultural practices will respond to these challenges can be informed through crafted prognostic modeling approaches. Amongst the uncertainties associated with forecasting agricultural production in a changing environment is evaluation of the responses across the existing genotypic diversity of crop species. Mechanistic models of plant productivity provide a means of genotype level parameterization allowing for a prognostic evaluation of varietal performance under changing climate. Brassica rapa represents an excellent species for this type of investigation because of its wide cultivation as well as large morphological and physiological diversity. We incorporated genotypic parameterization of B. rapa genotypes based on unique CO2 assimilation strategies, vulnerabilities to cavitation, and root to leaf area relationships into the TREES model. Three climate drivers, following the "business-as-usual" greenhouse gas emissions scenario (RCP 8.5) from Coupled Model Intercomparison Project, Phase 5 (CMIP5) were considered: temperature (T) along with associated changes in vapor pressure deficit (VPD), increasing CO2, as well as alternatives in irrigation regime across a temporal scale of present day to 2100. Genotypic responses to these drivers were evaluated using net primary productivity (NPP) and percent loss hydraulic conductance (PLC) as a measure of tolerance for a particular watering regime. Genotypic responses to T were witnessed as water demand driven by increases in VPD at 2050 and 2100 drove some genotypes to greater PLC and in a subset of these saw periodic decreases in NPP during a growing season. Genotypes able to withstand the greater

  16. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    and the number and types of interviews conducted are, for example, not always clear. Information on crucial aspects of qualitative research like researcher positionality, social positions of key informants, the use of field assistants, language issues and post-fieldwork treatment of data is also lacking in many...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork......There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...

  17. Evaluating social and ecological vulnerability of coral reef fisheries to climate change.

    Directory of Open Access Journals (Sweden)

    Joshua E Cinner

    Full Text Available There is an increasing need to evaluate the links between the social and ecological dimensions of human vulnerability to climate change. We use an empirical case study of 12 coastal communities and associated coral reefs in Kenya to assess and compare five key ecological and social components of the vulnerability of coastal social-ecological systems to temperature induced coral mortality [specifically: 1 environmental exposure; 2 ecological sensitivity; 3 ecological recovery potential; 4 social sensitivity; and 5 social adaptive capacity]. We examined whether ecological components of vulnerability varied between government operated no-take marine reserves, community-based reserves, and openly fished areas. Overall, fished sites were marginally more vulnerable than community-based and government marine reserves. Social sensitivity was indicated by the occupational composition of each community, including the importance of fishing relative to other occupations, as well as the susceptibility of different fishing gears to the effects of coral bleaching on target fish species. Key components of social adaptive capacity varied considerably between the communities. Together, these results show that different communities have relative strengths and weaknesses in terms of social-ecological vulnerability to climate change.

  18. Assessing reservoir operations risk under climate change

    Science.gov (United States)

    Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T.

    2009-01-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios. Copyright 2009 by the American Geophysical Union.

  19. Climate engineering and the risk of rapid climate change

    International Nuclear Information System (INIS)

    Ross, Andrew; Damon Matthews, H

    2009-01-01

    Recent research has highlighted risks associated with the use of climate engineering as a method of stabilizing global temperatures, including the possibility of rapid climate warming in the case of abrupt removal of engineered radiative forcing. In this study, we have used a simple climate model to estimate the likely range of temperature changes associated with implementation and removal of climate engineering. In the absence of climate engineering, maximum annual rates of warming ranged from 0.015 to 0.07 deg. C/year, depending on the model's climate sensitivity. Climate engineering resulted in much higher rates of warming, with the temperature change in the year following the removal of climate engineering ranging from 0.13 to 0.76 deg. C. High rates of temperature change were sustained for two decades following the removal of climate engineering; rates of change of 0.5 (0.3,0.1) deg. C/decade were exceeded over a 20 year period with 15% (75%, 100%) likelihood. Many ecosystems could be negatively affected by these rates of temperature change; our results suggest that climate engineering in the absence of deep emissions cuts could arguably constitute increased risk of dangerous anthropogenic interference in the climate system under the criteria laid out in the United Nations Framework Convention on Climate Change.

  20. The biological consequences of climate changes: An ecological and economic assessment

    International Nuclear Information System (INIS)

    Batie, S.S.; Shugart, H.H.

    1991-01-01

    The following subject areas are covered: (1) the level of climate change; (2) impacts of climate change on ecological systems (short-term (decadal), medium term (centenary), and long-term (millennial) effects); and (3) ecological consequences of climate change - evaluating the social costs (the problem of valuing consequences, intergenerational problem, and safe minimum standard strategies and policies)

  1. Uncertainty and Climate Change

    OpenAIRE

    Berliner, L. Mark

    2003-01-01

    Anthropogenic, or human-induced, climate change is a critical issue in science and in the affairs of humankind. Though the target of substantial research, the conclusions of climate change studies remain subject to numerous uncertainties. This article presents a very brief review of the basic arguments regarding anthropogenic climate change with particular emphasis on uncertainty.

  2. Climate@Home: Crowdsourcing Climate Change Research

    Science.gov (United States)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  3. The Effects of Climate Change on Cardiac Health.

    Science.gov (United States)

    De Blois, Jonathan; Kjellstrom, Tord; Agewall, Stefan; Ezekowitz, Justin A; Armstrong, Paul W; Atar, Dan

    2015-01-01

    The earth's climate is changing and increasing ambient heat levels are emerging in large areas of the world. An important cause of this change is the anthropogenic emission of greenhouse gases. Climate changes have a variety of negative effects on health, including cardiac health. People with pre-existing medical conditions such as cardiovascular disease (including heart failure), people carrying out physically demanding work and the elderly are particularly vulnerable. This review evaluates the evidence base for the cardiac health consequences of climate conditions, with particular reference to increasing heat exposure, and it also explores the potential further implications. © 2015 S. Karger AG, Basel.

  4. Knowledge Mapping for Climate Change and Food- and Waterborne Diseases

    Science.gov (United States)

    Semenza, Jan C.; Höuser, Christoph; Herbst, Susanne; Rechenburg, Andrea; Suk, Jonathan E.; Frechen, Tobias; Kistemann, Thomas

    2011-01-01

    The authors extracted from the PubMed and ScienceDirect bibliographic databases all articles published between 1998 and 2009 that were relevant to climate change and food- and waterborne diseases. Any material within each article that provided information about a relevant pathogen and its relationship with climate and climate change was summarized as a key fact, entered into a relational knowledge base, and tagged with the terminology (predefined terms) used in the field. These terms were organized, quantified, and mapped according to predefined hierarchical categories. For noncholera Vibrio sp. and Cryptosporidium sp., data on climatic and environmental influences (52% and 49% of the total number of key facts, respectively) pertained to specific weather phenomena (as opposed to climate change phenomena) and environmental determinants, whereas information on the potential effects of food-related determinants that might be related to climate or climate change were virtually absent. This proportion was lower for the other pathogens studied (Campylobacter sp. 40%, Salmonella sp. 27%, Norovirus 25%, Listeria sp. 8%), but they all displayed a distinct concentration of information on general food-and water-related determinants or effects, albeit with little detail. Almost no information was available concerning the potential effects of changes in climatic variables on the pathogens evaluated, such as changes in air or water temperature, precipitation, humidity, UV radiation, wind, cloud coverage, sunshine hours, or seasonality. Frequency profiles revealed an abundance of data on weather and food-specific determinants, but also exposed extensive data deficiencies, particularly with regard to the potential effects of climate change on the pathogens evaluated. A reprioritization of public health research is warranted to ensure that funding is dedicated to explicitly studying the effects of changes in climate variables on food- and waterborne diseases. PMID:24771989

  5. China's response to climate change issues after Paris Climate Change Conference

    Directory of Open Access Journals (Sweden)

    Yun Gao

    2016-12-01

    Full Text Available The Paris Climate Change Conference was successfully concluded with the Paris Agreement, which is a milestone for the world in collectively combating climate change. By participating in IPCC assessments and conducting national climate change assessments, China has been increasing its understanding of the issue. For the first time, China's top leader attended the Conference of the Parties, which indicates the acknowledgement of the rationality and necessity of climate change response by China at different levels. Moreover, this participation reflects China's commitment to including climate change in its ecology improvement program and pursuing a low-carbon society and economy. In order to ensure the success of the Paris Conference, China has contributed significantly. China's constructive participation in global governance shows that China is a responsible power. These principles such as the creation of a future of win–win cooperation with each country contributing to the best of its ability; a future of the rule of law, fairness, and justice; and a future of inclusiveness, mutual learning, and common development will serve as China's guidelines in its efforts to facilitate the implementation of the Paris Agreement and participate in the design of international systems.

  6. China's response to climate change issues after Paris Climate Change Conference

    Institute of Scientific and Technical Information of China (English)

    GAO Yun

    2016-01-01

    The Paris Climate Change Conference was successfully concluded with the Paris Agreement, which is a milestone for the world in collectively combating climate change. By participating in IPCC assessments and conducting national climate change assessments, China has been increasing its understanding of the issue. For the first time, China's top leader attended the Conference of the Parties, which indicates the acknowledgement of the rationality and necessity of climate change response by China at different levels. Moreover, this participation reflects China's commitment to including climate change in its ecology improvement program and pursuing a low-carbon society and economy. In order to ensure the success of the Paris Conference, China has contributed significantly. China's constructive participation in global governance shows that China is a responsible power. These principles such as the creation of a future of winewin cooperation with each country contributing to the best of its ability;a future of the rule of law, fairness, and justice;and a future of inclusiveness, mutual learning, and common development will serve as China's guidelines in its efforts to facilitate the implementation of the Paris Agreement and participate in the design of international systems.

  7. Evaluation of the potential impact of climate changes on groundwater recharge in Karkheh river basin (Khuzestan, Iran)

    Science.gov (United States)

    Abrishamchi, A.; Beigi, E.; Tajrishy, M.; Abrishamchi, A.

    2009-12-01

    Groundwater is an important natural resource for human beings and ecosystems, especially in arid semi arid regions with scarce water resources and high climate variability. This vital resource is under stress in terms of both quantity and quality due to increased demands as well as the drought. Wise groundwater management requires vulnerability and susceptibility assessment of groundwater resources to natural and anthropogenic phenomena such as drought, over-abstraction and quality deterioration both in the current climatic situation and in the context of climate change. There is enough evidence that climate change is expected to affect all elements of hydrologic cycle and have negative effects on water resources due to increased variability in extreme hydrologic events of droughts and floods. .In this study impact of climate change on groundwater recharge in Karkheh river basin in province of Khuzestan, Iran, has been investigated using a physically-based methodology that can be used for predicting both temporal and spatial varying groundwater recharge. To ensure the sustainability of the land and water resources developments, assessment of the possible impacts of climate change on hydrology and water resources in the basin is necessary. Quantifying groundwater recharge is essential for management of groundwater resources. Recharge was estimated by using the hydrological evaluation of landfill performance (HELP3) water budget model. Model’s parameters were calibrated and validated using observational data in 1990-1998. The impact of climate change was modeled using downscaled precipitation and temperature from runs of CGCM2 model. These data were derived from two scenarios, A2 and B2 for three periods: 2010-2039, 2040-2069, and 2070-2099. Results of the study indicate that due to global warming evapotranspiration rates will increase and winter-precipitation will fall, spring-snowmelt will shift toward winter and consequently it will cause recharge to increase

  8. Climate change and global crop yield: impacts, uncertainties and adaptation

    OpenAIRE

    Deryng, Delphine

    2014-01-01

    As global mean temperature continues to rise steadily, agricultural systems are projected to face unprecedented challenges to cope with climate change. However, understanding of climate change impacts on global crop yield, and of farmers’ adaptive capacity, remains incomplete as previous global assessments: (1) inadequately evaluated the role of extreme weather events; (2) focused on a small subset of the full range of climate change predictions; (3) overlooked uncertainties related to the ch...

  9. Assessing the impact of climatic change in cold regions

    Energy Technology Data Exchange (ETDEWEB)

    Parry, M L; Carter, T R [eds.

    1984-01-01

    The report describes the use of models to predict the consequences of global warming in particular (cold) regions. The workshop focused on two related issues: (a) the current sensitivity of ecosystems and farming systems to climatic variability, and (b) the range of impacts likely for certain changes of climate. This report addresses four broad themes: (1) the nature of the research problem; (2) methods of evaluating sensitivity to climatic variability; (3) methods of measuring the impact of climate change; and (4) how these methods might be refined. (ACR)

  10. Ecological risk Evaluation and Green Infrastructure planning for coping with global climate change, a case study of Shanghai, China

    Science.gov (United States)

    Li, Pengyao; Xiao, He; Li, Xiang; Hu, Wenhao; Gu, Shoubai; Yu, Zhenrong

    2018-01-01

    Coping with various ecological risks caused by extreme weather events of global climate change has become an important issue in regional planning, and storm water management for sustainable development. In this paper, taking Shanghai, China as a case study, four potential ecological risks were identified including flood disaster, sea-source disaster, urban heat island effect, and land subsidence. Based on spatial database, the spatial variation of these four ecological risks was evaluated, and the planning area was divided into seven responding regions with different green infrastructure strategy. The methodology developed in this study combining ecological risk evaluation with spatial regionalization planning could contribute to coping with global climate change.

  11. The effect of climate and climate change on ammonia emissions in Europe

    DEFF Research Database (Denmark)

    Skjøth, Carsten Ambelas; Geels, Camilla

    2013-01-01

    Abstract. We present here a dynamical method for modelling temporal and geographical variations in ammonia emissions in regional-scale chemistry transport models (CTMs) and chemistry climate models (CCMs). The method is based on the meteorology in the models and gridded inventories. We use...... to a standard Danish pig stable with 1000 animals and display how emissions from this source would vary geographically throughout central and northern Europe and from year to year. In view of future climate changes, we also evaluate the potential future changes in emission by including temperature projections....... Finally, the climate penalty on ammonia emissions should be taken into account at the policy level such as the NEC and IPPC directives....

  12. Climate of Tajikistan in connection with global climate change

    International Nuclear Information System (INIS)

    Khakimov, F.Kh.; Mirzokhonova, S.O.; Mirzokhonava, N.A.

    2006-01-01

    The analysis of global climate change for different periods and its consequences on regional climate is given. The chronology of climate change in Tajikistan in various regions and the reasons leading or resulted to these changes are changes are shown as well

  13. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  14. Use of a crop climate modeling system to evaluate climate change adaptation practices: maize yield in East Africa

    Science.gov (United States)

    Moore, N. J.; Alagarswamy, G.; Andresen, J.; Olson, J.; Thornton, P.

    2013-12-01

    Sub Saharan African agriculture is dominated by small-scale farmers and is heavily depend on growing season precipitation. Recent studies indicate that anthropogenic- induced warming including the Indian Ocean sea surface significantly influences precipitation in East Africa. East Africa is a useful region to assess impacts of future climate because of its large rainfall gradient, large percentage of its area being sub-humid or semi-arid, complex climatology and topography, varied soils, and because the population is particularly vulnerable to shifts in climate. Agronomic adaptation practices most commonly being considered include include a shift to short season, drought resistant maize varieties, better management practices especially fertilizer use, and irrigation. The effectiveness of these practices with climate change had not previously been tested. We used the WorldClim data set to represent current climate and compared the current and future climate scenarios of 4 Global Climate Models (GCMs) including a wetter (CCSM) and drier (HadCM3) GCM downscaled to 6 km resolution. The climate data was then used in the process-based CERES maize crop model to simulate the current period (representing 1960- 1990) and change in future maize production (from 2000 to 2050s). The effectiveness of agronomic practices, including short duration maize variety, fertilizer use and irrigation, to reduce projected future yield losses due to climate change were simulated. The GCMs project an increase in maximum temperature during growing season ranging from 1.5 to 3°C. Changes in precipitation were dependent on the GCM, with high variability across different topographies land cover types and elevations. Projected warmer temperatures in the future scenarios accelerated plant development and led to a reduction in growing season length and yields even where moisture was sufficient Maize yield changes in 2050 relative to the historical period were highly varied, in excess of +/- 500 kg

  15. The climatic change; Le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    For a long time the climatic change was the prerogative of the scientists. It is today a stake of the international policy. After a short presentation of a scientific evaluation of the situation, this document presents the policies of the fight against the climatic warming (Kyoto protocol, economical instruments), debates on the Usa attitude and the nuclear and general information on the topic (chronology, bibliography, glossary and Internet addresses references). (A.L.B.)

  16. IPCC. 4. climate assessment report, 2007; GIEC. 4. rapport d'evaluation du climat, 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The mission and challenge of the Intergovernmental panel on climate change (IPCC, GIEC in French) is to evaluate, synthesize and make available the sum of scientific and economic information of the complex domain of climatic change, and in addition to make the results of these works accepted by government representatives of 192 states. This document makes a brief synthesis in three parts of the 4. assessment report of the IPCC: 1 - physical scientific bases of climatic change: characteristic of the phenomenon, greenhouse gas emissions trend, already observed effects, forecasts of climate models; 2 - impacts, adaptations and vulnerabilities of climatic change: types of future impacts, impacts per sector, regional impacts, limits of ecosystems adaptation; 3 - mitigation of climatic changes: past emissions and future trends, possible mitigation actions and cost, possible political levers for emissions abatement. A last part introduces the French researchers involved in IPCC's works. (J.S.)

  17. Climate change research in Canada

    International Nuclear Information System (INIS)

    Dawson, K.

    1994-01-01

    The current consensus on climatic change in Canada is briefly summarized, noting the results of modelling of the effects of a doubling of atmospheric CO 2 , the nonuniformity of climate change across the country, the uncertainties in local responses to change, and the general agreement that 2-4 degrees of warming will occur for each doubling of CO 2 . Canadian government response includes programs aimed at reducing the uncertainties in the scientific understanding of climate change and in the socio-economic response to such change. Canadian climate change programs include participation in large-scale experiments on such topics as heat transport in the ocean, and sources and sinks of greenhouse gases; development of next-generation climate models; studying the social and economic effects of climate change in the Great Lakes Basin and Mackenzie River Basin; investigation of paleoclimates; and analysis of climate data for long-term trends

  18. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  19. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2014-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  20. Climate Change in China : Exploring Informants' Perceptions of Climate Change through a Qualitative Approach

    OpenAIRE

    Lipin, Tan

    2016-01-01

    Climate change is not only a natural phenomenon, but also a global social issue. Many studies try to explore the mechanisms behind climate change and the consequences of climate change, and provide information for developing the measures to mitigate or adapt to it. For example, the IPCC reviews and assesses climate-change-related scientific information produced worldwide, thus aiming to support decision-making from a scientific perspective. However, though various international and regional c...

  1. The social construct of climate and climate change

    International Nuclear Information System (INIS)

    Stehr, N.

    1994-01-01

    Different time scales of climate change and their differential perception in society are discussed. A historical examination of natural climate changes during the past millennium suggests that short-term changes, especially crucial changes, trigger a significant response in and by society. Short-term changes correspond to the 'time horizon of everyday life', that is, to a time scale from days and weeks to a few years. The anticipated anthropogenic climate changes, however, are expected to occur on a longer time scale. They require a response by society not on the basis of primary experience but on the basis of scientifically constructed scenarios and ways in which such information is represented in the modern media for example. Socio-economic impact research relies on concepts that are based on the premise of perfectly informed actors for the development of optimal adaptation strategies. In contrast to such a conception, we develop the concept of a 'social construct of climate' as decisive for the public perception of scientific knowledge about climate and for public policy on climate change. The concept is illustrated using a number of examples. (orig.)

  2. The neurobiology of climate change.

    Science.gov (United States)

    O'Donnell, Sean

    2018-01-06

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  3. The neurobiology of climate change

    Science.gov (United States)

    O'Donnell, Sean

    2018-02-01

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  4. Trees and Climate Change

    OpenAIRE

    Dettenmaier, Megan; Kuhns, Michael; Unger, Bethany; McAvoy, Darren

    2017-01-01

    This fact sheet describes the complex relationship between forests and climate change based on current research. It explains ways that trees can mitigate some of the risks associated with climate change. It details the impacts that forests are having on the changing climate and discuss specific ways that trees can be used to reduce or counter carbon emissions directly and indirectly.

  5. Evaluating the performance and utility of regional climate models

    DEFF Research Database (Denmark)

    Christensen, Jens H.; Carter, Timothy R.; Rummukainen, Markku

    2007-01-01

    This special issue of Climatic Change contains a series of research articles documenting co-ordinated work carried out within a 3-year European Union project 'Prediction of Regional scenarios and Uncertainties for Defining European Climate change risks and Effects' (PRUDENCE). The main objective...... of the PRUDENCE project was to provide high resolution climate change scenarios for Europe at the end of the twenty-first century by means of dynamical downscaling (regional climate modelling) of global climate simulations. The first part of the issue comprises seven overarching PRUDENCE papers on: (1) the design...... of the model simulations and analyses of climate model performance, (2 and 3) evaluation and intercomparison of simulated climate changes, (4 and 5) specialised analyses of impacts on water resources and on other sectors including agriculture, ecosystems, energy, and transport, (6) investigation of extreme...

  6. Climate change scenario data for the national parks

    International Nuclear Information System (INIS)

    Scott, D.

    2003-01-01

    This report presents daily scenario data obtained from monthly time scale climate change scenarios. The scenarios were applied to a stochastic weather generator, a statistical tool that simulates daily weather data for a range of climates at a particular location. The weather generators simulate weather that is statistically similar to observed climate data from climate stations. They can also generate daily scenario data for monthly time scales. This low cost computational method offers site-specific, multi-year climate change scenarios at a daily temporal level. The data is useful for situations that rely on climate thresholds such as forest fire season, drought conditions, or recreational season length. Data sets for temperature, precipitation and frost days was provided for 3 national parks for comparative evaluations. Daily scenarios for other parks can be derived using global climate model (GCM) output data through the Long Ashton Research Station (LARS) weather generator program. tabs

  7. Impacts of climate change performance on building in New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, M.; Jaques, R.; Isaacs, N.

    2001-07-01

    Climate change is expected to impact on many aspects of building performance, with much of the existing and future building stock likely to be affected. Potential impacts of climate change on buildings are identified, evaluated as to how serious they might be, and actions are considered to ensure that future building performance is not compromised. Climate change scenarios for New Zealand defined the scale of climate changes considered for building performance. For each climate variable, relevant aspects of building performance were examined to determine if there is likely to be a significant impact. Where significant impacts were indicated, they were studied in detail and quantified where possible. A risk-profiling tool was formulated to cover the risk/severity of the most significant climate change impacts, which include flooding, tropical cyclones and overheating. Adaptation strategies were developed for each climate change impact, with different responses appropriate for each impact. Mitigation of greenhouse emissions is also addressed. For those risks where delaying action has serious consequences, it may be appropriate to consider changes in building or zoning regulations to anticipate the future impacts of climate change. Some implications for future building performance, design, standards and regulation are discussed. (author)

  8. Climate Change Action Fund: public education and outreach. Change: think climate

    International Nuclear Information System (INIS)

    2001-05-01

    This illustrated booklet provides a glimpse of the many creative approaches being adopted by educators, community groups, industry associations and governments at all levels to inform Canadians about the causes and effects of climate change. It also provides suggestions about how each individual person can contribute to reduce greenhouse gas emissions through residential energy efficiency, by participating in ride-share programs, by planting trees and a myriad of other community action projects and public awareness campaigns. The booklet describes educational resources and training available to teachers, science presentations, climate change workshops, public awareness initiatives, community action on climate change, and sector-specific actions underway in the field of transportation and in improving energy efficiency in residential and large buildings. Descriptive summaries of the activities of organizations involved in climate change advocacy and promotion, and a list of contacts for individual projects also form part of the volume

  9. Views on alternative forums for effectively tackling climate change

    Science.gov (United States)

    Hjerpe, Mattias; Nasiritousi, Naghmeh

    2015-09-01

    This year (2015) marks the 21st formal anniversary of the United Nations Framework Convention on Climate Change (UNFCCC) and in December a new climate treaty is expected to be reached. Yet, the UNFCCC has not been successful in setting the world on a path to meet a target to prevent temperatures rising by more than 2 °C above pre-industrial levels. Meanwhile, other forums, such as the G20 and subnational forums, have increasingly become sites of climate change initiatives. There has, however, so far been no systematic evaluation of what forums climate change policymakers and practitioners perceive to be needed to effectively tackle climate change. Drawing on survey data from two recent UNFCCC Conference of the Parties (COP), we show that there exists an overall preference for state-led, multilateral forums. However, preferences starkly diverge between respondents from different geographical regions and no clear alternative to the UNFCCC emerges. Our results highlight difficulties in coordinating global climate policy in a highly fragmented governance landscape.

  10. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    Science.gov (United States)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be

  11. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth

  12. Assessing changes in failure probability of dams in a changing climate

    Science.gov (United States)

    Mallakpour, I.; AghaKouchak, A.; Moftakhari, H.; Ragno, E.

    2017-12-01

    Dams are crucial infrastructures and provide resilience against hydrometeorological extremes (e.g., droughts and floods). In 2017, California experienced series of flooding events terminating a 5-year drought, and leading to incidents such as structural failure of Oroville Dam's spillway. Because of large socioeconomic repercussions of such incidents, it is of paramount importance to evaluate dam failure risks associated with projected shifts in the streamflow regime. This becomes even more important as the current procedures for design of hydraulic structures (e.g., dams, bridges, spillways) are based on the so-called stationary assumption. Yet, changes in climate are anticipated to result in changes in statistics of river flow (e.g., more extreme floods) and possibly increasing the failure probability of already aging dams. Here, we examine changes in discharge under two representative concentration pathways (RCPs): RCP4.5 and RCP8.5. In this study, we used routed daily streamflow data from ten global climate models (GCMs) in order to investigate possible climate-induced changes in streamflow in northern California. Our results show that while the average flow does not show a significant change, extreme floods are projected to increase in the future. Using the extreme value theory, we estimate changes in the return periods of 50-year and 100-year floods in the current and future climates. Finally, we use the historical and future return periods to quantify changes in failure probability of dams in a warming climate.

  13. Changes in the Perceived Risk of Climate Change: Evidence from Sudden Climatic Events

    Science.gov (United States)

    Anttila-Hughes, J. K.

    2009-12-01

    In the course of the past two decades the threat of anthropogenic climate change has moved from a scientific concern of relative obscurity to become one of the largest environmental and public goods problems in history. During this period public understanding of the risk of climate change has shifted from negligible to quite large. In this paper I propose a means of quantifying this change by examining how sudden events supporting the theory of anthropogenic climate change have affected carbon intensive companies' stock prices. Using CAPM event study methodology for companies in several carbon-intensive industries, I find strong evidence that markets have been reacting to changes in the scientific evidence for climate change for some time. Specifically, the change in magnitude of response over time seems to indicate that investors believed climate change was a potentially serious risk to corporate profits as early as the mid 1990s. Moreover, market reaction dependence on event type indicates that investors are differentiating between different advances in the scientific knowledge. Announcements by NASA GISS that the previous year was a “record hot year” for the globe are associated with negative excess returns, while news of ice shelf collapses are associated with strong positive excess returns. These results imply that investors are aware of how different aspects of climate change will affect carbon intensive companies, specifically in terms of the link between warming in general and polar ice cover. This implies that policy choices based on observable public opinion have lagged actual private concern over climate change's potential threat.

  14. Chemistry and climate change

    International Nuclear Information System (INIS)

    Bernier, Jean-Claude; Brasseur, Guy; Brechet, Yves; Candel, Sebastien; Cazenave, Anny; Courtillot, Vincent; Fontecave, Marc; Garnier, Emmanuel; Goebel, Philippe; Legrand, Jack; Legrand, Michel; Le Treut, Herve; Mauberger, Pascal; Dinh-Audouin, Minh-Thu; Olivier, Daniele; Rigny, Paul; Bigot, Bernard

    2016-01-01

    In its first part, this collective publication addresses the decennial and centuries-old variations of climate: perspectives and implications of climate change for the 21. century, questions remaining about the understanding of climate change from its sources to its modelling, extreme climate variations and societies during the last millennium. The contributions of the second part outline how chemistry is a tool to study climate change: ice chemistry as an archive of our past environment, observations and predictions on sea level rise, relationship between atmosphere chemistry and climate. The third set of contributions discusses the transformation of the energy system for a cleaner atmosphere and the management of the climate risk: the chemical processing of CO_2, actions of chemical companies to support the struggle against climate change, relationship between barrel price and renewable energies, relationship between grid complexity and green energy. The last part outlines the role chemistry can have to be able to do without fossil fuels: chemistry in front of challenges of transformation of the energy system, the use of micro-algae, the use of hydrogen as a vector of energy transition

  15. At a global scale, do climate change threatened species also face a greater number of non-climatic threats?

    Directory of Open Access Journals (Sweden)

    Lucas B. Fortini

    2017-07-01

    Full Text Available For many species the threats of climate change occur in a context of multiple existing threats. Given the current focus of global change ecology in identifying and understanding species vulnerable to climate change, we performed a global analysis to characterize the multi-threat context for species threatened by climate change. Utilizing 30,053 species from the International Union for Conservation of Nature’s (IUCN Red List of Threatened Species, we sought to evaluate if species threatened by climate change are more likely threatened by a greater number of non-climatic threats than species not threatened by climate change. Our results show that species threatened by climate change are generally impacted by 21% more non-climatic threats than species not threatened by climate change. Across all species, this pattern is related to IUCN risk status, where endangered species threatened by climate change face 33% more non-climatic threats than endangered species not threatened by climate change. With the clear challenges of assessing current and projected impacts of climate change on species and ecosystems, research often requires reductionist approaches that result in downplaying this multi-threat context. This cautionary note bears relevance beyond climate change threatened species as we also found other (but not all anthropogenic threats are also similarly associated with more threats. Our findings serve as a reminder that ecological research should seriously consider these potential threat interactions, especially for species under elevated conservation concern.

  16. Climate changes and energy safety in Brazil

    International Nuclear Information System (INIS)

    Schaeffer, Roberto; Szklo, Alexandre Salem; Lucena, Andre Frossard Pereira de; Souza, Raquel Rodrigues de; Borba, Bruno Soares Moreira Cesar; Costa, Isabella Vaz Leal da; Pereira Junior, Amaro Olimpio; Cunha, Sergio Henrique F. da

    2008-01-01

    The possible effects of climate changes on the supply and demand of energy in the country are analyzed. The goal is to evaluate how the Brazilian energy system planned for 2030 would face the climate new conditions projected for the period of 2071 a 2100. The study also points out energy policy measurements which can be adopted to relief the negative impacts

  17. Climate change refugia as a tool for climate adaptation

    Science.gov (United States)

    Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...

  18. Climate change. Climate in Medieval time.

    Science.gov (United States)

    Bradley, Raymond S; Hughes, Malcolm K; Diaz, Henry F

    2003-10-17

    Many papers have referred to a "Medieval Warm Period." But how well defined is climate in this period, and was it as warm as or warmer than it is today? In their Perspective, Bradley et al. review the evidence and conclude that although the High Medieval (1100 to 1200 A.D.) was warmer than subsequent centuries, it was not warmer than the late 20th century. Moreover, the warmest Medieval temperatures were not synchronous around the globe. Large changes in precipitation patterns are a particular characteristic of "High Medieval" time. The underlying mechanisms for such changes must be elucidated further to inform the ongoing debate on natural climate variability and anthropogenic climate change.

  19. Papers of the CWRA climate change symposium : understanding climate change impacts on Manitoba's water resources

    International Nuclear Information System (INIS)

    2003-01-01

    This symposium provided an opportunity for discussions on climate change issues with particular reference to the impacts on Manitoba's water resources. The presentations addressed issues of importance to governments, scientists, academics, managers, consultants and the general public. Topics of discussion ranged from climate change impacts on water quality, wetlands, hydropower, fisheries and drought, to adaptation to climate change. Recent advances in global and regional climate modelling were highlighted along with paleo-environmental indicators of climate change. The objective was to provide a better understanding of the science of climate change. The conference featured 16 presentations of which 1 was indexed separately for inclusion in this database. refs., tabs., figs

  20. Climate change and human health

    DEFF Research Database (Denmark)

    Warren, John A; Berner, James E; Curtis, Tine

    2005-01-01

    In northern regions, climate change can include changes in precipitation magnitude and frequency, reductions in sea ice extent and thickness, and climate warming and cooling. These changes can increase the frequency and severity of storms, flooding, or erosion; other changes may include drought...... or degradation of permafrost. Climate change can result in damage to sanitation infrastructure resulting in the spread of disease or threatening a community's ability to maintain its economy, geographic location and cultural tradition, leading to mental stress. Through monitoring of some basic indicators...... communities can begin to develop a response to climate change. With this information, planners, engineers, health care professionals and governments can begin to develop approaches to address the challenges related to climate change....

  1. Economics and management of climate change: risks, mitigation and adaptation

    National Research Council Canada - National Science Library

    Antes, Ralf

    2008-01-01

    ... climate change poses risks to societies and companies, nor about adequate strategies to cope with these risks. Bringing together scholars from environmental economics, political science, and business management, this book describes, analyses and evaluates climate change risks and responses of societies and companies. The book c...

  2. Comparison and Evaluation of Global Scale Studies of Vulnerability and Risks to Climate Change

    Science.gov (United States)

    Muccione, Veruska; Allen, Simon K.; Huggel, Christian; Birkmann, Joern

    2015-04-01

    Understanding the present and future distribution of different climate change impacts and vulnerability to climate change is a central subject in the context of climate justice and international climate policy. Commonly, it is claimed that poor countries that contributed little to anthropogenic climate change are those most affected and most vulnerable to climate change. Such statements are backed by a number of global-scale vulnerability studies, which identified poor countries as most vulnerable. However, some studies have challenged this view, likewise highlighting the high vulnerability of richer countries. Overall, no consensus has been reached so far about which concept of vulnerability should be applied and what type of indicators should be considered. Furthermore, there is little agreement which specific countries are most vulnerable. This is a major concern in view of the need to inform international climate policy, all the more if such assessments should contribute to allocate climate adaptation funds as was invoked at some instances. We argue that next to the analysis of who is most vulnerable, it is also important to better understand and compare different vulnerability profiles assessed in present global studies. We perform a systematic literature review of global vulnerability assessments with the scope to highlight vulnerability distribution patterns. We then compare these distributions with global risk distributions in line with revised and adopted concepts by most recent IPCC reports. It emerges that improved differentiation of key drivers of risk and the understanding of different vulnerability profiles are important contributions, which can inform future adaptation policies at the regional and national level. This can change the perspective on, and basis for distributional issues in view of climate burden share, and therefore can have implications for UNFCCC financing instruments (e.g. Green Climate Fund). However, in order to better compare

  3. Climate Change Adaptation

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    The European Union ROADEX Project 1998 – 2012 was a trans-national roads co-operation aimed at developing ways for interactive and innovative management of low traffic volume roads throughout the cold climate regions of the Northern Periphery Area of Europe. Its goals were to facilitate co......-operation and research into the common problems of the Northern Periphery. This report is an output of the ROADEX “Implementing Accessibility” project (2009-2012). It gives a summary of the results of research into adaptation measures to combat climate change effects on low volume roads in the Northern Periphery...... causes changes in other climatic variables such as rainfall, humidity and wind speed that impact on the functioning of infrastructure such road networks. This paper discusses the climate changes predicted by the world’s meteorological organisations and considers how these may impact on the public...

  4. Assessing ExxonMobil's Climate Change Communications (1977-2014)

    Science.gov (United States)

    Supran, G.; Oreskes, N.

    2017-12-01

    Coal, oil, and gas companies have operated - and continue to operate - across myriad facets of the climate problem: scientific, political, and public. Efforts to engage the fossil fuel industry in addressing climate change should therefore be informed by this broad historical context. In this paper, we present an empirical document-by-document textual content analysis and comparison of 187 diverse climate change communications from ExxonMobil spanning 1977 to 2014, including peer-reviewed and non-peer-reviewed publications, internal company documents, and paid, editorial-style advertisements ("advertorials") in The New York Times. We examine whether these communications sent consistent messages about the state of climate science and its implications - specifically, we compare their positions on climate change as real, human-caused, serious, and solvable. In all four cases, we find that as documents become more publicly accessible, they increasingly communicate doubt. That is, ExxonMobil contributed to advancing climate science - by way of its scientists' academic publications - but promoted doubt about it in advertorials. Our findings shed light on one oil and gas company's multivalent strategic responses to climate change. They offer a cautionary tale against myopic engagement with the fossil fuel industry, demonstrating the importance of evaluating the full spectrum of a company's claims and activities.

  5. Analysis and detection of climate change

    International Nuclear Information System (INIS)

    Thejll, P.; Stendel, M.

    2001-01-01

    The authors first discuss the concepts 'climate' and 'climate change detection', outlining the difficulties of the latter in terms of the properties of the former. In more detail they then discuss the analysis and detection, carried out at the Danish Climate Centre, of anthropogenic climate change and the nonanthropogenic changes regarding anthropogenic climate change the emphasis is on the improvement of global and regional climate models, and the reconstruction of past climates regarding non-anthropogenic changes the authors describe two case studies of potential solar influence on climate. (LN)

  6. Yukon Government climate change action plan

    International Nuclear Information System (INIS)

    2009-02-01

    This Climate Change Action Plan described the measures that are being taken by the Yukon Government to adapt to, understand, and reduce contributions to climate change. The action plan is the result of input received from more than 100 individuals and organizations and provides clear direction for a strategy that will minimize the negative impacts of climate change and provide economic, social and other environmental benefits through climate change mitigation. The Yukon government has already taken many actions that respond to climate change, such as: developing the Yukon Cold Climate Innovation Centre; supporting the Northern Climate Exchange for public education and outreach; funding community recycling depots and other groups that reduce waste generation, promote public awareness and divert solid waste; and working with provincial and territorial counterparts to enhance national building standards. The main objectives of the climate change actions are to enhance knowledge and understanding of climate change; adapt to climate change; reduce greenhouse gas emissions; and lead Yukon action in response to climate change. tabs., figs.

  7. Climate change and nutrition: creating a climate for nutrition security.

    Science.gov (United States)

    Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A

    2013-12-01

    Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC

  8. Evaluating soil contamination risk impact on land vulnerability and climate change in east Azerbaijan, Iran

    Science.gov (United States)

    Shahbazi, Farzin; Anaya-Romero, Maria; de La Rosa, Diego

    2010-05-01

    Increased land degradation is one possible, and important, consequence of global climate change. As reported by IPCC, warming is likely to be well above the global mean in central Asia, the Tibetan Plateau and northern Asia, above the global mean in eastern Asia and South Asia, and similar to the global mean in Southeast and west Asia. Following these variation, agricultural face will abruptly be transformed in Iran which has been located in Middle East, west Asia. During 1951 to 2003 several stations in different climatological zones of Iran reported significant decrease in frost days due to rise in surface temperature. Also, some stations show a decreasing trend in precipitation (Anzali, Tabriz, Zahedan) while others (Mashad, Shiraz) have reported increasing trends. Based on land evaluation methodologies, a semi-empirical model named Pantanal within the new MicroLEIS DSS framework is used for assessing limitations for vulnerability of an area about 9000ha located in east Azerbaijan province of Iran is closed to Tabriz. The Pantanal approach is a land vulnerability evaluation model based on three kinds of information: I) monthly meteorological data; II) soil survey data; and III) agricultural management information. The major discussed agro contaminants were phosphorous, nitrogen, heavy metals and pesticides. Climate data such as mean average maximum and minimum temperatures for each month and total annual precipitation for last 20 consecutive years (1986-2006) were collected from Ahar meteorological station. The second scenario is based on projected changes in surface air temperature and precipitation for west Asia for the 2080s. In West Asia, climate change is likely to cause severe water stress in 21st century. In details, the mean temperature (°C) will increase 5.1, 5.6, 6.3 and 5.7 in winter, spring, summer and autumn respectively, in the future scenario at the study area. On the other hand, total precipitation will decrease 11 and 25 percent in winter and

  9. An overview of climate change

    International Nuclear Information System (INIS)

    Masson-Delmotte, V.; Paillard, D.

    2004-01-01

    We describe briefly here the main mechanisms and time scales involved in natural and anthropogenic climate variability, based on quantitative paleo-climatic reconstructions from natural archives and climate model simulations: the large glacial-interglacial cycles of the last million years (the Quaternary), lasting typically a hundred thousand years, triggered by changes in the solar radiation received by the Earth due to its position around the Sun; the century-long climatic changes occurring during last glacial period and triggered by recurrent iceberg discharges of the large northern hemisphere ice caps, massive freshwater flux to the north Atlantic, and changes in the ocean heat transport. We show the strong coupling between past climatic changes and global biogeochemical cycles, namely here atmospheric greenhouse gases. We also discuss the decadal climatic fluctuations during the last thousand years, showing an unprecedented warming attributed to the anthropogenic greenhouse gas emissions. We show the range of atmospheric greenhouse concentrations forecasted for the end of the 21. century and the climate model predictions for global temperature changes during the 21. century. We also discuss the possible climatic changes at longer time scales involving the possibility of north Atlantic heat transport collapse (possibility of abrupt climate change), and the duration of the current interglacial period. (author)

  10. Using Web GIS "Climate" for Adaptation to Climate Change

    Science.gov (United States)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  11. Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities.

    Science.gov (United States)

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-10-01

    Climate change is altering life at multiple scales, from genes to ecosystems. Predicting the vulnerability of populations to climate change is crucial to mitigate negative impacts. We suggest that regional patterns of spatial and temporal climatic variation scaled to the traits of an organism can predict where and why populations are most vulnerable to climate change. Specifically, historical climatic variation affects the sensitivity and response capacity of populations to climate change by shaping traits and the genetic variation in those traits. Present and future climatic variation can affect both climate change exposure and population responses. We provide seven predictions for how climatic variation might affect the vulnerability of populations to climate change and suggest key directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Incorporating climate change projections into riparian restoration planning and design

    Science.gov (United States)

    Perry, Laura G.; Reynolds, Lindsay V.; Beechie, Timothy J.; Collins, Mathias J.; Shafroth, Patrick B.

    2015-01-01

    Climate change and associated changes in streamflow may alter riparian habitats substantially in coming decades. Riparian restoration provides opportunities to respond proactively to projected climate change effects, increase riparian ecosystem resilience to climate change, and simultaneously address effects of both climate change and other human disturbances. However, climate change may alter which restoration methods are most effective and which restoration goals can be achieved. Incorporating climate change into riparian restoration planning and design is critical to long-term restoration of desired community composition and ecosystem services. In this review, we discuss and provide examples of how climate change might be incorporated into restoration planning at the key stages of assessing the project context, establishing restoration goals and design criteria, evaluating design alternatives, and monitoring restoration outcomes. Restoration planners have access to numerous tools to predict future climate, streamflow, and riparian ecology at restoration sites. Planners can use those predictions to assess which species or ecosystem services will be most vulnerable under future conditions, and which sites will be most suitable for restoration. To accommodate future climate and streamflow change, planners may need to adjust methods for planting, invasive species control, channel and floodplain reconstruction, and water management. Given the considerable uncertainty in future climate and streamflow projections, riparian ecological responses, and effects on restoration outcomes, planners will need to consider multiple potential future scenarios, implement a variety of restoration methods, design projects with flexibility to adjust to future conditions, and plan to respond adaptively to unexpected change.

  13. Assessment of climate change scenarios for Saudi Arabia using data from global climate models

    International Nuclear Information System (INIS)

    Husain, T.; Chowdhury, S.

    2009-01-01

    This study assesses available scientific information and data to predict changes in the climatic parameters in Saudi Arabia for understanding the impacts for mitigation and/or adaptation. Meteorological data from 26 synoptic stations were analyzed in this study. Various climatic change scenarios were reviewed and A 2 and B 2 climatic scenario families were selected. In order to assess long-term global impact, global climatic models were used to simulate changes in temperature, precipitation, relative humidity, solar radiation, and wind circulation. Using global climate model (GCM), monthly time series data was retrieved for Longitude 15 o N to 35 o N and 32.5 o E to 60 o E covering the Kingdom of Saudi Arabia from 1970 to 2100 for all grids. Taking averages of 1970 to 2003 as baseline, change in temperature, relative humidity and precipitation were estimated for the base period. A comparative evaluation was performed for predictive capabilities of these models for temperature, precipitation and relative humidity. Available meteorological data from 1970 to 2003 was used to determine trends. This paper discusses the inconsistency in these parameters for decision-making and recommends future studies by linking global climate models with a suitable regional climate modeling tool. (author)

  14. Engaging Key Stakeholders in Climate Change: A Community-Based Project for Youth-Led Participatory Climate Action

    Science.gov (United States)

    Trott, Carlie D.

    Few studies have examined how youth think about, and take action on climate change and far fewer have sought to facilitate their engagement using participatory methods. This dissertation evaluated the impacts of Science, Camera, Action! (SCA), a novel after-school program that combined climate change education with participatory action through photovoice. The specific aims of this study were to: (1) Evaluate the impacts of SCA on youth participants' climate change knowledge, attitudes, and behaviors; (2) Examine how SCA participation served to empower youth agency; and (3) Explore SCA's influence on youths' science engagement. Participants were 55 youths (ages 10 to 12) across three Boys and Girls Club sites in Northern Colorado. SCA's Science component used interactive activities to demonstrate the interrelationships between Earth's changing climate, ecosystems, and sustainable actions within communities. Photovoice, SCA's Camera component, was used to explore youths' climate change perspectives and to identify opportunities for their active engagement. Finally, SCA's Action component aimed to cultivate youth potential as agents of change in their families and communities through the development and implementation of youth-led action projects. Action projects included local policy advocacy, a tree-planting campaign, a photo gallery opening, development of a website, and the establishment of a Boys and Girls Club community garden. To evaluate SCA impacts, a combination of survey and focus group methods were used. Following the program, youth demonstrated increased knowledge of the scientific and social dimensions of the causes and consequences of climate change, as well as its solutions through human action. Though participants expressed a mix of positive (e.g., hope) and negative (e.g., sadness) emotions about climate change, they left the program with an increased sense of respect for nature, an enhanced sense of environmental responsibility, and a greater sense

  15. Introducing a New Concept Inventory on Climate Change to Support Undergraduate Instruction, Teacher Education, Education Research, and Project Evaluation (Invited)

    Science.gov (United States)

    Morrow, C. A.; Monsaas, J.; Katzenberger, J.; Afolabi, C. Y.

    2013-12-01

    The Concept Inventory on Climate Change (CICC) is a new research-based, multiple-choice 'test' that provides a powerful new assessment tool for undergraduate instructors, teacher educators, education researchers, and project evaluators. This presentation will describe the features and the development process of the (CICC). This includes insights about how the development team (co-authors) integrated and augmented their multi-disciplinary expertise. The CICC has been developed in the context of a popular introductory undergraduate weather and climate course at a southeastern research university (N~400-500 per semester). The CICC is not a test for a grade, but is intended to be a useful measure of how well a given teaching and learning experience has succeeded in improving understanding about climate change and related climate concepts. The science content addressed by the CICC is rooted in the national consensus document, 'Climate Literacy: The Essential Principles of Climate Science'. The CICC has been designed to support undergraduate instruction, and may be valuable in comparable contexts that teach about climate change. CICC results can help to inform decisions about the effectiveness of teaching strategies by 1) flagging conceptual issues (PRE-instruction); and 2) detecting conceptual change (POST-instruction). Specific CICC items and their answer choices are informed by the research literature on common misunderstandings about climate and climate change. Each CICC item is rated on a 3-tier scale of the cognitive sophistication the item is calling for, and there is a balance among all three tiers across the full instrument. The CICC development process has involved data-driven changes to successive versions. Data sources have included item statistics from the administration of progressively evolved versions of the CICC in the weather and climate course, group interviews with students, and expert review by climate scientists, educators, and project evaluators

  16. The Inuit and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Fenge, T.

    2001-12-31

    Marked climate change has been forecast for regions in high latitudes by global climate models presented by the Intergovernmental Panel on Climate Change. Observations and reports of significant alterations to the natural environment of Canada's north have been reported by Inuit and other indigenous peoples using their traditional ecological knowledge as a reference. Global climate change appears to be the cause for the changes noted. Many aspects of climate change need to be addressed, such as research, outreach, impacts, adaptations and international negotiations. Based on the strong partnership that had been developed between the Inuit and four federal agencies, three territorial governments and four indigenous people's organizations in support of the Northern Contaminants Program, Inuit are now seeking a partnership with the federal government to address the issues mentioned above concerning climate change. refs., 1 tab.

  17. Revisiting the concept of adaptation to climate change

    International Nuclear Information System (INIS)

    Juvanon Du Vachat, R.

    2013-01-01

    We clarify what is the adaptation to climate change, as compared to the mitigation (limitation of green-house gases). Adaptation will be necessary in any case in the future climate, even if we stop the emission of these gazes, because of the inertial response of the climatic machinery. We consider some socio-economic sectors like agriculture, viticulture, forestry, where the professionals are largely aware of the concepts of climate change. In these cases they have already defined their adaptation strategy. For other sectors, a classical method proposed by researchers is to study the results of impacts studies, using regional climate models. The limitation of these models is discussed. Then another method is proposed: to create a room for dialogue between researchers in charge of numerical simulations and some stake-holders or representative of the sector. This has been the method used successfully by the Canadian consortium OURANOS. Finally the role of extreme climate events is highlighted, because some reflection and financial evaluation is usually done after their occurrence, even if the link with climate change is not clearly demonstrated. The role of geographers and meteorologists is vigorously encouraged since they have some expertise for defining adaptation strategy. (author)

  18. Climate change research - Danish contributions

    International Nuclear Information System (INIS)

    Joergensen, A.M.K.; Fenger, J.; Halsnaes, K.

    2001-01-01

    The book describes a series of Danish scientific and technical studies. They broadly reflect the fields and disciplines embraced by assessments of the Intergovernmental Panel on Climate Change (IPCC), but with an emphasis on natural sciences (i.e. climate investigations and impact studies). After the general introduction, that presents the issue and gives a summary of the content of the book, the chapters are organised in four parts: 1. The Climate System and Climate Variations. 2. Climate Change Scenarios. 3. Impacts of Climate Change. 4. Policy Aspects. Each chapter is indexed separately. (LN)

  19. Climate engineering research : A precautionary response to climate change?

    NARCIS (Netherlands)

    Reynolds, J.L.; Fleurke, F.M.

    2013-01-01

    In the face of dire forecasts for anthropogenic climate change, climate engineering is increasingly discussed as a possible additional set of responses to reduce climate change’s threat. These proposals have been controversial, in part because they – like climate change itself – pose uncertain risks

  20. Combining satellite derived phenology with climate data for climate change impact assessment

    Science.gov (United States)

    Ivits, E.; Cherlet, M.; Tóth, G.; Sommer, S.; Mehl, W.; Vogt, J.; Micale, F.

    2012-05-01

    The projected influence of climate change on the timing and volume of phytomass production is expected to affect a number of ecosystem services. In order to develop coherent and locally effective adaptation and mitigation strategies, spatially explicit information on the observed changes is needed. Long-term variations of the vegetative growing season in different environmental zones of Europe for 1982-2006 have been derived by analysing time series of GIMMS NDVI data. The associations of phenologically homogenous spatial clusters to time series of temperature and precipitation data were evaluated. North-east Europe showed a trend to an earlier and longer growing season, particularly in the northern Baltic areas. Despite the earlier greening up large areas of Europe exhibited rather stable season length indicating the shift of the entire growing season to an earlier period. The northern Mediterranean displayed a growing season shift towards later dates while some agglomerations of earlier and shorter growing season were also seen. The correlation of phenological time series with climate data shows a cause-and-effect relationship over the semi natural areas consistent with results in literature. Managed ecosystems however appear to have heterogeneous change pattern with less or no correlation to climatic trends. Over these areas climatic trends seemed to overlap in a complex manner with more pronounced effects of local biophysical conditions and/or land management practices. Our results underline the importance of satellite derived phenological observations to explain local nonconformities to climatic trends for climate change impact assessment.

  1. Development of the virtual research environment for analysis, evaluation and prediction of global climate change impacts on the regional environment

    Science.gov (United States)

    Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander; Fazliev, Alexander

    2017-04-01

    Description and the first results of the Russian Science Foundation project "Virtual computational information environment for analysis, evaluation and prediction of the impacts of global climate change on the environment and climate of a selected region" is presented. The project is aimed at development of an Internet-accessible computation and information environment providing unskilled in numerical modelling and software design specialists, decision-makers and stakeholders with reliable and easy-used tools for in-depth statistical analysis of climatic characteristics, and instruments for detailed analysis, assessment and prediction of impacts of global climate change on the environment and climate of the targeted region. In the framework of the project, approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platform of the Russian leading institution involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research laboratory focused on interdisciplinary environmental studies. VRE under development will comprise best features and functionality of earlier developed information and computing system CLIMATE (http://climate.scert.ru/), which is widely used in Northern Eurasia environment studies. The Project includes several major directions of research listed below. 1. Preparation of geo-referenced data sets, describing the dynamics of the current and possible future climate and environmental changes in detail. 2. Improvement of methods of analysis of climate change. 3. Enhancing the functionality of the VRE prototype in order to create a convenient and reliable tool for the study of regional social, economic and political consequences of climate change. 4. Using the output of the first three tasks, compilation of the VRE prototype, its validation, preparation of applicable detailed description of

  2. Public perceptions of climate change and extreme weather events

    Science.gov (United States)

    Bruine de Bruin, W.; Dessai, S.; Morgan, G.; Taylor, A.; Wong-Parodi, G.

    2013-12-01

    as flooding and heavy rainfall than in ';hot' events such as heatwaves, (b) perceptions of these ';wet' weather events are more strongly associated with climate-change beliefs than were extremely ';hot' weather events, and (c) personal experiences with the negative consequences of specific extreme weather events are associated with stronger climate-change beliefs. Hence, which specific weather events people interpret as evidence of climate change may depend on their personal perceptions and experiences - which may not involve the temperature increases that are commonly the focus of climate-change communications. Overall, these findings suggest that climate experts should consider focusing their public communications on extreme weather events that are relevant to their intended audience. We will discuss strategies for designing and evaluating communications about climate change and adaptation.

  3. Communicating global climate change using simple indices: an update

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Frank; Karoly, David [University of Melbourne, School of Earth Sciences, Melbourne, VIC (Australia); Braganza, Karl [National Climate Centre, Bureau of Meteorology, Melbourne, VIC (Australia)

    2012-08-15

    Previous studies have shown that there are several indices of global-scale temperature variations, in addition to global-mean surface air temperature, that are useful for distinguishing natural internal climate variations from anthropogenic climate change. Appropriately defined, such indices have the ability to capture spatio-temporal information in a similar manner to optimal fingerprints of climate change. These indices include the contrast between the average temperatures over land and over oceans, the Northern Hemisphere meridional temperature gradient, the temperature contrast between the Northern and Southern Hemisphere and the magnitude of the annual cycle of average temperatures over land. They contain information independent of the global-mean temperature for internal climate variations at decadal time scales and represent different aspects of the climate system, yet they show common responses to anthropogenic climate change. In addition, the ratio of average temperature changes over land to those over the oceans should be nearly constant for transient climate change. Hence, supplementing analysis of global-mean surface temperature with analyses of these indices can strengthen results of attribution studies of causes of observed climate variations. In this study, we extend the previous work by including the last 10 years of observational data and the CMIP3 climate model simulations analysed for the IPCC AR4. We show that observed changes in these indices over the last 10 years provide increased evidence of an anthropogenic influence on climate. We also show the usefulness of these indices for evaluating the performance of climate models in simulating large-scale variability of surface temperature. (orig.)

  4. Climate change, conflict and health.

    Science.gov (United States)

    Bowles, Devin C; Butler, Colin D; Morisetti, Neil

    2015-10-01

    Future climate change is predicted to diminish essential natural resource availability in many regions and perhaps globally. The resulting scarcity of water, food and livelihoods could lead to increasingly desperate populations that challenge governments, enhancing the risk of intra- and interstate conflict. Defence establishments and some political scientists view climate change as a potential threat to peace. While the medical literature increasingly recognises climate change as a fundamental health risk, the dimension of climate change-associated conflict has so far received little attention, despite its profound health implications. Many analysts link climate change with a heightened risk of conflict via causal pathways which involve diminishing or changing resource availability. Plausible consequences include: increased frequency of civil conflict in developing countries; terrorism, asymmetric warfare, state failure; and major regional conflicts. The medical understanding of these threats is inadequate, given the scale of health implications. The medical and public health communities have often been reluctant to interpret conflict as a health issue. However, at times, medical workers have proven powerful and effective peace advocates, most notably with regard to nuclear disarmament. The public is more motivated to mitigate climate change when it is framed as a health issue. Improved medical understanding of the association between climate change and conflict could strengthen mitigation efforts and increase cooperation to cope with the climate change that is now inevitable. © The Royal Society of Medicine.

  5. Justice and Equity Implications of Climate Change Adaptation: A Theoretical Evaluation Framework

    Science.gov (United States)

    Boeckmann, Melanie; Zeeb, Hajo

    2016-01-01

    Climate change affects human health, and climate change adaptation aims to reduce these risks through infrastructural, behavioral, and technological measures. However, attributing direct human health effects to climate change adaptation is difficult, causing an ethical dilemma between the need for evidence of strategies and their precautionary implementation before such evidence has been generated. In the absence of conclusive evidence for individual adaptation strategies, alternative approaches to the measurement of adaptation effectiveness need to be developed. This article proposes a theoretical framework and a set of guiding questions to assess effects of adaptation strategies on seven domains of health determinants, including social, economic, infrastructure, institutional, community, environmental, and cultural determinants of health. Its focus on advancing gender equity and environmental justice concurrently with the implementation of health-related adaptation could serve as a template for policymakers and researchers. PMID:27618121

  6. Justice and Equity Implications of Climate Change Adaptation: A Theoretical Evaluation Framework

    Directory of Open Access Journals (Sweden)

    Melanie Boeckmann

    2016-09-01

    Full Text Available Climate change affects human health, and climate change adaptation aims to reduce these risks through infrastructural, behavioral, and technological measures. However, attributing direct human health effects to climate change adaptation is difficult, causing an ethical dilemma between the need for evidence of strategies and their precautionary implementation before such evidence has been generated. In the absence of conclusive evidence for individual adaptation strategies, alternative approaches to the measurement of adaptation effectiveness need to be developed. This article proposes a theoretical framework and a set of guiding questions to assess effects of adaptation strategies on seven domains of health determinants, including social, economic, infrastructure, institutional, community, environmental, and cultural determinants of health. Its focus on advancing gender equity and environmental justice concurrently with the implementation of health-related adaptation could serve as a template for policymakers and researchers.

  7. Assessing Climate Change Impacts on Global Hydropower

    Directory of Open Access Journals (Sweden)

    Aanund Killingtveit

    2012-02-01

    Full Text Available Currently, hydropower accounts for close to 16% of the world’s total power supply and is the world’s most dominant (86% source of renewable electrical energy. The key resource for hydropower generation is runoff, which is dependent on precipitation. The future global climate is uncertain and thus poses some risk for the hydropower generation sector. The crucial question and challenge then is what will be the impact of climate change on global hydropower generation and what are the resulting regional variations in hydropower generation potential? This paper is a study that aims to evaluate the changes in global hydropower generation resulting from predicted changes in climate. The study uses an ensemble of simulations of regional patterns of changes in runoff, computed from global circulation models (GCM simulations with 12 different models. Based on these runoff changes, hydropower generation is estimated by relating the runoff changes to hydropower generation potential through geographical information system (GIS, based on 2005 hydropower generation. Hydropower data obtained from EIA (energy generation, national sites, FAO (water resources and UNEP were used in the analysis. The countries/states were used as computational units to reduce the complexities of the analysis. The results indicate that there are large variations of changes (increases/decreases in hydropower generation across regions and even within regions. Globally, hydropower generation is predicted to change very little by the year 2050 for the hydropower system in operation today. This change amounts to an increase of less than 1% of the current (2005 generation level although it is necessary to carry out basin level detailed assessment for local impacts which may differ from the country based values. There are many regions where runoff and hydropower generation will increase due to increasing precipitation, but also many regions where there will be a decrease. Based on this

  8. Climate change adaptation benefits of potential conservation partnerships.

    Science.gov (United States)

    Monahan, William B; Theobald, David M

    2018-01-01

    We evaluate the world terrestrial network of protected areas (PAs) for its partnership potential in responding to climate change. That is, if a PA engaged in collaborative, trans-boundary management of species, by investing in conservation partnerships with neighboring areas, what climate change adaptation benefits might accrue? We consider core tenets of conservation biology related to protecting large areas with high environmental heterogeneity and low climate change velocity and ask how a series of biodiversity adaptation indicators change across spatial scales encompassing potential PA and non-PA partners. Less than 1% of current world terrestrial PAs equal or exceed the size of established and successful conservation partnerships. Partnering at this scale would increase the biodiversity adaptation indicators by factors up to two orders of magnitude, compared to a null model in which each PA is isolated. Most partnership area surrounding PAs is comprised of non-PAs (70%), indicating the importance of looking beyond the current network of PAs when promoting climate change adaptation. Given monumental challenges with PA-based species conservation in the face of climate change, partnerships provide a logical and achievable strategy for helping areas adapt. Our findings identify where strategic partnering efforts in highly vulnerable areas of the world may prove critical in safeguarding biodiversity.

  9. Climate change and the invasion of California by grasses

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Dangremond, Emily

    2012-01-01

    Over the next century, changes in the global climate are expected to have major consequences for plant communities, possibly including the exacerbation of species invasions. We evaluated this possibility in the grass flora of California, which is economically and ecologically important and heavily...... invaded. We used a novel, trait-based approach involving two components: identifying differences in trait composition between native and exotic components of the grass flora and evaluating contemporary trait–climate relationships across the state. The combination of trait–climate relationships and trait...

  10. Forestry Canada's perspectives on climate change

    International Nuclear Information System (INIS)

    Hall, J.P.; Carlson, L.W.

    1990-01-01

    The impacts of climatic change on Canada's forestry sector are discussed, in the context of major research priorities relating to forecasting climate, forecasting forest responses, monitoring changes, mitigating effects, and understanding the forest carbon balance. There are five major concerns that affect policy decisions: effects of climatic change on forests; adaptation to climate change; impacts of changing crops on forestry; changing forestry values in changing sociological settings; and international implications of the changing climate. A scientific program to respond to climate change issues is required, and should include the following concentrations of research effort. Planning requires projections of likely future climates, and efforts should concern relations between pre-historic climates and forest ecosystems and integrating data into predictive models. Forecasting of response of forests should include tree physiology, factors controlling reforestation, variations in forest trees, effects of pollutants, damage to forests, and forest decline

  11. Climate Change Indicators

    Science.gov (United States)

    Presents information, charts and graphs showing measured climate changes across 40 indicators related to greenhouse gases, weather and climate, oceans, snow and ice, heath and society, and ecosystems.

  12. When climate science became climate politics: British media representations of climate change in 1988.

    Science.gov (United States)

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  13. Climate change: biological and human aspects

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Cowie

    2007-07-15

    The textbook provides a broad review of past, present and likely future climate change from the viewpoints of biology, ecology and human ecology. Contents are: 1. An introduction to climate change; 2. Principal indicators of past climates; 3. Past climate change; 4. The Oligocene to the Quaternary: climate and biology; 5. Present climate and biological change; 6. Current warming and likely future impacts; 7. Human ecology of climate change; 8. Sustainability and policy; Appendix 1. Glossary and acronyms; Appendix 2. Bio-geological timescale; Appendix 3. Calculations of energy demand/supply, and orders of magnitude; Index. 69 figs.

  14. Our Changing Climate: A Brand New Way to Study Climate Science

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I.; Nugnes, K. A.; Mills, E. W.

    2014-12-01

    Earth's climate is inherently variable, but is currently changing at rates unprecedented in recent Earth history. Human activity plays a major role in this change and is projected to do so well into the future. This is the stance taken in Our Changing Climate, the brand new climate science ebook from the American Meteorological Society (AMS). Our Changing Climate investigates Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. Released in August 2014, Our Changing Climate is the result of a year's worth of intensive research and writing, incorporating the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the Third National Climate Assessment. To encourage additional exploration of climate science information, scientific literature, from which chapter content was derived, is cited at the conclusion of each chapter. In addition, Topic In Depth sections appear throughout each chapter and lead to more extensive information related to various topics. For example, a Topic In Depth in Chapter 11 describes the effect of climate extremes on ranching enterprises in Nebraska. Climate science is multi-disciplinary and therefore Our Changing Climate covers a breadth of topics. From understanding basic statistics and geospatial tools used to investigate Earth's climate system to examining the psychological and financial reasons behind climate change denial, the AMS believes that a multi-disciplinary approach is the most effective way to increase climate literacy. Our Changing Climate is part of the AMS Climate Studies course which is intended for undergraduate-level students. Other course materials include an eInvestigations Manual and access to the RealTime Climate Portal, both of which provide weekly activities corresponding to that week's chapter content. The RealTime Climate Portal also has links to climate data as well as societal interactions and climate policy

  15. Climate change and One Health.

    Science.gov (United States)

    Zinsstag, Jakob; Crump, Lisa; Schelling, Esther; Hattendorf, Jan; Maidane, Yahya Osman; Ali, Kadra Osman; Muhummed, Abdifatah; Umer, Abdurezak Adem; Aliyi, Ferzua; Nooh, Faisal; Abdikadir, Mohammed Ibrahim; Ali, Seid Mohammed; Hartinger, Stella; Mäusezahl, Daniel; de White, Monica Berger Gonzalez; Cordon-Rosales, Celia; Castillo, Danilo Alvarez; McCracken, John; Abakar, Fayiz; Cercamondi, Colin; Emmenegger, Sandro; Maier, Edith; Karanja, Simon; Bolon, Isabelle; de Castañeda, Rafael Ruiz; Bonfoh, Bassirou; Tschopp, Rea; Probst-Hensch, Nicole; Cissé, Guéladio

    2018-06-01

    The journal The Lancet recently published a countdown on health and climate change. Attention was focused solely on humans. However, animals, including wildlife, livestock and pets, may also be impacted by climate change. Complementary to the high relevance of awareness rising for protecting humans against climate change, here we present a One Health approach, which aims at the simultaneous protection of humans, animals and the environment from climate change impacts (climate change adaptation). We postulate that integrated approaches save human and animal lives and reduce costs when compared to public and animal health sectors working separately. A One Health approach to climate change adaptation may significantly contribute to food security with emphasis on animal source foods, extensive livestock systems, particularly ruminant livestock, environmental sanitation, and steps towards regional and global integrated syndromic surveillance and response systems. The cost of outbreaks of emerging vector-borne zoonotic pathogens may be much lower if they are detected early in the vector or in livestock rather than later in humans. Therefore, integrated community-based surveillance of zoonoses is a promising avenue to reduce health effects of climate change.

  16. A multi-criteria evaluation method for climate change mitigation policy instruments

    International Nuclear Information System (INIS)

    Konidari, Popi; Mavrakis, Dimitrios

    2007-01-01

    This paper presents an integrated multi-criteria analysis method for the quantitative evaluation of climate change mitigation policy instruments. The method consists of: (i) a set of criteria supported by sub-criteria, all of which describe the complex framework under which these instruments are selected by policy makers and implemented, (ii) an Analytical Hierarchy Process (AHP) process for defining weight coefficients for criteria and sub-criteria according to the preferences of three stakeholders groups and (iii) a Multi-Attribute Theory (MAUT)/Simple Multi-Attribute Ranking Technique (SMART) process for assigning grades to each instrument that is evaluated for its performance under a specific sub-criterion. Arguments for the selected combination of these standard methods and definitions for criteria/sub-criteria are quoted. Consistency and robustness tests are performed. The functionality of the proposed method is tested by assessing the aggregate performances of the EU emission trading scheme at Denmark, Germany, Greece, Italy, Netherlands, Portugal, Sweden and United Kingdom. Conclusions are discussed

  17. Brownfield redevelopment as a measure for climate changes mitigation

    Directory of Open Access Journals (Sweden)

    Cizler Jasna

    2013-01-01

    Full Text Available This paper explores brownfield renewal as a measure of sustainable land use. The aim was to highlight the brownfield redevelopment as a strategy for mitigation of negative effects of climate changes. Emphasis was put on innovative concepts in brownfield redevelopment, which involve land recycling, application of ecological and sustainable solutions. Main case studies are from Austria. Their analysis and evaluation show which concepts and strategies are used in successful redevelopment projects, and which strategies give the best results. This shows that brownfield renewal can have positive effects on regulation and mitigation of climate changes. Finally, guidelines for climate changes accountable and redevelopment will be derived. Research methodology is qualitative and combined, comprising of data analysis, case studies (field work, interviews with relevant actors, analysis of case studies and evaluation according to previously defined criteria, synthesis of results and generalisation and interpretation of results.

  18. Regional assessment of Climate change impacts in the Mediterranean: the CIRCE project

    Science.gov (United States)

    Iglesias, A.

    2011-12-01

    The CIRCE project has developed for the first time an assessment of the climate change impacts in the Mediterranean area. The objectives of the project are: to predict and to quantify physical impacts of climate change in the Mediterranean area; to evaluate the consequences of climate change for the society and the economy of the populations located in the Mediterranean area; to develop an integrated approach to understand combined effects of climate change; and to identify adaptation and mitigation strategies in collaboration with regional stakeholders. The CIRCE Project, coordinated by the Instituto Nazionale di Geofisca e Vulcanologia, started on 1st April 2007 and ended in a policy conference in Rome on June 2011. CIRCE involves 64 partners from Europe, Middle East and North Africa working together to evaluate the best strategies of adaptation to the climate change in the Mediterranean basin. CIRCE wants to understand and to explain how climate will change in the Mediterranean area bringing together the natural sciences community and social community in a new integrated and comprehensive way. The project has investigated how global and Mediterranean climates interact, how the radiative properties of the atmosphere and the radiative fluxes vary, the interaction between cloudiness and aerosol, the modifications in the water cycle. Recent observed modifications in the climate variables and detected trends will be compared. The economic and social consequences of climate change are evaluated by analysing direct impacts on migration, tourism and energy markets together with indirect impacts on the economic system. CIRCE has produced results about the consequences on agriculture, forests and ecosystems, human health and air quality. The variability of extreme events in the future scenario and their impacts is also assessed. A rigorous common framework, including a set of quantitative indicators developed specifically for the Mediterranean environment was be developed

  19. Europeans' attitudes towards climate change

    International Nuclear Information System (INIS)

    2009-07-01

    This report presents the results of a survey on Europeans' attitudes towards climate change which was carried out in January and February 2009. The survey focuses on: Citizens' perceptions of climate change in relation to other world problems; Citizens' perceptions of the seriousness of climate change; The extent to which citizens feel informed about climate change - its causes, consequences and ways of fighting it; Citizens' attitudes towards alternative fuels and CO2 emissions; Whether citizens feel that climate change is stoppable or has been exaggerated, and what impact it has on the European economy; Whether citizens have taken personal action to fight climate change. This Eurobarometer survey was carried out by TNS Opinion and Social network between 16 January and 22 February 2009. The interviews were conducted among 26,718 citizens in the 27 Member States of the European Union, the three candidate countries for accession to the European Union (Croatia, Turkey and the Former Yugoslav Republic of Macedonia) and in the Turkish Cypriot Community.

  20. Climate change and climate policy; Klimaendringer og klimapolitikk

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.; Kolshus, Hans H.; Torvanger, Asbjoern

    2000-08-01

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done

  1. Climate change: against despair

    OpenAIRE

    McKinnon, Catriona

    2014-01-01

    In the face of accelerating climate change and the parlous state of its politics, despair is tempting. This paper analyses two manifestations of despair about climate change related to (1) the inefficacy of personal emissions reductions, and (2) the inability to make a difference to climate change through personal emissions reductions. On the back of an analysis of despair as a loss of hope, the paper argues that the judgements grounding each form of despair are unsound. The paper concludes w...

  2. Climate change in China and China’s policies and actions for addressing climate change

    Directory of Open Access Journals (Sweden)

    Luo Y.

    2010-12-01

    Full Text Available Since the first assessment report (FAR of Inter-Governmental Panel on Climate Change (IPCC in 1990, the international scientific community has made substantial progresses in climate change sciences. Changes in components of climate system, including the atmosphere, oceans and cryosphere, indicate that global warming is unequivocal. Instrumental records demonstrate that the global mean temperature has a significant increasing trend during the 20th century and in the latest 50 years the warming become faster. In the meantime, the global sea level has a strong increasing trend, as well as the snow coverage of Northern Hemisphere showed an obvious downward trend. Moreover, the global warming plays a key role in significantly affecting the climate system and social-economy on both global and regional scales, such as sea level rise, melting of mountain glaciers and ice sheets, desertification, deforestation, increase of weather extremes (typhoon, hurricane and rainstorm and so on. The state of the art understanding of IPCC Fourth Assessment Report (AR4 was most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in the concentrations of anthropogenic greenhouse gases. Climate change issues, as a grave challenge to the sustainable development of the human society, have received ever greater attention from the international community. Deeply cognizant of the complexity and extensive influence of these issues and fully aware of the arduousness and urgency of the task of addressing climate change, the Chinese government is determined to address climate change in the process of pursuing sustainable development. The facts of climate change in China and its impacts, and China’s policies and actions for addressing climate change are introduced in this paper.

  3. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change

    Science.gov (United States)

    Urban, Mark C; Richardson, Jonathan L; Freidenfelds, Nicole A

    2014-01-01

    Phenotypic plasticity and genetic adaptation are predicted to mitigate some of the negative biotic consequences of climate change. Here, we evaluate evidence for plastic and evolutionary responses to climate variation in amphibians and reptiles via a literature review and meta-analysis. We included studies that either document phenotypic changes through time or space. Plasticity had a clear and ubiquitous role in promoting phenotypic changes in response to climate variation. For adaptive evolution, we found no direct evidence for evolution of amphibians or reptiles in response to climate change over time. However, we found many studies that documented adaptive responses to climate along spatial gradients. Plasticity provided a mixture of adaptive and maladaptive responses to climate change, highlighting that plasticity frequently, but not always, could ameliorate climate change. Based on our review, we advocate for more experiments that survey genetic changes through time in response to climate change. Overall, plastic and genetic variation in amphibians and reptiles could buffer some of the formidable threats from climate change, but large uncertainties remain owing to limited data. PMID:24454550

  4. Climate change matters.

    Science.gov (United States)

    Macpherson, Cheryl Cox

    2014-04-01

    One manifestation of climate change is the increasingly severe extreme weather that causes injury, illness and death through heat stress, air pollution, infectious disease and other means. Leading health organisations around the world are responding to the related water and food shortages and volatility of energy and agriculture prices that threaten health and health economics. Environmental and climate ethics highlight the associated challenges to human rights and distributive justice but rarely address health or encompass bioethical methods or analyses. Public health ethics and its broader umbrella, bioethics, remain relatively silent on climate change. Meanwhile global population growth creates more people who aspire to Western lifestyles and unrestrained socioeconomic growth. Fulfilling these aspirations generates more emissions; worsens climate change; and undermines virtues and values that engender appreciation of, and protections for, natural resources. Greater understanding of how virtues and values are evolving in different contexts, and the associated consequences, might nudge the individual and collective priorities that inform public policy toward embracing stewardship and responsibility for environmental resources necessary to health. Instead of neglecting climate change and related policy, public health ethics and bioethics should explore these issues; bring transparency to the tradeoffs that permit emissions to continue at current rates; and offer deeper understanding about what is at stake and what it means to live a good life in today's world.

  5. Climate Change and Natural Disasters

    NARCIS (Netherlands)

    Merkouris, Panos; Negri, Stefania; Maljean-Dubois, Sandrine

    2014-01-01

    Only 21 years ago, in 1992, the first ever convention on climate change, the United Nations Framework Convention on Climate Change (UNFCCC) was signed. The science behind studying climate change and its effects on the environment is not only mind-boggling but still in its infancy. It should come

  6. Evaluation of the Dutch National Research Programme on Global Air Pollution and Climate Change. Final Report

    International Nuclear Information System (INIS)

    Guy, K.; Boekholt, P.; Kaellen, E.; Downing, T.; Verbruggen, A.

    2002-02-01

    During 2001, the second phase of the National Research Programme on Global Air Pollution and Climate Change (NOP2) has been evaluated. In the period 1995-2001 the budget for NOP was 47 million Dutch guilders, which supported over 30 organisations in 100 projects and studies spanning four main themes: (1) dynamics of the climate system and its component parts; (2) vulnerability of natural and societal systems to climate change; (3) societal causes and solutions; (4) integration and assessment. Later in the life of the programme, two themes were added to widen the scope of the programme and add value to existing activities. These covered projects concerned with 'cross-cutting' or 'over-arching' issues and those dealing with 'internationalisation', i.e. projects specifically designed to support various initiatives in the development of international programmes. A further proportion of the research budget was dedicated to direct policy support. The evaluation was primarily intended to: Assess the scientific quality of the work undertaken in the programme and the attainment of scientific and technical goals. Also attention was paid to the relevancy of projects and project outputs to national and international policy formulation (policy relevance); the structure and operation of the programme to see if it promoted coherence and synergy between the constituent parts (synergy); and recommendations concerning the form, content and direction of a new programme in the area (new directions)

  7. The Interplay of Climate Change and Air Pollution on Health.

    Science.gov (United States)

    Orru, H; Ebi, K L; Forsberg, B

    2017-12-01

    Air pollution significantly affects health, causing up to 7 million premature deaths annually with an even larger number of hospitalizations and days of sick leave. Climate change could alter the dispersion of primary pollutants, particularly particulate matter, and intensify the formation of secondary pollutants, such as near-surface ozone. The purpose of the review is to evaluate the recent evidence on the impacts of climate change on air pollution and air pollution-related health impacts and identify knowledge gaps for future research. Several studies modelled future ozone and particulate matter concentrations and calculated the resulting health impacts under different climate scenarios. Due to climate change, ozone- and fine particle-related mortalities are expected to increase in most studies; however, results differ by region, assumed climate change scenario and other factors such as population and background emissions. This review explores the relationships between climate change, air pollution and air pollution-related health impacts. The results highly depend on the climate change scenario used and on projections of future air pollution emissions, with relatively high uncertainty. Studies primarily focused on mortality; projections on the effects on morbidity are needed.

  8. Climate change and the water cycle in newly irrigated areas.

    Science.gov (United States)

    Abrahão, Raphael; García-Garizábal, Iker; Merchán, Daniel; Causapé, Jesús

    2015-02-01

    Climate change is affecting agriculture doubly: evapotranspiration is increasing due to increments in temperature while the availability of water resources is decreasing. Furthermore, irrigated areas are expanding worldwide. In this study, the dynamics of climate change impacts on the water cycle of a newly irrigated watershed are studied through the calculation of soil water balances. The study area was a 752-ha watershed located on the left side of the Ebro river valley, in Northeast Spain. The soil water balance procedures were carried out throughout 1827 consecutive days (5 years) of hydrological and agronomical monitoring in the study area. Daily data from two agroclimatic stations were used as well. Evaluation of the impact of climate change on the water cycle considered the creation of two future climate scenarios for comparison: 2070 decade with climate change and 2070 decade without climate change. The main indicators studied were precipitation, irrigation, reference evapotranspiration, actual evapotranspiration, drainage from the watershed, and irrigation losses. The aridity index was also applied. The results represent a baseline scenario in which adaptation measures may be included and tested to reduce the impacts of climate change in the studied area and other similar areas.

  9. A Meta-Analysis of Urban Climate Change Adaptation ...

    Science.gov (United States)

    The concentration of people, infrastructure, and ecosystem services in urban areas make them prime sites for climate change adaptation. While advances have been made in developing frameworks for adaptation planning and identifying both real and potential barriers to action, empirical work evaluating urban adaptation planning processes has been relatively piecemeal. Existing assessments of current experience with urban adaptation provide necessarily broad generalizations based on the available peer-reviewed literature. This paper uses a meta-analysis of U.S. cities’ current experience with urban adaptation planning drawing from 54 sources that include peer-reviewed literature, government reports, white papers, and reports published by non-governmental organizations. The analysis specifically evaluates the institutional support structures being developed for urban climate change adaptation. The results demonstrate that adaptation planning is driven by a desire to reduce vulnerability and often catalyzes new collaborations and coordination mechanisms in urban governance. As a result, building capacity for urban climate change adaptation planning requires a focus not only on city governments themselves but also on the complex horizontal and vertical networks that have arisen around such efforts. Existing adaptation planning often lacks attention to equity issues, social vulnerability, and the influence of non-climatic factors on vulnerability. Engaging city govern

  10. U.S. Global Climate Change Impacts Report, Adaptation

    Science.gov (United States)

    Pulwarty, R.

    2009-12-01

    Adaptation measures improve our ability to cope with or avoid harmful climate impacts and take advantage of beneficial ones, now and as climate varies and changes. Adaptation and mitigation are necessary elements of an effective response to climate change. Adaptation options also have the potential to moderate harmful impacts of current and future climate variability and change. The Global Climate Change Impacts Report identifies examples of adaptation-related actions currently being pursued in various sectors and regions to address climate change, as well as other environmental problems that could be exacerbated by climate change such as urban air pollution and heat waves. Some adaptation options that are currently being pursued in various regions and sectors to deal with climate change and/or other environmental issues are identified in this report. A range of adaptation responses can be employed to reduce risks through redesign or relocation of infrastructure, sustainability of ecosystem services, increased redundancy of critical social services, and operational improvements. Adapting to climate change is an evolutionary process and requires both analytic and deliberative decision support. Many of the climate change impacts described in the report have economic consequences. A significant part of these consequences flow through public and private insurance markets, which essentially aggregate and distribute society's risk. However, in most cases, there is currently insufficient robust information to evaluate the practicality, efficiency, effectiveness, costs, or benefits of adaptation measures, highlighting a need for research. Adaptation planning efforts such as that being conducted in New York City and the Colorado River will be described. Climate will be continually changing, moving at a relatively rapid rate, outside the range to which society has adapted in the past. The precise amounts and timing of these changes will not be known with certainty. The

  11. Climate change, climatic variation and extreme biological responses.

    Science.gov (United States)

    Palmer, Georgina; Platts, Philip J; Brereton, Tom; Chapman, Jason W; Dytham, Calvin; Fox, Richard; Pearce-Higgins, James W; Roy, David B; Hill, Jane K; Thomas, Chris D

    2017-06-19

    Extreme climatic events could be major drivers of biodiversity change, but it is unclear whether extreme biological changes are (i) individualistic (species- or group-specific), (ii) commonly associated with unusual climatic events and/or (iii) important determinants of long-term population trends. Using population time series for 238 widespread species (207 Lepidoptera and 31 birds) in England since 1968, we found that population 'crashes' (outliers in terms of species' year-to-year population changes) were 46% more frequent than population 'explosions'. (i) Every year, at least three species experienced extreme changes in population size, and in 41 of the 44 years considered, some species experienced population crashes while others simultaneously experienced population explosions. This suggests that, even within the same broad taxonomic groups, species are exhibiting individualistic dynamics, most probably driven by their responses to different, short-term events associated with climatic variability. (ii) Six out of 44 years showed a significant excess of species experiencing extreme population changes (5 years for Lepidoptera, 1 for birds). These 'consensus years' were associated with climatically extreme years, consistent with a link between extreme population responses and climatic variability, although not all climatically extreme years generated excess numbers of extreme population responses. (iii) Links between extreme population changes and long-term population trends were absent in Lepidoptera and modest (but significant) in birds. We conclude that extreme biological responses are individualistic, in the sense that the extreme population changes of most species are taking place in different years, and that long-term trends of widespread species have not, to date, been dominated by these extreme changes.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Authors.

  12. Accounting for multiple climate components when estimating climate change exposure and velocity

    Science.gov (United States)

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures of climate change. We conclude with a set of future directions and recommend future work to determine which measures of climate change exposure and velocity are most related to biological responses to climate change.

  13. Natural responses to Quaternary climatic change in the Nevada Test Site region

    International Nuclear Information System (INIS)

    Gibson, J.D.

    1993-01-01

    Migration of hazardous contaminants within geologic settings depends on natural processes. Climatic fluctuations can affect the magnitudes and rates of many of these processes. In any long-term environmental evaluation of natural processes, responses to climatic change must be considered. Four generalized categories of natural responses to Quaternary climatic change are recognized for the Nevada Test Site (NTS) region of southwestern Nevada and adjacent California: (1) biologic, (2) geomorphic, (3) hydrologic (including surface and subsurface) and (4) pedologic/diagenetic. Specific examples that correspond to the four categories illustrate the broad range of complex natural processes the are affected by climatic change. These responses dictate the potential effects of climatic change on contaminant transport, effects that are being examined by existing and planned environmental-restoration and waste-management programs within the region. Regulatory requirements for many of these programs include long-term (>10,000-year) waste isolation because of radiologic components. The purpose here is not to be exhaustive in documenting all known natural responses to climatic change in the NTS region, but rather to give a flavor of the scope of interdisciplinary and interrelated fields of Quaternary science that must be considered in evaluating the possible effects of climatic change on long-term environmental programs

  14. Biodiversity and Climate Change

    International Nuclear Information System (INIS)

    Onyango, J.C.O.; Ojoo-Massawa, E.; Abira, M.A.

    1997-01-01

    Biological diversity or biodiversity is crucial for ecological stability including regulation of climate change, recreational and medicinal use; and scientific advancement. Kenya like other developing countries, especially, those in Sub-Saharan Africa, will continue to depend greatly on her biodiversity for present and future development. This important resource must, therefore be conserved. This chapter presents an overview of Kenya's biodiversity; its importance and initiatives being undertaken for its conservation; and in detail, explores issues of climate change and biodiversity, concentrating on impacts of climate change

  15. Climate and Global Change

    International Nuclear Information System (INIS)

    Duplessy, J.C.; Pons, A.; Fantechi, R.

    1991-01-01

    The present volume contains the lessons delivered at the course held in Arles, France, on the subject Climate and Global Change: natural variability of the geosphere and biosphere systems, biogeochemical cycles and their perturbation by human activities, monitoring and forecasting global changes (satellite observations, modelling,...). Short presentations of students' own research activities are also proposed (climatic fluctuation in the Mediterranean area, climate/vegetation relations, etc.)

  16. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U [DKRZ, Hamburg (Germany)

    1996-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  17. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U. [DKRZ, Hamburg (Germany)

    1995-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  18. Ozone, air quality and climatic change

    International Nuclear Information System (INIS)

    Van Noije, T.

    2008-01-01

    Changes in climate due to increased greenhouse gas emissions differ per region. Regional climate changes can also be caused by regional changes in air quality, though. On the other hand, global and regional changes in climate also lead to changes in air quality without any changes in sources of pollution. This article discusses the various aspects of the interaction between air quality and climate change with extra focus on the role of ozone. [mk] [nl

  19. Impacts of climate change and variability on European agriculture

    DEFF Research Database (Denmark)

    Orlandini, Simone; Nejedlik, Pavol; Eitzinger, Josef

    2008-01-01

    susceptible to meteorological hazards. These hazards can modify environment-genotype interactions, which can affect the quality of production. The COST 734 Action (Impacts of Climate Change and Variability on European Agriculture), launched in 2006, is composed of 28 signature countries and is funded...... by the European Commission. The main objective of the Action is the evaluation of possible impacts arising from climate change and variability on agriculture and the assessment of critical thresholds for various European areas. The Action will concentrate on four different tasks: agroclimatic indices...... and simulation models, including review and assessment of tools used to relate climate and agricultural processes; evaluation of the current trends of agroclimatic indices and model outputs, including remote sensing; developing and assessing future regional and local scenarios of agroclimatic conditions...

  20. Velocity of climate change algorithms for guiding conservation and management.

    Science.gov (United States)

    Hamann, Andreas; Roberts, David R; Barber, Quinn E; Carroll, Carlos; Nielsen, Scott E

    2015-02-01

    The velocity of climate change is an elegant analytical concept that can be used to evaluate the exposure of organisms to climate change. In essence, one divides the rate of climate change by the rate of spatial climate variability to obtain a speed at which species must migrate over the surface of the earth to maintain constant climate conditions. However, to apply the algorithm for conservation and management purposes, additional information is needed to improve realism at local scales. For example, destination information is needed to ensure that vectors describing speed and direction of required migration do not point toward a climatic cul-de-sac by pointing beyond mountain tops. Here, we present an analytical approach that conforms to standard velocity algorithms if climate equivalents are nearby. Otherwise, the algorithm extends the search for climate refugia, which can be expanded to search for multivariate climate matches. With source and destination information available, forward and backward velocities can be calculated allowing useful inferences about conservation of species (present-to-future velocities) and management of species populations (future-to-present velocities). © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  1. Greenland climate change

    DEFF Research Database (Denmark)

    Masson-Delmotte, Valérie; Swingedouw, Didier; Landais, Amaëlle

    2012-01-01

    Climate archives available from deep-sea and marine shelf sediments, glaciers, lakes and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that during the last decade (2000s......), atmospheric and sea-surface temperatures are reaching levels last encountered millennia ago when northern high latitude summer insolation was higher due to a different orbital configuration. Concurrently, records from lake sediments in southern Greenland document major environmental and climatic conditions...... regional climate and ice sheet dynamics. The magnitude and rate of future changes in Greenland temperature, in response to increasing greenhouse gas emissions, may be faster than any past abrupt events occurring under interglacial conditions. Projections indicate that within one century Greenland may...

  2. Evaluating Successful Livelihood Adaptation to Climate Variability and Change in Southern Africa

    Directory of Open Access Journals (Sweden)

    Henny Osbahr

    2010-06-01

    Full Text Available This paper examines the success of small-scale farming livelihoods in adapting to climate variability and change. We represent adaptation actions as choices within a response space that includes coping but also longer-term adaptation actions, and define success as those actions which promote system resilience, promote legitimate institutional change, and hence generate and sustain collective action. We explore data on social responses from four regions across South Africa and Mozambique facing a variety of climate risks. The analysis suggests that some collective adaptation actions enhance livelihood resilience to climate change and variability but others have negative spillover effects to other scales. Any assessment of successful adaptation is, however, constrained by the scale of analysis in terms of the temporal and spatial boundaries on the system being investigated. In addition, the diversity of mechanisms by which rural communities in southern Africa adapt to risks suggests that external interventions to assist adaptation will need to be sensitive to the location-specific nature of adaptation.

  3. Climate Change Impacts on Crop Production in Nigeria

    Science.gov (United States)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2011-12-01

    The agricultural sector in Nigeria is particularly important for the country's food security, natural resources, and growth agenda. The cultivable areas comprise more than 70% of the total area; however, the cultivated area is about the 35% of the total area. The most important components in the food basket of the nation are cereals and tubers, which include rice, maize, corn, millet, sorghum, yam, and cassava. These crops represent about 80% of the total agricultural product in Nigeria (from NPAFS). The major crops grown in the country can be divided into food crops (produced for consumption) and export products. Despite the importance of the export crops, the primary policy of agriculture is to make Nigeria self-sufficient in its food and fiber requirements. The projected impacts of future climate change on agriculture and water resources are expected to be adverse and extensive in these area. This implies the need for actions and measures to adapt to climate change impacts, and especially as they affect agriculture, the primary sector for Nigerian economy. In the framework of the Project Climate Risk Analysis in Nigeria (founded by World Bank Contract n.7157826), a study was made to assess the potential impact of climate change on the main crops that characterize Nigerian agriculture. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT are tools that simulate physiological processes of crop growth, development and production by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were calibrated to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output was "perturbed" with 10 Global Climate Models to have

  4. Climate changes over the past millennium: Relationships with Mediterranean climates

    International Nuclear Information System (INIS)

    Mann, M.E.

    2006-01-01

    Evidence is reviewed for climate change and its causes over the interval spanning roughly the past millennium. Particular emphasis is placed on patterns of climate change influencing Mediterranean climates of the Northern Hemisphere. The evidence is taken from studies using high-resolution climate proxy data sources, and climate modeling simulations. The available evidence suggests that forced changes in dynamical modes of variability including the North Atlantic Oscillation (NAO) and El Nino/Southern Oscillation (ENSO) have played a key role in the patterns of climate variability in Mediterranean regions over the past millennium

  5. Climate Change and Health

    Science.gov (United States)

    ... Home / News / Fact sheets / Detail WHO /A. Craggs Climate change and health 1 February 2018 ","datePublished":"2018-02- ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – particularly ...

  6. Adaptability and climate change

    International Nuclear Information System (INIS)

    Sprague, M.W.

    1991-01-01

    The potential social, economic and environmental impacts of climate change are reviewed, with emphasis on agricultural implications. Impact analyses must be done on the scale of watersheds or river basins. For agriculture, climate change effects on water resources are likely to be more important than temperature changes, and climatic variability is also equally important. Another set of critical climatic variables are the frequencies, magnitudes and timing of extreme events such as floods, droughts, etc. A carbon dioxide enriched atmosphere will increase water use efficiency and confer increased tolerance to drought, salinity and air pollution. Better understanding and accounting is required for the effects of increased carbon dioxide on all plant life, including crops. Adaptability of agriculture to change must be taken into account in predicting impacts of climate change, with technological innovation and infrastructure giving agriculture a dynamic nature. Limitations and adaptations must be considered when formulating public policy, to ensure that marginal costs do not exceed marginal benefits. Monoculture plantation forests may be the most efficient sinks of atmospheric carbon dioxide, yet widespread reliance on them may harm biological diversity. Actions the U.S. is currently taking under a no-regrets policy are summarized

  7. Challenges and solutions for climate change

    CERN Document Server

    Gaast, Wytze

    2012-01-01

    The latest scientific knowledge on climate change indicates that higher greenhouse gas concentrations in the atmosphere through unchecked emissions will provoke severe climate change and ocean acidification threatening environmental structures on which humanity relies. Climate change therefore poses major socio-economic, technical and environmental challenges which will have serious impacts on countries’ pathways towards sustainable development. As a result, climate change and sustainable development have increasingly become interlinked. A changing climate makes achieving Millennium Development Goals more difficult and expensive, so there is every reason to achieve development goals with low greenhouse gas emissions. This leads to the following five challenges discussed by Challenges and Solutions for Climate Change: To place climate negotiations in the wider context of sustainability, equity and social change so that development benefits can be maximised at the same time as decreasing greenhouse gas emissi...

  8. The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Tchebakova, N M; Parfenova, E [V N Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Academgorodok, Krasnoyarsk, 660036 (Russian Federation); Soja, A J, E-mail: ncheby@forest.akadem.r, E-mail: Amber.J.Soja@nasa.go [National Institute of Aerospace (NIA), NASA Langley Research Center, Climate Sciences, 21 Langley Boulevard, Mail Stop 420, Hampton, VA 23681-2199 (United States)

    2009-10-15

    Observations and general circulation model projections suggest significant temperature increases in Siberia this century that are expected to have profound effects on Siberian vegetation. Potential vegetation change across Siberia was modeled, coupling our Siberian BioClimatic Model with several Hadley Centre climate change scenarios for 2020, 2050 and 2080, with explicit consideration of permafrost and fire activity. In the warmer and drier climate projected by these scenarios, Siberian forests are predicted to decrease and shift northwards and forest-steppe and steppe ecosystems are predicted to dominate over half of Siberia due to the dryer climate by 2080. Despite the large predicted increases in warming, permafrost is not predicted to thaw deep enough to sustain dark (Pinus sibirica, Abies sibirica, and Picea obovata) taiga. Over eastern Siberia, larch (Larix dahurica) taiga is predicted to continue to be the dominant zonobiome because of its ability to withstand continuous permafrost. The model also predicts new temperate broadleaf forest and forest-steppe habitats by 2080. Potential fire danger evaluated with the annual number of high fire danger days (Nesterov index is 4000-10 000) is predicted to increase by 2080, especially in southern Siberia and central Yakutia. In a warming climate, fuel load accumulated due to replacement of forest by steppe together with frequent fire weather promotes high risks of large fires in southern Siberia and central Yakutia, where wild fires would create habitats for grasslands because the drier climate would no longer be suitable for forests.

  9. Struggle against climate change

    International Nuclear Information System (INIS)

    2009-01-01

    This document first proposes a presentation of the cross-cutting policy defined for the struggle against climate change. It notably presents its various programs. It describes the implemented strategy which aims at reducing on a short term greenhouse gas emissions with the available technologies, at making the climate challenge a driver for economic competitiveness, at developing the knowledge on climatic change and at preparing the necessary adaptation measures, and at stating on the international scene the French commitment and its dynamic role in front of the climate challenge

  10. Climate change issues in China

    Energy Technology Data Exchange (ETDEWEB)

    Ye Ruqiu (China National Environmental Protection Agency, Beijing (China))

    China is vulnerable to global climate change because of its specific geographical and climatic conditions. Recent climate change trends in China are briefly described. To deal with climate change and reduce the increase in greenhouse gas emissions, a set of strategic measures aimed at harmonizing environmental protection and economic development have been worked out. Special attention has been given to the analysis of problems of energy efficiency and energy structure. Preliminary policy consideration is discussed. 8 refs., 3 tabs.

  11. Climate change and the biosphere

    Science.gov (United States)

    F. Stuart Chapin

    2008-01-01

    Scientific assessments now clearly demonstrate the ecologic and societal consequences of human induced climate change, as detailed by the most recent Intergovernmental Panel on Climate Change (IPCC) report. Global warming spells danger for Earth's biomes, which in turn play an important role in climate change. On the following pages, you will read about some of...

  12. Climate change: Recent findings

    International Nuclear Information System (INIS)

    Hesselmans, G.H.F.M.

    1993-08-01

    In the late eighties several reports have been published on climate change and sea level rise. In the meantime insights may have changed due to the availability of better and more observations and/or more advanced climate models. The aim of this report is to present the most recent findings with respect to climate change, in particular of sea level rise, storm surges and river peak flows. These climate factors are important for the safety of low-lying areas with respect to coastal erosion and flooding. In the first chapters a short review is presented of a few of the eighties reports. Furthermore, the predictions by state of the art climate models at that time are given. The reports from the eighties should be considered as 'old' information, whereas the IPCC supplement and work, for example, by Wigley should be considered as new information. To assess the latest findings two experts in this field were interviewed: dr J. Oerlemans and dr C.J.E. Schuurmans, a climate expert from the Royal Netherlands Meteorological Institute (KNMI). Their views are presented together with results published in recent papers on the subject. On the basis of this assessment, the report presents current knowledge regarding predictions of climate change (including sea-level rise) over the next century, together with an assessment of the uncertainties associated with these predictions. 14 figs., 11 tabs., 24 refs

  13. Life history and spatial traits predict extinction risk due to climate change

    Science.gov (United States)

    Pearson, Richard G.; Stanton, Jessica C.; Shoemaker, Kevin T.; Aiello-Lammens, Matthew E.; Ersts, Peter J.; Horning, Ned; Fordham, Damien A.; Raxworthy, Christopher J.; Ryu, Hae Yeong; McNees, Jason; Akçakaya, H. Reşit

    2014-03-01

    There is an urgent need to develop effective vulnerability assessments for evaluating the conservation status of species in a changing climate. Several new assessment approaches have been proposed for evaluating the vulnerability of species to climate change based on the expectation that established assessments such as the IUCN Red List need revising or superseding in light of the threat that climate change brings. However, although previous studies have identified ecological and life history attributes that characterize declining species or those listed as threatened, no study so far has undertaken a quantitative analysis of the attributes that cause species to be at high risk of extinction specifically due to climate change. We developed a simulation approach based on generic life history types to show here that extinction risk due to climate change can be predicted using a mixture of spatial and demographic variables that can be measured in the present day without the need for complex forecasting models. Most of the variables we found to be important for predicting extinction risk, including occupied area and population size, are already used in species conservation assessments, indicating that present systems may be better able to identify species vulnerable to climate change than previously thought. Therefore, although climate change brings many new conservation challenges, we find that it may not be fundamentally different from other threats in terms of assessing extinction risks.

  14. Geopolitics of climate change: A review

    Directory of Open Access Journals (Sweden)

    Bošnjaković Branko

    2012-01-01

    Full Text Available The paper reviews the geopolitical elements of the emerging discourse on how to control, and cope with climate change. Two complementary approaches may be distinguished: the actor-related approach analyses the positioning of states and interest groups, which develop strategies on coping with climate change; the other approach addresses processes and problem areas (physical, economic, demographic… emerging in the geographic space as a consequence of, or linked to climate change. With failing mitigation policies and instruments, the urgency of adaptation to climate change is increasing. Assessment of regional consequences of climate change includes the perceptions and motivations of presumed losers or winners. New security implications related to climate change are emerging in the Arctic, South-East Asia, Africa and the Pacific. Energy supply security is a dominant factor in geopolitical considerations. The geopolitics of climate change is inextricably linked to many other issues of globalization. Significant shift of global power raises the discussion of ethical responsibility. Climate change is evolving as a testing ground for competitiveness and innovation potential of political and economic models in achieving sustainability.

  15. Making the Earth to Life Connection Using Climate Change

    Science.gov (United States)

    Haine, D. B.; Berbeco, M.

    2016-12-01

    From ocean acidification to changes in air quality to shifts in the range of disease vectors, there are many opportunities for educators to make the earth science to life science connection by incorporating the impacts of climate change on organisms and entire ecosystems and by describing how living organisms impact climate. NCSE's study in Science found that 86% of life science teachers are teaching climate, but few admit they have any formal climate science training. This session will introduce activities we developed that utilize the 2014 National Climate Assessment, data visualizations, technology tools and models to allow students to explore the evidence that climate change is impacting life. Translating the NCA into classroom activities is an approach that becomes more pertinent with the advent of the Next Generation Science Standards (NGSS). Using the NCA and the NGSS we demonstrate strategies for weaving the concept of climate change into an already packed life science curriculum by enhancing rather than displacing content and ultimately promoting integration of science and engineering practices into instruction. Since the fall of 2014 we have engaged approximately 200 K-12 educators at local, state, regional and national teacher professional development events. Here we will summarize what we have learned from science teachers about how they address life science impacts of climate change and we will summarize evaluation data to inform future efforts to engage life science educators in light of the recent USGCRP Climate and Health Assessment and the upcoming 4th National Climate Assessment.

  16. Responsible investors acting on climate change. Investors acting on climate change. Climate: Investors take action

    International Nuclear Information System (INIS)

    Simon, Marie; Blanc, Dominique; Husson-Traore, Anne-Catherine; Amiell, Alison; Barochez, Aurelie de; Conti, Sophie; Kamelgarn, Yona; Bonnet, Olivier; Braman, Stuart; Chenet, Hugues; Fisher, Remco; Hellier, Mickael; Horster, Maximilian; Kindelbacher, Sophie; Leaton, James; Lieblich, Sebastien; Neuneyer, Dustin; Lenoel, Benjamin; Smart, Lauren; Torklep Meisingset, Christine

    2015-02-01

    Some investors are willing to lower the carbon emission financed by their investment, recognizing that climate change has financial impacts. At first they measure the carbon footprint of their portfolio, than initiate shareholder engagement actions at oil and gas companies, publish list of exclusion composed of the most carbon-intensive companies and ask for ex fossil fuels indices. In June 2015, Novethic launches the first actualisation of its study released on February 2015 on the mobilisation of investors on climate change over the whole 2015 year. The trend is gaining momentum since more than 200 additional investors publicly disclosed commitments to integrate climate risk into their investment and management practices. In September 2015, for its second update of the report on how investors are taking action on climate change, more than 800 entities were screened. As a key result, investor's actions gain momentum: approaches are growing in number and becoming more expert, divestments are widespread in Europe, and green investments promises are more ambitious. The last edition of November 2015 highlights and scans an exclusive panel of 960 investors worth Euro 30 trillion of assets who have made steps forward to tackle climate change. During the last 8 months, their number has almost increased twofold. This document brings together the first edition of Novethic's study and its three updates

  17. Climate Impacts of Fire-Induced Land-Surface Changes

    Science.gov (United States)

    Liu, Y.; Hao, X.; Qu, J. J.

    2017-12-01

    One of the consequences of wildfires is the changes in land-surface properties such as removal of vegetation. This will change local and regional climate through modifying the land-air heat and water fluxes. This study investigates mechanism by developing and a parameterization of fire-induced land-surface property changes and applying it to modeling of the climate impacts of large wildfires in the United States. Satellite remote sensing was used to quantitatively evaluate the land-surface changes from large fires provided from the Monitoring Trends in Burning Severity (MTBS) dataset. It was found that the changes in land-surface properties induced by fires are very complex, depending on vegetation type and coverage, climate type, season and time after fires. The changes in LAI are remarkable only if the actual values meet a threshold. Large albedo changes occur in winter for fires in cool climate regions. The signs are opposite between the first post-fire year and the following years. Summer day-time temperature increases after fires, while nigh-time temperature changes in various patterns. The changes are larger in forested lands than shrub / grassland lands. In the parameterization scheme, the detected post-fire changes are decomposed into trends using natural exponential functions and fluctuations of periodic variations with the amplitudes also determined by natural exponential functions. The final algorithm is a combination of the trends, periods, and amplitude functions. This scheme is used with Earth system models to simulate the local and regional climate effects of wildfires.

  18. Global climate change and international security

    Energy Technology Data Exchange (ETDEWEB)

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  19. Climate Change Through a Poverty Lens

    Science.gov (United States)

    Rozenberg, J.; Hallegatte, S.

    2017-12-01

    Analysis of the economic impact of climate change typically considers regional or national economies and assesses its impact on macroeconomic aggregates such as gross domestic product. These studies therefore do not investigate the distributional impacts of climate change within countries or the impacts on poverty. This Perspective aims to close this gap and provide an assessment of climate change impacts at the household level to investigate the consequences of climate change for poverty and for poor people. It does so by combining assessments of the physical impacts of climate change in various sectors with household surveys. In particular, it highlights how rapid and inclusive development can reduce the future impact of climate change on poverty.

  20. Climate change in Nova Scotia : a background paper to guide Nova Scotia's climate change action plan

    International Nuclear Information System (INIS)

    2007-10-01

    Climate change causes changes in the temperature of the earth, the level of the sea, and the frequency of extreme weather conditions. The province of Nova Scotia recently released an act related to environmental goals and sustainable prosperity. Addressing climate change is a key element in achieving Nova Scotia's sustainable prosperity goals outlined in the act. The Nova Scotia Department of Energy is working towards developing both policy and action, to help meet its target of a 10 per cent reduction in greenhouse gases from 1990 levels by the year 2020. Two major plans are underway, notably a climate change action plan and a renewed energy strategy. This report provided background information on Nova Scotia's climate change action plan. It discussed climate change issues affecting Nova Scotia, air pollutants, energy sources in Nova Scotia, energy consumers in the province, and Nova Scotia's approach to climate change. The report also discussed actions underway and funding sources. It was concluded that in order for the climate change action plan to be successful, Nova Scotians must use energy more efficiently; use renewable energy; use cleaner energy; and plan for change. 13 refs., 2 tabs., 6 figs., 4 appendices

  1. Population viability of Pediocactus brady (Cactaceae) in a changing climate

    Science.gov (United States)

    Shryock, Daniel F.; Esque, Todd C.; Huges, Lee

    2014-01-01

    • Premise of the study: A key question concerns the vulnerability of desert species adapted to harsh, variable climates to future climate change. Evaluating this requires coupling long-term demographic models with information on past and projected future climates. We investigated climatic drivers of population growth using a 22-yr demographic model for Pediocactus bradyi, an endangered cactus in northern Arizona.

  2. Simulation of Optimal Decision-Making Under the Impacts of Climate Change

    DEFF Research Database (Denmark)

    Møller, Lea Ravnkilde; Drews, Martin; Larsen, Morten Andreas Dahl

    2017-01-01

    Climate change causes transformations to the conditions of existing agricultural practices appointing farmers to continuously evaluate their agricultural strategies, e.g., towards optimising revenue. In this light, this paper presents a framework for applying Bayesian updating to simulate decision...... crops, irrigated crops and livestock) by a continuous updating of beliefs relative to realised trajectories of climate (change), represented by projections of temperature and precipitation. The climate data is based on combinations of output from three global/regional climate model combinations and two...

  3. Capturing Tweets on Climate Change: What is the role of Twitter in Climate Change Communication?

    Science.gov (United States)

    Ngo, A. M.; McNeal, K.; Luginbuhl, S.; Enteen, J.

    2015-12-01

    Climate change is a major environmental issue that is often discussed throughout the world using social media outlets such as Twitter. This research followed and collected tweets about climate change as they related to two events: (i) the June 18, 2015 release of the Encyclical by Pope Francis which included content about climate change and (ii) the upcoming COP21 conference, a United Nations climate change conference, to be held on Dec. 7-8, 2015 in Paris. Using a Twitter account and Ncapture we were able to collect tens of thousands of climate change related tweets that were then loaded into a program called Nvivo which stored the tweets and associated publically available user information. We followed a few major hashtags such as COP21, UNFCCC, @climate, and the Pope. We examined twitter users, the information sources, locations, number of re-tweets, and frequency of tweets as well as the category of the tweet in regard to positive, negative, and neutral positions about climate. Frequency analysis of tweets over a 10 day period of the Encyclical event showed that ~200 tweets per day were made prior to the event, with ~1000 made on the day of the event, and ~100 per day following the event. For the COP21 event, activity ranged from 2000-3000 tweets per day. For the Encyclical event, an analysis of 1100 tweets on the day of release indicated that 47% of the tweets had a positive perspective about climate change, 50% were neutral, 1% negative, and 2% were unclear. For the COP21 event, an analysis of 342 tweets randomly sampled from 31,721 tweets, showed that 53% of the tweets had a positive perspective about climate change, 12% were neutral, 13% negative, and 22% were unclear. Differences in the frequency and perspectives of tweets were likely due to the nature of the events, one a long-term and recurring international event and the other a single international religious-oriented event. We tabulated the top 10 tweets about climate change as they relate to these two

  4. Prospects for future climate: A special US/USSR report on climate and climate change

    International Nuclear Information System (INIS)

    MacCracken, M.C.; Budyko, M.I.; Hecht, A.D.; Izrael, Y.A.

    1990-01-01

    Starting with the US-USSR Agreement on Protection of the Environment signed in 1972, the two nations have cooperated in joint research on atmospheric and environmental problems. The result of these efforts has been an innovative approach to projecting future climate change based on what has been learned about past warm periods and what can be learned from models. The chapters in this document explore the following: past changes in climate, both paleoclimatology and changes in the recent past; changes in atmospheric composition; estimates of greenhouse-induced change including the use of both empirical methods and climate models; impacts of climate change on water resources and agriculture in the two countries; and prospects for future climate changes

  5. Global Climate Change Pilot Course Project

    Science.gov (United States)

    Schuenemann, K. C.; Wagner, R.

    2011-12-01

    In fall 2011 a pilot course on "Global Climate Change" is being offered, which has been proposed to educate urban, diverse, undergraduate students about climate change at the introductory level. The course has been approved to fulfill two general college requirements, a natural sciences requirement that focuses on the scientific method, as well as a global diversity requirement. This course presents the science behind global climate change from an Earth systems and atmospheric science perspective. These concepts then provide the basis to explore the effect of global warming on regions throughout the world. Climate change has been taught as a sub-topic in other courses in the past solely using scientific concepts, with little success in altering the climate change misconceptions of the students. This pilot course will see if new, innovative projects described below can make more of an impact on the students' views of climate change. Results of the successes or failures of these projects will be reported, as well as results of a pre- and post-course questionnaire on climate change given to students taking the course. Students in the class will pair off and choose a global region or country that they will research, write papers on, and then represent in four class discussions spaced throughout the semester. The first report will include details on the current climate of their region and how the climate shapes that region's society and culture. The second report will discuss how that region is contributing to climate change and/or sequestering greenhouse gases. Thirdly, students will discuss observed and predicted changes in that region's climate and what impact it has had, and could have, on their society. Lastly, students will report on what role their region has played in mitigating climate change, any policies their region may have implemented, and how their region can or cannot adapt to future climate changes. They will also try to get a feel for the region

  6. Adapting to climate change in Africa

    International Nuclear Information System (INIS)

    Downing, T.E. Ringius, L. Hulme, M. Waughray, D.

    1997-01-01

    The intersection of present vulnerability and the prospect of climate change in Africa warrants proactive action now to reduce the risk of large-scale, adverse impacts. The process of planning adaptive strategies requires a systematic evaluation of priorities and constraints, and the involvement of stakeholders. An overview of climate change in Africa and case studies of impacts for agriculture and water underlie discussion of a typology of adaptive responses that may be most effective for different stakeholders. The most effective strategies are likely to be to reduce present vulnerability and to enhance a broad spectrum of capacity in responding to environmental, resource and economic perturbations. In some cases, such as design of water systems, an added risk factor should be considered. 2 figs., 7 tabs., 48 refs

  7. Separating the role of biotic interactions and climate in determining adaptive response of plants to climate change.

    Science.gov (United States)

    Tomiolo, Sara; Van der Putten, Wim H; Tielbörger, Katja

    2015-05-01

    Altered rainfall regimes will greatly affect the response of plant species to climate change. However, little is known about how direct effects of changing precipitation on plant performance may depend on other abiotic factors and biotic interactions. We used reciprocal transplants between climatically very different sites with simultaneous manipulation of soil, plant population origin, and neighbor conditions to evaluate local adaptation and possible adaptive response of four Eastern Mediterranean annual plant species to climate change. The effect of site on plant performance was negligible, but soil origin had a strong effect on fecundity, most likely due to differential water retaining ability. Competition by neighbors strongly reduced fitness. We separated the effects of the abiotic and biotic soil properties on plant performance by repeating the field experiment in a greenhouse under homogenous environmental conditions and including a soil biota manipulation treatment. As in the field, plant performance differed among soil origins and neighbor treatments. Moreover, we found plant species-specific responses to soil biota that may be best explained by the differential sensitivity to negative and positive soil biota effects. Overall, under the conditions of our experiment with two contrasting sites, biotic interactions had a strong effect on plant fitness that interacted with and eventually overrode climate. Because climate and biotic interactions covary, reciprocal transplants and climate gradient studies should consider soil biotic interactions and abiotic conditions when evaluating climate change effects on plant performance.

  8. The Heat is On! Confronting Climate Change in the Classroom

    Science.gov (United States)

    Bowman, R.; Atwood-Blaine, D.

    2008-12-01

    This paper discusses a professional development workshop for K-12 science teachers entitled "The Heat is On! Confronting Climate Change in the Classroom." This workshop was conducted by the Center for Remote Sensing of Ice Sheets (CReSIS), which has the primary goal to understand and predict the role of polar ice sheets in sea level change. The specific objectives of this summer workshop were two-fold; first, to address the need for advancement in science technology engineering and mathematics (STEM) education and second, to address the need for science teacher training in climate change science. Twenty-eight Kansas teachers completed four pre-workshop assignments online in Moodle and attended a one-week workshop. The workshop included lecture presentations by scientists (both face-to-face and via video-conference) and collaboration between teachers and scientists to create online inquiry-based lessons on the water budget, remote sensing, climate data, and glacial modeling. Follow-up opportunities are communicated via the CReSIS Teachers listserv to maintain and further develop the collegial connections and collaborations established during the workshop. Both qualitative and quantitative evaluation results indicate that this workshop was particularly effective in the following four areas: 1) creating meaningful connections between K-12 teachers and CReSIS scientists; 2) integrating distance-learning technologies to facilitate the social construction of knowledge; 3) increasing teachers' content understanding of climate change and its impacts on the cryosphere and global sea level; and 4) increasing teachers' self-efficacy beliefs about teaching climate science. Evaluation methods included formative content understanding assessments (via "clickers") during each scientist's presentation, a qualitative evaluation survey administered at the end of the workshop, and two quantitative evaluation instruments administered pre- and post- workshop. The first of these

  9. Climate change mitigation in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bo

    2012-07-01

    China has been experiencing great economic development and fast urbanisation since its reforms and opening-up policy in 1978. However, these changes are reliant on consumption of primary energy, especially coal, characterised by high pollution and low efficiency. China's greenhouse gas (GHG) emissions, with carbon dioxide (CO{sub 2}) being the most significant contributor, have also been increasing rapidly in the past three decades. Responding to both domestic challenges and international pressure regarding energy, climate change and environment, the Chinese government has made a point of addressing climate change since the early 2000s. This thesis provides a comprehensive analysis of China's CO{sub 2} emissions and policy instruments for mitigating climate change. In the analysis, China's CO{sub 2} emissions in recent decades were reviewed and the Environmental Kuznets Curve (EKC) hypothesis examined. Using the mostly frequently studied macroeconomic factors and time-series data for the period of 1980-2008, the existence of an EKC relationship between CO{sub 2} per capita and GDP per capita was verified. However, China's CO{sub 2} emissions will continue to grow over coming decades and the turning point in overall CO{sub 2} emissions will appear in 2078 according to a crude projection. More importantly, CO{sub 2} emissions will not spontaneously decrease if China continues to develop its economy without mitigating climate change. On the other hand, CO{sub 2} emissions could start to decrease if substantial efforts are made. China's present mitigation target, i.e. to reduce CO{sub 2} emissions per unit of GDP by 40-45 % by 2020 compared with the 2005 level, was then evaluated. Three business-as-usual (BAU) scenarios were developed and compared with the level of emissions according to the mitigation target. The calculations indicated that decreasing the CO{sub 2} intensity of GDP by 40-45 % by 2020 is a challenging but hopeful target. To

  10. Examining the potential impacts of climate change on international security: EU-Africa partnership on climate change.

    Science.gov (United States)

    Dodo, Mahamat K

    2014-01-01

    Climate Change like many global problems nowadays is recognized as a threat to the international security and cooperation. In theoretical terms, it is being securitized and included in the traditional security studies. Climate change and its accompanying environmental degradation are perceived to be a threat that can have incalculable consequences on the international community. The consequences are said to have more effects in small island developing nations and Africa where many States are fragile and overwhelmed with mounting challenges. In recent years, the security implications of the climate change are being addressed from national, regional and multilateral level. Against this backdrop, this paper intends to contribute to the debate on climate change and international security and present a broader perspective on the discussion. The paper will draw from the EU-Africa partnership on climate change and is structured as follows: the first part introduces the background of the international climate change policy and its securitization, the second part covers the EU-Africa relations and EU-Africa partnership on climate change, and the third part discusses the Congo Basin Forest Partnership as a concrete example of EU-Africa Partnership on Climate Change. Lastly, the paper concludes by drawing some conclusions and offers some policy perspectives and recommendations. Q54; 055; 052; 01;

  11. Politics of climate change belief

    Science.gov (United States)

    2017-01-01

    Donald Trump's actions during the election and his first weeks as US president-elect send a strong message about his belief in climate change, or lack thereof. However, these actions may reflect polarization of climate change beliefs, not climate mitigation behaviour.

  12. Climate change issues in China

    International Nuclear Information System (INIS)

    Ye Ruqiu

    1994-01-01

    China is vulnerable to global climate change because of its specific geographical and climatic conditions. Recent climate change trends in China are briefly described. To deal with climate change and reduce the increase in greenhouse gas emissions, a set of strategic measures aimed at harmonizing environmental protection and economic development have been worked out. Special attention has been given to the analysis of problems of energy efficiency and energy structure. Preliminary policy consideration is discussed. (author). 8 refs, 3 tabs

  13. Climate Trends and Farmers' Perceptions of Climate Change in Zambia.

    Science.gov (United States)

    Mulenga, Brian P; Wineman, Ayala; Sitko, Nicholas J

    2017-02-01

    A number of studies use meteorological records to analyze climate trends and assess the impact of climate change on agricultural yields. While these provide quantitative evidence on climate trends and the likely effects thereof, they incorporate limited qualitative analysis of farmers' perceptions of climate change and/or variability. The present study builds on the quantitative methods used elsewhere to analyze climate trends, and in addition compares local narratives of climate change with evidence found in meteorological records in Zambia. Farmers offer remarkably consistent reports of a rainy season that is growing shorter and less predictable. For some climate parameters-notably, rising average temperature-there is a clear overlap between farmers' observations and patterns found in the meteorological records. However, the data do not support the perception that the rainy season used to begin earlier, and we generally do not detect a reported increase in the frequency of dry spells. Several explanations for these discrepancies are offered. Further, we provide policy recommendations to help farmers adapt to climate change/variability, as well as suggestions to shape future climate change policies, programs, and research in developing countries.

  14. Climate change with Korea as the center

    International Nuclear Information System (INIS)

    Kim, Yeon Ok

    1998-04-01

    This book deals with climate change with Korea as the center, which is divided into ten chapters. It explain climate change by human life. The contents of this book are climate change, climate before human period, great ice age of prehistoric period, prehistoric times of last glacial era, climate change in historical era, change during observation time for 100 years, warming period, global environment period, the cause of climate change and climate and human. It has reference and an index.

  15. Climate Change and Civil Violence

    Science.gov (United States)

    van der Vink, G.; Plancherel, Y.; Hennet, C.; Jones, K. D.; Abdullah, A.; Bradshaw, J.; Dee, S.; Deprez, A.; Pasenello, M.; Plaza-Jennings, E.; Roseman, D.; Sopher, P.; Sung, E.

    2009-05-01

    The manifestations of climate change can result in humanitarian impacts that reverse progress in poverty- reduction, create shortages of food and resources, lead to migration, and ultimately result in civil violence and conflict. Within the continent of Africa, we have found that environmentally-related variables are either the cause or the confounding factor for over 80% of the civil violence events during the last 10 years. Using predictive climate models and land-use data, we are able to identify populations in Africa that are likely to experience the most severe climate-related shocks. Through geospatial analysis, we are able to overlay these areas of high risk with assessments of both the local population's resiliency and the region's capacity to respond to climate shocks should they occur. The net result of the analysis is the identification of locations that are becoming particularly vulnerable to future civil violence events (vulnerability hotspots) as a result of the manifestations of climate change. For each population group, over 600 social, economic, political, and environmental indicators are integrated statistically to measures the vulnerability of African populations to environmental change. The indicator time-series are filtered for data availability and redundancy, broadly ordered into four categories (social, political, economic and environmental), standardized and normalized. Within each category, the dominant modes of variability are isolated by principal component analysis and the loadings of each component for each variable are used to devise composite index scores. Comparisons of past vulnerability with known environmentally-related conflicts demonstrates the role that such vulnerability hotspot maps can play in evaluating both the potential for, and the significance of, environmentally-related civil violence events. Furthermore, the analysis reveals the major variables that are responsible for the population's vulnerability and therefore

  16. Effective Teacher Practice on the Plausibility of Human-Induced Climate Change

    Science.gov (United States)

    Niepold, F.; Sinatra, G. M.; Lombardi, D.

    2013-12-01

    Climate change education programs in the United States seek to promote a deeper understanding of the science of climate change, behavior change and stewardship, and support informed decision making by individuals, organizations, and institutions--all of which are summarized under the term 'climate literacy.' The ultimate goal of climate literacy is to enable actors to address climate change, both in terms of stabilizing and reducing emissions of greenhouse gases, but also an increased capacity to prepare for the consequences and opportunities of climate change. However, the long-term nature of climate change and the required societal response involve the changing students' ideas about controversial scientific issues which presents unique challenges for educators (Lombardi & Sinatra, 2010; Sinatra & Mason, 2008). This session will explore how the United States educational efforts focus on three distinct, but related, areas: the science of climate change, the human-climate interaction, and using climate education to promote informed decision making. Each of these approaches are represented in the Atlas of Science Literacy (American Association for the Advancement of Science, 2007) and in the conceptual framework for science education developed at the National Research Council (NRC) in 2012. Instruction to develop these fundamental thinking skills (e.g., critical evaluation and plausibility reappraisal) has been called for by the Next Generation Science Standards (NGSS) (Achieve, 2013), an innovative and research based way to address climate change education within the decentralized U.S. education system. However, the promise of the NGSS is that students will have more time to build mastery on the subjects, but the form of that instructional practice has been show to be critical. Research has show that effective instructional activities that promote evaluation of evidence improve students' understanding and acceptance toward the scientifically accepted model of human

  17. Quantitative approaches in climate change ecology

    DEFF Research Database (Denmark)

    Brown, Christopher J.; Schoeman, David S.; Sydeman, William J.

    2011-01-01

    Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between...... climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer‐reviewed articles that examined relationships...

  18. Evaluation of Projected Agricultural Climate Risk over the Contiguous US

    Science.gov (United States)

    Zhu, X.; Troy, T. J.; Devineni, N.

    2017-12-01

    Food demands are rising due to an increasing population with changing food preferences, which places pressure on agricultural production. Additionally, climate extremes have recently highlighted the vulnerability of our agricultural system to climate variability. This study seeks to fill two important gaps in current knowledge: how does the widespread response of irrigated crops differ from rainfed and how can we best account for uncertainty in yield responses. We developed a stochastic approach to evaluate climate risk quantitatively to better understand the historical impacts of climate change and estimate the future impacts it may bring about to agricultural system. Our model consists of Bayesian regression, distribution fitting, and Monte Carlo simulation to simulate rainfed and irrigated crop yields at the US county level. The model was fit using historical data for 1970-2010 and was then applied over different climate regions in the contiguous US using the CMIP5 climate projections. The relative importance of many major growing season climate indices, such as consecutive dry days without rainfall or heavy precipitation, was evaluated to determine what climate indices play a role in affecting future crop yields. The statistical modeling framework also evaluated the impact of irrigation by using county-level irrigated and rainfed yields separately. Furthermore, the projected years with negative yield anomalies were specifically evaluated in terms of magnitude, trend and potential climate drivers. This framework provides estimates of the agricultural climate risk for the 21st century that account for the full uncertainty of climate occurrences, range of crop response, and spatial correlation in climate. The results of this study can contribute to decision making about crop choice and water use in an uncertain future climate.

  19. Creationism & Climate Change (Invited)

    Science.gov (United States)

    Newton, S.

    2009-12-01

    Although creationists focus on the biological sciences, recently creationists have also expanded their attacks to include the earth sciences, especially on the topic of climate change. The creationist effort to deny climate change, in addition to evolution and radiometric dating, is part of a broader denial of the methodology and validity of science itself. Creationist misinformation can pose a serious problem for science educators, who are further hindered by the poor treatment of the earth sciences and climate change in state science standards. Recent changes to Texas’ science standards, for example, require that students learn “different views on the existence of global warming.” Because of Texas’ large influence on the national textbook market, textbooks presenting non-scientific “different views” about climate change—or simply omitting the subject entirely because of the alleged “controversy”—could become part of K-12 classrooms across the country.

  20. Impacts of climate change on paddy rice yield in a temperate climate.

    Science.gov (United States)

    Kim, Han-Yong; Ko, Jonghan; Kang, Suchel; Tenhunen, John

    2013-02-01

    The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES-Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (-22.1% and -35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES-Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system. © 2012 Blackwell Publishing Ltd.

  1. American archives and climate change: Risks and adaptation

    Directory of Open Access Journals (Sweden)

    T. Mazurczyk

    Full Text Available Climate change directly affects the future security of cultural resources. Cultural heritage and in particular, archives, are increasingly at risk of degradation due to climate change threats and triggers. This study evaluated present and future consequences of water-related climate change impacts using a mapping methodology to assess exposure of American archives to incompatible weather extremes. Susceptibility to climate change threats like sea level rise, storm surge, surface water flooding, and humidity, all influenced by a combination of temperature rise and increased precipitation, at a worst-case scenario were assessed for 1232 archival repositories. Results indicate that approximately 98.8% of archives are likely to be affected by at least one climate risk factor, though on average, most archives are at low risk of exposure (90% when risk factors are combined. Future storm surge plus sea level rise was likely to impact 17.7% of archival repositories with 22.1% affected by only storm surge and 4.3% affected by only sea level rise (1.8-m scenario. Fewer archives were likely to be susceptible to surface water flooding (2.4%. More than 90% of archives were estimated to have a temperature change greater than ±1 °C, with 7.5% of sites likely to change by ±10 °C, and 69.5% of archives were likely to receive at least 152 mm more rainfall by 2100 over current annual averages. In terms of sustainability, developing appropriate socio-economic planning schemes that integrate cumulative exposure of archives to future climate patterns is critically important for safeguarding society and its heritage. The outcomes from the risk assessment in this study aid in the decision-making process by promoting strategic adaptation protocols and providing administrators a way to prioritize archival management goals based on the expected severity of future climate change impacts. Keywords: Archives, Climate change, Sea level rise, Storm surge, Cultural

  2. Climate Change and Transportation

    OpenAIRE

    Yevdokimov, Yuri

    2010-01-01

    As stated at the beginning of this chapter, the relationship between transportation and climate is two-directional. Based on our statistical analysis performed for Canada, we can make some general conclusions about this relationship. On the one hand, transportation is one of the largest contributors to GHG emissions which, in turn, cause various changes in climate. On the other hand, these climate changes negatively affect transportation in terms of its infrastructure and operations. Therefor...

  3. Water Planning and Climate Change: Actionable Intelligence Yet?

    Science.gov (United States)

    Milly, P.

    2008-05-01

    Within a rational planning framework, water planners design major water projects by evaluating tradeoffs of costs, benefits, and risks to life and property. The evaluation is based on anticipated future runoff and streamflow. Generally, planners have invoked the stationarity approximation: they have assumed that hydrologic conditions during the planned lifetime of a project will be similar to those observed in the past. Contemporary anthropogenic climate change arguably makes stationarity untenable. In principle, stationarity-based planning under non- stationarity potentially leads to incorrect assessment of tradeoffs, sub-optimal decisions, and excessive financial and environmental costs (e.g., a reservoir that is too big to ever be filled) and/or insufficient benefits (e.g., levees that are too small to hold back the flood waters). As the reigning default assumption for planning, stationarity is an easy target for criticism; provision of a practical alternative is not so easy. The leading alternative, use of quantitative climate-change projections from global climate models in conjunction with water planners' river-basin models, has serious shortcomings of its own. Climate models (1) neglect some terrestrial processes known to influence runoff and streamflow; (2) do not represent precipitation well at the finer resolved time and space scales; (3) do not resolve any processes at the even finer spatial scale of relevance to much of water planning; and (4) disagree among themselves about some changes. Even setting aside the issue of scale mismatch, for which various "downscaling" methods have been proposed, outputs from climate models generally are not directly transferable to river-basin models, and river-basin models commonly use empiricisms whose historical validity might not extrapolate well under climate change. So climate science is informing water management that stationarity is a flawed assumption, but it has not presented a universally and reliably superior

  4. Adapting agriculture to climate change.

    Science.gov (United States)

    Howden, S Mark; Soussana, Jean-François; Tubiello, Francesco N; Chhetri, Netra; Dunlop, Michael; Meinke, Holger

    2007-12-11

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of existing agricultural systems, often variations of existing climate risk management. We show that implementation of these options is likely to have substantial benefits under moderate climate change for some cropping systems. However, there are limits to their effectiveness under more severe climate changes. Hence, more systemic changes in resource allocation need to be considered, such as targeted diversification of production systems and livelihoods. We argue that achieving increased adaptation action will necessitate integration of climate change-related issues with other risk factors, such as climate variability and market risk, and with other policy domains, such as sustainable development. Dealing with the many barriers to effective adaptation will require a comprehensive and dynamic policy approach covering a range of scales and issues, for example, from the understanding by farmers of change in risk profiles to the establishment of efficient markets that facilitate response strategies. Science, too, has to adapt. Multidisciplinary problems require multidisciplinary solutions, i.e., a focus on integrated rather than disciplinary science and a strengthening of the interface with decision makers. A crucial component of this approach is the implementation of adaptation assessment frameworks that are relevant, robust, and easily operated by all stakeholders, practitioners, policymakers, and scientists.

  5. Climate change in China and China’s policies and actions for addressing climate change

    OpenAIRE

    Luo Y.; Qin D.; Huang J.

    2010-01-01

    Since the first assessment report (FAR) of Inter-Governmental Panel on Climate Change (IPCC) in 1990, the international scientific community has made substantial progresses in climate change sciences. Changes in components of climate system, including the atmosphere, oceans and cryosphere, indicate that global warming is unequivocal. Instrumental records demonstrate that the global mean temperature has a significant increasing trend during the 20th century and in the latest 50 years the warmi...

  6. An integrated framework to address climate change (ESCAPE) and further developments of the global and regional climate modules (MAGICC)

    International Nuclear Information System (INIS)

    Hulme, M.; Raper, S.C.B.

    1995-01-01

    ESCAPE (the Evaluation of Strategies to address Climate change by Adapting to and Preventing Emissions) is an integrated climate change assessment model constructed between 1990 and 1992 for DG XI of the Commission of the European Community by a consortium of research institutes headed by the Climatic Research Unit (CRU). It has been designed to enable the user to generate future scenarios of greenhouse gas emissions (through an energy-economic model), examine their impact on global climate and sea level (through two independent global climate models), and illustrate some of the consequences of this global climate change at a regional scale for the European Community (through a regional climate scenario generator and impact models). We provide a very brief overview of the ESCAPE model which, although innovative, suffers from a number of major limitations. Subsequent work in the CRU has concentrated on improvements to the global climate module and work has also commenced on an improved regional climate scenario generating module. These improvements will lead to a new integrated climate change assessment model, MAGICC (Model for the Assessment of Greenhouse gas Induced Climate Change) which can easily be incorporated into new larger integrated frameworks developed by other institutes. (Author)

  7. Hard choices : climate change in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Coward, H.; Weaver, A.J. (eds.)

    2004-07-01

    This book explains the nature of climate change, the options to respond to it and the virtues of Canada's commitment to the Kyoto Protocol. It includes a collection of essays by prominent Canadian scientists and scholars who discuss the impacts of climate change on Canada from physical, social, technological, economic and political perspectives. Climate change assessments have been made possible by monitoring and recording changes in atmospheric concentrations of greenhouse gases. As a result of these assessments, climate change has become an issue on policy agendas. Advanced computer models have convinced much of the scientific community that climate change will bring with it droughts, floods, hurricanes, forest fires, ice storms, blackouts, and increased warming in countries in high latitudes, including Canada, despite remaining uncertainties about how human activities will affect the climate. The authors cautioned that climate change response strategies can only be refined once these uncertainties are significantly reduced. refs., tabs., figs.

  8. Climate change and marine life

    DEFF Research Database (Denmark)

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change...... ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC......) process, and to strengthen research into ecological impacts of climate change...

  9. Financing climate change adaptation

    NARCIS (Netherlands)

    Bouwer, L.M.; Aerts, J.C.J.H.

    2006-01-01

    This paper examines the topic of financing adaptation in future climate change policies. A major question is whether adaptation in developing countries should be financed under the 1992 United Nations Framework Convention on Climate Change (UNFCCC), or whether funding should come from other sources.

  10. Assessing climate change impacts on wheat production (a case study

    Directory of Open Access Journals (Sweden)

    J. Valizadeh

    2014-06-01

    Full Text Available Climate change is one of the major challenges facing humanity in the future and effect of climate change has been detrimental to agricultural industry. The aim of this study was to simulate the effects of climate change on the maturity period, leaf area index (LAI, biomass and grain yield of wheat under future climate change for the Sistan and Baluchestan region in Iran. For this purpose, two general circulation models HadCM3 and IPCM4 under three scenarios A1B, B1 and A2 in three time periods 2020, 2050 and 2080 were used. LARS-WG model was used for simulating climatic parameters for each period and CERES-Wheat model was used to simulate wheat growth. The results of model evaluation showed that LARS-WG had appropriate prediction for climatic parameters and simulation of stochastic growing season in future climate change conditions for the studied region. Wheat growing season period in all scenarios of climate change was reduced compared to the current situation. Possible reasons were the increase in temperature rate and the accelerated growth stages of wheat. This reduction in B1 scenario was less than A1B and A2 scenarios. Maximum wheat LAI in all scenarios, except scenario A1B in 2050, is decreased compared to the current situation. Yield and biological yield of wheat in both general circulation models under all scenarios and all times were reduced in comparison with current conditions and the lowest reduction was related to B1 scenario. In general, the results showed that wheat production in the future will be affected by climate change and will decrease in the studied region. To reduce these risks, the impact of climate change mitigation strategies and management systems for crop adaptation to climate change conditions should be considered.

  11. Research Advances of Impacts of Climate Changes on Crop Climatic Adaptability

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Agriculture received most direct influences from climate changes. Because of climate changes, agricultural climate resources changed and thus influenced climate adaptability of agricultural products. The growth and output of crops were finally affected. The calculation method and application of agricultural products in recent years were summarized. Several questions about the response of agricultural crops to climate elements were proposed for attention.

  12. Witnesses of climate change

    International Nuclear Information System (INIS)

    2015-11-01

    After having evoked the process of climate change, the effect of greenhouse gas emissions, the evolution of average temperatures in France since 1900, and indicated the various interactions and impacts of climate change regarding air quality, water resources, food supply, degradation and loss of biodiversity, deforestation, desertification, this publication, while quoting various testimonies (from a mountain refuge guardian, a wine maker, a guide in La Reunion, an IFREMER bio-statistician engineer, and a representative of health professionals), describes the various noticed impacts of climate change on the environment in mountain chains, on agriculture, on sea level rise, on overseas biodiversity, and on health

  13. Technology and climate change

    International Nuclear Information System (INIS)

    Morrison, R.; Layzedl, D.; McLean, G.

    2002-01-01

    This paper was the major one of the opening plenary session at the Climate Change 2 conference. The paper provides a context for assessing the needs for technologies to reduce the concentration of GHG in the atmosphere. It looks at sources, sinks and trends for GHG, in the world at large and in Canada, and at efforts to develop new technologies to achieve the goals of climate change policy. The paper focusses on transport, electricity and biomass as sectors of interest, both because of their potential for contributing to climate change policy goals within Canada, and also because of research interests

  14. Defining response capacity to enhance climate change policy

    International Nuclear Information System (INIS)

    Tompkins, Emma L.; Neil Adger, W.

    2005-01-01

    Climate change adaptation and mitigation decisions made by governments are usually taken in different policy domains. At the individual level however, adaptation and mitigation activities are undertaken together as part of the management of risk and resources. We propose that a useful starting point to develop a national climate policy is to understand what societal response might mean in practice. First we frame the set of responses at the national policy level as a trade off between investment in the development and diffusion of new technology, and investment in encouraging and enabling society to change its behaviour and or adopt the new technology. We argue that these are the pertinent trade-offs, rather than those usually posited between climate change mitigation and adaptation. The preference for a policy response that focuses more on technological innovation rather than one that focuses on changing social behaviour will be influenced by the capacity of different societies to change their greenhouse gas emissions; by perceived vulnerability to climate impacts; and by capacity to modify social behaviour and physical environment. Starting with this complete vision of response options should enable policy makers to re-evaluate the risk environment and the set of response options available to them. From here, policy makers should consider who is responsible for making climate response decisions and when actions should be taken. Institutional arrangements dictate social and political acceptability of different policies, they structure worldviews, and they determine the provision of resources for investment in technological innovation and social change. The importance of focussing on the timing of the response is emphasised to maximise the potential for adjustments through social learning and institutional change at different policy scales. We argue that the ability to respond to climate change is both enabled and constrained by social and technological conditions

  15. Fair adaptation to climate change

    International Nuclear Information System (INIS)

    Paavola, Jouni; Adger, W. Neil

    2006-01-01

    This article identifies social justice dilemmas associated with the necessity to adapt to climate change, examines how they are currently addressed by the climate change regime, and proposes solutions to overcome prevailing gaps and ambiguities. We argue that the key justice dilemmas of adaptation include responsibility for climate change impacts, the level and burden sharing of assistance to vulnerable countries for adaptation, distribution of assistance between recipient countries and adaptation measures, and fair participation in planning and making decisions on adaptation. We demonstrate how the climate change regime largely omits responsibility but makes a general commitment to assistance. However, the regime has so far failed to operationalise assistance and has made only minor progress towards eliminating obstacles for fair participation. We propose the adoption of four principles for fair adaptation in the climate change regime. These include avoiding dangerous climate change, forward-looking responsibility, putting the most vulnerable first and equal participation of all. We argue that a safe maximum standard of 400-500 ppm of CO 2 concentrations in the atmosphere and a carbon tax of $20-50 per carbon equivalent ton could provide the initial instruments for operationalising the principles. (author)

  16. Methodology to assess coastal infrastructure resilience to climate change

    Directory of Open Access Journals (Sweden)

    Roca Marta

    2016-01-01

    In order to improve the resilience of the line, several options have been considered to evaluate and reduce climate change impacts to the railway. This paper describes the methodological approach developed to evaluate the risks of flooding for a range of scenarios in the estuary and open coast reaches of the line. Components to derive the present day and future climate change coastal conditions including some possible adaptation measures are also presented together with the results of the hindcasting analysis to assess the performance of the modelling system. An overview of the modelling results obtained to support the development of a long-term Resilience Strategy for asset management is also discussed.

  17. DTU climate change technologies. Recommendations on accelerated development and deployment of climate change technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Halsnaes, K [Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, System Analysis Div., Roskilde (Denmark); Nielsen, Niels Axel; Moeller, J S; Hansen, Jakob Fritz; Froekjaer Strand, I [Technical Univ. of Denmark, Kgs. Lyngby (Denmark)

    2009-09-15

    During 2009, the Technical University of Denmark (DTU) has held a number of international workshops for climate change. Participants came from industry, research institutions and government. The workshops focused on sustainable energy systems and climate change adaptation. The summary of conclusions and recommendations from the workshops constitutes a comprehensive set of technology tracks and recommended actions towards accelerated development and deployment of technology within these two key areas. The workshop process has led to three main conclusions. A. Radical changes are needed to develop sustainable energy systems. B. Tools and processes that climate-proof societal planning and management are needed in order to adapt to climate change. C. Partnerships concerning innovation and deployment (research, development and deployment) are required to meet time constraints.

  18. The economics of climate change

    International Nuclear Information System (INIS)

    Jones, T.

    1992-01-01

    Perhaps the most startling aspect of the debate on climate change is the speed with which it has climbed the international political agenda. In 1985, climate change was viewed almost entirely as a scientific issue. Only seven years later, most industrialized countries have made some sort of political pledge to abate their emissions of greenhouse gases over a specific timetable. And earlier this year, 154 countries signed a Framework Convention on Climate Change at the UN Conference on Environment and Development in Rio de Janeiro. What is the present 'state of play' in the economics of climate change. And what priorities are now emerging in 'post-Rio' policy. 11 ref

  19. Research on climate effects. Effects of climate changes. Proceedings

    International Nuclear Information System (INIS)

    Fischer, W.; Stein, G.

    1991-01-01

    Global changes affecting the earth are at the forefront of public interest, possibly caused by climate alterations amongst other things. The public expects appropriate measures from politics to successfully adapt to unavoidable climate changes. As well as an investigation into the causes of climatic changes and the corollaries between the different scientific phenomena, the effects on the economy and society must also be examined. The Federal Minister for Research and Technology aims to make a valuable German contribution to international Global Change Research with the focal point ''Effects of Climate Changes on the Ecological and Civil System''. The aim of the workshop was to give an outline of current scientific knowledge, sketch out research requirements and give recommendations on the focal point with regard to the BMFT. (orig.) [de

  20. A benchmarking framework to evaluate business climate change risks: A practical tool suitable for investors decision-making process

    Directory of Open Access Journals (Sweden)

    Nikolaos Demertzidis

    2015-01-01

    Full Text Available A fundamental concern for the investor community is to identify techniques which would allow them to evaluate and highlight the most probable financial risks that could affect the value of their asset portfolio. Traditional techniques primarily focus on estimating certain conventional social-economic factors and many fail to cover an array of climate change risks. A limited number of institutional documents present, to a somewhat limited extent, some general-defined types of business climate change risks, which are deemed most likely to influence the value of an investors’ portfolio. However, it is crucial that stakeholders of businesses and scholars consider a wider range of information so as to assist investors in their decision making. This paper aims at establishing a new framework to operationalize and quantify an array of business climate change risks to provide more comprehensive and tangible information on non-traditional risks. This framework relies on the benchmarking – scoring systems and Global Reporting Initiative (GRI guidelines, and is applied to various Greek businesses that are certified by Environmental Management and Audit Scheme (EMAS.

  1. Climate change, environment and development

    OpenAIRE

    Okereke, Chukwumerije; Massaquoi, Abu-Bakar S.

    2017-01-01

    Climate change, a quintessential environmental problem, is generally recognised as the most important development challenge in the 21st century (IPCC, 2014). In addition to acknowledging its many significant direct consequences, climate change is increasingly used to frame discussions on other important global challenges, such as health, energy and food security. This chapter provides understanding of the intricate and complex relationship between climate change, environment and development.

  2. A plant's perspective of extremes: terrestrial plant responses to changing climatic variability.

    Science.gov (United States)

    Reyer, Christopher P O; Leuzinger, Sebastian; Rammig, Anja; Wolf, Annett; Bartholomeus, Ruud P; Bonfante, Antonello; de Lorenzi, Francesca; Dury, Marie; Gloning, Philipp; Abou Jaoudé, Renée; Klein, Tamir; Kuster, Thomas M; Martins, Monica; Niedrist, Georg; Riccardi, Maria; Wohlfahrt, Georg; de Angelis, Paolo; de Dato, Giovanbattista; François, Louis; Menzel, Annette; Pereira, Marízia

    2013-01-01

    We review observational, experimental, and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied, although potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heat-waves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational, and/or modeling studies have the potential to overcome important caveats of the respective individual approaches. © 2012 Blackwell Publishing Ltd.

  3. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... are based on misconceptions and do not apply to compensation of present actual harm. Finally, two arguments are presented to the effect that, in so far as developed countries accept a major commitment to mitigate climate change, they should also accept a commitment to address or compensate actual harm from...... climate change. The first argument appeals to the principle that if it is an injustice to cause risk of incurring harm in the future, then it is also an injustice to cause a similar harm now. The second argument appeals to the principle that if there is moral reason to reduce the risk of specific harms...

  4. Climate indices of Iran under climate change

    OpenAIRE

    alireza kochaki; mehdi nasiry; gholamali kamali

    2009-01-01

    Global warming will affect all climatic variables and particularly rainfall patterns. The purpose of present investigation was to predict climatic parameters of Iran under future climate change and to compare them with the present conditions. For this reason, UKMO General Circulation Model was used for the year 2025 and 2050. By running the model, minimum and maximum monthly temperature and also maximum monthly rainfall for the representative climate stations were calculated and finally the e...

  5. Potential impacts of climate change on soil erosion vulnerability across the conterminous United States

    Science.gov (United States)

    C. Segura; G. Sun; S. McNulty; Y. Zhang

    2014-01-01

    Rainfall runoff erosivity (R) is one key climate factor that controls water erosion. Quantifying the effects of climate change-induced erosivity change is important for identifying critical regions prone to soil erosion under a changing environment. In this study we first evaluate the changes of R from 1970 to 2090 across the United States under nine climate conditions...

  6. Evaluating the contribution of Sustainable Land Management to climate change adaptation and mitigation, and its impacts on Mediterranean ecosystem services.

    Science.gov (United States)

    de Vente, Joris; Zagaria, Cecilia; Pérez-Cutillas, Pedro; Almagro, Maria; Martínez-Mena, Maria; Baartman, Jantiene; Boix-Fayos, Carolina

    2015-04-01

    Changing climate and land management have strong implications for soil and water resources and for many essential ecosystem services (ES), such as provision of drinking and irrigation water, soil erosion control, and carbon sequestration. Large impacts of climate change are expected in the Mediterranean, characterized by a high dependence on scarce soil and water resources. On the other hand, well designed Sustainable Land Management (SLM) strategies can reduce the risks associated with climate change, but their design requires knowledge of their multiple effects on ecosystem services under present and future climate scenarios and of possible tradeoffs. Moreover, strategies are only viable if suited to local environmental, socio-economic and cultural conditions, so stakeholder engagement is crucial during their selection, evaluation and implementation. We present preliminary results of a catchment wide assessment of the expected impacts of climate change on water availability in the Segura basin (18800 km2) southeastern Spain. Furthermore, we evaluated the impacts of past land use changes and the benefits of catchment wide implementation of SLM practices to protect soil and water resources, prevent sedimentation of reservoirs and increase carbon sequestration in soil and vegetation. We used the InVEST modeling framework to simulate the water availability and sediment export under different climate, land use and land management scenarios, and quantified carbon stocks in soil and vegetation. Realistic scenarios of implementation of SLM practices were prepared based on an extensive process of stakeholder engagement and using latest climate change predictions from Regional Climate Models for different emission scenarios. Results indicate a strong decrease in water availability in the Segura catchment under expected climate change, with average reductions of upto 60% and large spatial variability. Land use changes (1990 - 2006) resulted in a slight increase in water

  7. Evaluation of co-benefits from combined climate change and air pollution reduction strategies

    Science.gov (United States)

    Leitao, Joana; Van Dingenen, Rita; Dentener, Frank; Rao, Shilpa

    2014-05-01

    The connection of climate change and air pollution is becoming more relevant in the process of policy making and implementation of emission control strategies because of resulting co-benefits and trade-offs. Some sectors, such as fossil fuel combustion, are sources of both pollutants (NOx and PM) as well as greenhouse gas (CO2). Additionally, the use of wood burning as biofuel to reduce climate impact may in fact deteriorate air quality. Furthermore, several air pollutants are important radiative forcers and regulating their emissions impacts on climate. It is evident that both problems need to be undertaken with a common strategy and the existence of cross-policy with co-benefits may encourage their implementation. The LIMITS FP7 project (http://www.feem-project.net/limits/index.html) was designed with the main goal of assessing strategies for reduction of GHG emissions so that the 2°C target can be achieved. The work developed focus on the evaluation of the implementation of strategies analysing several aspects of different scenarios, namely: the feasibility of low carbon scenarios in terms of available technologies and infrastructure, the required financial mechanisms, and also the co-benefits regarding energy security, economic development and air pollution. For the latter, five integrated assessment models (IAMs) provided greenhouse gases and pollutant emission values for several scenarios. These were based on air pollution scenarios defined according to stringency and implementation of future global legislation. They which were also combined with 2 climate policy scenarios (no climate policy and 2.8 W/m2 target). The former are mostly focused on non-climate policies and technical control measures for emissions of air pollutants, such as PM2.5, NOx and SO2, with their emission factors harmonized between the IAMs. With the global air quality source-receptor model TM5-FASST the impact of the resulting emissions was analysed and the co-benefits of combined

  8. U.S. Navy Climate Change Roadmap

    Science.gov (United States)

    2010-04-01

    Climate change is a national security challenge with strategic implications for the Navy. Climate change will lead to increased tensions in nations...with weak economies and political institutions. While climate change alone is not likely to lead to future conflict, it may be a contributing factor... Climate change is affecting, and will continue to affect, U.S. military installations and access to natural resources worldwide. It will affect the

  9. iSeeChange: Crowdsourced Climate Change Reporting

    Science.gov (United States)

    Drapkin, J. K.

    2012-12-01

    Directly engaging local communities about their climate change experiences has never been more important. As weather and climate become more unpredictable, these experiences provide a baseline for community decisions, developing adaptation strategies, and planning for the future. Typically, climate change is documented in a top-down fashion: a scientist has a question, makes observations, and publishes a study; in the best case scenario, a journalist reports on the results; if there's time, a local anecdote is sought to put the results in a familiar context. iSeeChange, a public media project funded by the Corporation for Public Broadcasting, reports local environmental change in reverse and turns community questions and conversations with scientists into reported stories that promote opportunities to learn about climate change's affects on the environment and daily life. iSeeChange engages residents of the North Fork Valley region of western Colorado in a multiplatform conversation with scientists about how they perceive their environment is changing through the course of a year - season to season. By bringing together public radio, a mobile reporting and cellular engagement strategy, and a custom crowdsourcing multimedia platform, iSeeChange provides a central access point to collect observations (texts, photographs, voice recordings, and video), organize conversations and interviews with scientists, and report stories online and on air. In this way, iSeeChange is building a dynamic crowdsourced reservoir of information that can increase awareness of environmental problems and potentially disseminate useful information about climate change and successful adaptation strategies. Ultimately, by understanding the community's information needs in a localized question-driven context, the iSeeChange platform presents opportunities for the science community to better understand the value of information and develop better ways to tailor information for communities to use

  10. Applying "Climate" system to teaching basic climatology and raising public awareness of climate change issues

    Science.gov (United States)

    Gordova, Yulia; Okladnikov, Igor; Titov, Alexander; Gordov, Evgeny

    2016-04-01

    While there is a strong demand for innovation in digital learning, available training programs in the environmental sciences have no time to adapt to rapid changes in the domain content. A joint group of scientists and university teachers develops and implements an educational environment for new learning experiences in basics of climatic science and its applications. This so-called virtual learning laboratory "Climate" contains educational materials and interactive training courses developed to provide undergraduate and graduate students with profound understanding of changes in regional climate and environment. The main feature of this Laboratory is that students perform their computational tasks on climate modeling and evaluation and assessment of climate change using the typical tools of the "Climate" information-computational system, which are usually used by real-life practitioners performing such kind of research. Students have an opportunity to perform computational laboratory works using information-computational tools of the system and improve skills of their usage simultaneously with mastering the subject. We did not create an artificial learning environment to pass the trainings. On the contrary, the main purpose of association of the educational block and computational information system was to familiarize students with the real existing technologies for monitoring and analysis of data on the state of the climate. Trainings are based on technologies and procedures which are typical for Earth system sciences. Educational courses are designed to permit students to conduct their own investigations of ongoing and future climate changes in a manner that is essentially identical to the techniques used by national and international climate research organizations. All trainings are supported by lectures, devoted to the basic aspects of modern climatology, including analysis of current climate change and its possible impacts ensuring effective links between

  11. Potential Impacts of Climate Change in Kenya

    International Nuclear Information System (INIS)

    Ogola, J.S.; Abira, M.A.; Awuor, V.O.

    1997-01-01

    According to the United Nations Framework Convention on Climate Change (UNFCCC), climate change is attributed directly or indirectly to human activities that alter the composition of the global atmosphere. It is a phenomenon that is still inadequately understood by the general public. Planners, policy makers and even within institutions of learning, but one which is bound to affect our environment and development activities. There is therefore need for information dissemination, systematic research, policy formulation, and development of strategies for managing climate change. The book is divided into five parts, Part I presents basic information on climate change; Part II looks at climatic change and natural resources; Part III discusses implications of climate change; Part IV presents ethical issues related to climatic change; and Part V deals with responses to climate change

  12. Climate Change: From Science to Practice.

    Science.gov (United States)

    Wheeler, Nicola; Watts, Nick

    2018-03-01

    Climate change poses a significant threat to human health. Understanding how climate science can be translated into public health practice is an essential first step in enabling robust adaptation and improving resiliency to climate change. Recent research highlights the importance of iterative approaches to public health adaptation to climate change, enabling uncertainties of health impacts and barriers to adaptation to be accounted for. There are still significant barriers to adaptation, which are context-specific and thus present unique challenges to public health practice. The implementation of flexible adaptation approaches, using frameworks targeted for public health, is key to ensuring robust adaptation to climate change in public health practice. The BRACE framework provides an excellent approach for health adaptation to climate change. Combining this with the insights provided and by the adaptation pathways approach allows for more deliberate accounting of long-term uncertainties. The mainstreaming of climate change adaptation into public health practice and planning is important in facilitating this approach and overcoming the significant barriers to effective adaptation. Yet, the immediate and future limits to adaptation provide clear justification for urgent and accelerated efforts to mitigate climate change.

  13. Engaging Students In The Science Of Climate Change

    Science.gov (United States)

    Rhew, R. C.; Halversen, C.; Weiss, E.; Pedemonte, S.; Weirman, T.

    2013-12-01

    Climate change is arguably the defining environmental issue of our generation. It is thus increasingly necessary for every member of the global community to understand the basic underlying science of Earth's climate system and how it is changing in order to make informed, evidence-based decisions about how we will respond individually and as a society. Through exploration of the inextricable interconnection between Earth's ocean, atmosphere and climate, we believe students will be better prepared to tackle the complex issues surrounding the causes and effects of climate change and evaluate possible solutions. If students are also given opportunities to gather evidence from real data and use scientific argumentation to make evidence-based explanations about climate change, not only will they gain an increased understanding of the science concepts and science practices, the students will better comprehend the nature of climate change science. Engaging in argument from evidence is a scientific practice not only emphasized in the Framework for K-12 Science Education and the Next Generation Science Standards (NGSS), but also emphasized in the Common Core State Standards for English Language Arts & Literacy in History/Social Studies and Science (CCSS). This significant overlap between NGSS and CCSS has implications for science and language arts classrooms, and should influence how we support and build students' expertise with this practice of sciences. The featured exemplary curricula supports middle school educators as they address climate change in their classrooms. The exemplar we will use is the NOAA-funded Ocean Sciences Sequence (OSS) for Grades 6-8: The ocean-atmosphere connection and climate change, which are curriculum units that deliver rich science content correlated to the Next Generation Science Standards (NGSS) Disciplinary Core Ideas and an emphasis on the Practices of Science, as called for in NGSS and the Framework. Designed in accordance with the latest

  14. Regional climate change scenarios

    International Nuclear Information System (INIS)

    Somot, S.

    2005-01-01

    Because studies of the regional impact of climate change need higher spatial resolution than that obtained in standard global climate change scenarios, developing regional scenarios from models is a crucial goal for the climate modelling community. The zoom capacity of ARPEGE-Climat, the Meteo-France climate model, allows use of scenarios with a horizontal resolution of about 50 km over France and the Mediterranean basin. An IPCC-A2 scenario for the end of the 21. century in France shows higher temperatures in each season and more winter and less summer precipitation than now. Tuning the modelled statistical distributions to observed temperature and precipitation allows us to study changes in the frequency of extreme events between today's climate and that at the end of century. The frequency of very hot days in summer will increase. In particular, the frequency of days with a maximum temperature above 35 deg C will be multiplied by a factor of 10, on average. In our scenario, the Toulouse area and Provence might see one quarter of their summer days with a maximum temperature above 35 deg C. (author)

  15. Feframing Climate Change for Environmental Health.

    Science.gov (United States)

    Weems, Caitlin; Subramaniam, Prithwi Raj

    2017-04-01

    Repeated warnings by the scientific community on the dire consequences of climate change through global warming to the ecology and sustenance of our planet have not been give appropriate attention by the U.S. public. Research has shown that climate change is responsible for catastrophic weather occurrences--such as floods, tornadoes, hurricanes, and heat waves--resulting in environmental and public health issues. The purpose of this report is to examine factors influencing public views on climate change. Theoretical and political perspectives are examined to unpack opinions held by the public in the U.S. on climate change. The Health Belief Model is used as an example to showcase the efficacy of an individual behavior change program in providing the synergy to understand climate change at the microlevel. The concept of reframing is discussed as a strategy to alter how the public views climate change.

  16. Climate Change and Poverty Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Simon

    2011-08-15

    Climate change will make it increasingly difficult to achieve and sustain development goals. This is largely because climate effects on poverty remain poorly understood, and poverty reduction strategies do not adequately support climate resilience. Ensuring effective development in the face of climate change requires action on six fronts: investing in a stronger climate and poverty evidence base; applying the learning about development effectiveness to how we address adaptation needs; supporting nationally derived, integrated policies and programmes; including the climate-vulnerable poor in developing strategies; and identifying how mitigation strategies can also reduce poverty and enable adaptation.

  17. Climate change and respiratory health.

    Science.gov (United States)

    Gerardi, Daniel A; Kellerman, Roy A

    2014-10-01

    To discuss the nature of climate change and both its immediate and long-term effects on human respiratory health. This review is based on information from a presentation of the American College of Chest Physicians course on Occupational and Environmental Lung Disease held in Toronto, Canada, June 2013. It is supplemented by a PubMed search for climate change, global warming, respiratory tract diseases, and respiratory health. It is also supplemented by a search of Web sites including the Environmental Protection Agency, National Oceanic and Atmospheric Administration, World Meteorological Association, National Snow and Ice Data Center, Carbon Dioxide Information Analysis Center, Inter-Governmental Panel on Climate Change, and the World Health Organization. Health effects of climate change include an increase in the prevalence of certain respiratory diseases, exacerbations of chronic lung disease, premature mortality, allergic responses, and declines in lung function. Climate change, mediated by greenhouse gases, causes adverse health effects to the most vulnerable patient populations-the elderly, children, and those in distressed socioeconomic strata.

  18. Gender Perspectives on Climate Change & Human Security in India: An Analysis of National Missions on Climate Change

    Directory of Open Access Journals (Sweden)

    Jyoti K Parikh

    2012-04-01

    Full Text Available Women play a crucial role in many activities essential for coping with climate change. Indian women appear to be more vulnerable than men to differential impacts of climate change because they share most of the household managing responsibilities but have limited access to participation in decision making and governance. Most of the policies for climate change adaptation and mitigation do not specifically address the vulnerability of women. The National Action Plan for Climate Change (NAPCC, formulated to shape future discourse of climate change adaptation and development, recognizes the differential impacts of climate change on society, but incorporates merely a few gender specific measures. The paper suggests gender specific measures for each mission of the NAPCC to make the adaptation and development process more inclusive and sustainable in India.

  19. Fisheries regulatory regimes and resilience to climate change.

    Science.gov (United States)

    Ojea, Elena; Pearlman, Isaac; Gaines, Steven D; Lester, Sarah E

    2017-05-01

    Climate change is already producing ecological, social, and economic impacts on fisheries, and these effects are expected to increase in frequency and magnitude in the future. Fisheries governance and regulations can alter socio-ecological resilience to climate change impacts via harvest control rules and incentives driving fisher behavior, yet there are no syntheses or conceptual frameworks for examining how institutions and their regulatory approaches can alter fisheries resilience to climate change. We identify nine key climate resilience criteria for fisheries socio-ecological systems (SES), defining resilience as the ability of the coupled system of interacting social and ecological components (i.e., the SES) to absorb change while avoiding transformation into a different undesirable state. We then evaluate the capacity of four fisheries regulatory systems that vary in their degree of property rights, including open access, limited entry, and two types of rights-based management, to increase or inhibit resilience. Our exploratory assessment of evidence in the literature suggests that these regulatory regimes vary widely in their ability to promote resilient fisheries, with rights-based approaches appearing to offer more resilience benefits in many cases, but detailed characteristics of the regulatory instruments are fundamental.

  20. Land use and climate change

    OpenAIRE

    Koomen, E.; Moel, de, H.; Steingröver, E.G.; Rooij, van, S.A.M.; Eupen, van, M.

    2012-01-01

    Land use is majorly involved with climate change concerns and this chapter discusses and reviews the interrelationships between the vulnerability, adaptation and mitigation aspects of land use and climate change. We review a number of key studies on climate change issues regarding land productivity, land use and land management (LPLULM), identifying key findings, pointing out research needs, and raising economic/policy questions to ponder. Overall, this chapter goes beyond previous reviews ...

  1. Communicating uncertainty: lessons learned and suggestions for climate change assessment

    International Nuclear Information System (INIS)

    Patt, A.; Dessai, S.

    2005-01-01

    Assessments of climate change face the task of making information about uncertainty accessible and useful to decision-makers. The literature in behavior economics provides many examples of how people make decisions under conditions of uncertainty relying on inappropriate heuristics, leading to inconsistent and counterproductive choices. Modern risk communication practices recommend a number of methods to overcome these hurdles, which have been recommended for the Intergovernmental Panel on Climate Change (IPCC) assessment reports. This paper evaluates the success of the most recent IPCC approach to uncertainty communication, based on a controlled survey of climate change experts. Evaluating the results from the survey, and from a similar survey recently conducted among university students, the paper suggests that the most recent IPCC approach leaves open the possibility for biased and inconsistent responses to the information. The paper concludes by suggesting ways to improve the approach for future IPCC assessment reports. (authors)

  2. Wine and Climate Change

    OpenAIRE

    Ashenfelter, Orley; Storchmann, Karl

    2014-01-01

    In this article we provide an overview of the extensive literature on the impact of weather and climate on grapes and wine with the goal of describing how climate change is likely to affect their production. We start by discussing the physical impact of weather on vine phenology, berry composition and yields, and then survey the economic literature measuring the effects of temperature on wine quality, prices, costs and profits and how climate change will affect these. We also describe what ha...

  3. Uncertainties and climatic change

    International Nuclear Information System (INIS)

    De Gier, A.M.; Opschoor, J.B.; Van de Donk, W.B.H.J.; Hooimeijer, P.; Jepma, J.; Lelieveld, J.; Oerlemans, J.; Petersen, A.

    2008-01-01

    Which processes in the climate system are misunderstood? How are scientists dealing with uncertainty about climate change? What will be done with the conclusions of the recently published synthesis report of the IPCC? These and other questions were answered during the meeting 'Uncertainties and climate change' that was held on Monday 26 November 2007 at the KNAW in Amsterdam. This report is a compilation of all the presentations and provides some conclusions resulting from the discussions during this meeting. [mk] [nl

  4. Climate Change. Solutions for Australia

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, T.; Hoegh-Guldberg, O.; Karoly, D.; Lowe, I.; McMichael, T.; Mitchell, C.; Pearman, G.; Scaife, P.; Reynolds, A. (eds.)

    2004-06-01

    The Australian Climate Group was convened in late 2003 by WWF Australia and the Insurance Australia Group (IAG) in response to the increasing need for action on climate change in Australia. This group proposes a set of solutions to lower the risk that climate change will reach a dangerous level.

  5. Climate change - global warming

    International Nuclear Information System (INIS)

    Ciconkov, Risto

    2001-01-01

    An explanation about climate, weather, climate changes. What is a greenhouse effect, i.e. global warming and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warming Potential) as a factor for estimating their influence on the greenhouse effect. Indicators of the climate changes in the previous period by known international institutions, higher concentrations of global average temperature. Projecting of likely scenarios for the future climate changes and consequences of them on the environment and human activities: industry, energy, agriculture, water resources. The main points of the Kyoto Protocol and problems in its realization. The need of preparing a country strategy concerning the acts of the Kyoto Protocol, suggestions which could contribute in the preparation of the strategy. A special attention is pointed to the energy, its resources, the structure of energy consumption and the energy efficiency. (Author)

  6. Climate change: Factors and forecasts

    International Nuclear Information System (INIS)

    Wilson, W.R.

    1990-01-01

    An overview is presented of global climatic change. The greenhouse effect is an established physical phenomena. The reradiative effects of various anthropogenic gases are scientifically demonstrable, and the increasing concentration of such gases in the atmosphere is irrefutable. The delinquent information is the magnitude of the agravated greenhouse effect (AGE)-induced climatic change, the temporal pace of the change and its spatial distribution. The pace of the climatic change implied by many of the general circulation model (GCM) estimates is for a northern hemispheric warming 10-50 times faster than the change since the last ice age. At a relatively aggregated representation, researching the impact of climate change involves estimating energy use and greenhouse gas atmospheric retention, climate modeling and socio-economic impact models. Recognizing that certain of the impacts of anthropogenic gasses will prove to be cumulative, non-reversible and synergistic, it would be prudent to examine mitigating options for immediate implementation. Given the current degree of scientific uncertainty, response priorities would be on the no-regrets or covering-the-bets options. 14 refs., 1 fig., 1 tab

  7. The 2008 California climate change assessment

    Science.gov (United States)

    Franco, G.

    2008-12-01

    In 2005, Governor Arnold Schwarzenegger signed Executive Order S-03-05, which laid the foundation for California's ambitious greenhouse gas mitigation reduction efforts. The 2020 goal is now codified in state law requiring bringing 2020 emissions to the 1990 levels. The Executive Order also mandates the preparation of biennial updates on the latest climate change science, potential impacts, and assessment of the state's efforts to manage its climate change risks through various adaptation options. In 2006, the first of these mandated scientific assessments (The Governor's Scenarios Report) was released. Based on new scientific studies conducted in the interim, the next assessment, the '2008 Governor's Scenarios Report' is currently in preparation. It has three principal goals: (1) to improve the assessment of climate changes for California and associated impacts on key physical and biological indicators; (2) to begin to translate these physical and biological impacts into sectoral economic impacts; and (3) to begin to develop and evaluate strategies for key sectors or regions for adapting to climate changes already underway. Contributors to this session will present some of this new research to the scientific community. Among the most exciting new insights are impacts assessments for the all-important water and agricultural sectors, coastal areas, public health and related air quality and environmental justice issues, the forestry and energy sectors. This presentation will give an overview of the overall effort which will result in about 35 scientific papers from different research institutions in California. All of the studies are interlinked in such a way as to produce a consistent overall assessment.

  8. Climate Change, Climate Justice, and Environmental Health: Implications for the Nursing Profession.

    Science.gov (United States)

    Nicholas, Patrice K; Breakey, Suellen

    2017-11-01

    Climate change is an emerging challenge linked to negative outcomes for the environment and human health. Since the 1960s, there has been a growing recognition of the need to address climate change and the impact of greenhouse gas emissions implicated in the warming of our planet. There are also deleterious health outcomes linked to complex climate changes that are emerging in the 21st century. This article addresses the social justice issues associated with climate change and human health and discussion of climate justice. Discussion paper. A literature search of electronic databases was conducted for articles, texts, and documents related to climate change, climate justice, and human health. The literature suggests that those who contribute least to global warming are those who will disproportionately be affected by the negative health outcomes of climate change. The concept of climate justice and the role of the Mary Robinson Foundation-Climate Justice are discussed within a framework of nursing's professional responsibility and the importance of social justice for the world's people. The nursing profession must take a leadership role in engaging in policy and advocacy discussions in addressing the looming problems associated with climate change. Nursing organizations have adopted resolutions and engaged in leadership roles to address climate change at the local, regional, national, and global level. It is essential that nurses embrace concepts related to social justice and engage in the policy debate regarding the deleterious effects on human health related to global warming and climate change. Nursing's commitment to social justice offers an opportunity to offer significant global leadership in addressing the health implications related to climate change. Recognizing the negative impacts of climate change on well-being and the underlying socioeconomic reasons for their disproportionate and inequitable distribution can expand and optimize the profession's role

  9. Sweden's third national communication on climate change. Under the United Nations framework convention on climate change

    International Nuclear Information System (INIS)

    2001-01-01

    Sweden's national communication to the UN Convention on Climate Change describes everything about the emission and absorption of greenhouse gases, the motives and forces behind emissions, and official Swedish climate policies. Every five years, Sweden submits a communication on practical climate efforts in Sweden to the UN Convention on Climate Change. The Swedish Environmental Protection Board has coordinated the work of producing the basic documentation for the communication, which also describes the measures already taken and those planned for the future. In addition, scenarios have been adopted for developments in Swedish greenhouse gas emissions, Sweden's vulnerability and Swedish research into the climate and climate change

  10. Global Climate Change and Ocean Education

    Science.gov (United States)

    Spitzer, W.; Anderson, J.

    2011-12-01

    The New England Aquarium, collaborating with other aquariums across the country, is leading a national effort to enable aquariums and related informal science education institutions to effectively communicate the impacts of climate change and ocean acidification on marine animals, habitats and ecosystems. Our goal is to build on visitors' emotional connection with ocean animals, connect to their deeply held values, help them understand causes and effects of climate change and motivate them to embrace effective solutions. Our objectives are to: (1) Build a national coalition of aquariums and related informal education institutions collaborating on climate change education; (2) Develop an interpretive framework for climate change and the ocean that is scientifically sound, research-based, field tested and evaluated; and (3) Build capacity of aquariums to interpret climate change via training for interpreters, interactive exhibits and activities and communities of practice for ongoing support. Centers of informal learning have the potential to bring important environmental issues to the public by presenting the facts, explaining the science, connecting with existing values and interests, and motivating concern and action. Centers that work with live animals (including aquariums, zoos, nature centers, national parks, national marine sanctuaries, etc.) are unique in that they attract large numbers of people of all ages (over 140 million in the US), have strong connections to the natural, and engage many visitors who may not come with a primary interest in science. Recent research indicates that that the public expects and trusts aquariums, zoos, and museums to communicate solutions to environmental and ocean issues, and to advance ocean conservation, and that climate change is the environmental issue of most concern to the public; Ironically, however, most people do not associate climate change with ocean health, or understand the critical role that the ocean plays in

  11. Misleading prioritizations from modelling range shifts under climate change

    Science.gov (United States)

    Sofaer, Helen R.; Jarnevich, Catherine S.; Flather, Curtis H.

    2018-01-01

    AimConservation planning requires the prioritization of a subset of taxa and geographical locations to focus monitoring and management efforts. Integration of the threats and opportunities posed by climate change often relies on predictions from species distribution models, particularly for assessments of vulnerability or invasion risk for multiple taxa. We evaluated whether species distribution models could reliably rank changes in species range size under climate and land use change.LocationConterminous U.S.A.Time period1977–2014.Major taxa studiedPasserine birds.MethodsWe estimated ensembles of species distribution models based on historical North American Breeding Bird Survey occurrences for 190 songbirds, and generated predictions to recent years given c. 35 years of observed land use and climate change. We evaluated model predictions using standard metrics of discrimination performance and a more detailed assessment of the ability of models to rank species vulnerability to climate change based on predicted range loss, range gain, and overall change in range size.ResultsSpecies distribution models yielded unreliable and misleading assessments of relative vulnerability to climate and land use change. Models could not accurately predict range expansion or contraction, and therefore failed to anticipate patterns of range change among species. These failures occurred despite excellent overall discrimination ability and transferability to the validation time period, which reflected strong performance at the majority of locations that were either always or never occupied by each species.Main conclusionsModels failed for the questions and at the locations of greatest interest to conservation and management. This highlights potential pitfalls of multi-taxa impact assessments under global change; in our case, models provided misleading rankings of the most impacted species, and spatial information about range changes was not credible. As modelling methods and

  12. Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    Science.gov (United States)

    Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.

    2015-01-01

    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.

  13. On climate change and economic growth

    International Nuclear Information System (INIS)

    Fankhauser, Samuel; Tol, Richard S.J.

    2005-01-01

    The economic impact of climate change is usually measured as the extent to which the climate of a given period affects social welfare in that period. This static approach ignores the dynamic effects through which climate change may affect economic growth and hence future welfare. In this paper we take a closer look at these dynamic effects, in particular saving and capital accumulation. With a constant savings rate, a lower output due to climate change will lead to a proportionate reduction in investment which in turn will depress future production (capital accumulation effect) and, in almost all cases, future consumption per capita. If the savings rate is endogenous, forward looking agents would change their savings behavior to accommodate the impact of future climate change. This suppresses growth prospects in absolute and per capita terms (savings effect). In an endogenous growth context, these two effects may be exacerbated through changes in labour productivity and the rate of technical progress. Simulations using a simple climate-economy model suggest that the capital accumulation effect is important, especially if technological change is endogenous, and may be larger than the direct impact of climate change. The savings effect is less pronounced. The dynamic effects are more important, relative to the direct effects, if climate change impacts are moderate overall. This suggests that they are more of a concern in developed countries, which are believed to be less vulnerable to climate change. The magnitude of dynamic effects is not sensitive to the choice of discount rate

  14. A Model for Pre-Service Teachers' Climate Change Awareness and Willingness to Act for Pro-Climate Change Friendly Behavior: Adaptation of Awareness to Climate Change Questionnaire

    Science.gov (United States)

    Dal, Burçkin; Alper, Umut; Özdem-Yilmaz, Yasemin; Öztürk, Nilay; Sönmez, Duygu

    2015-01-01

    Public awareness of the negative effects of climate change is vital since it leads to collective action for prevention and adaptation. However, investigations on to what extent people are aware of the climate change issue are rare in the literature. The present study reported the adaptation process of awareness to climate change questionnaire into…

  15. Climate change hotspots in the CMIP5 global climate model ensemble.

    Science.gov (United States)

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-10

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21 st century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2°C of global warming (relative to the late-20 th -century baseline), but not at the higher levels of global warming that occur in the late-21 st -century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world.

  16. Linking models of human behaviour and climate alters projected climate change

    Science.gov (United States)

    Beckage, Brian; Gross, Louis J.; Lacasse, Katherine; Carr, Eric; Metcalf, Sara S.; Winter, Jonathan M.; Howe, Peter D.; Fefferman, Nina; Franck, Travis; Zia, Asim; Kinzig, Ann; Hoffman, Forrest M.

    2018-01-01

    Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4-6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with the largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.

  17. World Regionalization of Climate Change(1961–2010)

    Institute of Scientific and Technical Information of China (English)

    Peijun; Shi; Shao; Sun; Daoyi; Gong; Tao; Zhou

    2016-01-01

    Traditional climate classification or regionalization characterizes the mean state of climate condition, which cannot meet the demand of addressing climate change currently. We have developed a climate change classification method, as well as the fundamental principles, an indicator system, and mapping techniques of climate change regionalization. This study used annual mean temperature and total precipitation as climatic indices, and linear trend and variation change as change indices to characterize climate change quantitatively. The study has proposed a scheme for world climate change regionalization based on a half century of climate data(1961–2010). Level-I regionalization divides the world into 12 tendency zones based on the linear trend of climate, level-II regionalization resulted in 28 fluctuation regions based on the variation change of climate. Climate change regionalization provides a scientific basis for countries and regions to develop plans for adapting to climate change, especially for managing climate-related disaster or environmental risks.

  18. Climate change as seen by science and scientific dissemination

    International Nuclear Information System (INIS)

    Bueno, Lilian de Oliveira

    2010-01-01

    The climate change approach by two daily newspapers and two weekly magazines in 2006 and 2007, and this theme perception by opinion-makers, constitute the major target of this work. A survey was conducted with subscribers to Folha de S. Paulo and O Estado de S. Paulo newspapers, Veja and Epoca magazines, with their journalists, as well as with climate change scientists. The survey showed that is equally high the public interest in general science subjects and in specific environmental themes. In the analyzed periodicals, some incorrect technical concepts were detected and the press coverage focused, mainly, on research into climate change impacts. Energy security, another factor strongly related to climate, was explored by the research to evaluate public view of a relation between climate change and nuclear energy. A parallel may be made between climate change and nuclear catastrophe, present in the popular imaginary, since the atomic bomb explosions in Hiroshima and Nagasaki. Considering the science role in general, it is essential to highlight the fact that the state of the art research should not be dissociated from efficient and effective communication, able to mobilize citizens and touch decision-makers. Although the dialogue between scientists and the public was considered, traditionally, as related to separated fields of awareness, it may be achieved and the media has a fundamental role in this process. (author)

  19. Natural versus anthropogenic climate change: Swedish farmers' joint construction of climate perceptions.

    Science.gov (United States)

    Asplund, Therese

    2016-07-01

    While previous research into understandings of climate change has usually examined general public perceptions, this study offers an audience-specific departure point. This article analyses how Swedish farmers perceive climate change and how they jointly shape their understandings. The agricultural sector is of special interest because it both contributes to and is directly affected by climate change. Through focus group discussions with Swedish farmers, this study finds that (1) farmers relate to and understand climate change through their own experiences, (2) climate change is understood either as a natural process subject to little or no human influence or as anthropogenic and (3) various communication tools contribute to the formation of natural and anthropogenic climate change frames. The article ends by discussing frame resonance and frame clash in public understanding of climate change and by comparing potential similarities and differences in how various segments of the public make sense of climate change. © The Author(s) 2014.

  20. City of Iqaluit's climate change impacts, infrastructure risks and adaptive capacity project

    International Nuclear Information System (INIS)

    Nielsen, D.; Kronenberger, J.

    2007-03-01

    The City of Iqaluit is an Arctic community that is very susceptible to the stresses of climate change. The city is challenged by increased flooding, coastal erosion and ground instability caused by melting of the permafrost layer. In response, the City of Iqaluit has created policies to reduce greenhouse gases and act on climate change. A project has also been launched to develop adaptation strategies, with particular focus on infrastructure vulnerability given the environmental and climate change in the Canadian Arctic. The purpose of the study is to evaluate the biophysical exposure and hazards on Arctic coasts subject to effects of climate change, identify past and current management strategies used to manage risks in coastal communities which have already experienced environmental change, and to evaluate the adaptive capacity of communities for dealing with coastal hazards throughout the Arctic. This document identified the risks to Iqaluit's infrastructure, including buildings, roads, water supply, wastewater treatment and waste disposal systems. Adaptation options were also developed. These ranged from educational programs and retrofits to policy changes and building standard amendments. refs., tabs., figs

  1. Changing Climate in the MENA Means Changing Energy Needs

    Directory of Open Access Journals (Sweden)

    Adam Fenech

    2015-12-01

    Full Text Available The leading authority on climate change, the Intergovernmental Panel on Climate Change (IPCC hasconcluded that warming of the climate system is unequivocal, and will continue for centuries. The regionsin the Middle East and Northern Africa (MENA have experienced numerous extreme climate events overthe past few years including the 2009 flooding in Jeddah, Kingdom of Saudi Arabia; the 2005 dust stormin Al Asad, Iraq; water scarcity throughout the Arab MENA; and the rising sea levels on the Nile Deltacoast, Egypt. A climate baseline can be developed for regions in the MENA by locating climate stations inthe study area using observations made in the Global Climate Observing System (GCOS. For projectionsof future climate, global climate models (GCMs, mathematical equations that describe the physics, fluidmotion and chemistry of the atmosphere, are the most advanced science available. The Climate ResearchLab at the University of Prince Edward Island has a dataset available to researchers, called the Climate,Ocean and Atmosphere Data Exchange (COADE, that provides easy access to the output from fortyglobal climate models used in the deliberations of the Intergovernmental Panel on Climate Change’s(IPCC Fifth Assessment Report (AR5 including monthly global climate model projections of future climatechange for a number of climate parameters including temperature and precipitation. Over the past 50years, climate changes in the MENA Region have led to increases in annual mean temperatures anddecreases in annual total precipitation. Applying all four greenhouse gas emission futures on a baseclimate normal of 1981-2010 to an ensemble of forty global climate models used in the Fifth AssessmentReport of the Intergovernmental Panel on Climate Change (IPCC AR5 results in future temperatureincreases for the MENA Region ranging from 1.6 to 2.3 degrees Celsius, and in a range of futureprecipitation changes from reductions of 11 percent to increases of 36 percent

  2. Being Prepared for Climate Change: Checklists of Potential Climate Change Risks, from Step 3

    Science.gov (United States)

    The Being Prepared for Climate Change workbook is a guide for constructing a climate change adaptation plan based on identifying risks and their consequences. These checklists (from Step 3 of the workbook) help users identify risks.

  3. Advance strategy for climate change adaptation and mitigation in cities

    Science.gov (United States)

    Varquez, A. C. G.; Kanda, M.; Darmanto, N. S.; Sueishi, T.; Kawano, N.

    2017-12-01

    An on-going 5-yr project financially supported by the Ministry of Environment, Japan, has been carried out to specifically address the issue of prescribing appropriate adaptation and mitigation measures to climate change in cities. Entitled "Case Study on Mitigation and Local Adaptation to Climate Change in an Asian Megacity, Jakarta", the project's relevant objectives is to develop a research framework that can consider both urbanization and climate change with the main advantage of being readily implementable for all cities around the world. The test location is the benchmark city, Jakarta, Indonesia, with the end focus of evaluating the benefits of various mitigation and adaptation strategies in Jakarta and other megacities. The framework was designed to improve representation of urban areas when conducting climate change investigations in cities; and to be able to quantify separately the impacts of urbanization and climate change to all cities globally. It is comprised of a sophisticated, top-down, multi-downscaling approach utilizing a regional model (numerical weather model) and a microscale model (energy balance model and CFD model), with global circulation models (GCM) as input. The models, except the GCM, were configured to reasonably consider land cover, urban morphology, and anthropogenic heating (AH). Equally as important, methodologies that can collect and estimate global distribution of urban parametric and AH datasets are continually being developed. Urban growth models, climate scenario matrices that match representative concentration pathways with shared socio-economic pathways, present distribution of socio-demographic indicators such as population and GDP, existing GIS datasets of urban parameters, are utilized. From these tools, future urbanization (urban morphological parameters and AH) can be introduced into the models. Sensitivity using various combinations of GCM and urbanization can be conducted. Furthermore, since the models utilize

  4. The Relative Impact of Climate Change on the Extinction Risk of Tree Species in the Montane Tropical Andes.

    Science.gov (United States)

    Tejedor Garavito, Natalia; Newton, Adrian C; Golicher, Duncan; Oldfield, Sara

    2015-01-01

    There are widespread concerns that anthropogenic climate change will become a major cause of global biodiversity loss. However, the potential impact of climate change on the extinction risk of species remains poorly understood, particularly in comparison to other current threats. The objective of this research was to examine the relative impact of climate change on extinction risk of upper montane tree species in the tropical Andes, an area of high biodiversity value that is particularly vulnerable to climate change impacts. The extinction risk of 129 tree species endemic to the region was evaluated according to the IUCN Red List criteria, both with and without the potential impacts of climate change. Evaluations were supported by development of species distribution models, using three methods (generalized additive models, recursive partitioning, and support vector machines), all of which produced similarly high AUC values when averaged across all species evaluated (0.82, 0.86, and 0.88, respectively). Inclusion of climate change increased the risk of extinction of 18-20% of the tree species evaluated, depending on the climate scenario. The relative impact of climate change was further illustrated by calculating the Red List Index, an indicator that shows changes in the overall extinction risk of sets of species over time. A 15% decline in the Red List Index was obtained when climate change was included in this evaluation. While these results suggest that climate change represents a significant threat to tree species in the tropical Andes, they contradict previous suggestions that climate change will become the most important cause of biodiversity loss in coming decades. Conservation strategies should therefore focus on addressing the multiple threatening processes currently affecting biodiversity, rather than focusing primarily on potential climate change impacts.

  5. Quebec industry and climatic changes : Quebec Industry Working Group on Climatic Changes

    International Nuclear Information System (INIS)

    2001-03-01

    Global climatic change is a phenomenon greatly influenced by greenhouse gas emissions resulting from human activity and the natural greenhouse effect necessary to sustain life on the planet. Carbon dioxide emissions in the atmosphere now exceed the levels prior to the industrial revolution by 31 per cent. Half of this increase occurred during the past 30 years, while the average temperature increased by 0.3 to 0.6 degrees C. By using climate change models, scientists have linked this increase to the increase in the concentration of carbon dioxide in the atmosphere and predict that the average temperature will rise by 1 to 3.5 degrees C during the next century with increases of 5 to 10 degrees C being felt in certain parts of Canada. In an effort to curb the emissions of carbon dioxide, the Quebec Industry Working Group on Climatic Change was created to represent different sectors of the industry, including energy, metallurgy, aluminium, cement, environment, mines, plastics, petrochemicals, pulp and paper, and manufacturing. The group worked at meeting the following objectives: (1) to examine the possibilities of reducing greenhouse gases emissions in the industrial sector, (2) to propose and evaluate measures and initiatives for the reduction of greenhouse gases emissions including their cost, impact and potential timetable for implementation, (3) to identify new and promising technologies in the field of greenhouse gases reduction, (4) to identify business opportunities and risks for industry in Quebec, and (5) to recommend an implementation strategy for the Kyoto Protocol for each sector, in terms of reduction measures that would be economical and in agreement with the various plans in place at the federal, provincial and municipal levels. A total of 22 recommendations were proposed covering the entire spectrum of the mandate. 15 tabs, 2 appendices

  6. Climate change: wildfire impact

    OpenAIRE

    Dautbasic, Mirza; Crabtree, J.; Ioras, Florin; Abrudan, Ioan Vasile; Ratnasingam, Jega

    2011-01-01

    Every ecosystem is a complex organization of carefully mixed life forms; a dynamic and particularly sensible system. Consequently, their progressive decline may accelerate climate change and vice versa, influencing flora and fauna composition and distribution, resulting in the loss of biodiversity. Climate changes effects are the principal topics of this volume. Written by internationally renowned contributors, Biodiversity loss in a changing planet offers attractive study cases focused on bi...

  7. Navigating SA's climate change legislation

    International Nuclear Information System (INIS)

    Dickey, Suzanne

    2006-01-01

    It is proposed that there should be a legislation to address climate change and Greenhouse Gas Emission Reduction Bill. South Australian Government Greenhouse Strategy and climate change legislation in light of the far-reaching implications this legislation could have on clients, who face the impacts of climate change in the business and natural environment. It is a commitment to reduce greenhouse gas emissions in South Australia by 2050 to 60 per cent of 1990 levels

  8. Complexity in Climate Change Manipulation Experiments

    DEFF Research Database (Denmark)

    Kreyling, Juergen; Beier, Claus

    2014-01-01

    Climate change goes beyond gradual changes in mean conditions. It involves increased variability in climatic drivers and increased frequency and intensity of extreme events. Climate manipulation experiments are one major tool to explore the ecological impacts of climate change. Until now...... variability in temperature are ecologically important. Embracing complexity in future climate change experiments in general is therefore crucial......., precipitation experiments have dealt with temporal variability or extreme events, such as drought, resulting in a multitude of approaches and scenarios with limited comparability among studies. Temperature manipulations have mainly been focused only on warming, resulting in better comparability among studies...

  9. Climate change impacts on projections of excess mortality at ...

    Science.gov (United States)

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate non-linear, spatially varying, ozone-temperature risk surfaces for 94 US urban areas using observeddata. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 p.p.b. (moderate level) and 75 p.p.b. (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 p.p.b. and 1.94 °F; however, the results variedby region . Increases in ozone because of climate change result in an increase in ozone mortality burden. Mortality attributed to ozone exceeding 40 p.p.b. increases by 7.7% (1 .6-14.2%). Mortality attributed to ozone exceeding 75 p.p.b. increases by 14.2% (1.628.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. In this study we evaluate changes in ozone related mortality due to changes in biogenic f

  10. Climate Change and the Social Factor

    DEFF Research Database (Denmark)

    Petersen, Lars Kjerulf; Jensen, Anne; Nielsen, Signe Svalgaard

    This poster reports from a explorative study about social aspects of climate change adaptation in Denmark. The aim of the project was to explore how people perceive and relate to climate change adaptation, what risks are associated with climate change and how are those risks balanced with other...... risks and concerns of everyday life? The project found that the distinction between climate change mitigation and adaptation is of little significance for lay people. The prospect of climate change does provoke reflections on social values and the need for saving energy, but when it comes to protecting...... ones own life and property against future damaging effects of climate change the threat seems distant and other forms of home improvement seem more relevant. People have a high level of trust in socio-technical systems and feel that adaptation measures primarily should be taken by the authorities....

  11. Arctic adaptation and climate change

    International Nuclear Information System (INIS)

    Agnew, T.A.; Headley, A.

    1994-01-01

    The amplification of climatic warming in the Arctic and the sensitivity of physical, biological, and human systems to changes in climate make the Arctic particularly vulnerable to climate changes. Large areas of the Arctic permafrost and sea ice are expected to disappear under climate warming and these changes will have considerable impacts on the natural and built environment of the north. A review is presented of some recent studies on what these impacts could be for the permafrost and sea ice environment and to identify linkages with socioeconomic activities. Terrestrial adaptation to climate change will include increases in ground temperature; melting of permafrost with consequences such as frost heave, mudslides, and substantial settlement; rotting of peat contained in permafrost areas, with subsequent emission of CO 2 ; increased risk of forest fire; and flooding of low-lying areas. With regard to the manmade environment, structures that will be affected include buildings, pipelines, highways, airports, mines, and railways. In marine areas, climate change will increase the ice-free period for marine transport operations and thus provide some benefit to the offshore petroleum industry. This benefit will be offset by increased wave height and period, and increased coastal erosion. The offshore industry needs to be particularly concerned with these impacts since the expected design life of industry facilities (30-60 y) is of the same order as the time frame for possible climatic changes. 18 refs., 5 figs

  12. Climate variability and climate change vulnerability and adaptation. Workshop summary

    International Nuclear Information System (INIS)

    Bhatti, N.; Cirillo, R.R.; Dixon, R.K.

    1995-01-01

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country's vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations

  13. Climate variability and climate change vulnerability and adaptation. Workshop summary

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, N.; Cirillo, R.R. [Argonne National Lab., IL (United States); Dixon, R.K. [U.S. Country Studies Program, Washington, DC (United States)] [and others

    1995-12-31

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country`s vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations.

  14. Development of key indicators to quantify the health impacts of climate change on Canadians.

    Science.gov (United States)

    Cheng, June J; Berry, Peter

    2013-10-01

    This study aimed at developing a list of key human health indicators for quantifying the health impacts of climate change in Canada. A literature review was conducted in OVID Medline to identify health morbidity and mortality indicators currently used to quantify climate change impacts. Public health frameworks and other studies of climate change indicators were reviewed to identify criteria with which to evaluate the list of proposed key indicators and a rating scale was developed. Total scores for each indicator were calculated based on the rating scale. A total of 77 health indicators were identified from the literature. After evaluation using the chosen criteria, 8 indicators were identified as the best for use. They include excess daily all-cause mortality due to heat, premature deaths due to air pollution (ozone and particulate matter 2.5), preventable deaths from climate change, disability-adjusted life years lost from climate change, daily all-cause mortality, daily non-accidental mortality, West Nile Disease incidence, and Lyme borreliosis incidence. There is need for further data and research related to health effect quantification in the area of climate change.

  15. Climate Change and Public Health Policy: Translating the Science

    Directory of Open Access Journals (Sweden)

    Marieta Braks

    2013-12-01

    Full Text Available Public health authorities are required to prepare for future threats and need predictions of the likely impact of climate change on public health risks. They may get overwhelmed by the volume of heterogeneous information in scientific articles and risk relying purely on the public opinion articles which focus mainly on global warming trends, and leave out many other relevant factors. In the current paper, we discuss various scientific approaches investigating climate change and its possible impact on public health and discuss their different roles and functions in unraveling the complexity of the subject. It is not our objective to review the available literature or to make predictions for certain diseases or countries, but rather to evaluate the applicability of scientific research articles on climate change to evidence-based public health decisions. In the context of mosquito borne diseases, we identify common pitfalls to watch out for when assessing scientific research on the impact of climate change on human health. We aim to provide guidance through the plethora of scientific papers and views on the impact of climate change on human health to those new to the subject, as well as to remind public health experts of its multifactorial and multidisciplinary character.

  16. Climate change and public health policy: translating the science.

    Science.gov (United States)

    Braks, Marieta; van Ginkel, Rijk; Wint, William; Sedda, Luigi; Sprong, Hein

    2013-12-19

    Public health authorities are required to prepare for future threats and need predictions of the likely impact of climate change on public health risks. They may get overwhelmed by the volume of heterogeneous information in scientific articles and risk relying purely on the public opinion articles which focus mainly on global warming trends, and leave out many other relevant factors. In the current paper, we discuss various scientific approaches investigating climate change and its possible impact on public health and discuss their different roles and functions in unraveling the complexity of the subject. It is not our objective to review the available literature or to make predictions for certain diseases or countries, but rather to evaluate the applicability of scientific research articles on climate change to evidence-based public health decisions. In the context of mosquito borne diseases, we identify common pitfalls to watch out for when assessing scientific research on the impact of climate change on human health. We aim to provide guidance through the plethora of scientific papers and views on the impact of climate change on human health to those new to the subject, as well as to remind public health experts of its multifactorial and multidisciplinary character.

  17. Climate Change and Public Health Policy: Translating the Science

    Science.gov (United States)

    Braks, Marieta; van Ginkel, Rijk; Wint, William; Sedda, Luigi; Sprong, Hein

    2013-01-01

    Public health authorities are required to prepare for future threats and need predictions of the likely impact of climate change on public health risks. They may get overwhelmed by the volume of heterogeneous information in scientific articles and risk relying purely on the public opinion articles which focus mainly on global warming trends, and leave out many other relevant factors. In the current paper, we discuss various scientific approaches investigating climate change and its possible impact on public health and discuss their different roles and functions in unraveling the complexity of the subject. It is not our objective to review the available literature or to make predictions for certain diseases or countries, but rather to evaluate the applicability of scientific research articles on climate change to evidence-based public health decisions. In the context of mosquito borne diseases, we identify common pitfalls to watch out for when assessing scientific research on the impact of climate change on human health. We aim to provide guidance through the plethora of scientific papers and views on the impact of climate change on human health to those new to the subject, as well as to remind public health experts of its multifactorial and multidisciplinary character. PMID:24452252

  18. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change ref...

  19. Selected international efforts to address climate change

    Energy Technology Data Exchange (ETDEWEB)

    Seki, M.; Christ, R. [Atmosphere Unit, United Nations Environment Programme UNEP, Nairobi (Kenya)

    1995-12-31

    Over the past two decades, concern about human-induced climate change has become an increasingly important item on the environmental and political agenda. The signing of the United Nations Framework Convention on Climate Change and the adoption of Agenda 21 at the United Nations Conference on Environment and Development in Rio de Janeiro in 1992 provided international organizations and the nations of the world with a new focus for climate-related activities. Although there remains considerable scientific uncertainty about the extent, magnitude, and rate of climate change and the impacts of such change, actions to address climate change have been initiated both internationally and nationally. Major international activities include the World Climate Programme, the Intergovernmental Panel on Climate Change, the United Nations Framework Convention on Climate Change. and the United Nations Environment Program me. 16 refs.

  20. Energy and Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    Climate change, and more specifically the carbon emissions from energy production and use, is one of the more vexing problems facing society today. The Intergovernmental Panel on Climate Change (IPCC) has just completed its latest assessment on the state of the science of climate change, on the potential consequences related to this change, and on the mitigation steps that could be implemented beginning now, particularly in the energy sector. Few people now doubt that anthropogenic climate change is real or that steps must be taken to deal with it. The World Energy Council has long recognized this serious concern and that in its role as the world's leading international energy organization, it can address the concerns of how to provide adequate energy for human well-being while sustaining our overall quality of life. It has now performed and published 15 reports and working papers on this subject. This report examines what has worked and what is likely to work in the future in this regard and provides policymakers with a practical roadmap to a low-carbon future and the steps needed to achieve it.

  1. Mesh climate change data of Japan ver. 2 for climate change impact assessments under IPCC SRES A1B and A2

    International Nuclear Information System (INIS)

    Okada, M.; Iizumi, T.; Nishimori, M.; Yokozawa, M.

    2009-01-01

    The Intergovernmental Panel on Climate Change (IPCC) published the Fourth Assessment Report (AR4) in 2007 and stated that recent climate change and variation are induced by increases in the atmospheric greenhouse gases (GHG) concentration due to anthropogenic activities. The report includes the results of impact assessments on a wide range of sectors. These assessments have been conducted based on future climate projections, which refer to aspects of the future climate evaluated by Atmosphere-Ocean Coupled General Circulation Models (CGCMs). The projection data used in the AR4 are archived under the Program for Climate Model Diagnosis and Intercomparison (PCMDI) promoted by the U.S. Department of Energy. We interpolated the projection data around Japan and constructed a dataset entitled the 'Mesh climate change data of Japan Ver. 2' for the climate change impact study. Nine projections performed by seven models under the A1B and A2 of the Special Report on Emissions Scenarios (SRES) were implemented for the dataset. They consist of mesh data with a size of 7.5 min in longitude and 5.0 min in latitude, i.e. approximately 10 X 10 km (45 sec in longitude and 30 sec in latitude, approximately 1 x 1 km, for one high-resolution model). The dataset includes five climatic elements, i.e. the daily mean, maximum, and minimum surface air temperatures, daily total precipitation, and daily accumulated shortwave radiation for three periods, 1981-2000, 2046-2065, and 2081-2100. This article describes the details concerning the construction and characteristics of the data

  2. Climate change: believing and seeing implies adapting.

    Science.gov (United States)

    Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc

    2012-01-01

    Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  3. Climate change: believing and seeing implies adapting.

    Directory of Open Access Journals (Sweden)

    Kristina Blennow

    Full Text Available Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01 to 0.81 (SD ± 0.03 for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008 to 0.91 (SD ± 0.02. We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  4. Climate change vulnerability for species-Assessing the assessments.

    Science.gov (United States)

    Wheatley, Christopher J; Beale, Colin M; Bradbury, Richard B; Pearce-Higgins, James W; Critchlow, Rob; Thomas, Chris D

    2017-09-01

    Climate change vulnerability assessments are commonly used to identify species at risk from global climate change, but the wide range of methodologies available makes it difficult for end users, such as conservation practitioners or policymakers, to decide which method to use as a basis for decision-making. In this study, we evaluate whether different assessments consistently assign species to the same risk categories and whether any of the existing methodologies perform well at identifying climate-threatened species. We compare the outputs of 12 climate change vulnerability assessment methodologies, using both real and simulated species, and validate the methods using historic data for British birds and butterflies (i.e. using historical data to assign risks and more recent data for validation). Our results show that the different vulnerability assessment methods are not consistent with one another; different risk categories are assigned for both the real and simulated sets of species. Validation of the different vulnerability assessments suggests that methods incorporating historic trend data into the assessment perform best at predicting distribution trends in subsequent time periods. This study demonstrates that climate change vulnerability assessments should not be used interchangeably due to the poor overall agreement between methods when considering the same species. The results of our validation provide more support for the use of trend-based rather than purely trait-based approaches, although further validation will be required as data become available. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  5. Climate change and water resources

    International Nuclear Information System (INIS)

    Younos, Tamim; Grady, Caitlin A.

    2013-01-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  6. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  7. Large-scale impact of climate change vs. land-use change on future biome shifts in Latin America.

    Science.gov (United States)

    Boit, Alice; Sakschewski, Boris; Boysen, Lena; Cano-Crespo, Ana; Clement, Jan; Garcia-Alaniz, Nashieli; Kok, Kasper; Kolb, Melanie; Langerwisch, Fanny; Rammig, Anja; Sachse, René; van Eupen, Michiel; von Bloh, Werner; Clara Zemp, Delphine; Thonicke, Kirsten

    2016-11-01

    Climate change and land-use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental-scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a projection for the biodiverse region of Latin America under four socio-economic development scenarios. We find that across all scenarios 5-6% of the total area will undergo biome shifts that can be attributed to climate change until 2099. The relative impact of climate change on biome shifts may overtake land-use change even under an optimistic climate scenario, if land-use expansion is halted by the mid-century. We suggest that constraining land-use change and preserving the remaining natural vegetation early during this century creates opportunities to mitigate climate-change impacts during the second half of this century. Our results may guide the evaluation of socio-economic scenarios in terms of their potential for biome conservation under global change. © 2016 John Wiley & Sons Ltd.

  8. Climate change and climate variability: personal motivation for adaptation and mitigation.

    Science.gov (United States)

    Semenza, Jan C; Ploubidis, George B; George, Linda A

    2011-05-21

    Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM) as a conceptual frame and analyzed through logistic regressions and path analysis. Of 771 individuals surveyed, 81% (n = 622) acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility), Odds Ratio (OR) = 2.4 (95% Confidence Interval (CI): 1.4-4.0), endanger their life (perceived severity), OR = 1.9 (95% CI: 1.1-3.1), or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2-3.5). Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4-3.1) or plan, OR = 2.2 (95% CI: 1.5-3.2) for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1-2.4) or an emergency plan OR = 1.5 (95%CI: 1.0-2.2). Motivation for voluntary mitigation is mostly dependent on

  9. A Water Resources Management Model to Evaluate Climate Change Impacts in North-Patagonia, Argentina

    Science.gov (United States)

    Bucciarelli, L. F.; Losano, F. T.; Marizza, M.; Cello, P.; Forni, L.; Young, C. A.; Girardin, L. O.; Nadal, G.; Lallana, F.; Godoy, S.; Vallejos, R.

    2014-12-01

    Most recently developed climate scenarios indicate a potential future increase in water stress in the region of Comahue, located in the North-Patagonia, Argentina. This region covers about 140,000 km2 where the Limay River and the Neuquén River converge into the Negro River, constituting the largest integrated basins in Argentina providing various uses of water resources: a) hydropower generation, contributing 15% of the national electricity market; b) fruit-horticultural products for local markets and export; c) human and industrial water supply; d) mining and oil exploitation, including Vaca Muerta, second world largest reserves of shale gas and fourth world largest reserves of shale-oil. The span of multiple jurisdictions and the convergence of various uses of water resources are a challenge for integrated understanding of economically and politically driven resource use activities on the natural system. The impacts of climate change on the system could lead to water resource conflicts between the different political actors and stakeholders. This paper presents the results of a hydrological simulation of the Limay river and Neuquén river basins using WEAP (Water Evaluation and Planning) considering the operation of artificial reservoirs located downstream at a monthly time step. This study aims to support policy makers via integrated tools for water-energy planning under climate uncertainties, and to facilitate the formulation of water policy-related actions for future water stress adaptation. The value of the integrated resource use model is that it can support local policy makers understand the implications of resource use trade-offs under a changing climate: 1) water availability to meet future growing demand for irrigated areas; 2) water supply for hydropower production; 3) increasing demand of water for mining and extraction of unconventional oil; 4) potential resource use conflicts and impacts on vulnerable populations.

  10. Climate Change Vulnerability of Army Installations Attributable to Listed and At-Risk Species

    Science.gov (United States)

    2017-07-12

    T2 ]) (NatureServe 2011), a challenge that will be exacerbated by cli- mate change (Dawson et al. 2011, Ellenwood et al. 2012, Shaw et al. 2021, Urban...stakeholders on climate change chal- lenges. Each of these goals was evaluated in relation to DoD’s plans and operations, training and testing, built...mitigation strategies based on the mag- nitudes of the evaluated factors were summarized. 1.4 Scope The climate change vulnerability assessments within

  11. Ecosystem vulnerability to climate change in the southeastern United States

    Science.gov (United States)

    Cartwright, Jennifer M.; Costanza, Jennifer

    2016-08-11

    Two recent investigations of climate-change vulnerability for 19 terrestrial, aquatic, riparian, and coastal ecosystems of the southeastern United States have identified a number of important considerations, including potential for changes in hydrology, disturbance regimes, and interspecies interactions. Complementary approaches using geospatial analysis and literature synthesis integrated information on ecosystem biogeography and biodiversity, climate projections, vegetation dynamics, soil and water characteristics, anthropogenic threats, conservation status, sea-level rise, and coastal flooding impacts. Across a diverse set of ecosystems—ranging in size from dozens of square meters to thousands of square kilometers—quantitative and qualitative assessments identified types of climate-change exposure, evaluated sensitivity, and explored potential adaptive capacity. These analyses highlighted key gaps in scientific understanding and suggested priorities for future research. Together, these studies help create a foundation for ecosystem-level analysis of climate-change vulnerability to support effective biodiversity conservation in the southeastern United States.

  12. Global warming and climate change

    International Nuclear Information System (INIS)

    1992-10-01

    A panel discussion was held to discuss climate change. Six panelists made presentations that summarized ozone depletion and climate change, discussed global responses, argued against the conventional scientific and policy dogmas concerning climate change, examined the effects of ultraviolet radiation on phytoplankton, examined the effects of carbon taxes on Canadian industry and its emissions, and examined the political and strategic aspects of global warming. A question session followed the presentations. Separate abstracts have been prepared for the six presentations

  13. Modeling the effect of climate change on the indoor climate

    NARCIS (Netherlands)

    Schijndel, van A.W.M.; Schellen, H.L.

    2010-01-01

    Within the new EU project ‘Climate for Culture’ researchers are investigating climate change impacts on UNESCO World Heritage Sites. Simulation results are expected to give information on the possible impact of climate change on the built cultural heritage and its indoor environment. This paper

  14. Changing climate, changing forests: the impacts of climate change on forests of the northeastern United States and eastern Canada

    Science.gov (United States)

    Rustad, Lindsey; Campbell, John; Dukes, Jeffrey S.; Huntington, Thomas; Lambert, Kathy Fallon; Mohan, Jacqueline; Rodenhouse, Nicholas

    2012-01-01

    Decades of study on climatic change and its direct and indirect effects on forest ecosystems provide important insights for forest science, management, and policy. A synthesis of recent research from the northeastern United States and eastern Canada shows that the climate of the region has become warmer and wetter over the past 100 years and that there are more extreme precipitation events. Greater change is projected in the future. The amount of projected future change depends on the emissions scenarios used. Tree species composition of northeast forests has shifted slowly in response to climate for thousands of years. However, current human-accelerated climate change is much more rapid and it is unclear how forests will respond to large changes in suitable habitat. Projections indicate significant declines in suitable habitat for spruce-fir forests and expansion of suitable habitat for oak-dominated forests. Productivity gains that might result from extended growing seasons and carbon dioxide and nitrogen fertilization may be offset by productivity losses associated with the disruption of species assemblages and concurrent stresses associated with potential increases in atmospheric deposition of pollutants, forest fragmentation, and nuisance species. Investigations of links to water and nutrient cycling suggest that changes in evapotranspiration, soil respiration, and mineralization rates could result in significant alterations of key ecosystem processes. Climate change affects the distribution and abundance of many wildlife species in the region through changes in habitat, food availability, thermal tolerances, species interactions such as competition, and susceptibility to parasites and disease. Birds are the most studied northeastern taxa. Twenty-seven of the 38 bird species for which we have adequate long-term records have expanded their ranges predominantly in a northward direction. There is some evidence to suggest that novel species, including pests and

  15. Evaluating the effects of climate change on summertime ozone using a relative response factor approach for policymakers.

    Science.gov (United States)

    Avise, Jeremy; Abraham, Rodrigo Gonzalez; Chung, Serena H; Chen, Jack; Lamb, Brian; Salathé, Eric P; Zhang, Yongxin; Nolte, Christopher G; Loughlin, Daniel H; Guenther, Alex; Wiedinmyer, Christine; Duhl, Tiffany

    2012-09-01

    The impact of climate change on surface-level ozone is examined through a multiscale modeling effort that linked global and regional climate models to drive air quality model simulations. Results are quantified in terms of the relative response factor (RRF(E)), which estimates the relative change in peak ozone concentration for a given change in pollutant emissions (the subscript E is added to RRF to remind the reader that the RRF is due to emission changes only). A matrix of model simulations was conducted to examine the individual and combined effects offuture anthropogenic emissions, biogenic emissions, and climate on the RRF(E). For each member in the matrix of simulations the warmest and coolest summers were modeled for the present-day (1995-2004) and future (2045-2054) decades. A climate adjustment factor (CAF(C) or CAF(CB) when biogenic emissions are allowed to change with the future climate) was defined as the ratio of the average daily maximum 8-hr ozone simulated under a future climate to that simulated under the present-day climate, and a climate-adjusted RRF(EC) was calculated (RRF(EC) = RRF(E) x CAF(C)). In general, RRF(EC) > RRF(E), which suggests additional emission controls will be required to achieve the same reduction in ozone that would have been achieved in the absence of climate change. Changes in biogenic emissions generally have a smaller impact on the RRF(E) than does future climate change itself The direction of the biogenic effect appears closely linked to organic-nitrate chemistry and whether ozone formation is limited by volatile organic compounds (VOC) or oxides of nitrogen (NO(x) = NO + NO2). Regions that are generally NO(x) limited show a decrease in ozone and RRF(EC), while VOC-limited regions show an increase in ozone and RRF(EC). Comparing results to a previous study using different climate assumptions and models showed large variability in the CAF(CB). We present a methodology for adjusting the RRF to account for the influence of

  16. The Influence of Instruction, Prior Knowledge, and Values on Climate Change Risk Perception among Undergraduates

    Science.gov (United States)

    Aksit, Osman; McNeal, Karen S.; Gold, Anne U.; Libarkin, Julie C.; Harris, Sara

    2018-01-01

    We evaluated influences on the climate change risk perceptions of undergraduate students in an introductory Earth Science course. For this sample, domain-specific content knowledge about climate change was a significant predictor of students' risk perception of climate change while cultural worldviews (individualism, hierarchy) and political…

  17. San Francisco Bay Area Rapid Transit District (BART) climate change adaptation assessment pilot.

    Science.gov (United States)

    2013-12-01

    The objective of this pilot study was to evaluate the impacts of climate change on the San Francisco Bay Area Rapid Transit District : (BART) infrastructure and to develop and implement adaptation strategies against those impacts. Climate change haza...

  18. Evaluating the combined effects of climate and land-use change on tree species distributions

    DEFF Research Database (Denmark)

    Garcia-Valdes, Raul; Svenning, Jens-Christian; Zavala, Miguel A.

    2015-01-01

    Summary: A large proportion of the world's biodiversity is reportedly threatened by habitat loss and climate change. However, there are few studies that investigate the interaction between these two threats using empirical data. Here, we investigate interactions between climate change and land-use...... change in the future distribution of 23 dominant tree species in mainland Spain. We simulated changes up to year 2100 using a climate-dependent Stochastic Patch Occupancy Model, parameterized with colonization and extinction events recorded in 46 596 survey plots. We estimated that the distribution of 17......% of the habitat, was estimated to reduce species occupancies (relative to baseline projections) by an average of 23% if habitat loss was spatially clumped, and by 35% if it was scattered. If habitat loss occurred in areas already impacted by human activities, species occupancies would be reduced by 26%. Land-use...

  19. A framework for modeling adaptive forest management and decision making under climate change

    Directory of Open Access Journals (Sweden)

    Rasoul Yousefpour

    2017-12-01

    Full Text Available Adapting the management of forest resources to climate change involves addressing several crucial aspects to provide a valid basis for decision making. These include the knowledge and belief of decision makers, the mapping of management options for the current as well as anticipated future bioclimatic and socioeconomic conditions, and the ways decisions are evaluated and made. We investigate the adaptive management process and develop a framework including these three aspects, thus providing a structured way to analyze the challenges and opportunities of managing forests in the face of climate change. We apply the framework for a range of case studies that differ in the way climate and its impacts are projected to change, the available management options, and how decision makers develop, update, and use their beliefs about climate change scenarios to select among adaptation options, each being optimal for a certain climate change scenario. We describe four stylized types of decision-making processes that differ in how they (1 take into account uncertainty and new information on the state and development of the climate and (2 evaluate alternative management decisions: the "no-change," the "reactive," the "trend-adaptive," and the "forward-looking adaptive" decision-making types. Accordingly, we evaluate the experiences with alternative management strategies and recent publications on using Bayesian optimization methods that account for different simulated learning schemes based on varying knowledge, belief, and information. Finally, our proposed framework for identifying adaptation strategies provides solutions for enhancing forest structure and diversity, biomass and timber production, and reducing climate change-induced damages. They are spatially heterogeneous, reflecting the diversity in growing conditions and socioeconomic settings within Europe.

  20. Climate Change Impacts at Department of Defense

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, Rao [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Jiali [Argonne National Lab. (ANL), Argonne, IL (United States); Zoebel, Zach [Univ. of Illinois, Urbana, IL (United States); Wuebbles, Don [Univ. of Illinois, Urbana, IL (United States); Hayhoe, Katharine [Texas Tech Univ., Lubbock, TX (United States); Stein, Michael [Univ. of Chicago, IL (United States); Changnon, David [Northern Illinois Univ., DeKalb, IL (United States)

    2017-06-16

    This project is aimed at providing the U.S. Department of Defense (DoD) with a comprehensive analysis of the uncertainty associated with generating climate projections at the regional scale that can be used by stakeholders and decision makers to quantify and plan for the impacts of future climate change at specific locations. The merits and limitations of commonly used downscaling models, ranging from simple to complex, are compared, and their appropriateness for application at installation scales is evaluated. Downscaled climate projections are generated at selected DoD installations using dynamic and statistical methods with an emphasis on generating probability distributions of climate variables and their associated uncertainties. The sites selection and selection of variables and parameters for downscaling was based on a comprehensive understanding of the current and projected roles that weather and climate play in operating, maintaining, and planning DoD facilities and installations.

  1. Climate change - the impacts

    International Nuclear Information System (INIS)

    Reysset, Bertrand; Billes-Garabedian, Laurent; Henique, Julien; Pascal, Mathilde; Pirard, Philippe; Motreff, Yvon; Barbault, Robert; Weber, Jacques; Gate, Philippe; Salagnac, Jean-Luc; Desplat, Julien; Kounkou-Arnaud, Raphaelle

    2012-01-01

    This special dossier about the impacts of climate change is made of 6 contributions dealing with: the mitigation of climate effects and how to deal with them (Bertrand Reysset); how to dare and transmit (Laurent Billes-Garabedian); littoral risks, the Pas-de-Calais example (Julien Henique); extreme meteorological events and health impacts (Mathilde Pascal, Philippe Pirard, Yvon Motreff); Biodiversity and climate: the janus of global change (Robert Barbault, Jacques Weber); adapting agriculture to dryness and temperatures (Philippe Gate); Paris and the future heats of the year 2100 (Jean-Luc Salagnac, Julien Desplat, Raphaelle Kounkou-Arnaud)

  2. Global Climate Change and Children's Health.

    Science.gov (United States)

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. Copyright © 2015 by the American Academy of Pediatrics.

  3. Ecosystems and Climate Change. Research Priorities for the U.S. Climate Change Science Program

    Science.gov (United States)

    2006-06-01

    photosynthesis ), evapotranspiration, and energy balance. 12 Climate change recommended research priorities Organic matter inputs to soils and aquatic...may be altered through changes in climate (e.g., coral reefs, seagrass ). Finally, services provided by a number of federally protected areas depend

  4. Synopsis of climate change

    Science.gov (United States)

    Angela Jardine; Jonathan Long

    2014-01-01

    Changes in climate can interact with other stressors to transform ecosystems and alter the services those ecosystems provide. This synopsis presents themes that run through the synthesis report regarding the impacts of a changing climate on the forests and waters of the synthesis area as well as long-term, broad-scale, science-based strategies to promote system...

  5. Adaptation to Climate Change in Developing Countries

    DEFF Research Database (Denmark)

    Mertz, Ole; Halsnæs, Kirsten; Olesen, Jørgen E.

    2009-01-01

    Adaptation to climate change is given increasing international attention as the confidence in climate change projections is getting higher. Developing countries have specific needs for adaptation due to high vulnerabilities, and they will in this way carry a great part of the global costs...... of climate change although the rising atmospheric greenhouse gas concentrations are mainly the responsibility of industrialized countries. This article provides a status of climate change adaptation in developing countries. An overview of observed and projected climate change is given, and recent literature...... on impacts, vulnerability, and adaptation are reviewed, including the emerging focus on mainstreaming of climate change and adaptation in development plans and programs. The article also serves as an introduction to the seven research articles of this special issue on climate change adaptation in developing...

  6. Designing ecological climate change impact assessments to reflect key climatic drivers.

    Science.gov (United States)

    Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T

    2017-07-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.

  7. Climate change projections: past and future mysteries of climate science

    International Nuclear Information System (INIS)

    Meehl, Gerald A.

    2007-01-01

    Full text: Full text: The history of climate change has been wrapped in mysteries. Some have been solved, and we await the outcome of others. The major mystery of 20th century climate was why did temperatures rise in the early part of the century, level off, and then rise rapidly again after the 1970s? It has only been in the past seven years that advances in climate modelling have allowed us to deconstruct 20th century climate to pull apart the separate influences of natural and human-caused factors. This has allowed us to understand the subtle interplay between these various influences that produced the temperature time evolution. Another mystery has involved extreme weather and climate events. Again, climate models have allowed us to quantify how the small changes in average climate translate into much larger changes of regional extremes. The biggest remaining mysteries in climate science involve the future, and how the climate will evolve over the coming century. Up until now, various scenarios postulating different possible outcomes for 21st century climate, assuming different types of human activities, have been run in the climate models to provide a wide range of possible futures. However, more recently the outlook for global warming is being framed as a combination of mitigation and adaptation. If policy actions are taken to mitigate part of the problem of global warming, then climate models must be relied on to quantify the time-evolving picture of how much regional climate change we must adapt to. Solving this mystery will be the biggest and most important challenge ever taken on by the climate modelling community

  8. A climate of doubts. The weight of uncertainty about climate change

    International Nuclear Information System (INIS)

    Alex, Bastien

    2014-05-01

    The author proposes a review of four publications about climate change published in 2012 and 2013. He more particularly focuses on how these publications express how climate change is perceived by the different components of our modern societies, how these perceptions have an influence on the answer to challenges related to this phenomenon, what global warming tells us about mankind ability to (re)act to this major challenge. He notices that any doubt about the reality of climate change is exploited and maintains some confusion, favours the propagation and persistence of popular misbelief such as: population of developing countries will be more impacted by effects of climate change, only rich people can afford interest in environment protection and climate preservation. He outlines that a doubting community will not act, and notices that technological advances, for example geo-engineering or climate engineering, tend to deliberately manipulate the environment to counteract the climate change due to human activity

  9. Connecting today's climates to future climate analogs to facilitate movement of species under climate change.

    Science.gov (United States)

    Littlefield, Caitlin E; McRae, Brad H; Michalak, Julia L; Lawler, Joshua J; Carroll, Carlos

    2017-12-01

    Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate-induced species' movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species' movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving-window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species' dispersal capabilities. We compared connectivity maps generated with our climate-change-informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present-day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate. © 2017 Society for Conservation Biology.

  10. Interdisciplinarity, Climate, and Change

    Science.gov (United States)

    Pulwarty, R. S.

    2016-12-01

    Interdisciplinarity has become synonymous with all things progressive about research and education. This is so not simply because of a philosophical belief in the heterogeneity of knowledge but because of the scientific and social complexities of problems of major concern. The increased demand for improved climate knowledge and information has increased pressure to support planning under changing rates of extremes event occurrence, is well-documented. The application of useful climate data, information and knowledge requires multiple networks and information services infrastructure that support planning and implementation. As widely quoted, Pasteur's quadrant is a label given to a class of scientific research methodologies that seeks fundamental understanding of scientific problems and, simultaneously, to benefit society-what Stokes called "use-inspired research". Innovation, in this context, has been defined as "the process by which individuals and organizations generate new ideas and put them into practice". A growing number of research institutes and programs have begun developing a cadre of professionals focused on integrating basic and applied research in areas such as climate risk assessment and adaptation. There are now several examples of where researchers and teams have crafted examples that include affected communities. In this presentation we will outline the lessons from several efforts including the PACE program, the RISAs, NIDIS, the Climate Services Information System and other interdisciplinary service-oriented efforts in which the author has been involved. Some early lessons include the need to: Recognize that key concerns of social innovation go beyond the projections of climate and other global changes to embrace multiple methods Continue to train scientists of all stripes of disciplinary norms, but higher education should also prepare students who plan to seek careers outside of academia by increasing flexibility in graduate training programs

  11. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    Science.gov (United States)

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  12. The human factor: climate change and climate communication

    DEFF Research Database (Denmark)

    Kjærgaard, Peter C.

    2011-01-01

    Reprint and translation of the article: “Den menneskelige faktor” published in the magazine Klima&Tilpasning Publisher: “Coordination unit for Research in Climate Change Adaptation” (KFT)......Reprint and translation of the article: “Den menneskelige faktor” published in the magazine Klima&Tilpasning Publisher: “Coordination unit for Research in Climate Change Adaptation” (KFT)...

  13. Hydrologic refugia, plants, and climate change.

    Science.gov (United States)

    McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E

    2017-08-01

    Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. © 2017 John Wiley & Sons Ltd.

  14. Accounting for health in climate change policies: a case study of Fiji.

    Science.gov (United States)

    Morrow, Georgina; Bowen, Kathryn

    2014-01-01

    Climate change is expected to affect the health of most populations in the coming decades, having the greatest impact on the poorest and most disadvantaged people in the world. The Pacific islands, including Fiji, are particularly vulnerable to the effects of climate change. The three major health impacts of climate change in Fiji explored in this study were dengue fever, diarrhoeal disease, and malnutrition, as they each pose a significant threat to human health. The aim of this study was to investigate to what extent the Fiji National Climate Change Policy, and a selection of relevant sectoral policies, account for these human health effects of climate change. The study employed a three-pronged policy analysis to evaluate: 1) the content of the Fijian National Climate Change Policy and to what extent health was incorporated within this; 2) the context within which the policy was developed; 3) the relevant processes; and 4) the actors involved. A selection of relevant sectoral policies were also analysed to assess the extent to which these included climate change and health considerations. The policy analysis showed that these three health impacts of climate change were only considered to a minor extent, and often indirectly, in both the Fiji National Climate Change Policy and the corresponding National Climate Change Adaptation Strategy, as well as the Public Health Act. Furthermore, supporting documents in relevant sectors including water and agriculture made no mention of climate change and health impacts. The projected health impacts of climate change should be considered as part of reviewing the Fiji National Climate Change Policy and National Climate Change Adaptation Strategy, and the Public Health Act. In the interest of public health, this should include strategies for combating dengue fever, malnutrition, and water-borne disease. Related sectoral policies in water and agriculture should also be revised to consider climate change and its impact on human

  15. Accounting for health in climate change policies: a case study of Fiji

    Directory of Open Access Journals (Sweden)

    Georgina Morrow

    2014-05-01

    Full Text Available Background: Climate change is expected to affect the health of most populations in the coming decades, having the greatest impact on the poorest and most disadvantaged people in the world. The Pacific islands, including Fiji, are particularly vulnerable to the effects of climate change. Objective: The three major health impacts of climate change in Fiji explored in this study were dengue fever, diarrhoeal disease, and malnutrition, as they each pose a significant threat to human health. The aim of this study was to investigate to what extent the Fiji National Climate Change Policy, and a selection of relevant sectoral policies, account for these human health effects of climate change. Design: The study employed a three-pronged policy analysis to evaluate: 1 the content of the Fijian National Climate Change Policy and to what extent health was incorporated within this; 2 the context within which the policy was developed; 3 the relevant processes; and 4 the actors involved. A selection of relevant sectoral policies were also analysed to assess the extent to which these included climate change and health considerations. Results: The policy analysis showed that these three health impacts of climate change were only considered to a minor extent, and often indirectly, in both the Fiji National Climate Change Policy and the corresponding National Climate Change Adaptation Strategy, as well as the Public Health Act. Furthermore, supporting documents in relevant sectors including water and agriculture made no mention of climate change and health impacts. Conclusions: The projected health impacts of climate change should be considered as part of reviewing the Fiji National Climate Change Policy and National Climate Change Adaptation Strategy, and the Public Health Act. In the interest of public health, this should include strategies for combating dengue fever, malnutrition, and water-borne disease. Related sectoral policies in water and agriculture should

  16. Municipal vulnerability to climate change

    CSIR Research Space (South Africa)

    Mambo, Julia

    2017-12-01

    Full Text Available South Africa, like the rest of Africa, is considered highly vulnerable to climate change and variability as well as to global change. Climate change is and will continue to be an issue of concern in the development of the country. South Africa faces...

  17. Creating Effective Dialogue Around Climate Change

    Science.gov (United States)

    Kiehl, J. T.

    2015-12-01

    Communicating climate change to people from diverse sectors of society has proven to be difficult in the United States. It is widely recognized that difficulties arise from a number of sources, including: basic science understanding, the psychologically affect laden content surrounding climate change, and the diversity of value systems that exist in our society. I explore ways of working with the affect that arises around climate change and describe specific methods to work with the resistance often encountered when communicating this important issue. The techniques I describe are rooted in psychology and group process and provide means for creating more effective narratives to break through the barriers to communicating climate change science. Examples are given from personal experiences in presenting climate change to diverse groups.

  18. Responding to the Consequences of Climate Change

    Science.gov (United States)

    Hildebrand, Peter H.

    2011-01-01

    The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.

  19. Using Remote Sensing and Geospatial Technology for Climate Change Education

    Science.gov (United States)

    Cox, Helen; Kelly, Kimberle; Yetter, Laura

    2014-01-01

    This curriculum and instruction paper describes initial implementation and evaluation of remote-sensing exercises designed to promote post-secondary climate literacy in the geosciences. Tutorials developed by the first author engaged students in the analysis of climate change data obtained from NASA satellite missions, including the LANDSAT,…

  20. Climatic Change. Human Influence?

    OpenAIRE

    Gonçalves, Dionísio; Leite, Solange; Ribeiro, A.C.; Figueiredo, Tomás de

    2016-01-01

    We begin by presenting the functioning of the Climate System and the variety of climates that occurs on the surface of the globe. We analyze climate change based on the sun's orbital parameters and other causes, focusing on the current interglacial period and the influence it had on the development of human societies. The following text looks on developing of the climate of the last 1000 years, with considerations about the warm medieval climate, the little ice age, the recovery...

  1. Climate-conscious architecture. Design and wind testing method for climates in change

    Energy Technology Data Exchange (ETDEWEB)

    Kuismanen, K.

    2008-07-01

    The main objective of this research was to develop practical tools with which it is possible to improve the environment, micro-climate and energy economy of buildings and plans in different climate zones, and take the climate change into account. The parts of the study are: State of art study into existing know-how about climate and planning. Study of the effects of climate change on the built environment. Development of simple micro-climate, nature and built environment analysis methods. Defining the criteria of an acceptable micro-climatic environment. Development of the wind test blower. Presenting ways to interpret test results and draw conclusions. Development of planning and design guidelines for different climate zones. An important part of the research is the development of the CASE wind test instrument, different wind simulation techniques, and the methods of observing the results. Bioclimatic planning and architectural design guidelines for different climate zones are produced. The analyse tools developed give a qualitative overall view, which can be deepened towards a quantitative analyse with wind testing measurements and roughness calculations. No mechanical rules are suggested, but complementary viewpoints and practices introduced to a normal planning process as well as improvement of consultative knowledge. The 'method' is that there is no strict mechanical method, but a deeper understanding of bioclimatic matters. Climate-conscious planning with the developed CASE method, make it possible to design a better micro-climate for new or old built-up areas. Winds can be used in to ventilate exhaust fumes and other pollutants, which improves the quality of air and the healthiness of the urban environment. The analyses and scale-model tests make it possible to shield cold windy areas and to diminish the cooling effect of wind on facades. According to studies in Scandinavian countries this will bring energy savings of 5-15 per cent. The method can

  2. Promoting Scientific Thinking and Conceptual Change about Alternative Explanations of Climate Change and Other Controversial Socio-scientific Topics

    Science.gov (United States)

    Lombardi, D.; Sinatra, G. M.

    2013-12-01

    Critical evaluation and plausibility reappraisal of scientific explanations have been underemphasized in many science classrooms (NRC, 2012). Deep science learning demands that students increase their ability to critically evaluate the quality of scientific knowledge, weigh alternative explanations, and explicitly reappraise their plausibility judgments. Therefore, this lack of instruction about critical evaluation and plausibility reappraisal has, in part, contributed to diminished understanding about complex and controversial topics, such as global climate change. The Model-Evidence Link (MEL) diagram (originally developed by researchers at Rutgers University under an NSF-supported project; Chinn & Buckland, 2012) is an instructional scaffold that promotes students to critically evaluate alternative explanations. We recently developed a climate change MEL and found that the students who used the MEL experienced a significant shift in their plausibility judgments toward the scientifically accepted model of human-induced climate change. Using the MEL for instruction also resulted in conceptual change about the causes of global warming that reflected greater understanding of fundamental scientific principles. Furthermore, students sustained this conceptual change six months after MEL instruction (Lombardi, Sinatra, & Nussbaum, 2013). This presentation will discuss recent educational research that supports use of the MEL to promote critical evaluation, plausibility reappraisal, and conceptual change, and also, how the MEL may be particularly effective for learning about global climate change and other socio-scientific topics. Such instruction to develop these fundamental thinking skills (e.g., critical evaluation and plausibility reappraisal) is demanded by both the Next Generation Science Standards (Achieve, 2013) and the Common Core State Standards for English Language Arts and Mathematics (CCSS Initiative-ELA, 2010; CCSS Initiative-Math, 2010), as well as a

  3. The European climate change program. An evaluation of stakeholder involvement and policy achievements

    International Nuclear Information System (INIS)

    Maxian Rusche, Tim

    2010-01-01

    In order to step up its efforts in reducing climate change, the European Commission (hereafter: the Commission) has launched in June 2000 its European climate change program (hereafter: ECCP). This wide-ranging stakeholder consultation aimed at identifying and developing all elements necessary for a European climate change strategy. The ECCP formally came to a close in April 2003. This paper analyses the inner workings of ECCP, and how ECCP has delivered with regard to its objectives. Special attention is paid to ECCP's Working Group 1, 'Flexible Mechanisms', which developed the foundations for the European emission trading scheme (hereafter: EU ETS). The paper draws on documents published on the Commission's ECCP web-site, on academic literature, on press releases from stakeholders and on interviews with four participants in the ECCP process. Using this method, the paper offers important insights as to how the consensus-building for establishing the world's biggest carbon-trading scheme has started long time before the formal legislative process. (author)

  4. Climatic change and impacts: a general introduction

    International Nuclear Information System (INIS)

    Fantechi, R.; Almeida-Teixeira, M.E.; Maracchi, G.

    1991-01-01

    These proceedings are divided into six parts containing 29 technical papers. 1. An Overview of the Climatic System, 2. Past climate Changes, 3. Climate Processes and Climate Modelling, 4. Greenhouse Gas Induced Climate Change, 5. Climatic Impacts, 6. STUDENTS' PAPERS

  5. Ocean Observations of Climate Change

    Science.gov (United States)

    Chambers, Don

    2016-01-01

    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  6. Global change of the climate

    International Nuclear Information System (INIS)

    Moharam-nejad, Naser.

    1995-01-01

    Greenhouse effect is defined. greenhouse gases which are capable to produce greenhouse effect is mentioned. The production of greenhouse effects depends on the following factors; The amount of discharge to the atmosphere, Concentration, Life span, stability, Absorption and Emission. The effect of global change of climate on agriculture and living organisms is discussed. Global actions related to climate change and national procedures are described. The aim of climate change convention is given and the important points of convention is also mentioned

  7. Climate change and food security

    Science.gov (United States)

    Gregory, P.J; Ingram, J.S.I; Brklacich, M

    2005-01-01

    Dynamic interactions between and within the biogeophysical and human environments lead to the production, processing, distribution, preparation and consumption of food, resulting in food systems that underpin food security. Food systems encompass food availability (production, distribution and exchange), food access (affordability, allocation and preference) and food utilization (nutritional and societal values and safety), so that food security is, therefore, diminished when food systems are stressed. Such stresses may be induced by a range of factors in addition to climate change and/or other agents of environmental change (e.g. conflict, HIV/AIDS) and may be particularly severe when these factors act in combination. Urbanization and globalization are causing rapid changes to food systems. Climate change may affect food systems in several ways ranging from direct effects on crop production (e.g. changes in rainfall leading to drought or flooding, or warmer or cooler temperatures leading to changes in the length of growing season), to changes in markets, food prices and supply chain infrastructure. The relative importance of climate change for food security differs between regions. For example, in southern Africa, climate is among the most frequently cited drivers of food insecurity because it acts both as an underlying, ongoing issue and as a short-lived shock. The low ability to cope with shocks and to mitigate long-term stresses means that coping strategies that might be available in other regions are unavailable or inappropriate. In other regions, though, such as parts of the Indo-Gangetic Plain of India, other drivers, such as labour issues and the availability and quality of ground water for irrigation, rank higher than the direct effects of climate change as factors influencing food security. Because of the multiple socio-economic and bio-physical factors affecting food systems and hence food security, the capacity to adapt food systems to reduce their

  8. Abrupt climate-independent fire regime changes

    Science.gov (United States)

    Pausas, Juli G.; Keeley, Jon E.

    2014-01-01

    Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.

  9. Climate and the changing Sun

    International Nuclear Information System (INIS)

    Eddy, J.A.

    1977-01-01

    Long-term changes in the level of solar activity are found in historical records and in fossil radiocarbon in tree-rings. Typical of these changes are the Maunder Minimum (A.D. 1645-1715), the Spoerer Minimum (A.D. 1400-1510), and a Medieval Maximum (c. A.D. 1120-1280). Eighteen such features are identified in the tree-ring radiocarbon record of the past 7500 years and compared with a record of world climate. In every case when long-term solar activity falls, mid-latitude glaciers advance and climate colls; at times of high solar activity glaciers recede and climate warms. It is proposed that changes in the level of solar activity and in climate may have a common cause: slow changes in the solar constant, of about 1% amplitude. (Auth.)

  10. Business responses to global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Pinkse, J.M.

    2006-04-27

    This research project studies the evolution and determinants of corporate climate strategies of multinationals. Since most companies are affected by global climate change in a direct or indirect way, a range of strategies are emerging to mitigate climate change. These strategies are not only of a political nature (e.g. influencing government institutions), but also of a competitive nature. The aim is to introduce a typology of corporate climate strategies, paying specific attention to the market components related to climate change. More and more, multinationals' actions in reducing greenhouse gas emissions are aimed at achieving a sustained competitive advantage in addition to compliance with government regulation. What factors determine these market strategies for climate change will be explored in a theoretical framework based on institutional theory and the resource-based view of the firm.

  11. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  12. Assessing perceived health risks of climate change : Canadian public opinion 2008

    International Nuclear Information System (INIS)

    2008-03-01

    This paper discussed a survey conducted to evaluate the awareness, knowledge, attitudes, and behaviours of Canadians in relation to climatic change. A total of 1600 telephone surveys were conducted with a broad range of age groups. The study showed that climate change is considered by many Canadians to pose a significant threat at both local and global levels. Evidence of climate change has been noted in many communities. However, relatively few Canadians understand how climate change may impact human health. While many Canadians associated climatic change with air pollution hazards and ozone depletion, most Canadians were not aware of the potential negative health impacts related to changes in disease vectors, extreme weather events, and coastal flooding. The strongest awareness and concern about health impacts were expressed by Canadians concerned about global warming. Individuals with chronic health conditions were more likely to be attuned to the potential health impacts of climatic change. Seniors viewed climate change as a longer term problem. Only 10 per cent of Canadians viewed global warming as a major health risk. Sixty-nine per cent of Canadians believed that global warming was happening, while 63 per cent attributed climate change to human activity. Nearly half of all respondents believed that an extreme weather disaster would affect their community during the course of their lifetime. The report suggested that marketing or communications campaigns should build public awareness of the health risks associated with direct or proximal environmental risks. Information about health risks should be specific, and communications should be tailored to age cohorts. Television and print media should be used to build awareness of the health risks of climate change. Provincial concerns related to climatic change were also outlined. tabs., figs

  13. Improve Climate Change Literacy At Minority Institutions Through Problem-based Teaching And Learning

    Science.gov (United States)

    yang, Z.; Williams, H.

    2013-12-01

    Climate change is one of most popular topics in the U.S. Currently we are implementing our funded NASA climate change education grant entitled as 'Preparing Science Educators with Climate Change Literacy through Problem-based Teaching and Learning'. This project aims to prepare underrepresented STEM (Science, Technology, Engineering and Mathematics) teachers that are competent for teaching the contents of the Earth, climate, and climate change. In this project, we first developed lectures, assignments, and lab exercises which are related to climate change and then applied those materials in courses which are usually selected by pre-service teachers after modification based on students' evaluation. Also field visits to sites such as landfill and hog farm were provided to North Carolina Central University (NCCU) students in order to help them have better understanding on sources and amount of greenhouse gases emitted from human activities. In addition, summer interns are specifically trained to enhance and improve their knowledge and skills in climate change science. Those strategies have effectively improved climate change literacy of pre-service teachers at NCCU in spite of some challenges.

  14. Little auks buffer the impact of current Arctic climate change

    DEFF Research Database (Denmark)

    Grémillet, David; Welcker, Jorg; Karnovsky, Nina J.

    2012-01-01

    Climate models predict a multi-degree warming of the North Atlantic in the 21st century. A research priority is to understand the impact of such changes upon marine organisms. With 40-80 million individuals, planktivorous little auks (Alle alle) are an essential component of pelagic food webs...... in this region that are potentially highly susceptible to climatic effects. Using an integrative study of their behaviour, physiology and fitness at three study sites, we evaluated the impact of ocean warming on little auks across the Greenland Sea in 2005-2007. Contrary to our hypothesis, the birds responded...... to a wide range of sea surface temperatures via plasticity of their foraging behaviour, allowing them to maintain their fitness levels unchanged. Predicted effects of climate change are significantly attenuated by such plasticity, confounding attempts to forecast future impacts of climate change by envelope...

  15. How does climate change cause extinction?

    Science.gov (United States)

    Cahill, Abigail E; Aiello-Lammens, Matthew E; Fisher-Reid, M Caitlin; Hua, Xia; Karanewsky, Caitlin J; Ryu, Hae Yeong; Sbeglia, Gena C; Spagnolo, Fabrizio; Waldron, John B; Warsi, Omar; Wiens, John J

    2013-01-07

    Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.

  16. Invertebrates, ecosystem services and climate change.

    Science.gov (United States)

    Prather, Chelse M; Pelini, Shannon L; Laws, Angela; Rivest, Emily; Woltz, Megan; Bloch, Christopher P; Del Toro, Israel; Ho, Chuan-Kai; Kominoski, John; Newbold, T A Scott; Parsons, Sheena; Joern, A

    2013-05-01

    The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate-mediated services under a changing climate. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  17. Fisheries: climate change impacts and adaptation

    International Nuclear Information System (INIS)

    2003-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on fisheries focuses on the impact of climate change on Canada's marine and freshwater fisheries, and the role of adaptation in reducing the vulnerability of the sector. Canadian fisheries encompass the Atlantic, Pacific and Arctic oceans as well as freshwater systems. Fish health, productivity and distribution is strongly influenced by climatic factors such as air and water temperature, precipitation and wind. Most fish species have a distinct set of environmental conditions for optimal growth and survival. If the conditions change in response to changing climate, the fish may be affected. Some of the impacts include reduced growth, increased competition, a shift in species distribution, greater susceptibility to disease, and altered ecosystem function. Studies show that in some areas, fisheries may already be experiencing the effect of climate change. Recommendations were suggested on how to deal with the impacts associated with climate change in sensitive environments. It was noted that actions taken in the fisheries sector will have implications for the water resources, transportation, tourism and human health sectors. 103 refs., 2 tabs., 6 figs

  18. Tracking climate change. The IPCC in Four Questions. The Hidden Face of Climate Research. Climate Change: Facts and Uncertainties

    International Nuclear Information System (INIS)

    Beriot, Nicolas; Jouzel, Jean; Masson-Delmotte, Valerie; Braconnot, Pascale; Dufresne, Jean-Louis; Le Treut, Herve; Pachauri, Rajendra; Cazenave, Anny; Planton, Serge; Feral, Jean-Pierre

    2014-01-01

    Scientists and government delegations from around the world gathered in Stockholm (Sweden) in September 2013 to approve the first volume of the Fifth Assessment Report (AR5) by the Intergovernmental Panel on Climate Change (IPCC). This document reviews existing scientific knowledge on the Earth's climate. How was it prepared? How do scientists conduct research on climate change? What do they know for certain? What remains to be discovered?

  19. Climate Change Ignorance: An Unacceptable Legacy

    Science.gov (United States)

    Boon, Helen J.

    2015-01-01

    Climate change effects will be most acutely felt by future generations. Recent prior research has shown that school students' knowledge of climate change science is very limited in rural Australia. The purpose of this study was to assess the capacity of preservice teachers and parents to transmit climate change information and understanding to…

  20. Evaluation of Climate Change Adaptation Alternatives for Smallholder Farmers in the Upper Blue-Nile Basin

    NARCIS (Netherlands)

    Nigussie, Yalemzewd; Werf, van der Edwin; Zhu, Xueqin; Simane, Belay; Ierland, van Ekko C.

    2018-01-01

    Climate change is expected to have severe negative impacts on the livelihoods of smallholder farmers in developing countries. However, smallholder farmers and governments in these regions tend to be ill-prepared for the impacts of climate change. We present the results of a stakeholder-based

  1. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability

    Science.gov (United States)

    Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.

    2013-01-01

    We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722

  2. Floods in a changing climate

    Science.gov (United States)

    Theresa K. Andersen; Marshall J. Shepherd

    2013-01-01

    Atmospheric warming and associated hydrological changes have implications for regional flood intensity and frequency. Climate models and hydrological models have the ability to integrate various contributing factors and assess potential changes to hydrology at global to local scales through the century. This survey of floods in a changing climate reviews flood...

  3. CLIMATE CHANGES: CAUSES AND IMPACT

    Directory of Open Access Journals (Sweden)

    Camelia Slave

    2013-07-01

    Full Text Available Present brings several environmental problems for people. Many of these are closely related, but by far the most important problem is the climate change. In the course of Earth evolution, climate has changed many times, sometimes dramatically. Warmer eras always replaced and were in turn replaced by glacial ones. However, the climate of the past almost ten thousand years has been very stable. During this period human civilization has also developed. In the past nearly 100 years - since the beginning of industrialization - the global average temperature has increased by approx. 0.6 ° C (after IPCC (Intergovernmental Panel on Climate Change, faster than at any time in the last 1000 years.

  4. Acting efficiently on climate change

    International Nuclear Information System (INIS)

    Appert, Olivier; Moncomble, Jean-Eudes

    2015-01-01

    Climate change is a major issue. A survey of the utility companies that account for 80% of the world's electric power was released during the 20. climate conference in Lima as part of the World Energy Council' Global Electricity Initiative. It has concluded that all these utilities see climate change as being real and declare that policies for adapting to it are as important as policies for limiting it. Nonetheless, 97% of these utilities think that consumers will refuse to pay more for decarbonized electricity. This is the core problem in the fight against climate change: all agree that the issue is urgent, some agree about what should be done, but none wants to pay

  5. Climate change and climate variability: personal motivation for adaptation and mitigation

    Directory of Open Access Journals (Sweden)

    Ploubidis George B

    2011-05-01

    Full Text Available Abstract Background Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. Methods In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM as a conceptual frame and analyzed through logistic regressions and path analysis. Results Of 771 individuals surveyed, 81% (n = 622 acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility, Odds Ratio (OR = 2.4 (95% Confidence Interval (CI: 1.4 - 4.0, endanger their life (perceived severity, OR = 1.9 (95% CI: 1.1 - 3.1, or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2 - 3.5. Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4 - 3.1 or plan, OR = 2.2 (95% CI: 1.5 -3.2 for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1 - 2.4 or an emergency plan OR = 1.5 (95%CI: 1.0 - 2

  6. Atmospheric Composition Change: Climate-Chemistry Interactions

    Science.gov (United States)

    Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; hide

    2011-01-01

    Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced

  7. Proceedings from the sustainable development and climate change workshop

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K.; Olhoff, A.

    2001-07-01

    indicators in relation project evaluations, and the establishment of a national climate change polity strategy that has a comprehensive list of sectoral climate change policy options. 7) Detailed GHG inventory and national report to the FCCC developed by Iran. (ln)

  8. Proceedings from the sustainable development and climate change workshop

    International Nuclear Information System (INIS)

    Halsnaes, K.; Olhoff, A.

    2001-01-01

    indicators in relation project evaluations, and the establishment of a national climate change polity strategy that has a comprehensive list of sectoral climate change policy options. 7) Detailed GHG inventory and national report to the FCCC developed by Iran. (ln)

  9. Protecting health from climate change: Preparedness of medical interns

    Directory of Open Access Journals (Sweden)

    Majra Jai

    2009-01-01

    Full Text Available Context : Climate change is a significant and emerging threat to public health and to meet the challenge, health systems require qualified staff. Aims : To study the preparedness of medical interns to meet the challenge of protecting health from climate change. Settings and Design: Medical colleges in a coastal town. Cross-sectional study. Materials and Methods: A proportionate number of medical interns from five medical colleges were included in the study. Level of awareness was used as a criterion to judge the preparedness. A self-administered, pretested, open-ended questionnaire was used. Responses were evaluated and graded. Statistical Analysis Used: Proportions, percentage, Chi-test. Results : About 90% of the medical interns were aware of the climate change and human activities that were playing a major role. Ninety-four percent were aware of the direct health impacts due to higher temperature and depletion in ozone concentration, and about 78% of the respondents were aware about the change in frequency / distribution of vector-borne diseases, water borne / related diseases, malnutrition, and health impact of population displacement. Knowledge regarding health protection was limited to mitigation of climate change and training / education. Options like adaptation, establishing / strengthening climate and disease surveillance systems, and health action in emergency were known to only nine (7%, eight (6%, and 17 (13%, respectively. Collegewise difference was statistically insignificant. Extra / co-curricular activities were the major source of knowledge. Conclusions : Majority of medical interns were aware of the causes and health impacts of climate change, but their knowledge regarding health protection measures was limited.

  10. International Business and Global Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, A.; Pinkse, J.

    2008-11-15

    Climate change has become an important topic on the business agenda with strong pressure being placed on companies to respond and contribute to finding solutions to this urgent problem. This text provides a comprehensive analysis of international business responses to global climate change and climate change policy. Embedded in relevant management literature, this book gives a concise treatment of developments in policy and business activity on global, regional and national levels, using examples and systematic data from a large number of international companies. The first part outlines the international climate policy landscape and voluntary initiatives taken by companies, both alone and together with others. The second part examines companies' strategies, covering innovation for climate change, as well as compensation via emissions trading and carbon offsetting. Written by well-known experts in the field, International Business and Global Climate Change illustrates how an environmental topic becomes strategically important in a mainstream sense, affecting corporate decision-making, business processes, products, reputation, advertising, communication, accounting and finance.

  11. International Business and Global Climate Change

    International Nuclear Information System (INIS)

    Kolk, A.; Pinkse, J.

    2008-11-01

    Climate change has become an important topic on the business agenda with strong pressure being placed on companies to respond and contribute to finding solutions to this urgent problem. This text provides a comprehensive analysis of international business responses to global climate change and climate change policy. Embedded in relevant management literature, this book gives a concise treatment of developments in policy and business activity on global, regional and national levels, using examples and systematic data from a large number of international companies. The first part outlines the international climate policy landscape and voluntary initiatives taken by companies, both alone and together with others. The second part examines companies' strategies, covering innovation for climate change, as well as compensation via emissions trading and carbon offsetting. Written by well-known experts in the field, International Business and Global Climate Change illustrates how an environmental topic becomes strategically important in a mainstream sense, affecting corporate decision-making, business processes, products, reputation, advertising, communication, accounting and finance

  12. Conservation and adaptation to climate change.

    Science.gov (United States)

    Brooke, Cassandra

    2008-12-01

    The need to adapt to climate change has become increasingly apparent, and many believe the practice of biodiversity conservation will need to alter to face this challenge. Conservation organizations are eager to determine how they should adapt their practices to climate change. This involves asking the fundamental question of what adaptation to climate change means. Most studies on climate change and conservation, if they consider adaptation at all, assume it is equivalent to the ability of species to adapt naturally to climate change as stated in Article 2 of the United Nations Framework Convention on Climate Change. Adaptation, however, can refer to an array of activities that range from natural adaptation, at one end of the spectrum, to sustainability science in coupled human and natural systems at the other. Most conservation organizations deal with complex systems in which adaptation to climate change involves making decisions on priorities for biodiversity conservation in the face of dynamic risks and involving the public in these decisions. Discursive methods such as analytic deliberation are useful for integrating scientific knowledge with public perceptions and values, particularly when large uncertainties and risks are involved. The use of scenarios in conservation planning is a useful way to build shared understanding at the science-policy interface. Similarly, boundary organizations-organizations or institutions that bridge different scales or mediate the relationship between science and policy-could prove useful for managing the transdisciplinary nature of adaptation to climate change, providing communication and brokerage services and helping to build adaptive capacity. The fact that some nongovernmental organizations (NGOs) are active across the areas of science, policy, and practice makes them well placed to fulfill this role in integrated assessments of biodiversity conservation and adaptation to climate change.

  13. Climate change research in Bulgaria

    International Nuclear Information System (INIS)

    Iotova, A.; Koleva, E.

    1995-01-01

    Climate is traditionally one of the main fields of research interest and objects for study in Bulgaria. Therefore, many investigations on its genesis and specific features are carried out in the past and present. Recently, climate change research appears to be the most actual topic and it is in the centre of climatic studies. A major part of these studies are realized at the National Institute of Meteorology and Hydrology (NIMH) because of its essential role in collection and analysis of the basic climatic data for the country. A brief description of the climate change research at NIMH is presented and the obtained results are summarized

  14. Climatic change. What solutions?

    International Nuclear Information System (INIS)

    Vieillefosse, A.

    2009-01-01

    From 1990 to the present day, worldwide greenhouse gas emissions have increased by about 25%. Fighting climatic change has become an urgency: we only have 15 years in front of us to inflect the trajectory of worldwide emissions and to avoid a temperature rise of more than 2 deg. C during this century. Therefore, how is it possible to explain the shift between the need of an urgent action and the apparent inertia of some governing parties? How is it possible to implement a worldwide governance capable to answer the urgency of the fight against climatic change? These are the two questions that this pedagogical and concrete book tries to answer by analysing the different dimensions of climatic change and by making a first status of the building up of the international action, and in particular of the Kyoto protocol. For the post-2012 era, research and negotiations are in progress with the objective of reaching an agreement for the Copenhagen conference of December 2009. Several architectures are possible. This book shades light on the advantages and limitations of each of them with the possible compromises. It supplies a pluri-disciplinary approach of the international negotiations, often considered as complex by the general public. Content: 1 - understanding the climatic change stakes: climatic stakes, the main actors behind the figures, the technical-economical stakes; 2 - understanding the present day architecture of the fight against climatic change: strengths and weaknesses of the Kyoto protocol; encouraging research and technology spreading; the other action means in developing countries; 3 - what structure for a future international agreement?: the Bali negotiation process; the ideal vision: an improved Kyoto protocol; the pragmatic vision: individualized commitments; the negotiation space; preventing a planned fiasco. (J.S.)

  15. Study on climate change in Southwestern China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zongxing

    2015-03-01

    Nominated by Chinese Academy of Sciences as an outstanding Ph.D. thesis. Offers a needed exploration of the temporal and spatial pattern of climate change in southwestern China. Explores the action mechanism among the large-scale atmospheric circulation system, the complicated topography, human activities and regional climate changes. Analyzes the response of glaciers to climate change from the aspects of morphology of the glacier, glacial mass balance and the process of hydrology. This thesis confirms many changes, including sharp temperature rise, interannual variability of precipitation, extreme climate events and significant decreases of sunshine duration and wind speed in southwestern China, and systemically explores the action mechanism between large-scale atmospheric circulation systems, the complicated topography, human activities and regional climate changes. This study also analyzes the response of glaciers to climate change so that on the one hand it clearly reflects the relationship between glacier morphologic changes and climate change; on the other, it reveals the mechanism of action of climate warming as a balance between energy and matter. The achievements of this study reflect a significant contribution to the body of research on the response of climate in cold regions, glaciers and human activities to a global change against the background of the typical monsoon climate, and have provided scientific basis for predictions, countermeasures against disasters from extreme weather, utilization of water and the establishment of counterplans to slow and adapt to climate change. Zongxing Li works at the Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, China.

  16. Study on climate change in Southwestern China

    International Nuclear Information System (INIS)

    Li, Zongxing

    2015-01-01

    Nominated by Chinese Academy of Sciences as an outstanding Ph.D. thesis. Offers a needed exploration of the temporal and spatial pattern of climate change in southwestern China. Explores the action mechanism among the large-scale atmospheric circulation system, the complicated topography, human activities and regional climate changes. Analyzes the response of glaciers to climate change from the aspects of morphology of the glacier, glacial mass balance and the process of hydrology. This thesis confirms many changes, including sharp temperature rise, interannual variability of precipitation, extreme climate events and significant decreases of sunshine duration and wind speed in southwestern China, and systemically explores the action mechanism between large-scale atmospheric circulation systems, the complicated topography, human activities and regional climate changes. This study also analyzes the response of glaciers to climate change so that on the one hand it clearly reflects the relationship between glacier morphologic changes and climate change; on the other, it reveals the mechanism of action of climate warming as a balance between energy and matter. The achievements of this study reflect a significant contribution to the body of research on the response of climate in cold regions, glaciers and human activities to a global change against the background of the typical monsoon climate, and have provided scientific basis for predictions, countermeasures against disasters from extreme weather, utilization of water and the establishment of counterplans to slow and adapt to climate change. Zongxing Li works at the Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, China.

  17. The Ecological consequences of global climate change

    National Research Council Canada - National Science Library

    Woodward, F. I

    1992-01-01

    ... & land use - modeling potential responses of vegetation to global climate change - effects of climatic change on population dynamics of crop pests - responses of soils to climate change - predicting...

  18. Changing habits, changing climate : a foundation analysis

    International Nuclear Information System (INIS)

    Enright, W.

    2001-03-01

    If Canada intends to meet its greenhouse gas reduction target of 6 per cent below 1990 levels, a fundamental shift in energy use by Canadians is required. The health sector will also be required to change. Global climate change is expected to affect regions differently, some might get wetter, some might get warmer, and others still might get colder. Climate changes will influence a number of health determinants: the geographical range of disease organisms and vectors; temperature extremes and violent weather events; air, food and water quality; the stability of ecosystems. There is a requirement to strongly regulate the emissions of carbon dioxide, methane and other greenhouse gases to limit health risks. Increased air pollution could negatively affect large numbers of people, especially asthma sufferers and people suffering from chronic respiratory ailments and cardiovascular diseases. Changes in precipitation and temperature could increase insect-borne diseases. Water sources could be badly affected by drought, flooding or increased glacial runoff. The thinning of the ozone layer could result in additional skin cancers, impaired vision and other diseases. The document explores the various impacts resulting from climate change. A chapter is devoted to each topic: air pollution, temperature extremes, extreme weather events, vector borne diseases, drought and increased evaporation, food supply and ecosystem range, sea level rise, stratospheric ozone depletion and describes the health impacts. In addition, a chapter deals with aboriginal communities. The topic of environmental refugees is discussed, followed by an historical perspective into climate change policy in Canada. The author concludes with adaptation measures. Further emphasis must be placed on priority topics such as the estimation of future emissions and modelling of climate processes. refs., tabs., figs

  19. A changing climate of skepticism: The factors shaping climate change coverage in the US press.

    Science.gov (United States)

    Schmid-Petri, Hannah; Adam, Silke; Schmucki, Ivo; Häussler, Thomas

    2017-05-01

    Skepticism toward climate change has a long tradition in the United States. We focus on mass media as the conveyors of the image of climate change and ask: Is climate change skepticism still a characteristic of US print media coverage? If so, to what degree and in what form? And which factors might pave the way for skeptics entering mass media debates? We conducted a quantitative content analysis of US print media during one year (1 June 2012 to 31 May 2013). Our results show that the debate has changed: fundamental forms of climate change skepticism (such as denial of anthropogenic causes) have been abandoned in the coverage, being replaced by more subtle forms (such as the goal to avoid binding regulations). We find no evidence for the norm of journalistic balance, nor do our data support the idea that it is the conservative press that boosts skepticism.

  20. Effects of climate change on US agriculture

    International Nuclear Information System (INIS)

    Guillet, L.

    2007-08-01

    The USA are a major producer of food and fiber products in the world. The US agriculture represents more than 25% of the world trades of wheat, corn, soy and cotton. The cultivated surfaces and the pasture lands represent 210 million Ha (17% of the US territory) and 300 million Ha (26% of the US territory), respectively. The agricultural production represents less than 2% of the US GDP, put the agriculture products make about 5% of the US exports. The climate change may have some impacts on the overall agriculture industry, from the plant growth to the conditions of competition on international markets. In 2001, the US global change research program, published an evaluation report about the potential consequences of the climate change on the US agriculture. The conclusions of the panel of experts, based on climate, cultivation and economical models, was that the CO 2 levels and climate changes of the 21. century would have no negative impact on the US agriculture. The average effects, on the contrary, would be rather positive, depending on the type of culture and on the region considered. Today, the experts have entertained lot of doubts about the 2001 forecasts: the fertilizing effect of CO 2 is more and more criticized and an efficient supply of water appears as seriously compromised for many regions. Experts stress also on the lack of consideration for extreme climatic events, and for crop vermin and diseases. This document reanalyzes the conclusions of the 2001 report in the light of the works carried out more recently at the Agriculture Research Service (ARS). The proceedings of expert's interviews are attached in appendixes. (J.S.)

  1. Consideration of future climatic changes in three geologic settings

    International Nuclear Information System (INIS)

    Petrie, G.M.

    1984-09-01

    Staff at Pacific Northwest Laboratory are evaluating the potential for climatic change to affect the integrity of a nuclear waste repository at: (1) the Gibson Dome area of Utah; (2) the Palo Duro Basin of Texas; and (3) the Gulf Coast. Because a major assumption in this analysis is that a glacial age will recur, the climate of the last glacial period is examined for each location. Combining these paleoclimatic data with the current climatic data, each location is evaluated in light of the criteria given in Draft Revised General Guidelines for Recommendation of Sites for Nuclear Waste Repositories (10 CFR 960). The results of this analysis suggest that sites located in these areas are likely to meet the climate requirements set forth in the guidelines. However, further study is needed before a definitive statement can be made. In particular, modeling the effect of sea level change on the Gulf Coast groundwater system and obtaining an improved estimation for the increase in recharge during glacier times at the Texas and Utah locations would be useful. Several stragegies are presented for accomplishing this work. 94 references, 27 figures, 5 tables

  2. Market strategies for climate change

    NARCIS (Netherlands)

    Kolk, A.; Pinkse, J.M.

    2004-01-01

    The issue of climate change has attracted increasing business attention in the past decade. Whereas companies initially aimed primarily at influencing the policy debate, corporate strategies increasingly include economic responses. Existing classifications for climate change strategies however still

  3. Assessing climate change-robustness of protected area management plans-The case of Germany.

    Science.gov (United States)

    Geyer, Juliane; Kreft, Stefan; Jeltsch, Florian; Ibisch, Pierre L

    2017-01-01

    Protected areas are arguably the most important instrument of biodiversity conservation. To keep them fit under climate change, their management needs to be adapted to address related direct and indirect changes. In our study we focus on the adaptation of conservation management planning, evaluating management plans of 60 protected areas throughout Germany with regard to their climate change-robustness. First, climate change-robust conservation management was defined using 11 principles and 44 criteria, which followed an approach similar to sustainability standards. We then evaluated the performance of individual management plans concerning the climate change-robustness framework. We found that climate change-robustness of protected areas hardly exceeded 50 percent of the potential performance, with most plans ranking in the lower quarter. Most Natura 2000 protected areas, established under conservation legislation of the European Union, belong to the sites with especially poor performance, with lower values in smaller areas. In general, the individual principles showed very different rates of accordance with our principles, but similarly low intensity. Principles with generally higher performance values included holistic knowledge management, public accountability and acceptance as well as systemic and strategic coherence. Deficiencies were connected to dealing with the future and uncertainty. Lastly, we recommended the presented principles and criteria as essential guideposts that can be used as a checklist for working towards more climate change-robust planning.

  4. Assessing climate change-robustness of protected area management plans—The case of Germany

    Science.gov (United States)

    Geyer, Juliane; Kreft, Stefan; Jeltsch, Florian; Ibisch, Pierre L.

    2017-01-01

    Protected areas are arguably the most important instrument of biodiversity conservation. To keep them fit under climate change, their management needs to be adapted to address related direct and indirect changes. In our study we focus on the adaptation of conservation management planning, evaluating management plans of 60 protected areas throughout Germany with regard to their climate change-robustness. First, climate change-robust conservation management was defined using 11 principles and 44 criteria, which followed an approach similar to sustainability standards. We then evaluated the performance of individual management plans concerning the climate change-robustness framework. We found that climate change-robustness of protected areas hardly exceeded 50 percent of the potential performance, with most plans ranking in the lower quarter. Most Natura 2000 protected areas, established under conservation legislation of the European Union, belong to the sites with especially poor performance, with lower values in smaller areas. In general, the individual principles showed very different rates of accordance with our principles, but similarly low intensity. Principles with generally higher performance values included holistic knowledge management, public accountability and acceptance as well as systemic and strategic coherence. Deficiencies were connected to dealing with the future and uncertainty. Lastly, we recommended the presented principles and criteria as essential guideposts that can be used as a checklist for working towards more climate change-robust planning. PMID:28982187

  5. Creating a Learning Community for Solutions to Climate Change

    Science.gov (United States)

    Bloom, A. J.; Benedict, B. A.; Blockstein, D. E.; Hassenzahl, D. M.; Hunter, A.; Jorgensen, A. D.; Pfirman, S. L.

    2011-12-01

    The rapidly evolving and interdisciplinary nature of climate change presents a challenge to colleges and universities as they seek to educate undergraduate students. To address this challenge, the National Council for Science and the Environment (NCSE) with NSF funding is creating a nationwide cyber-enabled learning community called CAMEL (Climate, Adaptation, and Mitigation e-Learning). CAMEL engages experts in science, policy and decision-making, education, and assessment in the production of a virtual toolbox of curricular resources designed for teaching climate change causes, consequences, and solutions. CAMEL is: ? Developing cyberinfrastructure that supports and promotes the creation of materials and community; ? Generating materials for the Encyclopedia of Earth, a site averaging 50,000 views per day; ? Ensuring that materials developed and shared are founded on the best available scientific information and follow the most appropriate educational practices; ? Assisting faculty at institutions of higher education across the United States as they create, improve, test, and share resources for teaching students not only how to diagnose climate change problems, but also to identify and effect solutions; ? Evaluating the determinants of successful community building using cybermedia. The community and resultant content range from general education to upper division courses for students in a variety of majors. At the center of the community are the 160 colleges and universities represented in NCSE's Council of Environmental Deans and Directors. Members of this group represent recognized expertise in virtually all areas of this project. A team with substantial experience with evaluating innovative initiatives in STEM education is administering the evaluation component.

  6. Optimal timing for managed relocation of species faced with climate change

    Science.gov (United States)

    McDonald Madden, Eve; Runge, Michael C.; Possingham, Hugh P.; Martin, Tara G.

    2011-01-01

    Managed relocation is a controversial climate-adaptation strategy to combat negative climate change impacts on biodiversity. While the scientific community debates the merits of managed relocation1,2,3,4,5,6,7,8,9,10,11,12, species are already being moved to new areas predicted to be more suitable under climate change13,14. To inform these moves, we construct a quantitative decision framework to evaluate the timing of relocation in the face of climate change. We find that the optimal timing depends on many factors, including the size of the population, the demographic costs of translocation and the expected carrying capacities over time in the source and destination habitats. In some settings, such as when a small population would benefit from time to grow before risking translocation losses, haste is ill advised. We also find that active adaptive management15,16 is valuable when the effect of climate change on source habitat is uncertain, and leads to delayed movement.

  7. An evidence-based public health approach to climate change adaptation.

    Science.gov (United States)

    Hess, Jeremy J; Eidson, Millicent; Tlumak, Jennifer E; Raab, Kristin K; Luber, George

    2014-11-01

    Public health is committed to evidence-based practice, yet there has been minimal discussion of how to apply an evidence-based practice framework to climate change adaptation. Our goal was to review the literature on evidence-based public health (EBPH), to determine whether it can be applied to climate change adaptation, and to consider how emphasizing evidence-based practice may influence research and practice decisions related to public health adaptation to climate change. We conducted a substantive review of EBPH, identified a consensus EBPH framework, and modified it to support an EBPH approach to climate change adaptation. We applied the framework to an example and considered implications for stakeholders. A modified EBPH framework can accommodate the wide range of exposures, outcomes, and modes of inquiry associated with climate change adaptation and the variety of settings in which adaptation activities will be pursued. Several factors currently limit application of the framework, including a lack of higher-level evidence of intervention efficacy and a lack of guidelines for reporting climate change health impact projections. To enhance the evidence base, there must be increased attention to designing, evaluating, and reporting adaptation interventions; standardized health impact projection reporting; and increased attention to knowledge translation. This approach has implications for funders, researchers, journal editors, practitioners, and policy makers. The current approach to EBPH can, with modifications, support climate change adaptation activities, but there is little evidence regarding interventions and knowledge translation, and guidelines for projecting health impacts are lacking. Realizing the goal of an evidence-based approach will require systematic, coordinated efforts among various stakeholders.

  8. Risk communication on climate change

    International Nuclear Information System (INIS)

    Wardekker, J.A.

    2004-10-01

    For the title study use has been made of available scientific literature, results of new surveys and interviews. In the first part of the study attention is paid to the exchange of information between parties involved in climate change and differences in supply and demand of information. In the second part citizens' views on climate change, problems with communication on climate change, and the resulting consequences and options for communication are dealt with. In this second part also barriers to action that are related or influenced by communication are taken into consideration

  9. Climate variability and change in southern Mali : Learning from farmer perceptions and on-farm trials

    NARCIS (Netherlands)

    Traore, B.; Wijk, van M.T.; Descheemaeker, K.K.E.; Corbeels, M.; Rufino, M.C.; Giller, K.E.

    2015-01-01

    Agricultural production in the Sudano–Sahelian zone of west Africa is highly vulnerable to the impacts of climate variability and climate change. The present study aimed to understand farmers’ perceptions of climate variability and change and to evaluate adaptation options together with farmers,

  10. Climate project screening tool: an aid for climate change adaptation

    Science.gov (United States)

    Toni Lyn Morelli; Sharon Yeh; Nikola M. Smith; Mary Beth Hennessy; Constance I. Millar

    2012-01-01

    To address the impacts of climate change, land managers need techniques for incorporating adaptation into ongoing or impending projects. We present a new tool, the Climate Project Screening Tool (CPST), for integrating climate change considerations into project planning as well as for developing concrete adaptation options for land managers. We designed CPST as part of...

  11. Climate Change and Rainfed Wheat Production in Iran

    OpenAIRE

    A Koocheki; GH kamali

    2011-01-01

    Abstract This research was conducted to evaluate the impacts of climate change on rainfed wheat growth and yield at country level. Weather data generated by a General Circulation model based on the ICCP scenarios for the target years of 2025 and 2050. Daily weather data including minimum and maximum temperatures, precipitation and radiation were used as the inputs of a growth simulation model for rainfed after calibration and validation for predicting wheat yield under current climatic con...

  12. 'Changing climate, changing health, changing stories' profile: using an EcoHealth approach to explore impacts of climate change on inuit health.

    Science.gov (United States)

    Harper, S L; Edge, V L; Cunsolo Willox, A

    2012-03-01

    Global climate change and its impact on public health exemplify the challenge of managing complexity and uncertainty in health research. The Canadian North is currently experiencing dramatic shifts in climate, resulting in environmental changes which impact Inuit livelihoods, cultural practices, and health. For researchers investigating potential climate change impacts on Inuit health, it has become clear that comprehensive and meaningful research outcomes depend on taking a systemic and transdisciplinary approach that engages local citizens in project design, data collection, and analysis. While it is increasingly recognised that using approaches that embrace complexity is a necessity in public health, mobilizing such approaches from theory into practice can be challenging. In 2009, the Rigolet Inuit Community Government in Rigolet, Nunatsiavut, Canada partnered with a transdisciplinary team of researchers, health practitioners, and community storytelling facilitators to create the Changing Climate, Changing Health, Changing Stories project, aimed at developing a multi-media participatory, community-run methodological strategy to gather locally appropriate and meaningful data to explore climate-health relationships. The goal of this profile paper is to describe how an EcoHealth approach guided by principles of transdisciplinarity, community participation, and social equity was used to plan and implement this climate-health research project. An overview of the project, including project development, research methods, project outcomes to date, and challenges encountered, is presented. Though introduced in this one case study, the processes, methods, and lessons learned are broadly applicable to researchers and communities interested in implementing EcoHealth approaches in community-based research.

  13. General Chemistry Students' Understanding of Climate Change and the Chemistry Related to Climate Change

    Science.gov (United States)

    Versprille, Ashley N.; Towns, Marcy H.

    2015-01-01

    While much is known about secondary students' perspectives of climate change, rather less is known about undergraduate students' perspectives. The purpose of this study is to investigate general chemistry students' understanding of the chemistry underlying climate change. Findings that emerged from the analysis of the 24 interviews indicate that…

  14. Climate change, humidity, and mortality in the United States

    Science.gov (United States)

    Barreca, Alan I.

    2014-01-01

    This paper estimates the effects of humidity and temperature on mortality rates in the United States (c. 1973–2002) in order to provide an insight into the potential health impacts of climate change. I find that humidity, like temperature, is an important determinant of mortality. Coupled with Hadley CM3 climate-change predictions, I project that mortality rates are likely to change little on the aggregate for the United States. However, distributional impacts matter: mortality rates are likely to decline in cold and dry areas, but increase in hot and humid areas. Further, accounting for humidity has important implications for evaluating these distributional effects. PMID:25328254

  15. Adaptation to climate change and climate variability:The importance of understanding agriculture as performance

    NARCIS (Netherlands)

    Crane, T.A.; Roncoli, C.; Hoogenboom, G.

    2011-01-01

    Most climate change studies that address potential impacts and potential adaptation strategies are largely based on modelling technologies. While models are useful for visualizing potential future outcomes and evaluating options for potential adaptation, they do not adequately represent and

  16. Climate Change, Health, and Communication: A Primer.

    Science.gov (United States)

    Chadwick, Amy E

    2016-01-01

    Climate change is one of the most serious and pervasive challenges facing us today. Our changing climate has implications not only for the ecosystems upon which we depend, but also for human health. Health communication scholars are well-positioned to aid in the mitigation of and response to climate change and its health effects. To help theorists, researchers, and practitioners engage in these efforts, this primer explains relevant issues and vocabulary associated with climate change and its impacts on health. First, this primer provides an overview of climate change, its causes and consequences, and its impacts on health. Then, the primer describes ways to decrease impacts and identifies roles for health communication scholars in efforts to address climate change and its health effects.

  17. Topologies of climate change

    DEFF Research Database (Denmark)

    Blok, Anders

    2010-01-01

    Climate change is quickly becoming a ubiquitous socionatural reality, mediating extremes of sociospatial scale from the bodily to the planetary. Although environmentalism invites us to ‘think globally and act locally', the meaning of these scalar designations remains ambiguous. This paper explores...... the topological presuppositions of social theory in the context of global climate change, asking how carbon emissions ‘translate' into various sociomaterial forms. Staging a meeting between Tim Ingold's phenomenology of globes and spheres and the social topologies of actor-network theory (ANT), the paper advances...... a ‘relational-scalar' analytics of spatial practices, technoscience, and power. As technoscience gradually constructs a networked global climate, this ‘grey box' comes to circulate within fluid social spaces, taking on new shades as it hybridizes knowledges, symbols, and practices. Global climates thus come...

  18. The essential interactions between understanding climate variability and climate change

    Science.gov (United States)

    Neelin, J. D.

    2017-12-01

    Global change is sometimes perceived as a field separate from other aspects of atmospheric and oceanic sciences. Despite the long history of communication between the scientific communities studying global change and those studying interannual variability and weather, increasing specialization and conflicting societal demands on the fields can put these interactions at risk. At the same time, current trajectories for greenhouse gas emissions imply substantial adaptation to climate change will be necessary. Instead of simply projecting effects to be avoided, the field is increasingly being asked to provide regional-level information for specific adaptation strategies—with associated requirements for increased precision on projections. For extreme events, challenges include validating models for rare events, especially for events that are unprecedented in the historical record. These factors will be illustrated with examples of information transfer to climate change from work on fundamental climate processes aimed originally at timescales from hours to interannual. Work to understand the effects that control probability distributions of moisture, temperature and precipitation in historical weather can yield new factors to examine for the changes in the extremes of these distributions under climate change. Surprisingly simple process models can give insights into the behavior of vastly more complex climate models. Observation systems and model ensembles aimed at weather and interannual variations prove valuable for global change and vice versa. Work on teleconnections in the climate system, such as the remote impacts of El Niño, is informing analysis of projected regional rainfall change over California. Young scientists need to prepare to work across the full spectrum of climate variability and change, and to communicate their findings, as they and our society head for future that is more interesting than optimal.

  19. The Interplay of Climate Change and Air Pollution on Health

    OpenAIRE

    Orru, H.; Ebi, K. L.; Forsberg, B.

    2017-01-01

    Purpose of review: Air pollution significantly affects health, causing up to 7 million premature deaths annually with an even larger number of hospitalizations and days of sick leave. Climate change could alter the dispersion of primary pollutants, particularly particulate matter, and intensify the formation of secondary pollutants, such as near-surface ozone. The purpose of the review is to evaluate the recent evidence on the impacts of climate change on air pollution and air pollution-relat...

  20. Public Perception of Uncertainties Within Climate Change Science.

    Science.gov (United States)

    Visschers, Vivianne H M

    2018-01-01

    Climate change is a complex, multifaceted problem involving various interacting systems and actors. Therefore, the intensities, locations, and timeframes of the consequences of climate change are hard to predict and cause uncertainties. Relatively little is known about how the public perceives this scientific uncertainty and how this relates to their concern about climate change. In this article, an online survey among 306 Swiss people is reported that investigated whether people differentiate between different types of uncertainty in climate change research. Also examined was the way in which the perception of uncertainty is related to people's concern about climate change, their trust in science, their knowledge about climate change, and their political attitude. The results of a principal component analysis showed that respondents differentiated between perceived ambiguity in climate research, measurement uncertainty, and uncertainty about the future impact of climate change. Using structural equation modeling, it was found that only perceived ambiguity was directly related to concern about climate change, whereas measurement uncertainty and future uncertainty were not. Trust in climate science was strongly associated with each type of uncertainty perception and was indirectly associated with concern about climate change. Also, more knowledge about climate change was related to less strong perceptions of each type of climate science uncertainty. Hence, it is suggested that to increase public concern about climate change, it may be especially important to consider the perceived ambiguity about climate research. Efforts that foster trust in climate science also appear highly worthwhile. © 2017 Society for Risk Analysis.