WorldWideScience

Sample records for evaluating aerosol indirect

  1. Evaluating aerosol indirect effect through marine stratocumulus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Kogan, Z.N.; Kogan, Y.L.; Lilly, D.K. [Univ. of Oklahoma, Norman, OK (United States)

    1996-04-01

    During the last decade much attention has been focused on anthropogenic aerosols and their radiative influence on the global climate. Charlson et al. and Penner et al. have demonstrated that tropospheric aerosols and particularly anthropogenic sulfate aerosols may significantly contribute to the radiative forcing exerting a cooling influence on climate (-1 to -2 W/m{sup 2}) which is comparable in magnitude to greenhouse forcing, but opposite in sign. Aerosol particles affect the earth`s radiative budget either directly by scattering and absorption of solar radiation by themselves or indirectly by altering the cloud radiative properties through changes in cloud microstructure. Marine stratocumulus cloud layers and their possible cooling influence on the atmosphere as a result of pollution are of special interest because of their high reflectivity, durability, and large global cover. We present an estimate of thet aerosol indirect effect, or, forcing due to anthropogenic sulfate aerosols.

  2. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristjansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2009-04-10

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd

  3. Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Grandey, Benjamin; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2010-03-12

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the GCMs is

  4. Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, T.; Wang, Minghuai; Penner, Joyce E.; Gettelman, A.; Lohmann, U.; Bellouin, N.; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, A.; Feingold, G.; Hoose, Corinna; Kristjansson, J. E.; Liu, Xiaohong; Balkanski, Y.; Donner, Leo J.; Ginoux, P.; Stier, P.; Grandey, B.; Feichter, J.; Sednev, Igor; Bauer, Susanne E.; Koch, D.; Grainger, Roy G.; Kirkevag, A.; Iversen, T.; Seland, O.; Easter, Richard C.; Ghan, Steven J.; Rasch, Philip J.; Morrison, H.; Lamarque, J. F.; Iacono, Michael J.; Kinne, Stefan; Schulz, M.

    2009-11-16

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated in the present study using three satellite datasets. The satellite datasets are taken as reference bearing in mind that cloud and aerosol retrievals include uncertainties. We compute statistical relationships between aerosol optical depth (τa) and various cloud and radiation quantities consistently in models and satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over oceans. The relationship between τa and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to rep¬resentation of the second aerosol indirect effect in terms of autoconversion. A positive re¬lationship between total cloud fraction (fcld) and τa as found in the satellite data is simulated by the majority of the models, albeit less strongly in most of them. In a discussion of the hypo¬theses proposed in the literature to explain the satellite-derived strong fcld – τa relation¬ship, we find that none is unequivocally confirmed by our results. Relationships similar to the ones found in satellite data between τa and cloud top tem¬perature and outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - τa relationship show a strong positive cor¬relation between τa and cloud fraction. The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of τa, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good predictors for the short

  5. Global indirect aerosol effects: a review

    Directory of Open Access Journals (Sweden)

    U. Lohmann

    2005-01-01

    Full Text Available Aerosols affect the climate system by changing cloud characteristics in many ways. They act as cloud condensation and ice nuclei, they may inhibit freezing and they could have an influence on the hydrological cycle. While the cloud albedo enhancement (Twomey effect of warm clouds received most attention so far and traditionally is the only indirect aerosol forcing considered in transient climate simulations, here we discuss the multitude of effects. Different approaches how the climatic implications of these aerosol effects can be estimated globally as well as improvements that are needed in global climate models in order to better represent indirect aerosol effects are discussed in this paper.

  6. Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF-CMAQ: model description, development, evaluation and regional analysis

    Science.gov (United States)

    This study implemented first, second and glaciations aerosol indirect effects (AIE) on resolved clouds in the two-way coupled WRF-CMAQ modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQ predicted aerosol distribu...

  7. Observationally Constrained Estimates of Aerosol Indirect and Semi-direct Radiative forcing over Indian Ocean.

    Science.gov (United States)

    Rao, S.; Dey, S.

    2017-12-01

    Aerosol-cloud interaction continues to be the one of the largest sources of uncertainty in quantifying the aerosol climate forcing (IPCC, 2013). Most of the studies on aerosol-cloud climate interaction over Indian Ocean (like INDOEX, CAIPEEX campaign etc.) are limited to either one particular season or a particular region. Here we developed a theoretical framework to quantify aerosol indirect radiative forcing using MODIS aerosol and cloud products of 15 years (2000-2015) period over the Indian Ocean. This framework relies on the observationally constrained estimate of aerosol-induced change in cloud albedo We partitioned the change in cloud albedo into change in cloud water path (CWP) and effective radius of clouds (Reff) in response to an aerosol optical depth (ta). Cloud albedo response to an increase in ta is most sensitive in the range of CWP between 120-300 gm/m2 for a range of Reff varying from 8-24 mm. Using this framework, aerosol forcing during a transition from indirect to semi-direct effect is calculated. The analysis shows best outputs over the Arabian Sea in comparison with Bay of Bengal and the South Indian Ocean. The results provide observationally constrained estimates of aerosol indirect and semi-direct forcing in the Indian Ocean which can be helpful in evaluating the climate model performance in context of such complex interactions. Keywords: Aerosol-cloud interaction, Aerosol-cloud climate interaction, semi-direct effect, aerosol Indirect effect, Radiative forcing.

  8. Manifestation of Aerosol Indirect Effects in Arctic Clouds

    Science.gov (United States)

    Lubin, D.; Vogelmann, A. M.

    2009-12-01

    The first aerosol indirect effect has traditionally been conceived as an enhancement of shortwave cloud reflectance in response to decreased effective droplet size at fixed liquid water path, as cloud nucleating aerosol becomes entrained in the cloud. The high Arctic, with its pervasive low-level stratiform cloud cover and frequent episodes of anthropogenic aerosol (Artic "haze"), has in recent years served as a natural laboratory for research on actual manifestations of aerosol indirect effects. This paper will review the surprising set of developments: (1) the detection of the indirect effect as a source of surface warming, rather than cooling, throughout early spring, (2) a transition to a cooling effect in late spring, corresponding to the beginning of the sea ice melt season, and (3) detection of an indirect effect during summer, outside of the "Arctic haze" season. This paper will also discuss measurements of spectral shortwave irradiance (350-2200 nm) made at Barrow, Alaska, during the U.S. Department of Energy's Indirect and Semi-Direct Aerosol Campaign (ISDAC), which reveal complications in our conception of the indirect effect related to the ice phase in Arctic stratiform clouds.

  9. Indirect effect of changing aerosol concentrations on methane and ozone radiative forcing

    Science.gov (United States)

    Rowlinson, Matthew; Rap, Alexandru; Arnold, Steve; Forster, Piers; Chipperfield, Martyn

    2017-04-01

    Atmospheric aerosols interact with climate in number of complex ways and quantifying the overall effect remains the dominant uncertainty in estimating anthropogenic climate forcing (IPCC, 2013). The radiative forcing (RF) caused by the direct effect of aerosol interacting with radiation is estimated at -0.35 (-0.85 to +0.15) Wm-2, while cloud-aerosol interactions are estimated at -0.45 (-1.2 to 0.0) Wm-2 (IPCC, 2013). The net impact is a cooling with an effective radiative forcing (ERF) of 0.9 (-1.9 to -0.1) Wm-2 (IPCC, 2013). One effect of aerosols which has not been well evaluated is their effect on atmospheric chemistry. Atmospheric aerosols provide a surface for homogeneous reactions to occur, altering reactions rates and the availability of oxidants, thereby influencing the removal/production of radiatively important species such as methane (CH4) and tropospheric ozone (O3). Oxidants such as the hydroxyl radical (OH) determine the atmospheric lifetime and hence burden of CH4, therefore changes to atmospheric aerosols which impact oxidation chemistry will also influence RF due to CH4. This effect could enhance or offset the negative RF of aerosols, depending on how the individual aerosol changes availability of oxidants. Quantifying the importance of this mechanism for RF is necessary to provide accurate estimates of the effect of aerosols, and assess relative effectiveness of measures to decrease aerosol emissions and precursors. Using a sophisticated aerosol micro-physics model (GLOMAP) coupled to the TOMCAT three-dimensional chemical transport model, we separately simulate changes in atmospheric composition resulting from a 50% decline in anthropogenic emissions of black carbon aerosol (BC), volatile organic compounds (VOCs) and anthropogenic precursors of sulphate and nitrate. The impact of changes to each aerosol on lifetime of CH4 is then calculated to establish the resulting impact on CH4 burden and RF. Cutting global anthropogenic SO2 emissions by 50

  10. Aerosol indirect effects in a multi-scale aerosol-climate model PNNL-MMF

    Directory of Open Access Journals (Sweden)

    M. Wang

    2011-06-01

    Full Text Available Much of the large uncertainty in estimates of anthropogenic aerosol effects on climate arises from the multi-scale nature of the interactions between aerosols, clouds and dynamics, which are difficult to represent in conventional general circulation models (GCMs. In this study, we use a multi-scale aerosol-climate model that treats aerosols and clouds across multiple scales to study aerosol indirect effects. This multi-scale aerosol-climate model is an extension of a multi-scale modeling framework (MMF model that embeds a cloud-resolving model (CRM within each vertical column of a GCM grid. The extension allows a more physically-based treatment of aerosol-cloud interactions in both stratiform and convective clouds on the global scale in a computationally feasible way. Simulated model fields, including liquid water path (LWP, ice water path, cloud fraction, shortwave and longwave cloud forcing, precipitation, water vapor, and cloud droplet number concentration are in reasonable agreement with observations. The new model performs quantitatively similar to the previous version of the MMF model in terms of simulated cloud fraction and precipitation. The simulated change in shortwave cloud forcing from anthropogenic aerosols is −0.77 W m−2, which is less than half of that (−1.79 W m−2 calculated by the host GCM (NCAR CAM5 with traditional cloud parameterizations and is also at the low end of the estimates of other conventional global aerosol-climate models. The smaller forcing in the MMF model is attributed to a smaller (3.9 % increase in LWP from preindustrial conditions (PI to present day (PD compared with 15.6 % increase in LWP in stratiform clouds in CAM5. The difference is caused by a much smaller response in LWP to a given perturbation in cloud condensation nuclei (CCN concentrations from PI to PD in the MMF (about one-third of that in CAM5, and, to a lesser extent, by a smaller relative increase in CCN

  11. Science Overview Document Indirect and Semi-Direct Aerosol Campaign (ISDAC) April 2008

    Energy Technology Data Exchange (ETDEWEB)

    SJ Ghan; B Schmid; JM Hubbe; CJ Flynn; A Laskin; AA Zelenyuk; DJ Czizco; CN Long; G McFarquhar; J Verlinde; J Harrington; JW Strapp; P Liu; A Korolev; A McDonald; M Wolde; A Fridlind; T Garrett; G Mace; G Kok; S Brooks; D Collins; D Lubin; P Lawson; M Dubey; C Mazzoleni; M Shupe; S Xie; DD Turner; Q Min; EJ Mlawer; D Mitchell

    2007-11-01

    The ARM Climate Research Facility’s (ACRF) Aerial Vehicle Program (AVP) will deploy an intensive cloud and aerosol observing system to the ARM North Slope of Alaska (NSA) locale for a five week Indirect and Semi-Direct Aerosol Campaign (ISDAC) during period 29 March through 30 April 2008. The deployment period is within the International Polar Year, thus contributing to and benefiting from the many ancillary observing systems collecting data synergistically. We will deploy the Canadian National Research Council Convair 580 aircraft to measure temperature, humidity, total particle number, aerosol size distribution, single particle composition, concentrations of cloud condensation nuclei and ice nuclei, optical scattering and absorption, updraft velocity, cloud liquid water and ice contents, cloud droplet and crystal size distributions, cloud particle shape, and cloud extinction. In addition to these aircraft measurements, ISDAC will deploy two instruments at the ARM site in Barrow: a spectroradiometer to retrieve cloud optical depth and effective radius, and a tandem differential mobility analyzer to measure the aerosol size distribution and hygroscopicity. By using many of the same instruments used during Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted in October 2004, we will be able to contrast the arctic aerosol and cloud properties during the fall and spring transitions. The aerosol measurements can be used in cloud models driven by objectively analyzed boundary conditions to test whether the cloud models can simulate the aerosol influence on the clouds. The influence of aerosol and boundary conditions on the simulated clouds can be separated by running the cloud models with all four combinations of M-PACE and ISDAC aerosol and boundary conditions: M-PACE aerosol and boundary conditions, M-PACE aerosol and ISDAC boundary conditions, ISDAC aerosol and M-PACE boundary conditions, and ISDAC aerosol and boundary conditions. ISDAC and M-PACE boundary

  12. Modeling the Relationships Between Aerosol Properties and the Direct and Indirect Effects of Aerosols on Climate

    Science.gov (United States)

    Toon, Owen B.

    1994-01-01

    Aerosols may affect climate directly by scattering and absorbing visible and infrared energy, They may also affect climate indirectly by modifying the properties of clouds through microphysical processes, and by altering abundances of radiatively important gases through heterogeneous chemistry. Researchers understand which aerosol properties control the direct effect of aerosols on the radiation budget. Unfortunately, despite an abundance of data on certain types of aerosols, much work remains to be done to determine the values of these properties. For instance we have little idea about the global distribution, seasonal variation, or interannual variability of the aerosol optical depth. Also we do not know the visible light absorption properties of tropical aerosols which may contain much debris from slash and burn agriculture. A positive correlation between aerosol concentrations and albedos of marine stratus clouds is observed, and the causative microphysics is understood. However, models suggest that it is difficult to produce new particles in the marine boundary layer. Some modelers have suggested that the particles in the marine boundary layer may originate in the free troposphere and be transported into the boundary layer. Others argue that the aerosols are created in the marine boundary layer. There are no data linking aerosol concentration and cirrus cloud albedo, and models suggest cirrus properties may not be very sensitive to aerosol abundance. There is clear evidence of a radiatively significant change in the global lower stratospheric ozone abundance during the past few decades. These changes are caused by heterogeneous chemical reactions occurring on the surfaces of particles. The rates of these reactions depend upon the chemical composition of the particles. Although rapid advances in understanding heterogeneous chemistry have been made, much remains to be done.

  13. Large contribution of natural aerosols to uncertainty in indirect forcing

    Science.gov (United States)

    Carslaw, K. S.; Lee, L. A.; Reddington, C. L.; Pringle, K. J.; Rap, A.; Forster, P. M.; Mann, G. W.; Spracklen, D. V.; Woodhouse, M. T.; Regayre, L. A.; Pierce, J. R.

    2013-11-01

    The effect of anthropogenic aerosols on cloud droplet concentrations and radiative properties is the source of one of the largest uncertainties in the radiative forcing of climate over the industrial period. This uncertainty affects our ability to estimate how sensitive the climate is to greenhouse gas emissions. Here we perform a sensitivity analysis on a global model to quantify the uncertainty in cloud radiative forcing over the industrial period caused by uncertainties in aerosol emissions and processes. Our results show that 45 per cent of the variance of aerosol forcing since about 1750 arises from uncertainties in natural emissions of volcanic sulphur dioxide, marine dimethylsulphide, biogenic volatile organic carbon, biomass burning and sea spray. Only 34 per cent of the variance is associated with anthropogenic emissions. The results point to the importance of understanding pristine pre-industrial-like environments, with natural aerosols only, and suggest that improved measurements and evaluation of simulated aerosols in polluted present-day conditions will not necessarily result in commensurate reductions in the uncertainty of forcing estimates.

  14. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Wei-Kuo [NASA/GSFC

    2014-05-19

    1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd

  15. Limits to the Indirect Aerosol Forcing in Stratocumulus

    Science.gov (United States)

    Ackerman, Andrew; Toon, O.; Stevens, D.; Coakley, J., Jr.

    2003-01-01

    The indirect radiative forcing of aerosols is poorly constrained by the observational data underlying the simple cloud parameterizations in GCMs. signal of cloud response to increased aerosol concentrations from meteorological noise. Recent satellite observations indicate a significant decrease of cloud water in ship tracks, in contrast to an ensemble of in situ measurements showing no average change in cloud water relative to the surrounding clouds. Both results contradict the expectation of cloud water increasing in polluted clouds. We find through large-eddy simulations of stratocumulus that the trend in the satellite data is likely an artifact of sampling only overcast clouds. The simulations instead show cloud cover increasing with droplet concentrations. The simulations also show that increases in cloud water from suppressing drizzle by increased droplet concentrations are favored at night or at extremely low droplet concentrations. At typical droplet concentrations we find that the Twomey effect on cloud albedo is amplified very little by the secondary indirect effect of drizzle suppression, largely because the absorption of solar radiation by cloud water reduces boundary-layer mixing in the daytime and thereby restricts any possible increase in cloud water from drizzle suppression. The cloud and boundary layer respond to radiative heating variations on a time scale of hours, and on longer time scales respond to imbalances between large-scale horizontal advection and the entrainment of inversion air. We analyze the co-varying response of cloud water, cloud thickness, width of droplet size distributions, and dispersion of the optical depth, as well as the overall response of cloud albedo, to changes in droplet concentrations. We also dissect the underlying physical mechanisms through sensitivity studies. Ship tracks represent an ideal natural laboratory to extricate the

  16. Indirect radiative forcing by ion-mediated nucleation of aerosol

    Directory of Open Access Journals (Sweden)

    F. Yu

    2012-12-01

    Full Text Available A clear understanding of particle formation mechanisms is critical for assessing aerosol indirect radiative forcing and associated climate feedback processes. Recent studies reveal the importance of ion-mediated nucleation (IMN in generating new particles and cloud condensation nuclei (CCN in the atmosphere. Here we implement the IMN scheme into the Community Atmosphere Model version 5 (CAM5. Our simulations show that, compared to globally averaged results based on H2SO4-H2O binary homogeneous nucleation (BHN, the presence of ionization (i.e., IMN halves H2SO4 column burden, but increases the column integrated nucleation rate by around one order of magnitude, total particle number burden by a factor of ~3, CCN burden by ~10% (at 0.2% supersaturation to 65% (at 1.0% supersaturation, and cloud droplet number burden by ~18%. Compared to BHN, IMN increases cloud liquid water path by 7.5%, decreases precipitation by 1.1%, and increases total cloud cover by 1.9%. This leads to an increase of total shortwave cloud radiative forcing (SWCF by 3.67 W m−2 (more negative and longwave cloud forcing by 1.78 W m−2 (more positive, with large spatial variations. The effect of ionization on SWCF derived from this study (3.67 W m−2 is a factor of ~3 higher that of a previous study (1.15 W m−2 based on a different ion nucleation scheme and climate model. Based on the present CAM5 simulation, the 5-yr mean impacts of solar cycle induced changes in ionization rates on CCN and cloud forcing are small (~−0.02 W m−2 but have larger inter-annual (from −0.18 to 0.17 W m−2 and spatial variations.

  17. Examination of the aerosol indirect effect under contrasting environments during the ACE-2 experiment

    Directory of Open Access Journals (Sweden)

    H. Guo

    2007-01-01

    Full Text Available The Active Tracer High-resolution Atmospheric Model (ATHAM has been adopted to examine the aerosol indirect effect in contrasting clean and polluted cloudy boundary layers during the Second Aerosol Characterization Experiment (ACE-2. Model results are in good agreement with available in-situ observations, which provides confidence in the results of ATHAM. Sensitivity tests have been conducted to examine the response of the cloud fraction (CF, cloud liquid water path (LWP, and cloud optical depth (COD to changes in aerosols in the clean and polluted cases. It is shown for two cases that CF and LWP would decrease or remain nearly constant with an increase in aerosols, a result which shows that the second aerosol indirect effect is positive or negligibly small in these cases. Further investigation indicates that the background meteorological conditions play a critical role in the response of CF and LWP to aerosols. When large-scale subsidence is weak as in the clean case, the dry overlying air above the cloud is more efficiently entrained into the cloud, and in so doing, removes cloud water more efficiently, and results in lower CF and LWP when aerosol burden increases. However, when the large-scale subsidence is strong as in the polluted case, the growth of the cloud top is suppressed and the entrainment drying makes no significant difference when aerosol burden increases. Therefore, the CF and LWP remain nearly constant. In both the clean and polluted cases, the COD tends to increase with aerosols, and the total aerosol indirect effect (AIE is negative even when the CF and LWP decrease with an increase in aerosols. Therefore, the first AIE dominates the response of the cloud to aerosols.

  18. Aerosol Indirect Effect on Warm Clouds over Eastern China Using Combined CALIOP and MODIS Observations

    Science.gov (United States)

    Guo, Jianping; Wang, Fu; Huang, Jingfeng; Li, Xiaowen

    2015-04-01

    Aerosol, one of key components of the climate system, is highly variable, both temporally and spatially. It often exerts great influences on the cloud-precipitation chain processes by serving as CCN/IN, altering cloud microphysics and its life cycle. Yet, the aerosol indirect effect on clouds remains largely unknown, because the initial changes in clouds due to aerosols may be enhanced or dampened by such feedback processes as modified cloud dynamics, or evaporation of the smaller droplets due to the competition for water vapor. In this study, we attempted to quantify the aerosol effects on warm cloud over eastern China, based on near-simultaneous retrievals from MODIS/AQUA, CALIOP/CALIPSO and CPR/CLOUDSAT during the period 2006 to 2010. The seasonality of aerosol from ground-based PM10 is quite different from that estimated from MODIS AOD. This result is corroborated by lower level profile of aerosol occurrence frequency from CALIOP, indicating the significant role CALIOP could play in aerosol-cloud interaction. The combined use of CALIOP and CPR facilitate the process to exactly determine the (vertical) position of warm cloud relative to aerosol, out of six scenarios in terms of aerosol-cloud mixing status in terms of aerosol-cloud mixing status, which shows as follows: AO (Aerosol only), CO (Cloud only), SASC (Single aerosol-single cloud), SADC (single aerosol-double cloud), DASC (double aerosol-single cloud), and others. Results shows that about 54% of all the cases belong to mixed status, among all the collocated aerosol-cloud cases. Under mixed condition, a boomerang shape is observed, i.e., reduced cloud droplet radius (CDR) is associated with increasing aerosol at moderate aerosol pollution (AODthe boomerang shape varies with season. For moderate aerosol loading (AODthe effect on the droplet size for the "Mixed" cases is greater during cold season (denoted by a large slope), as compared with that during warm season. It is likely associated with an increase

  19. Sensitivity of Homogeneous Ice Nucleation to Aerosol Perturbations and Its Implications for Aerosol Indirect Effects Through Cirrus Clouds

    Science.gov (United States)

    Liu, X.; Shi, X.

    2018-02-01

    The magnitude and sign of anthropogenic aerosol impacts on cirrus clouds through ice nucleation are still very uncertain. In this study, aerosol sensitivity (ηα), defined as the sensitivity of the number concentration (Ni) of ice crystals formed from homogeneous ice nucleation to aerosol number concentration (Na), is examined based on simulations from a cloud parcel model. The model represents the fundamental process of ice crystal formation that results from homogeneous nucleation. We find that the geometric dispersion (σ) of the aerosol size distribution used in the model is a key factor for ηα. For a monodisperse size distribution, ηα is close to zero in vertical updrafts (V clouds. However, ηα increases to 0.1-0.3 (i.e., Ni increases by a factor of 1.3-2.0 for a tenfold increase in Na) if aerosol particles follow lognormal size distributions with a σ of 1.6-2.3 in the upper troposphere. By varying the input aerosol and environmental parameters, our model reproduces a large range of ηα values derived from homogeneous ice nucleation parameterizations widely used in global climate models (GCMs). The differences in ηα from these parameterizations can translate into a range of anthropogenic aerosol longwave indirect forcings through cirrus clouds from 0.05 to 0.36 W m-2 with a GCM. Our study suggests that a larger ηα (0.1-0.3) is more plausible and the homogeneous nucleation parameterizations should include a realistic aerosol size distribution to accurately quantify anthropogenic aerosol indirect effects.

  20. FY 2011 4th Quarter Metric: Estimate of Future Aerosol Direct and Indirect Effects

    Energy Technology Data Exchange (ETDEWEB)

    Koch, D

    2011-09-21

    The global and annual mean aerosol direct and indirect effects, relative to 1850 conditions, estimated from CESM simulations are 0.02 W m-2 and -0.39 W m-2, respectively, for emissions in year 2100 under the IPCC RCP8.5 scenario. The indirect effect is much smaller than that for 2000 emissions because of much smaller SO2 emissions in 2100; the direct effects are small due to compensation between warming by black carbon and cooling by sulfate.

  1. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2016-03-01

    Full Text Available Aerosol–cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500, lower-tropospheric stability (LTS and large-scale surface precipitation rate derived from several global climate models (GCMs, with a focus on liquid water path (LWP response to cloud condensation nuclei (CCN concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascent (ω500  <  −25 hPa day−1 and low clouds (stratocumulus and trade wind cumulus where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is close to that in subsidence regimes, which indicates that regimes with strong large-scale ascent are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm day−1 contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %. Results show that the uncertainty in AIE is even larger within specific dynamical regimes compared to the uncertainty in its global mean values, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.

  2. Sensitivity studies of different aerosol indirect effects in mixed-phase clouds

    Directory of Open Access Journals (Sweden)

    C. Hoose

    2009-11-01

    Full Text Available Aerosols affect the climate system by changing cloud characteristics. Using the global climate model ECHAM5-HAM, we investigate different aerosol effects on mixed-phase clouds: The glaciation effect, which refers to a more frequent glaciation due to anthropogenic aerosols, versus the de-activation effect, which suggests that ice nuclei become less effective because of an anthropogenic sulfate coating. The glaciation effect can partly offset the indirect aerosol effect on warm clouds and thus causes the total anthropogenic aerosol effect to be smaller. It is investigated by varying the parameterization for the Bergeron-Findeisen process and the threshold coating thickness of sulfate (SO4-crit, which is required to convert an externally mixed aerosol particle into an internally mixed particle. Differences in the net radiation at the top-of-the-atmosphere due to anthropogenic aerosols between the different sensitivity studies amount up to 0.5 W m−2. This suggests that the investigated mixed-phase processes have a major effect on the total anthropogenic aerosol effect.

  3. Assessment of the first indirect radiative effect of ammonium-sulfate-nitrate aerosols in East Asia

    Science.gov (United States)

    Han, Xiao; Zhang, Meigen; Skorokhod, Andrei

    2017-11-01

    A physically based cloud nucleation parameterization was introduced into an optical properties/radiative transfer module incorporated with the off-line air quality modeling system Regional Atmospheric Modeling System (RAMS)-Models-3 Community Multi Scale Air Quality (CMAQ) to investigate the distribution features of the first indirect radiative effects of sulfate, nitrate, and ammonium-sulfate-nitrate (ASN) over East Asia for the years of 2005, 2010, and 2013. The relationship between aerosol particles and cloud droplet number concentration could be properly described by this parameterization because the simulated cloud fraction and cloud liquid water path were generally reliable compared with Moderate Resolution Imaging Spectroradiometer (MODIS) retrieved data. Simulation results showed that the strong effect of indirect forcing was mainly concentrated in Southeast China, the East China Sea, the Yellow Sea, and the Sea of Japan. The highest indirect radiative forcing of ASN reached -3.47 W m-2 over Southeast China and was obviously larger than the global mean of the indirect forcing of all anthropogenic aerosols. In addition, sulfate provided about half of the contribution to the ASN indirect forcing effect. However, the effect caused by nitrate was weak because the mass burden of nitrate was very low during summer, whereas the cloud fraction was the highest. The analysis indicated that even though the interannual variation of indirect forcing magnitude generally followed the trend of aerosol mass burden from 2005 to 2013, the cloud fraction was an important factor that determined the distribution pattern of indirect forcing. The heaviest aerosol loading in North China did not cause a strong radiative effect because of the low cloud fraction over this region.

  4. Development and evaluation of Indirect Hemagglutination Antibody ...

    African Journals Online (AJOL)

    The study was conducted to develop and evaluate an Indirect Hemagglutination Antibody Test (IHAT) for the serological diagnosis of Cysticercus bovis in live animals. IHAT was set-up in-house and used to test serum samples of cattle against sheep red blood cell (SRBC) coated with crude extracts of C. bovis cyst. Serum ...

  5. Anthropogenic contribution to cloud condensation nuclei and the first aerosol indirect climate effect

    International Nuclear Information System (INIS)

    Yu Fangqun; Ma Xiaoyan; Luo Gan

    2013-01-01

    Atmospheric particles influence the climate indirectly by acting as cloud condensation nuclei (CCN). The first aerosol indirect radiative forcing (FAIRF) constitutes the largest uncertainty among the radiative forcings quantified by the latest IPCC report (IPCC2007) and is a major source of uncertainty in predicting climate change. Here, we investigate the anthropogenic contribution to CCN and associated FAIRF using a state-of-the-art global chemical transport and aerosol model (GEOS-Chem/APM) that contains a number of advanced features (including sectional particle microphysics, online comprehensive chemistry, consideration of all major aerosol species, online aerosol–cloud–radiation calculation, and usage of more accurate assimilated meteorology). The model captures the absolute values and spatial distributions of CCN concentrations measured in situ around the globe. We show that anthropogenic emissions increase the global mean CCN in the lower troposphere by ∼60–80% and cloud droplet number concentration by ∼40%. The global mean FAIRF based on GEOS-Chem/APM is −0.75 W m −2 , close to the median values of both IPCC2007 and post-IPCC2007 studies. To the best of our knowledge, this is the first time that a global sectional aerosol model with full online chemistry and considering all major aerosol species (including nitrate, ammonium, and second organic aerosols) has been used used to calculate FAIRF. (letter)

  6. A new chemistry option in WRF-Chem v. 3.4 for the simulation of direct and indirect aerosol effects using VBS: evaluation against IMPACT-EUCAARI data

    Science.gov (United States)

    Tuccella, P.; Curci, G.; Grell, G. A.; Visconti, G.; Crumeyrolle, S.; Schwarzenboeck, A.; Mensah, A. A.

    2015-09-01

    A parameterization for secondary organic aerosol (SOA) production based on the volatility basis set (VBS) approach has been coupled with microphysics and radiative schemes in the Weather Research and Forecasting model with Chemistry (WRF-Chem) model. The new chemistry option called "RACM-MADE-VBS-AQCHEM" was evaluated on a cloud resolving scale against ground-based and aircraft measurements collected during the IMPACT-EUCAARI (Intensive Cloud Aerosol Measurement Campaign - European Integrated project on Aerosol Cloud Climate and Air quality interaction) campaign, and complemented with satellite data from MODIS. The day-to-day variability and the diurnal cycle of ozone (O3) and nitrogen oxides (NOx) at the surface are captured by the model. Surface aerosol mass concentrations of sulfate (SO4), nitrate (NO3), ammonium (NH4), and organic matter (OM) are simulated with correlations larger than 0.55. WRF-Chem captures the vertical profile of the aerosol mass concentration in both the planetary boundary layer (PBL) and free troposphere (FT) as a function of the synoptic condition, but the model does not capture the full range of the measured concentrations. Predicted OM concentration is at the lower end of the observed mass concentrations. The bias may be attributable to the missing aqueous chemistry processes of organic compounds and to uncertainties in meteorological fields. A key role could be played by assumptions on the VBS approach such as the SOA formation pathways, oxidation rate, and dry deposition velocity of organic condensable vapours. Another source of error in simulating SOA is the uncertainties in the anthropogenic emissions of primary organic carbon. Aerosol particle number concentration (condensation nuclei, CN) is overestimated by a factor of 1.4 and 1.7 within the PBL and FT, respectively. Model bias is most likely attributable to the uncertainties of primary particle emissions (mostly in the PBL) and to the nucleation rate. Simulated cloud

  7. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    Energy Technology Data Exchange (ETDEWEB)

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A.; Yang, Fan

    2016-11-28

    The influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τc < τt) for high aerosol concentration, and slow microphysics (τc > τt) for low aerosol concentration; here, τc is the phase relaxation time and τt is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τs-1c-1 + τt-1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.

  8. Attribution of the United States “warming hole”: Aerosol indirect effect and precipitable water vapor

    Science.gov (United States)

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-01-01

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20th century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. “warming hole”). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the “warming hole”. We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed “warming hole” can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin. PMID:25373416

  9. Attribution of the United States "warming hole": aerosol indirect effect and precipitable water vapor.

    Science.gov (United States)

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-11-06

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20(th) century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. "warming hole"). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the "warming hole". We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed "warming hole" can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin.

  10. Aerosol effects on ice clouds: can the traditional concept of aerosol indirect effects be applied to aerosol-cloud interactions in cirrus clouds?

    Directory of Open Access Journals (Sweden)

    S. S. Lee

    2010-11-01

    Full Text Available Cirrus clouds cover approximately 20–25% of the globe and thus play an important role in the Earth's radiation budget. Therefore the effect of aerosols on cirrus clouds can have a substantial impact on global radiative forcing if either the ice-water path (IWP and/or the cloud ice number concentration (CINC changes. This study examines the aerosol indirect effect (AIE through changes in the CINC and IWP for a cirrus cloud case. We use a cloud-system resolving model (CSRM coupled with a double-moment representation of cloud microphysics. Intensified interactions among CINC, deposition and dynamics play a critical role in increasing the IWP as aerosols increase. Increased IWP leads to a smaller change in the outgoing LW radiation relative to that for the SW radiation for increasing aerosols. Increased aerosols lead to increased CINC, providing increased surface area for water vapor deposition. The increased deposition causes depositional heating which produces stronger updrafts, and leads to the increased IWP. The conversion of ice crystals to aggregates through autoconversion and accretion plays a negligible role in the IWP response to aerosols, and the sedimentation of aggregates is negligible. The sedimentation of ice crystals plays a more important role in the IWP response to aerosol increases than the sedimentation of aggregates, but not more than the interactions among the CINC, deposition and dynamics.

  11. A study of aerosol indirect effects and feedbacks on convective precipitation

    Science.gov (United States)

    Da Silva, Nicolas; Mailler, Sylvain; Drobinski, Philippe

    2017-04-01

    Atmospheric aerosols from natural and anthropogenic origin are present in the troposphere of the Mediterranean basin and continental Europe, occasionnally reaching very high concentrations in air masses with a strong content of aerosols related to mineral dust emissions, wildfires, or anthropogenic contamination [1]. On the other hand precipitations in the Mediterranean basin need to be understood precisely since drought and extreme precipitation events are a part of Mediterranean climate which can strongly affect the people and the economic activity in the Mediterranean basin [2]. The present study is a contribution to the investigations on the effects of aerosols on precipitation in the Mediterranean basin and continental Europe. For that purpose, we used the Weather Research and Forecasting Model (WRF) parameterized with the Thompson aerosol-aware microphysics schemes, performing two sensitivity simulations forced with two different aerosol climatologies during six months covering an entire summer season on a domain, covering the Mediterranean basin and continental Europe at 50 km resolution. Aerosols may affect atmospheric dynamics through their direct and semidirect radiative effects as well as through their indirect effects (through the changes of cloud microphysics). While it is difficult to disentangle these differents effects in reality, numerical modelling with the WRF model make it possible to isolate indirect effects by modifying them without affecting the direct or semidirect effects of aerosols in an attempt to examine the effect of aerosols on precipitations through microphysical effects only. Our first results have shown two opposite responses depending whether the precipitation are convective or large-scale. Since convective precipitations seem to be clearly inhibited by increased concentrations of cloud-condensation nuclei, we attempted to understand which processes and feedbacks are involved in this reduction of parameterized convective

  12. The impact of humidity above stratiform clouds on indirect aerosol climate forcing.

    Science.gov (United States)

    Ackerman, Andrew S; Kirkpatrick, Michael P; Stevens, David E; Toon, Owen B

    2004-12-23

    Some of the global warming from anthropogenic greenhouse gases is offset by increased reflection of solar radiation by clouds with smaller droplets that form in air polluted with aerosol particles that serve as cloud condensation nuclei. The resulting cooling tendency, termed the indirect aerosol forcing, is thought to be comparable in magnitude to the forcing by anthropogenic CO2, but it is difficult to estimate because the physical processes that determine global aerosol and cloud populations are poorly understood. Smaller cloud droplets not only reflect sunlight more effectively, but also inhibit precipitation, which is expected to result in increased cloud water. Such an increase in cloud water would result in even more reflective clouds, further increasing the indirect forcing. Marine boundary-layer clouds polluted by aerosol particles, however, are not generally observed to hold more water. Here we simulate stratocumulus clouds with a fluid dynamics model that includes detailed treatments of cloud microphysics and radiative transfer. Our simulations show that the response of cloud water to suppression of precipitation from increased droplet concentrations is determined by a competition between moistening from decreased surface precipitation and drying from increased entrainment of overlying air. Only when the overlying air is humid or droplet concentrations are very low does sufficient precipitation reach the surface to allow cloud water to increase with droplet concentrations. Otherwise, the response of cloud water to aerosol-induced suppression of precipitation is dominated by enhanced entrainment of overlying dry air. In this scenario, cloud water is reduced as droplet concentrations increase, which diminishes the indirect climate forcing.

  13. Attribution of the United States “warming hole”: Aerosol indirect effect and precipitable water vapor

    OpenAIRE

    Shaocai Yu; Kiran Alapaty; Rohit Mathur; Jonathan Pleim; Yuanhang Zhang; Chris Nolte; Brian Eder; Kristen Foley; Tatsuya Nagashima

    2014-01-01

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20th century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. “warming hole”). Here we used observations of temperature, shortwave cloud forcing (S...

  14. Climate impact of biofuels in shipping: global model studies of the aerosol indirect effect.

    Science.gov (United States)

    Righi, Mattia; Klinger, Carolin; Eyring, Veronika; Hendricks, Johannes; Lauer, Axel; Petzold, Andreas

    2011-04-15

    Aerosol emissions from international shipping are recognized to have a large impact on the Earth's radiation budget, directly by scattering and absorbing solar radiation and indirectly by altering cloud properties. New regulations have recently been approved by the International Maritime Organization (IMO) aiming at progressive reductions of the maximum sulfur content allowed in marine fuels from current 4.5% by mass down to 0.5% in 2020, with more restrictive limits already applied in some coastal regions. In this context, we use a global bottom-up algorithm to calculate geographically resolved emission inventories of gaseous (NO(x), CO, SO(2)) and aerosol (black carbon, organic matter, sulfate) species for different kinds of low-sulfur fuels in shipping. We apply these inventories to study the resulting changes in radiative forcing, attributed to particles from shipping, with the global aerosol-climate model EMAC-MADE. The emission factors for the different fuels are based on measurements at a test bed of a large diesel engine. We consider both fossil fuel (marine gas oil) and biofuels (palm and soy bean oil) as a substitute for heavy fuel oil in the current (2006) fleet and compare their climate impact to that resulting from heavy fuel oil use. Our simulations suggest that ship-induced surface level concentrations of sulfate aerosol are strongly reduced, up to about 40-60% in the high-traffic regions. This clearly has positive consequences for pollution reduction in the vicinity of major harbors. Additionally, such reductions in the aerosol loading lead to a decrease of a factor of 3-4 in the indirect global aerosol effect induced by emissions from international shipping.

  15. First surface-based estimation of the aerosol indirect effect over a site in southeastern China

    Science.gov (United States)

    Liu, Jianjun; Li, Zhanqing

    2018-02-01

    The deployment of the U.S. Atmospheric Radiation Measurement mobile facility in Shouxian from May to December 2008 amassed the most comprehensive set of measurements of atmospheric, surface, aerosol, and cloud variables in China. This deployment provided a unique opportunity to investigate the aerosol-cloud interactions, which are most challenging and, to date, have not been examined to any great degree in China. The relationship between cloud droplet effective radius (CER) and aerosol index (AI) is very weak in summer because the cloud droplet growth is least affected by the competition for water vapor. Mean cloud liquid water path (LWP) and cloud optical depth (COD) significantly increase with increasing AI in fall. The sensitivities of CER and LWP to aerosol loading increases are not significantly different under different air mass conditions. There is a significant correlation between the changes in hourly mean AI and the changes in hourly mean CER, LWP, and COD. The aerosol first indirect effect (FIE) is estimated in terms of relative changes in both CER (FIECER) and COD (FIECOD) with changes in AI for different seasons and air masses. FIECOD and FIECER are similar in magnitude and close to the typical FIE value of ˜ 0.23, and do not change much between summer and fall or between the two different air mass conditions. Similar analyses were done using spaceborne Moderate Resolution Imaging Spectroradiometer data. The satellite-derived FIE is contrary to the FIE estimated from surface retrievals and may have large uncertainties due to some inherent limitations.

  16. Modelling of the indirect radiation effect due to background aerosols in Austria

    International Nuclear Information System (INIS)

    Neubauer, D.

    2009-01-01

    Aerosols and greenhouse gases are the two most important contributors to the anthropogenic climate change. The indirect aerosol effect is simulated in this study. The effects of black carbon are investigated. Usually, models use measured aerosol data as input, and their predictions are compared to cloud parameters measured independently from the aerosol measurements. The model developed in this study uses simultaneously measured values for the aerosol and the subsequent cloud. This way, more realistic predictions for the indirect aerosol effect can be expected. The model uses data from an earlier intensive measurement campaign at an Austrian background site. The aerosol and cloud data are taken from the FWF project P 131 43 - CHE and had been collected in 2000 at a measurement site on a mountain in the proximity of Vienna (Rax, 1680 m a.s.l.). The simulation model consists of two parts, a cloud droplet growth model and a radiative model. The growth model for cloud droplets computes the cloud droplet distribution originating from a measured aerosol distribution. The calculated cloud droplet size distributions that are used for further calculations are selected according to the measured liquid water content of the real-world cloud. The radiative model then computes the radiative forcing using the calculated cloud droplet size distribution. The cloud model is a cloud parcel model which describes an ascending air parcel containing the droplets. Turbulent diffusion (important for stratiform clouds) is realized through a simple approach. The model includes nucleation, condensation, coagulation and radiative effects. Because of radiative heating/cooling of the cloud droplets the temperature and the critical super-saturation of the droplets can change. For radiative transfer calculations, the radiative transfer code of the public domain program 'Streamer' was adapted for this study. 'Streamer' accounts for scattering and absorption of radiation in the whole spectral region

  17. Study of Mechanisms of Aerosol Indirect Effects on Glaciated Clouds: Progress during the Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-10-18

    This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. During the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing

  18. The second aerosol indirect effect and its sensitivity to autoconversion - Global and regional views

    Science.gov (United States)

    Karset, Inger Helene; Storelvmo, Trude; Egill Kristjánsson, Jón; Alterskjær, Kari; Berntsen, Terje

    2017-04-01

    Recent studies have shown that general circulation models are overestimating the increase in cloud liquid water path (LWP) in response to increased aerosol loadings, thus giving a larger second aerosol indirect effect than observed. One of the contributors to this discrepancy is the parameterization of precipitation initiation in warm clouds, autoconversion, through its sensitivity to the cloud droplet number concentration (Nc) and the cloud water content (qc). We will show results from simulations done with CAM5.3-Oslo, the atmospheric component of an intermediate version of the Norwegian Earth System Model (NorESM), where we have explored different modifications to the autoconversion scheme. We are changing the sensitivity to Nc and qc, both separately and together, based on a suggested link between the two. Especially changing the sensitivity to Nc is shown to reduce the increase in LWP. This result holds globally when looking at how the LWP is responding to present-day vs. preindustrial aerosols, but also locally when using the Holuhraun volcanic eruption as a testbed. The autoconversion rate in the stratocumulus region and its variations with LWP are also improved compared to observations from the VOCALS campaign.

  19. Potential indirect effects of aerosol on tropical cyclone intensity: convective fluxes and cold-pool activity

    Science.gov (United States)

    Krall, G. M.; Cottom, W. R.

    2012-01-01

    aerosols resulted in large amounts of condensate being thrust into the storm anvil which weakened convective downdrafts and cold-pools, yet the system did show reductions in windspeed (although weaker) compared with the clean control run. This study suggests that ingestion of elevated amounts of CCN into a tropical cyclone (TC) can appreciably alter the intensity of the storm. This implies that intensity prediction of TCs would be improved by including indirect aerosol affects. However, the pollution aerosols have very little impact on the storm track.

  20. Aerosol indirect effects on summer precipitation in a regional climate model for the Euro-Mediterranean region

    Science.gov (United States)

    Da Silva, Nicolas; Mailler, Sylvain; Drobinski, Philippe

    2018-03-01

    Aerosols affect atmospheric dynamics through their direct and semi-direct effects as well as through their effects on cloud microphysics (indirect effects). The present study investigates the indirect effects of aerosols on summer precipitation in the Euro-Mediterranean region, which is located at the crossroads of air masses carrying both natural and anthropogenic aerosols. While it is difficult to disentangle the indirect effects of aerosols from the direct and semi-direct effects in reality, a numerical sensitivity experiment is carried out using the Weather Research and Forecasting (WRF) model, which allows us to isolate indirect effects, all other effects being equal. The Mediterranean hydrological cycle has often been studied using regional climate model (RCM) simulations with parameterized convection, which is the approach we adopt in the present study. For this purpose, the Thompson aerosol-aware microphysics scheme is used in a pair of simulations run at 50 km resolution with extremely high and low aerosol concentrations. An additional pair of simulations has been performed at a convection-permitting resolution (3.3 km) to examine these effects without the use of parameterized convection. While the reduced radiative flux due to the direct effects of the aerosols is already known to reduce precipitation amounts, there is still no general agreement on the sign and magnitude of the aerosol indirect forcing effect on precipitation, with various processes competing with each other. Although some processes tend to enhance precipitation amounts, some others tend to reduce them. In these simulations, increased aerosol loads lead to weaker precipitation in the parameterized (low-resolution) configuration. The fact that a similar result is obtained for a selected area in the convection-permitting (high-resolution) configuration allows for physical interpretations. By examining the key variables in the model outputs, we propose a causal chain that links the aerosol

  1. Aerosol as a player in the Arctic Amplification - an aerosol-climate model evaluation study

    Science.gov (United States)

    Schacht, Jacob; Heinold, Bernd; Tegen, Ina

    2017-04-01

    Climate warming is much more pronounced in the Arctic than in any other region on Earth - a phenomenon referred to as the "Arctic Amplification". This is closely related to a variety of specific feedback mechanisms, which relative importance, however, is not yet sufficiently understood. The local changes in the Arctic climate are far-reaching and affect for example the general atmospheric circulation and global energy transport. Aerosol particles from long-range transport and local sources play an important role in the Arctic system by modulating the energy balance (directly by interaction with solar and thermal infrared radiation and indirectly by changing cloud properties and atmospheric dynamics). The main source regions of anthropogenic aerosol are Europe and East Asia, but also local shipping and oil/gas extraction may contribute significantly. In addition, important sources are widespread, mainly natural boreal forest fires. Most of the European aerosol is transported through the lower atmospheric layers in wintertime. The Asian aerosol is transported through higher altitudes. Because of the usually pristine conditions in the Arctic even small absolute changes in aerosol concentration can have large impacts on the Arctic climate. Using global and Arctic-focused model simulations, we aim at investigating the sources and transport pathways of natural and anthropogenic aerosol to the Arctic region, as well as their impact on radiation and clouds. Here, we present first results from an aerosol-climate model evaluation study. Simulations were performed with the global aerosol-climate model ECHAM6-HAM2, using three different state-of-the-art emission inventories (ACCMIP, ACCMIP + GFAS emissions for wildfires and ECLIPSE). The runs were performed in nudged mode at T63 horizontal resolution (approximately 1.8°) with 47 vertical levels for the 10-year period 2006-2015. Black carbon (BC) and sulphate (SO4) are of particular interest. BC is highly absorbing in the

  2. Sensitivity of aerosol indirect effects to cloud nucleation and autoconversion parameterizations in short-range weather forecasts during the May 2003 aerosol IOP

    Directory of Open Access Journals (Sweden)

    Catherine C. Chuang

    2012-09-01

    Full Text Available Aerosol-cloud interactions begin with the direct involvement of aerosols in cloud nucleation followed by its indirect contribution to the formation of precipitation through autoconversion. Since the treatments of cloud microphysics in climate models are highly parameterized, a thorough study is needed to examine the range of simulations associated with different parameterizations of aerosol-cloud interactions. Unlike previous studies focused on climate-mode simulations, our interest is in short-range model response before the development of model bias and the compensation of multiple feedback mechanisms. In this study, we modified CAM4 to explore model sensitivity to treatments of cloud nucleation and autoconversion over the Atmospheric Radiation Measurement Southern Great Plains (SGP facility during the May 2003 Aerosol Intensive Operations Period (IOP under the Cloud-Associated Parameterizations Testbed framework. Simulated liquid water path and low cloud fraction were sensitive to the choice of parameterization; however, change of modeled precipitation was insignificant with varying parameterization in short-range (∼3 day simulation. In general, simulated cloud properties were more sensitive to the treatment of autoconversion than nucleation. Calculations of sulfate indirect effects indicate that the change of shortwave fluxes from cloud lifetime effect is much more sensitive to cloud parameterizations than cloud albedo effect. Microphysical feedbacks complicate the local response of the climate system and can yield a positive 2nd indirect sulfate forcing that counters the expectation that increases in aerosol concentration decrease the shortwave fluxes. As a result, the calculated total sulfate indirect forcing over SGP varies widely ranging from −0.1 to −2.1 W m−2 during the IOP.

  3. A novel automated indirect immunofluorescence autoantibody evaluation.

    Science.gov (United States)

    Kivity, Shaye; Gilburd, Boris; Agmon-Levin, Nancy; Carrasco, Marina Garcia; Tzafrir, Yaron; Sofer, Yael; Mandel, Matilda; Buttner, Thomas; Roggenbuck, Dirk; Matucci-Cerinic, Marco; Danko, Katalin; Hoyos, Marcos López; Shoenfeld, Yehuda

    2012-03-01

    Autoantibodies (AAb), especially antinuclear (ANAs) and anticytoplasmatic antibodies (ACyA), are essential diagnosing markers for several autoimmune diseases. The current gold standard method for ANA detection is manual indirect immunofluorescence (IIF) on human epithelial-2 (HEp-2) cells. However, this technique is cost and time consuming, and characterized by considerable intra- and interlaboratory variability. Thus, an automated IIF-HEp-2 reader has been developed recently. In the current study, we compared the performance of the automated AAb IIF-HEp-2 interpretation to conventional detection methods. Autoantibody detection by IIF on HEp-2 cells was performed in a total of 260 sera of patients, including 34 with systemic lupus erythematosus, 111 with dermatomyositis or polymyositis, 74 with systemic sclerosis, 41 with rare AAb patterns, and 137 healthy individuals. Visual interpretation and routine immunoassays were compared with a novel automated IIF-HEp-2 system using Aklides pattern recognition algorithms. Positive AAbs were detected in 95-100% of rheumatic patients by automated interpretation, in 74-100% with manual reading, and in 64-100% by immunodot assay. Receiver operating characteristic curve analysis of fluorescent intensity revealed a high sensitivity and specificity for automated reading of AAb with an agreement ranging from 90% to 95% between manual and automated interpretation (kappa 0.554-0.69) for systemic sclerosis and myositis, respectively. This study demonstrates a good correlation between manual and automated interpretation of AAb including ANA and ACyA in patients with autoimmune diseases. Full automation of HEp-2 cell assay reading may minimize errors in ANA pattern interpretation and thus help in the standardization of ANA assessment.

  4. Evaluating secondary inorganic aerosols in three dimensions

    Science.gov (United States)

    Mezuman, Keren; Bauer, Susanne E.; Tsigaridis, Kostas

    2016-08-01

    The spatial distribution of aerosols and their chemical composition dictates whether aerosols have a cooling or a warming effect on the climate system. Hence, properly modeling the three-dimensional distribution of aerosols is a crucial step for coherent climate simulations. Since surface measurement networks only give 2-D data, and most satellites supply integrated column information, it is thus important to integrate aircraft measurements in climate model evaluations. In this study, the vertical distribution of secondary inorganic aerosol (i.e., sulfate, ammonium, and nitrate) is evaluated against a collection of 14 AMS flight campaigns and surface measurements from 2000 to 2010 in the USA and Europe. GISS ModelE2 is used with multiple aerosol microphysics (MATRIX, OMA) and thermodynamic (ISORROPIA II, EQSAM) configurations. Our results show that the MATRIX microphysical scheme improves the model performance for sulfate, but that there is a systematic underestimation of ammonium and nitrate over the USA and Europe in all model configurations. In terms of gaseous precursors, nitric acid concentrations are largely underestimated at the surface while overestimated in the higher levels of the model. Heterogeneous reactions on dust surfaces are an important sink for nitric acid, even high in the troposphere. At high altitudes, nitrate formation is calculated to be ammonia limited. The underestimation of ammonium and nitrate in polluted regions is most likely caused by a too simplified treatment of the NH3 / NH4+ partitioning which affects the HNO3 / NO3- partitioning.

  5. Internal dosimetric evaluation due to uranium aerosols

    International Nuclear Information System (INIS)

    Garcia Aguilar Juan; Delgado Avila Gustavo

    1991-01-01

    The present work has like object to carry out the internal dosimetric evaluation to the occupationally exposed personnel, due to the inhalation of aerosols of natural uranium and enriched in the pilot plant of nuclear fuel production of the National Institute of Nuclear Research

  6. Evaluation and comparison of aerosol retrieval algorithms

    Science.gov (United States)

    de Leeuw, G.; Holzer-Popp, T.

    2012-04-01

    The retrieval of aerosol properties from space is an underdetermined problem which can only be solved by using a number of assumptions. These include the treatment of the underlying surface and the description of the aerosol optical properties. In addition the potential influence of clouds on the retrieval results requires a very thorough identification of cloud occurrence to avoid any contamination. Different approaches are used in each aerosol retrieval algorithm to tackle these problems, based on the information available from the sensor used, such as multiple wavelengths and spectral range, one or more viewing angles or polarization. And even for the same instruments, such as the Advanced Along-Track Scanning Radiometer (AATSR) or the MEdium Resolution Imaging Spectrometer (MERIS), different approaches are used. The European Space Agency (ESA) Climate Change Initiative project aerosol_cci aims at the production of essential climate variables (ECV's) from European Earth Observation instruments (ATSR-2, AATSR, MERIS, SCIAMACHY, POLDER, GOMOS and OMI) providing information on column integrated scattering and absorption properties as well as on stratospheric aerosol. In order to achieve this, differences between the various algorithms used need to be evaluated to provide the best possible products. To study the effect of the choice of the aerosol models used in the retrieval, the algorithms have been used with a variety of aerosol models, using four base models which are combined in several ways. These models have been used together with an aerosol climatology based on AEROCOM model results and AERONET observations which was optionally used to provide a priori information on the occurrence of each aerosol type. The algorithms have been run with either their own cloud mask or with a prescribed common cloud mask. Based on the tests, the best possible algorithms for each EO sensor or each algorithm for the same sensor have been used to provide a test data set for a

  7. Collaborative Research: Quantifying the Uncertainties of Aerosol Indirect Effects and Impacts on Decadal-Scale Climate Variability in NCAR CAM5 and CESM1

    Energy Technology Data Exchange (ETDEWEB)

    Nenes, Athanasios [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-06-23

    The goal of this proposed project is to assess the climatic importance and sensitivity of aerosol indirect effect (AIE) to cloud and aerosol processes and feedbacks, which include organic aerosol hygroscopicity, cloud condensation nuclei (CCN) activation kinetics, Giant CCN, cloud-scale entrainment, ice nucleation in mixed-phase and cirrus clouds, and treatment of subgrid variability of vertical velocity. A key objective was to link aerosol, cloud microphysics and dynamics feedbacks in CAM5 with a suite of internally consistent and integrated parameterizations that provide the appropriate degrees of freedom to capture the various aspects of the aerosol indirect effect. The proposal integrated new parameterization elements into the cloud microphysics, moist turbulence and aerosol modules used by the NCAR Community Atmospheric Model version 5 (CAM5). The CAM5 model was then used to systematically quantify the uncertainties of aerosol indirect effects through a series of sensitivity tests with present-day and preindustrial aerosol emissions. New parameterization elements were developed as a result of these efforts, and new diagnostic tools & methodologies were also developed to quantify the impacts of aerosols on clouds and climate within fully coupled models. Observations were used to constrain key uncertainties in the aerosol-cloud links. Advanced sensitivity tools were developed and implements to probe the drivers of cloud microphysical variability with unprecedented temporal and spatial scale. All these results have been published in top and high impact journals (or are in the final stages of publication). This proposal has also supported a number of outstanding graduate students.

  8. Development, Production and Evaluation of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci

    Directory of Open Access Journals (Sweden)

    Thomas Popp

    2016-05-01

    Full Text Available Producing a global and comprehensive description of atmospheric aerosols requires integration of ground-based, airborne, satellite and model datasets. Due to its complexity, aerosol monitoring requires the use of several data records with complementary information content. This paper describes the lessons learned while developing and qualifying algorithms to generate aerosol Climate Data Records (CDR within the European Space Agency (ESA Aerosol_cci project. An iterative algorithm development and evaluation cycle involving core users is applied. It begins with the application-specific refinement of user requirements, leading to algorithm development, dataset processing and independent validation followed by user evaluation. This cycle is demonstrated for a CDR of total Aerosol Optical Depth (AOD from two subsequent dual-view radiometers. Specific aspects of its applicability to other aerosol algorithms are illustrated with four complementary aerosol datasets. An important element in the development of aerosol CDRs is the inclusion of several algorithms evaluating the same data to benefit from various solutions to the ill-determined retrieval problem. The iterative approach has produced a 17-year AOD CDR, a 10-year stratospheric extinction profile CDR and a 35-year Absorbing Aerosol Index record. Further evolution cycles have been initiated for complementary datasets to provide insight into aerosol properties (i.e., dust aerosol, aerosol absorption.

  9. Sensitivity of aerosol indirect forcing and autoconversion to cloud droplet parameterization: an assessment with the NASA Global Modeling Initiative.

    Science.gov (United States)

    Sotiropoulou, R. P.; Meshkhidze, N.; Nenes, A.

    2006-12-01

    The aerosol indirect forcing is one of the largest sources of uncertainty in assessments of anthropogenic climate change [IPCC, 2001]. Much of this uncertainty arises from the approach used for linking cloud droplet number concentration (CDNC) to precursor aerosol. Global Climate Models (GCM) use a wide range of cloud droplet activation mechanisms ranging from empirical [Boucher and Lohmann, 1995] to detailed physically- based formulations [e.g., Abdul-Razzak and Ghan, 2000; Fountoukis and Nenes, 2005]. The objective of this study is to assess the uncertainties in indirect forcing and autoconversion of cloud water to rain caused by the application of different cloud droplet parameterization mechanisms; this is an important step towards constraining the aerosol indirect effects (AIE). Here we estimate the uncertainty in indirect forcing and autoconversion rate using the NASA Global Model Initiative (GMI). The GMI allows easy interchange of meteorological fields, chemical mechanisms and the aerosol microphysical packages. Therefore, it is an ideal tool for assessing the effect of different parameters on aerosol indirect forcing. The aerosol module includes primary emissions, chemical production of sulfate in clear air and in-cloud aqueous phase, gravitational sedimentation, dry deposition, wet scavenging in and below clouds, and hygroscopic growth. Model inputs include SO2 (fossil fuel and natural), black carbon (BC), organic carbon (OC), mineral dust and sea salt. The meteorological data used in this work were taken from the NASA Data Assimilation Office (DAO) and two different GCMs: the NASA GEOS4 finite volume GCM (FVGCM) and the Goddard Institute for Space Studies version II' (GISS II') GCM. Simulations were carried out for "present day" and "preindustrial" emissions using different meteorological fields (i.e. DAO, FVGCM, GISS II'); cloud droplet number concentration is computed from the correlations of Boucher and Lohmann [1995], Abdul-Razzak and Ghan [2000

  10. Evaluation of a radioactive aerosol surveillance system

    International Nuclear Information System (INIS)

    Scripsick, R.C.; Stafford, R.G.; Beckman, R.J.; Tillery, M.I.; Romero, P.O.

    Measurements of the dilution of air contaminants between worker breathing zone and area air samplers were made by releasing a test aerosol in a workroom equipped with an aerosol surveillance system. The data were used to evaluate performance, and suggest improvements in design of the workroom's alarming air monitor system. It was found that a breathing zone concentration of 960 times the maximum permissible concentration in air (MPC/sub a/) for a half-hour was required to trigger alarms of the existing monitoring system under some release conditions. Alternative air monitor placement, suggested from dilution measurements, would reduce this average triggering concentration to 354 MPC/sub a/. Deployment of additional air monitors could further reduce the average triggering concentration to 241 MPC/sub a/. The relation between number of monitors and triggering concentration was studied. No significant decrease in average triggering concentration was noted for arrays containing greater than five monitors

  11. Aerosol indirect effects on lightning in the generation of induced NOx and tropospheric ozone over an Indian urban metropolis

    Science.gov (United States)

    Saha, Upal; Maitra, Animesh; Talukdar, Shamitaksha; Jana, Soumyajyoti

    Lightning flashes, associated with vigorous convective activity, is one of the most prominent weather phenomena in the tropical atmosphere. High aerosol loading is indirectly associated with the increase in lightning flash rates via the formation of tropospheric ozone during the pre-monsoon and monsoon over the tropics. Tropospheric ozone, an important greenhouse pollutant gas have impact on Earth’s radiation budget and play a key role in changing the atmospheric circulation patterns. Lightning-induced NOx is a primary pollutant found in photochemical smog and an important precursor for the formation of tropospheric ozone. A critical analysis is done to study the indirect effects of high aerosol loading on the formation of tropospheric ozone via lightning flashes and induced NOx formation over an urban metropolitan location Kolkata (22°32'N, 88°20'E), India during the period 2001-2012. The seasonal variation of lightning flash rates (LFR), taken from TRMM-LIS 2.5o x 2.5o gridded dataset, show that the LFR was observed to be intensified in the pre-monsoon (March-May) and high in monsoon (June-September) months over the region. Aerosol Optical Depth (AOD) at 555nm, taken from MISR 0.5o x 0.5o gridded level-3 dataset, plays an indirect effect on the increase in LFR during the pre-monsoon and monsoon months and has positive correlations between them during these periods. This is also justified from the seasonal variation of the increase in LFR due to the increase in AOD over the region during 2001-2012. The calibrated GOME and OMI/AURA satellite data analysis shows that the tropospheric ozone, formed as a result of lightning-induced NOx and due to the increased AOD at 555 nm, also increases during the pre-monsoon and monsoon months. The seasonal variation of lightning-induced tropospheric NOx, taken from SCIAMACHY observations also justified the fact that the pre-monsoon and monsoon LFR solely responsible for the generation of induced NOx over the region. The

  12. Indirect radiative forcing of aerosols via water vapor above non-precipitating maritime cumulus clouds

    OpenAIRE

    M. A. Pfeffer; J. E. Kristjansson; F. Stordal; T. Berntsen; J. Fast

    2011-01-01

    Aerosol-cloud-water vapor interactions in clean maritime air have been described for different aerosol sources using the WRF-Chem atmospheric model. The simulations were made over the Lesser Antilles in the region of the RICO measurement campaign where the clouds are low, patchy, typical trade-wind cumuli. In this very clean air, sea salt and DMS are found to have greater effects than anthropogenic pollution on the cloud droplets' effective radii and longwave and shortwave outgoing top of atm...

  13. Processes limiting the emergence of detectable aerosol indirect effects on tropical warm clouds in global aerosol-climate model and satellite data

    Directory of Open Access Journals (Sweden)

    Karsten Peters

    2014-05-01

    Full Text Available We use data from simulations performed with the global aerosol-climate model ECHAM5-HAM to test the proposition that shipping emissions do not have a statistically significant effect on water clouds over tropical oceans on climate scales put forward in earlier satellite based work. We analyse a total of four sensitivity experiments, three of which employ global shipping emissions and one simulation which only employs shipping emissions in the mid-Atlantic Ocean. To ensure comparability to earlier results from observations, we sample the model data using a method previously applied to satellite data aimed at separating ‘clean’ from ‘polluted’ oceanic regions based on i the location of main shipping routes and ii wind direction at 10 m above sea level. The model simulations run with realistic present-day shipping emissions show changes in the lower tropospheric aerosol population attributable to shipping emissions across major shipping corridors over tropical oceans. However, we find the resulting effect on cloud properties to be non-distinguishable from natural gradients and variability, that is, gradients of cloud properties sampled across major shipping corridors over tropical oceans are very similar among those simulations. Our results therefore compare well to the earlier findings from satellite observations. Substantial changes of the aerosol population and cloud properties only occur when shipping emissions are increased 10-fold. We find that aerosol advection and rapid aerosol removal from the atmosphere play an important role in determining the non-significant response in i column integrated aerosol properties and ii cloud microphysical properties in the realistic simulations. Additionally, high variability and infrequent occurrence of simulated low-level clouds over tropical oceans in ECHAM5-HAM limit the development of aerosol indirect effects because i in-cloud production of sulphate from ship-emitted sulphuric species via

  14. Assessing aerosol indirect effect on ice and liquid clouds, and East/Southeast Asia and West African regional climate using NCEP GFS

    Science.gov (United States)

    Huang, H.; Gu, Y.; Xue, Y.; Lu, C. H.; Jiang, J. H.

    2017-12-01

    Aerosols are found to act as cloud condensation nuclei and ice nuclei, resulting in changes in cloud droplets number, effective radius and ice/liquid water content, then alter radiation budget and precipitations. Thus far, aerosol indirect effect on ice or ice/liquid mixed clouds is rarely included in current GCMs. In this study, we investigated this effect by incorporating the latest ice cloud parameterization by Jiang et al. (2011) in NCEP Global Forecast System (GFS) coupled with a land surface model (SSiB). The new ice cloud parameterization relates ice crystal size to both aerosol optical depth (AOD) and ice water content (IWC). The aerosol data used to specify the aerosol distribution in GFS is three-dimensional monthly averages of the aerosol mixing ratio in the Goddard Chemistry Aerosol Radiation and Transport model with a horizontal resolution of 1° latitude × 1.25° longitude. The model result shows a decrease in ice cloud crystal size globally with high aerosol concentration, especially in East and South Asia and West Africa. Clouds with smaller droplets size reflect more solar radiation and absorb more infrared radiation, resulting in more upward shortwave flux and less outgoing longwave on top of atmosphere. We found aerosol-cloud interactions may increase or decrease precipitation in different regions depending on whether deep convection system exists or not. We further discussed the mechanism through which aerosols cause precipitation decrease in West Africa and precipitation increase in East/Southeast Asia. We also conducted investigation assessing aerosol indirect effects on liquid clouds using the empirically-derived parametrization by Boucher et al (1995). We found surface temperature decrease in North Hemisphere mid to high latitude as a result of reduced surface net radiation. Precipitations are reduced because convection has been weakened as a result of decreased atmospheric heating. The aerosol effects on ice clouds and liquid cloud at

  15. Coherent Evaluation of Aerosol Data Products from Multiple Satellite Sensors

    Science.gov (United States)

    Ichoku, Charles

    2011-01-01

    Aerosol retrieval from satellite has practically become routine, especially during the last decade. However, there is often disagreement between similar aerosol parameters retrieved from different sensors, thereby leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus, and the inconsistencies are not well characterized and understood, there will be no way of developing reliable model inputs and climate data records from satellite aerosol measurements. Fortunately, the Aerosol Robotic Network (AERONET) is providing well-calibrated globally representative ground-based aerosol measurements corresponding to the satellite-retrieved products. Through a recently developed web-based Multi-sensor Aerosol Products Sampling System (MAPSS), we are utilizing the advantages offered by collocated AERONET and satellite products to characterize and evaluate aerosol retrieval from multiple sensors. Indeed, MAPSS and its companion statistical tool AeroStat are facilitating detailed comparative uncertainty analysis of satellite aerosol measurements from Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors.

  16. Global Distribution of Cloud Droplet Number Concentration, Autoconversion Rate, and Aerosol Indirect Effect Under Diabatic Droplet Activation

    Science.gov (United States)

    Barahona, Donifan; Sotiropoulou, Rafaella; Nenes, Athanasios

    2011-01-01

    This study presents a global assessment of the sensitivity of droplet number to diabatic activation (i.e., including effects from entrainment of dry air) and its first-order tendency on indirect forcing and autoconversion. Simulations were carried out with the NASA Global Modeling Initiative (GMI) atmospheric and transport model using climatological metereorological fields derived from the former NASA Data Assimilation Office (DAO), the NASA Finite volume GCM (FVGCM) and the Goddard Institute for Space Studies version II (GISS) GCM. Cloud droplet number concentration (CDNC) is calculated using a physically based prognostic parameterization that explicitly includes entrainment effects on droplet formation. Diabatic activation results in lower CDNC, compared to adiabatic treatment of the process. The largest decrease in CDNC (by up to 75 percent) was found in the tropics and in zones of moderate CCN concentration. This leads to a global mean effective radius increase between 0.2-0.5 micrometers (up to 3.5 micrometers over the tropics), a global mean autoconversion rate increase by a factor of 1.1 to 1.7 (up to a factor of 4 in the tropics), and a 0.2-0.4 W m(exp -2) decrease in indirect forcing. The spatial patterns of entrainment effects on droplet activation tend to reduce biases in effective radius (particularly in the tropics) when compared to satellite retrievals. Considering the diabatic nature of ambient clouds, entrainment effects on CDNC need to be considered in GCM studies of the aerosol indirect effect.

  17. Turbulence-induced broadening of cloud droplet size distributions: implications for aerosol indirect effects

    Science.gov (United States)

    Shaw, Raymond; Cantrell, Will; Chandrakar, Kamal Kant; Kinney, Greg; Ovchinnikov, Mikhail; Thomas, Subin; Yang, Fan

    2017-11-01

    The optical properties and precipitation efficiency of warm clouds depend on the droplet size distribution and its moments, including the statistical relative-dispersion of the distribution. Cloud droplet growth in a turbulent environment is studied by creating turbulent moist Rayleigh-Bénard convection in a laboratory chamber (the Pi Chamber) and a parallel LES with (bin) cloud-microphysics. Cloud formation is achieved by injecting aerosols into the water-supersaturated environment created by the isobaric mixing of saturated air at different temperatures. A range of steady-state cloud droplet number concentrations is achieved by supplying aerosols at different rates. The results reveal a surprising role of turbulence in cloud droplet formation and growth that can be understood as occurring in two regimes: a polluted cloud regime (Da >> 1) in which thermodynamic conditions are rather uniform and cloud droplet sizes are similar, and a clean cloud regime (Da polluted conditions introduces a new stabilizing factor by which increased aerosol concentration can suppress precipitation and enhance cloud brightness. This research was supported by NSF Grant AGS-1623429.

  18. Corrigendum to "Aerosol indirect effects from shipping emissions: sensitivity studies with the global aerosol-climate model ECHAM-HAM" published in Atmos. Chem. Phys., 12, 5985–6007, 2012

    Directory of Open Access Journals (Sweden)

    K. Peters

    2013-07-01

    Full Text Available An error in the calculation of the emitted number of primary sulfate particles for a given mass of emitted elementary sulfur has recently been identified in HAM, i.e. the aerosol module utilised in the ECHAM-HAM aerosol climate model. Correcting for this error substantially alters the estimates of top-of-atmosphere radiative forcing due to aerosol indirect effects from global shipping emissions (year 2000 as presented in Peters et al. (2012. Here, we shortly present these new results.

  19. Development of an aerosol decontamination factor evaluation method using an aerosol spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, Taizo, E-mail: t-kanai@criepi.denken.or.jp; Furuya, Masahiro, E-mail: furuya@criepi.denken.or.jp; Arai, Takahiro, E-mail: t-arai@criepi.denken.or.jp; Nishi, Yoshihisa, E-mail: y-nishi@criepi.denken.or.jp

    2016-07-15

    Highlights: • Aerosol DF of each diameter is evaluable by using optical scattering method. • Outlet aerosol concentration shows exponential decay by the submergence. • This decay constant depends on the aerosol diameter. • Aerosol DF at water scrubber is described by simple equation. - Abstract: During a severe nuclear power plant accident, the release of fission products into containment and an increase in containment pressure are assumed to be possible. When the containment is damaged by excess pressure or temperature, radioactive materials are released. Pressure suppression pools, containment spray systems and a filtered containment venting system (FCVS) reduce containment pressure and reduce the radioactive release into the environment. These devices remove radioactive materials via various mechanisms. Pressure suppression pools remove radioactive materials by pool scrubbing. Spray systems remove radioactive materials by droplet−aerosol interaction. FCVS, which is installed in the exhaust system, comprises multi-scrubbers (venturi-scrubber, pool scrubbing, static mixer, metal−fiber filter and molecular sieve). For the particulate radioactive materials, its size affects the removal performance and a number of studies have been performed on the removal effect of radioactive materials. This study has developed a new means of evaluating aerosol removal efficiency. The aerosol number density of each effective diameter (light scattering equivalent diameter) is measured using an optical method, while the decontamination factor (DF) of each effective diameter is evaluated by the inlet outlet number density ratio. While the applicable scope is limited to several conditions (geometry of test section: inner diameter 500 mm × height 8.0 m, nozzle shape and air-water ambient pressure conditions), this study has developed a numerical model which defines aerosol DF as a function of aerosol diameter (d) and submergences (x).

  20. Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect

    Directory of Open Access Journals (Sweden)

    B. Zobrist

    2006-01-01

    Full Text Available Heterogeneous ice freezing points of aqueous solutions containing various immersed solid dicarboxylic acids (oxalic, adipic, succinic, phthalic and fumaric have been measured with a differential scanning calorimeter. The results show that only the dihydrate of oxalic acid (OAD acts as a heterogeneous ice nucleus, with an increase in freezing temperature between 2 and 5 K depending on solution composition. In several field campaigns, oxalic acid enriched particles have been detected in the upper troposphere with single particle aerosol mass spectrometry. Simulations with a microphysical box model indicate that the presence of OAD may reduce the ice particle number density in cirrus clouds by up to ~50% when compared to exclusively homogeneous cirrus formation without OAD. Using the ECHAM4 climate model we estimate the global net radiative effect caused by this heterogeneous freezing to result in a cooling as high as −0.3 Wm−2.

  1. Evaluating the incidence of indirect tax reforms in Cameroon ...

    African Journals Online (AJOL)

    Between 1983 and 1996, income inequality moved from 0.49 to 0.44 and subsequently to 0.41 in 2001. The indirect tax structure has a role to play in inequality reduction policies. Using the 1983/84, 1996 and the 2001 Cameroon household surveys, this study reveals that the indirect tax reforms of 1994 and 1999 have been ...

  2. Laboratory evaluation of a vibrating orifice monodisperse aerosol generator

    International Nuclear Information System (INIS)

    Everitt, N.M.; Snelling, K.W.

    1985-02-01

    The Berglund-Liu vibrating orifice aerosol generator is capable of producing monodisperse particles in the diameter range 5 to 50 μm. Experiments have been carried out to set up and evaluate such a generator for the preparation of standard liquid (olive oil) and solid (methylene blue) aerosols in the size range 8 to 13 μm. Modifications have been made to the apparatus to improve its performance and increase its particle output. (author)

  3. Using Long-Term Satellite Observations to Identify Sensitive Regimes and Active Regions of Aerosol Indirect Effects for Liquid Clouds Over Global Oceans

    Science.gov (United States)

    Zhao, Xuepeng; Liu, Yangang; Yu, Fangquan; Heidinger, Andrew K.

    2018-01-01

    Long-term (1981-2011) satellite climate data records of clouds and aerosols are used to investigate the aerosol-cloud interaction of marine water cloud from a climatology perspective. Our focus is on identifying the regimes and regions where the aerosol indirect effects (AIEs) are evident in long-term averages over the global oceans through analyzing the correlation features between aerosol loading and the key cloud variables including cloud droplet effective radius (CDER), cloud optical depth (COD), cloud water path (CWP), cloud top height (CTH), and cloud top temperature (CTT). An aerosol optical thickness (AOT) range of 0.13 cloud variables. The first AIE that manifests as the change of long-term averaged CDER appears only in limited oceanic regions. The signature of aerosol invigoration of water clouds as revealed by the increase of cloud cover fraction (CCF) and CTH with increasing AOT at the middle/high latitudes of both hemispheres is identified for a pristine atmosphere (AOT 0.3) in the tropical convergence zones. The regions where the second AIE is likely to manifest in the CCF change are limited to several oceanic areas with high CCF of the warm water clouds near the western coasts of continents. The second AIE signature as represented by the reduction of the precipitation efficiency with increasing AOT is more likely to be observed in the AOT regime of 0.08 cloud interaction in cloud model simulations.

  4. Using Long-Term Satellite Observations to Identify Sensitive Regimes and Active Regions of Aerosol Indirect Effects for Liquid Clouds Over Global Oceans.

    Science.gov (United States)

    Zhao, Xuepeng; Liu, Yangang; Yu, Fangquan; Heidinger, Andrew K

    2018-01-16

    Long-term (1981-2011) satellite climate data records of clouds and aerosols are used to investigate the aerosol-cloud interaction of marine water cloud from a climatology perspective. Our focus is on identifying the regimes and regions where the aerosol indirect effects (AIEs) are evident in long-term averages over the global oceans through analyzing the correlation features between aerosol loading and the key cloud variables including cloud droplet effective radius (CDER), cloud optical depth (COD), cloud water path (CWP), cloud top height (CTH), and cloud top temperature (CTT). An aerosol optical thickness (AOT) range of 0.13 cloud variables. The first AIE that manifests as the change of long-term averaged CDER appears only in limited oceanic regions. The signature of aerosol invigoration of water clouds as revealed by the increase of cloud cover fraction (CCF) and CTH with increasing AOT at the middle/high latitudes of both hemispheres is identified for a pristine atmosphere (AOT  0.3) in the tropical convergence zones. The regions where the second AIE is likely to manifest in the CCF change are limited to several oceanic areas with high CCF of the warm water clouds near the western coasts of continents. The second AIE signature as represented by the reduction of the precipitation efficiency with increasing AOT is more likely to be observed in the AOT regime of 0.08 cloud interaction in cloud model simulations.

  5. Investigating the Linear Dependence of Direct and Indirect Radiative Forcing on Emission of Carbonaceous Aerosols in a Global Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanju [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana IL USA; Wang, Hailong [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Singh, Balwinder [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Ma, Po-Lun [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Rasch, Philip J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Bond, Tami C. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana IL USA

    2018-02-02

    The linearity of dependence of aerosol direct and indirect radiative forcing (DRF and IRF) on emissions is essential to answer the policy-relevant question on how the change in forcing would result from a change in emission. In this study, the forcing-to-emission relationship is investigated for black carbon (BC) and primary organic carbon (OC) emitted from North America and Asia. Direct and indirect radiative forcing of BC and OC are simulated with the Community Atmosphere Model (CAM5.1). Two diagnostics are introduced to aid in policy-relevant discussion: emission-normalized forcing (ENF) and linearity (R). DRF is linearly related to emission for both BC and OC from the two regions and emission-normalized DRF is similar, within 15%. IRF is linear to emissions for weaker sources and regions far from source (North American BC and OC), while for large emission sources and near source regions (Asian OC) the response of forcing to emission is sub-linear. In North America emission-normalized IRF (ENIRF) is 2-4 times higher than that in Asia. The difference among regions and species is primarily caused by failure of accumulation mode particles to become CCN, and then to activate into CDNC. Optimal aggregation area (30ºx 30º) has been used to communicate the regional variation of forcing-to-emission relationship. For IRF, only 15-40% of the Earth’s surface is significantly affected by the two emission regions, but the forcing in these regions comprises most of the global impact. Linearity of IRF occurs in about two-thirds of the significant regions except for Asian OC. ENF is an effective tool to estimate forcing changes due to reduction of surface emissions, as long as there is sufficient attention to the causes of nonlinearity in the simulations used to derive ENIRF (emission into polluted regions and emission elevation). The differences in ENIRF have important implications for policy decisions. Lower ENIRF in more polluted region like Asia means that reductions of

  6. Using Long‐Term Satellite Observations to Identify Sensitive Regimes and Active Regions of Aerosol Indirect Effects for Liquid Clouds Over Global Oceans

    Science.gov (United States)

    Liu, Yangang; Yu, Fangquan; Heidinger, Andrew K.

    2018-01-01

    Abstract Long‐term (1981–2011) satellite climate data records of clouds and aerosols are used to investigate the aerosol‐cloud interaction of marine water cloud from a climatology perspective. Our focus is on identifying the regimes and regions where the aerosol indirect effects (AIEs) are evident in long‐term averages over the global oceans through analyzing the correlation features between aerosol loading and the key cloud variables including cloud droplet effective radius (CDER), cloud optical depth (COD), cloud water path (CWP), cloud top height (CTH), and cloud top temperature (CTT). An aerosol optical thickness (AOT) range of 0.13 cloud variables. The first AIE that manifests as the change of long‐term averaged CDER appears only in limited oceanic regions. The signature of aerosol invigoration of water clouds as revealed by the increase of cloud cover fraction (CCF) and CTH with increasing AOT at the middle/high latitudes of both hemispheres is identified for a pristine atmosphere (AOT  0.3) in the tropical convergence zones. The regions where the second AIE is likely to manifest in the CCF change are limited to several oceanic areas with high CCF of the warm water clouds near the western coasts of continents. The second AIE signature as represented by the reduction of the precipitation efficiency with increasing AOT is more likely to be observed in the AOT regime of 0.08 cloud interaction in cloud model simulations. PMID:29527427

  7. Aerosol Direct, Indirect, Semidirect, and Surface Albedo Effects from Sector Contributions Based on the IPCC AR5 Emissions for Preindustrial and Present-day Conditions

    Science.gov (United States)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m(exp 2), with the largest contribution from the direct effect (-0.5 W/m(exp 2)). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m(exp 2)) and semidirect effects (-0.10 W/m(exp 2)) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m(exp 2)), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each

  8. Evaluation des indicateurs indirects de morbidite de la bilharziose ...

    African Journals Online (AJOL)

    But: Dans le but de mettre en place des méthodes d'évaluation rapide de la morbidité dans les communautés à traiter, une étude transversale a été effectuée pour évaluer les performances diagnostiques de trois indicateurs indirects utilisables par le programme national de lutte contre les bilharzioses au Togo. Matériels et ...

  9. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    Science.gov (United States)

    Chen, Min

    The increasing human activities have produced large amounts of air pollutants ejected into the atmosphere, in which atmospheric aerosols and tropospheric ozone are considered to be especially important because of their negative impacts on human health and their impacts on global climate through either their direct radiative effect or indirect effect on land-atmosphere CO2 exchange. This dissertation dedicates to quantifying and evaluating the aerosol and tropospheric ozone effects on global terrestrial ecosystem dynamics using a modeling approach. An ecosystem model, the integrated Terrestrial Ecosystem Model (iTem), is developed to simulate biophysical and biogeochemical processes in terrestrial ecosystems. A two-broad-band atmospheric radiative transfer model together with the Moderate-Resolution Imaging Spectroradiometer (MODIS) measured atmospheric parameters are used to well estimate global downward solar radiation and the direct and diffuse components in comparison with observations. The atmospheric radiative transfer modeling framework were used to quantify the aerosol direct radiative effect, showing that aerosol loadings cause 18.7 and 12.8 W m -2 decrease of direct-beam Photosynthetic Active Radiation (PAR) and Near Infrared Radiation (NIR) respectively, and 5.2 and 4.4 W m -2 increase of diffuse PAR and NIR, respectively, leading to a total 21.9 W m-2 decrease of total downward solar radiation over the global land surface during the period of 2003-2010. The results also suggested that the aerosol effect may be overwhelmed by clouds because of the stronger extinction and scattering ability of clouds. Applications of the iTem with solar radiation data and with or without considering the aerosol loadings shows that aerosol loading enhances the terrestrial productions [Gross Primary Production (GPP), Net Primary Production (NPP) and Net Ecosystem Production (NEP)] and carbon emissions through plant respiration (RA) in global terrestrial ecosystems over the

  10. Zonal Aerosol Direct and Indirect Radiative Forcing using Combined CALIOP, CERES, CloudSat, and CERES Data

    Science.gov (United States)

    Miller, W. F.; Kato, S.; Rose, F. G.; Sun-Mack, S.

    2009-12-01

    Under the NASA Energy and Water Cycle System (NEWS) program, cloud and aerosol properties derived from CALIPSO, CloudSat, and MODIS data then matched to the CERES footprint are used for irradiance profile computations. Irradiance profiles are included in the publicly available product, CCCM. In addition to the MODIS and CALIPSO generated aerosol, aerosol optical thickness is calculated over ocean by processing MODIS radiance through the Stowe-Ignatov algorithm. The CERES cloud mask and properties algorithm are use with MODIS radiance to provide additional cloud information to accompany the actively sensed data. The passively sensed data is the only input to the standard CERES radiative flux products. The combined information is used as input to the NASA Langley Fu-Liou radiative transfer model to determine vertical profiles and Top of Atmosphere shortwave and longwave flux for pristine, all-sky, and aerosol conditions for the special data product. In this study, the three sources of aerosol optical thickness will be compared directly and their influence on the calculated and measured TOA fluxes. Earlier studies indicate that the largest uncertainty in estimating direct aerosol forcing using aerosol optical thickness derived from passive sensors is caused by cloud contamination. With collocated CALIPSO data, we are able to estimate frequency of occurrence of cloud contamination, effect on the aerosol optical thickness and direct radiative effect estimates.

  11. Study of aerosol direct and indirect effects and auto-conversion processes over the West African monsoon region using a regional climate model

    Science.gov (United States)

    Salah, Zeinab; Shalaby, Ahmed; Steiner, Allison L.; Zakey, Ashraf S.; Gautam, Ritesh; Abdel Wahab, Mohamed M.

    2018-02-01

    This study assesses the direct and indirect effects of natural and anthropogenic aerosols (e.g., black carbon and sulfate) over West and Central Africa during the West African monsoon (WAM) period (June-July-August). We investigate the impacts of aerosols on the amount of cloudiness, the influences on the precipitation efficiency of clouds, and the associated radiative forcing (direct and indirect). Our study includes the implementation of three new formulations of auto-conversion parameterization [namely, the Beheng (BH), Tripoli and Cotton (TC) and Liu and Daum (R6) schemes] in RegCM4.4.1, besides the default model's auto-conversion scheme (Kessler). Among the new schemes, BH reduces the precipitation wet bias by more than 50% over West Africa and achieves a bias reduction of around 25% over Central Africa. Results from detailed sensitivity experiments suggest a significant path forward in terms of addressing the long-standing issue of the characteristic wet bias in RegCM. In terms of aerosol-induced radiative forcing, the impact of the various schemes is found to vary considerably (ranging from -5 to -25 W m-2).

  12. Evaluation of Aerosol Optical Depth and Aerosol Models from VIIRS Retrieval Algorithms over North China Plain

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    2017-05-01

    Full Text Available The first Visible Infrared Imaging Radiometer Suite (VIIRS was launched on Suomi National Polar-orbiting Partnership (S-NPP satellite in late 2011. Similar to the Moderate resolution Imaging Spectroradiometer (MODIS, VIIRS observes top-of-atmosphere spectral reflectance and is potentially suitable for retrieval of the aerosol optical depth (AOD. The VIIRS Environmental Data Record data (VIIRS_EDR is produced operationally by NOAA, and is based on the MODIS atmospheric correction algorithm. The “MODIS-like” VIIRS data (VIIRS_ML are being produced experimentally at NASA, from a version of the “dark-target” algorithm that is applied to MODIS. In this study, the AOD and aerosol model types from these two VIIRS retrieval algorithms over the North China Plain (NCP are evaluated using the ground-based CE318 Sunphotometer (CE318 measurements during 2 May 2012–31 March 2014 at three sites. These sites represent three different surface types: urban (Beijing, suburban (XiangHe and rural (Xinglong. Firstly, we evaluate the retrieved spectral AOD. For the three sites, VIIRS_EDR AOD at 550 nm shows a positive mean bias (MB of 0.04–0.06 and the correlation of 0.83–0.86, with the largest MB (0.10–0.15 observed in Beijing. In contrast, VIIRS_ML AOD at 550 nm has overall higher positive MB of 0.13–0.14 and a higher correlation (0.93–0.94 with CE318 AOD. Secondly, we evaluate the aerosol model types assumed by each algorithm, as well as the aerosol optical properties used in the AOD retrievals. The aerosol model used in VIIRS_EDR algorithm shows that dust and clean urban models were the dominant model types during the evaluation period. The overall accuracy rate of the aerosol model used in VIIRS_ML over NCP three sites (0.48 is higher than that of VIIRS_EDR (0.27. The differences in Single Scattering Albedo (SSA at 670 nm between VIIRS_ML and CE318 are mostly less than 0.015, but high seasonal differences are found especially over the Xinglong

  13. New insights in the production of aerosol antibiotics. Evaluation of the optimal aerosol production system for ampicillin-sulbactam, meropenem, ceftazidime, cefepime and piperacillin-tazobactam.

    Science.gov (United States)

    Zarogoulidis, Paul; Kioumis, Ioannis; Ritzoulis, Christos; Petridis, Dimitris; Darwiche, Kaid; Porpodis, Konstantinos; Spyratos, Dionysis; Parrish, Scott; Browning, Robert; Li, Qiang; Turner, J Francis; Freitag, Lutz; Zarogoulidis, Konstantinos

    2013-10-15

    Several aerosol antibiotics are on the market and several others are currently being evaluated. Aim of the study was to evaluate the aerosol droplet size of five different antibiotics for future evaluation as an aerosol administration. The nebulizers Sunmist(®), Maxineb(®) and Invacare(®) were used in combination with four different "small <6 ml" residual cups and two "large <10 ml" with different loadings 2-4-6-8 ml (8 ml only for large residual cups) with five different antibiotic drugs (ampicilln-sulbactam, meropenem, ceftazidime, cefepime and piperacillin-tazobactam). The Mastersizer 2000 (Malvern) was used to evaluate the produced droplet size from each combination Significant effect on the droplet size produced the different antibiotic (F=96.657, p<0.001) and the residual cup design (F=68.535, p<0.001) but not the different loading amount (p=0.127) and the nebulizer (p=0.715). Interactions effects were found significant only between antibiotic and residual cup (F=16.736, p<0.001). No second order interactions were found statistically significant. Our results firstly indicate us indirectly that the chemical formulation of the drug is the main factor affecting the produced droplet size and secondly but closely the residual cup design. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. NORTHERN OHIO AEROSOL STUDY: STAPHYLOCOCCUS AUREUS EVALUATION

    Science.gov (United States)

    A consortium of Universities, located in northwest Ohio have received funds to conduct a comprehensive evaluation of land applied biosolids in that state. This USDA funded study includes observing land application practices and evaluating biosolids, soils, runoff water and bioaer...

  15. Evaluating Aerosol/Cloud/Radiation Process Parameterizations with Single- Column Models and Second Aerosol Characterization Experiment (ACE-2) Cloudy Column Observations

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Brenguier, Jean-Louis; Boucher, Olivier; Davison, Paul; Del Genio, Anthony D.; Feichter, J; Ghan, Steven J.; Guibert, Sarah; Liu, Xiaohong; Lohmann, Ulrike; Pawlowska, Hanna; Penner, Joyce E.; Quaas, Johannes; Roberts, David L.; Schuller, Lothar; Snider, Jefferson

    2003-12-17

    The ACE-2 data set along with ECMWF reanalysis meteorological fields provided the basis for the single column model (SCM) simulations, which were performed as part of the PACE (Parameterization of the Aerosol Indirect Climatic Effect) project. Six different SCMs were used to simulate ACE-2 case studies of clean and polluted cloudy boundary layers, with the objective being to identify limitations of the aerosol/cloud/radiation interaction schemes within the range of uncertainty in in situ, reanalysis and satellite retrieved data that were used to constrain model results. The exercise proceeds in three steps. First, SCMs are configured with the same fine vertical resolution as the ACE-2 in situ data base to evaluate the numerical schemes for the prediction of aerosol activation, radiative transfer and precipitation formation. Second, the same test is performed at the coarser vertical resolution of GCMs to evaluate its impact on the performance of the parameterizations. Finally, SCMs are run for a 24 to 48 hr period to examine predictions of boundary layer clouds when initialized with large-scale meteorological fields.

  16. Toward a Combined SAGE II-HALOE Aerosol Climatology: An Evaluation of HALOE Version 19 Stratospheric Aerosol Extinction Coefficient Observations

    Science.gov (United States)

    Thomason, L. W.

    2012-01-01

    Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.

  17. Toward a combined SAGE II-HALOE aerosol climatology: an evaluation of HALOE version 19 stratospheric aerosol extinction coefficient observations

    Directory of Open Access Journals (Sweden)

    L. W. Thomason

    2012-09-01

    Full Text Available Herein, the Halogen Occultation Experiment (HALOE aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 μm is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 μm is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 μm aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40 μm aerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 μm channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived

  18. Evaluation of sulfate aerosol optical depths over the North Atlantic and comparison with satellite observations

    International Nuclear Information System (INIS)

    Berkowitz, C.M.; Ghan, S.J.; Benkovitz, C.M.; Wagener, R.; Nemesure, S.; Schwartz, S.E.

    1993-11-01

    It has been postulated that scattering of sunlight by aerosols can significantly reduce the amount of solar energy absorbed by the climate system. Aerosol measurement programs alone cannot provide all the information needed to evaluate the radiative forcing due to anthropogenic aerosols. Thus, comprehensive global-scale aerosol models, properly validated against surface-based and satellite measurements, are a fundamental tool for evaluating the impacts of aerosols on the planetary radiation balance. Analyzed meteorological fields from the European Centre for Medium-Range Weather Forecasts are used to drive a modified version of the PNL Global Chemistry Model, applied to the atmospheric sulfur cycle. The resulting sulfate fields are used to calculate aerosol optical depths, which in turn are compared to estimates of aerosol optical depth based on satellite observations

  19. Evaluation of aerosol optical depth and aerosol models from MODIS and VIIRS retrieval algorithms over North China Plain

    Science.gov (United States)

    Wang, J.; Zhu, J.; Xia, X.; Chen, H.; Zhang, J.; Xu, X.; Oo, M. M.; Holz, R.; Levy, R. C.

    2015-12-01

    After the launch of Suomi National Polar-orbiting Partnership (S-NPP) equipped with the Visible Infrared Imaging Radiometer Suit (VIIRS) instrument in late 2011, the aerosol products of VIIRS have received much attention. Currently there are two aerosol products of VIIRS by using different algorithms: VIIRS Environment Data Record data (VIIRS_EDR) and aerosol products by applying MODIS-like algorithm to VIIRS (VIIRS_ML). In this study, the aerosol optical depth (AOD) at 550nm and properties of aerosol models used in the two VIIRS algorithms (VIIRS_EDR and VIIRS_ML) are compared respectively with their corresponding quantities retrieved from the ground-based Sunphotometer measurements (CE318) during May 2012-March 2014 at three sites over North China Plain (NCP): metropolis-Beijing, suburban-XiangHe and regional background site-Xinglong. The results show that the VIIRS_EDR AOD has a positive mean bias (MB) of 0.04-0.06 and the root mean square error (RMSE) of 0.22-0.24 in NCP region. Among three sites, the largest MB (0.10-0.15) and RMSE (0.27-0.30) are observed in Beijing. The results of evaluation of VIIRS_ML for each site and quality flags analysis are similar to VIIRS_EDR, but in general the VIIRS_ML AOD shows better than VIIRS_EDR except for the MB (0.13-0.14). The model comparisons show that the occurrence percentages of both dust and clean urban aerosol in VIIRS_EDR (82% for Beijing, 73% for XiangHe and 50% for Xinglong) are significantly larger than that for CE318, the latter shows the polluted urban aerosol is the dominant aerosol especially for Beijing (67%) and XiangHe (59%) sites. The values of Single Scattering albedo (SSA) from VIIRS_EDR are higher than from CE318 in all aerosol modes, with a positive bias of 0.03-0.06 for fine mode, 0.18-0.22 for coarse model and 0.03-0.08 for total modes and the aerosol microphysical properties used in the VIIRS_EDR algorithm for AOD retrieval show a large difference with the counterparts from CE318 inversion results

  20. Tropospheric Aerosols

    Science.gov (United States)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    uncertainties by "the I-beams". Only an uncertainty range rather than a best estimate is presented for direct aerosol forcing by mineral dust and for indirect aerosol forcing. An assessment of the present level of scientific understanding is indicated at the bottom of the figure (reproduced by permission of Intergovernmental Panel on Climate Change). The importance of atmospheric aerosols to issues of societal concern has motivated much research intended to describe their loading, distribution, and properties and to develop understanding of the controlling processes to address such issues as air pollution, acid deposition, and climate influences of aerosols. However, description based wholly on measurements will inevitably be limited in its spatial and temporal coverage and in the limited characterization of aerosol properties. These limitations are even more serious for predictions of future emissions and provide motivation for concurrent theoretical studies and development of model-based description of atmospheric aerosols.An important long-range goal, which has already been partly realized, is to develop quantitative understanding of the processes that control aerosol loading, composition, and microphysical properties as well as the resultant optical and cloud-nucleating properties. An objective is to incorporate these results into chemical transport models that can be used for predictions. Such models are required, for example, to design approaches to achieve air quality standards and to assess and predict aerosol influences on climate change. Much current research is directed toward enhancing this understanding and to evaluating it by comparison of model results and observations. However, compared to gases, models involving particles are far more complex because of the need to specify additional parameters such as particle sizes and size distributions, compositions as a function of size, particle shapes, and temporal and spatial variations, including reactions that occur

  1. Final Report for “Simulating the Arctic Winter Longwave Indirect Effects. A New Parameterization for Frost Flower Aerosol Salt Emissions” (DESC0006679) for 9/15/2011 through 9/14/2015

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Lynn M. [Univ. of California, San Diego, CA (United States); Somerville, Richard C.J. [Univ. of California, San Diego, CA (United States); Burrows, Susannah [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rasch, Phil [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-12

    Description of the Project: This project has improved the aerosol formulation in a global climate model by using innovative new field and laboratory observations to develop and implement a novel wind-driven sea ice aerosol flux parameterization. This work fills a critical gap in the understanding of clouds, aerosol, and radiation in polar regions by addressing one of the largest missing particle sources in aerosol-climate modeling. Recent measurements of Arctic organic and inorganic aerosol indicate that the largest source of natural aerosol during the Arctic winter is emitted from crystal structures, known as frost flowers, formed on a newly frozen sea ice surface [Shaw et al., 2010]. We have implemented the new parameterization in an updated climate model making it the first capable of investigating how polar natural aerosol-cloud indirect effects relate to this important and previously unrecognized sea ice source. The parameterization is constrained by Arctic ARM in situ cloud and radiation data. The modified climate model has been used to quantify the potential pan-Arctic radiative forcing and aerosol indirect effects due to this missing source. This research supported the work of one postdoc (Li Xu) for two years and contributed to the training and research of an undergraduate student. This research allowed us to establish a collaboration between SIO and PNNL in order to contribute the frost flower parameterization to the new ACME model. One peer-reviewed publications has already resulted from this work, and a manuscript for a second publication has been completed. Additional publications from the PNNL collaboration are expected to follow.

  2. Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity

    Directory of Open Access Journals (Sweden)

    G. W. Mann

    2014-05-01

    Full Text Available Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree

  3. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Randles, C. A. [Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland; da Silva, A. M. [Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland; Buchard, V. [Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland; Goddard Earth Sciences Technology and Research/Universities Space Research Association, Columbia, Maryland; Colarco, P. R. [Atmospheric Chemistry and Dynamics Lab, NASA Goddard Space Flight Center, Greenbelt, Maryland; Darmenov, A. [Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland; Govindaraju, R. [Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland; Science Systems and Applications, Inc., Lanham, Maryland; Smirnov, A. [Science Systems and Applications, Inc., Lanham, Maryland; NASA Biospheric Sciences Laboratory, Greenbelt, Maryland; Holben, B. [NASA Biospheric Sciences Laboratory, Greenbelt, Maryland; Ferrare, R. [NASA Langley Research Center, Hampton, Virginia; Hair, J. [NASA Langley Research Center, Hampton, Virginia; Shinozuka, Y. [Bay Area Environmental Research Institute, Petaluma, California; NASA Ames Research Center Cooperative for Research in Earth Science and Technology, Moffett Field, California; Flynn, C. J. [Pacific Northwest National Laboratory, Richland, Washington

    2017-09-01

    The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) updates NASA’s previous satellite era (1980 – onward) reanalysis system to include additional observations and improvements to the Goddard Earth Observing System, Version 5 (GEOS-5) Earth system model. As a major step towards a full Integrated Earth Systems Analysis (IESA), in addition to meteorological observations, MERRA-2 now includes assimila-tion of aerosol optical depth (AOD) from various ground- and space-based remote sensing platforms. Here, in the first of a pair of studies, we document the MERRA-2 aerosol assimilation, including a description of the prognostic model (GEOS-5 coupled to the GOCART aerosol module), aerosol emissions, and the quality control of ingested observations. We provide initial validation and evaluation of the analyzed AOD fields using independent observations rom ground, aircraft, and shipborne instruments. We demonstrate the pos-itive impact of the AOD assimilation on simulated aerosols by comparing MERRA-2 aerosol fields to an identical control simulation that does not in-clude AOD assimilation. Having shown the AOD evaluation, we take a first look at aerosol-climate interactions by examining the shortwave, clear-sky aerosol direct radiative effect. In our companion paper, we evaluate and validate available MERRA-2 aerosol properties not directly impacted by the AOD assimilation (e.g. aerosol vertical distribution and absorption). Importantly, while highlighting the skill of the MERRA-2 aerosol assimilation products, both studies point out caveats that must be considered when using this new reanalysis product for future studies of aerosols and their interactions with weather and climate.

  4. Airway evaluation by indirect laryngoscopy in patients with lingual tonsillar hypertrophy.

    Science.gov (United States)

    Sánchez-Morillo, Jorge; Gómez-Diago, Lorena; Rodríguez-Gimillo, Pablo; Herrera-Collado, Raúl; Puchol-Castillo, Jorge; Mompó-Romero, Luis

    2013-01-01

    Prevalence of the lingual tonsillar hypertrophy is unknown but it is believed that its presence is associated with the difficult airway. To investigate this, indirect laryngoscopy was performed on patients in the preoperative evaluation and this pathology was diagnosed. The relationship with difficulty of viewing the larynx, intubation and ventilation, under general anaesthesia and using direct laryngoscopy, was then studied. We performed the demographic variable checks and tests for predicting difficult intubation (mouth opening, thyromental distance, cervical flexion-extension, neck thickness and Mallampati test), in the preoperative step on 300 patients who were going to be submitted to general anaesthesia. We then performed indirect laryngoscopy on them using a 70° rigid laryngoscope to ascertain the frequency of appearance of lingual tonsillar hypertrophy. Next, under general anaesthesia, we carried out direct laryngoscopy to verify whether there was difficulty in viewing the larynx and intubation and ventilation. We then investigated the association of demographic predictors of difficult intubation, including indirect laryngoscopy, with the presence of this condition. Prevalence of lingual tonsillar hypertrophy was 2%. No relationship between the appearance of this entity and the difficulty of viewing the larynx, intubation and ventilation was found. Only indirect laryngoscopy was linked to the appearance of this pathology. Lingual tonsillar hypertrophy is a relatively frequent disorder, whose presence is not usually associated with difficult airway. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  5. Evaluating MODIS Collection 6 Dark Target Over Water Aerosol Products for Multi-sensor Data Fusion

    Science.gov (United States)

    Shi, Y.; Zhang, J.; Reid, J. S.; Hyer, E. J.; McHardy, T. M.; Lee, L.

    2014-12-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products have been widely used in aerosol related climate, visibility, and air quality studies for more than a decade. Recently, the MODIS collection 6 (c6) aerosol products from MODIS-Aqua have been released. The reported changes between Collection 5 and Collection 6 include updates in the retrieving algorithms and a new cloud filtering process for the over-ocean products. Thus it is necessary to fully evaluate the collection 6 products for applications that require high quality MODIS aerosol optical depth data, such as operational aerosol data assimilation. The uncertainties in the MODIS c6 DT over ocean products are studied through both inter-comparing with the Multi-angle Imaging Spectroradiometer (MISR) aerosol products and by evaluation against ground truth. Special attention is given to the low bias in MODIS DT products due to the misclassifications of heavy aerosol plumes as clouds. Finally, a quality assured data assimilation grade aerosol optical product is constructed for aerosol data assimilation related applications.

  6. Aerosol sampling and characterization for hazard evaluation. Progress report, July 1, 1975--September 30, 1976

    International Nuclear Information System (INIS)

    Scripsick, R.C.; Gray, D.C.; Tillery, M.I.; Stafford, R.G.; Romero, P.O.

    1977-04-01

    A draft Manual of Recommended Practice for Aerosol Sampling and Evaluation was completed and sent to the Energy Research and Development Administration (ERDA) Division of Safety, Standards, and Compliance (DSSC) for review. The results of the Survey of Sampling Techniques for Defining Respirable Concentration and/or Particle Size Characteristics of Aerosols were published as LA-6087. The need for greater standardization of ERDA aerosol sampling techniques was indicated. The Aerosol Training Course was presented in 11 sessions to 85 persons. General elements of good practice were emphasized, and recommendation of specific sampling devices or procedures was avoided. A system for estimating dissolution rates of plutonium aerosols was developed. Studies indicate that plutonium aerosols found in the field have a rapid initial dissolution phase followed by a slower secondary phase. Three methods of particle sizing air samples collected on membrane filters were investigated. The most promising was a scanning electron microscope electron microprobe (SEM-EMp) method. An operating plutonium handling facility was a model for development of techniques to evaluate aerosol surveillance systems performance. Airborne contamination records were studied. The physicochemical properties of a plutonium aerosol existing in the facility were investigated in relation to plutonium handling operations. The techniques developed have indicated some areas of the aerosol surveillance system that need improvement

  7. Automated Indirect Immunofluorescence Evaluation of Antinuclear Autoantibodies on HEp-2 Cells

    OpenAIRE

    Voigt, Jörn; Krause, Christopher; Rohwäder, Edda; Saschenbrecker, Sandra; Hahn, Melanie; Danckwardt, Maick; Feirer, Christian; Ens, Konstantin; Fechner, Kai; Barth, Erhardt; Martinetz, Thomas; Stöcker, Winfried

    2012-01-01

    Indirect immunofluorescence (IIF) on human epithelial (HEp-2) cells is considered as the gold standard screening method for the detection of antinuclear autoantibodies (ANA). However, in terms of automation and standardization, it has not been able to keep pace with most other analytical techniques used in diagnostic laboratories. Although there are already some automation solutions for IIF incubation in the market, the automation of result evaluation is still in its infancy. Therefore, the E...

  8. Improving organic aerosol treatments in CESM/CAM5: Development, application, and evaluation.

    Science.gov (United States)

    Glotfelty, Timothy; He, Jian; Zhang, Yang

    2017-06-01

    New treatments for organic aerosol (OA) formation have been added to a modified version of the CESM/CAM5 model (CESM-NCSU). These treatments include a volatility basis set treatment for the simulation of primary and secondary organic aerosols (SOAs), a simplified treatment for organic aerosol (OA) formation from glyoxal, and a parameterization representing the impact of new particle formation (NPF) of organic gases and sulfuric acid. With the inclusion of these new treatments, the concentration of oxygenated organic aerosol increases by 0.33 µg m -3 and that of primary organic aerosol (POA) decreases by 0.22 µg m -3 on global average. The decrease in POA leads to a reduction in the OA direct effect, while the increased OOA increases the OA indirect effects. Simulations with the new OA treatments show considerable improvement in simulated SOA, oxygenated organic aerosol (OOA), organic carbon (OC), total carbon (TC), and total organic aerosol (TOA), but degradation in the performance of HOA. In simulations of the current climate period, despite some deviations from observations, CESM-NCSU with the new OA treatments significantly improves the magnitude, spatial pattern, seasonal pattern of OC and TC, as well as, the speciation of TOA between POA and OOA. Sensitivity analysis reveals that the inclusion of the organic NPF treatment impacts the OA indirect effects by enhancing cloud properties. The simulated OA level and its impact on the climate system are most sensitive to choices in the enthalpy of vaporization and wet deposition of SVOCs, indicating that accurate representations of these parameters are critical for accurate OA-climate simulations.

  9. Improving organic aerosol treatments in CESM/CAM5: Development, application, and evaluation

    Science.gov (United States)

    Glotfelty, Timothy; He, Jian

    2017-01-01

    Abstract New treatments for organic aerosol (OA) formation have been added to a modified version of the CESM/CAM5 model (CESM‐NCSU). These treatments include a volatility basis set treatment for the simulation of primary and secondary organic aerosols (SOAs), a simplified treatment for organic aerosol (OA) formation from glyoxal, and a parameterization representing the impact of new particle formation (NPF) of organic gases and sulfuric acid. With the inclusion of these new treatments, the concentration of oxygenated organic aerosol increases by 0.33 µg m−3 and that of primary organic aerosol (POA) decreases by 0.22 µg m−3 on global average. The decrease in POA leads to a reduction in the OA direct effect, while the increased OOA increases the OA indirect effects. Simulations with the new OA treatments show considerable improvement in simulated SOA, oxygenated organic aerosol (OOA), organic carbon (OC), total carbon (TC), and total organic aerosol (TOA), but degradation in the performance of HOA. In simulations of the current climate period, despite some deviations from observations, CESM‐NCSU with the new OA treatments significantly improves the magnitude, spatial pattern, seasonal pattern of OC and TC, as well as, the speciation of TOA between POA and OOA. Sensitivity analysis reveals that the inclusion of the organic NPF treatment impacts the OA indirect effects by enhancing cloud properties. The simulated OA level and its impact on the climate system are most sensitive to choices in the enthalpy of vaporization and wet deposition of SVOCs, indicating that accurate representations of these parameters are critical for accurate OA‐climate simulations. PMID:29104733

  10. Improving organic aerosol treatments in CESM/CAM5: Development, application, and evaluation

    Science.gov (United States)

    Glotfelty, Timothy; He, Jian; Zhang, Yang

    2017-06-01

    New treatments for organic aerosol (OA) formation have been added to a modified version of the CESM/CAM5 model (CESM-NCSU). These treatments include a volatility basis set treatment for the simulation of primary and secondary organic aerosols (SOAs), a simplified treatment for organic aerosol (OA) formation from glyoxal, and a parameterization representing the impact of new particle formation (NPF) of organic gases and sulfuric acid. With the inclusion of these new treatments, the concentration of oxygenated organic aerosol increases by 0.33 µg m-3 and that of primary organic aerosol (POA) decreases by 0.22 µg m-3 on global average. The decrease in POA leads to a reduction in the OA direct effect, while the increased OOA increases the OA indirect effects. Simulations with the new OA treatments show considerable improvement in simulated SOA, oxygenated organic aerosol (OOA), organic carbon (OC), total carbon (TC), and total organic aerosol (TOA), but degradation in the performance of HOA. In simulations of the current climate period, despite some deviations from observations, CESM-NCSU with the new OA treatments significantly improves the magnitude, spatial pattern, seasonal pattern of OC and TC, as well as, the speciation of TOA between POA and OOA. Sensitivity analysis reveals that the inclusion of the organic NPF treatment impacts the OA indirect effects by enhancing cloud properties. The simulated OA level and its impact on the climate system are most sensitive to choices in the enthalpy of vaporization and wet deposition of SVOCs, indicating that accurate representations of these parameters are critical for accurate OA-climate simulations.

  11. A multi-model evaluation of aerosols over South Asia: common problems and possible causes

    Science.gov (United States)

    Pan, X.; Chin, M.; Gautam, R.; Bian, H.; Kim, D.; Colarco, P. R.; Diehl, T. L.; Takemura, T.; Pozzoli, L.; Tsigaridis, K.; Bauer, S.; Bellouin, N.

    2015-05-01

    Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000-2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October-January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo-Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of

  12. Evaluating indirect subthalamic nucleus targeting with validated 3-tesla magnetic resonance imaging.

    Science.gov (United States)

    Houshmand, Layla; Cummings, Karen S; Chou, Kelvin L; Patil, Parag G

    2014-01-01

    Indirect targeting of the subthalamic nucleus (STN) is commonly utilized at deep brain stimulation (DBS) centers around the world. The superiority of either midcommissural point (MCP)-based or red nucleus (RN)-based indirect targeting remains to be established. The location of the STN was determined and statistically compared to MCP- and RN-based predictions in 58 STN DBS patients, using a validated 3-tesla MRI protocol. The influence of additional neuroanatomical parameters on STN midpoint location was evaluated. Linear regression analysis was utilized to produce an optimized MCP/RN targeting model. Targeting coordinates at 1.5 T were compared to results at 3 T. Accuracy and precision for RN-based targeting was superior to MCP-based targeting to predict STN midpoint location for each coordinate dimension (p S. Karger AG, Basel.

  13. Economic evaluation of indirect use activities in a private natural heritage reserve

    Directory of Open Access Journals (Sweden)

    Keila Lima Sanches

    2011-06-01

    Full Text Available This study aimed to evaluate the economic viability of indirect use activities as developed in a private natural heritage reserve (RPPN. Activities developed in the RPPN include Adventure Tourism and an Ecological Trail. Data were obtained relating to annual number of people visiting the reserve, prices paid to participate in activities, cost of land, maintenance costs and labor costs. Economic criteria used include Net Present Value (VPL and Equivalent Periodic Benefit (BPE. In the 1996-2008 period the number of visitors increased by 6% a year, and the average annual number of visitors to the RPPN was 8,889. It was concluded that indirect use activities in the RPPN are economically viable and can coexist with other direct soil use activities such as eucalyptus cultivation.

  14. Evaluation of the MERIS aerosol product over land with AERONET

    Directory of Open Access Journals (Sweden)

    J. Vidot

    2008-12-01

    Full Text Available The Medium Resolution Imaging Spectrometer (MERIS launched in February 2002 on-board the ENVISAT spacecraft is making global observations of top-of-atmosphere (TOA radiances. Aerosol optical properties are retrieved over land using Look-Up Table (LUT based algorithm and surface reflectances in the blue and the red spectral regions. We compared instantaneous aerosol optical thicknesses retrieved by MERIS in the blue and the red at locations containing sites within the Aerosol Robotic Network (AERONET. Between 2002 and 2005, a set of 500 MERIS images were used in this study. The result shows that, over land, MERIS aerosol optical thicknesses are well retrieved in the blue and poorly retrieved in the red, leading to an underestimation of the Angstrom coefficient. Correlations are improved by applying a simple criterion to avoid scenes probably contaminated by thin clouds. To investigate the weakness of the MERIS algorithm, ground-based radiometer measurements have been used in order to retrieve new aerosol models, based on their Inherent Optical Properties (IOP. These new aerosol models slightly improve the correlation, but the main problem of the MERIS aerosol product over land can be attributed to the surface reflectance model in the red.

  15. Evaluating Model Parameterizations of Submicron Aerosol Scattering and Absorption with in situ Data from ARCTAS 2008

    Science.gov (United States)

    Alvarado, Matthew J.; Lonsdale, Chantelle R.; Macintyre, Helen L.; Bian, Huisheng; Chin, Mian; Ridley, David A.; Heald, Colette L.; Thornhill, Kenneth L.; Anderson, Bruce E.; Cubison, Michael J.; hide

    2016-01-01

    Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9- 02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10-23 percent, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GCRT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction

  16. Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008

    Directory of Open Access Journals (Sweden)

    M. J. Alvarado

    2016-07-01

    Full Text Available Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS campaign. The four models are the NASA Global Modeling Initiative (GMI Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT, and the Optical Properties of Aerosol and Clouds (OPAC v3.1 package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1 to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10–23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass

  17. Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1

    Directory of Open Access Journals (Sweden)

    K. J. Pringle

    2010-09-01

    Full Text Available We present a new aerosol microphysics and gas aerosol partitioning submodel (Global Modal-aerosol eXtension, GMXe implemented within the ECHAM/MESSy Atmospheric Chemistry model (EMAC, version 1.8. The submodel is computationally efficient and is suitable for medium to long term simulations with global and regional models. The aerosol size distribution is treated using 7 log-normal modes and has the same microphysical core as the M7 submodel (Vignati et al., 2004.

    The main developments in this work are: (i the extension of the aerosol emission routines and the M7 microphysics, so that an increased (and variable number of aerosol species can be treated (new species include sodium and chloride, and potentially magnesium, calcium, and potassium, (ii the coupling of the aerosol microphysics to a choice of treatments of gas/aerosol partitioning to allow the treatment of semi-volatile aerosol, and, (iii the implementation and evaluation of the developed submodel within the EMAC model of atmospheric chemistry.

    Simulated concentrations of black carbon, particulate organic matter, dust, sea spray, sulfate and ammonium aerosol are shown to be in good agreement with observations (for all species at least 40% of modeled values are within a factor of 2 of the observations. The distribution of nitrate aerosol is compared to observations in both clean and polluted regions. Concentrations in polluted continental regions are simulated quite well, but there is a general tendency to overestimate nitrate, particularly in coastal regions (geometric mean of modelled values/geometric mean of observed data ≈2. In all regions considered more than 40% of nitrate concentrations are within a factor of two of the observations. Marine nitrate concentrations are well captured with 96% of modeled values within a factor of 2 of the observations.

  18. Clinical evaluation of indirect composite restorations at baseline and 36 months after placement.

    Science.gov (United States)

    Dukic, Walter; Dukic, Olga Lulic; Milardovic, Sladana; Delija, Barbara

    2010-01-01

    This study determined the differences in clinical performance between materials for indirect composite restorations based on Ormocer (Admira) and nano-hybrid resin composite (Grandio), both at baseline and 36 months after placement. Modified USPHS criteria were used to analyze the degree of quality. Marginal integrity was assessed 36 months after placement, whereupon, the restorations fabricated from Grandio achieved an Alpha 1 score of 70.7% and an Alpha 2 score of 29.3%. The Wilcoxon test revealed a statistically significant difference in the evaluation of marginal integrity (p = 0.003), anatomic form of the marginal step (p = 0.025) and discoloration of the margins (p = 0.014) at baseline and after 36 months. For Admira, the Wilcoxon test showed statistically significant differences in the evaluation of surface texture (p = 0.025), anatomic form of the complete surface (p = 0.034), anatomic form of the marginal step (p = 0.008), marginal integrity (p = 0.002) and discoloration of the margins (p = 0.008) at baseline and after 36 months. According to the number of restorations awarded the Alpha 1 score (excellent), the overall success rates for marginal integrity were 70.7% for Grandio and 71.8% for Admira; both were evaluated 36 months after placement. The results have shown that the indirect restorations were acceptable after 36 months, which indicates a 100% success rate. Over 36 months, no statistically significant differences were noted between the two materials. Indirect resin composite restorations represent a good therapy choice for severely damaged teeth.

  19. Evaluating Simulated Primary Anthropogenic and Biomass Burning Organic Aerosols during MILAGRO: Implications for Assessing Treatments of Secondary Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Jerome D.; Aiken, Allison; Allan, James D.; Alexander, M. L.; Campos, Teresa; Canagaratna, Manjula R.; Chapman, Elaine G.; DeCarlo, Peter; de Foy, B.; Gaffney, Jeffrey; de Gouw, Joost A.; Doran, J. C.; Emmons, L.; Hodzic, Alma; Herndon, Scott C.; Huey, L. G.; Jayne, John T.; Jimenez, Jose L.; Kleinman, Lawrence I.; Kuster, W. C.; Marley, Nancy A.; Russell, Lynn M.; Ochoa, Carlos; Onasch, Timothy B.; Pekour, Mikhail S.; Song, Chen; Ulbrich, Ingrid M.; Warneke, Carsten; Welsh-Bon, Daniel; Wiedinmyer, Christine; Worsnop, Douglas R.; Yu, Xiao-Ying; Zaveri, Rahul A.

    2009-08-31

    Simulated primary organic aerosols (POA), as well as other particulates and trace gases, in the vicinity of Mexico City are evaluated using measurements collected during the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaigns. Since the emission inventories and dilution will affect predictions of total organic matter and consequently total particulate matter, our objective is to assess the uncertainties in predicted POA before testing and evaluating the performance of secondary organic aerosol (SOA) treatments. Carbon monoxide (CO) is well simulated on most days both over the city and downwind, indicating that transport and mixing processes were usually consistent with the meteorological conditions observed during MILAGRO. Predicted and observed elemental carbon (EC) in the city was similar, but larger errors occurred at remote locations since the CO/EC emission ratios in the national emission inventory were lower than in the metropolitan emission inventory. Components of organic aerosols derived from Positive Matrix Factorization and data from several Aerodyne Aerosol Mass Spectrometer instruments deployed both at ground sites and on research aircraft are used to evaluate the model. Predicted POA was consistently lower than the measured organic matter at the ground sites, which is consistent with the expectation that SOA should be a large fraction of the total organic matter mass. A much better agreement was found when predicted POA was compared with the sum of "primary anthropogenic" and "primary biomass burning" components on days with relatively low biomass burning, suggesting that the overall magnitude of primary organic particulates released was reasonable. The predicted POA was greater than the total observed organic matter when the aircraft flew directly downwind of large fires, suggesting that biomass burning emission estimates from some large fires may be too high. Predicted total observed organic carbon (TOOC) was

  20. Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: implications for assessing treatments of secondary organic aerosols

    Directory of Open Access Journals (Sweden)

    J. Fast

    2009-08-01

    Full Text Available Simulated primary organic aerosols (POA, as well as other particulates and trace gases, in the vicinity of Mexico City are evaluated using measurements collected during the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO field campaigns. Since the emission inventories, transport, and turbulent mixing will directly affect predictions of total organic matter and consequently total particulate matter, our objective is to assess the uncertainties in predicted POA before testing and evaluating the performance of secondary organic aerosol (SOA treatments. Carbon monoxide (CO is well simulated on most days both over the city and downwind, indicating that transport and mixing processes were usually consistent with the meteorological conditions observed during MILAGRO. Predicted and observed elemental carbon (EC in the city was similar, but larger errors occurred at remote locations since the overall CO/EC emission ratios in the national emission inventory were lower than in the metropolitan emission inventory. Components of organic aerosols derived from Positive Matrix Factorization of data from several Aerodyne Aerosol Mass Spectrometer instruments deployed both at ground sites and on research aircraft are used to evaluate the model. Modeled POA was consistently lower than the measured organic matter at the ground sites, which is consistent with the expectation that SOA should be a large fraction of the total organic matter mass. A much better agreement was found when modeled POA was compared with the sum of "primary anthropogenic" and "biomass burning" components derived from Positive Matrix Factorization (PMF on most days, especially at the surface sites, suggesting that the overall magnitude of primary organic particulates released was reasonable. However, simulated POA from anthropogenic sources was often lower than "primary anthropogenic" components derived from PMF, consistent with two recent reports that these emissions

  1. Evaluation of aerosol distributions in the GISS-TOMAS global aerosol microphysics model with remote sensing observations

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2010-03-01

    Full Text Available The Aerosol Optical Depth (AOD and Angstrom Coefficient (AC predictions in the GISS-TOMAS model of global aerosol microphysics are evaluated against remote sensing data from MODIS, MISR, and AERONET. The model AOD agrees well (within a factor of two over polluted continental (or high sulfate, dusty, and moderate sea-salt regions but less well over the equatorial, high sea-salt, and biomass burning regions. Underprediction of sea-salt in the equatorial region is likely due to GCM meteorology (low wind speeds and high precipitation. For the Southern Ocean, overprediction of AOD is very likely due to high sea-salt emissions and perhaps aerosol water uptake in the model. However, uncertainties in cloud screening at high latitudes make it difficult to evaluate the model AOD there with the satellite-based AOD. AOD in biomass burning regions is underpredicted, a tendency found in other global models but more severely here. Using measurements from the LBA-SMOCC 2002 campaign, the surface-level OC concentration in the model are found to be underpredicted severely during the dry season while much less severely for EC concentration, suggesting the low AOD in the model is due to underpredictions in OM mass. The potential for errors in emissions and wet deposition to contribute to this bias is discussed.

  2. Marginal Adaptation of Indirect Composite, Glass-Ceramic Inlays and Direct Composite: An In Vitro Evaluation

    Directory of Open Access Journals (Sweden)

    F. Mahboub

    2010-06-01

    Full Text Available Objective: This experimental in vitro study compared marginal adaptation of indirect composite, glass-ceramic inlays and direct composite.Materials and Methods: Seventy-five recently extracted human molars were randomly divided into three groups (n=25 and mesio-occluso-distal cavities with the same dimensions were prepared in the teeth. Indirect composite and glass-ceramic inlays were fabricatedfollowing manufacturer's instructions and the marginal gap was measured by a stereomicroscope at magnification 40× before cementation. After cementation of inlays and restoring the third group by direct composite, all the specimens were thermocycled and the marginal gaps were measured exactly as previously described. Repeated measure ANOVA and post-hoc Tukey test were used for pairwise comparison of occlusal, proximal, and gingival marginal gaps in each group. One-way ANOVA and post-hoc Tukey test wereused for comparison of mean marginal gap in the three groups and for comparison of marginal gap before and after cementation in inlays, paired T-test was used.Results: The marginal gap of direct composite (19.96 μm was significantly lower than that of indirect composite inlay (48.47 μm, which in itself was significantly lower than that of glass-ceramic inlay (60.96 μm. In all the restorations, marginal gap in the gingival margin was significantly higher than occlusal and proximal margins. The marginal gap of inlays did not change after cementation and thermocycling.Conclusion: This study indicated that the marginal gaps of the evaluated restorations are less than 100 μm, which is clinically acceptable.

  3. Marginal Adaptation of Indirect Composite, Glass-Ceramic Inlays and Direct Composite: An In Vitro Evaluation

    Science.gov (United States)

    Zarrati, S.; Mahboub, F.

    2010-01-01

    Objective: This experimental in vitro study compared marginal adaptation of indirect composite, glass-ceramic inlays and direct composite. Materials and Methods: Seventy-five recently extracted human molars were randomly divided into three groups (n=25) and mesio-occluso-distal cavities with the same dimensions were prepared in the teeth. Indirect composite and glass-ceramic inlays were fabricated following manufacturer’s instructions and the marginal gap was measured by a stereomicroscope at magnification 40× before cementation. After cementation of inlays and restoring the third group by direct composite, all the specimens were thermocycled and the marginal gaps were measured exactly as previously described. Repeated measure ANOVA and post-hoc Tukey test were used for pairwise comparison of occlusal, proximal, and gingival marginal gaps in each group. One-way ANOVA and post-hoc Tukey test were used for comparison of mean marginal gap in the three groups and for comparison of marginal gap before and after cementation in inlays, paired T-test was used. Results: The marginal gap of direct composite (19.96 μm) was significantly lower than that of indirect composite inlay (48.47 μm), which in itself was significantly lower than that of glass-ceramic inlay (60.96 μm). In all the restorations, marginal gap in the gingival margin was significantly higher than occlusal and proximal margins. The marginal gap of inlays did not change after cementation and thermocycling. Conclusion: This study indicated that the marginal gaps of the evaluated restorations are less than 100 μm, which is clinically acceptable. PMID:21998779

  4. Evaluation of a Moments-Based Formulation for the Transport and Deposition of Small Inertia Aerosols

    OpenAIRE

    Romain Guichard; Emmanuel Belut; Nicolas Nimbert; Anne Tanière

    2014-01-01

    This paper introduces and evaluates a formulation for the modeling of transport and wall deposition of aerosols, written in terms of moments of the particle size distribution (PSD). This formulation allows coupling the moment methods with computational fluid dynamics (CFD) to track the space and time evolution of the PSD of an aerosol undergoing transport, deposition and coagulation. It consists in applying the quadrature method of moments (QMOM) to the diffusion-inertia model of Zaichik et a...

  5. Aerosols at the poles: an AeroCom Phase II multi-model evaluation

    Science.gov (United States)

    Sand, Maria; Samset, Bjørn H.; Balkanski, Yves; Bauer, Susanne; Bellouin, Nicolas; Berntsen, Terje K.; Bian, Huisheng; Chin, Mian; Diehl, Thomas; Easter, Richard; Ghan, Steven J.; Iversen, Trond; Kirkevåg, Alf; Lamarque, Jean-François; Lin, Guangxing; Liu, Xiaohong; Luo, Gan; Myhre, Gunnar; van Noije, Twan; Penner, Joyce E.; Schulz, Michael; Seland, Øyvind; Skeie, Ragnhild B.; Stier, Philip; Takemura, Toshihiko; Tsigaridis, Kostas; Yu, Fangqun; Zhang, Kai; Zhang, Hua

    2017-10-01

    Atmospheric aerosols from anthropogenic and natural sources reach the polar regions through long-range transport and affect the local radiation balance. Such transport is, however, poorly constrained in present-day global climate models, and few multi-model evaluations of polar anthropogenic aerosol radiative forcing exist. Here we compare the aerosol optical depth (AOD) at 550 nm from simulations with 16 global aerosol models from the AeroCom Phase II model intercomparison project with available observations at both poles. We show that the annual mean multi-model median is representative of the observations in Arctic, but that the intermodel spread is large. We also document the geographical distribution and seasonal cycle of the AOD for the individual aerosol species: black carbon (BC) from fossil fuel and biomass burning, sulfate, organic aerosols (OAs), dust, and sea-salt. For a subset of models that represent nitrate and secondary organic aerosols (SOAs), we document the role of these aerosols at high latitudes.The seasonal dependence of natural and anthropogenic aerosols differs with natural aerosols peaking in winter (sea-salt) and spring (dust), whereas AOD from anthropogenic aerosols peaks in late spring and summer. The models produce a median annual mean AOD of 0.07 in the Arctic (defined here as north of 60° N). The models also predict a noteworthy aerosol transport to the Antarctic (south of 70° S) with a resulting AOD varying between 0.01 and 0.02. The models have estimated the shortwave anthropogenic radiative forcing contributions to the direct aerosol effect (DAE) associated with BC and OA from fossil fuel and biofuel (FF), sulfate, SOAs, nitrate, and biomass burning from BC and OA emissions combined. The Arctic modelled annual mean DAE is slightly negative (-0.12 W m-2), dominated by a positive BC FF DAE in spring and a negative sulfate DAE in summer. The Antarctic DAE is governed by BC FF. We perform sensitivity experiments with one of the Aero

  6. Aerosols at the poles: an AeroCom Phase II multi-model evaluation

    Directory of Open Access Journals (Sweden)

    M. Sand

    2017-10-01

    Full Text Available Atmospheric aerosols from anthropogenic and natural sources reach the polar regions through long-range transport and affect the local radiation balance. Such transport is, however, poorly constrained in present-day global climate models, and few multi-model evaluations of polar anthropogenic aerosol radiative forcing exist. Here we compare the aerosol optical depth (AOD at 550 nm from simulations with 16 global aerosol models from the AeroCom Phase II model intercomparison project with available observations at both poles. We show that the annual mean multi-model median is representative of the observations in Arctic, but that the intermodel spread is large. We also document the geographical distribution and seasonal cycle of the AOD for the individual aerosol species: black carbon (BC from fossil fuel and biomass burning, sulfate, organic aerosols (OAs, dust, and sea-salt. For a subset of models that represent nitrate and secondary organic aerosols (SOAs, we document the role of these aerosols at high latitudes.The seasonal dependence of natural and anthropogenic aerosols differs with natural aerosols peaking in winter (sea-salt and spring (dust, whereas AOD from anthropogenic aerosols peaks in late spring and summer. The models produce a median annual mean AOD of 0.07 in the Arctic (defined here as north of 60° N. The models also predict a noteworthy aerosol transport to the Antarctic (south of 70° S with a resulting AOD varying between 0.01 and 0.02. The models have estimated the shortwave anthropogenic radiative forcing contributions to the direct aerosol effect (DAE associated with BC and OA from fossil fuel and biofuel (FF, sulfate, SOAs, nitrate, and biomass burning from BC and OA emissions combined. The Arctic modelled annual mean DAE is slightly negative (−0.12 W m−2, dominated by a positive BC FF DAE in spring and a negative sulfate DAE in summer. The Antarctic DAE is governed by BC FF. We perform sensitivity

  7. Indirect Measures in Evaluation: On Not Knowing What We Don't Know

    Directory of Open Access Journals (Sweden)

    Linda Heath

    2012-02-01

    Full Text Available Evaluators frequently make use of indirect measures of participant learning or skill mastery, with participants either being asked if they have learned material or mastered a skill or being asked to indicate how confident they are that they know the material or can perform the task in question. Unfortunately, myriad research in social psychology has demonstrated that people are very poor judges of their own levels of accomplishment. In this paper, the social psychological dynamics that contribute to biased self-assessments are overviewed. These include the self-serving bias (e.g., Miller & Ross, 1975, the better-than-average effect (e.g., Alicke et al., 1995; Brown, 1986, and the overconfidence phenomenon (Kahneman & Tversky, 1979. Methods of correcting these biased reports are generally ineffective, as illustrated by Kruger and Dunning's (1999 findings that people lowest in mastery generally lack the metacognition even to understand what mastery looks like. As this type of person learns the skill in question, they often realize the level of their ignorance and lower their self-reported knowledge and skill levels. Although indirect measures of participant learning or mastery might tell us something about the level of confidence of the participants, they probably tell us little about actual ability or knowledge. Implications for applied research are discussed.

  8. Evaluation of calcium (Ca2+) and hydroxide (OH-) ion diffusion rates of indirect pulp capping materials.

    Science.gov (United States)

    Kurun Aksoy, Merve; Tulga Oz, Firdevs; Orhan, Kaan

    2017-10-27

    The aim of this study was to evaluate and compare the calcium (Ca2+) and hydroxide (OH-) ion release of 4 artificially produced pulp capping materials (MTA, Biodentin, TheraCal LC, Calsimol) used for indirect pulp capping treatment. In total, 70 freshly extracted human third molar teeth were used for the study. Cavities of extracted teeth were prepared by round burs. The remaining dentin thickness (1 ± 0.3 mm) tissue was measured by a micrometer and cone beam computerized tomography. Indirect pulp capping was performed in the cavities using Calcimol, MTA, TheraCal LC and Biodentin. The leached Ca2+ were measured using optical emission spectrometry and the release of OH- ions using a pH meter. The measurements were performed after 24 hours, 7 days and 28 days in saline solution. Statistical analysis was performed using 1-way and 2-way analysis of variance (ANOVA) tests (ppulp capping because of their stimulation of hard tissue formation and ion-releasing ability.

  9. [Evaluating the therapeutic effect of aerosol therapy in allergic rhinopathy].

    Science.gov (United States)

    van Dishoeck, E A; Clement, P A; Stoop, A; van de Wal, R J

    1975-01-01

    The authors describe a simple technique of anterior rhinomanometry. This technique in combination with a allergen aerosol provocation represents a functional test of the nose. The advantage of the method is the fact that in allergic people the provocation reacts directly on the shock tissues, representing a sure and repeatable method of diagnosis.

  10. Clouds and aerosols in Puerto Rico ─ a new evaluation

    Directory of Open Access Journals (Sweden)

    U. Dusek

    2008-03-01

    Full Text Available The influence of aerosols, both natural and anthropogenic, remains a major area of uncertainty when predicting the properties and behaviour of clouds and their influence on climate. In an attempt to better understand warm cloud formation in a tropical marine environment, a period of intensive measurements took place in December 2004 in Puerto Rico, using some of the latest developments in online instrumentation such as aerosol mass spectrometers, cloud condensation nuclei counters and a hygroscopicity tandem differential mobility analyser. Simultaneous online measurements of aerosol size distributions, composition, hygroscopicity and optical properties were made near the lighthouse of Cape San Juan in the north-eastern corner of the island and at the top of East Peak mountain (1040 m a.s.l., the two sites separated by 17 km. Additional measurements of the cloud droplet residual and interstitial aerosol properties were made at the mountain site, accompanied by measurements of cloud droplet size distributions, liquid water content and the chemical composition of cloud and rain water samples. Both aerosol composition and cloud properties were found to be sensitive to wind sector. Air from the east-northeast (ENE was mostly free of anthropogenic influences, the submicron fraction being mainly composed of non-sea salt sulphate, while that from the east-southeast (ESE was found to be moderately influenced by populated islands upwind, adding smaller (<100 nm, externally mixed, carbonaceous particles to the aerosol that increased the number concentrations by over a factor of 3. This change in composition was also accompanied with a reduction in the measured hygroscopicity and fractional cloud activation potential of the aerosol. At the mountain site, the average cloud droplet concentrations increased from 193 to 519 cm−3, median volume diameter decreased from 20 to 14 μm and the liquid water content increased from 0.24 to 0.31 g m−3 when the winds

  11. Evaluation of Aerosol-cloud Interaction in the GISS Model E Using ARM Observations

    Science.gov (United States)

    DeBoer, G.; Bauer, S. E.; Toto, T.; Menon, Surabi; Vogelmann, A. M.

    2013-01-01

    Observations from the US Department of Energy's Atmospheric Radiation Measurement (ARM) program are used to evaluate the ability of the NASA GISS ModelE global climate model in reproducing observed interactions between aerosols and clouds. Included in the evaluation are comparisons of basic meteorology and aerosol properties, droplet activation, effective radius parameterizations, and surface-based evaluations of aerosol-cloud interactions (ACI). Differences between the simulated and observed ACI are generally large, but these differences may result partially from vertical distribution of aerosol in the model, rather than the representation of physical processes governing the interactions between aerosols and clouds. Compared to the current observations, the ModelE often features elevated droplet concentrations for a given aerosol concentration, indicating that the activation parameterizations used may be too aggressive. Additionally, parameterizations for effective radius commonly used in models were tested using ARM observations, and there was no clear superior parameterization for the cases reviewed here. This lack of consensus is demonstrated to result in potentially large, statistically significant differences to surface radiative budgets, should one parameterization be chosen over another.

  12. Evaluation of black carbon estimations in global aerosol models

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2009-11-01

    Full Text Available We evaluate black carbon (BC model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD retrievals from AERONET and Ozone Monitoring Instrument (OMI and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.7 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 8 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC ratio is 0.4 and models underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model

  13. Compact and portable system for evaluation of individual exposure at aerosol particle in urban area

    International Nuclear Information System (INIS)

    De Zaiacomo, T.

    1995-01-01

    A compact and portable system for real-time acquisition of aerosol concentration data in urban and extra-urban area is presented. It is based on two optical type aerosol monitors integrated by aerosol particle separating and collecting devices, assembled into a carrying case together with temperature and relative humidity sensors and a programmable analog data logger; data output is addressed to a dedicated printer or personal computer. Further data about particle size, morphological aspect and particle mass concentration are obtainable by weighing supports used to concurrently collect aerosol particles and/or by means of microanalytical techniques. System performances are evaluated from the point of view of portability, possibility of use as stationary sampler for long-term monitoring purposes and coherence between optical response and ponderal mass. Some tests are finally carried out, to investigate the effect of relative humidity on the optical response of this type of instruments

  14. Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Del Genio, Anthony D.

    2007-09-03

    Any attempt to reconcile observed surface temperature changes within the last 150 years to changes simulated by climate models that include various atmospheric forcings is sensitive to the changes attributed to aerosols and aerosol-cloud-climate interactions, which are the main contributors that may well balance the positive forcings associated with greenhouse gases, absorbing aerosols, ozone related changes, etc. These aerosol effects on climate, from various modeling studies discussed in Menon (2004), range from +0.8 to -2.4 W m{sup -2}, with an implied value of -1.0 W m{sup -2} (range from -0.5 to -4.5 W m{sup -2}) for the aerosol indirect effects. Quantifying the contribution of aerosols and aerosol-cloud interactions remain complicated for several reasons some of which are related to aerosol distributions and some to the processes used to represent their effects on clouds. Aerosol effects on low lying marine stratocumulus clouds that cover much of the Earth's surface (about 70%) have been the focus of most of prior aerosol-cloud interaction effect simulations. Since cumulus clouds (shallow and deep convective) are short lived and cover about 15 to 20% of the Earth's surface, they are not usually considered as radiatively important. However, the large amount of latent heat released from convective towers, and corresponding changes in precipitation, especially in biomass regions due to convective heating effects (Graf et al. 2004), suggest that these cloud systems and aerosol effects on them, must be examined more closely. The radiative heating effects for mature deep convective systems can account for 10-30% of maximum latent heating effects and thus cannot be ignored (Jensen and Del Genio 2003). The first study that isolated the sensitivity of cumulus clouds to aerosols was from Nober et al. (2003) who found a reduction in precipitation in biomass burning regions and shifts in circulation patterns. Aerosol effects on convection have been included in

  15. Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results: AEROSOL PROFILES IN AEROCOM II GCM

    Energy Technology Data Exchange (ETDEWEB)

    Koffi, Brigitte [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra Italy; Schulz, Michael [Norwegian Meteorological Institute, Oslo Norway; Bréon, François-Marie [Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur-Yvette France; Dentener, Frank [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra Italy; Steensen, Birthe Marie [Norwegian Meteorological Institute, Oslo Norway; Griesfeller, Jan [Norwegian Meteorological Institute, Oslo Norway; Winker, David [NASA Langley Research Center, MS/475, Hampton Virginia USA; Balkanski, Yves [Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur-Yvette France; Bauer, Susanne E. [Center for Climate Systems Research, Columbia University, New York New York USA; NASA Goddard Institute for Space Studies, New York New York USA; Bellouin, Nicolas [Department of Meteorology, University of Reading, Reading UK; Berntsen, Terje [Department of Geosciences, University of Oslo, Oslo Norway; Center for International Climate and Environmental Research-Oslo (CICERO), Oslo Norway; Bian, Huisheng [NASA Goddard Space Flight Center, Greenbelt Maryland USA; Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore Country Maryland USA; Chin, Mian [NASA Goddard Space Flight Center, Greenbelt Maryland USA; Diehl, Thomas [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra Italy; Easter, Richard [Pacific Northwest National Laboratory, Richland Washington USA; Ghan, Steven [Pacific Northwest National Laboratory, Richland Washington USA; Hauglustaine, Didier A. [Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur-Yvette France; Iversen, Trond [Norwegian Meteorological Institute, Oslo Norway; Department of Geosciences, University of Oslo, Oslo Norway; Kirkevåg, Alf [Norwegian Meteorological Institute, Oslo Norway; Liu, Xiaohong [Pacific Northwest National Laboratory, Richland Washington USA; Now at University of Wyoming, Laramie Wyoming USA; Lohmann, Ulrike [ETH-Zentrum, Zürich Switzerland; Myhre, Gunnar [Center for International Climate and Environmental Research-Oslo (CICERO), Oslo Norway; Rasch, Phil [NASA Goddard Space Flight Center, Greenbelt Maryland USA; Seland, Øyvind [Norwegian Meteorological Institute, Oslo Norway; Skeie, Ragnhild B. [Center for International Climate and Environmental Research-Oslo (CICERO), Oslo Norway; Steenrod, Stephen D. [NASA Goddard Space Flight Center, Greenbelt Maryland USA; Stier, Philip [Department of Physics, University of Oxford, Oxford UK; Tackett, Jason [Science Systems and Applications, Inc., Hampton Virginia USA; Takemura, Toshihiko [Research Institute for Applied Mechanics, Kyushu University, Fukuoka Japan; Tsigaridis, Kostas [Center for Climate Systems Research, Columbia University, New York New York USA; NASA Goddard Institute for Space Studies, New York New York USA; Vuolo, Maria Raffaella [Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur-Yvette France; Now at National Institute for Agronomic Research, Thiverval-Grignon France; Yoon, Jinho [Pacific Northwest National Laboratory, Richland Washington USA; Now at Gwangju Institute of Science and Technology, Gwangju Korea; Zhang, Kai [Pacific Northwest National Laboratory, Richland Washington USA; Max Planck Institute for Meteorology, Hamburg Germany

    2016-06-27

    The ability of eleven models in simulating the aerosol vertical distribution from regional to global scales, as part of the second phase of the AeroCom model inter-comparison initiative (AeroCom II) is assessed and compared to results of the first phase. The evaluation is performed using a global monthly gridded dataset of aerosol extinction profiles built on purpose from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) Layer Product 3.01. Results over 12 sub-continental regions show that five models improved whereas three degraded in reproducing the Zα 0-6 km mean extinction height diagnostic, which is computed over the 0-6 km altitude range for each studied region and season. While the models’ performance remains highly variable, it has generally improved in terms of inter-regional diversity and seasonality. The biases in Zα 0-6 km have notably decreased in the U.S. and European industrial and downwind maritime regions, whereas the timing of the Zα 0-6 km peak season has improved for all but two models. However, most of the models now show a Zα 0-6 km underestimation over land, notably in the dust and biomass burning regions in Asia and Africa. At global scale, the AeroCom II models better reproduce the Zα 0-6 km latitudinal variability over ocean than over land. Hypotheses for the (changes in the) the performance of the individual models and for the inter-model diversity are discussed. We also provide an analysis of the CALIOP limitations and uncertainties that can contribute to the differences between the simulations and observations.

  16. Aerosol sampling and characterization for hazard evaluation. Progress report, October 1, 1976--September 30, 1977

    International Nuclear Information System (INIS)

    Scripsick, R.C.; Gray, D.C.; Tillery, M.I.; Stafford, R.G.; Romero, P.O.

    1978-11-01

    Biphasic dissolution of both laboratory-produced and field plutonium aerosols was studied to further understand the relation between long-term and initial dissolution. These studies indicate that initial phase duration and cumulative activity eluted during this phase are directly related to long-term dissolution. A rapid method of sizing plutonium aerosol was developed using autoradiography. This method uses the rapidly available size information from the larger particles of a size distribution in determining size distribution parameters. A comparison of autoradiographic sizing to impactor sizing showed that count median aerodynamic diameter (CMAD) of aerosol collection on impactor stages predicted by impactor theory was 1.2 times the CMAD found by autoradiographic sizing. Retrospective study of airborne contamination records and simulated glove box release studies have indicated large variabilities associated with aerosol sampling. Release studies have also indicated that parameters of breathing zone concentration required to trigger alarms and probability of aerosol surveillance system to detect release are important in evaluation of aerosol surveillance system performance. Computer modeling of room airflow patterns predicted flow patterns found through smoke tube studies of room airflow

  17. Evaluation of operational forecast model of aerosol transportation using ceilometer network measurements

    Science.gov (United States)

    Chan, Ka Lok; Wiegner, Matthias; Flentje, Harald; Mattis, Ina; Wagner, Frank; Gasteiger, Josef; Geiß, Alexander

    2017-04-01

    Due to technical improvements of ceilometers in recent years, ceilometer measurements are not only limited to determine cloud base heights but also providing information on the vertical aerosol distribution. Therefore, several national weather services implemented ceilometer networks. These measurements are e.g. valuable for the evaluation of the chemical transport model simulations. In this study, we present comparisons of European Centre for Medium-Range Weather Forecast Integrated Forecast System (ECMWF-IFS) model simulation of aerosol backscatter coefficients with ceilometer network measurements operated by the German weather service (DWD) . Five different types of aerosol are available in the model simulations which include two natural aerosols, sea salt and dust. The other three aerosol types, i.e. sulfate, organic carbon and black carbon, have significant anthropogenic contributions. As the model output provides mass mixing ratios of the above mentioned types of aerosol and the ceilometers measure attenuated backscatter (β∗) provided that calibration took place, it is necessary to determine a common physical quantity for the comparison. We have chosen the aerosol backscatter coefficient (β) for this purpose. The β-profiles are calculated from the mass mixing ratios of the model output assuming the inherent aerosol microphysics properties. It shall be emphasized that in the model calculations, all particles are assumed to be spherical. We have examined the sensitivity of the intercomparison on the hygroscopic growth of particles and on the role of particle shape. Our results show that the hygroscopic growth of particle is crucial (up to a factor of 22) in converting the model output to backscatter coefficient profiles whereas the effect of non-sphericity of dust particles is comparably small (˜44%). Furthermore, the calibration of the ceilometer signals can be an issue. The agreements between modeled and retrieved β-profiles show different

  18. Indirect costs account for half of the total costs of an osteoporotic fracture: a prospective evaluation

    NARCIS (Netherlands)

    Eekman, D.A.; ter Wee, M.M.; Coupe, V.M.H.; Erisek-Demirtas, S.; Kramer, M.H.; Lems, W.F.

    2014-01-01

    Data on direct and indirect costs of clinical fractures in 116 osteoporotic patients 50 years and older were prospectively collected using cost diaries. Indirect costs accounted for roughly half of the total costs, with a contribution of at least 81 % of these costs in employed patients.

  19. Automated Indirect Immunofluorescence Evaluation of Antinuclear Autoantibodies on HEp-2 Cells

    Directory of Open Access Journals (Sweden)

    Jörn Voigt

    2012-01-01

    Full Text Available Indirect immunofluorescence (IIF on human epithelial (HEp-2 cells is considered as the gold standard screening method for the detection of antinuclear autoantibodies (ANA. However, in terms of automation and standardization, it has not been able to keep pace with most other analytical techniques used in diagnostic laboratories. Although there are already some automation solutions for IIF incubation in the market, the automation of result evaluation is still in its infancy. Therefore, the EUROPattern Suite has been developed as a comprehensive automated processing and interpretation system for standardized and efficient ANA detection by HEp-2 cell-based IIF. In this study, the automated pattern recognition was compared to conventional visual interpretation in a total of 351 sera. In the discrimination of positive from negative samples, concordant results between visual and automated evaluation were obtained for 349 sera (99.4%, kappa = 0.984. The system missed out none of the 272 antibody-positive samples and identified 77 out of 79 visually negative samples (analytical sensitivity/specificity: 100%/97.5%. Moreover, 94.0% of all main antibody patterns were recognized correctly by the software. Owing to its performance characteristics, EUROPattern enables fast, objective, and economic IIF ANA analysis and has the potential to reduce intra- and interlaboratory variability.

  20. Automated indirect immunofluorescence evaluation of antinuclear autoantibodies on HEp-2 cells.

    Science.gov (United States)

    Voigt, Jörn; Krause, Christopher; Rohwäder, Edda; Saschenbrecker, Sandra; Hahn, Melanie; Danckwardt, Maick; Feirer, Christian; Ens, Konstantin; Fechner, Kai; Barth, Erhardt; Martinetz, Thomas; Stöcker, Winfried

    2012-01-01

    Indirect immunofluorescence (IIF) on human epithelial (HEp-2) cells is considered as the gold standard screening method for the detection of antinuclear autoantibodies (ANA). However, in terms of automation and standardization, it has not been able to keep pace with most other analytical techniques used in diagnostic laboratories. Although there are already some automation solutions for IIF incubation in the market, the automation of result evaluation is still in its infancy. Therefore, the EUROPattern Suite has been developed as a comprehensive automated processing and interpretation system for standardized and efficient ANA detection by HEp-2 cell-based IIF. In this study, the automated pattern recognition was compared to conventional visual interpretation in a total of 351 sera. In the discrimination of positive from negative samples, concordant results between visual and automated evaluation were obtained for 349 sera (99.4%, kappa = 0.984). The system missed out none of the 272 antibody-positive samples and identified 77 out of 79 visually negative samples (analytical sensitivity/specificity: 100%/97.5%). Moreover, 94.0% of all main antibody patterns were recognized correctly by the software. Owing to its performance characteristics, EUROPattern enables fast, objective, and economic IIF ANA analysis and has the potential to reduce intra- and interlaboratory variability.

  1. Evaluation of an indirect elisa for the diagnosis of bovine brucellosis in Patagonia, Argentina

    International Nuclear Information System (INIS)

    Uzal, F.A.; Carrasco, E.A.; Robles, C.A.; Echaide, S.

    1998-01-01

    Control and eradication of bovine brucellosis is usually based on the serological detection of antibodies. In Argentina, the Rose Bengal test (RB) and the Buffered Plate antigen test (BPA) are the two screening test officially recognized, while the 2-mercaptoethanol test (2ME) and the Tube Agglutination test (SAT) are the confirmatory assays currently in use. In order to improve the serological diagnosis of bovine brucellosis in Patagonia, Argentina, an indirect ELISA kit produced by the Joint FAO/IAEA Division was evaluated. Sera from negative non-vaccinated, negative but vaccinated and positive animals were tested by all the above techniques. The specificity of the I-ELISA (99.6% and 99.7%) was similar to that of the BPA, RB, 2ME and Complement Fixation test (CF) when used to test sera from non-vaccinated, negative and vaccinated, negative animals, respectively. The sensitivity of the I-ELISA (98%) was higher than the BPA test (96%) and the CF test (95,2%). The I-ELISA kit evaluated in this study was thought to be a valuable tool for the diagnosis of bovine brucellosis in Patagonia region where little epidemiological information is available about this disease and where large numbers of sera should be tested to obtain such information. (author)

  2. Evaluating Ammonium, Nitrate and Sulfate Aerosols in 3-Dimensions

    Science.gov (United States)

    Mezuman, Keren; Bauer, Susanne E.; Tsigaridis, Kostas

    2015-01-01

    The effect aerosols have on climate and air quality is a func-on of their chemical composi-on, concentra-on and spa-al distribu-on. These parameters are controlled by emissions, heterogeneous and homogeneous chemistry, where thermodynamics plays a key role, transport, which includes stratospheric-­- tropospheric exchange, and deposi-onal sinks. In this work we demonstrate the effect of some of these processes on the SO4-NH4­-NO3 system using the GISS ModelE2 Global Circula-on Model (GCM).

  3. Evaluation of Decontamination Factor of Aerosol in Pool Scrubber according to Bubble Shape and Size

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hyun Joung; Ha, Kwang Soon; Jang, Dong Soon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The scrubbing pool could play an important role in the wet type FCVS because a large amount of aerosol is captured in the water pool. The pool scrubbing phenomena have been modelled and embedded in several computer codes, such as SPARC (Suppression Pool Aerosol Removal Code), BUSCA (BUbble Scrubbing Algorithm) and SUPRA (Suppression Pool Retention Analysis). These codes aim at simulating the pool scrubbing process and estimating the decontamination factors (DFs) of the radioactive aerosol and iodine gas in the water pool, which is defined as the ratio of initial mass of the specific radioactive material to final massy after passing through the water pool. The pool scrubbing models were reviewed and an aerosol scrubbing code has been prepared to calculate decontamination factor through the pool. The developed code has been verified using the experimental results and parametric studies the decontamination factor according to bubble shape and size. To evaluate the decontamination factor more accurate whole pool scrubber phenomena, the code was improved to consider the variety shape and size of bubbles. The decontamination factor were largely evaluated in ellipsoid bubble rather than in sphere bubble. The pool scrubbing models will be enhanced to apply more various model such as aerosol condensation of hygroscopic. And, it is need to experiment to measure to bubble shape and size distribution in pool to improve bubble model.

  4. Evaluation of Regional Climatic Model Simulated Aerosol Optical Properties over South Africa Using Ground-Based and Satellite Observations

    OpenAIRE

    Tesfaye, M.; Botai, J.; Sivakumar, V.; Mengistu Tsidu, G.

    2013-01-01

    The present study evaluates the aerosol optical property computing performance of the Regional Climate Model (RegCM4) which is interactively coupled with anthropogenic-desert dust schemes, in South Africa. The validation was carried out by comparing RegCM4 estimated: aerosol extinction coefficient profile, Aerosol Optical Depth (AOD), and Single Scattering Albedo (SSA) with AERONET, LIDAR, and MISR observations. The results showed that the magnitudes of simulated AOD at the Skukuza station (2...

  5. How do indirect measures of evaluation work? Evaluating the inference of prejudice in the Implicit Association Test.

    Science.gov (United States)

    Brendl, C M; Markman, A B; Messner, C

    2001-11-01

    There has been significant interest in indirect measures of attitudes like the Implicit Association Test (IAT), presumably because of the possibility of uncovering implicit prejudices. The authors derived a set of qualitative predictions for people's performance in the IAT on the basis of random walk models. These were supported in 3 experiments comparing clearly positive or negative categories to nonwords. They also provided evidence that participants shift their response criterion when doing the IAT. Because of these criterion shifts, a response pattern in the IAT can have multiple causes. Thus, it is not possible to infer a single cause (such as prejudice) from IAT results. A surprising additional result was that nonwords were treated as though they were evaluated more negatively than obviously negative items like insects, suggesting that low familiarity items may generate the pattern of data previously interpreted as evidence for implicit prejudice.

  6. Electrocardiographic, echocardiographic, and indirect blood pressure evaluation in dogs subjected to different sedation protocols

    Directory of Open Access Journals (Sweden)

    Helena Mondardo Cardoso

    Full Text Available ABSTRACT: The present study aimed to evaluate the effects of different sedation protocols on blood pressure and echocardiographic and electrocardiographic parameters in dogs. In total, 24 male mixed-breed dogs with a mean weight of 9.87±3.0kg were used.Animals were randomly divided into four groups (n=6, which were subjected to sedation using the following protocols: acepromazine (0.05mgkg-1 and butorphanol (0.3mgkg-1 (AB; acepromazine (0.05mgkg-1and methadone (0.5mgkg-1 (AM; acepromazine (0.03mgkg-1, methadone (0.5mgkg-1, and midazolam (0.3mgkg-1(MAM; and methadone only (0.5mgkg-1 (M. Indirect blood pressure (BP measurements and computerized electrocardiography (ECG and echocardiography (ECO were performed immediately before the application of the sedation protocol (baseline, and the same evaluations were repeated after 15 minutes. BP decreased in groups AB, MAM, and AM compared to baseline values. Electrocardiographic measurements showed decreased heart rates (HRs after sedation in all groups, and bradycardia was observed after sedation in two dogs from group M and one animal from group AM. The P-wave duration increased after sedation in groups AM and M. After sedation, no changes in cardiac dimensions were revealed byECO.Fractional shortening (FS decreased after sedation in the AM group, and dogs from group AB exhibited a smaller decrease in FS compared with the other groups. The cardiac index (CI was lower in groups AM and M than in the other groups. Animals from group AB were less resistant to examination and exhibited the most favorable sedation scores. It was concluded that the combination of acepromazine and butorphanol was the best sedation protocol for performing echocardiogram measurementsbecause dogs were less resistant to examinations and echocardiographic parameters of FS and CI remained stable.

  7. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2011-09-01

    Full Text Available Black carbon in carbonaceous combustion aerosol warms the climate by absorbing solar radiation, meaning reductions in black carbon emissions are often perceived as an attractive global warming mitigation option. However, carbonaceous combustion aerosol can also act as cloud condensation nuclei (CCN so they also cool the climate by increasing cloud albedo. The net radiative effect of carbonaceous combustion aerosol is uncertain because their contribution to CCN has not been evaluated on the global scale. By combining extensive observations of CCN concentrations with the GLOMAP global aerosol model, we find that the model is biased low (normalised mean bias = −77 % unless carbonaceous combustion aerosol act as CCN. We show that carbonaceous combustion aerosol accounts for more than half (52–64 % of global CCN with the range due to uncertainty in the emitted size distribution of carbonaceous combustion particles. The model predicts that wildfire and pollution (fossil fuel and biofuel carbonaceous combustion aerosol causes a global mean cloud albedo aerosol indirect effect of −0.34 W m−2, with stronger cooling if we assume smaller particle emission size. We calculate that carbonaceous combustion aerosol from pollution sources cause a global mean aerosol indirect effect of −0.23 W m−2. The small size of carbonaceous combustion particles from fossil fuel sources means that whilst pollution sources account for only one-third of the emitted mass they cause two-thirds of the cloud albedo aerosol indirect effect that is due to carbonaceous combustion aerosol. This cooling effect must be accounted for, along with other cloud effects not studied here, to ensure that black carbon emissions controls that reduce the high number concentrations of fossil fuel particles have the desired net effect on climate.

  8. Aerosol particle size distribution in building and caves: impact to the radon-related dose evaluation

    International Nuclear Information System (INIS)

    Berka, Z.; Thinova, L.; Brandejsova, E.; Zdimal, V.; Fronka, A.; Milka, D.

    2004-01-01

    The results of evaluation of the aerosol particle size spectra observed in the Bozkov cave are presented and compared with the spectra observed in residential areas. The radon-to-dose conversion factor is discussed, as is the correction factor referred to as the cave factor. (P.A.)

  9. Evaluation of Aerosol Delivery of Nanosuspension for Pre-clinical Pulmonary Drug Delivery

    Directory of Open Access Journals (Sweden)

    Chiang Po-Chang

    2009-01-01

    Full Text Available Abstract Asthma and chronic obstructive pulmonary disease (COPD are pulmonary diseases that are characterized by inflammatory cell infiltration, cytokine production, and airway hyper-reactivity. Most of the effector cells responsible for these pathologies reside in the lungs. One of the most direct ways to deliver drugs to the target cells is via the trachea. In a pre-clinical setting, this can be achieved via intratracheal (IT, intranasal (IN, or aerosol delivery in the desired animal model. In this study, we pioneered the aerosol delivery of a nanosuspension formulation in a rodent model. The efficiency of different dosing techniques and formulations to target the lungs were compared, and fluticasone was used as the model compound. For the aerosol particle size determination, a ten-stage cascade impactor was used. The mass median aerodynamic diameter (MMAD was calculated based on the percent cumulative accumulation at each stage. Formulations with different particle size of fluticasone were made for evaluation. The compatibility of regular fluticasone suspension and nanosuspension for aerosol delivery was also investigated. The in vivo studies were conducted on mice with optimized setting. It was found that the aerosol delivery of fluticasone with nanosuspension was as efficient as intranasal (IN dosing, and was able to achieve dose dependent lung deposition.

  10. Analysis of aerosol emission and hazard evaluation of electrical discharge machining (EDM) process.

    Science.gov (United States)

    Jose, Mathew; Sivapirakasam, S P; Surianarayanan, M

    2010-01-01

    The safety and environmental aspects of a manufacturing process are important due to increased environmental regulations and life quality. In this paper, the concentration of aerosols in the breathing zone of the operator of Electrical Discharge Machining (EDM), a commonly used non traditional manufacturing process is presented. The pattern of aerosol emissions from this process with varying process parameters such as peak current, pulse duration, dielectric flushing pressure and the level of dielectric was evaluated. Further, the HAZOP technique was employed to identify the inherent safety aspects and fire risk of the EDM process under different working conditions. The analysis of aerosol exposure showed that the concentration of aerosol was increased with increase in the peak current, pulse duration and dielectric level and was decreased with increase in the flushing pressure. It was also found that at higher values of peak current (7A) and pulse duration (520 micros), the concentration of aerosols at breathing zone of the operator was above the permissible exposure limit value for respirable particulates (5 mg/m(3)). HAZOP study of the EDM process showed that this process is vulnerable to fire and explosion hazards. A detailed discussion on preventing the fire and explosion hazard is presented in this paper. The emission and risk of fire of the EDM process can be minimized by selecting proper process parameters and employing appropriate control strategy.

  11. An Evaluation of an Indirect Method of Transforming Item Parameter Estimates from Item Response Theory to a Common Scale.

    Science.gov (United States)

    Marco, Gary L.

    Using raw-to-scaled-score conversions derived from test-score equating to link item-parameter estimates from the one-parameter (Rasch) and three-parameter logistic models, this study evaluated an indirect method for converting item response theory estimates to a common scale. Data were taken from Petersen's Scholastic Aptitude Test (SAT) scale…

  12. Fracture Strength of Indirect Resin Composite Laminates to Teeth with Existing Restorations : An Evaluation of Conditioning Protocols

    NARCIS (Netherlands)

    Mese, Ayse; Ozcan, Mutlu

    2009-01-01

    Purpose: This study evaluated the fracture strength and failure types of indirect resin-based composite laminates bonded to teeth with aged Class III composite restorations that were conditioned according to various protocols. Materials and Methods: Maxillary central incisors (N = 60) with

  13. Results and code predictions for ABCOVE [aerosol behavior code validation and evaluation] aerosol code validation with low concentration NaOH and NaI aerosol: CSTF test AB7

    International Nuclear Information System (INIS)

    Hilliard, R.K.; McCormack, J.D.; Muhlestein, L.D.

    1985-10-01

    A program for aerosol behavior validation and evaluation (ABCOVE) has been developed in accordance with the LMFBR Safety Program Plan. The ABCOVE program is a cooperative effort between the USDOE, the USNRC, and their contractor organizations currently involved in aerosol code development, testing or application. The third large-scale test in the ABCOVE program, AB7, was performed in the 850-m 3 CSTF vessel with a two-species test aerosol. The test conditions involved the release of a simulated fission product aerosol, NaI, into the containment atmosphere after the end of a small sodium pool fire. Four organizations made pretest predictions of aerosol behavior using five computer codes. Two of the codes (QUICKM and CONTAIN) were discrete, multiple species codes, while three (HAA-3, HAA-4, and HAARM-3) were log-normal codes which assume uniform coagglomeration of different aerosol species. Detailed test results are presented and compared with the code predictions for eight key aerosol behavior parameters. 11 refs., 44 figs., 35 tabs

  14. Evaluation of climate model aerosol seasonal and spatial variability over Africa using AERONET

    Directory of Open Access Journals (Sweden)

    H. M. Horowitz

    2017-11-01

    Full Text Available The sensitivity of climate models to the characterization of African aerosol particles is poorly understood. Africa is a major source of dust and biomass burning aerosols and this represents an important research gap in understanding the impact of aerosols on radiative forcing of the climate system. Here we evaluate the current representation of aerosol particles in the Conformal Cubic Atmospheric Model (CCAM with ground-based remote retrievals across Africa, and additionally provide an analysis of observed aerosol optical depth at 550 nm (AOD550 nm and Ångström exponent data from 34 Aerosol Robotic Network (AERONET sites. Analysis of the 34 long-term AERONET sites confirms the importance of dust and biomass burning emissions to the seasonal cycle and magnitude of AOD550 nm across the continent and the transport of these emissions to regions outside of the continent. In general, CCAM captures the seasonality of the AERONET data across the continent. The magnitude of modeled and observed multiyear monthly average AOD550 nm overlap within ±1 standard deviation of each other for at least 7 months at all sites except the Réunion St Denis Island site (Réunion St. Denis. The timing of modeled peak AOD550 nm in southern Africa occurs 1 month prior to the observed peak, which does not align with the timing of maximum fire counts in the region. For the western and northern African sites, it is evident that CCAM currently overestimates dust in some regions while others (e.g., the Arabian Peninsula are better characterized. This may be due to overestimated dust lifetime, or that the characterization of the soil for these areas needs to be updated with local information. The CCAM simulated AOD550 nm for the global domain is within the spread of previously published results from CMIP5 and AeroCom experiments for black carbon, organic carbon, and sulfate aerosols. The model's performance provides confidence for using the model to estimate

  15. Evaluation of biosecurity measures to prevent indirect transmission of porcine epidemic diarrhea virus.

    Science.gov (United States)

    Kim, Yonghyan; Yang, My; Goyal, Sagar M; Cheeran, Maxim C-J; Torremorell, Montserrat

    2017-04-05

    The effectiveness of biosecurity methods to mitigate the transmission of porcine epidemic diarrhea virus (PEDV) via farm personnel or contaminated fomites is poorly understood. This study was undertaken to evaluate the effectiveness of biosecurity procedures directed at minimizing transmission via personnel following different biosecurity protocols using a controlled experimental setting. PEDV RNA was detected from rectal swabs of experimentally infected (INF) and sentinel pigs by real-time reverse transcription polymerase chain reaction (rRT-PCR). Virus shedding in INF pigs peaked at 1 day post infection (dpi) and viral RNA levels remained elevated through 19 dpi. Sentinel pigs in the low biosecurity group (LB) became PEDV positive after the first movement of study personnel from the INF group. However, rectal swabs from pigs in the medium biosecurity (MB) and high biosecurity (HB) groups were negative during the 10 consecutive days of movements and remained negative through 24 days post movement (dpm) when the first trial was terminated. Viral RNA was detected at 1 dpm through 3 dpm from the personal protective equipment (PPE) of LB personnel. In addition, at 1 dpm, 2 hair/face swabs from MB personnel were positive; however, transmission of virus was not detected. All swabs of fomite from the HB study personnel were negative. These results indicate that indirect PEDV transmission through contaminated PPE occurs rapidly (within 24 h) under modeled conditions. Biosecurity procedures such as changing PPE, washing exposed skin areas, or taking a shower are recommended for pig production systems and appear to be an effective option for lowering the risk of PEDV transmission between groups of pigs.

  16. Evaluation of meniscal repair with serial magnetic resonance imaging: a comparative study between conventional MRI and indirect MR arthrography

    International Nuclear Information System (INIS)

    Hantes, Michael E.; Zachos, Vasilios C.; Zibis, Aristidis H.; Papanagiotou, Panagiotis; Karahalios, Theophilos; Malizos, Konstantinos N.; Karantanas, Apostolos H.

    2004-01-01

    Objective: To prospectively investigate the healing process of meniscal repair with plain magnetic resonance imaging (MRI) and indirect MR arthrography and to compare the two methods. Materials and methods: Twenty patients with an arthroscopic meniscal repair without clinical symptoms underwent conventional and indirect MR arthrography of the affected knee, 3, 6 and 12 months after the index operation applying a T1-w Spin Echo sequence in three planes. The size of the tear gap was measured on transverse images. The signal-to-noise ratio and the configuration of the abnormal signal were evaluated in the coronal images. Results: All patients demonstrated abnormal signal intensity at the side of the meniscal repair. The size of the gap at the previous tear side, reduced significantly by 45 and 40% on conventional MRI and indirect MR arthrography respectively, from 3 months to 1 year (P<0.05). The signal-to-noise ratio of the intrameniscal abnormal signal reduced significantly and approximately 50% from 3 to 6 months, and from 6 to 12 months postoperatively, as demonstrated with indirect MR arthrography. However, as opposed to normal meniscus, the signal-to-noise ratio of the abnormal area remains 5.5 times higher 12 months postoperatively. In contrast, the reduction of signal-to-noise ratio of the abnormal area at conventional MRI was not significant even from 3 to 12 months. In 90% of the cases, the indirect MR arthrography showed the intrameniscal abnormal signal on plain MRI, to extend to the articular surface as opposed to 25% on plain MRI. Conclusion: With indirect MR arthrography, the natural process of meniscal healing can be evaluated. Significant reduction of the size of the tear gap and significant reduction of the signal-to-noise ratio of the abnormal signal as well as its configuration are the main parameters interpretating the normal healing process

  17. Evaluation of meniscal repair with serial magnetic resonance imaging: a comparative study between conventional MRI and indirect MR arthrography

    Energy Technology Data Exchange (ETDEWEB)

    Hantes, Michael E. E-mail: hantesmi@otenet.gr; Zachos, Vasilios C.; Zibis, Aristidis H.; Papanagiotou, Panagiotis; Karahalios, Theophilos; Malizos, Konstantinos N.; Karantanas, Apostolos H

    2004-06-01

    Objective: To prospectively investigate the healing process of meniscal repair with plain magnetic resonance imaging (MRI) and indirect MR arthrography and to compare the two methods. Materials and methods: Twenty patients with an arthroscopic meniscal repair without clinical symptoms underwent conventional and indirect MR arthrography of the affected knee, 3, 6 and 12 months after the index operation applying a T1-w Spin Echo sequence in three planes. The size of the tear gap was measured on transverse images. The signal-to-noise ratio and the configuration of the abnormal signal were evaluated in the coronal images. Results: All patients demonstrated abnormal signal intensity at the side of the meniscal repair. The size of the gap at the previous tear side, reduced significantly by 45 and 40% on conventional MRI and indirect MR arthrography respectively, from 3 months to 1 year (P<0.05). The signal-to-noise ratio of the intrameniscal abnormal signal reduced significantly and approximately 50% from 3 to 6 months, and from 6 to 12 months postoperatively, as demonstrated with indirect MR arthrography. However, as opposed to normal meniscus, the signal-to-noise ratio of the abnormal area remains 5.5 times higher 12 months postoperatively. In contrast, the reduction of signal-to-noise ratio of the abnormal area at conventional MRI was not significant even from 3 to 12 months. In 90% of the cases, the indirect MR arthrography showed the intrameniscal abnormal signal on plain MRI, to extend to the articular surface as opposed to 25% on plain MRI. Conclusion: With indirect MR arthrography, the natural process of meniscal healing can be evaluated. Significant reduction of the size of the tear gap and significant reduction of the signal-to-noise ratio of the abnormal signal as well as its configuration are the main parameters interpretating the normal healing process.

  18. Total aerosol effect: forcing or radiative flux perturbation?

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  19. Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5

    Directory of Open Access Journals (Sweden)

    X. Liu

    2012-05-01

    Full Text Available A modal aerosol module (MAM has been developed for the Community Atmosphere Model version 5 (CAM5, the atmospheric component of the Community Earth System Model version 1 (CESM1. MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically-based manner. Two MAM versions were developed: a more complete version with seven lognormal modes (MAM7, and a version with three lognormal modes (MAM3 for the purpose of long-term (decades to centuries simulations. In this paper a description and evaluation of the aerosol module and its two representations are provided. Sensitivity of the aerosol lifecycle to simplifications in the representation of aerosol is discussed.

    Simulated sulfate and secondary organic aerosol (SOA mass concentrations are remarkably similar between MAM3 and MAM7. Differences in primary organic matter (POM and black carbon (BC concentrations between MAM3 and MAM7 are also small (mostly within 10%. The mineral dust global burden differs by 10% and sea salt burden by 30–40% between MAM3 and MAM7, mainly due to the different size ranges for dust and sea salt modes and different standard deviations of the log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and temporal variations of aerosol mass and number concentrations, size distributions, and aerosol optical properties. However, there are noticeable biases; e.g., simulated BC concentrations are significantly lower than measurements in the Arctic. There is a low bias in modeled aerosol optical depth on the global scale, especially in the developing countries. These biases in aerosol simulations clearly indicate the need for improvements of aerosol processes (e.g., emission fluxes of anthropogenic aerosols and

  20. A modified indirect mathematical model for evaluation of ethanol production efficiency in industrial-scale continuous fermentation processes.

    Science.gov (United States)

    Canseco Grellet, M A; Castagnaro, A; Dantur, K I; De Boeck, G; Ahmed, P M; Cárdenas, G J; Welin, B; Ruiz, R M

    2016-10-01

    To calculate fermentation efficiency in a continuous ethanol production process, we aimed to develop a robust mathematical method based on the analysis of metabolic by-product formation. This method is in contrast to the traditional way of calculating ethanol fermentation efficiency, where the ratio between the ethanol produced and the sugar consumed is expressed as a percentage of the theoretical conversion yield. Comparison between the two methods, at industrial scale and in sensitivity studies, showed that the indirect method was more robust and gave slightly higher fermentation efficiency values, although fermentation efficiency of the industrial process was found to be low (~75%). The traditional calculation method is simpler than the indirect method as it only requires a few chemical determinations in samples collected. However, a minor error in any measured parameter will have an important impact on the calculated efficiency. In contrast, the indirect method of calculation requires a greater number of determinations but is much more robust since an error in any parameter will only have a minor effect on the fermentation efficiency value. The application of the indirect calculation methodology in order to evaluate the real situation of the process and to reach an optimum fermentation yield for an industrial-scale ethanol production is recommended. Once a high fermentation yield has been reached the traditional method should be used to maintain the control of the process. Upon detection of lower yields in an optimized process the indirect method should be employed as it permits a more accurate diagnosis of causes of yield losses in order to correct the problem rapidly. The low fermentation efficiency obtained in this study shows an urgent need for industrial process optimization where the indirect calculation methodology will be an important tool to determine process losses. © 2016 The Society for Applied Microbiology.

  1. Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation

    Directory of Open Access Journals (Sweden)

    N. Meskhidze

    2011-11-01

    Full Text Available Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR's Community Atmosphere Model (CAM5 with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7. Emissions of marine primary organic aerosols (POA, phytoplankton-produced isoprene- and monoterpenes-derived secondary organic aerosols (SOA and methane sulfonate (MS are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr−1, for the Gantt et al. (2011 and Vignati et al. (2010 emission parameterizations, respectively. Marine sources of SOA and particulate MS (containing both sulfur and carbon atoms contribute an additional 0.2 and 5.1 Tg yr−1, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ng m−3, with values up to 400 ng m−3 over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2, both Gantt et al. (2011 and Vignati et al. (2010 formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011 parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN. The largest increases (up to 20% in CCN (at a supersaturation (S of 0.2% number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming

  2. Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign

    Directory of Open Access Journals (Sweden)

    B. T. Johnson

    2016-11-01

    Full Text Available We present observations of biomass burning aerosol from the South American Biomass Burning Analysis (SAMBBA and other measurement campaigns, and use these to evaluate the representation of biomass burning aerosol properties and processes in a state-of-the-art climate model. The evaluation includes detailed comparisons with aircraft and ground data, along with remote sensing observations from MODIS and AERONET. We demonstrate several improvements to aerosol properties following the implementation of the Global Model for Aerosol Processes (GLOMAP-mode modal aerosol scheme in the HadGEM3 climate model. This predicts the particle size distribution, composition, and optical properties, giving increased accuracy in the representation of aerosol properties and physical–chemical processes over the Coupled Large-scale Aerosol Scheme for Simulations in Climate Models (CLASSIC bulk aerosol scheme previously used in HadGEM2. Although both models give similar regional distributions of carbonaceous aerosol mass and aerosol optical depth (AOD, GLOMAP-mode is better able to capture the observed size distribution, single scattering albedo, and Ångström exponent across different tropical biomass burning source regions. Both aerosol schemes overestimate the uptake of water compared to recent observations, CLASSIC more so than GLOMAP-mode, leading to a likely overestimation of aerosol scattering, AOD, and single scattering albedo at high relative humidity. Observed aerosol vertical distributions were well captured when biomass burning aerosol emissions were injected uniformly from the surface to 3 km. Finally, good agreement between observed and modelled AOD was gained only after scaling up GFED3 emissions by a factor of 1.6 for CLASSIC and 2.0 for GLOMAP-mode. We attribute this difference in scaling factor mainly to different assumptions for the water uptake and growth of aerosol mass during ageing via oxidation and condensation of organics. We also note

  3. Measurement of radioactive aerosol behavior during dismantling and reflection to the exposure dose evaluation - 16107

    International Nuclear Information System (INIS)

    Iguchi, Yukihiro; Kato, Masami

    2009-01-01

    Radioactive aerosol disperses slightly via contamination prevention systems such as control enclosures and filters when the nuclear installation is dismantled, and it might impact the environment. Therefore, when decommissioning is planned, it is necessary to assess the safety such as exposure dose evaluation to the public. For the radioactive aerosol, it is possible that the dispersion ratio is different according to the contamination condition, the dismantlement method of the material, nuclides (elements), etc. The radiation exposure evaluation for the decommissioning plan has been executed by operators in Japan based on a number of experiments (mostly cold tests) and overseas results. The decommissioning is now being carried out at the Tokai Power Station (GCR) and Fugen Decommissioning Engineering Center in Japan. In this study, the results data is acquired at the decommissioning sites, and the methodology and data for the exposure dose evaluation are verified and confirmed. These examination results will lead to the upgrading and improvement of the exposure evaluation methodology. In particular, the dismantlement work of connected piping of the heat exchanger (steam generator) was executed in the Tokai Power Station in 2008. In this study, we paid attention to the radionuclides of Co-60 and Cs-137 that adhered to piping, and the dispersion behavior of aerosol was measured and contamination prevention effect was assured. As a result, the data show that the cesium concentrates about four times higher than cobalt. Moreover, the effects of the prevention measures of contamination were confirmed and the behavior of the radioactive aerosol became clear and the effective findings about the dose evaluation of the dismantling were collected. (authors)

  4. Dependence of stratocumulus-topped boundary-layer entrainment on cloud-water sedimentation: Impact on global aerosol indirect effect in GISS ModelE3 single column model and global simulations

    Science.gov (United States)

    Ackerman, A. S.; Kelley, M.; Cheng, Y.; Fridlind, A. M.; Del Genio, A. D.; Bauer, S.

    2017-12-01

    Reduction in cloud-water sedimentation induced by increasing droplet concentrations has been shown in large-eddy simulations (LES) and direct numerical simulation (DNS) to enhance boundary-layer entrainment, thereby reducing cloud liquid water path and offsetting the Twomey effect when the overlying air is sufficiently dry, which is typical. Among recent upgrades to ModelE3, the latest version of the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), are a two-moment stratiform cloud microphysics treatment with prognostic precipitation and a moist turbulence scheme that includes an option in its entrainment closure of a simple parameterization for the effect of cloud-water sedimentation. Single column model (SCM) simulations are compared to LES results for a stratocumulus case study and show that invoking the sedimentation-entrainment parameterization option indeed reduces the dependence of cloud liquid water path on increasing aerosol concentrations. Impacts of variations of the SCM configuration and the sedimentation-entrainment parameterization will be explored. Its impact on global aerosol indirect forcing in the framework of idealized atmospheric GCM simulations will also be assessed.

  5. Prospective evaluation of indirect costs due to acute rotavirus gastroenteritis in Spain: the ROTACOST study

    Directory of Open Access Journals (Sweden)

    Sánchez-Lastres Juan

    2011-09-01

    Full Text Available Abstract Background The effect of rotavirus in developed countries is mainly economic. This study aimed to assess the indirect costs induced by rotavirus acute gastroenteritis (RVAGE in Spain. Methods A prospective observational study was conducted from October 2008 to June 2009. It included 682 children up to 5 years of age with acute gastroenteritis (AGE who attended primary care (n = 18 and emergency room/hospital settings (n = 10, covering the regions of Galicia and Asturias (North-west Spain. All non-medical expenses incurred throughout the episode were recorded in detail using personal interviews and telephone contact. Results Among the 682 enrolled children, 207 (30.4% were rotavirus positive and 170 (25% had received at least one dose of rotavirus vaccine. The mean (standard deviation indirect cost caused by an episode of AGE was estimated at 135.17 (182.70 Euros. Costs were 1.74-fold higher when AGE was caused by rotavirus compared with other etiologies: 192.7 (219.8 Euros vs. 111.6 (163.5 Euros (p Conclusions Rotavirus generates a significant indirect economic burden. Our data should be considered in the decision-making process of the eventual inclusion of rotavirus vaccine in the national immunization schedule of well developed countries.

  6. Reducing the uncertainty in background marine aerosol radiative properties using CAM5 model results and CALIPSO-retrievals

    Science.gov (United States)

    Meskhidze, N.; Gantt, B.; Dawson, K.; Johnson, M. S.; Gasso, S.

    2012-12-01

    Abundance of natural aerosols in the atmosphere strongly affects global aerosol optical depth (AOD) and influences clouds and the hydrological cycle through its ability to act as cloud condensation nuclei (CCN). Because the anthropogenic contribution to climate forcing represents the difference between the total forcing and that from natural aerosols, understanding background aerosols is necessary to evaluate the influences of anthropogenic aerosols on cloud reflectivity and persistence (so-called indirect radiative forcing). The effects of marine aerosols are explored using remotely sensed data obtained by Cloud-aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and the NCAR Community Atmosphere Model (CAM5.0), coupled with the PNNL Modal Aerosol Model. CALIPSO-provided high resolution vertical profile information about different aerosol subtypes (defined as clean continental, marine, desert dust, polluted continental, polluted dust, and biomass burning), particulate depolarization ratio (or particle non-sphericity), reported aerosol color ratio (the ratio of aerosol backscatter at the two wavelengths) and lidar ratios over different parts of the oceans are compared to model-simulations to help evaluate the contribution of biogenic aerosol to CCN budget in the marine boundary layer. Model-simulations show that over biologically productive ocean waters primary organic aerosols of marine origin can contribute up to a 20% increase in CCN (at a supersaturation of 0.2%) number concentrations. Corresponding changes associated with cloud properties (liquid water path and droplet number) can decrease global annual mean indirect radiative forcing of anthropogenic aerosol (less cooling) by ~0.1 Wm-2 (7%). This study suggests ignoring the complex chemical composition and size distribution of sea spray particles could result in considerable uncertainties in predicted anthropogenic aerosol indirect effect.

  7. Analysis of aerosol optical depth evaluation in polar regions and associated uncertainties

    Directory of Open Access Journals (Sweden)

    P. Ortiz de Galisteo

    2008-04-01

    Full Text Available Some available processing algorithms used to calculate the aerosol optical depth from radiometric measurements were tested. The aim was to evaluate the associated uncertainties in polar regions due to the data processing, in order to adjust the methodology of the calculation and illustrate the importance of these error sources. The measurements were obtained during a sun photometer campaign in Ny-Ålesund within the framework of the POLAR-AOD project.

  8. Digital terrain model evaluation and computation of the terrain correction and indirect effect in South America

    Directory of Open Access Journals (Sweden)

    Denizar Blitzkow

    2009-12-01

    Full Text Available The main objectives of this paper are to compare digital terrain models, to show the generated models for South America and to present two applications. Shuttle Radar Topography Mission (SRTM produced the most important and updated height information in the world. This paper addresses the attention to comparisons of the following models: SRTM3, DTM2002, GLOBE, GTOPO30, ETOPO2 and ETOPO5, at the common points of the grid. The comparisons are limited by latitudes 60º S and 25 º N and longitudes 100 º W and 25 º W. All these data, after some analysis, have been used to create three models for South America: SAM_1mv1, SAM_1mv2 (both of 1' grid spacing and SAM_30s (30" grid spacing. Besides this effort, the three models as well as STRM were evaluated using Bench Marks (BM in Brazil and Argentina. This paper also shows two important geodesy and geophysics applications using the SAM_1mv1: terrain correction (one of the reductions applied to the gravity acceleration and indirect effect (a consequence of the reduction of the external mass to the geoid. These are important at Andes for a precise geoid computation.Los objetivos principales de este documento son comparar modelos digitales del continente; enseñar los modelos generados para Sudamérica y presentar dos aplicaciones. Shuttle Radar Topography Mission (SRTM produjo la información más importante y más actualizada de las altitudes del mundo. Este trabajo centra su atención en las comparaciones de los modelos siguientes: SRTM3, DTM2002, GLOBO, GTOPO30, ETOPO2 y ETOPO5, en los puntos comunes de la rejilla. Las comparaciones son limitadas por las latitudes 60º S y 25 º N y longitudes 100 º W y 25 º W. Todos estos datos, después de los análisis, se han utilizado para crear tres modelos para Sudamérica: SAM_1mv1, SAM_1mv2 (1' de espaciamiento de la rejilla y SAM_30s (30" de espaciamiento de la rejilla. Los tres modelos bien como el STRM fueron evaluados usando puntos de referencia de

  9. Evaluation of Potential Influence of Lacking the Consideration of Aerosol Perturbations on NCEP GFS Precipitation Forecast

    Science.gov (United States)

    Jiang, Mengjiao; Feng, Jinqin; Sun, Ruiyu; Li, Zhanqing; Wan, Bingcheng; Cribb, Maureen

    2017-04-01

    Cloud-Aerosol-Precipitation-Interactions have been widely recognized as affecting precipitation very much in the water and energy cycles, however, are not considered in the operational NCEP GFS model. We evaluated the NCEP operational precipitation forecast from the aspect of lacking consideration of aerosol effects, using multiple datasets from ground-based and satellite observations and model reanalysis. CPC unified gauge-based precipitation analysis, and MERRA-2 aerosol reanalysis were used to evaluate the forecast in three countries in the year 2015. The phenomena of overestimation of light rain (47.84%) and underestimation of heavier rain (31.83%, 52.94%, and 65.74% for moderate rain, heavy rain, and very heavy rain, respectively) of the model are consistent with the scenario that no aerosol effects are considered. The standard deviation of forecast bias are significantly positive correlated with AOD with coefficient of 0.5602, 0.6522, and 0.5182 for Australia, US, and China, respectively. The ETS score in the U.S. decreases with AOD increasing. In addition, long-term forecast with a focus in Fujian, China were evaluated and analyzed using gauge-based observations of precipitation, visibility, water vapor, and convective available, and satellite datasets. The results show that model overestimates light rain and underestimates heavy rain. Long-term analysis indicated that there is a trend in heavy rain increase in summer, while a light rain decrease in other seasons. A decreasing trend of visibility is found while no obvious trend is found of water vapor or a little increase trend in summer CAPE. The results also show that more aerosols decrease cloud effective radii for liquid water path greater than 80 g/m2 situation. The increase of cloud top temperature with AOD for liquid clouds, and the decrease of that for warm mixed phase clouds, suggest that aerosols inhibit the development of shallow liquid clouds, and invigorate warm base mixed-phase clouds

  10. A comprehensive evaluation of water uptake on atmospherically relevant mineral surfaces: DRIFT spectroscopy, thermogravimetric analysis and aerosol growth measurements

    Directory of Open Access Journals (Sweden)

    R. J. Gustafsson

    2005-01-01

    Full Text Available The hygroscopicity of mineral aerosol samples has been examined by three independent methods: diffuse reflectance infrared Fourier transform spectroscopy, thermogravimetric analysis and differential mobility analysis. All three methods allow an evaluation of the water coverage of two samples, CaCO3 and Arizona Test dust, as a function of relative humidity. For the first time, a correlation between absolute gravimetric measurements and the other two (indirect methods has been established. Water uptake isotherms were reliably determined for both solids which at 298 K and 80% relative humidity exhibited similar coverages of ~4 monolayers. However, the behaviour at low relative humidity was markedly different in the two cases, with Arizona Test Dust showing a substantially higher affinity for water in the contact layer. This is understandable in terms of the chemical composition of these two materials. The mobility analysis results are in good accord with field observations and with our own spectroscopic and gravimetric measurements. These findings are of value for an understanding of atmospheric chemical processes.

  11. Evaluation of direct and indirect health education in students' knowlege and attitude about AIDS

    Directory of Open Access Journals (Sweden)

    Shojaiyzadeh D

    1997-08-01

    Full Text Available This inverstigation is a quasi-experimental study comparing the effects of two methods of health education on student's knowledge and attitudes about AIDS. The target population consisted of 218 male undergraduates studying in Payame Noor University in Saghez, Iran. A random sample of 106 students was selected using sample random sampling method. The students were randomly divided into two experimental groups. One group was educated about AIDS using a direct method of health education and indirect method was used for the other group. Using pretest/posttest method of data collection, analysis of the data showed a significant difference between each group's knowledge and attitudes before and after the educational programs. Comparison of the two educational methods showed no significant difference on student's knowledge about AIDS. However, method one (using a direct method of health education was significantly more effective in changing student's attitudes towards AIDS than method 2 (using an indirect method of health education.

  12. Aerosol sampling and characterization for hazard evaluation. Progress report, October 1, 1977-September 30, 1978

    International Nuclear Information System (INIS)

    Scripsick, R.C.; Tillery, M.I.; Stafford, R.G.; Romero, P.O.

    1979-11-01

    Measurements of the dilution of air contaminants between worker breathing zone and area air samplers were made by releasing a test fluorescent aerosol in workrooms equipped with aerosol surveillance systems. These data were used to evaluate performance and suggest improvements in design of alarming air monitor systems. In one workroom studied, average half-hour breathing zone air concentration needed to trigger alarm was found to be 960 times the maximum permissible air concentration for occupational exposure to soluble 239 Pu (MPC/sub a/). It was shown that alternative monitor placement in this room could result in decreasing average triggering concentration to 354 times the MPC/sub a/. Analysis of data from impaction-autoradiographic sizing comparison studies showed average disintegration to track ratio called track efficiency factor, to be 2.7 +- 0.4

  13. Toxicological evaluation of realistic emission source aerosols (TERESA): summary and conclusions.

    Science.gov (United States)

    Godleski, John J; Rohr, Annette C; Coull, Brent A; Kang, Choong-Min; Diaz, Edgar A; Koutrakis, Petros

    2011-08-01

    The toxicological evaluation of realistic emissions of source aerosols (TERESA) study seeks to delineate health effects of aerosols formed from emissions of particulate matter sources. This series of papers reports the findings of experiments using coal-fired power plants as the source of emissions and this paper summarizes the findings and knowledge acquired from these studies. Emissions were drawn directly from the stacks of three coal-fired power plants in the US, and photochemically aged in a mobile laboratory to simulate downwind power plant plume processing. The power plants used different sources of coal and had different emission controls. Exposure scenarios included primary particles, secondary particles and mixtures of these with common atmospheric constituents (α-pinene and ammonia). Extensive exposure characterization was carried out, and toxicological outcomes were evaluated in Sprague-Dawley rats exposed to different emission scenarios. Breathing pattern, pulmonary inflammatory responses, in vivo pulmonary and cardiac chemiluminescence and cardiac response in a model of acute myocardial infarction were assessed. The results showed no response or relatively mild responses to the inhaled aerosols studied; complex scenarios which included oxidized emissions and α-pinene to simulate biogenic secondary organic aerosol tended to induce more statistically significant responses than scenarios of oxidized and non-oxidized emissions alone. Relating adverse effects to specific components did not consistently identify a toxic constituent. These findings are consistent with most of the previously published studies using pure compounds to model secondary power plant emissions, but importantly add substantial complexity and thus have considerable merit in defining toxicological responses.

  14. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    Science.gov (United States)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  15. Uncertainty evaluation in correlated quantities: application to elemental analysis of atmospheric aerosols;Evaluacion de la incertidumbre en cantidades correlacionadas: aplicacion al analisis elemental de aerosoles atmosfericos

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, A.; Miranda, J.; Pineda, J. C., E-mail: miranda@fisica.unam.m [UNAM, Instituto de Fisica, Circuito de la Investigacion Cientifica s/n, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2010-07-01

    One of the aspects that are frequently overlooked in the evaluation of uncertainty in experimental data is the possibility that the involved quantities are correlated among them, due to different causes. An example in the elemental analysis of atmospheric aerosols using techniques like X-ray Fluorescence (X RF) or Particle Induced X-ray Emission (PIXE). In these cases, the measured elemental concentrations are highly correlated, and then are used to obtain information about other variables, such as the contribution from emitting sources related to soil, sulfate, non-soil potassium or organic matter. This work describes, as an example, the method required to evaluate the uncertainty in variables determined from correlated quantities from a set of atmospheric aerosol samples collected in the Metropolitan Area of the Mexico Valley and analyzed with PIXE. The work is based on the recommendations of the Guide for the Evaluation of Uncertainty published by the International Organization for Standardization. (Author)

  16. Indirection and computer security.

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Michael J.

    2011-09-01

    The discipline of computer science is built on indirection. David Wheeler famously said, 'All problems in computer science can be solved by another layer of indirection. But that usually will create another problem'. We propose that every computer security vulnerability is yet another problem created by the indirections in system designs and that focusing on the indirections involved is a better way to design, evaluate, and compare security solutions. We are not proposing that indirection be avoided when solving problems, but that understanding the relationships between indirections and vulnerabilities is key to securing computer systems. Using this perspective, we analyze common vulnerabilities that plague our computer systems, consider the effectiveness of currently available security solutions, and propose several new security solutions.

  17. Clinical Evaluation of Indirect Particle-Filled Composite Resin CAD/CAM Partial Crowns after 24 Months.

    Science.gov (United States)

    Zimmermann, Moritz; Koller, Christina; Reymus, Marcel; Mehl, Albert; Hickel, Reinhard

    2017-04-19

    Resin-based CAD/CAM compound materials might be promising for single-tooth restorations. Insufficient clinical data are available for this new material class. The purpose of this study was to describe initial clinical in vivo results for indirect particle-filled composite resin CAD/CAM restorations after 24 months. Indirect particle-filled composite resin restorations were fabricated with a CAD/CAM method (CEREC Bluecam intraoral scanner, CEREC MCXL milling unit) by calibrated dental students. Forty-two partial crown restorations were seated adhesively in 30 patients with caries lesions or insufficient restorations (baseline). Strict inclusion criteria were defined for the patient collective. Follow-up evaluation comprised 40 restorations after 12 months and 33 restorations after 24 months. Evaluation criteria were modified FDI criteria with grades (1) to (5). Rating with FDI criteria (5) was defined as clinical failure. Statistical analysis was performed with Wilcoxon-Test (p CAD/CAM restorations after 12 months was 95.0% with two debondings observed. The cumulative success rate for indirect particle-filled composite resin CAD/CAM restorations after 24 months was 85.7% with two tooth fractures and one debonding. Statistically significant differences were found for baseline and 24-month follow-up evaluation for anatomic form and marginal adaptation criterion examined in respect to FDI criteria guidelines (Wilcoxon-Test, p CAD/CAM restorations having a clinical success rate of 85.7% after 24 months. Adhesive bonding procedures need to be ensured carefully. A longer clinical evaluation period is necessary to draw further conclusions. © 2017 by the American College of Prosthodontists.

  18. Evaluate and characterize mechanisms controlling transport, fate, and effects of army smokes in the aerosol wind tunnel: Transport, transformations, fate, and terrestrial ecological effects of hexachloroethane obscurant smokes

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Ligotke, M.W.; Bolton, H. Jr.; Fellows, R.J.; Van Voris, P.; McVeety, B.D.; Li, Shu-mei W.; McFadden, K.M.

    1989-09-01

    The terrestrial transport, chemical fate, and ecological effects of hexachloroethane (HC) smoke were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on exposure scenarios, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of HC smoke/obscurants is establishing the importance of environmental parameters such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and two soil types. HC aerosols were generated in a controlled atmosphere wind tunnel by combustion of hexachloroethane mixtures prepared to simulate normal pot burn rates and conditions. The aerosol was characterized and used to expose plant, soil, and other test systems. Particle sizes of airborne HC ranged from 1.3 to 2.1 {mu}m mass median aerodynamic diameter (MMAD), and particle size was affected by relative humidity over a range of 20% to 85%. Air concentrations employed ranged from 130 to 680 mg/m{sup 3}, depending on exposure scenario. Chlorocarbon concentrations within smokes, deposition rates for plant and soil surfaces, and persistence were determined. The fate of principal inorganic species (Zn, Al, and Cl) in a range of soils was assessed.

  19. Evaluation of an indirect ELISA for detection and typing of foot-and-mouth disease virus

    International Nuclear Information System (INIS)

    Prado, J.A.

    1998-01-01

    An indirect enzyme linked immunosorbent assay (ELISA) kit was used for diagnosis of foot-and-mouth disease virus (FMDV) types O1, A23, C3 which occurred in Rio Grande do Sul State, Southern Brazil during 1984-1994. The samples were randomly selected and tested by ELISA, Complement Fixation Test (CFT) and in tissue culture. Out of 106 samples 78 (73,5%) were positive by ELISA and 39 (36,8%) were found positive in CFT, when original suspensions were used. Once these samples were inoculated onto tissue culture both tests gave similar results, although ELISA picked up more positive samples during the 1st passage in tissue culture. The negative samples (16) included in this study were negative in all tests. The ELISA was more sensitive than and as specific as CFT. ELISA and tissue culture together were shown to be a better system for detection of foot-and-mouth disease virus antigen than CFT. (author)

  20. An evaluation on the accuracy of the indirect digital images densitometry by modified Photoshop software

    Directory of Open Access Journals (Sweden)

    Bashizadeh Fakhar H.

    2004-06-01

    Full Text Available Statement of Problem: One of the major goals, in most dental researches, is to measure bone destruction or deposition due to the progression or regression of disease. Failure of human eyes to detect minor radiographic density changes resulted in more accurate methods such as optical densitometry and direct or indirect digital densitometry."nPurpose: The aim of this study was to determine the accuracy of a newly proposed method of indirect digital densitometry using modified Photoshop software."nMaterials and Methods: Radiographs from 37 samples of urografin solution with three concentrations (12.5%, 25% and 37.5% were taken on dental radiographic films no.2 and digitized by a scanner. A region with 800*800 pixels was cropped from each image and compressed with the Joint Photographic Experts Group (JPEG compression algorithm and saved. These new images were then put into registration with new algorithm using MATLAB software version 6.1. This algorithm assigned each image and average pixel value (between 0 and 255. The association between concentration and calculated values for each image was tested with regression analysis and the meaning fullness of differences between calculated values was also analysis by ANOVA test. Tukey HSD and Alpha Krunbach were used whenever needs."nResults: Regression analysis revealed significant correlation between concentration and calculated average pixel value (r=0.883. The differences between average of pixels value for different concentration was significant (P=0.0001. Pixel values showed a good intra- sample and intra-group repeatability (Alpha Krunbach: a=99.96%, a=99.68%."nConclusion: This method due to its high accuracy, easy usage and densitometer independency can be considered as a suitable alternative for conventional densitometry methods.

  1. Evaluating the mutagenic potential of aerosol organic compounds using informatics-based screening

    Science.gov (United States)

    Decesari, Stefano; Kovarich, Simona; Pavan, Manuela; Bassan, Arianna; Ciacci, Andrea; Topping, David

    2018-02-01

    Whilst general policy objectives to reduce airborne particulate matter (PM) health effects are to reduce exposure to PM as a whole, emerging evidence suggests that more detailed metrics associating impacts with different aerosol components might be needed. Since it is impossible to conduct toxicological screening on all possible molecular species expected to occur in aerosol, in this study we perform a proof-of-concept evaluation on the information retrieved from in silico toxicological predictions, in which a subset (N = 104) of secondary organic aerosol (SOA) compounds were screened for their mutagenicity potential. An extensive database search showed that experimental data are available for 13 % of the compounds, while reliable predictions were obtained for 82 %. A multivariate statistical analysis of the compounds based on their physico-chemical, structural, and mechanistic properties showed that 80 % of the compounds predicted as mutagenic were grouped into six clusters, three of which (five-membered lactones from monoterpene oxidation, oxygenated multifunctional compounds from substituted benzene oxidation, and hydroperoxides from several precursors) represent new candidate groups of compounds for future toxicological screenings. These results demonstrate that coupling model-generated compositions to in silico toxicological screening might enable more comprehensive exploration of the mutagenic potential of specific SOA components.

  2. Evaluation of NASA Deep Blue/SOAR aerosol retrieval algorithms applied to AVHRR measurements

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Lee, J.; Carletta, N.; Chen, S.-H.; Smirnov, A.

    2017-09-01

    The Deep Blue (DB) and Satellite Ocean Aerosol Retrieval (SOAR) algorithms have previously been applied to observations from sensors like the Moderate Resolution Imaging Spectroradiometers (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) to provide records of midvisible aerosol optical depth (AOD) and related quantities over land and ocean surfaces, respectively. Recently, DB and SOAR have also been applied to Advanced Very High Resolution Radiometer (AVHRR) observations from several platforms (NOAA11, NOAA14, and NOAA18), to demonstrate the potential for extending the DB and SOAR AOD records. This study provides an evaluation of the initial version (V001) of the resulting AVHRR-based AOD data set, including validation against Aerosol Robotic Network (AERONET) and ship-borne observations, and comparison against both other AVHRR AOD records and MODIS/SeaWiFS products at select long-term AERONET sites. Although it is difficult to distil error characteristics into a simple expression, the results suggest that one standard deviation confidence intervals on retrieved AOD of ±(0.03 + 15%) over water and ±(0.05 + 25%) over land represent the typical level of uncertainty, with a tendency toward negative biases in high-AOD conditions, caused by a combination of algorithmic assumptions and sensor calibration issues. Most of the available validation data are for NOAA18 AVHRR, although performance appears to be similar for the NOAA11 and NOAA14 sensors as well.

  3. [Analysis of phthalates in aromatic and deodorant aerosol products and evaluation of exposure risk].

    Science.gov (United States)

    Sato, Yoshiki; Sugaya, Naeko; Nakagawa, Tomoo; Morita, Masatoshi

    2015-01-01

    We established an analytical method for the detection of seven phthalates, dimethyl phthalate, diethyl phthalate (DEP), benzyl butyl phthalate, di-i-butyl phthalate, dibutyl phthalate (DBP), diethylhexyl phthalate (DEHP), and di-n-octhyl phthalate, using an ultra high performance liquid chromatograph equipped with a photodiode array detector. This method is quick, with minimal contamination, and was applied to the analysis of aromatic and deodorant aerosol products. Phthalates were detected in 15 of 52 samples purchased from 1999 to 2012 in Yokohama. Three types of phthalate (DEP, DBP, DEHP) were detected, and their concentrations ranged from 0.0085-0.23% DEP in nine samples, 0.012-0.045% DBP in four samples, and 0.012-0.033% DEHP in four samples. No other phthalate esters were detected. Furthermore, we estimated phthalate exposure via breathing in commonly used aromatic and deodorant aerosol products, then evaluated the associated risk. The estimated levels of phthalate exposure were lower than the tolerated daily limit, but the results indicated that aromatic and deodorant aerosol products could be a significant source of phthalate exposure.

  4. Evaluation of a Moments-Based Formulation for the Transport and Deposition of Small Inertia Aerosols

    Directory of Open Access Journals (Sweden)

    Romain Guichard

    2014-12-01

    Full Text Available This paper introduces and evaluates a formulation for the modeling of transport and wall deposition of aerosols, written in terms of moments of the particle size distribution (PSD. This formulation allows coupling the moment methods with computational fluid dynamics (CFD to track the space and time evolution of the PSD of an aerosol undergoing transport, deposition and coagulation. It consists in applying the quadrature method of moments (QMOM to the diffusion-inertia model of Zaichik et al. [6], associated with the dynamic boundary layer (DBL approach of Simonin [8] for wall deposition. After presenting the QMOM formulation of the transport equation and of the DBL wall function, the paper presents several test cases in which the method is compared to existing experimental and numerical results. It is shown that the moment formulation of the model does not introduce particular bias compared to its concentration-based formulation. This extension of the diffusion-inertia/DBL approach to the QMOM method hence allows modeling with a good numerical efficiency and at building scale the dynamics of aerosols undergoing transport and modification of their PSD through coagulation and deposition.

  5. Evaluation of the atmospheric significance of multiphase reactions in atmospheric secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    Gelencsér

    2005-01-01

    Full Text Available In a simple conceptual cloud-aerosol model the mass of secondary organic aerosol (SOA that may be formed in multiphase reaction in an idealized scenario involving two cloud cycles separated with a cloud-free period is evaluated. The conditions are set to those typical of continental clouds, and each parameter used in the model calculations is selected as a mean of available observational data of individual species for which the multiphase SOA formation route has been established. In the idealized setting gas and aqueous-phase reactions are both considered, but only the latter is expected to yield products of sufficiently low volatility to be retained by aerosol particles after the cloud dissipates. The key variable of the model is the Henry-constant which primarily determines how important multiphase reactions are relative to gas-phase photooxidation processes. The precursor considered in the model is assumed to already have some affinity to water, i.e. it is a compound having oxygen-containing functional group(s. As a principal model output an aerosol yield parameter is calculated for the multiphase SOA formation route as a function of the Henry-constant, and has been found to be significant already above H~103 M atm-1. Among the potential precursors that may be eligible for this mechanism based on their Henry constants, there are a suite of oxygenated compounds such as primary oxidation products of biogenic and anthropogenic hydrocarbons, including, for example, pinonaldehyde. Finally, the analogy of multiphase SOA formation to in-cloud sulfate production is exploited.

  6. Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol

    Directory of Open Access Journals (Sweden)

    S. R. Arnold

    2009-02-01

    Full Text Available We have combined the first satellite maps of the global distribution of phytoplankton functional type and new measurements of phytoplankton-specific isoprene productivities, with available remote marine isoprene observations and a global model, to evaluate our understanding of the marine isoprene source and its impacts on organic aerosol abundances. Using satellite products to scale up data on phytoplankton-specific isoprene productivity to the global oceans, we infer a mean "bottom-up" oceanic isoprene emission of 0.31±0.08 (1σ Tg/yr. By minimising the mean bias between the model and isoprene observations in the marine atmosphere remote from the continents, we produce a "top-down" oceanic isoprene source estimate of 1.9 Tg/yr. We suggest our reliance on limited atmospheric isoprene data, difficulties in simulating in-situ isoprene production rates in laboratory phytoplankton cultures, and limited knowledge of isoprene production mechanisms across the broad range of phytoplankton communities in the oceans under different environmental conditions as contributors to this difference between the two estimates. Inclusion of secondary organic aerosol (SOA production from oceanic isoprene in the model with a 2% yield produces small contributions (0.01–1.4% to observed organic carbon (OC aerosol mass at three remote marine sites in the Northern and Southern Hemispheres. Based on these findings we suggest an insignificant role for isoprene in modulating remote marine aerosol abundances, giving further support to a recently postulated primary OC source in the remote marine atmosphere.

  7. Evaluation of shrinkage polymerization and temperature of different acrylic resins used to splinting transfer copings in indirect impression technique

    Science.gov (United States)

    Franco, Ana Paula G. O.; Karam, Leandro Z.; Galvão, José R.; Kalinowski, Hypolito J.

    2015-09-01

    The aim of the present study was evaluate the shrinkage polymerization and temperature of different acrylic resins used to splinting transfer copings in indirect impression technique. Two implants were placed in an artificial bone, with the two transfer copings joined with dental floss and acrylic resins; two dental resins are used. Measurements of deformation and temperature were performed with Fiber Braggs grating sensor for 17 minutes. The results revealed that one type of resin shows greater values of polymerization shrinkage than the other. Pattern resins did not present lower values of shrinkage, as usually reported by the manufacturer.

  8. Evaluation of biogenic emission flux and its impact on oxidants and inorganic aerosols in East Asia

    Science.gov (United States)

    Han, K. M.; Song, C. H.; Park, R. S.; Woo, J.; Kim, H.

    2010-12-01

    As a major precursor during the summer season, biogenic species are of primary importance in the ozone and SOAs (secondary organic aerosols) formations. Isoprene and mono-terpene also influence the level of inorganic aerosols (i.e. sulfate and nitrate) by controlling OH radicals. However, biogenic emission fluxes are highly uncertain in East Asia. While isoprene emission fluxes from the GEIA (Global Emissions Inventory Activity) and POET (Precursors of Ozone and their Effects in the Troposphere) inventories estimate approximately 20 Tg yr-1 in East Asia, those from the MEGAN (Model of Emissions of Gases and Aerosols from Nature) and MOHYCAN (MOdel for Hydrocarbon emissions by the CANopy) estimate approximately 10 Tg yr-1 and 5 Tg yr-1, respectively. In order to evaluate and/or quantify the magnitude of biogenic emission fluxes over East Asia, the tropospheric HCHO columns obtained from the GOME (Global Ozone Monitoring Experiment) observations were compared with the HCHO columns from the CMAQ (Community Multi-scale Air Quality) simulations over East Asia. In this study, US EPA Models-3/CMAQ v4.5.1 model simulation using the ACE-ASIA (Asia Pacific Regional Aerosol Characterization Experiment) emission inventory for anthropogenic pollutants and GEIA, POET, MEGAN, and MOHYCAN emission inventories for biogenic species was carried out in conjunction with the Meteorological fields generated from the PSU/NCAR MM5 (Pennsylvania state University/National Center for Atmospheric Research Meso-scale Model 5) model for the summer episodes of the year 2002. In addition to an evaluation of the biogenic emission flux, we investigated the impact of the uncertainty in biogenic emission inventory on inorganic aerosol formations and variations of oxidants (OH, O3, and H2O2) in East Asia. In this study, when the GEIA and POET emission inventories are used, the CMAQ-derived HCHO columns are highly overestimated over East Asia, particularly South China compared with GOME-derived HCHO

  9. Evaluation of IASI-derived dust aerosol characteristics over the tropical belt

    Science.gov (United States)

    Capelle, V.; Chédin, A.; Siméon, M.; Tsamalis, C.; Pierangelo, C.; Pondrom, M.; Crevoisier, C.; Crepeau, L.; Scott, N. A.

    2014-09-01

    IASI (Infrared Atmospheric Sounder Interferometer)-derived monthly mean infrared (10 μm) dust aerosol optical depth (AOD) and altitude are evaluated against ground-based Aerosol RObotic NETwork of sun photometers (AERONET) measurements of the 500 nm coarse-mode AOD and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) measurements of altitude at 38 AERONET sites (sea and land) within the tropical belt (30° N-30° S). The period covered extends from July 2007 to June 2013. The evaluation goes through the analysis of Taylor diagrams and box-and-whiskers plots, separating situations over oceanic regions and over land. For the AOD, such an evaluation raises the problem of the difference between the two spectral domains used: infrared for IASI and visible for AERONET. Consequently, the two measurements do not share the same metrics. For that reason, AERONET coarse-mode AOD is first "translated" into IASI-equivalent infrared AOD. This is done by the determination, site by site, of an infrared to visible AOD ratio. Because translating visible coarse-mode AOD into infrared AOD requires accurate knowledge of variables, such as the infrared refractive index or the particle size distribution, quantifying the bias between these two sources of AOD is not straightforward. This problem is detailed in this paper, in particular in Appendix A. For the sites over oceanic regions, the overall AOD temporal correlation comes to 0.86 for 786 items (IASI and AERONET monthly mean bins). The overall normalized standard deviation (i.e. ratio of the standard deviation of the test data (IASI) to that of the reference data (AERONET)) is 0.93, close to the desired value of 1. Over land, essentially desert, correlation is 0.74 for 619 items and the normalized standard deviation is 0.86. This slight but significant degradation over land most probably results from the greater complexity of the surface (heterogeneity, elevation) and, to a lesser extent, to the episodic presence of dust

  10. Aerosol microphysical and radiative effects on continental cloud ensembles

    Science.gov (United States)

    Wang, Yuan; Vogel, Jonathan M.; Lin, Yun; Pan, Bowen; Hu, Jiaxi; Liu, Yangang; Dong, Xiquan; Jiang, Jonathan H.; Yung, Yuk L.; Zhang, Renyi

    2018-02-01

    Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. In this study, an aerosol-aware WRF model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the US Southern Great Plains. Three simulated cloud ensembles include a low-pressure deep convective cloud system, a collection of less-precipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by several ground-based measurements. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not influence the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with a prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. The simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type.

  11. AEROSOL AND GAS MEASUREMENT

    Science.gov (United States)

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  12. Evaluation of hierarchical agglomerative cluster analysis methods for discrimination of primary biological aerosol

    Directory of Open Access Journals (Sweden)

    I. Crawford

    2015-11-01

    Full Text Available In this paper we present improved methods for discriminating and quantifying primary biological aerosol particles (PBAPs by applying hierarchical agglomerative cluster analysis to multi-parameter ultraviolet-light-induced fluorescence (UV-LIF spectrometer data. The methods employed in this study can be applied to data sets in excess of 1 × 106 points on a desktop computer, allowing for each fluorescent particle in a data set to be explicitly clustered. This reduces the potential for misattribution found in subsampling and comparative attribution methods used in previous approaches, improving our capacity to discriminate and quantify PBAP meta-classes. We evaluate the performance of several hierarchical agglomerative cluster analysis linkages and data normalisation methods using laboratory samples of known particle types and an ambient data set. Fluorescent and non-fluorescent polystyrene latex spheres were sampled with a Wideband Integrated Bioaerosol Spectrometer (WIBS-4 where the optical size, asymmetry factor and fluorescent measurements were used as inputs to the analysis package. It was found that the Ward linkage with z-score or range normalisation performed best, correctly attributing 98 and 98.1 % of the data points respectively. The best-performing methods were applied to the BEACHON-RoMBAS (Bio–hydro–atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen–Rocky Mountain Biogenic Aerosol Study ambient data set, where it was found that the z-score and range normalisation methods yield similar results, with each method producing clusters representative of fungal spores and bacterial aerosol, consistent with previous results. The z-score result was compared to clusters generated with previous approaches (WIBS AnalysiS Program, WASP where we observe that the subsampling and comparative attribution method employed by WASP results in the overestimation of the fungal spore concentration by a factor of 1.5 and the

  13. Incorporating the information from direct and indirect neighbors into fitness evaluation enhances the cooperation in the social dilemmas

    International Nuclear Information System (INIS)

    Hu, Menglong; Wang, Juan; Kong, Lingcong; An, Kang; Bi, Tao; Guo, Baohong; Dong, Enzeng

    2015-01-01

    Highlights: •A novel fitness evaluation method integrating environmental information is presented. •The introduction of neighbors’ payoff favors the promotion of cooperation in the PDG. •The role of direct neighbors becomes much more prominent. •In the SDG, the cooperative behavior is also improved by this new mechanism. -- Abstract: We propose an improved fitness evaluation method to investigate the evolution of cooperation in the spatial social dilemmas. In our model, a focal player’s fitness is calculated as the linear combination of his own payoff, the average payoffs of direct and indirect neighbors in which two independent selection parameters (α and β) are used to control the proportion of various payoff contribution to the current fitness. Then, the fitness-based strategy update rule is still Fermi-like, and asynchronous update is adopted here. A large plethora of numerical simulations are performed to validate the behaviors of the current model, and the results unambiguously demonstrate that the cooperation level is greatly enhanced by introducing the payoffs from the surrounding players. In particular, the influence of direct neighbors become more evident when compared with indirect neighbors since the correlation between focal players and their direct neighbors is much closer. Current outcomes are significant for us to further illustrate the origin and emergence of cooperation within a wide variety of natural and man-made systems

  14. Production of monodisperse respirable aerosols of 241AmO2 and evaluation of in vitro dissolution

    International Nuclear Information System (INIS)

    Boyd, H.A.; Raabe, O.G.; Peterson, P.K.

    1974-01-01

    A method is described for production of monodisperse (sigma//sub g/ less than 1.2) particles of 241 AmO 2 for use in inhalation experiments with dogs and rodents. The effects of physical and chemical factors on the production of polydisperse aerosols of 241 AmO 2 were studied and evaluated. The best aerosol was achieved when a suspension of americium hydroxide with 2.5 mg Am/ml at pH = 7.3 was aerosolized and passed through two heating columns in succession, the first at 300 0 C and the second at 1050 0 C. The particles were roughly spherical and had densities near 8 gm/cm 3 ; the aerosol AMAD and sigma/sub g/ were about 1.5 μm and 1.7, respectively. Monodisperse particles were separated and collected with the Lovelace Aerosol Particle Separator (LAPS) and subsequently suspended in deionized water with pH adjusted to 10.2 with NH 3 for nebulization to produce monodisperse aerosols for inhalation exposures. Particles collected on filters during inhalation experiments were used for evaluation of in vitro dissolution rates with two systems and various forms of a lung fluid simulant. The important role of phosphate ions in such dissolution systems was demonstrated, suggesting the potential for the equally important role of free phosphate in retarding dissolution of AmO 2 particles in the lung. (U.S.)

  15. Nickel(II-oxaloyldihydrazone complexes: Characterization, indirect band gap energy and antimicrobial evaluation

    Directory of Open Access Journals (Sweden)

    Ayman H. Ahmed

    2016-12-01

    Full Text Available A series of oxaloyldihydrazone ligands was prepared essentially by the usual condensation reaction between oxaloyldihydrazide and different aldehydes e.g. salicylaldehyde, 2-hydroxy-1-naphthaldehyde, 2-hydroxyacetophenone and 2-methoxy-benzaldehyde in 1:2 M ratio. The formed compounds were purified to give bis(salicylaldehydeoxaloyldihydrazone (L1, bis(2-hydroxy-1-naphthaldehydeoxaloyldihydrazone (L2, bis(2-hydroxyacetophenoneoxaloyldihydrazone(L3 and bis(2-methoxy-benzaldehydeoxaloyldihydrazone (L4. All the oxaloyldihydrazones (L1–L4 and their relevant solid nickel(II complexes have been prepared and structurally characterized on the basis of the elemental analyses, spectral (UV–vis, IR, mass and 1H NMR, magnetism and thermal (TG measurements. The dihydrazones coordinate to the metal center forming mononuclear complexes with L1, L3 and L4 in addition to binuclear complex with L2. The metal center prefers tetrahedral stereochemistry upon chelation. The optical indirect band gap energy for all compounds underlies the range of semiconductor materials. The prepared ligands and their metal complexes have been assayed for their antimicrobial activity against fungi as well as Gram-positive and Gram-negative bacteria. The resulting data indicate the ability of the investigated compounds to inhibit the growth of some micro-organisms, where L2 showed the highest activity among all the compounds. Minimum inhibitory concentration (MIC of L2 against the growth of five micro-organisms was determined which gives better response against Aspergillus fumigatus and Bacillis subtilis compared with some selected standard drugs.

  16. Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations

    Directory of Open Access Journals (Sweden)

    B. Sič

    2015-02-01

    Full Text Available This paper deals with recent improvements to the global chemical transport model of Météo-France MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle that consists of updates to different aerosol parameterizations. MOCAGE only contains primary aerosol species: desert dust, sea salt, black carbon, organic carbon, and also volcanic ash in the case of large volcanic eruptions. We introduced important changes to the aerosol parameterization concerning emissions, wet deposition and sedimentation. For the emissions, size distribution and wind calculations are modified for desert dust aerosols, and a surface sea temperature dependant source function is introduced for sea salt aerosols. Wet deposition is modified toward a more physically realistic representation by introducing re-evaporation of falling rain and snowfall scavenging and by changing the in-cloud scavenging scheme along with calculations of precipitation cloud cover and rain properties. The sedimentation scheme update includes changes regarding the stability and viscosity calculations. Independent data from satellites (MODIS, SEVIRI, the ground (AERONET, EMEP, and a model inter-comparison project (AeroCom are compared with MOCAGE simulations and show that the introduced changes brought a significant improvement on aerosol representation, properties and global distribution. Emitted quantities of desert dust and sea salt, as well their lifetimes, moved closer towards values of AeroCom estimates and the multi-model average. When comparing the model simulations with MODIS aerosol optical depth (AOD observations over the oceans, the updated model configuration shows a decrease in the modified normalized mean bias (MNMB; from 0.42 to 0.10 and a better correlation (from 0.06 to 0.32 in terms of the geographical distribution and the temporal variability. The updates corrected a strong positive MNMB in the sea salt representation at high latitudes (from 0.65 to 0.16, and a negative MNMB in

  17. Evaluation of the health impact of aerosols emitted from different combustion sources: Comprehensive characterization of the aerosol physicochemical properties as well as the molecular biological and toxicological effects of the aerosols on human lung cells and macrophages.

    Science.gov (United States)

    Zimmermann, R.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Mülhopt, S.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Streibel, T.; Karg, E.; Weggler, B.; Schnelle-Kreis, J.; Lintelmann, J.; Sklorz, M.; Orasche, J.; Müller, L.; Passig, J.; Gröger, T.; Jalava, P. I.; Happo, M.; Uski, O.

    2017-12-01

    A novel approach to evaluate the health effects of anthropogenic combustion emissions is the detailed comparison of comprehensive physicochemical data on the combustion aerosol properties with the biological response of aerosol-exposed lung cells. In this context the "HICE-Aerosol and Health" project consortium studies the properties as well as the biological and toxicological effects on lung cells induced by different combustion aerosol emissions (e.g. ship diesel exhaust, wood combustion effluents or automobile aerosol). Human alveolar epithelial cells (e.g. A549 cells) as well as murine macrophages were exposed to diluted emissions, using field deployable ALI-exposition systems in a mobile S2-biological laboratory. This allows a realistic lung-cell exposure by simulation of the lung situation. The cellular effects were then comprehensively characterized (cytotoxicology, transcriptomics, proteomics etc.) effects monitoring and put in context with the chemical and physical aerosol data. Emissions of wood combustion, a ship engine as well as diesel and gasoline engines were investigated. Furthermore for some experiments the atmospheric aging of the emission was simulated in a flow tube reactor using UV-light and ozone. Briefly the following order of cellular response-strength was observed: A relatively mild cellular effect is observed for the diluted wood combustion emissions, regardless if log-wood and pellet burner emissions are investigated. Similarly mild biological effects are observed for gasoline car emissions. The ship diesel engine emissions and construction machine diesel engine induced much more intense biological responses. A surprising result in this context is, that heavy fuel oil (HFO)-emissions show lower biological effect strengths than the supposedly cleaner diesel fuel emissions (DF). The HFO-emissions contain high concentrations of known toxicants (metals, polycyclic aromatics). This result was confirmed by experiments with murine macrophages

  18. Evaluation of the fit of zirconia copings fabricated by direct and indirect digital impression procedures.

    Science.gov (United States)

    Lee, Bora; Oh, Kyung Chul; Haam, Daewon; Lee, Joon-Hee; Moon, Hong-Seok

    2018-02-07

    Intraoral scanners are effective for direct digital impression when dental restorations are fabricated using computer-aided design and computer-aided manufacturing (CAD-CAM); however, if the abutment tooth cannot be dried completely or the prepared margin is placed subgingivally, accurate digital images cannot always be guaranteed. The purpose of this in vitro study was to compare the internal and marginal discrepancies of zirconia copings fabricated directly using an intraoral scanner with those fabricated indirectly with impression scanning. Forty-five resin dies fabricated with a 3-dimensional (3D) printer were divided into 3 groups: direct scanning (DS), impression scanning (IMP), and lost-wax casting (LW). For the DS group, a resin die was scanned with an intraoral scanner (Trios; 3Shape), whereas for the IMP group, impressions made with polyether were scanned with a cast scanner (D700; 3Shape). The zirconia copings were fabricated in the same way in the DS and IMP groups. For the LW group, impressions were made in the same way as in the IMP group, and Ni-Cr alloy copings were fabricated using LW. The marginal and internal discrepancies of the copings were measured by cementing them onto resin dies, embedding them in acrylic resin, and sectioning them in a buccolingual direction. The cement layer was measured, and the Kruskal-Wallis test was used to detect significant differences (α=.05). A nonparametric Friedman test was also performed to compare the measurements of each group by location (α=.05). The mean marginal discrepancies in the DS, IMP, and LW groups were 18.1 ±9.8, 23.2 ±17.2, and 32.3 ±18.6 μm (mean ±standard deviation), respectively. The mean internal discrepancies of the DS, IMP, and LW groups in the axial area were 38.0 ±9.1, 47.0 ±16.3, and 36.5 ±15.8 μm, and those in the occlusal area were 36.7 ±16.9, 33.4 ±21.6, and 44.5 ±31.9 μm, respectively. No statistically significant differences were found in marginal or internal

  19. Evaluation of an In-house indirect ELISA for detection of antibody against haemorrhagic septicemia in Asian elephants.

    Science.gov (United States)

    Tankaew, Pallop; Singh-La, Thawatchai; Titaram, Chatchote; Punyapornwittaya, Veerasak; Vongchan, Preeyanat; Sawada, Takuo; Sthitmatee, Nattawooti

    2017-03-01

    Pasteurella multocida causes haemorrhagic septicemia in livestock and wild animals, including elephants. The disease has been reported in Asian elephants in India and Sri Lanka, but to date there have been no reported cases in Thailand. ELISA or indirect hemagglutination assays (IHA) have been demonstrated to be able to detect the antibody against the disease in cattle, but no data are available for elephants. The present study reports a novel in-house indirect ELISA for antibody detection of haemorrhagic septicemia in Asian elephants, and evaluates the sensitivity and specificity of the method using a Bayesian approach. The characteristics of ELISA and IHA were analyzed using a one population Bayesian model assuming conditional dependence between these two diagnostic tests. The IHA was performed as recommended by the World Organization for Animal Health (OIE) manual for haemorrhagic septicemia. An in-house indirect ELISA was developed with a heat extract antigen of P. multocida strain M-1404 (serovar B:2) as a coating antigen and rabbit anti-immunoglobulin G conjugated with horseradish peroxidase (eIgG-HRP). The checkerboard titration method was done using elephant sera immunized with P. multocida bacterin and negative sera from colostrum-deprived elephant calves. The concentrations of heat extract antigen (160μg/ml), sample serum (1:100), and eIgG-HRP (1:1000) were optimal for the assay. The calculated cut-off value was 0.103. Of the elephant sera, 50.59% (43/85) were considered seropositive by ELISA. The sensitivity of the ELISA test was higher than that of the IHA test [median=86.5%, 95% posterior probability interval (PPI)=52.5-98.9%] while the specificity was lower (median=54.1%, PPI=43.6-64.7%). The median sensitivity and specificity of IHA were 80.5% (PPI=43.8-98.0%) and 78.4% (PPI=69.0-87.0%), respectively. These findings suggest that our in-house indirect ELISA can be used as a tool to detect the antibody against haemorrhagic septicemia in Asian

  20. Evaluation of New Secondary Organic Aerosol Models for a Case Study in Mexico City

    Science.gov (United States)

    Dzepina, K.; Volkamer, R.; Madronich, S.; Tulet, P.; Ulbrich, I.; Zhang, Q.; Cappa, C. D.; Ziemann, P. J.; Jimenez, J. L.

    2008-12-01

    Recent field studies have found large discrepancies in the measured vs. modeled SOA mass loadings in both urban and regional polluted atmospheres. The reasons for these large differences are unclear. Here we revisit a case study of SOA formation in Mexico City described by Volkamer et al. (2006) and show that the increase in OA/CO during photochemistry is consistent with results from several groups during MILAGRO, during a period when the impact of regional biomass burning is minor or negligible. Then we use the case study to evaluate three new SOA models: 1) the update of aromatic SOA yields from recent chamber experiments (Ng et al., 2007); 2) the formation of SOA from glyoxal (Volkamer et al., 2007); 3) and the formation of SOA from primary semivolatile and intermediate volatility species (P-S/IVOC) (Robinson et al., 2007). We also evaluate the effect of reduced partitioning of SOA into POA (Song et al., 2007). Traditional SOA precursors (mainly aromatics) by themselves still fail to produce enough SOA to match the observations by a factor of ~7. The new low-NOx aromatic pathways with very high SOA yields make a negligible contribution in this urban environment as the RO2 + NO reaction dominates the fate of the RO2 radicals. Glyoxal contributes several μg m-3 to SOA formation, with similar timing as the measurements. P-S/IVOC concentrations are estimated as in equilibrium with measured POA, and these species introduce a large amount of carbon that was not in models before. With the formulation in Robinson et al. (2007) these species have a high SOA yield, and this mechanism can close the gap in SOA mass between measurements and models in our case study. However, this model has many parameters that are not well constrained and much experimental work is needed for its realistic assessment. The volatility of model SOA is too high when compared to the measurements, while the O/C of all model SOA is somewhat lower than the observations. The effects of dilution and

  1. Indirect calorimetry

    NARCIS (Netherlands)

    Gerrits, W.J.J.; Labussière, E.

    2015-01-01

    The use of indirect calorimetry to measure the heat production of men and animals has increased rapidly since the pioneering work of Lavoisier. Measurement of the consumption of oxygen and production of carbon dioxide are the basis for the measurement of heat production. Today, applications of

  2. R and D needs for evaluation of sodium fire consequences and aerosol behavior for DFBR

    International Nuclear Information System (INIS)

    Kubo, S.; Hashiguchi, Y.; Okabe, A.

    1996-01-01

    Sodium fire is one of the important safety issues for the liquid metal cooled fast reactor system. In order to achieve the reasonable plant cost performance, the rational countermeasures for sodium fire should be provided and the influence of sodium fire should be evaluated properly. This paper describes the principle of the safety design against sodium leak in the Demonstration Fast Breeder Reactor in Japan (DFBR). In addition, Research and Development (R and D) needs for the design of rational countermeasures against sodium fire and aerosol release are described which include the clarification of behaviors or phenomena, the accumulation of the database of the experimental parameters for the analysis codes, and the improvement of evaluation technique and method. (author)

  3. An Evaluation of Aerosol- and Liquid-Generated Silica Samples for Proficiency Analytical Testing

    Science.gov (United States)

    Hayes, Terry; Parish, Helen; Key-Schwartz, Rosa; Popp, Derek

    2015-01-01

    SRI International has prepared dynamically generated silica samples since 1980 for the National Institute of Occupational Safety and Health (NIOSH) and the American Industrial Hygiene Association (AIHA) Proficiency Analytical Testing (PAT) programs. Aerosol-generated samples were developed in 1980 to more closely approximate real world samples and to improve intrabatch precision. Liquid-generated samples may provide tighter control limits, and this method has been reexamined as the generation procedure of choice. Sample preparation procedures have also been investigated to minimize analytical uncertainty and, hence, obtain a true evaluation of the sampling error. Samples were analyzed by SRI, NIOSH, and the Wisconsin Occupational Health Laboratory, using X-ray diffraction or Fourier transform infrared spectrometry (FTIR). Results were plotted and statistically evaluated, then compared to the existing PAT interlaboratory database. PMID:26664338

  4. Evaluation of assays for quantification of DNA in canine plasma as an indirect marker of NETosis.

    Science.gov (United States)

    Smith, Stephanie A; Lawson, Corinne M; McMichael, Maureen A; Jung, Katrina; O'Brien, Mauria; Achiel, Ron

    2017-06-01

    Neutrophil extracellular traps (NET), consisting of a filamentous DNA/chromatin-histone scaffold originating from neutrophils are part of the innate immune response, may be released under a variety of inflammatory conditions and are associated with an increased risk for thrombosis. The purpose of this study was to evaluate a SYTOX green fluorescence assay and a histone-DNA complex (hisDNA) ELISA for quantification of NET-related DNA in canine plasma. The influence of variations in blood sample handling on assay results was tested. Accuracy of the SYTOX green fluorescence and the hisDNA ELISA was evaluated with dilutional linearity using serial dilutions. Interference was assessed by addition of purified bilirubin or hemoglobin. Precision was determined by calculating the intra- and inter-assay CV. Preanalytic sample handling did not influence DNA measurements by either assay. Citrate and EDTA plasma samples were equivalent. For the DNA fluorescence assay, dilutional linearity was poor due to autofluorescence, which was corrected by addition of canine plasma to the diluent. The presence of bilirubin and hemoglobin also increased autofluorescence, and resulted in falsely low concentrations of DNA. On the hisDNA ELISA, pigmentemia had no effect. Both assays as modified in this study are suitable for measuring DNA in canine EDTA or citrate plasma. However, performance of the fluorescence assay was impacted by pigmentemia, and it was less sensitive than the ELISA in detecting the presence of nucleosome material in the plasma. © 2017 American Society for Veterinary Clinical Pathology.

  5. Toward a Coherent Detailed Evaluation of Aerosol Data Products from Multiple Satellite Sensors

    Science.gov (United States)

    Ichoku, Charles; Petrenko, Maksym; Leptoukh, Gregory

    2011-01-01

    Atmospheric aerosols represent one of the greatest uncertainties in climate research. Although satellite-based aerosol retrieval has practically become routine, especially during the last decade, there is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus and the inconsistencies are not well characterized and understood, there will be no way of developing reliable climate data records from satellite aerosol measurements. Fortunately, the most globally representative well-calibrated ground-based aerosol measurements corresponding to the satellite-retrieved products are available from the Aerosol Robotic Network (AERONET). To adequately utilize the advantages offered by this vital resource, an online Multi-sensor Aerosol Products Sampling System (MAPSS) was recently developed. The aim of MAPSS is to facilitate detailed comparative analysis of satellite aerosol measurements from different sensors (Terra-MODIS, Aqua-MODIS, TerraMISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP) based on the collocation of these data products over AERONET stations. In this presentation, we will describe the strategy of the MASS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors.

  6. Indirect recognition

    DEFF Research Database (Denmark)

    Lund, Christian; Rachman, Noer Fauzi

    2018-01-01

    Government institutions and local people in Indonesia have entrenched, resurrected, and reinvented space through their different territorial and property claims. From colonial times, onward, government institutions have dissolved local political orders and territorialized and reordered spatial...... categories are struggled over, and groups of actors seek to legitimate their presence, their activities, and their resource use by occupation, mapping, and construction of "public" infrastructure. In the case of conservation in the Mount Halimun-Salak National Park, we find that rather than one overarching...... important legal and political work. After the authoritarian New Order regime, in particular, claims to citizenship worked as indirect property claims, and indirect recognition of such claims are important because they serve as pragmatic proxies for formal property rights. Two case studies examine how people...

  7. Evaluation of indirect immunofloresence (IFA in detection of gastric disorders due to H.pylori infection

    Directory of Open Access Journals (Sweden)

    Alipoor Ghorbani N

    1999-07-01

    Full Text Available Helicobacter pylori (H.pylori is the most common human infection in the world. This agent has a strong role in pathogenesis of chronic gastritis and peptic ulcers. Therefore introducing of simple and cost effective and non invasive tests are important for diagnosis of H.pylori infections. In this study 215 patient suffering from different gastrointestinal disorders referred to GI endoscopy department of Dr. Ali Shariati Hospital were selected as case and another 50 as control group, which were evaluated for H.pylori infection. Direct smear (staining with Giemsa and urease tests were used as gold standard tests compared with IFA-IgG and culture. Sensitivity and specificity and accuracy for IFA were 94%, 86% and 90%, respectively. Absorption with campylobacter jejoni did not change the level of IgG against H.pylori. Negativity of urease test dose not show the eradication or absence of bacteria, but shows the low number of bacteria in biopsy materials. This report suggest that IFA is an advantageous, sensitive and reliable test in diagnosis of H.pylori infection.

  8. Digitizing radiographic films: a simple way to evaluate indirect digital images

    Directory of Open Access Journals (Sweden)

    Izabel Regina Fischer Rubia-Bullen

    2007-02-01

    Full Text Available OBJECTIVES: This study applied a simple method to evaluate the performance of three digital devices (two scanners and one digital camera using the reproducibility of pixel values attributed to the same radiographic image. METHODS: Using the same capture parameters, a radiographic image was repeatedly digitized in order to determine the variability of pixel values given to the image throughout the digitization process. One coefficient value was obtained and was called pixel value reproducibility. RESULTS: A significant difference in pixel values was observed among the three devices for the digitized images (ANOVA, p<0.00001. There was significant pixel value variability at the same digitization conditions for one scanner and the digital camera. CONCLUSIONS: Digital devices may assign pixel values differently in consecutive digitization depending on the optical density of the radiographic image and the equipment. The pixel value reproducibility was not satisfactory as tested for two devices. It is maybe advisable knowing the digitization variations regarding pixel values whenever using digital radiography images in longitudinal clinical examinations.

  9. [Western blot, ELISA and indirect immunofluorescence test evaluation of Leishmania (Leishmania) infantum-infected dogs].

    Science.gov (United States)

    Vargas-Duarte, Jimmy J; López-Páez, Myriam C; Escovar-Castro, Jesús E; Fernández-Manrique, José

    2009-08-01

    Evaluating canine visceral leishmaniasis diagnostic test performance in Colombia and adapting the Western blot test in naturally and experimentally infected dogs. Sera were obtained from 10 experimentally L. Infantum-infected dogs, 5 naturally infected dogs, 16 healthy dogs, 26 Babesia canis, Erhlichia canis, Dirofilaria immitis, Trypanosoma cruzi and Leishmania (Viannia) spp infected dogs, 40 dogs from non-endemic areas and 150 from endemic areas. Sera were tested for L. infantum infection using immunofluorescent antibody (IFAT), ELISA and Western blot (WB) tests. Positives results were obtained for 73 % of known infected dogs by the IFAT test and false positives were obtained for 2.5 % of non-infected dogs using WB. ELISA was not efficient for diagnosis. 24 antigenic fractions were recognised in tested sera using WB; however, 29, 34, 50, 69, 75, 86, 99 and 123 kDa bands were recognised in sera from dogs from non-endemic areas, healthy dogs and Trypanosoma cruzi, Erhlichia canis, Dirofilaria immitis and Babesia canis infected dogs. The 13 kDa fraction proved potentially useful for diagnosing canine visceral leishmaniasis. The separate use of parasitological and serological test could lead to misdiagnosis of Leishmania infection; using both kinds of technique simultaneously is thus highly recommended.

  10. Family evaluation of hospice care: Examining direct and indirect associations with overall satisfaction and caregiver confidence.

    Science.gov (United States)

    Holland, Jason M; Keene, Jennifer R; Kirkendall, Abbie; Luna, Nora

    2015-08-01

    The Family Evaluation of Hospice Care (FEHC) survey is widely employed by hospices, and several studies have examined this information to help inform and enhance end-of-life services. However, these studies have largely focused on examining relatively straightforward associations between variables and have not tested larger models that could reveal more complex effects. The present study aimed to examine the direct and mediating (i.e., via information/education, patient care, and family support) effects of demographic factors, length of stay, timing of referral, patient symptom severity, location of services, and relationship to caregiver on two outcome variables: overall satisfaction and caregiver confidence. Surveys were collected from 3226 participants who had lost a loved one who received hospice services. Structural equation modeling was employed to examine the direct and mediating effects of the independent variables on the two outcomes of interest. Participants reporting on racial minority patients, patients with more symptoms, and those referred too late or too early were the most likely to express some discontentment with hospice services. The information/education these individuals received was the only mediating factor significantly associated with caregiver confidence. More positive perceptions of patient care and information/education were both significantly related to greater overall satisfaction. These findings help to (1) pinpoint those most at risk for being less satisfied with hospice, (2) identify which aspects of care may be most strongly related to overall outcomes, and (3) provide a model for examining complex associations among FEHC variables that may be employed by other researchers.

  11. Evaluation of Melaleuca cajuputi (Family: Myrtaceae Essential Oil in Aerosol Spray Cans against Dengue Vectors in Low Cost Housing Flats

    Directory of Open Access Journals (Sweden)

    A Abu Bakar

    2012-06-01

    Full Text Available Background: Melaleuca cajuputi essential oil in aerosol spray was evaluated against the dengue vectors Aedes ae­gypti and Ae. albopictus at low cost housing flats in Section 10, Setapak, Kuala Lumpur, Malaysia.Methods: Essential oil in aerosol viz: 5% and 10% of concentrations were sprayed for 5 seconds each towards hung mos­quitoes in 5 cylindrical net cages. Aerosol weights were recorded before and after spraying to determine dis­charge rates. Knockdown and mortality number were observed and compared to MS standard aerosol which contain 0.07% prallethrin and 0.05% d-phenothrin as positive control and aerosol contain 40% kerosene and 60% LPG was used as negative control.Results: High knockdown and mortality was observed in both species of mosquitoes towards MS standard aerosol. There was a significant difference (P<0.05 of mortality and knockdown between 5% and 10% of essential oil aero­sol and 5% and 10% essential oil between MS standard. For 5% essential oil, mean percentage (% of knockdown and mortality of Ae. aegypti displayed slightly higher compared to Ae. albopictus. Spraying with 5% M. cajuputi essen­tial oil aerosol indicated a knockdown of Ae. aegypti 5.60±1.18 and mortality of 22.90±4.22 while Ae. albopic­tus showed 4.60±0.89 knockdown and 20.00±2.85 mortality. The 10% essential oil concentration gave 23.60±1.68 knock­down and 48.05±0.37 mortality for Ae. aegypti. Ae. albopictus gave 23.00±3.16 knockdown and 44.20 ± 2.10 mortal­ity respectively.Conclusions: Extracts of essential oils does possessed an adulticidal effects and could be considered and utilized for fu­ture dengue vectors control

  12. Retrieval of Aerosol Optical Depth Above Clouds from OMI Observations: Sensitivity Analysis, Case Studies

    Science.gov (United States)

    Torres, O.; Jethva, H.; Bhartia, P. K.

    2012-01-01

    A large fraction of the atmospheric aerosol load reaching the free troposphere is frequently located above low clouds. Most commonly observed aerosols above clouds are carbonaceous particles generally associated with biomass burning and boreal forest fires, and mineral aerosols originated in arid and semi-arid regions and transported across large distances, often above clouds. Because these aerosols absorb solar radiation, their role in the radiative transfer balance of the earth atmosphere system is especially important. The generally negative (cooling) top of the atmosphere direct effect of absorbing aerosols, may turn into warming when the light-absorbing particles are located above clouds. The actual effect depends on the aerosol load and the single scattering albedo, and on the geometric cloud fraction. In spite of its potential significance, the role of aerosols above clouds is not adequately accounted for in the assessment of aerosol radiative forcing effects due to the lack of measurements. In this paper we discuss the basis of a simple technique that uses near-UV observations to simultaneously derive the optical depth of both the aerosol layer and the underlying cloud for overcast conditions. The two-parameter retrieval method described here makes use of the UV aerosol index and reflectance measurements at 388 nm. A detailed sensitivity analysis indicates that the measured radiances depend mainly on the aerosol absorption exponent and aerosol-cloud separation. The technique was applied to above-cloud aerosol events over the Southern Atlantic Ocean yielding realistic results as indicated by indirect evaluation methods. An error analysis indicates that for typical overcast cloudy conditions and aerosol loads, the aerosol optical depth can be retrieved with an accuracy of approximately 54% whereas the cloud optical depth can be derived within 17% of the true value.

  13. Comparison of Aerosol Classification Results from Airborne High Spectral Resolution Lidar (HSRL) Measurements and the Calipso Vertical Feature Mask

    Science.gov (United States)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.; hide

    2012-01-01

    Knowledge of the vertical profile, composition, concentration, and size of aerosols is required for assessing the direct impact of aerosols on radiation, the indirect effects of aerosols on clouds and precipitation, and attributing these effects to natural and anthropogenic aerosols. Because anthropogenic aerosols are predominantly submicrometer, fine mode fraction (FMF) retrievals from satellite have been used as a tool for deriving anthropogenic aerosols. Although column and profile satellite retrievals of FMF have been performed over the ocean, such retrievals have not yet been been done over land. Consequently, uncertainty in satellite estimates of the anthropogenic component of the aerosol direct radiative forcing is greatest over land, due in large part to uncertainties in the FMF. Satellite measurements have been used to detect and evaluate aerosol impacts on clouds; however, such efforts have been hampered by the difficulty in retrieving vertically-resolved cloud condensation nuclei (CCN) concentration, which is the most direct parameter linking aerosol and clouds. Recent studies have shown correlations between average satellite derived column aerosol optical thickness (AOT) and in situ measured CCN. However, these same studies, as well as others that use detailed airborne in situ measurements have noted that vertical variability of the aerosol distribution, impacts of relative humidity, and the presence of coarse mode aerosols such as dust introduce large uncertainties in such relations.

  14. Predicting the Mineral Composition of Dust Aerosols. Part 2; Model Evaluation and Identification of Key Processes with Observations

    Science.gov (United States)

    Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.

    2015-01-01

    A global compilation of nearly sixty measurement studies is used to evaluate two methods of simulating the mineral composition of dust aerosols in an Earth system model. Both methods are based upon a Mean Mineralogical Table (MMT) that relates the soil mineral fractions to a global atlas of arid soil type. The Soil Mineral Fraction (SMF) method assumes that the aerosol mineral fractions match the fractions of the soil. The MMT is based upon soil measurements after wet sieving, a process that destroys aggregates of soil particles that would have been emitted from the original, undisturbed soil. The second method approximately reconstructs the emitted aggregates. This model is referred to as the Aerosol Mineral Fraction (AMF) method because the mineral fractions of the aerosols differ from those of the wet-sieved parent soil, partly due to reaggregation. The AMF method remedies some of the deficiencies of the SMF method in comparison to observations. Only the AMF method exhibits phyllosilicate mass at silt sizes, where they are abundant according to observations. In addition, the AMF quartz fraction of silt particles is in better agreement with measured values, in contrast to the overestimated SMF fraction. Measurements at distinct clay and silt particle sizes are shown to be more useful for evaluation of the models, in contrast to the sum over all particles sizes that is susceptible to compensating errors, as illustrated by the SMF experiment. Model errors suggest that allocation of the emitted silt fraction of each mineral into the corresponding transported size categories is an important remaining source of uncertainty. Evaluation of both models and the MMT is hindered by the limited number of size-resolved measurements of mineral content that sparsely sample aerosols from the major dust sources. The importance of climate processes dependent upon aerosol mineral composition shows the need for global and routine mineral measurements.

  15. Description and evaluation of a six-moment aerosol microphysical module for use in atmospheric chemical transport models

    Science.gov (United States)

    Wright, D. L.; Kasibhatla, P. S.; McGraw, R.; Schwartz, S. E.

    2001-01-01

    We describe and evaluate a six-moment aerosol microphysical module, 6M, designed for implementation in atmospheric chemical transport models (CTMs). The module 6M is based upon the quadrature method of moments (QMOM) [McGraw, 1997] and the multiple isomomental distribution aerosol surrogate (MIDAS) method [Wright, 2000]. The module 6M evolves the lowest six radial moments of H2SO4-H2O aerosols for a comprehensive set of dynamical processes including the formation of new particles via binary H2SO4-H2O nucleation, condensational growth, coagulation, evolution due to cloud processing, size-resolved dry deposition, and water uptake and release with changing relative humidity. Performance of the moment-based aerosol evolution is examined and evaluated by comparison with results obtained using a high-resolution discrete model of the particle dynamics for a range of conditions representative of the boundary layer and lower troposphere. Overall, the performance of 6M is good relative to uncertainties associated with other processes represented in CTMs for the 30 test cases evaluated. Differences between 6M and the discrete model in the mass/volume moment and in the partitioning of sulfur (VI) between the gas and aerosol phases remain under 1% whenever significant aerosol is present, and differences in particle number rarely exceed 15%. Estimates of cloud droplet number from 6M are on average within 16% of those of the discrete model, with a significant part of these differences attributable to limitations of the discrete dynamics. Multimodal lognormal (MIDAS) surrogates to the underlying size distributions derived from the 6M moments are in good agreement with the benchmark size distributions.

  16. Evaluating the applicability of a semi-continuous aerosol sampler to measure Asian dust particles.

    Science.gov (United States)

    Son, Se-Chang; Park, Seung Shik

    2015-03-01

    A Korean prototype semi-continuous aerosol sampler was used to measure Asian dust particles. During two dust-storm periods, concentrations of crustal and trace elements were significantly enriched. Dust storms are one of the most significant natural sources of air pollution in East Asia. The present study aimed to evaluate use of a Korean semi-continuous aerosol sampler (K-SAS) in observation of mineral dust particles during dust storm events. Aerosol slurry samples were collected at 60 min intervals using the K-SAS, which was operated at a sampling flow rate of 16.7 L min(-1) through a PM10 cyclone inlet. The measurements were made during dust storm events at an urban site, Gwangju in Korea, between April 30 and May 5, 2011. The K-SAS uses particle growth technology as a means of collecting atmospheric aerosol particles. Concentrations of 16 elements (Al, Fe, Mn, Ca, K, Cu, Zn, Pb, Cd, Cr, Ti, V, Ni, Co, As, and Se) were determined off-line in the collected slurry samples by inductively coupled plasma-mass spectrometry (ICP-MS). The sampling periods were classified into two types, based on the source regions of the dust storms and the transport pathways of the air masses reaching the sampling site. The first period "A" was associated with dust particles with high Ca content, originating from the Gobi desert regions of northern China and southern Mongolia. The second period "B" was associated with dust particles with low Ca content, originating from northeastern Chinese sandy deserts. The results from the K-SAS indicated noticeable differences in concentrations of crustal and trace elements in the two sampling periods, as a result of differences in the source regions of the dust storms, the air mass transport pathways, and the impact of smoke from forest fires. The concentrations of the crustal (Al, Ca, Ti, Mn, and Fe) and anthropogenic trace elements (Vi, Ni, Cu, Zn, As, Se, and Pb) were enriched significantly during the two dust storm periods. However, the

  17. Chromatography related performance of the Monitor for Aerosols and Gases in Ambient Air (MARGA): laboratory and field based evaluation

    Science.gov (United States)

    Evaluation of the semi-continuous Monitor for Aerosols and Gases in Ambient Air (MARGA, Metrohm Applikon B.V.) was conducted with an emphasis on examination of accuracy and precision associated with processing of chromatograms. Using laboratory standards and atmospheric measureme...

  18. Evaluation of Drinking Water Disinfectant Byproducts Compliance Data as an Indirect Measure for Short-Term Exposure in Humans.

    Science.gov (United States)

    Parvez, Shahid; Frost, Kali; Sundararajan, Madhura

    2017-05-20

    In the absence of shorter term disinfectant byproducts (DBPs) data on regulated Trihalomethanes (THMs) and Haloacetic acids (HAAs), epidemiologists and risk assessors have used long-term annual compliance (LRAA) or quarterly (QA) data to evaluate the association between DBP exposure and adverse birth outcomes, which resulted in inconclusive findings. Therefore, we evaluated the reliability of using long-term LRAA and QA data as an indirect measure for short-term exposure. Short-term residential tap water samples were collected in peak DBP months (May-August) in a community water system with five separate treatment stations and were sourced from surface or groundwater. Samples were analyzed for THMs and HAAs per the EPA (U.S. Environmental Protection Agency) standard methods (524.2 and 552.2). The measured levels of total THMs and HAAs were compared temporally and spatially with LRAA and QA data, which showed significant differences ( p water stations showed higher levels than LRAA or QA. Significant numbers of samples in surface water stations exceeded regulatory permissible limits: 27% had excessive THMs and 35% had excessive HAAs. Trichloromethane, trichloroacetic acid, and dichloroacetic acid were the major drivers of variability. This study suggests that LRAA and QA data are not good proxies of short-term exposure. Further investigation is needed to determine if other drinking water systems show consistent findings for improved regulation.

  19. Evaluation and modification of commercial dry powder inhalers for the aerosolization of a submicrometer excipient enhanced growth (EEG) formulation.

    Science.gov (United States)

    Son, Yoen-Ju; Longest, P Worth; Tian, Geng; Hindle, Michael

    2013-06-14

    The aim of this study was to evaluate and modify commercial dry powder inhalers (DPIs) for the aerosolization of a submicrometer excipient enhanced growth (EEG) formulation. The optimized device and formulation combination was then tested in a realistic in vitro mouth-throat - tracheobronchial (MT-TB) model. An optimized EEG submicrometer powder formulation, consisting of albuterol sulfate (drug), mannitol (hygroscopic excipient), l-leucine (dispersion enhancer) and poloxamer 188 (surfactant) in a ratio of 30:48:20:2 was prepared using a Büchi Nano spray dryer. The aerosolization performance of the EEG formulation was evaluated with five conventional DPIs: Aerolizer, Novolizer, HandiHaler, Exubera and Spiros. To improve powder dispersion, the HandiHaler was modified with novel mouth piece (MP) designs. The aerosol performance of each device was assessed using a next generation impactor (NGI) at airflow rates generating a pressure drop of 4 kPa across the DPI. In silico and in vitro deposition and hygroscopic growth of formulations was studied using a MT-TB airway geometry model. Both HandiHaler and Aerolizer produced high emitted doses (EDs) together with a significant submicrometer aerosol fraction. A modified HandiHaler with a MP including a three-dimensional (3D) array of rods (HH-3D) produced a submicrometer particle fraction of 38.8% with a conventional fine particle fraction (%<5 μm) of 97.3%. The mass median diameter (MMD) of the aerosol was reduced below 1 μm using this HH-3D DPI. The aerosol generated from the modified HandiHaler increased to micrometer size (2.8 μm) suitable for pulmonary deposition, when exposed to simulated respiratory conditions, with negligible mouth-throat (MT) deposition (2.6%). Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Evaluation and Modification of Commercial Dry Powder Inhalers for the Aerosolization of a Submicrometer Excipient Enhanced Growth (EEG) Formulation

    Science.gov (United States)

    Son, Yoen-Ju; Longest, P. Worth; Tian, Geng; Hindle, Michael

    2013-01-01

    The aim of this study was to evaluate and modify commercial dry powder inhalers (DPIs) for the aerosolization of a submicrometer excipient enhanced growth (EEG) formulation. The optimized device and formulation combination was then tested in a realistic in vitro mouth-throat - tracheobronchial (MT-TB) model. An optimized EEG submicrometer powder formulation, consisting of albuterol sulfate (drug), mannitol (hygroscopic excipient), L-leucine (dispersion enhancer) and poloxamer 188 (surfactant) in a ratio of 30:48:20:2 was prepared using a Büchi Nano spray dryer. The aerosolization performance of the EEG formulation was evaluated with 5 conventional DPIs: Aerolizer, Novolizer, HandiHaler, Exubera and Spiros. To improve powder dispersion, the HandiHaler was modified with novel mouth piece (MP) designs. The aerosol performance of each device was assessed using a next generation impactor (NGI) at airflow rates generating a pressure drop of 4 kPa across the DPI. In silico and in vitro deposition and hygroscopic growth of formulations was studied using a MT-TB airway geometry model. Both Handihaler and Aerolizer produced high emitted doses (ED) together with a significant submicrometer aerosol fraction. A modified HandiHaler with a MP including a three-dimensional (3D) array of rods (HH-3D) produced a submicrometer particle fraction of 38.8% with a conventional fine particle fraction (% <5µm) of 97.3%. The mass median diameter (MMD) of the aerosol was reduced below 1 µm using this HH-3D DPI. The aerosol generated from the modified HandiHaler increased to micrometer size (2.8 µm) suitable for pulmonary deposition, when exposed to simulated respiratory conditions, with negligible mouth-throat (MT) deposition (2.6 %). PMID:23608613

  1. Impact of varying lidar measurement and data processing techniques in evaluating cirrus cloud and aerosol direct radiative effects

    Science.gov (United States)

    Lolli, Simone; Madonna, Fabio; Rosoldi, Marco; Campbell, James R.; Welton, Ellsworth J.; Lewis, Jasper R.; Gu, Yu; Pappalardo, Gelsomina

    2018-03-01

    In the past 2 decades, ground-based lidar networks have drastically increased in scope and relevance, thanks primarily to the advent of lidar observations from space and their need for validation. Lidar observations of aerosol and cloud geometrical, optical and microphysical atmospheric properties are subsequently used to evaluate their direct radiative effects on climate. However, the retrievals are strongly dependent on the lidar instrument measurement technique and subsequent data processing methodologies. In this paper, we evaluate the discrepancies between the use of Raman and elastic lidar measurement techniques and corresponding data processing methods for two aerosol layers in the free troposphere and for two cirrus clouds with different optical depths. Results show that the different lidar techniques are responsible for discrepancies in the model-derived direct radiative effects for biomass burning (0.05 W m-2 at surface and 0.007 W m-2 at top of the atmosphere) and dust aerosol layers (0.7 W m-2 at surface and 0.85 W m-2 at top of the atmosphere). Data processing is further responsible for discrepancies in both thin (0.55 W m-2 at surface and 2.7 W m-2 at top of the atmosphere) and opaque (7.7 W m-2 at surface and 11.8 W m-2 at top of the atmosphere) cirrus clouds. Direct radiative effect discrepancies can be attributed to the larger variability of the lidar ratio for aerosols (20-150 sr) than for clouds (20-35 sr). For this reason, the influence of the applied lidar technique plays a more fundamental role in aerosol monitoring because the lidar ratio must be retrieved with relatively high accuracy. In contrast, for cirrus clouds, with the lidar ratio being much less variable, the data processing is critical because smoothing it modifies the aerosol and cloud vertically resolved extinction profile that is used as input to compute direct radiative effect calculations.

  2. The Two-Column Aerosol Project (TCAP) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, CM; Berg, LK; Cziczo, DJ; Flynn, CJ; Kassianov, EI; Fast, JD; Rasch, PJ; Shilling, JE; Zaveri, RA; Zelenyuk, A; Ferrare, RA; Hostetler, CA; Cairns, B; Russell, PB; Ervens, B

    2011-07-27

    The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations will be supplemented by two aircraft intensive observation periods (IOPs), one in the summer and a second in the winter. Each IOP will deploy one, and possibly two, aircraft depending on available resources. The first aircraft will be equipped with a suite of in situ instrumentation to provide measurements of aerosol optical properties, particle composition and direct-beam irradiance. The second aircraft will fly directly over the first and use a multi-wavelength high spectral resolution lidar (HSRL) and scanning polarimeter to provide continuous optical and cloud properties in the column below.

  3. Evaluation of Electronic Cigarette Liquids and Aerosol for the Presence of Selected Inhalation Toxins

    Science.gov (United States)

    Kistler, Kurt A.; Gillman, Gene; Voudris, Vassilis

    2015-01-01

    Introduction: The purpose of this study was to evaluate sweet-flavored electronic cigarette (EC) liquids for the presence of diacetyl (DA) and acetyl propionyl (AP), which are chemicals approved for food use but are associated with respiratory disease when inhaled. Methods: In total, 159 samples were purchased from 36 manufacturers and retailers in 7 countries. Additionally, 3 liquids were prepared by dissolving a concentrated flavor sample of known DA and AP levels at 5%, 10%, and 20% concentration in a mixture of propylene glycol and glycerol. Aerosol produced by an EC was analyzed to determine the concentration of DA and AP. Results: DA and AP were found in 74.2% of the samples, with more samples containing DA. Similar concentrations were found in liquid and aerosol for both chemicals. The median daily exposure levels were 56 μg/day (IQR: 26–278 μg/day) for DA and 91 μg/day (IQR: 20–432 μg/day) for AP. They were slightly lower than the strict NIOSH-defined safety limits for occupational exposure and 100 and 10 times lower compared with smoking respectively; however, 47.3% of DA and 41.5% of AP-containing samples exposed consumers to levels higher than the safety limits. Conclusions: DA and AP were found in a large proportion of sweet-flavored EC liquids, with many of them exposing users to higher than safety levels. Their presence in EC liquids represents an avoidable risk. Proper measures should be taken by EC liquid manufacturers and flavoring suppliers to eliminate these hazards from the products without necessarily limiting the availability of sweet flavors. PMID:25180080

  4. Influence of Curing Units and Indirect Restorative Materials on the Hardness of Two Dual-curing Resin Cements Evaluated by the Nanoindentation Test.

    Science.gov (United States)

    Kuguimiya, Rosiane Noqueira; Rode, Kátia Martins; Carneiro, Paula Mendes Acatauassú; Aranha, Ana Cecilia Corrêa; Turbino, Miriam Lacalle

    2015-06-01

    To evaluate the hardness of a dual-curing self-adhesive resin cement (RelyX U200) and a conventional dual-curing resin cement (RelyX ARC) cured with different light curing units of different wavelengths (Elipar Freelight 2 LED [430 to 480 nm, conventional], Bluephase LED [380 to 515 nm, polywave], AccuCure 3000 Laser [488 nm]) by means of the nanoindentation test. Bovine incisors were cleaned and then sectioned at the cementoenamel junction to remove the crown. After embedding in acrylic, dentin surfaces of the specimens were exposed and ground flat to standardize the surfaces. To simulate clinically placing indirect restorations, ceramic (IPS e.maxPress/Ivoclar Vivadent) or indirect composite resin (SR Adoro/Ivoclar Vivadent) slabs were cemented on dentin surfaces. The specimens were sectioned longitudinally at low speed under constant irrigation and then polished. In the positive control group, the cement was light cured without the interposition of indirect restorative material; in the negative control group, after the indirect restorative material was cemented, no light curing was performed, allowing only chemical polymerization of the cement. All specimens were stored in distilled water at 37°C for 7 days. Nanoindentadion hardness of the cement layer was measured under a 100-mN load. Data were statistically analyzed using ANOVA and Tukey's test (p resin cements evaluated was negatively influenced by the interposition of an indirect restorative material; only the LEDs were able to maintain the same degree of cement polymerization when an indirect restorative material was used. The photoactivation step is required during the cementation of indirect restorations to ensure adequate polymerization of dual-curing resin cements.

  5. Evaluation of three Brucella soluble antigens used in an indirect Elisa to discriminate S19 vaccinated from naturally infected cattle.

    Science.gov (United States)

    Abalos, P; Daffner, J; Pinochet, L

    2000-01-01

    An O-polysaccharide (O-chain) and a hot-water extracted polysaccharide (PS), both obtained from Brucella abortus 1119-3, and a B. melitensis 16M native hapten (NH) were evaluated by indirect enzyme linked immunosorbent assay (ELISA) on three groups of cattle sera. The sera tested were: (a) 75 sera from cows naturally infected with B. abortus; (b) 130 sera from non-infected and non-vaccinated cattle; and (c) 61 sera from non-infected heifers recently vaccinated with B. abortus Strain 19 (S19). Sensitivity (Se), specificity (Sp) and the capability to discriminate vaccinated cattle (ADV) were determined. Using PS antigen, Se was 100% and the Sp was 97.7%, while the highest Sp was obtained by using the O-chain (99.2% ). For the NH antigen, Se was 94.7% and the Sp was 90.0%. The ADV of the three antigens was approximately 85%. Statistical analysis showed significant differences between O-chain/PS and O-chain/NH antigens. The agreement among antigens determined by kappa coefficient was 0.899 for O-chain/PS, 0.845 for O-chain/NH and 0.795 for PS/NH.

  6. Clinical and radiographic evaluation of indirect pulp treatment with MTA and calcium hydroxide in primary teeth (in-vivo study

    Directory of Open Access Journals (Sweden)

    Vimi George

    2015-01-01

    Full Text Available Objectives: Clinical and radiographic effects of mineral trioxide aggregate (white MTA and calcium hydroxide (Dycal in indirect pulp treatment (IPT of primary teeth over a period of 6 months. Materials and Methods: A clinical trial with sample size of 40 primary molars between the age group of 5-9 years, of which, 20 teeth were considered, each for MTA and Dycal. Measurements on the digitized radiographs were performed at baseline, third and sixth month, increase in dentin was then measured using Corel Draw software. Result: Independent t-test had indicated that at the end of 3 months and 6 months, a statistically significant increase in dentin thickness with both MTA and Dycal (P-value ≤ 0.001 was found. Within the MTA group, the thickness of dentin formed was 0.089 mm ± 0.031 mm at first 3 months and 0.055 ± 0.022 mm at the second 3 months, (P ≤ 0.001 evaluated using paired t-test. In the Dycal group, increment in dentin deposited was 0.068 mm at the first 3 months and second 3 months, it was 0.030 mm (P-value ≤ 0.001. Conclusion: Clinically and radiographically, MTA is superior to Dycal as a good IPT medicament in primary teeth.

  7. An evaluation of electronic cigarette formulations and aerosols for harmful and potentially harmful constituents (HPHCs) typically derived from combustion.

    Science.gov (United States)

    Wagner, Karl A; Flora, Jason W; Melvin, Matt S; Avery, Karen C; Ballentine, Regina M; Brown, Anthony P; McKinney, Willie J

    2018-03-20

    U.S. FDA draft guidance recommends reporting quantities of designated harmful and potentially harmful constituents (HPHCs) in e-cigarette e-liquids and aerosols. The HPHC list comprises potential matrix-related compounds, flavors, nicotine, tobacco-related impurities, leachables, thermal degradation products, and combustion-related compounds. E-cigarettes contain trace levels of many of these constituents due to tobacco-derived nicotine and thermal degradation. However, combustion-related HPHCs are not likely to be found due to the relatively low operating temperatures of most e-cigarettes. The purpose of this work was to use highly sensitive, selective, and validated analytical methods to determine if these combustion-related HPHCs (three aromatic amines, five volatile organic compounds, and the polycyclic aromatic hydrocarbon benzo[a]pyrene) are detectable in commercial refill e-liquids, reference e-cigarette e-liquids, and aerosols generated from rechargeable e-cigarettes with disposable cartridges (often referred to as "cig-a-likes"). In addition, the transfer efficiency of these constituents from e-liquid to aerosol was evaluated when these HPHCs were added to the e-liquids prior to aerosol formation. This work demonstrates that combustion-related HPHCs are not present at measurable levels in the commercial and reference e-liquids or e-cigarette aerosols tested. Additionally, when combustion-related HPHCs are added to the e-liquids, they transfer to the aerosol with transfer efficiencies ranging from 49% to 99%. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria.

    Science.gov (United States)

    Jensen, P A; Todd, W F; Davis, G N; Scarpino, P V

    1992-10-01

    The need to quantify airborne microorganisms in the commercial microbiology industry (biotechnology) and during evaluations of indoor air quality, infectious disease outbreaks, and agriculture health investigations has shown there is a major technological void in bioaerosol sampling techniques to measure and identify viable and nonviable aerosols. As commercialization of microbiology increases and diversifies, it is increasingly necessary to assess occupational exposure to bioaerosols. Meaningful exposure estimates, by using area or environmental samplers, can only be ensured by the generation of data that are both precise and accurate. The Andersen six-stage viable (microbial) particle sizing sampler (6-STG) and the Ace Glass all-glass impinger-30 (AGI-30) have been suggested as the samplers of choice for the collection of viable microorganisms by the International Aerobiology Symposium and the American Conference of Governmental Industrial Hygienists. Some researchers consider these samplers inconvenient for evaluating industrial bioprocesses and indoor or outdoor environments. Alternative samplers for the collection of bioaerosols are available; however, limited information has been reported on their collection efficiencies. A study of the relative sampling efficiencies of eight bioaerosol samplers has been completed. Eight samplers were individually challenged with a bioaerosol, created with a Collison nebulizer, of either Bacillus subtilis or Escherichia coli. The samplers were evaluated under controlled conditions in a horizontal bioaerosol chamber. During each experimental run, simultaneous samples were collected with a reference AGI-30 to verify the concentration of microorganisms in the chamber from run to run and day to day.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Evaluating Nighttime CALIOP 0.532 micron Aerosol Optical Depth and Extinction Coefficient Retrievals

    Science.gov (United States)

    Campbell, J. R.; Tackett, J. L.; Reid, J. S.; Zhang, J.; Curtis, C. A.; Hyer, E. J.; Sessions, W. R.; Westphal, D. L.; Prospero, J. M.; Welton, E. J.; hide

    2012-01-01

    NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) Version 3.01 5-km nighttime 0.532 micron aerosol optical depth (AOD) datasets from 2007 are screened, averaged and evaluated at 1 deg X 1 deg resolution versus corresponding/co-incident 0.550 micron AOD derived using the US Navy Aerosol Analysis and Prediction System (NAAPS), featuring two-dimensional variational assimilation of quality-assured NASA Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) AOD. In the absence of sunlight, since passive radiometric AOD retrievals rely overwhelmingly on scattered radiances, the model represents one of the few practical global estimates available from which to attempt such a validation. Daytime comparisons, though, provide useful context. Regional-mean CALIOP vertical profiles of night/day 0.532 micron extinction coefficient are compared with 0.523/0.532 micron ground-based lidar measurements to investigate representativeness and diurnal variability. In this analysis, mean nighttime CALIOP AOD are mostly lower than daytime (0.121 vs. 0.126 for all aggregated data points, and 0.099 vs. 0.102 when averaged globally per normalised 1 deg. X 1 deg. bin), though the relationship is reversed over land and coastal regions when the data are averaged per normalised bin (0.134/0.108 vs. 0140/0.112, respectively). Offsets assessed within single bins alone approach +/- 20 %. CALIOP AOD, both day and night, are higher than NAAPS over land (0.137 vs. 0.124) and equal over water (0.082 vs. 0.083) when averaged globally per normalised bin. However, for all data points inclusive, NAAPS exceeds CALIOP over land, coast and ocean, both day and night. Again, differences assessed within single bins approach 50% in extreme cases. Correlation between CALIOP and NAAPS AOD is comparable during both day and night. Higher correlation is found nearest the equator, both as a function of sample size and relative signal magnitudes inherent at

  10. Preliminary Evaluation of Influence of Aerosols on the Simulation of Brightness Temperature in the NASA's Goddard Earth Observing System Atmospheric Data Assimilation System

    Science.gov (United States)

    Kim, Jong; Akella, Santha; da Silva, Arlindo M.; Todling, Ricardo; McCarty, William

    2018-01-01

    This document reports on preliminary results obtained when studying the impact of aerosols on the calculation of brightness temperature (BT) for satellite infrared (IR) instruments that are currently assimilated in a 3DVAR configuration of Goddard Earth Observing System (GEOS)-atmospheric data assimilation system (ADAS). A set of fifteen aerosol species simulated by the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model is used to evaluate the influence of the aerosol fields on the Community Radiative Transfer Model (CRTM) calculations taking place in the observation operators of the Gridpoint Statistical Interpolation (GSI) analysis system of GEOSADAS. Results indicate that taking aerosols into account in the BT calculation improves the fit to observations over regions with significant amounts of dust. The cooling effect obtained with the aerosol-affected BT leads to a slight warming of the analyzed surface temperature (by about 0:5oK) in the tropical Atlantic ocean (off northwest Africa), whereas the effect on the air temperature aloft is negligible. In addition, this study identifies a few technical issues to be addressed in future work if aerosol-affected BT are to be implemented in reanalysis and operational settings. The computational cost of applying CRTM aerosol absorption and scattering options is too high to justify their use, given the size of the benefits obtained. Furthermore, the differentiation between clouds and aerosols in GSI cloud detection procedures needs satisfactory revision.

  11. Evaluate and characterize mechanisms controlling transport, fate and effects of army smokes in an aerosol wind tunnel: Transport, transformations, fate and terrestrial ecological effects of fog oil obscurant smokes: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Van Voris, P.; Ligotke, M.W.; Fellows, R.J.; McVeety, B.D.; Li, Shu-mei W.; Bolton, H. Jr.; Fredrickson, J.K.

    1989-01-01

    The terrestrial transport, chemical fate, and ecological effects of fog oil (FO) smoke obscurants were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on an exposure scenario, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of fog oil smoke/obscurants is establishing the importance of environmental parameters, such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and three soil types. 29 refs., 35 figs., 32 tabs.

  12. Clinical assessment of a commercial delivery system for aerosol ventilation scanning by comparison with Krypton-81m

    International Nuclear Information System (INIS)

    Wollmer, P.; Eriksson, L.; Andersson, A.

    1985-01-01

    A commercial aerosol delivery system for ventilation scanning was evaluated in 23 patients with lung disease involving regional disturbances of ventilation. Ventilation scans obtained after inhalation of an aerosol labeled with In-113m were compared with Kr-81m ventilation scans. An indirect comparison was also made with a settling bag technique. There was close agreement between the aerosol and the Kr-81m ventilation scans in all of the patients. The aerosol outlined the ventilated parts of the lung adequately, and central deposition of particles was minimal. The penetration of the aerosol into the lung was higher with the delivery system that with a settling bag system. The aerosol delivery system appears suitable for clinical pulmonary ventilation scintigraphy

  13. Source attribution of aerosol size distributions and model evaluation using Whistler Mountain measurements and GEOS-Chem-TOMAS simulations

    Science.gov (United States)

    D'Andrea, S. D.; Ng, J. Y.; Kodros, J. K.; Atwood, S. A.; Wheeler, M. J.; Macdonald, A. M.; Leaitch, W. R.; Pierce, J. R.

    2016-01-01

    Remote and free-tropospheric aerosols represent a large fraction of the climatic influence of aerosols; however, aerosol in these regions is less characterized than those polluted boundary layers. We evaluate aerosol size distributions predicted by the GEOS-Chem-TOMAS global chemical transport model with online aerosol microphysics using measurements from the peak of Whistler Mountain, British Columbia, Canada (2182 m a.s.l., hereafter referred to as Whistler Peak). We evaluate the model for predictions of aerosol number, size, and composition during periods of free-tropospheric (FT) and boundary-layer (BL) influence at "coarse" 4° × 5° and "nested" 0.5° × 0.667° resolutions by developing simple FT/BL filtering techniques. We find that using temperature as a proxy for upslope flow (BL influence) improved the model-measurement comparisons. The best threshold temperature was around 2 °C for the coarse simulations and around 6 °C for the nested simulations, with temperatures warmer than the threshold indicating boundary-layer air. Additionally, the site was increasingly likely to be in cloud when the measured relative humidity (RH) was above 90 %, so we do not compare the modeled and measured size distributions during these periods. With the inclusion of these temperature and RH filtering techniques, the model-measurement comparisons improved significantly. The slope of the regression for N80 (the total number of particles with particle diameter, Dp, > 80 nm) in the nested simulations increased from 0.09 to 0.65, R2 increased from 0.04 to 0.46, and log-mean bias improved from 0.95 to 0.07. We also perform simulations at the nested resolution without Asian anthropogenic emissions and without biomass-burning emissions to quantify the contribution of these sources to aerosols at Whistler Peak (through comparison with simulations with these emissions on). The long-range transport of Asian anthropogenic aerosol was found to be significant throughout all particle

  14. Evaluation of anthropogenic influence on thermodynamics, gas and aerosol composition of city air

    Science.gov (United States)

    Uzhegova, Nina; Belan, Boris; Antokhin, Pavel; Zhidovkhin, Evgenii; Ivlev, Georgii; Kozlov, Artem; Fofonov, Aleksandr

    2010-05-01

    In the last 40-50 years there is a global tendency of urbanisation, which is a consequence of most countries' economical development. Concurrently, the issue of environment's ecological state has become critical. Urban air pollution is among the most important ecological problems nowadays. World Health Organization (WHO) points out certain "classical" polluting agents: carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), sulphur dioxide (SO2), troposphere ozone (O3) (studied here), as well as lead, carbon dioxide (CO2), aldehydes, soot, benzpyrene and dredges (including dust, haze and smoke) [1]. An evaluation of antropogenic component's weight in the thermodynamical conditions and gas and aerosol composition of a city's atmosphere (by the example of Tomsk) is given in this paper. Tomsk is located at the South of West Siberia and is the administrative center of Tomsk region. The city's area is equal to 294,6 km2. Its population is 512.6 thousands of people. The overall number of registered motor vehicles in the city in 2008 was 131 700. That is, every fourth city inhabitant has a personal car. From 2002 to 2008 the number of motor vehicles in Tomsk has increased by 25 thousands units [2]. This increase consists mostly of passenger cars. There is also a positive trend in fuel consumtion by the city's industries and motor vehicles - from 2004 to 2007 it has increased by 10%. Such a quick rate of transport quantity's increase in the city provides reason to suggest an unfavorable ecological situation in Tomsk. For this study we have used the AKV-2 mobile station designed by the SB RAS Institute of Atmospheric Optics. The station's equipment provides the following measurements [3]: air temperature and humidity; aerosol disperse composition in 15 channels with a particle size range of 0.3-20 µm by use of the Grimm-1.108 aerosol spectrometer; NO, NO2, O3, SO2, CO, CO2 concentration. This paper describes a single experiment conducted in Tomsk. Date of

  15. Aerosols, light, and water: Measurements of aerosol optical properties at different relative humidities

    Science.gov (United States)

    Orozco, Daniel

    The Earth's atmosphere is composed of a large number of different gases as well as tiny suspended particles, both in solid and liquid state. These tiny particles, called atmospheric aerosols, have an immense impact on our health and on our global climate. Atmospheric aerosols influence the Earth's radiation budget both directly and indirectly. In the direct effect, aerosols scatter and absorb sunlight changing the radiative balance of the Earth-atmosphere system. Aerosols indirectly influence the Earth's radiation budget by modifying the microphysical and radiative properties of clouds as well as their water content and lifetime. In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering coefficient and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground based observations with other optical aerosol measurements techniques such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. This dissertation presents the aerosol hygroscopicity experiment investigated using a novel dryer-humidifier system, coupled to a TSI-3563 nephelometer, to obtain the light scattering coefficient (sp) as a function of relative humidity (RH) in hydration and dehydration modes. The measurements were performed in Porterville, CA (Jan 10-Feb 6, 2013), Baltimore, MD (Jul 3-30, 2013), and Golden, CO (Jul 12-Aug 10, 2014). Observations in Porterville and Golden were part of the NASA-sponsored DISCOVER-AQ project. The measured sp under varying RH in the three sites was combined with ground aerosol extinction, PM2:5mass concentrations, particle composition measurements, and compared with airborne observations performed during campaigns. The enhancement factor, f(RH), defined as the ratio of sp

  16. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    Science.gov (United States)

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.

  17. Dispersion bias, dispersion effect, and the aerosol-cloud conundrum

    International Nuclear Information System (INIS)

    Liu Yangang; Daum, Peter H; Guo Huan; Peng Yiran

    2008-01-01

    This work examines the influences of relative dispersion (the ratio of the standard deviation to the mean radius of the cloud droplet size distribution) on cloud albedo and cloud radiative forcing, derives an analytical formulation that accounts explicitly for the contribution from droplet concentration and relative dispersion, and presents a new approach to parameterize relative dispersion in climate models. It is shown that inadequate representation of relative dispersion in climate models leads to an overestimation of cloud albedo, resulting in a negative bias of global mean shortwave cloud radiative forcing that can be comparable to the warming caused by doubling CO 2 in magnitude, and that this dispersion bias is likely near its maximum for ambient clouds. Relative dispersion is empirically expressed as a function of the quotient between cloud liquid water content and droplet concentration (i.e., water per droplet), yielding an analytical formulation for the first aerosol indirect effect. Further analysis of the new expression reveals that the dispersion effect not only offsets the cooling from the Twomey effect, but is also proportional to the Twomey effect in magnitude. These results suggest that unrealistic representation of relative dispersion in cloud parameterization in general, and evaluation of aerosol indirect effects in particular, is at least in part responsible for several outstanding puzzles of the aerosol-cloud conundrum: for example, overestimation of cloud radiative cooling by climate models compared to satellite observations; large uncertainty and discrepancy in estimates of the aerosol indirect effect; and the lack of interhemispheric difference in cloud albedo.

  18. Evaluation of the MODIS Aerosol Retrievals over Ocean and Land during CLAMS.

    Science.gov (United States)

    Levy, R. C.; Remer, L. A.; Martins, J. V.; Kaufman, Y. J.; Plana-Fattori, A.; Redemann, J.; Wenny, B.

    2005-04-01

    The Chesapeake Lighthouse Aircraft Measurements for Satellites (CLAMS) experiment took place from 10 July to 2 August 2001 in a combined ocean-land region that included the Chesapeake Lighthouse [Clouds and the Earth's Radiant Energy System (CERES) Ocean Validation Experiment (COVE)] and the Wallops Flight Facility (WFF), both along coastal Virginia. This experiment was designed mainly for validating instruments and algorithms aboard the Terra satellite platform, including the Moderate Resolution Imaging Spectroradiometer (MODIS). Over the ocean, MODIS retrieved aerosol optical depths (AODs) at seven wavelengths and an estimate of the aerosol size distribution. Over the land, MODIS retrieved AOD at three wavelengths plus qualitative estimates of the aerosol size. Temporally coincident measurements of aerosol properties were made with a variety of sun photometers from ground sites and airborne sites just above the surface. The set of sun photometers provided unprecedented spectral coverage from visible (VIS) to the solar near-infrared (NIR) and infrared (IR) wavelengths. In this study, AOD and aerosol size retrieved from MODIS is compared with similar measurements from the sun photometers. Over the nearby ocean, the MODIS AOD in the VIS and NIR correlated well with sun-photometer measurements, nearly fitting a one-to-one line on a scatterplot. As one moves from ocean to land, there is a pronounced discontinuity of the MODIS AOD, where MODIS compares poorly to the sun-photometer measurements. Especially in the blue wavelength, MODIS AOD is too high in clean aerosol conditions and too low under larger aerosol loadings. Using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative code to perform atmospheric correction, the authors find inconsistency in the surface albedo assumptions used by the MODIS lookup tables. It is demonstrated how the high bias at low aerosol loadings can be corrected. By using updated urban/industrial aerosol

  19. An Evaluation of the Shortwave Direct Aerosol Radiative Forcing Using CALIOP and MODIS Observations

    Science.gov (United States)

    Oikawa, Eiji; Nakajima, Teruyuki; Winker, David

    2018-01-01

    In this study, all-sky ShortWave Direct Aerosol Radiative Forcing (SWDARF) at the top of atmosphere is estimated using the method of Oikawa et al. (2013) applied to two generations of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Level 2 products, i.e., version 2 (V2) and version 3 (V3), and the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product. The estimated SWDARF in Oikawa et al. (2013) was based on CALIPSO V2 product, which contained significant errors in cloud clearing and low-altitude aerosols. This error was corrected in V3, resulting in greatly improved and significantly different aerosol and cloud distributions. In clear-sky conditions, the magnitude of aerosol optical thickness underestimation becomes smaller and SWDARF becomes more negative using the V3 product. In addition, above-cloud aerosols, which cause positive SWDARF, are less frequently detected and below-cloud aerosols are more frequently detected in the V3 product than in the V2 product, so that cloudy-sky SWDARF becomes more negative using the V3 product. From these results, clear-sky, cloudy-sky, and all-sky SWDARFs become more negative using the V3 product than the V2 product. The magnitude of negative SWDARF using the V3 product is more than twice as large as the V2 product under all-sky conditions due to V3 improvements in the lidar retrieval algorithms. Considering the uncertainties of aerosol and cloud measurements, annual zonal averages of clear-sky, cloudy-sky, and all-sky SWDARFs from 60°S to 60°N are estimated as -4.0 ± 0.2, -1.1 ± 0.3, and -2.1 ± 0.2 Wm-2 from the V3 product.

  20. Performance evaluation of evaporative light scattering detection and charged aerosol detection in reversed phase liquid chromatography.

    Science.gov (United States)

    Vervoort, N; Daemen, D; Török, G

    2008-05-02

    In pharmaceutical industry ultraviolet (UV) detection is often used as the preferred detection technique in HPLC analysis since most pharmaceutical compounds possess a UV-absorbing chromophore. However, in case the active pharmaceutical ingredient (API) does not have a UV-absorbing chromophore, or if some of the impurities present lack a chromophore, they will not be detected in routine HPLC analysis employing only a UV detector and alternative detection schemes have to be used. Refractive index detection or mass spectroscopy (MS) can be used but these detectors have their intrinsic weaknesses, such as lack of sensitivity or high cost. With the appearance of semi-universal techniques such as evaporative light scattering detection (ELSD), and more recent, charged aerosol detection (CAD), detection of non-UV-absorbing compounds became feasible without having to resort to such complex or costly detection methods. This paper evaluates the different performance characteristics such as sensitivity, linearity, accuracy and precision of both the ELSD and CAD detector coupled to HPLC. One disadvantage of this type of detector is the non-linear response behaviour which makes direct linear regression for making calibration curves inaccurate.

  1. Evaluation of factors controlling global secondary organic aerosol production from cloud processes

    Science.gov (United States)

    He, C.; Liu, J.; Carlton, A. G.; Fan, S.; Horowitz, L. W.; Levy, H., II; Tao, S.

    2013-02-01

    Secondary organic aerosols (SOA) exert a significant influence on ambient air quality and regional climate. Recent field, laboratorial and modeling studies have confirmed that in-cloud processes contribute to a large fraction of SOA production with large space-time heterogeneity. This study evaluates the key factors that govern the production of cloud-process SOA (SOAcld) on a global scale based on the GFDL coupled chemistry-climate model AM3 in which full cloud chemistry is employed. The association between SOAcld production rate and six factors (i.e., liquid water content (LWC), total carbon chemical loss rate (TCloss), temperature, VOC/NOx, OH, and O3) is examined. We find that LWC alone determines the spatial pattern of SOAcld production, particularly over the tropical, subtropical and temperate forest regions, and is strongly correlated with SOAcld production. TCloss ranks the second and mainly represents the seasonal variability of vegetation growth. Other individual factors are essentially uncorrelated spatiotemporally to SOAcld production. We find that the rate of SOAcld production is simultaneously determined by both LWC and TCloss, but responds linearly to LWC and nonlinearly (or concavely) to TCloss. A parameterization based on LWC and TCloss can capture well the spatial and temporal variability of the process-based SOAcld formation (R2 = 0.5) and can be easily applied to global three dimensional models to represent the SOA production from cloud processes.

  2. Modeling the Influences of Aerosols on Pre-Monsoon Circulation and Rainfall over Southeast Asia

    Science.gov (United States)

    Lee, D.; Sud, Y. C.; Oreopoulos, L.; Kim, K.-M.; Lau, W. K.; Kang, I.-S.

    2014-01-01

    We conduct several sets of simulations with a version of NASA's Goddard Earth Observing System, version 5, (GEOS-5) Atmospheric Global Climate Model (AGCM) equipped with a two-moment cloud microphysical scheme to understand the role of biomass burning aerosol (BBA) emissions in Southeast Asia (SEA) in the pre-monsoon period of February-May. Our experiments are designed so that both direct and indirect aerosol effects can be evaluated. For climatologically prescribed monthly sea surface temperatures, we conduct sets of model integrations with and without biomass burning emissions in the area of peak burning activity, and with direct aerosol radiative effects either active or inactive. Taking appropriate differences between AGCM experiment sets, we find that BBA affects liquid clouds in statistically significantly ways, increasing cloud droplet number concentrations, decreasing droplet effective radii (i.e., a classic aerosol indirect effect), and locally suppressing precipitation due to a deceleration of the autoconversion process, with the latter effect apparently also leading to cloud condensate increases. Geographical re-arrangements of precipitation patterns, with precipitation increases downwind of aerosol sources are also seen, most likely because of advection of weakly precipitating cloud fields. Somewhat unexpectedly, the change in cloud radiative effect (cloud forcing) at surface is in the direction of lesser cooling because of decreases in cloud fraction. Overall, however, because of direct radiative effect contributions, aerosols exert a net negative forcing at both the top of the atmosphere and, perhaps most importantly, the surface, where decreased evaporation triggers feedbacks that further reduce precipitation. Invoking the approximation that direct and indirect aerosol effects are additive, we estimate that the overall precipitation reduction is about 40% due to the direct effects of absorbing aerosols, which stabilize the atmosphere and reduce

  3. Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 1: Aerosol trends and radiative forcing

    Directory of Open Access Journals (Sweden)

    D. G. Streets

    2012-04-01

    Full Text Available We calculate decadal aerosol direct and indirect (warm cloud radiative forcings from US anthropogenic sources over the 1950–2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980–2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970–1990, with values over the eastern US (east of 100° W of −2.0 W m−2 for direct forcing including contributions from sulfate (−2.0 W m−2, nitrate (−0.2 W m−2, organic carbon (−0.2 W m−2, and black carbon (+0.4 W m−2. The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50%. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8 W m−2 direct and 1.0 W m−2 indirect, mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3 W m−2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  4. Climatic Effects of 1950-2050 Changes in US Anthropogenic Aerosols. Part 1; Aerosol Trends and Radiative Forcing

    Science.gov (United States)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2012-01-01

    We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950-2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980-2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970-1990, with values over the eastern US (east of 100 deg W) of -2.0Wm(exp-2 for direct forcing including contributions from sulfate (-2.0Wm-2), nitrate (-0.2Wm(exp-2), organic carbon (-0.2Wm(exp-2), and black carbon (+0.4Wm(exp-2). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50 %. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8Wm(exp-2) direct and 1.0Wm(exp-2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3Wm(exp-2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide) suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  5. The AeroCom evaluation and intercomparison of organic aerosol in global models

    Science.gov (United States)

    Tsigaridis, K.; Daskalakis, N.; Kanakidou, M.; Adams, P. J.; Artaxo, P.; Bahadur, R.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Benedetti, A.; Bergman, T.; Berntsen, T. K.; Beukes, J. P.; Bian, H.; Carslaw, K. S.; Chin, M.; Curci, G.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Gong, S. L.; Hodzic, A.; Hoyle, C. R.; Iversen, T.; Jathar, S.; Jimenez, J. L.; Kaiser, J. W.; Kirkevåg, A.; Koch, D.; Kokkola, H.; Lee, Y. H.; Lin, G.; Liu, X.; Luo, G.; Ma, X.; Mann, G. W.; Mihalopoulos, N.; Morcrette, J.-J.; Müller, J.-F.; Myhre, G.; Myriokefalitakis, S.; Ng, N. L.; O'Donnell, D.; Penner, J. E.; Pozzoli, L.; Pringle, K. J.; Russell, L. M.; Schulz, M.; Sciare, J.; Seland, Ø.; Shindell, D. T.; Sillman, S.; Skeie, R. B.; Spracklen, D.; Stavrakou, T.; Steenrod, S. D.; Takemura, T.; Tiitta, P.; Tilmes, S.; Tost, H.; van Noije, T.; van Zyl, P. G.; von Salzen, K.; Yu, F.; Wang, Z.; Wang, Z.; Zaveri, R. A.; Zhang, H.; Zhang, K.; Zhang, Q.; Zhang, X.

    2014-10-01

    This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over one order of magnitude exists in the modeled vertical distribution of OA concentrations that deserves a dedicated future study. Furthermore, although the OA / OC ratio depends on OA sources and atmospheric processing, and is important for model evaluation against OA and OC observations, it is resolved only by a few global models. The median global primary OA (POA) source strength is 56 Tg a-1 (range 34-144 Tg a-1) and the median SOA source strength (natural and anthropogenic) is 19 Tg a-1 (range 13-121 Tg a-1). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a-1 (range 16-121 Tg a-1), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a-1; range 13-20 Tg a-1, with one model at 37 Tg a-1). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6-2.0 Tg and 4 between 2.0 and 3.8 Tg), with a median OA lifetime of 5.4 days (range 3.8-9.6 days). In models that reported both OA and

  6. Evaluation of New and Proposed Organic Aerosol Sources and Mechanisms using the Aerosol Modeling Testbed. MILAGRO, CARES, CalNex, BEACHON, and GVAX

    Energy Technology Data Exchange (ETDEWEB)

    Hodzic, Alma [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Jimenez, Jose L. [Univ. of Colorado, Boulder, CO (United States)

    2015-04-09

    This work investigated the formation and evolution of organic aerosols (OA) arising from anthropogenic and biogenic sources in a framework that combined state-of-the-science process and regional modeling, and their evaluation against advanced and emerging field measurements. Although OA are the dominant constituents of submicron particles, our understanding of their atmospheric lifecycle is limited, and current models fail to describe the observed amounts and properties of chemically formed secondary organic aerosols (SOA), leaving large uncertainties on the effects of SOA on climate. Our work has provided novel modeling constraints on sources, formation, aging and removal of SOA by investigating in particular (i) the contribution of trash burning emissions to OA levels in a megacity, (ii) the contribution of glyoxal to SOA formation in aqueous particles in California during CARES/CalNex and over the continental U.S., (iii) SOA formation and regional growth over a pine forest in Colorado and its sensitivity to anthropogenic NOx levels during BEACHON, and the sensitivity of SOA to (iv) the sunlight exposure during its atmospheric lifetime, and to (v) changes in solubility and removal of organic vapors in the urban plume (MILAGRO, Mexico City), and over the continental U.S.. We have also developed a parameterization of water solubility for condensable organic gases produced from major anthropogenic and biogenic precursors based on explicit chemical modeling, and made it available to the wider community. This work used for the first time constraints from the explicit model GECKO-A to improve SOA representation in 3D regional models such as WRF-Chem.

  7. Atmospheric aerosol system: An overview

    International Nuclear Information System (INIS)

    Prospero, J.M.; Charlson, R.J.; Mohnen, V.; Jaenicke, R.; Delany, A.C.; Moyers, J.; Zoller, W.; Rahn, K.

    1983-01-01

    Aerosols could play a critical role in many processes which impact on our lives either indirectly (e.g., climate) or directly (e.g., health). However, our ability to assess these possible impacts is constrained by our limited knowledge of the physical and chemical properties of aerosols, both anthropogenic and natural. This deficiency is attributable in part to the fact that aerosols are the end product of a vast array of chemical and physical processes. Consequently, the properties of the aerosol can exhibit a great deal of variability in both time and space. Furthermore, most aerosol studies have focused on measurements of a single aerosol characteristic such as composition or size distribution. Such information is generally not useful for the assessment of impacts because the degree of impact may depend on the integral properties of the aerosol, for example, the aerosol composition as a function of particle size. In this overview we discuss recent work on atmospheric aerosols that illustrates the complex nature of the aerosol chemical and physical system, and we suggest strategies for future research. A major conclusion is that man has had a great impact on the global budgets of certain species, especially sulfur and nitrogen, that play a dominant role in the atmospheric aerosol system. These changes could conceivably affect climate. Large-scale impacts are implied because it has recently been demonstrated that natural and pollutant aerosol episodes can be propagated over great distances. However, at present there is no evidence linking anthropogenic activities with a persistent increase in aerosol concentrations on a global scale. A major problem in assessing man's impact on the atmospheric aerosol system and on global budgets is the absence of aerosol measurements in remote marine and continental areas

  8. Impact of varying lidar measurement and data processing techniques in evaluating cirrus cloud and aerosol direct radiative effects

    Directory of Open Access Journals (Sweden)

    S. Lolli

    2018-03-01

    Full Text Available In the past 2 decades, ground-based lidar networks have drastically increased in scope and relevance, thanks primarily to the advent of lidar observations from space and their need for validation. Lidar observations of aerosol and cloud geometrical, optical and microphysical atmospheric properties are subsequently used to evaluate their direct radiative effects on climate. However, the retrievals are strongly dependent on the lidar instrument measurement technique and subsequent data processing methodologies. In this paper, we evaluate the discrepancies between the use of Raman and elastic lidar measurement techniques and corresponding data processing methods for two aerosol layers in the free troposphere and for two cirrus clouds with different optical depths. Results show that the different lidar techniques are responsible for discrepancies in the model-derived direct radiative effects for biomass burning (0.05 W m−2 at surface and 0.007 W m−2 at top of the atmosphere and dust aerosol layers (0.7 W m−2 at surface and 0.85 W m−2 at top of the atmosphere. Data processing is further responsible for discrepancies in both thin (0.55 W m−2 at surface and 2.7 W m−2 at top of the atmosphere and opaque (7.7 W m−2 at surface and 11.8 W m−2 at top of the atmosphere cirrus clouds. Direct radiative effect discrepancies can be attributed to the larger variability of the lidar ratio for aerosols (20–150 sr than for clouds (20–35 sr. For this reason, the influence of the applied lidar technique plays a more fundamental role in aerosol monitoring because the lidar ratio must be retrieved with relatively high accuracy. In contrast, for cirrus clouds, with the lidar ratio being much less variable, the data processing is critical because smoothing it modifies the aerosol and cloud vertically resolved extinction profile that is used as input to compute direct radiative effect calculations.

  9. Evaluation of simulated aerosol properties with the aerosol-climate model ECHAM5-HAM using observations from the IMPACT field campaign

    Directory of Open Access Journals (Sweden)

    G.-J. Roelofs

    2010-08-01

    Full Text Available In May 2008, the measurement campaign IMPACT for observation of atmospheric aerosol and cloud properties was conducted in Cabauw, The Netherlands. With a nudged version of the coupled aerosol-climate model ECHAM5-HAM we simulate the size distribution and chemical composition of the aerosol and the associated aerosol optical thickness (AOT for the campaign period. Synoptic scale meteorology is represented realistically through nudging of the vorticity, the divergence, the temperature and the surface pressure. Simulated concentrations of aerosol sulfate and organics at the surface are generally within a factor of two from observed values. The monthly averaged AOT from the model is 0.33, about 20% larger than observed. For selected periods of the month with relatively dry and moist conditions discrepancies are approximately −30% and +15%, respectively. Discrepancies during the dry period are partly caused by inaccurate representation of boundary layer (BL dynamics by the model affecting the simulated AOT. The model simulates too strong exchange between the BL and the free troposphere, resulting in weaker concentration gradients at the BL top than observed for aerosol and humidity, while upward mixing from the surface layers into the BL appears to be underestimated. The results indicate that beside aerosol sulfate and organics also aerosol ammonium and nitrate significantly contribute to aerosol water uptake. The simulated day-to-day variability of AOT follows synoptic scale advection of humidity rather than particle concentration. Even for relatively dry conditions AOT appears to be strongly influenced by the diurnal cycle of RH in the lower boundary layer, further enhanced by uptake and release of nitric acid and ammonia by aerosol water.

  10. On the problems related to natural wet bulb temperature indirect evaluation for the assessment of hot thermal environments by means of WBGT.

    Science.gov (United States)

    D'Ambrosio Alfano, Francesca Romana; Palella, Boris Igor; Riccio, Giuseppe

    2012-11-01

    This paper deals with the indirect evaluation of the natural wet bulb temperature, t (nw), one of the two quantities forming the basis of the well-known wet bulb globe temperature (WBGT) index, considered worldwide to be a suitable and user-friendly tool for the preliminary assessment of hot thermal environments. This quantity can be measured by a wet bulb thermometer (a temperature sensor covered with a wetted wick naturally ventilated) or, if this is not available, calculated from other microclimatic parameters (i.e. the air temperature, the globe temperature, the air velocity, and the humidity) using a quite trivial energy balance equation. Because of the strong non-linear structure of such an equation, the risk of a multiplicity of steady state solutions could result in the failure to obtain a reliable index evaluation. To dispel all doubts, this work carries out an in-depth analysis of the heat balance equation to be solved for the indirect evaluation of the natural wet bulb temperature. A preliminary investigation of each heat flow term involved in the heat balance on the sensor has been carried out; in a second phase a special continuation method has been implemented, highlighting the effect of microclimatic parameters on the multiplicity of solutions. Results show that under free convection the evaluation produces a single solution only under uniform conditions, whereas in the presence of even slight differences between the air temperature and the mean radiant temperature, there can be as many as three solutions. This phenomenon, if confirmed by a further experimental investigation, could become a difficult matter since a sensor, in principle, has to read a unique value of the quantity measured. In any case, from a numerical point of view, the presence of many values of tnw greatly reduces the possibility of an indirect WBGT calculation from the other involved physical quantities; as a consequence, the indirect evaluation of WBGT should be clearly avoided

  11. Evaluating inter-continental transport of fine aerosols:(2) Global health impact

    Science.gov (United States)

    Liu, Junfeng; Mauzerall, Denise L.; Horowitz, Larry W.

    In this second of two companion papers, we quantify for the first time the global impact on premature mortality of the inter-continental transport of fine aerosols (including sulfate, black carbon, organic carbon, and mineral dust) using the global modeling results of (Liu et al., 2009). Our objective is to estimate the number of premature mortalities in each of ten selected continental regions resulting from fine aerosols transported from foreign regions in approximately year 2000. Our simulated annual mean population-weighted (P-W) concentrations of total PM2.5 (aerosols with diameter less than 2.5 μm) are highest in East Asia (EA, 30 μg m -3) and lowest in Australia (3.6 μg m -3). Dust is the dominant component of PM2.5 transported between continents. We estimate global annual premature mortalities (for adults age 30 and up) due to inter-continental transport of PM2.5 to be nearly 380 thousand (K) in 2000. Approximately half of these deaths occur in the Indian subcontinent (IN), mostly due to aerosols transported from Africa and the Middle East (ME). Approximately 90K deaths globally are associated with exposure to foreign (i.e., originating outside a receptor region) non-dust PM2.5. More than half of the premature mortalities associated with foreign non-dust aerosols are due to aerosols originating from Europe (20K), ME (18K) and EA (15K); and nearly 60% of the 90K deaths occur in EA (21K), IN (19K) and Southeast Asia (16K). The lower and higher bounds of our estimated 95% confidence interval (considering uncertainties from the concentration-response relationship and simulated aerosol concentrations) are 18% and 240% of the estimated deaths, respectively, and could be larger if additional uncertainties were quantified. We find that in 2000 nearly 6.6K premature deaths in North America (NA) were associated with foreign PM2.5 exposure (5.5K from dust PM2.5). NA is least impacted by foreign PM2.5 compared to receptors on the Eurasian continent. However, the

  12. CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-05-27

    Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

  13. Evaluation of the performance of indirect control of many DSRs using hardware-in-the-loop simulations

    DEFF Research Database (Denmark)

    Sossan, Fabrizio; Bindner, Henrik W.

    2012-01-01

    Controlling the power consumption of many Demand Side Resources, DSRs, will be required in the future power system where a big share of the electric energy will be produced using stochastic renewable sources and the conventional power plants might not have the flexibility of providing all...... the regulating power. Indirect control of demand side resources is supposed to shift the electric power consumption of each single unit through broadcasting of a control signal; the flexibility in the aggregated power consumption can be used for supplying balancing power to the electric power system. Indirect...... control approach is convenient from communication point of view since the real-time data flow is only in one direction because the decision is computed locally according to user preferences. On the other hand, this approach results in an open loop control scheme, since it is assumed that no real...

  14. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

    OpenAIRE

    H. Matsui; M. Koike; Y. Kondo; J. D. Fast; M. Takigawa

    2014-01-01

    Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimation of aerosol direct and indirect effects. In this study, we develop an aerosol module, designated Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can represent these parameters explicitly by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A...

  15. Evaluation and Parametric Optimization of the Thermal Performance and Cost Effectiveness of Active-Indirect Solar Hot Water Plants

    OpenAIRE

    Kim, Young-Deuk; Thu, Kyaw; Ng, Kim Choon

    2015-01-01

    In the study, an investigation and comparison of the thermal performance and cost effectiveness of an active-indirect solar hot water plant (SHWP) at Incheon (Korea), Jeddah (Saudi Arabia) and Changi (Singapore) international airports are carried out. Plant performances are analyzed for various collector areas and storage tank volumes at the ASHRAE standard flow rate and are reported in terms of the annual solar fraction, solar thermal rating, as well as the capital payback period and annuali...

  16. Evaluation and Windspeed Dependence of MODIS Aerosol Retrievals Over Open Ocean

    Science.gov (United States)

    Kleidman, Richard G.; Smirnov, Alexander; Levy, Robert C.; Mattoo, Shana; Tanre, Didier

    2011-01-01

    The Maritime Aerosol Network (MAN) data set provides high quality ground-truth to validate the MODIS aerosol product over open ocean. Prior validation of the ocean aerosol product has been limited to coastal and island sites. Comparing MODIS Collection 5 ocean aerosol retrieval products with collocated MAN measurements from ships shows that MODIS is meeting the pre-launch uncertainty estimates for aerosol optical depth (AOD) with 64% and 67% of retrievals at 550 nm, and 74% and 78% of retrievals at 870 nm, falling within expected uncertainty for Terra and Aqua, respectively. Angstrom Exponent comparisons show a high correlation between MODIS retrievals and shipboard measurements (R= 0.85 Terra, 0.83 Aqua), although the MODIS aerosol algorithm tends to underestimate particle size for large particles and overestimate size for small particles, as seen in earlier Collections. Prior analysis noted an offset between Terra and Aqua ocean AOD, without concluding which sensor was more accurate. The simple linear regression reported here, is consistent with other anecdotal evidence that Aqua agreement with AERONET is marginally better. However we cannot claim based on the current study that the better Aqua comparison is statistically significant. Systematic increase of error as a function of wind speed is noted in both Terra and Aqua retrievals. This wind speed dependency enters the retrieval when winds deviate from the 6 m/s value assumed in the rough ocean surface and white cap parameterizations. Wind speed dependency in the results can be mitigated by using auxiliary NCEP wind speed information in the retrieval process.

  17. Evaluation of MODIS Deep Blue Aerosol Algorithm in Desert Region of East Asia: Ground Validation and Intercomparison

    Science.gov (United States)

    Tao, Minghui; Chen, Liangfu; Wang, Zifeng; Wang, Jun; Che, Huizheng; Xu, Xiaoguang; Wang, Wencai; Tao, Jinhua; Zhu, Hao; Hou, Can

    2017-10-01

    The abundant dust particles from widespread deserts in East Asia play a significant role in regional climate and air quality. In this study, we provide a comprehensive evaluation of the widely used Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue (DB) aerosol retrievals in desert regions of East Asia using ground-based observations over eight sites of the China Aerosol Remote Sensing Network (CARSNET). Different from their well-characterized performance in urban and cropland areas around the globe, DB aerosol optical depth (AOD) retrievals exhibit underestimation across the deserts in East Asia. We found that 38%-96% of satellite values fall out of an expected-error envelope of ±(0.05 + 20%AODCARSNET), with the worst performance in Taklimakan Desert. In particular, DB retrievals erroneously give a nearly constant low values of 0.05 in Taklimakan Desert when AOD is below 0.5, which does not match with variation of moderate dust plumes. Comparison with Multi-angle Imaging SpectroRadiometer AOD shows that a similar underestimation is prevalent over the extensive deserts. Inversion of sky light measurements show that single scattering albedos of the yellow dust in East Asia are mostly below 0.9 at 440 nm, much lower than the "whiter" and "redder" dust models applied in the DB algorithm. On the other hand, overestimation of surface reflectance dominantly contributes to the significant low constant AOD values in MODIS DB retrievals in Taklimakan Desert. These large biases, however, can be substantially reduced by considering unique characteristics of aerosols and surface over the arid regions in East Asia.

  18. Evaluation of Aerosol Pesticide Application Against Old World Phlebotomine Sand Fly Vectors of Leishmania in Kenya

    Science.gov (United States)

    One component of the Department of Defense (DoD) pest management system is ultra-low volume (ULV) and/or thermal fog aerosol pesticide application. Despite widespread implementations of this and other components of the system, such as use of repellents and permethrin, US military operations in hot-a...

  19. Evaluation of species-dependent detection efficiencies in the aerosol mass spectrometer

    Science.gov (United States)

    Mass concentrations of chemical species calculated from the aerosol mass spectrometer (AMS) depend on two factors: particle collection efficiency (CE) and relative ionization efficiency (RIE, relative to the primary calibrant ammonium nitrate). While previous studies have characterized CE, RIE is re...

  20. Development and experimental evaluation of an optical sensor for aerosol particle characterization

    Energy Technology Data Exchange (ETDEWEB)

    Somesfalean, G.

    1998-03-01

    A sensor for individual aerosol particle characterization, based on a single-mode semiconductor laser coupled to an external cavity is presented. The light emitting semiconductor laser acts as a sensitive optical detector itself, and the whole system has the advantage of using conventional optical components and providing a compact set-up. Aerosol particles moving through the sensing volume, which is located in the external cavity of a semiconductor laser, scatter and absorb light. Thereby they act as small disturbances on the electromagnetic field inside the dynamic multi-cavity laser system. From the temporal variation of the output light intensity, information about the number, velocity, size, and refractive index of the aerosol particles can be derived. The diffracted light in the near-forward scattering direction is collected and Fourier-transformed by a lens, and subsequently imaged on a CCD camera. The recorded Fraunhofer diffraction pattern provides information about the projected area of the scattering particle, and can thus be used to determine the size and the shape of aerosol particles. The sensor has been tested on fibers which are of interest in the field of working environment monitoring. The recorded output intensity variation has been analysed, and the relationship between the shape and the size of each fibre, and the resulting scattering profiles has been investigated. A simple one-dimensional model for the optical feedback variation due to the light-particle interaction in the external cavity is also discussed 34 refs, 26 figs, 6 tabs

  1. [The hygienic evaluation of an aerosol-gas mixture as a preservative of potable water].

    Science.gov (United States)

    Prokopov, V A; Gakal, R K; Mironets, N V; Byshovets, T F; Martyshchenko, N V; Teteneva, I A; Nadvornaia, Zh N

    1993-01-01

    Complex hygienic assessment of the aerosol-gas method for the drinking water conservation demonstrated no significant effects on white rats in toxicological and genetical experiments. The method was recommended for long-term conservation of the drinking water in steel tanks.

  2. Estimation of aerosol optical properties from all-sky imagers

    Science.gov (United States)

    Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Salamalikis, Vasilios; Wilbert, Stefan; Prahl, Christoph

    2015-04-01

    Aerosols are one of the most important constituents in the atmosphere that affect the incoming solar radiation, either directly through absorbing and scattering processes or indirectly by changing the optical properties and lifetime of clouds. Under clear skies, aerosols become the dominant factor that affect the intensity of solar irradiance reaching the ground. It has been shown that the variability in direct normal irradiance (DNI) due to aerosols is more important than the one induced in global horizontal irradiance (GHI), while the uncertainty in its calculation is dominated by uncertainties in the aerosol optical properties. In recent years, all-sky imagers are used for the detection of cloud coverage, type and velocity in a bouquet of applications including solar irradiance resource and forecasting. However, information about the optical properties of aerosols could be derived with the same instrumentation. In this study, the aerosol optical properties are estimated with the synergetic use of all-sky images, complementary data from the Aerosol Robotic Network (AERONET) and calculations from a radiative transfer model. The area of interest is Plataforma Solar de Almería (PSA), Tabernas, Spain and data from a 5 month period are analyzed. The proposed methodology includes look-up-tables (LUTs) of diffuse sky radiance of Red (R), Green (G) and Blue (B) channels at several zenith and azimuth angles and for different atmospheric conditions (Angström α and β, single scattering albedo, precipitable water, solar zenith angle). Based on the LUTS, results from the CIMEL photometer at PSA were used to estimate the RGB radiances for the actual conditions at this site. The methodology is accompanied by a detailed evaluation of its robustness, the development and evaluation of the inversion algorithm (derive aerosol optical properties from RGB image values) and a sensitivity analysis about how the pre-mentioned atmospheric parameters affect the results.

  3. The Sectional Stratospheric Sulfate Aerosol module (S3A-v1) within the LMDZ general circulation model: description and evaluation against stratospheric aerosol observations

    Science.gov (United States)

    Kleinschmitt, Christoph; Boucher, Olivier; Bekki, Slimane; Lott, François; Platt, Ulrich

    2017-09-01

    Stratospheric aerosols play an important role in the climate system by affecting the Earth's radiative budget as well as atmospheric chemistry, and the capabilities to simulate them interactively within global models are continuously improving. It is important to represent accurately both aerosol microphysical and atmospheric dynamical processes because together they affect the size distribution and the residence time of the aerosol particles in the stratosphere. The newly developed LMDZ-S3A model presented in this article uses a sectional approach for sulfate particles in the stratosphere and includes the relevant microphysical processes. It allows full interaction between aerosol radiative effects (e.g. radiative heating) and atmospheric dynamics, including e.g. an internally generated quasi-biennial oscillation (QBO) in the stratosphere. Sulfur chemistry is semi-prescribed via climatological lifetimes. LMDZ-S3A reasonably reproduces aerosol observations in periods of low (background) and high (volcanic) stratospheric sulfate loading, but tends to overestimate the number of small particles and to underestimate the number of large particles. Thus, it may serve as a tool to study the climate impacts of volcanic eruptions, as well as the deliberate anthropogenic injection of aerosols into the stratosphere, which has been proposed as a method of geoengineering to abate global warming.

  4. Simulation of Optical Properties and Direct and Indirect Radiative Effects of Smoke Aerosols Over Marine Stratocumulus Clouds During Summer 2008 in California With the Regional Climate Model RegCM

    Science.gov (United States)

    Mallet, M.; Solmon, F.; Roblou, L.; Peers, F.; Turquety, S.; Waquet, F.; Jethva, H.; Torres, O.

    2017-10-01

    The regional climate model RegCM has been modified to better account for the climatic effects of biomass-burning particles. Smoke aerosols are represented by new tracers with consistent radiative and hygroscopic properties to simulate the direct radiative forcing (DRF), and a new parameterization has been integrated for relating the droplet number concentration to the aerosol concentration for marine stratocumulus clouds (Sc). RegCM has been tested during the summer of 2008 over California, when extreme concentration of smoke, together with the presence of Sc, is observed. This work indicates that significant aerosol optical depth (AOD) ( 1-2 at 550 nm) is related to the intense 2008 fires. Compared to Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer, the regional pattern of RegCM AOD is well represented although the magnitude is lower than satellite observations. Comparisons with Polarization and Directionality of Earth Reflectances (POLDER) above-clouds aerosol optical depth (ACAOD) show the ability of RegCM to simulate realistic ACAOD during the transport of smoke above the Pacific Ocean. The simulated single scattering albedo is 0.90 (at 550 nm) near biomass-burning sources, consistent with OMI and POLDER, and smoke leads to shortwave heating rates 1.5-2°K d-1. RegCM is not able to correctly resolve the daily patterns in cloud properties notably due to its coarse horizontal resolutions. However, the changes in the sign of the DRF at top of atmosphere (TOA) (negative to positive) from clear-sky to all-sky conditions is well simulated. Finally, the "aerosol-cloud" parameterization allows simulating an increase of the cloud optical depth for significant concentrations, leading to large perturbations of radiative fluxes at TOA.

  5. Aerosol in the containment

    International Nuclear Information System (INIS)

    Lanza, S.; Mariotti, P.

    1986-01-01

    The US program LACE (LWR Aerosol Containment Experiments), in which Italy participates together with several European countries, Canada and Japan, aims at evaluating by means of a large scale experimental activity at HEDL the retention in the pipings and primary container of the radioactive aerosol released following severe accidents in light water reactors. At the same time these experiences will make available data through which the codes used to analyse the behaviour of the aerosol in the containment and to verify whether by means of the codes of thermohydraulic computation it is possible to evaluate with sufficient accuracy variable influencing the aerosol behaviour, can be validated. This report shows and compares the results obtained by the participants in the LACE program with the aerosol containment codes NAVA 5 and CONTAIN for the pre-test computations of the test LA 1, in which an accident called containment by pass is simulated

  6. Evaluating the indirect effect of self-compassion on binge eating severity through cognitive-affective self-regulatory pathways.

    Science.gov (United States)

    Webb, Jennifer B; Forman, Mallory J

    2013-04-01

    Current theory and evidence point to disruptions in self-concept and difficulties with emotion regulation as contributing to the severity of binge eating. Alternatively, contemporary perspectives on self-compassion suggest that individual differences in this adaptive approach to self-regulation may serve to counteract these cognitive-affective triggers presumably resulting in reductions in binge eating severity. Accordingly, the present cross-sectional analysis examined an indirect effect model of positive dimensions of self-compassion on binge eating severity through both emotional tolerance and unconditional self-acceptance pathways. Two hundred fifteen undergraduate students (78% female) completed self-report measures of the variables of interest; BMI was calculated from self-reported heights and weights. Pearson's correlations revealed a positive linear association between self-compassion and unconditional self-acceptance; negative links were observed between self-compassion and emotional intolerance along with the severity of binge eating symptoms. A subsequent multiple mediator analysis utilizing both normal test theory and robust non-parametric bootstrap resampling procedures confirmed the presence of a significant total indirect effect of self-compassion on binge eating severity (-.15, pemotional tolerance (-.05, pcollege health promotion efforts towards mitigating the appreciable levels of binge eating behavior prevalent in this at-risk population. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols

    Directory of Open Access Journals (Sweden)

    C. Liousse

    2010-10-01

    Full Text Available African biomass burning emission inventories for gaseous and particulate species have been constructed at a resolution of 1 km by 1km with daily coverage for the 2000–2007 period. These inventories are higher than the GFED2 inventories, which are currently widely in use. Evaluation specifically focusing on combustion aerosol has been carried out with the ORISAM-TM4 global chemistry transport model which includes a detailed aerosol module. This paper compares modeled results with measurements of surface BC concentrations and scattering coefficients from the AMMA Enhanced Observations period, aerosol optical depths and single scattering albedo from AERONET sunphotometers, LIDAR vertical distributions of extinction coefficients as well as satellite data. Aerosol seasonal and interannual evolutions over the 2004–2007 period observed at regional scale and more specifically at the Djougou (Benin and Banizoumbou (Niger AMMA/IDAF sites are well reproduced by our global model, indicating that our biomass burning emission inventory appears reasonable.

  8. Evaluation of the radon interference on the performance of the portable monitoring air pump for radioactive aerosols (MARE).

    Science.gov (United States)

    Glavič-Cindro, Denis; Brodnik, Drago; Cardellini, Francesco; De Felice, Pierino; Ponikvar, Dušan; Vencelj, Matjaž; Petrovič, Toni

    2018-04-01

    A compact portable aerosol sampling and measurement device was developed at Jožef Stefan Institute (JSI). A CeBr 3 scintillation detector is positioned centrally within a concertinaed filter assembly. It provides continuous and via network communications on-line monitoring of low levels of airborne radioactive particulates. The evaluation of the response of the device to the natural background at controlled conditions with elevated radon concentrations, performed at the National Institute of Ionizing Radiation Metrology of ENEA, is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Evaluation of Aerosol Mixing State Classes in the GISS Modele-matrix Climate Model Using Single-particle Mass Spectrometry Measurements

    Science.gov (United States)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-01-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 micron, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 micron contain large fractions of organic material, internally-mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  10. Evaluation of systems for reducing the transmission of Porcine reproductive and respiratory syndrome virus by aerosol

    OpenAIRE

    Dee, Scott A.; Batista, Laura; Deen, John; Pijoan, Carlos

    2006-01-01

    The purpose of this study was to compare 3 methods for the reduction of aerosol transmission of Porcine reproductive and respiratory syndrome virus (PRRSV): high-efficiency particulate air (HEPA) filtration, low-cost filtration, and ultraviolet light (UV) irradiation. The HEPA-filtration system involved a pre-filter screen, a bag filter (EU8 rating), and a HEPA filter (EU13 rating). The low-cost-filtration system contained mosquito netting (pre-filter), a fiberglass furnace filter, and an ele...

  11. In vitro evaluation of aerosol delivery by different nebulization modes in pediatric and adult mechanical ventilators.

    Science.gov (United States)

    Wan, Gwo-Hwa; Lin, Hui-Ling; Fink, James B; Chen, Yen-Hey; Wang, Wei-Jhen; Chiu, Yu-Chun; Kao, Yu-Yao; Liu, Chia-Jung

    2014-10-01

    Aerosol delivery through mechanical ventilation is influenced by the type of aerosol generator, pattern of nebulization, and a patient's breathing pattern. This study compares the efficiency of pneumatic nebulization modes provided by a ventilator with adult and pediatric in vitro lung models. Three pneumatic nebulization modes (inspiratory intermittent [IIM], continuous [CM], and expiratory intermittent [EIM]) provided by the Galileo Gold ventilator delivered medical aerosol to collection filters distal to an endotracheal tube with adult and pediatric test lungs. A unit dose of 5 mg/2.5 mL albuterol was diluted into 4 mL with distilled water and added to a jet nebulizer. The nebulizer was placed proximal to the ventilator, 15 cm from the inlet of the heated humidifier chamber with a T-piece and corrugated aerosol tubing and powered by gas from the ventilator in each of the 3 modes. Time for nebulization was recorded in minutes. Albuterol samples collected in the inhalation filter, nebulizer, T-piece, and corrugated tubing were eluted with distilled water and analyzed with a spectrophotometer. The inhaled drug, as a percentage of total dose in both lung models, was 5.1-7.5%, without statistical significance among the 3 modes. Median nebulization times for IIM, CM, and EIM were 38.9, 14.3, and 17.7 min, respectively, and nebulization time for the 3 modes significantly differed (P ventilator was not dependent on nebulization mode during simulated pediatric and adult conventional mechanical ventilation. Use of expiratory intermittent mode and continuous nebulization should be considered to reduce treatment time. Copyright © 2014 by Daedalus Enterprises.

  12. Evaluation of the foetal time to death in mice after application of direct and indirect euthanasia methods.

    Science.gov (United States)

    Muñoz-Mediavilla, C; Cámara, J A; Salazar, S; Segui, B; Sanguino, D; Mulero, F; de la Cueva, E; Blanco, I

    2016-04-01

    Directive 2010/63/EU on the protection of animals used for scientific purposes requires that the killing of mammal foetuses during the last third of their gestational period should be accomplished through effective and humane methods. The fact that murine foetuses are resistant to hypoxia-mediated euthanasia renders the current euthanasia methods ineffective or humane for the foetuses when these methods are applied to pregnant female mice. We have assessed the time to death of foetuses after performing either indirect (dam euthanasia) or direct (via intraplacental injection--a new approach to euthanasia) euthanasia methods in order to determine a euthanasia method that is appropriate, ethical and efficient for the killing of mouse foetuses. The respective times to death of foetuses after performing the three most commonly used euthanasia methods (namely cervical dislocation, CO2inhalation and intraperitoneal sodium pentobarbital administration) were recorded. Absence of foetal heartbeat was monitored via ultrasound. We consider that the most effective and humane method of foetal euthanasia was the one able to achieve foetal death within the shortest possible period of time. Among the indirect euthanasia methods assessed, the administration of a sodium pentobarbital overdose to pregnant female mice was found to be the fastest for foetuses, with an average post-treatment foetal death of approximately 29.8 min. As for the direct euthanasia method assessed, foetal time to death after intraplacental injection of sodium pentobarbital was approximately 14 min. Significant differences among the different mouse strains employed were found. Based on the results obtained in our study, we consider that the administration of a sodium pentobarbital overdose by intraplacental injection to be an effective euthanasia method for murine foetuses. © The Author(s) 2015.

  13. Aerosol optical depth retrieval over snow using AATSR data

    NARCIS (Netherlands)

    Mei, L.; Xue, Y.; Kokhanovsky, A.A.; Hoyningen-Huene, W. von; Istomina, L.; Leeuw, G. de; Burrows, J.P.; Guang, J.; Jing, Y.

    2013-01-01

    Aerosol observations over the Arctic are important because of the effects of aerosols on Arctic climate, such as their direct and indirect effects on the Earth's radiation balance and on snow albedo. Although information on aerosol properties is available from ground-based measurements, passive

  14. Single point aerosol sampling: Evaluation of mixing and probe performance in a nuclear stack

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, J.C.; Fairchild, C.I.; Wood, G.O. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-02-01

    Alternative Reference Methodologies (ARMs) have been developed for sampling of radionuclides from stacks and ducts that differ from the methods required by the U.S. EPA. The EPA methods are prescriptive in selection of sampling locations and in design of sampling probes whereas the alternative methods are performance driven. Tests were conducted in a stack at Los Alamos National Laboratory to demonstrate the efficacy of the ARMs. Coefficients of variation of the velocity tracer gas, and aerosol particle profiles were determined at three sampling locations. Results showed numerical criteria placed upon the coefficients of variation by the ARMs were met at sampling stations located 9 and 14 stack diameters from flow entrance, but not at a location that is 1.5 diameters downstream from the inlet. Experiments were conducted to characterize the transmission of 10 {mu}m aerodynamic equivalent diameter liquid aerosol particles through three types of sampling probes. The transmission ratio (ratio of aerosol concentration at the probe exit plane to the concentration in the free stream) was 107% for a 113 L/min (4-cfm) anisokinetic shrouded probe, but only 20% for an isokinetic probe that follows the EPA requirements. A specially designed isokinetic probe showed a transmission ratio of 63%. The shrouded probe performance would conform to the ARM criteria; however, the isokinetic probes would not.

  15. The deposition - a modern phenomenon in the evaluation of inhalation risk of mining aerosols

    Directory of Open Access Journals (Sweden)

    Ľubomír Legáth

    2007-04-01

    Full Text Available The deposition is defined as an array of processes causing a part of the inhaled aerosol to remain (after its expiration in the respiratory tract. The particles retained in the respiratory tract are called deposits. The deposition encompasses of three different mechanisms: impaction, sedimentation and Brown molecular movement combined with the diffusion. The impaction remains the most potential contribution to the deposition in the conductive zone of the respiratory tract. While the sedimentation and diffusion in conjunction with the Brown molecular movement have a major impact in the respiratory area with the zero flow movement. The above listed mechanisms participate with the different ratio to the deposition at respective parts of the respiratory tract.The deposition depends on physical and chemical properties of inhaled aerosols as well as on the susceptibility of each individual. The size, shape, mass, and electric charges are among the basic characteristics of aerosols. The individual susceptibility is mainly influenced by an anatomical arrangement of respiratory tract, tidal volume, frequency of breathing, and breath holding.

  16. Non-clinical safety and pharmacokinetic evaluations of propylene glycol aerosol in Sprague-Dawley rats and Beagle dogs.

    Science.gov (United States)

    Werley, Michael S; McDonald, Paddy; Lilly, Patrick; Kirkpatrick, Daniel; Wallery, Jeffrey; Byron, Peter; Venitz, Jürgen

    2011-09-05

    Aerosolized propylene glycol (PG) was generated as log-normally distributed particulate clouds in different concentrations using a novel capillary aerosol generator (CAG) and evaluated in a battery of non-clinical studies intended to assess its potential inhalation and systemic toxicity in 2 species before ICH-compliant "first-time-in-man" studies. Exposures were nose-only in rats, and via face mask with oropharyngeal tube in dogs. The CAG-generated PG aerosol had a mass median aerodynamic diameter (MMAD) of 2.29μm, with a 1.56 geometric standard deviation (GSD) in the rat studies, and a MMAD of 1.34μm (1.45 GSD) in the dog studies, consistent with expected particle size exposures in man. International Congress on Harmonization (ICH) Guidelines were followed, which recommend preliminary non-clinical safety studies using the vehicle and device (CAG-PG) prior to the first human exposure including safety pharmacology, pharmacokinetic (PK) studies, single dose toxicity studies, and repeated dose toxicity studies in two species. In the rat, the only biologically relevant findings included clinical signs of ocular and nasal irritation indicated by minor bleeding around the eyes and nose, and minimal laryngeal squamous metaplasia. This finding is commonly observed in inhalation studies in the rat, and likely related to the unique sensitivity of the tissue, as well as the circuitous airflow pathway through the larynx which increases particle deposition. In the female Beagle dog, treatment-related decreases in hemoglobin, red blood cells and hematocrit were observed in the two highest exposure groups, equivalent to approximately 18 and 60mg/kg/day. In male dogs from the high dose group, similar small decreases, albeit, non-statistically significant decreases were observed in these hematological markers as well. PK studies in rats and dogs showed that the absorption of PG following pulmonary inhalation exposure occurs rapidly, and equilibrium between lung tissue and plasma

  17. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

    Science.gov (United States)

    Matsui, H.; Koike, M.; Kondo, Y.; Fast, J. D.; Takigawa, M.

    2014-09-01

    Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimations of aerosol direct and indirect effects. In this study, we develop an aerosol module, designated the Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can explicitly represent these parameters by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 μm to resolve both aerosol sizes (12 bins) and BC mixing states (10 bins) for a total of 120 bins. The particles with diameters between 1 and 40 nm are resolved using additional eight size bins to calculate NPF. The ATRAS module is implemented in the WRF-Chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging, and SOA processes over East Asia during the spring of 2009. The BC absorption enhancement by coating materials is about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement is estimated to be 10-20% over northern East Asia and 20-35% over southern East Asia. A clear north-south contrast is also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increases CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increases CCN concentrations at lower supersaturations (larger particles) over southern East Asia. The application of ATRAS in East Asia also shows that the impact of each process on each optical and radiative parameter depends strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA

  18. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, H.; Koike, Makoto; Kondo, Yutaka; Fast, Jerome D.; Takigawa, M.

    2014-09-30

    Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimation of aerosol direct and indirect effects. In this study, we developed an aerosol module, designated Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can represent these parameters explicitly by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 µm to resolve both aerosol size (12 bins) and BC mixing state (10 bins) for a total of 120 bins. The particles with diameters from 1 to 40 nm are resolved using an additional 8 size bins to calculate NPF. The ATRAS module was implemented in the WRF-chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging and SOA processes over East Asia during the spring of 2009. BC absorption enhancement by coating materials was about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement was estimated to be 10 – 20% over northern East Asia and 20 – 35% over southern East Asia. A clear north-south contrast was also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increased CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increased CCN concentrations at lower supersaturations (larger particles) over southern East Asia. Application of ATRAS to East Asia also showed that the impact of each process on each optical and radiative parameter depended strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA

  19. Organic aerosols

    International Nuclear Information System (INIS)

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN

  20. Aerosols in the CALIOPE air quality modelling system: evaluation and analysis of PM levels, optical depths and chemical composition over Europe

    Directory of Open Access Journals (Sweden)

    S. Basart

    2012-04-01

    Full Text Available The CALIOPE air quality modelling system is developed and applied to Europe with high spatial resolution (12 km × 12 km. The modelled daily-to-seasonal aerosol variability over Europe in 2004 is evaluated and analysed. Aerosols are estimated from two models, CMAQv4.5 (AERO4 and BSC-DREAM8b. CMAQv4.5 calculates biogenic, anthropogenic and sea salt aerosol and BSC-DREAM8b provides the natural mineral dust contribution from North African deserts. For the evaluation, we use daily PM10, PM2.5 and aerosol components data from 55 stations of the EMEP/CREATE network and total, coarse and fine aerosol optical depth (AOD data from 35 stations of the AERONET sun photometer network. Annual correlations between modelled and observed values for PM10 and PM2.5 are 0.55 and 0.47, respectively. Correlations for total, coarse and fine AOD are 0.51, 0.63, and 0.53, respectively. The higher correlations of the PM10 and the coarse mode AOD are largely due to the accurate representation of the African dust influence in the forecasting system. Overall PM and AOD levels are underestimated. The evaluation of the aerosol components highlights underestimations in the fine fraction of carbonaceous matter (EC and OC and secondary inorganic aerosols (SIA; i.e. nitrate, sulphate and ammonium. The scores of the bulk parameters are significantly improved after applying a simple model bias correction based on the observed aerosol composition. The simulated PM10 and AOD present maximum values over the industrialized and populated Po Valley and Benelux regions. SIA are dominant in the fine fraction representing up to 80% of the aerosol budget in latitudes north of 40° N. In southern Europe, high PM10 and AOD are linked to the desert dust transport from the Sahara which contributes up to 40% of the aerosol budget. Maximum seasonal ground-level concentrations (PM10 > 30 μg m−3 are

  1. Cloning, expression and characterization of SeM protein of Streptococcus equi subsp. equi and evaluation of its use as antigen in an indirect ELISA

    Directory of Open Access Journals (Sweden)

    C.M. Moraes

    2014-08-01

    Full Text Available Strangles is an economically important horse disease caused by Streptococcus equi subsp. equi. The diagnosis can be confirmed either directly by bacterial isolation and PCR or by ELISA, which is an indirect method based on the detection of serum antibodies. The aim of this study was to clone, express and characterize the SeM protein of Streptococcus equi subsp. equi, evaluate its use as antigen in indirect ELISA and determine its performance to distinguish sera of negative, vaccinated and positive animals. This was initially performed by cloning the gene encoding the SeM protein and its expression in Escherichia coli. Subsequently, the protein produced was characterized and used as antigen in ELISA. Serum samples for evaluation were taken from 40 negative foals, 46 horses vaccinated with a commercial vaccine against strangles and 46 horses diagnosed with the disease. The test showed high specificity and sensitivity, allowing discrimination between negative and positive, positive and vaccinated animals, and vaccinated animals and negative sera. Thus, it was concluded that the protein produced rSeM, which can be used as antigen for disease diagnosis, and the described ELISA might be helpful to evaluate the immune status of the herd.

  2. Aerosol Optical Depth over Europe: Evaluation of the CALIOPE air quality modelling system with direct-sun AERONET observations

    Science.gov (United States)

    Basart, Sara; Pay, María. Teresa; Pérez, Carlos; Cuevas, Emilio; Jorba, Oriol; Piot, Matthias; María Baldasano, Jose

    2010-05-01

    In the frame of the CALIOPE project (Baldasano et al., 2008), the Barcelona Supercomputing Center (BSC-CNS) currently operates a high-resolution air quality forecasting system based on daily photochemical forecasts in Europe (12km x 12km resolution) with the WRF-ARW/HERMES/CMAQ modelling system (http://www.bsc.es/caliope) and desert dust forecasts over Southern Europe with BSC-DREAM8b (Pérez et al., 2006; http://www.bsc.es/projects/earthscience/DREAM). High resolution simulations and forecasts are possible through their implementation on MareNostrum supercomputer at BSC-CNS. As shown in previous air quality studies (e.g. Rodríguez et al., 2001; Jiménez-Guerrero et al., 2008), the contribution of desert dust on particulate matter levels in Southern Europe is remarkable due to its proximity to African desert dust sources. When considering only anthropogenic emissions (Baldasano et al., 2008) and the current knowledge about aerosol physics and chemistry, chemistry-transport model simulations underestimate the PM10 concentrations by 30-50%. As a first approach, the natural dust contribution from BSC-DREAM8b is on-line added to the anthropogenic aerosol output of CMAQ. The aim of the present work is the quantitative evaluation of the WRF-ARW/HERMES/ CMAQ/BSC-DREAM8b forecast system to simulate the Aerosol Optical Depth (AOD) over Europe. The performance of the modelled AOD has been quantitatively evaluated with discrete and categorical (skill scores) statistics by a comparison to direct-sun AERONET observations for 2004. The contribution of different types of aerosols will be analyzed by means of the O'Neill fine mode AOD products (O'Neill et al., 2001). A previous aerosol characterization of AERONET data was performed (Basart et al., 2009) in order to discriminate the different aerosol source contributions within the study region. The results indicate a remarkable improvement in the discrete and skill-scores evaluation (accuracy, critical success index and

  3. Evaluation of the impact of atmospheric ozone and aerosols on the horizontal global/diffuse UV Index at Livorno (Italy)

    Science.gov (United States)

    Scaglione, Daniele; Giulietti, Danilo; Morelli, Marco

    2016-08-01

    A study was conducted at Livorno (Italy) to evaluate the impact of atmospheric aerosols and ozone on the solar UV radiation and its diffuse component at ground in clear sky conditions. Solar UV radiation has been quantified in terms of UV Index (UVI), following the ISO 17166:1999/CIE S007/E-1998 international standard. UVI has been calculated by exploiting the libRadtran radiative transfer modelling software as a function of both the Aerosols Optical Depth (AOD) and the Total Ozone Column (TOC). In particular AOD and TOC values have been remotely sensed by the Ozone Monitoring Instrument (OMI) on board the NASA's EOS (Earth Observing System) satellites constellation. An experimental confirmation was also obtained by exploiting global UVI ground-based measurements from the 26/9/14 to 12/8/15 and diffuse UVI ground-based measurements from the 17/5/15 to 12/8/15. For every considered value of Solar Zenith Angle (SZA) and atmospheric condition, estimates and measurements confirm that the diffuse component contributes for more than 50% on the global UV radiation. Therefore an exposure of human skin also to diffuse solar UV radiation can be potentially harmful for health and need to be accurately monitored, e.g. by exploiting innovative applications such as a mobile app with a satellite-based UV dosimeter that has been developed. Global and diffuse UVI variations due to the atmosphere are primarily caused by the TOC variations (typically cyclic): the maximum TOC variation detected by OMI in the area under study leads to a corresponding variation in global and diffuse UVI of about 50%. Aerosols in the area concerned, mainly of maritime nature, have instead weaker effects causing a maximum variation of the global and diffuse UVI respectively of 9% and 35% with an SZA of 20° and respectively of 13% and 10% with an SZA of 60°.

  4. Radioactive aerosols

    International Nuclear Information System (INIS)

    Chamberlain, A.C.

    1991-01-01

    Radon. Fission product aerosols. Radioiodine. Tritium. Plutonium. Mass transfer of radioactive vapours and aerosols. Studies with radioactive particles and human subjects. Index. This paper explores the environmental and health aspects of radioactive aerosols. Covers radioactive nuclides of potential concern to public health and applications to the study of boundary layer transport. Contains bibliographic references. Suitable for environmental chemistry collections in academic and research libraries

  5. Indirect evaluation of corneal apoptosis in contact lens wearers by estimation of nitric oxide and antioxidant enzymes in tears

    Directory of Open Access Journals (Sweden)

    R P Bhatia

    2010-01-01

    Full Text Available Background : Contact lens induced trauma to the corneal epithelium results in increased release of inflammatory mediators. The keratocyte apoptosis is directly related to epithelial injury and has been correlated with increased production of nitric oxide. Potent antioxidant enzymes protect cells from oxidative damage by inactivating reactive oxygen species and thus inhibiting apoptosis. This study aims at determination of total nitric oxide and antioxidant enzymes in tears which will be an indirect criteria for assessing apoptosis. Materials and Methods : Nitric oxide and antioxidant enzymes were estimated in tears of 25 soft contact lens wearers and compared with 25 age and sex matched controls. Results : Statistically significant increase of nitric oxide (P< 0.001, superoxide dismutase (P< 0.001 and glutathione peroxidase (P< 0.001 levels was seen in tears of contact lens wearers as compared to controls. There was also statistically significant increase in the levels of antioxidant enzymes, superoxide dismutase (P< 0.05 and glutathione peroxidase (P< 0.01, with increase in the total duration of contact lens wear in years. Conclusions : Increase in the level of nitric oxide and antioxidant enzymes in tears of contact lens wearers suggested that contact lens wear suppresses the process of apoptosis. However, it was also postulated that the increased levels of nitric oxide balances the anti-apoptotic activities of increased levels of antioxidant enzymes by its pro-apoptotic activity leading to protective outcomes in contact lens wearers.

  6. Using the World Health Organization Health and Work Performance Questionnaire (HPQ) to evaluate the indirect workplace costs of illness.

    Science.gov (United States)

    Kessler, Ronald C; Ames, Minnie; Hymel, Pamela A; Loeppke, Ronald; McKenas, David K; Richling, Dennis E; Stang, Paul E; Ustun, T Bedirhan

    2004-06-01

    This report presents an overview of methodological issues in estimating the indirect workplace costs of illness from data obtained in employee surveys using the World Health Organization Health and Work Performance Questionnaire (HPQ). The HPQ is a brief self-report questionnaire that obtains three types of information: screening information about the prevalence and treatment of commonly occurring health problems; information about three types of workplace consequences (sickness absence, presenteeism, and critical incidents); and basic demographic information. The report considers two sets of methodological issues. The first set deals with measurement. The rationale for the HPQ approach to measurement is described in this section. In addition, data are presented regarding the accuracy of HPQ measures, documenting that the HPQ has excellent reliability, validity, and sensitivity to change. The second set of methodological issues deals with data analysis. A number of analysis problems are reviewed that arise in using self-report nonexperimental survey data to estimate the workplace costs of illness and the cost-effectiveness of treatment. Innovative data analysis strategies are described to address these problems.

  7. Environmental sciences: general. 1. Evaluation of Iodine Reactions with Nuclear Aerosols by DRIFT

    International Nuclear Information System (INIS)

    Riggs, C.A.; Tompson, R.V.; Ghosh, T.K.; Loyalka, S.K.

    2001-01-01

    Nuclear source term computations require databases for iodine vapor reactions with cesium compounds. We have explored measurements of iodine vapor [I 2(g) ] reactions with cesium carbonate particles [CsCO 3(s) ] using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in the far infrared region for iodine vapor concentrations typical of post-transient conditions in a pressurized water reactor containment. Cesium hydroxide (CsOH) in aerosol form is likely a significant source of radio-cesium released during a reactor transient. As shown in Eq. (1), CsOH (s) particles can combine with iodine gas to form cesium iodide [CsI (s) ] particles. Equations (2) and (3) present a two-step method where the CsOH (s) particles combine with carbon dioxide [CO 2(g) ] found in air to form Cs 2 CO 3(s) particles, which then react with iodine gas to form CsI (s) particles: I 2(g) + 4CsOH (s) ↔ 2CsI (s) 12CsO (s) 12H 2 O (l) , (1) CO 2(g) 12CsOH (s) ↔ Cs 2 CO 3(s) + H 2 O, (2) and Cs 2 CO 3(s) 13I 2(g) ↔ 5CsI (s) + CsIO 3(s) + 3CO 2(g) . (3) We elected to study reactions with Cs 2 CO 3(s) rather than CsOH (s) particles because of significant analytical and handling challenges with the DRIFT attachment presented by the corrosive characteristics of CsOH (s) particles. Physical modifications to the DRIFT attachment, in addition to improved handling practices, need to be evaluated prior to proceeding with the study of CsOH (s) by this method. The reaction of cesium carbonate agglomerates with iodine could occur by surface adsorption and/or absorption. Physical adsorption depends on the surface area and porosity of the solid material. Chemical adsorption depends on the chemical properties of both the gas and the solid material. Beahm et al. previously used classical wet chemical methods to monitor the reaction products after the reaction occurred. The use of DRIFT allows the study of the predicted physical and chemical adsorption occurring on the Cs 2 CO 3(s) surface

  8. Evaluation of Indirect Measurement Method of Seasonal Patterns of Leaf Area Index in a High-Density Short Rotation Coppice Culture of Poplar

    Directory of Open Access Journals (Sweden)

    Abhishek M. Tripathi

    2016-01-01

    Full Text Available Leaf area index (LAI is an important determinant of biomass production and yield of short rotation bio-energy plantation. An accurate measurement of LAI is critical for quantifying light interception and penetration within the canopy, and subsequently understanding its influence on the stand carbon and energy balance. The aim of the current study is validation of the Sunscan Plant Canopy Analyzer which serves as an indirect method for the evaluation of the seasonal patterns of LAI, relation between LAI and above ground woody dry biomass and to determine the specific leaf area in short-rotation poplar hybrid clone J-105 (Populus nigra × P. maximowiczii in uncoppiced (1st rotation and coppiced (2nd rotation, respectively. LAI was measured in uncoppiced and coppiced by two different methods using indirect (SunScan Plant Canopy Analyzer and direct (litterfall collection. Sunscan Plant Canopy Analyzer was compared against litterfall collection (only way to retrieve the actual LAI. Simple regression (R2 = 0.82 model was fitted to validate indirect measurement method and a very good agreement (82% was observed in LAI values estimated from SunScan Plant Canopy Analyzer and from litterfall collection. Seasonal variability of LAI in a short rotation coppice (SRC culture of poplar clone J-105 was evaluated over six years period (2008–2013, for uncoppiced (2008 and 2009 and coppiced (2010, 2011, 2012 and 2013 culture. The maximum canopy LAI (LAImax reached 7.3 (uncoppiced and 9.5 (coppiced. The linear regression (R2 = 0.93 for average LAI and above ground woody dry biomass was determined, and it was found that LAI acts an indicator of biomass productivity. Specific leaf area (SLA was estimated in both uncoppiced and coppiced culture of poplar. The maximum SLA was found to be 138.9 cm2g−1 in uncoppiced and 126.9 cm2g−1 in coppiced. To conclude, the evaluated indirect LAI measurement method is portable, reliable and faster than direct LAI measurement

  9. Organic nitrate and secondary organic aerosol yield from NO3 oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model

    Directory of Open Access Journals (Sweden)

    H.-P. Dorn

    2009-02-01

    Full Text Available The yields of organic nitrates and of secondary organic aerosol (SOA particle formation were measured for the reaction NO3+β-pinene under dry and humid conditions in the atmosphere simulation chamber SAPHIR at Research Center Jülich. These experiments were conducted at low concentrations of NO3 (NO3+N2O5pvap~5×10−6 Torr (6.67×10−4 Pa, which constrains speculation about the oxidation mechanism and chemical identity of the organic nitrate. Once formed the SOA in this system continues to evolve, resulting in measurable aerosol volume decrease with time. The observations of high aerosol yield from NOx-dependent oxidation of monoterpenes provide an example of a significant anthropogenic source of SOA from biogenic hydrocarbon precursors. Estimates of the NO3+β-pinene SOA source strength for California and the globe indicate that NO3 reactions with monoterpenes are likely an important source (0.5–8% of the global total of organic aerosol on regional and global scales.

  10. Evaluation of Vapor Pressure Estimation Methods for Use in Simulating the Dynamic of Atmospheric Organic Aerosols

    Directory of Open Access Journals (Sweden)

    A. J. Komkoua Mbienda

    2013-01-01

    Lee and Kesler (LK, and Ambrose-Walton (AW methods for estimating vapor pressures ( are tested against experimental data for a set of volatile organic compounds (VOC. required to determine gas-particle partitioning of such organic compounds is used as a parameter for simulating the dynamic of atmospheric aerosols. Here, we use the structure-property relationships of VOC to estimate . The accuracy of each of the aforementioned methods is also assessed for each class of compounds (hydrocarbons, monofunctionalized, difunctionalized, and tri- and more functionalized volatile organic species. It is found that the best method for each VOC depends on its functionality.

  11. Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics

    Directory of Open Access Journals (Sweden)

    S. Guo

    2013-08-01

    Full Text Available To assess the primary and secondary sources of fine organic aerosols after the aggressive implementation of air pollution controls during the 2008 Beijing Olympic Games, 12 h PM2.5 values were measured at an urban site at Peking University (PKU and an upwind rural site at Yufa during the CAREBEIJING-2008 (Campaigns of Air quality REsearch in BEIJING and surrounding region summer field campaign. The average PM2.5 concentrations were 72.5 ± 43.6 μg m−3 and 64.3 ± 36.2 μg m−3 (average ± standard deviation, below as the same at PKU and Yufa, respectively, showing the lowest concentrations in recent years. Combining the results from a CMB (chemical mass balance model and secondary organic aerosol (SOA tracer-yield model, five primary and four secondary fine organic aerosol sources were compared with the results from previous studies in Beijing. The relative contribution of mobile sources to PM2.5 concentrations was increased in 2008, with diesel engines contributing 16.2 ± 5.9% and 14.5 ± 4.1% and gasoline vehicles contributing 10.3 ± 8.7% and 7.9 ± 6.2% to organic carbon (OC at PKU and Yufa, respectively. Due to the implementation of emission controls, the absolute OC concentrations from primary sources were reduced during the Olympics, and the contributions from secondary formation of OC represented a larger relative source of fine organic aerosols. Compared with the non-controlled period prior to the Olympics, primary vehicle contributions were reduced by 30% at the urban site and 24% at the rural site. The reductions in coal combustion contributions were 57% at PKU and 7% at Yufa. Our results demonstrate that the emission control measures implemented in 2008 significantly alleviated the primary organic particle pollution in and around Beijing. However, additional studies are needed to provide a more comprehensive assessment of the emission control effectiveness on SOA formation.

  12. Histological evaluation of the rat dental pulp after indirect capping with sildenafil or L-NAME incorporated into a bioadhesive thermoresponsive system

    Directory of Open Access Journals (Sweden)

    Rogério Rodrigues Cupertino

    2016-06-01

    Full Text Available We evaluated the histological dental pulp state in vivo after indirect pulp capping using sildenafil or LG-nitro-L-arginine (L-NAME, incorporated into a new bioadhesive thermoresponsive system (BTS. Male Wistar rats were subjected to an upper and lower first molar class I cavity preparation followed by indirect pulp capping with sildenafil or L-NAME. Calcium hydroxide (CaOH2 was used as a control. The teeth and surrounding bone were properly dissected and processed for Nissl’s staining. Pulp state was evaluated considering the morphological aspects of the inflammatory response, type of inflammatory infiltrate, organization of the odontoblast layer, blood vessel condition, and presence of abscesses or necrosis. The results were expressed as average of observations. The most intense inflammatory response was observed 3 days after the cavity preparation. No identified changes were detected in the dental pulp response of the molars treated with L-NAME compared with those treated with CaOH2. A dual effect was observed in the teeth treated with sildenafil. While low sildenafil concentration (0.015% w w-1 promoted effects comparable to CaOH2, at a higher concentration (0.15% w w-1, sildenafil caused a severe inflammatory response and pulp necrosis. This pioneering suggest that NO pathway activity may be a determinant in the process of dental pulp healing.

  13. Performance evaluation of an indirect pre-cooling evaporative heat exchanger operating in hot and humid climate

    International Nuclear Information System (INIS)

    Cui, X.; Chua, K.J.; Islam, M.R.; Ng, K.C.

    2015-01-01

    Highlights: • An IEHX is introduced as a pre-cooling unit for humid tropical climate. • A computational model is developed to investigate the performance of IEHX. • The air treatment process with condensation from the product air is studied. • The hybrid system shows an appreciable energy saving potential. - Abstract: A hybrid system, that combines an indirect evaporative heat exchanger (IEHX) and a vapor compression system, is introduced for humid tropical climate application. The chief purpose of the IEHX is to pre-cool the incoming air for vapor compression system. In the IEHX unit, the outdoor humid air in the product channel may potentially condense when heat is exchanged with the room exhaust air. A computational model has been developed to theoretically investigate the performance of an IEHX with condensation from the product air by employing the room exhaust air as the working air. We validated the model by comparing its temperature distribution and predicted heat flux against experimental data acquired from literature sources. The numerical model showed good agreement with the experimental findings with maximum average discrepancy of 9.7%. The validated model was employed to investigate the performance of two types of IEHX in terms of the air treatment process, temperature and humidity distribution, cooling effectiveness, cooling capacity, and energy consumption. Simulation results have indicated that the IEHX unit is able to fulfill 47% of the cooling load for the outdoor humid air while incurring a small amount of fan power. Consequently, the hybrid system is able to realize significant energy savings

  14. Evaluating the Height of Biomass Burning Smoke Aerosols Retrieved from Synergistic Use of Multiple Satellite Sensors Over Southeast Asia

    Science.gov (United States)

    Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae; Tsay, Si-Chee; Welton, Ellsworth J.; Wang, Sheng-Hsiang; Chen, Wei-Nai

    2016-01-01

    This study evaluates the height of biomass burning smoke aerosols retrieved from a combined use of Visible Infrared Imaging Radiometer Suite (VIIRS), Ozone Mapping and Profiler Suite (OMPS), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. The retrieved heights are compared against space borne and ground-based lidar measurements during the peak biomass burning season (March and April) over Southeast Asia from 2013 to 2015. Based on the comparison against CALIOP, a quality assurance (QA) procedure is developed. It is found that 74 (8184) of the retrieved heights fall within 1 km of CALIOP observations for unfiltered (QA-filtered) data, with root-mean-square error (RMSE) of 1.1 km (0.81.0 km). Eliminating the requirement of CALIOP observations from the retrieval process significantly increases the temporal coverage with only a slight decrease in the retrieval accuracy; for best QA data, 64 of data fall within 1 km of CALIOP observations with RMSE of 1.1 km. When compared with Micro-Pulse Lidar Network (MPLNET) measurements deployed at Doi Ang Khang, Thailand, the retrieved heights show RMSE of 1.7 km (1.1 km) for unfiltered (QA-filtered) data for the complete algorithm, and 0.9 km (0.8 km) for the simplified algorithm.

  15. Evaluation of lung epithelial permeability in the volatile substance abuse using Tc-99m DTPA aerosol scintigraphy

    International Nuclear Information System (INIS)

    Cayir, D.; Demirel, K.; Korkmaz, M.; Koca, G.

    2011-01-01

    Chronic inhalant use is associated with significant toxic effects, including neurological, renal, hepatic, and pulmonary damage. However, there is a paucity of reports regarding respiratory complications in inhalant abusers. The aim of this study was to evaluate pulmonary epithelial permeability in the volatile substance abuse (VSA) using technetium-99m-labeled diethylenetriamine pentaacetic acid (Tc-99m DTPA) aerosol scintigraphy. This study included 18 patients with volatile substance abuse and 18 volunteer controls. All of patients and controls were smokers. Tc-99m DTPA aerosol scintigraphy was performed in all cases. Time-activity curves from each lung were generated and clearance half-time (T 1/2 ) of Tc-99m DTPA were calculated. T 1/2 of whole lung was calculated as a mean of the T 1/2 of left and right lung. The T 1/2 values of Tc-99m DTPA clearance in the substance abusers were significantly decreased as compared to the control group with respective mean values of 28.86±8.44, and 62.14±26.12 min (p=0.001). It was seen Tc-99m DTPA clearance from lung was faster as the duration of substance abuse was increased. Tc-99m DTPA pulmonary clearance is markedly accelerated in the volatile substance abuse. This suggests that inhalant abuse of substance may produce abnormalities in pulmonary alveolo-capillary membrane function. (author)

  16. Evaluation of an aerosol emitter for mating disruption of Cydia pomonella in Italy.

    Science.gov (United States)

    Baldessari, M; Rizzi, C; Tolotti, G; Angeli, G

    2013-01-01

    Some techniques have been developed to disrupt mating (MD) of codling moth (CM) by treating orchards with pheromone. Synthetic pheromone is applied to the crop as a formulation that is designed to protect these generally labile compounds from degradation while gradually releasing pheromone into the atmosphere. In Trentino South Tyrol MD has been adopted successfully (24,500 ha, i.e. 73% of the apple area) to control CM in heavily infested areas; while in areas with low pest pressure, less pesticides are usually applied (2-3 per year) and as a consequence, pheromone mating disruption is not considered economically convenient. Hand applied sealed plastic tubes and plastic ampoules are the two pheromone formulations more widely used. A new pheromone-based control technique, called Puffer, has been recently proposed. Puffers are battery-powered devices that release pheromone from pressurized aerosol cans every 15 minutes for 12 hours or 30 min for 24 hours. During each puff a quantity of 6.95 mg a.i. is emitted. The high release rate of pheromone per puff from aerosol dispensers is thought to compensate for their low application densities (2-2.5 puffer/hectare). Results of three year field trials carried out in Trentino-South Tyrol demonstrated the potential of Puffer as effective tool to control the moth.

  17. Uncertainty in Predicting CCN Activity of Aged and Primary Aerosols

    Science.gov (United States)

    Zhang, Fang; Wang, Yuying; Peng, Jianfei; Ren, Jingye; Collins, Don; Zhang, Renyi; Sun, Yele; Yang, Xin; Li, Zhanqing

    2017-11-01

    Understanding particle CCN activity in diverse atmospheres is crucial when evaluating aerosol indirect effects. Here aerosols measured at three sites in China were categorized as different types for attributing uncertainties in CCN prediction in terms of a comprehensive data set including size-resolved CCN activity, size-resolved hygroscopic growth factor, and chemical composition. We show that CCN activity for aged aerosols is unexpectedly underestimated 22% at a supersaturation (S) of 0.2% when using κ-Kohler theory with an assumption of an internal mixture with measured bulk composition that has typically resulted in an overestimate of the CCN activity in previous studies. We conclude that the underestimation stems from neglect of the effect of aging/coating on particle hygroscopicity, which is not considered properly in most current models. This effect enhanced the hygroscopicity parameter (κ) by between 11% (polluted conditions) and 30% (clean days), as indicated in diurnal cycles of κ based on measurements by different instruments. In the urban Beijing atmosphere heavily influenced by fresh emissions, the CCN activity was overestimated by 45% at S = 0.2%, likely because of inaccurate assumptions of particle mixing state and because of variability of chemical composition over the particle size range. For both fresh and aged aerosols, CCN prediction exhibits very limited sensitivity to κSOA, implying a critical role of other factors like mixing of aerosol components within and between particles in regulating CCN activity. Our findings could help improving CCN parameterization in climate models.

  18. Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements

    Directory of Open Access Journals (Sweden)

    Mian Chin

    2009-09-01

    Full Text Available Atmospheric aerosol distributions from 2000 to 2007 are simulated with the Goddard Chemistry Aerosol Radiation and Transport (GOCART model to attribute light absorption by aerosol to its composition and sources from pollution, dust, and biomass burning. The 8-year, global averaged total aerosol optical depth (τ, absorption optical depth (τa, and single scattering albedo (ω at 550 nm are estimated at 0.14, 0.0086, and 0.95, respectively, with sulfate making the largest fraction of τ (37%, followed by dust (30%, sea salt (16%, organic matter (OM (13%, and black carbon (BC (4%. BC and dust account for 43% and 53% of τa, respectively. From a model experiment with "tagged" sources, natural aerosols are estimated to be 58% of τ and 53% of τa, with pollution and biomass burning aerosols to share the rest. Comparing with data from the surface sunphotometer network AERONET, the model tends to reproduce much better the AERONET direct measured data of τ and the Ångström exponent (α than its retrieved quantities of ω and τa. Relatively small in its systematic bias of τ for pollution and dust regions, the model tends to underestimate τ for biomass burning aerosols by 30–40%. The modeled α is 0.2–0.3 too low (particle too large for pollution and dust aerosols but 0.2–0.3 too high (particle too small for the biomass burning aerosols, indicating errors in particle size distributions in the model. Still, the model estimated ω is lower in dust regions and shows a much stronger wavelength dependence for biomass burning aerosols but a weaker one for pollution aerosols than those quantities from AERONET. These comparisons necessitate model improvements on aerosol size distributions, the refractive indices of dust and black carbon aerosols, and biomass burning emissions in order to better quantify the aerosol absorption in the atmosphere.

  19. Aerosol effects in radiation transfer

    International Nuclear Information System (INIS)

    Binenko, V.I.; Harshvardhan, H.

    1993-01-01

    The radiative properties and effects of aerosols are assessed for the following aerosol sources: relatively clean background aerosol, dust storms and dust outbreaks, anthropogenic pollution, and polluted cloud layers. Studies show it is the submicron aerosol fraction that plays a dominant radiative role in the atmosphere. The radiative effect of the aerosol depends not only on its loading but also on the underlying surface albedo and on solar zenith angle. It is only with highly reflecting surfaces such as Arctic ice that aerosols have a warming effect. Radiometric, microphysical, mineral composition, and refractive index measurements are presented for dust and in particular for the Saharan aerosol layer (SAL). Short-wave radiative heating of the atmosphere is caused by the SAL and is due mainly to absorption. However, the SAL does not contribute significantly to the long-wave thermal radiation budget. Field program studies of the radiative effects of aerosols are described. Anthropogenic aerosols deplete the incoming solar radiation. A case field study for a regional Ukrainian center is discussed. The urban aerosol causes a cooling of metropolitan centers, compared with outlying areas, during the day, which is followed by a warming trend at night. In another study, an increase in turbidity by a factor of 3 due to increased industrialization for Mexico City is noted, together with a drop in atmospheric transmission by 10% over a 50-year period. Numerous studies are cited that demonstrate that anthropogenic aerosols affect both the microphysical and radiative properties of clouds, which in turn affect regional climate. Particles acting as cloud nuclei are considered to have the greatest indirect effect on cloud absorptivity of short-wave radiation. Satellite observations show that low-level stratus clouds contaminated by ship exhaust at sea lead to an increase in cloud albedo

  20. A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R

    International Nuclear Information System (INIS)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael

    2014-01-01

    We present a numerical testbed for remote sensing of aerosols, together with a demonstration for evaluating retrieval synergy from a geostationary satellite constellation. The testbed combines inverse (optimal-estimation) software with a forward model containing linearized code for computing particle scattering (for both spherical and non-spherical particles), a kernel-based (land and ocean) surface bi-directional reflectance facility, and a linearized radiative transfer model for polarized radiance. Calculation of gas absorption spectra uses the HITRAN (HIgh-resolution TRANsmission molecular absorption) database of spectroscopic line parameters and other trace species cross-sections. The outputs of the testbed include not only the Stokes 4-vector elements and their sensitivities (Jacobians) with respect to the aerosol single scattering and physical parameters (such as size and shape parameters, refractive index, and plume height), but also DFS (Degree of Freedom for Signal) values for retrieval of these parameters. This testbed can be used as a tool to provide an objective assessment of aerosol information content that can be retrieved for any constellation of (planned or real) satellite sensors and for any combination of algorithm design factors (in terms of wavelengths, viewing angles, radiance and/or polarization to be measured or used). We summarize the components of the testbed, including the derivation and validation of analytical formulae for Jacobian calculations. Benchmark calculations from the forward model are documented. In the context of NASA's Decadal Survey Mission GEO-CAPE (GEOstationary Coastal and Air Pollution Events), we demonstrate the use of the testbed to conduct a feasibility study of using polarization measurements in and around the O 2 A band for the retrieval of aerosol height information from space, as well as an to assess potential improvement in the retrieval of aerosol fine and coarse mode aerosol optical depth (AOD) through the

  1. An Investigation of the Radiative Effects and Climate Feedbacks of Sea Ice Sources of Sea Salt Aerosol

    Science.gov (United States)

    Horowitz, H. M.; Alexander, B.; Bitz, C. M.; Jaegle, L.; Burrows, S. M.

    2017-12-01

    In polar regions, sea ice is a major source of sea salt aerosol through lofting of saline frost flowers or blowing saline snow from the sea ice surface. Under continued climate warming, an ice-free Arctic in summer with only first-year, more saline sea ice in winter is likely. Previous work has focused on climate impacts in summer from increasing open ocean sea salt aerosol emissions following complete sea ice loss in the Arctic, with conflicting results suggesting no net radiative effect or a negative climate feedback resulting from a strong first aerosol indirect effect. However, the radiative forcing from changes to the sea ice sources of sea salt aerosol in a future, warmer climate has not previously been explored. Understanding how sea ice loss affects the Arctic climate system requires investigating both open-ocean and sea ice sources of sea-salt aerosol and their potential interactions. Here, we implement a blowing snow source of sea salt aerosol into the Community Earth System Model (CESM) dynamically coupled to the latest version of the Los Alamos sea ice model (CICE5). Snow salinity is a key parameter affecting blowing snow sea salt emissions and previous work has assumed constant regional snow salinity over sea ice. We develop a parameterization for dynamic snow salinity in the sea ice model and examine how its spatial and temporal variability impacts the production of sea salt from blowing snow. We evaluate and constrain the snow salinity parameterization using available observations. Present-day coupled CESM-CICE5 simulations of sea salt aerosol concentrations including sea ice sources are evaluated against in situ and satellite (CALIOP) observations in polar regions. We then quantify the present-day radiative forcing from the addition of blowing snow sea salt aerosol with respect to aerosol-radiation and aerosol-cloud interactions. The relative contributions of sea ice vs. open ocean sources of sea salt aerosol to radiative forcing in polar regions is

  2. An assessment of the quality of aerosol retrievals over the Red Sea and evaluation of the climatological cloud-free dust direct radiative effect in the region

    KAUST Repository

    Brindley, H.

    2015-10-20

    Ground-based and satellite observations are used in conjunction with the Rapid Radiative Transfer Model (RRTM) to assess climatological aerosol loading and the associated cloud-free aerosol direct radiative effect (DRE) over the Red Sea. Aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging Spectroradiometer and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are first evaluated via comparison with ship-based observations. Correlations are typically better than 0.9 with very small root-mean-square and bias differences. Calculations of the DRE along the ship cruises using RRTM also show good agreement with colocated estimates from the Geostationary Earth Radiation Budget instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large particles. A monthly climatology of AOD over the Red Sea is then created from 5 years of SEVIRI retrievals. This shows enhanced aerosol loading and a distinct north to south gradient across the basin in the summer relative to the winter months. The climatology is used with RRTM to estimate the DRE at the top and bottom of the atmosphere and the atmospheric absorption due to dust aerosol. These climatological estimates indicate that although longwave effects can reach tens of W m−2, shortwave cooling typically dominates the net radiative effect over the Sea, being particularly pronounced in the summer, reaching 120 W m−2 at the surface. The spatial gradient in summertime AOD is reflected in the radiative effect at the surface and in associated differential heating by aerosol within the atmosphere above the Sea. This asymmetric effect is expected to exert a significant influence on the regional atmospheric and oceanic circulation.

  3. Comparative evaluation of the effect of cavity disinfectants on the fracture resistance of primary molars restored with indirect composite inlays: An in vitro study

    Directory of Open Access Journals (Sweden)

    Indira M

    2010-01-01

    Full Text Available A study was conducted to evaluate and compare the effect of cavity disinfectants on the fracture resistance of primary molars restored with indirect composite inlays. Thirty-six non-carious primary second molars were selected and divided randomly into three groups (n = 12: control group (no disinfectant, chlorhexidine group (disinfected with 2% chlorhexidine for 40 seconds and sodium hypochlorite group crowns (disinfected with 2% chlorhexidine for 40 seconds. The inlays were fabricated by indirect method using Ceram X nanocomposite on plaster die. All the groups were submitted to compression mechanic test in a Hounsfield universal testing machine at 1 mm/min cross-head speed and the results were calculated in Newtons. Descriptive statistics, independent t test, and one way analysis of variance (ANOVA test revealed the mean fracture resistance of three groups, i.e., control group, chlorhexidine group and sodium hypochlorite group to be 2260.66, 1858.08 and 1310.66, respectively. When intragroup comparisons were made, a significant difference was observed in all the groups (P<0.001. Scheffe′s post hoc test revealed that control group had the highest fracture resistance, followed by chlorhexidine group, and sodium hypochlorite group had the least fracture resistance. Each value differed significantly from the other (P<0.05. Cavity disinfectants used in the present study had detrimental effect on the fracture resistance of primary molars. Among the disinfectants employed in the present study, chlorhexidine showed a better resistance to fracture than sodium hypochlorite.

  4. Laboratory and field based evaluation of chromatography related performance of the Monitor for AeRosols and Gases in ambient Air (MARGA)

    Science.gov (United States)

    The semi-continuous Monitor for AeRosols and Gases in Ambient air (MARGA) was evaluated using laboratory and field data with a focus on chromatography. The performance and accuracy assessment revealed various errors and uncertainties resulting from mis-identification and mis-int...

  5. Laboratory and field based evaluations of chromatography related performance of the Monitor for AeRosols and GAses in ambient Air (MARGA)

    Science.gov (United States)

    The semi-continuous Monitor for AeRosols and Gases in Ambient air (MARGA) was evaluated using laboratory and field data with a focus on chromatography. The performance and accuracy assessment revealed various errors and uncertainties resulting from mis-identification and mis-int...

  6. Application of the CALIOP Layer Product to Evaluate the Vertical Distribution of Aerosols Estimated by Global Models: AeroCom Phase I Results

    Science.gov (United States)

    Koffi, Brigitte; Schulz, Michael; Breon, Francois-Marie; Griesfeller, Jan; Winker, David; Balkanski, Yves; Bauer, Susanne; Berntsen, Terje; Chin, Mian; Collins, William D.; hide

    2012-01-01

    The CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) layer product is used for a multimodel evaluation of the vertical distribution of aerosols. Annual and seasonal aerosol extinction profiles are analyzed over 13 sub-continental regions representative of industrial, dust, and biomass burning pollution, from CALIOP 2007-2009 observations and from AeroCom (Aerosol Comparisons between Observations and Models) 2000 simulations. An extinction mean height diagnostic (Z-alpha) is defined to quantitatively assess the models' performance. It is calculated over the 0-6 km and 0-10 km altitude ranges by weighting the altitude of each 100 m altitude layer by its aerosol extinction coefficient. The mean extinction profiles derived from CALIOP layer products provide consistent regional and seasonal specificities and a low inter-annual variability. While the outputs from most models are significantly correlated with the observed Z-alpha climatologies, some do better than others, and 2 of the 12 models perform particularly well in all seasons. Over industrial and maritime regions, most models show higher Z-alpha than observed by CALIOP, whereas over the African and Chinese dust source regions, Z-alpha is underestimated during Northern Hemisphere Spring and Summer. The positive model bias in Z-alpha is mainly due to an overestimate of the extinction above 6 km. Potential CALIOP and model limitations, and methodological factors that might contribute to the differences are discussed.

  7. Impact of aerosols on marine cloud microphysics over the Indian Ocean using satellite data.

    Science.gov (United States)

    Rao, Sofiya; Dey, Sagnik

    2017-04-01

    Aerosol-cloud interaction is the one of the least understood and largest sources of uncertainty in quantifying climate forcing. Despite progress, the problem remains unresolved because of the buffering effect of meteorology and therefore it is suggested to separate the meteorological forcing from aerosol forcing focusing on different cloud types (Stevens and Feingold 2009). However, most of the previous studies on aerosol-cloud interaction over the Indian Ocean (including INDOEX) are limited to either one particular season or short period. We examine relationships between aerosol and cloud parameters using MODIS data sets for 15 years (2000-2015) period over Indian Ocean. We separated the meteorological forcing from aerosol forcing. In both the Arabian Sea (AS) and Bay of Bengal (BOB), the meteorological forcing is largest in the monsoon. In all the four seasons, cloud microphysical properties are more sensitive to aerosol optical depth (AOD) over the AS compared to BOB. Further analysis reveals presence of semi-direct effect in the winter season. Influence of aerosols on liquid water path (LWP) - cloud effective radius (Reff) relation is quantified. Cloud albedo (Rc) dependency on LWP and Reff is examined in view of changing aerosol load. Cloud drop growth is facilitated in presence of high moisture content. This is evident from the fact that Reff is found to broadly increase with an increase in LWP in every season over Arabian Sea as well as over Bay of Bengal. It is also noted that Reff is larger across a wide range of LWP in 'clean' condition (AOD 0.4). This clearly demonstrate that in more polluted conditions, growth of cloud drops are restricted. This is the evidence of classic aerosol indirect effect. However, we notice a saturation in the decrease in Reff with an increase in AOD beyond 0.4. The results provide robust observational evidence of aerosol-cloud interaction in the Indian Ocean region that can be helpful in evaluating the climate model performance

  8. Technological, economic and environmental evaluation of rice husk gasification in a biorefinery context to produce indirect energy as jet fuel

    Directory of Open Access Journals (Sweden)

    Juan Jacobo Jaramillo Obando

    2017-09-01

    Full Text Available Higher alcohol 1-octanol was evaluated as jet fuel potential. The synthesis of the 1-octanol was modeled and the technological, economic and environmental evaluation of the global production process of the rice husk gasification was performed. The best operating conditions to 1-octanol synthesis were obtained in packed bed reactor PBR using Matlab software. Mass and energy balances were calculated using Aspen Plus Software. Economic assessment was developed using Aspen Process Economic Analyzer Software. Environmental impact evaluation was carried out using the waste reduction algorithm WAR. Process yield was 0.83 kg of 1-Octanol by kg of rice husk. Total production cost obtained was USD 0.957 per kg of 1-octanol and the total PEI of product leave the system is 0.08142 PEI/kg with a PEI mitigated of 12.97 PEI/kg. Production process of high alcohols from rice husk shows a high potential technological, economical and environmental as a sustainable industry at take advantage of an agroindustrial residue and transformed in products with added value and energy. 1-octanol as jet fuel has a potential but need to be more studied for direct use in jet motors.

  9. Development of an inorganic and organic aerosol model (CHIMERE 2017β v1.0): seasonal and spatial evaluation over Europe

    Science.gov (United States)

    Couvidat, Florian; Bessagnet, Bertrand; Garcia-Vivanco, Marta; Real, Elsa; Menut, Laurent; Colette, Augustin

    2018-01-01

    A new aerosol module was developed and integrated in the air quality model CHIMERE. Developments include the use of the Model of Emissions and Gases and Aerosols from Nature (MEGAN) 2.1 for biogenic emissions, the implementation of the inorganic thermodynamic model ISORROPIA 2.1, revision of wet deposition processes and of the algorithms of condensation/evaporation and coagulation and the implementation of the secondary organic aerosol (SOA) mechanism H2O and the thermodynamic model SOAP. Concentrations of particles over Europe were simulated by the model for the year 2013. Model concentrations were compared to the European Monitoring and Evaluation Programme (EMEP) observations and other observations available in the EBAS database to evaluate the performance of the model. Performances were determined for several components of particles (sea salt, sulfate, ammonium, nitrate, organic aerosol) with a seasonal and regional analysis of results. The model gives satisfactory performance in general. For sea salt, the model succeeds in reproducing the seasonal evolution of concentrations for western and central Europe. For sulfate, except for an overestimation of sulfate in northern Europe, modeled concentrations are close to observations and the model succeeds in reproducing the seasonal evolution of concentrations. For organic aerosol, the model reproduces with satisfactory results concentrations for stations with strong modeled biogenic SOA concentrations. However, the model strongly overestimates ammonium nitrate concentrations during late autumn (possibly due to problems in the temporal evolution of emissions) and strongly underestimates summer organic aerosol concentrations over most of the stations (especially in the northern half of Europe). This underestimation could be due to a lack of anthropogenic SOA or biogenic emissions in northern Europe. A list of recommended tests and developments to improve the model is also given.

  10. Development of an inorganic and organic aerosol model (CHIMERE 2017β v1.0: seasonal and spatial evaluation over Europe

    Directory of Open Access Journals (Sweden)

    F. Couvidat

    2018-01-01

    Full Text Available A new aerosol module was developed and integrated in the air quality model CHIMERE. Developments include the use of the Model of Emissions and Gases and Aerosols from Nature (MEGAN 2.1 for biogenic emissions, the implementation of the inorganic thermodynamic model ISORROPIA 2.1, revision of wet deposition processes and of the algorithms of condensation/evaporation and coagulation and the implementation of the secondary organic aerosol (SOA mechanism H2O and the thermodynamic model SOAP. Concentrations of particles over Europe were simulated by the model for the year 2013. Model concentrations were compared to the European Monitoring and Evaluation Programme (EMEP observations and other observations available in the EBAS database to evaluate the performance of the model. Performances were determined for several components of particles (sea salt, sulfate, ammonium, nitrate, organic aerosol with a seasonal and regional analysis of results. The model gives satisfactory performance in general. For sea salt, the model succeeds in reproducing the seasonal evolution of concentrations for western and central Europe. For sulfate, except for an overestimation of sulfate in northern Europe, modeled concentrations are close to observations and the model succeeds in reproducing the seasonal evolution of concentrations. For organic aerosol, the model reproduces with satisfactory results concentrations for stations with strong modeled biogenic SOA concentrations. However, the model strongly overestimates ammonium nitrate concentrations during late autumn (possibly due to problems in the temporal evolution of emissions and strongly underestimates summer organic aerosol concentrations over most of the stations (especially in the northern half of Europe. This underestimation could be due to a lack of anthropogenic SOA or biogenic emissions in northern Europe. A list of recommended tests and developments to improve the model is also given.

  11. Interpreting discordant indirect and multiple treatment comparison meta-analyses: an evaluation of direct acting antivirals for chronic hepatitis C infection

    Directory of Open Access Journals (Sweden)

    Druyts E

    2013-06-01

    Full Text Available Eric Druyts,1 Kristian Thorlund,2,3 Samantha Humphreys,4 Michaela Lion,4 Curtis L Cooper,5 Edward J Mills1,31Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada; 2Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada; 3Stanford Prevention Research Centre, Department of Medicine, Stanford University, Palo Alto, CA, USA; 4Merck Sharp and Dohme Ltd, UK; 5Division of Infectious Diseases, Department of Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, CanadaAbstract: Indirect treatment comparison (ITC and multiple treatment comparison (MTC meta-analyses are increasingly being used to estimate the comparative effectiveness of interventions when head-to-head data do not exist. ITC meta-analyses can be conducted using simple methodology to compare two interventions. MTC meta-analyses can be conducted using more complex methodology, often employing Bayesian approaches, to compare multiple interventions. As the number of ITC and MTC meta-analyses increase, it is common to find multiple analyses evaluating the same interventions in similar therapeutic areas. Depending on the choice of the methodological approach, the conclusions about relative treatment efficacy may differ. Such situations create uncertainty for decision makers. An illustration of this is provided by four ITC and MTC meta-analyses assessing the efficacy of boceprevir and telaprevir for chronic hepatitis C virus infection. This paper examines why these evaluations provide discordant results by examining specific methodological issues that can strengthen or weaken inferences.Keywords: indirect treatment comparison, multiple treatment comparison, meta-analysis, hepatitis C virus

  12. Aerosol radiative effects on the meteorology and distribution of pollutants in the Mexico City Metropolitan Area during MCMA-2006/MILAGRO Campaign

    Science.gov (United States)

    Li, Guohui; Bei, Naifang; Molina, Luisa

    2013-04-01

    Aerosols scatter or absorb incoming solar radiation, perturb the temperature structure of the atmosphere, and impact meteorological fields and further the distribution of gas phase species and aerosols. In the present study, the aerosol radiative effects on the meteorology and photochemistry in the Mexico City Metropolitan Area (MCMA) are investigated using the WRF-CHEM model during the period from March 24th to 29th associated with the MILAGRO-2006 campaign. Aerosols decrease incoming solar radiation by up to 20% and reduce the surface temperature by up to 0.5 °C due to scattering and absorbing the incoming solar radiation in Mexico City. The absorption of black carbon aerosols can also enhance slightly the temperature in the planetary boundary layer (PBL). Generally, the change of the PBL height in the city is less than 200 m during daytime due to the aerosol-induced perturbation of temperature profile. Wind fields are also adjusted with the variation of temperatures, but all the aerosol-induced meteorological changes cannot significantly influence the distribution of pollutants in the city. In addition, when convective events occur in the city, the aerosol radiative effects reduce the convective available potential energy (CAPE) and the convective precipitation is generally decreased. Further studies still need to be performed to evaluate the aerosol indirect effect on precipitation in Mexico City.

  13. Radiographic evaluation of indirect decompression of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for degenerated lumbar spondylolisthesis.

    Science.gov (United States)

    Sato, Jun; Ohtori, Seiji; Orita, Sumihisa; Yamauchi, Kazuyo; Eguchi, Yawara; Ochiai, Nobuyasu; Kuniyoshi, Kazuki; Aoki, Yasuchika; Nakamura, Junichi; Miyagi, Masayuki; Suzuki, Miyako; Kubota, Gou; Inage, Kazuhide; Sainoh, Takeshi; Fujimoto, Kazuki; Shiga, Yasuhiro; Abe, Koki; Kanamoto, Hiroto; Inoue, Gen; Takahashi, Kazuhisa

    2017-03-01

    Extreme lateral interbody fusion provides minimally invasive treatment of spinal deformity, but complications including nerve and psoas muscle injury have been noted. To avoid nerve injury, mini-open anterior retroperitoneal lumbar interbody fusion methods using an approach between the aorta and psoas, such as oblique lumbar interbody fusion (OLIF) have been applied. OLIF with percutaneous pedicle screws without posterior decompression can indirectly decompress the spinal canal in lumbar degenerated spondylolisthesis. In the current study, we examined the radiographic and clinical efficacy of OLIF for lumbar degenerated spondylolisthesis. We assessed 20 patients with lumbar degenerated spondylolisthesis who underwent OLIF and percutaneous pedicle screw fixation without posterior laminectomy. MR and CT images and clinical symptoms were evaluated before and 6 months after surgery. Cross sections of the spinal canal were evaluated with MRI, and disk height, cross-sectional areas of intervertebral foramina, and degree of upper vertebral slip were evaluated with CT. Clinical symptoms including low back pain, leg pain, and lower extremity numbness were evaluated using a visual analog scale and the Oswestry Disability Index before and 6 months after surgery. After surgery, significant increases in axial and sagittal spinal canal diameter (12 and 32 %), spinal canal area (19 %), disk height (61 %), and intervertebral foramen areas (21 % on the right side, 39 % on the left), and significant decrease of upper vertebral slip (-9 %) were found (P spondylolisthesis with back and leg symptoms.

  14. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr

    2005-03-31

    to oxidized emissions were performed. Stage I toxicological assessments were carried out in Sprague-Dawley rats. Biological endpoints included breathing pattern/pulmonary function; in vivo chemiluminescence (an indicator of oxidative stress); blood cytology; bronchoalveolar lavage (BAL) fluid analysis; and histopathology. No significant differences between exposed animals and sham animals (exposed to filtered air) were observed for any of the endpoints; histopathological results are pending and will be reported in the next semiannual report. The scenarios evaluated during this reporting period were slightly modified from those originally proposed. We substituted a new scenario, secondary aerosol + SOA, to investigate the effects of a strongly acidic aerosol with a biogenic component. Since we did not observe any biological response to this scenario, the neutralized secondary aerosol scenario (i.e., oxidized emissions + ammonia) was deemed unnecessary. Moreover, in light of the lack of response observed in the Stage I assessment, it was decided that a Stage II assessment (evaluation of cardiac function in a compromised rat model) was unlikely to provide useful information. However, this model will be employed at Plant 1 and/or 2. During this reporting period, significant progress was made in planning for fieldwork at Plant 1. Stack sampling was carried out at the plant in mid-December to determine the concentration of primary particles. It was found that PM{sub 2.5} mass concentrations were approximately three times higher than those observed at Plant 0. In mid-February, installation and setup for the mobile laboratories began. Animal exposures are scheduled to begin at this plant on March 21, 2005. During the next reporting period, we will initiate fieldwork at Plant 1. At either or both Plants 1 and 2, a detailed Stage II assessment will be performed, even if no significant findings are observed in Stage I. The next semiannual report is expected to include a

  15. Relative humidity and its effect on aerosol optical depth in the vicinity of convective clouds

    International Nuclear Information System (INIS)

    Altaratz, O; Bar-Or, R Z; Wollner, U; Koren, I

    2013-01-01

    The hygroscopic growth of aerosols is controlled by the relative humidity (RH) and changes the aerosols’ physical and hence optical properties. Observational studies of aerosol–cloud interactions evaluate the aerosol concentration using optical parameters, such as the aerosol optical depth (AOD), which can be affected by aerosol humidification. In this study we evaluate the RH background and variance values, in the lower cloudy atmosphere, an additional source of variance in AOD values beside the natural changes in aerosol concentration. In addition, we estimate the bias in RH and AOD, related to cloud thickness. This provides the much needed range of RH-related biases in studies of aerosol–cloud interaction. Twelve years of radiosonde measurements (June–August) in thirteen globally distributed stations are analyzed. The estimated non-biased AOD variance due to day-to-day changes in RH is found to be around 20% and the biases linked to cloud development around 10%. Such an effect is important and should be considered in direct and indirect aerosol effect estimations but it is inadequate to account for most of the AOD trend found in observational studies of aerosol–cloud interactions. (letter)

  16. The in vitro indirect cytotoxicity test and in vivo interface bioactivity evaluation of biodegradable FHA coated Mg-Zn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianan [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Han Pei, E-mail: hanpei_cn@163.com [Orthopaedic Department of the 6th People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Ji Weiping [Orthopaedic Department of the 6th People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Song, Yang; Zhang, Shaoxiang; Chen Ying; Zhao Changli; Zhang Fan [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang Xiaonong, E-mail: xnzhang@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200051 (China); Jiang Yao [Orthopaedic Department of the 6th People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China)

    2011-12-15

    A kind of biodegradable fluoridated hydroxyapatite (FHA) coating was prepared on Mg-Zn alloy to improve the interface bioactivity in bone healing via electrodeposition method. The in vitro cytotoxicity evaluation of the ions released during degradation was taken. No toxicity was shown and even higher cells' viability appeared on the 7th day compared with the normal culture case (negative control). In vivo implantation was carried out in the femoral condyle of adult New Zealand rabbits. The cross section showed by Micro-CT scan confirmed that the better interface contacts happened in the coated group after one month implantation. Also the coating left can still be normally observed by scanning electron microscope (SEM) with a little degradation. As a result, the FHA coating may be a promising candidate to enhance interface bioactivity for biodegradable Mg alloys in orthopaedics.

  17. Development and evaluation of an impactor sampler for radioactive aerosol particles

    International Nuclear Information System (INIS)

    Sorimachi, Atsuyuki; Kranrod, Chutima; Chantrarayotha, Supitcha; Tokonami, Shinji

    2008-01-01

    This sampler consists of one impaction stage, which allows separation of airborne particles by 1 μm particle size cut-off point with a 50% probability of impaction, followed by a back-up filter at a flow rate of 1 L min -1 . The particles size more than and less than 1 μm-diameter are collected on the impactor plate at the nozzle side and on the filter, respectively. A Cr-39 detector is mounted on the filter sides of the impaction plate; α particles emitted from the particles less than 1 μm-diameter are counted with the Cr-39 detectors. In order to separate α particles emitted from radon, thoron and their progeny, the Cr-39 detectors are covered with aluminum-vaporized Mylar films. The total thickness of films is adjusted to let their α particles impinge on the Cr-39 detectors. Laboratory tests are going on in terms of the spectral characteristics of α particles before and after passing through the films, the count rate performance of Cr-39 detectors by α particles, the actual collection efficiency of aerosol particles on the impaction plate, and so on. This sampler may be able to supply us with an interesting technique for measuring radon and thoron progeny come from the sources of natural radiation such as the naturally occurred radioactive materials. (author)

  18. Evaluation of coverall field dry aerosol decontamination methods using a manikin.

    Science.gov (United States)

    Slagley, J M; Paschold, H; Engler, J M

    2017-07-01

    A full-size manikin dressed in fire-resistant coveralls coated in 120 g of sodium bicarbonate was randomly given one of three treatments for dry aerosol decontamination. The three treatments were high-efficiency particulate air (HEPA) vacuum, a commercially available air shower, and the no treatment control. Immediately after the treatment, the coveralls were doffed and an air sample was taken in the breathing zone of the manikin to estimate airborne total and respirable dust concentrations to an unprotected worker post decontamination. Each treatment was applied four times for a total of 12 trials. Using analysis of variance (ANOVA) with alpha =.05 and Tukey's Honestly Significant Difference multiple comparison post-test, it was determined that HEPA vacuuming was not significantly different from the air shower for respirable dust, but only the air shower was significantly better than no decontamination (p =.037). For total dust, HEPA was not significantly different from the air shower, but both were significantly better than no treatment (p =.007, p =.004, respectively).

  19. Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility

    Science.gov (United States)

    Blando, James D.; Turpin, Barbara J.

    This paper investigates the hypothesis that cloud and fog processes produce fine organic particulate matter in the atmosphere. The evidence provided suggests that cloud and fog processes could be important contributors to secondary organic aerosol formation, and the contribution of this formation pathway should be further investigated. This conclusion is based on the following observations: (1) many organic vapors present in the atmosphere are sorbed by suspended droplets and have been measured in cloud and fog water, (2) organics participate in aqueous-phase reactions, and (3) organic particulate matter is sometimes found in the size mode attributed to cloud processing (i.e. the droplet mode). Specific compounds identified as potential precursors include aldehydes (e.g. formaldehyde, acetaldehyde, and propionaldehyde), acetone, alcohols (e.g. methanol, ethanol, 2-propanol, and phenol), monocarboxylic acids, and organic peroxides. Carboxylic acids (e.g. diacids and oxo-acids), glyoxal, esters, organosulfur compounds, polyols, amines and amino acids are potential products of cloud and fog processing.

  20. Evaluation of a quantitative structure-property relationship (QSPR) for predicting mid-visible refractive index of secondary organic aerosol (SOA).

    Science.gov (United States)

    Redmond, Haley; Thompson, Jonathan E

    2011-04-21

    In this work we describe and evaluate a simple scheme by which the refractive index (λ = 589 nm) of non-absorbing components common to secondary organic aerosols (SOA) may be predicted from molecular formula and density (g cm(-3)). The QSPR approach described is based on three parameters linked to refractive index-molecular polarizability, the ratio of mass density to molecular weight, and degree of unsaturation. After computing these quantities for a training set of 111 compounds common to atmospheric aerosols, multi-linear regression analysis was conducted to establish a quantitative relationship between the parameters and accepted value of refractive index. The resulting quantitative relationship can often estimate refractive index to ±0.01 when averaged across a variety of compound classes. A notable exception is for alcohols for which the model consistently underestimates refractive index. Homogenous internal mixtures can conceivably be addressed through use of either the volume or mole fraction mixing rules commonly used in the aerosol community. Predicted refractive indices reconstructed from chemical composition data presented in the literature generally agree with previous reports of SOA refractive index. Additionally, the predicted refractive indices lie near measured values we report for λ = 532 nm for SOA generated from vapors of α-pinene (R.I. 1.49-1.51) and toluene (R.I. 1.49-1.50). We envision the QSPR method may find use in reconstructing optical scattering of organic aerosols if mass composition data is known. Alternatively, the method described could be incorporated into in models of organic aerosol formation/phase partitioning to better constrain organic aerosol optical properties.

  1. Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements

    Directory of Open Access Journals (Sweden)

    Mian Chin

    2009-09-01

    Full Text Available Atmospheric aerosol distributions from 2000 to 2007 are simulated with the Goddard Chemistry Aerosol Radiation and Transport (GOCART model to attribute light absorption by aerosol to its composition and sources from pollution, dust, and biomass burning. The 8-year, global averaged total aerosol optical depth (τ, absorption optical depth (τa, and single scattering albedo (ω at 550 nm are estimated at 0.14, 0.0086, and 0.95, respectively, with sulfate making the largest fraction of τ (37%, followed by dust (30%, sea salt (16%, organic matter (OM (13%, and black carbon (BC (4%. BC and dust account for 43% and 53% of τa, respectively. From a model experiment with "tagged" sources, natural aerosols are estimated to be 58% of τ and 53% of τa, with pollution and biomass burning aerosols to share the rest. Comparing with data from the surface sunphotometer network AERONET, the model tends to reproduce much better the AERONET direct measured data of τ and the Ångström exponent (α than its retrieved quantities of ω and τa. Relatively small in its systematic bias of τ for pollution and dust regions, the model tends to underestimate τ for biomass burning aerosols by 30–40%. The modeled α is 0.2–0.3 too low (particle too large for pollution and dust aerosols but 0.2–0.3 too high (particle too small for the biomass burning aerosols, indicating errors in particle size distributions in the model. Still, the model estimated ω is lower in dust regions and shows a much stronger wavelength dependence for biomass burning aerosols but a weaker one for pollution aerosols than those quantities from AERONET. These comparisons necessitate model improvements on aerosol size distributions, the refractive indices of dust and black carbon aerosols, and biomass burning emissions in order to better quantify the aerosol absorption in the atmosphere.

  2. Development and evaluation of an avian influenza, neuraminidase subtype 1, indirect enzyme-linked immunosorbent assay for poultry using the differentiation of infected from vaccinated animals control strategy.

    Science.gov (United States)

    Liu, Y; Mundt, E; Mundt, A; Sylte, M; Suarez, D L; Swayne, D E; García, M

    2010-03-01

    An indirect enzyme-linked immunosorbent assay (ELISA) was developed using baculovirus, purified, recombinant N1 protein from A/chicken/Indonesia/PA7/2003 (H5N1) virus. The N1-ELISA showed high selectivity for detection of N1 antibodies, with no cross-reactivity with other neuraminidase subtypes, and broad reactivity with sera to N1 subtype isolates from North American and Eurasian lineages. Sensitivity of the N1-ELISA to detect N1 antibodies in turkey sera, collected 3 wk after H1N1 vaccination, was comparable to detection of avian influenza antibodies by the commercial, indirect ELISAs ProFLOK AIV Plus ELISA Kit (Synbiotics, Kansas City, MO) and Avian Influenza Virus Antibody Test Kit (IDEXX, Westbrook, ME). However, 6 wk after vaccination, the Synbiotics ELISA kit performed better than the N1-ELISA and the IDEXX ELISA kit. An evaluation was made of the ability of the N1-ELISA to discriminate vaccinated chickens from subsequently challenged chickens. Two experiments were conducted, chickens were vaccinated with inactivated H5N2 and H5N9 viruses and challenged with highly pathogenic H5N1 virus, and chickens were vaccinated with recombinant poxvirus vaccine encoding H7 and challenged with highly pathogenic H7N1 virus. Serum samples were collected at 14 days postchallenge and tested by hemagglutination inhibition (HI), quantitative neuraminidase inhibition (NI), and N1-ELISA. At 2 days postchallenge, oropharyngeal swabs were collected for virus isolation (VI) to confirm infection. The N1-ELISA was in fair agreement with VI and HI results. Although the N1-ELISA showed a lower sensitivity than the NI assay, it was demonstrated that detection of N1 antibodies by ELISA was an effective and rapid assay to identify exposure to the challenge virus in vaccinated chickens. Therefore, N1-ELISA can facilitate a vaccination strategy with differentiation of infected from vaccinated animals using a neuraminidase heterologous approach.

  3. Evaluation of thermal and dynamic impacts of summer dust aerosols on the Red Sea

    KAUST Repository

    Cahill, Bronwyn

    2017-01-16

    The seasonal response of upper ocean processes in the Red Sea to summer-time dust aerosol perturbations is investigated using an uncoupled regional ocean model. We find that the upper limit response is highly sensitive to dust-induced reductions in radiative fluxes. Sea surface cooling of −1°C and −2°C is predicted in the northern and southern regions, respectively. This cooling is associated with a net radiation reduction of −40 W m−2 and −90 W m−2 over the northern and southern regions, respectively. Larger cooling occurs below the mixed layer at 75 m in autumn, −1.2°C (north) and −1.9°C (south). SSTs adjust more rapidly (ca. 30 days) than the subsurface temperatures (seasonal time scales), due to stronger stratification and increased mixed layer stability inhibiting the extent of vertical mixing. The basin average annual heat flux reverses sign and becomes positive, +4.2 W m−2 (as compared to observed estimates −17.3 W m−2) indicating a small gain of heat from the atmosphere. When we consider missing feedbacks from atmospheric processes in our uncoupled experiment, we postulate that the magnitude of cooling and the time scales for adjustment will be much less, and that the annual heat flux will not reverse sign but nevertheless be reduced as a result of dust perturbations. While our study highlights the importance of considering coupled ocean-atmosphere processes on the net surface energy flux in dust perturbation studies, the results of our uncoupled dust experiment still provide an upper limit estimate of the response of the upper ocean to dust-induced radiative forcing perturbations.

  4. Evaluation of multistep derivatization methods for identification and quantification of oxygenated species in organic aerosol.

    Science.gov (United States)

    Flores, Rosa M; Doskey, Paul V

    2015-10-30

    Two, 3-step methods for derivatizing mono- and multi-functional species with carbonyl (CO), carboxylic acid (-COOH), and alcohol (-OH) moieties were compared and optimized. In Method 1, the CO, -COOH, and -OH moieties were converted (1) to methyloximes (R-CN-OCH3) with O-methylhydroxylamine hydrochloride (MHA), (2) to methyl esters (OC-R-OCH3) with (trimethylsilyl)diazomethane in methanol (TMSD/MeOH), and (3) to trimethylsilyl ethers [R-OSi(CH3)3] with N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA) containing 1% trimethylchlorosilane (TMCS), respectively. Steps 1 and 3 of both methods were identical; however, in Step 2 of Method 2, -COOH moieties were derivatized with 10% (v/v) boron trifluoride (BF3) in MeOH or n-butanol (n-BuOH). The BF3/MeOH and BF3/n-BuOH were ineffective at converting species with more than 2-OH moieties. Average standard deviations for derivatization of 36 model compounds by the 3-step methods using TMSD/MeOH and BF3/(MeOH) were 7.4 and 14.8%, respectively. Average derivatization efficiencies for Methods 1 and 2 were 88.0 and 114%, respectively. Despite the lower average derivatization efficiency of Method 1, distinct advantages included a greater certainty of derivatization yield for the entire suite of mono- and multi-functional species and fewer processing steps for sequential derivatization. Detection limits for Method 1 using GC×GC-ToF-MS were 0.3-54pgm(-3). Approximately 100 oxygenated organic species were identified and quantified in aerosol filtered from 39m(3) of air in an urban location. Levels of species were 0.013-17ngm(-3) and were nearly all above the Method 1 limit of detection. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Stratospheric aerosols

    International Nuclear Information System (INIS)

    Rosen, J.; Ivanov, V.A.

    1993-01-01

    Stratospheric aerosol measurements can provide both spatial and temporal data of sufficient resolution to be of use in climate models. Relatively recent results from a wide range of instrument techniques for measuring stratospheric aerosol parameters are described. Such techniques include impactor sampling, lidar system sensing, filter sampling, photoelectric particle counting, satellite extinction-sensing using the sun as a source, and optical depth probing, at sites mainly removed from tropospheric aerosol sources. Some of these techniques have also had correlative and intercomparison studies. The main methods for determining the vertical profiles of stratospheric aerosols are outlined: lidar extinction measurements from satellites; impactor measurements from balloons and aircraft; and photoelectric particle counter measurements from balloons, aircraft, and rockets. The conversion of the lidar backscatter to stratospheric aerosol mass loading is referred to. Absolute measurements of total solar extinction from satellite orbits can be used to extract the aerosol extinction, and several examples of vertical profiles of extinction obtained with the SAGE satellite are given. Stratospheric mass loading can be inferred from extinction using approximate linear relationships but under restrictive conditions. Impactor sampling is essentially the only method in which the physical nature of the stratospheric aerosol is observed visually. Vertical profiles of stratospheric aerosol number concentration using impactor data are presented. Typical profiles using a dual-size-range photoelectric dustsonde particle counter are given for volcanically disturbed and inactive periods. Some measurements of the global distribution of stratospheric aerosols are also presented. Volatility measurements are described, indicating that stratospheric aerosols are composed primarily of about 75% sulfuric acid and 25% water

  6. A climatology of fine absorbing biomass burning, urban and industrial aerosols detected from satellites

    Science.gov (United States)

    Kalaitzi, Nikoleta; Hatzianastassiou, Nikos; Gkikas, Antonis; Papadimas, Christos D.; Torres, Omar; Mihalopoulos, Nikos

    2017-04-01

    Natural biomass burning (BB) along with anthropogenic urban and industrial aerosol particles, altogether labeled here as BU aerosols, contain black and brown carbon which both absorb strongly the solar radiation. Thus, BU aerosols warm significantly the atmosphere also causing adjustments to cloud properties, which traditionally are known as cloud indirect and semi-direct effects. Given the role of the effects of BU aerosols for contemporary and future climate change, and the uncertainty associated with BU, both ascertained by the latest IPCC reports, there is an urgent need for improving our knowledge on the spatial and temporal variability of BU aerosols all over the globe. Over the last few decades, thanks to the rapid development of satellite observational techniques and retrieval algorithms it is now possible to detect BU aerosols based on satellite measurements. However, care must be taken in order to ensure the ability to distinguish BU from other aerosol types usually co-existing in the Earth's atmosphere. In the present study, an algorithm is presented, based on a synergy of different satellite measurements, aiming to identify and quantify BU aerosols over the entire globe and during multiple years. The objective is to build a satellite-based climatology of BU aerosols intended for use for various purposes. The produced regime, namely the spatial and temporal variability of BU aerosols, emphasizes the BU frequency of occurrence and their intensity, in terms of aerosol optical depth (AOD). The algorithm is using the following aerosol optical properties describing the size and atmospheric loading of BU aerosols: (i) spectral AOD, (ii) Ångström Exponent (AE), (iii) Fine Fraction (FF) and (iv) Aerosol Index (AI). The relevant data are taken from Collection 006 MODIS-Aqua, except for AI which is taken from OMI-Aura. The identification of BU aerosols by the algorithm is based on a specific thresholding technique, with AI≥1.5, AE≥1.2 and FF≥0.6 threshold

  7. Evaluation of a polyherbal topical aerosol spray as a supportive therapy for clinical mastitis in dairy cows

    Directory of Open Access Journals (Sweden)

    Ramasamy Selvam

    2015-09-01

    Full Text Available The present study was designed to evaluate the polyherbal topical aerosol spray Wisprec and reg; Advanced (M/S. Natural Remedies Private Limited, India as a supportive therapy for clinical mastitis in dairy cows. A total of 41 dairy cows suffering from clinical mastitis were selected, and Wisprec and reg; Advanced was sprayed on mastitis affected quarters of udder two times a day along with a parenteral antibiotic till complete recovery. The rectal temperature, pain on palpation of udder, swelling of udder, consistency of milk, recovery period and product satisfaction score were assessed to evaluate the efficacy of Wisprec and reg; Spray. Topical application of Wisprec and reg; Advanced Spray have shown a significant improvement (p<0.001 in alleviation of rectal temperature, pain on palpation of udder and swelling of udder, and the consistency of milk was restored to normal after 3 to 4 days of treatment. The results demonstrate that the Wisprec and reg; Advanced spray could be considered as an alternative to non-steroidal anti-inflammatory drugs (NSAIDs as a supportive therapy for clinical mastitis of dairy cows. [J Adv Vet Anim Res 2015; 2(3.000: 285-290

  8. Evaluation of internal occupational exposure of workers from nuclear medicine services by aerosol analysis containing 131I

    International Nuclear Information System (INIS)

    Carneiro, Luana Gomes; Sampaio, Camilla da Silva; Dantas, Ana Leticia Almeida; Lucena, Eder Augusto; Santos, Maristela Souza; Dantas, Bernardo Maranhao; Paula, Gustavo Affonso de

    2014-01-01

    This study evaluated the risk of internal occupational exposure associated with the incorporation of 131 I via inhalation, in Nuclear Medicine Services, using aerosol analysis techniques. Occupationally Exposed Individuals (IOE) involved in handling this radionuclide are subject to chronic exposure, which can lead to an increase in the committed effective dose. Results obtained in preliminary studies indicate the occurrence of incorporation of 131 I by workers involved in handling solutions for radioiodine therapy procedures. The evaluation was carried out in radiopharmacy lab (nuclear medicine service) of a public hospital located in the city of Rio de Janeiro. After confirmed the presence of the radioisotope, by a qualitative assessment, it was determined an experimental arrangement for sample collection and were detected and quantitated the presence of steam 131 I during routine work. The average concentration of activity obtained in this study was 3 Bq / m 3 . This value is below of Derived Concentration in Air (DCA) of 8.4 x 10 3 Bq of 131 I / m 3 corresponding to a committed effective dose of 1.76 x 10 -4 mSv. These results demonstrate that the studied area is safe in terms of internal exposure of workers. However, the presence of 131 I should be periodically reevaluated, since this type of exposure contributes to the increase of the individual effective doses. Based on the data obtained improvements were suggested in the exhaust system and the use of good work practices in order to optimize the exposures

  9. Direct versus Indirect and Individual versus Group Modes of Language Therapy for Children with Primary Language Impairment: Principal Outcomes from a Randomized Controlled Trial and Economic Evaluation

    Science.gov (United States)

    Boyle, James M.; McCartney, Elspeth; O'Hare, Anne; Forbes, John

    2009-01-01

    Background: Many school-age children with language impairments are enrolled in mainstream schools and receive indirect language therapy, but there have been, to the authors' knowledge, no previous controlled studies comparing the outcomes and costs of direct and indirect intervention delivered by qualified therapists and therapy assistants, and…

  10. Development of a global aerosol model using a two-dimensional sectional method: 2. Evaluation and sensitivity simulations

    Science.gov (United States)

    Matsui, H.; Mahowald, N.

    2017-08-01

    Global aerosol simulations are conducted by using the Community Atmosphere Model version 5 with the Aerosol Two-dimensional bin module for foRmation and Aging Simulation version 2 (CAM5-chem/ATRAS2) which was developed in part 1. The model uses a two-dimensional (2-D) section representation with 12 size bins from 1 nm to 10 μm and 8 black carbon (BC) mixing state bins, and it can calculate detailed aerosol processes and their interactions with radiation and clouds. The simulations have similar or better agreement with aerosol observations (e.g., aerosol optical depth, absorption aerosol optical depth (AAOD), aerosol number concentrations, mass concentrations of each species) compared with the simulations using the Modal Aerosol Model with three modes. Sensitivity simulations show that global mean AAOD is reduced by 15% by resolving BC mixing state as a result of two competing effects (optical and lifetime effects). AAOD is reduced by 10-50% at low and midlatitudes in the 2-D sectional simulation because BC absorption enhancement by coating species is reduced by resolving pure BC, thinly coated BC, and BC-free particles in the model (optical effect). In contrast, AAOD is enhanced by 5-30% at high-latitudes because BC concentrations are enhanced by 40-200% over the regions by resolving less CCN active particles (lifetime effect). The simulations also suggest a model which resolves more than 3 BC categories (including BC-free particles) is desirable to calculate the optical and lifetime effects accurately. The complexity of aerosol representation is shown to be especially important for simulations of BC and CCN concentrations and AAOD.

  11. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr

    2006-03-01

    TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) involves exposing laboratory rats to realistic coal-fired power plant and mobile source emissions to help determine the relative toxicity of these PM sources. There are three coal-fired power plants in the TERESA program; this report describes the results of fieldwork conducted at the first plant, located in the Upper Midwest. The project was technically challenging by virtue of its novel design and requirement for the development of new techniques. By examining aged, atmospherically transformed aerosol derived from power plant stack emissions, we were able to evaluate the toxicity of PM derived from coal combustion in a manner that more accurately reflects the exposure of concern than existing methodologies. TERESA also involves assessment of actual plant emissions in a field setting--an important strength since it reduces the question of representativeness of emissions. A sampling system was developed and assembled to draw emissions from the stack; stack sampling conducted according to standard EPA protocol suggested that the sampled emissions are representative of those exiting the stack into the atmosphere. Two mobile laboratories were then outfitted for the study: (1) a chemical laboratory in which the atmospheric aging was conducted and which housed the bulk of the analytical equipment; and (2) a toxicological laboratory, which contained animal caging and the exposure apparatus. Animal exposures were carried out from May-November 2004 to a number of simulated atmospheric scenarios. Toxicological endpoints included (1) pulmonary function and breathing pattern; (2) bronchoalveolar lavage fluid cytological and biochemical analyses; (3) blood cytological analyses; (4) in vivo oxidative stress in heart and lung tissue; and (5) heart and lung histopathology. Results indicated no differences between exposed and control animals in any of the endpoints examined. Exposure concentrations for the

  12. Global simulations of aerosol processing in clouds

    Directory of Open Access Journals (Sweden)

    C. Hoose

    2008-12-01

    Full Text Available An explicit and detailed representation of in-droplet and in-crystal aerosol particles in stratiform clouds has been introduced in the global aerosol-climate model ECHAM5-HAM. The new scheme allows an evaluation of the cloud cycling of aerosols and an estimation of the relative contributions of nucleation and collision scavenging, as opposed to evaporation of hydrometeors in the global aerosol processing by clouds. On average an aerosol particle is cycled through stratiform clouds 0.5 times. The new scheme leads to important changes in the simulated fraction of aerosol scavenged in clouds, and consequently in the aerosol wet deposition. In general, less aerosol is scavenged into clouds with the new prognostic treatment than what is prescribed in standard ECHAM5-HAM. Aerosol concentrations, size distributions, scavenged fractions and cloud droplet concentrations are evaluated and compared to different observations. While the scavenged fraction and the aerosol number concentrations in the marine boundary layer are well represented in the new model, aerosol optical thickness, cloud droplet number concentrations in the marine boundary layer and the aerosol volume in the accumulation and coarse modes over the oceans are overestimated. Sensitivity studies suggest that a better representation of below-cloud scavenging, higher in-cloud collision coefficients, or a reduced water uptake by seasalt aerosols could reduce these biases.

  13. Indirect comparisons of therapeutic interventions

    Directory of Open Access Journals (Sweden)

    Boulkhemair, Dalila

    2009-07-01

    available reviews utilizing metaregression analyses for indirect comparisons currently prohibits empirical evaluation of this methodology. Conclusions/Recommendations: Given the main prerequisite – a pool of homogenous and high-quality RCT – the results of head-to-head trials may be pre-estimated by an adjusted indirect comparison or a MTC. In the context of HTA and guideline development they are valuable tools if there is a lack of a direct comparison of the interventions of interest.

  14. Evaluating the Sensitivity of the Mass-Based Particle Removal Calculations for HVAC Filters in ISO 16890 to Assumptions for Aerosol Distributions

    Directory of Open Access Journals (Sweden)

    Brent Stephens

    2018-02-01

    Full Text Available High efficiency particle air filters are increasingly being recommended for use in heating, ventilating, and air-conditioning (HVAC systems to improve indoor air quality (IAQ. ISO Standard 16890-2016 provides a methodology for approximating mass-based particle removal efficiencies for PM1, PM2.5, and PM10 using size-resolved removal efficiency measurements for 0.3 µm to 10 µm particles. Two historical volume distribution functions for ambient aerosol distributions are assumed to represent ambient air in urban and rural areas globally. The goals of this work are to: (i review the ambient aerosol distributions used in ISO 16890, (ii evaluate the sensitivity of the mass-based removal efficiency calculation procedures described in ISO 16890 to various assumptions that are related to indoor and outdoor aerosol distributions, and (iii recommend several modifications to the standard that can yield more realistic estimates of mass-based removal efficiencies for HVAC filters, and thus provide a more realistic representation of a greater number of building scenarios. The results demonstrate that knowing the PM mass removal efficiency estimated using ISO 16890 is not sufficient to predict the PM mass removal efficiency in all of the environments in which the filter might be used. The main reason for this insufficiency is that the assumptions for aerosol number and volume distributions can substantially impact the results, albeit with some exceptions.

  15. Radiative Importance of Aerosol-Cloud Interaction

    Science.gov (United States)

    Tsay, Si-Chee

    1999-01-01

    Aerosol particles are input into the troposphere by biomass burning, among other sources. These aerosol palls cover large expanses of the earth's surface. Aerosols may directly scatter solar radiation back to space, thus increasing the earth's albedo and act to cool the earth's surface and atmosphere. Aerosols also contribute to the earth's energy balance indirectly. Hygroscopic aerosol act as cloud condensation nuclei (CCN) and thus affects cloud properties. In 1977, Twomey theorized that additional available CCN would create smaller but more numerous cloud droplets in a cloud with a given amount of liquid water. This in turn would increase the cloud albedo which would scatter additional radiation back to space and create a similar cooling pattern as the direct aerosol effect. Estimates of the magnitude of the aerosol indirect effect on a global scale range from 0.0 to -4.8 W/sq m. Thus the indirect effect can be of comparable magnitude and opposite in sign to the estimates of global greenhouse gas forcing Aerosol-cloud interaction is not a one-way process. Just as aerosols have an influence on clouds through the cloud microphysics, clouds have an influence on aerosols. Cloud droplets are solutions of liquid water and CCN, now dissolved. When the cloud droplet evaporates it leaves behind an aerosol particle. This new particle does not have to have the same properties as the original CCN. In fact, studies show that aerosol particles that result from cloud processing are larger in size than the original CCN. Optical properties of aerosol particles are dependent on the size of the particles. Larger particles have a smaller backscattering fraction, and thus less incoming solar radiation will be backscattered to space if the aerosol particles are larger. Therefore, we see that aerosols and clouds modify each other to influence the radiative balance of the earth. Understanding and quantifying the spatial and seasonal patterns of the aerosol indirect forcing may have

  16. The radiative effect of aerosols over Europe during the EUCAARI-LONGREX campaign

    Science.gov (United States)

    Esteve, Anna R.; Highwood, Ellie; Morgan, William T.; Coe, Hugh; Brown, Phil; Szpek, Kate; Martínez-Lozano, J. Antonio

    2014-05-01

    Atmospheric aerosols affect the Earth's climate both directly, through the scattering and absorption of radiation, and indirectly, via changes to cloud microphysics and properties. The resultant change in net radiation (radiative forcing) is still characterized by a great uncertainty, both at regional and global scales, due to the variability of the optical properties and the spatial - temporal distribution of the aerosols. Here, we calculate the radiative effect of anthropogenic aerosols over Europe using the data collected by the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft during the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions Long Range Experiment (EUCAARI-LONGREX). The EUCAARI-LONGREX campaign consisted of 15 flights over central Europe or off the UK coast (47 - 57° N and 12° W - 22° E) during May 2008, designed to map the aerosol concentrations and properties over Europe, with a particular focus on observing long range transport of aerosol properties, as well as changes in those properties. The instrumentation aboard the FAAM BAe-146 aircraft allowed the measurement of the chemical composition, microphysical, optical and hygroscopic properties of the atmospheric aerosols, as well as the upwelling and downwelling radiation. We have also quantified here the uncertainties in our calculations due to the variability of aerosol concentration and properties and the way in which they are represented in models. For our calculations of the direct aerosol radiative effect, we use the composition and microphysical measurements together with the Edwards and Slingo radiative transfer model to estimate irradiances from 0.2 to 10 μm. Vertical profiles of temperature, aerosol, water vapour and ozone are taken from the aircraft measurements. The modelled irradiances have been compared to the radiation data from flight b374 of the FAAM BAe-146 aircraft in order to evaluate the validity of model assumptions and

  17. Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaohong; Easter, Richard C.; Ghan, Steven J.; Zaveri, Rahul A.; Rasch, Philip J.; Shi, Xiangjun; Lamarque, J.-F.; Gettelman, A.; Morrison, H.; Vitt, Francis; Conley, Andrew; Park, S.; Neale, Richard; Hannay, Cecile; Ekman, A. M.; Hess, Peter; Mahowald, N.; Collins, William D.; Iacono, Michael J.; Bretherton, Christopher S.; Flanner, M. G.; Mitchell, David

    2012-05-21

    A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically based manner. Two MAM versions were developed: a more complete version with seven-lognormal modes (MAM7), and a three-lognormal mode version (MAM3) for the purpose of long-term (decades to centuries) simulations. Major approximations in MAM3 include assuming immediate mixing of primary organic matter (POM) and black carbon (BC) with other aerosol components, merging of the MAM7 fine dust and fine sea salt modes into the accumulation mode, merging of the MAM7 coarse dust and coarse sea salt modes into the single coarse mode, and neglecting the explicit treatment of ammonia and ammonium cycles. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7 as most ({approx}90%) of these aerosol species are in the accumulation mode. Differences of POM and BC concentrations between MAM3 and MAM7 are also small (mostly within 10%) because of the assumed hygroscopic nature of POM, so that freshly emitted POM and BC are wet-removed before mixing internally with soluble aerosol species. Sensitivity tests with the POM assumed to be hydrophobic and with slower aging process increase the POM and BC concentrations, especially at high latitudes (by several times). The mineral dust global burden differs by 10% and sea salt burden by 30-40% between MAM3 and MAM7 mainly due to the different size ranges for dust and sea salt modes and different standard deviations of log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and

  18. The inter-observer reading variability in anti-nuclear antibodies indirect (ANA) immunofluorescence test: A multicenter evaluation and a review of the literature.

    Science.gov (United States)

    Rigon, A; Infantino, M; Merone, M; Iannello, G; Tincani, A; Cavazzana, I; Carabellese, N; Radice, A; Manfredi, M; Soda, P; Afeltra, A

    2017-12-01

    Recently there has been an increase demand for Computer-Aided Diagnosis (CAD) tools to support clinicians in the field of Indirect ImmunoFluorescence (IIF), as the novel digital imaging reading approach can help to overcome the reader subjectivity. Nevertheless, a large multicenter evaluation of the inter-observer reading variability in this field is still missing. This work fills this gap as we evaluated 556 consecutive samples, for a total of 1679 images, collected in three laboratories with IIF expertise using HEp-2 cell substrate (MBL) at 1:80 screening dilution according to conventional procedures. In each laboratory, the images were blindly classified by two experts into three intensity classes: positive, negative, and weak positive. Positive and weak positive ANA-IIF results were categorized by the predominant fluorescence pattern among six main classes. Data were pairwise analyzed and the inter-observer reading variability was measured by Cohen's kappa test, revealing a pairwise agreement little further away than substantial both for fluorescence intensity and for staining pattern recognition (k=0.602 and k=0.627, respectively). We also noticed that the inter-observer reading variability decreases when it is measured with respect to a gold standard classification computed on the basis of labels assigned by the three laboratories. These data show that laboratory agreement improves using digital images and comparing each single human evaluation to potential reference data, suggesting that a solid gold standard is essential to properly make use of CAD systems in routine work lab. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Evaluation of Orally Delivered ST-246 as Postexposure Prophylactic and Antiviral Therapeutic in an Aerosolized Rabbitpox Rabbit Model

    National Research Council Canada - National Science Library

    Nalca, Aysegul; Hatkin, Josh M; Garza, Nicole L; Nichols, Donald K; Norris, Sarah W; Hruby, Dennis E; Jordan, Robert

    2008-01-01

    Orthopoxviruses, such as variola and monkeypox viruses, can cause severe disease in humans when delivered by the aerosol route, and thus represent significant threats to both military and civilian populations...

  20. The role of sulfur dioxide in stratospheric aerosol formation evaluated by using in situ measurements in the tropical lower stratosphere

    Science.gov (United States)

    Rollins, A. W.; Thornberry, T. D.; Watts, L. A.; Yu, P.; Rosenlof, K. H.; Mills, M.; Baumann, E.; Giorgetta, F. R.; Bui, T. V.; Höpfner, M.; Walker, K. A.; Boone, C.; Bernath, P. F.; Colarco, P. R.; Newman, P. A.; Fahey, D. W.; Gao, R. S.

    2017-05-01

    Stratospheric aerosols (SAs) are a variable component of the Earth's albedo that may be intentionally enhanced in the future to offset greenhouse gases (geoengineering). The role of tropospheric-sourced sulfur dioxide (SO2) in maintaining background SAs has been debated for decades without in situ measurements of SO2 at the tropical tropopause to inform this issue. Here we clarify the role of SO2 in maintaining SAs by using new in situ SO2 measurements to evaluate climate models and satellite retrievals. We then use the observed tropical tropopause SO2 mixing ratios to estimate the global flux of SO2 across the tropical tropopause. These analyses show that the tropopause background SO2 is about 5 times smaller than reported by the average satellite observations that have been used recently to test atmospheric models. This shifts the view of SO2 as a dominant source of SAs to a near-negligible one, possibly revealing a significant gap in the SA budget.

  1. Evaluation of a valveless thermal desorption system for organic aerosols and vapors. Transfer lines and preconcentration module.

    Science.gov (United States)

    Modey, William K; Doskey, Paul V

    2006-07-14

    Semivolatile organic compounds (SVOCs) are distributed in the atmosphere between the gas- and aerosol-phases. The low vapor pressures of some SVOCs makes thermal extraction and transfer through gas chromatographic (GC) systems difficult. We evaluated a programmable temperature vaporization (PTV) GC inlet, which served as the preconcentration module, and four open-tubular capillaries (Silcosteel- and Siltek-treated stainless steel, Silcosteel-treated stainless steel coated with 100% dimethylpolysiloxane, and deactivated fused silica) as transfer lines in a valveless, whole-sample analytic system. Thermal extraction of C(9)-C(36)n-alkanes at 300 and 320 degrees C from fused silica and quartz wool in the PTV inlet was equally efficient. Adsorptive losses of C(22)-C(36)n-alkanes to stainless steel surfaces that protruded into the PTV inlet were suspected. Thus, treatment of the outer surfaces of transfer lines is recommended for effective thermal transfer of SVOCs. Transfer efficiencies began to decline after n-C(24), n-C(28), and n-C(30) in Silcosteel-treated stainless steel, deactivated fused silica, and Siltek-treated stainless steel transfer lines, respectively. Thus, quantitative recovery at 320 degrees C of compounds with vapor pressures less than about 3 x 10(-8)Pa is not expected in valveless SVOC thermal desorption systems that use Siltek-treated stainless steel transfer lines and fused silica or quartz wool as preconcentration substrates.

  2. The Role of Sulfur Dioxide in Stratospheric Aerosol Formation Evaluated Using In-Situ Measurements in the Tropical Lower Stratosphere.

    Science.gov (United States)

    Rollins, A W; Thornberry, T D; Watts, L A; Yu, P; Rosenlof, K H; Mills, M; Baumann, E; Giorgetta, F R; Bui, T V; Höpfner, M; Walker, K A; Boone, C; Bernath, P F; Colarco, P R; Newman, P A; Fahey, D W; Gao, R S

    2017-05-16

    Stratospheric aerosols (SAs) are a variable component of the Earth's albedo that may be intentionally enhanced in the future to offset greenhouse gases (geoengineering). The role of tropospheric-sourced sulfur dioxide (SO 2 ) in maintaining background SAs has been debated for decades without in-situ measurements of SO 2 at the tropical tropopause to inform this issue. Here we clarify the role of SO 2 in maintaining SAs by using new in-situ SO 2 measurements to evaluate climate models and satellite retrievals. We then use the observed tropical tropopause SO 2 mixing ratios to estimate the global flux of SO 2 across the tropical tropopause. These analyses show that the tropopause background SO 2 is about 5 times smaller than reported by the average satellite observations that have been used recently to test atmospheric models. This shifts the view of SO 2 as a dominant source of SAs to a near-negligible one, possibly revealing a significant gap in the SA budget.

  3. Aerosol optical absorption measurements with photoacoustic spectroscopy

    Science.gov (United States)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  4. The evaluation of color and color difference according to the layering placement of Incisal shade composites on the body composites of the indirect resin restoration

    Directory of Open Access Journals (Sweden)

    Su-Jung Park

    2011-01-01

    Full Text Available Objectives The aim of this study was to evaluate the surface color of indirect resin restoration according to the layering placement of different shade of incisal composite. Materials and Methods In this study, CIE L*a*b* value of 16 Body composite of Tescera ATL (Bisco, Schaumburg IL,USA was measured by spectrophotometer (NF999, Nippon Denshuku, Japan, and compared to CIE L*a*b* value of Vitapan shade guide. Nine shade Incisal composite of Tescera ATL were build-up to 1 mm thickness on Body composites inlay block, and CIE L*a*b* value was measured. Incisal composite was ground to 0.5 mm thickness and CIE L*a*b* value was re-measured. Color difference between Body composite and Incisal composites layered on Body composite was calculated as a function of thickness. Results Color difference between corresponding shade of Tescera Body composite and Vitapan shade guide was from 6.88 to 12.80. L* and b*value was decreased as layering thickness of Incisal composite on Body composite was increased. But, a* value did not show specific change tendency. Conclusions Surface color difference between Body composites and Incisal composites layered on Body composite was increased as the layering thickness of Incisal composite increased (p < 0.05.

  5. Priority hazardous substances for the aquatic environment: critical evaluation of the emission factor method for the indirect estimate of the loads

    International Nuclear Information System (INIS)

    Azzellino, A.; Vismara, R.

    2005-01-01

    The European Water Framework Directive require to the EU Member States the knowledge of the priority hazardous pollutant contamination levels. Regional basin management plans (according to Italian laws D.Lgs 152/99 and to D.M. 367/03) generally include a review about the status of water contamination to respond to the Eu legislation prescriptions. However, since the actual monitoring activity of the water contamination is expensive and also extremely difficult in terms of analytical sensitivity, the most of these reviews has been prepared by using indirect emission coefficient estimates derived form literature. It is well known that such emission coefficients have been rarely proved fully reliable; moreover such an approach gives no information about the variability affecting the emission estimates. Aim of this work was to use the data contained into the emission EPER-INES database, european database which contains the IPPC Directive emission declarations, to define emission coefficients more reliable than literature coefficients. The presented results, even though based on a limited number of observations and referring the most only to heavy metals, confirm the scarce affidability of the emission factor method and show remarkable discrepancies (mostly under- but also over-estimations of about ten-fold) of these emission estimates from the actual emission data of the IPPC declarations. These results allow also to evaluate the not negligible variability that affects the definition of emission coefficients [it

  6. Aerosol delivery during spontaneous breathing with different types of nebulizers- in vitro/ex vivo models evaluation.

    Science.gov (United States)

    Lin, Hui-Ling; Fang, Tien-Pei; Cho, Hui-Sun; Wan, Gwo-Hwa; Hsieh, Meng-Jer; Fink, James B

    2018-02-01

    Nebulizers for spontaneous breathing have been evaluated through different study designs. There are limitations in simulated bench models related to patient and nebulizer factors. The aim of this study was to determine the correlation of inhaled drug mass between in vitro and ex vivo studies by testing aerosol deposition of various types of nebulizers. Ten healthy subjects were recruited to receive aerosol therapy with five nebulizers in random order: 1) a jet nebulizer (JN); 2) a breath-enhanced nebulizer (BEN); 3) a manually triggered nebulizer (MTN), 4) a breath-actuated nebulizer (BAN), and 5) a vibrating mesh nebulizer (VMN) with valved-adapter. A unit dose of salbutamol containing 5 mg in 2.5 mL was placed into the nebulizer and administered for 10 min. For the ex vivo study, minute ventilation of healthy subjects was recorded for 1 min. For the in vitro study a breathing simulator was utilized with adult breathing patterns. Aerosolized drug from the nebulizers and the accessory tubes was captured using inspiratory and expiratory collecting filters. Captured drug was eluted, measured and expressed as inhaled and exhaled mass using spectrophotometry at a wavelength of 276 nm. 10 healthy subjects were recruited, aged 20.8 ± 0.7 years old, with a mean height of 166.2 ± 9.2 cm and weight of 64.7 ± 12.4 kg. There was no significant difference in the inhaled drug dose between the JN and BEN (15.0 ± 1.94% and 17.74 ± 2.65%, respectively, p = .763), yet the inhaled doses were lower than the other three nebulizers (p vivo model (44.0 ± 0.9% and 35.5 ± 6.3% respectively, p = .003), whereas the JN in the ex vivo model resulted in a greater inhaled drug dose (15.0 ± 1.9% for ex vivo vs 11.6 ± 1.6% for in vitro, p = .008). These in vitro/ex vivo model comparisons of nebulizers performance indicated that breath-related nebulizers can be estimated using an in vitro model; however, the JN and VMN delivered

  7. In vitro evaluation of radio-labeled aerosol delivery via a variable-flow infant CPAP system.

    Science.gov (United States)

    Farney, Kimberly D; Kuehne, Brandon T; Gibson, Laurie A; Nelin, Leif D; Shepherd, Edward G

    2014-03-01

    Nasal CPAP is widely used in neonatal ICUs. Aerosolized medications such as inhaled steroids and β agonists are commonly administered in-line through nasal CPAP, especially to infants with bronchopulmonary dysplasia. We hypothesized that aerosol delivery to the lungs via variable-flow nasal CPAP in an in vitro model would be unreliable, and that the delivery would depend on the position of the aerosol generator within the nasal CPAP circuit. We used a system that employed a test lung placed in a plastic jar and subjected to negative pressure. Simulated inspiration effort was measured with a heated-wire anemometer. We used technetium-99m-labeled diethylene triamine penta-acetic acid as our aerosol. The nebulizer was placed either close to the humidifier or close to the nasal prongs in the circuit, and patient effort was simulated with a minute ventilation of 0.4 L/min. Relative aerosol delivery to the infant test lung with the nebulizer close to the humidifier was extremely low (0.3 ± 0.4%), whereas placing the nebulizer close to the nasal prongs resulted in significantly (P nasal prongs were: nebulizer (10 ± 4% vs 33 ± 13%, P nasal CPAP was negligible in this in vitro setup; however, such delivery was significantly improved by locating the aerosol generator closer to the nasal CPAP interface.

  8. Indirect lymphography with iotrolan

    International Nuclear Information System (INIS)

    Gmeinwieser, K.J.; Allgayer, B.; Golder, W.; Wenzel-Hora, B.; Theiss, H.; Dorrler, W.

    1988-01-01

    Indirect lymphography with the new nonionic dimeric isoosmolal contrast medium iotrolan is a simple method for visualizing the initial lymphatics and the lymph collectors up to the first lymph node station. Without risks, primary and secondary lymphedema and lipedema can be differentiated by typical patterns of lymph vessels. Four types of primary lymphedema can be discerned. This was demonstrated in 29 patients. The clinical diagnosis had to be altered in six cases because of the results of indirect lymphography. There were no side effects. Compared with clinical examination, dye test, fluorescence microlymphangiography, and lymph scintigraphy, indirect lymphography seems to be superior in the differential diagnosis of lymphedema

  9. Climatic impacts of anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, T. [Oslo Univ. (Norway)

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Anthropogenic production of aerosols is mainly connected with combustion of fossil fuel. Measured by particulate mass, the anthropogenic sulphate production is the dominating source of aerosols in the Northern Hemisphere. Particles emitted in mechanical processes, fly ash etc. are less important because of their shorter atmospheric residence time. Possible climatological effects of anthropogenic aerosols are usually classified in two groups: direct and indirect. Direct effects are alterations of the radiative heating budget due to the aerosol particles in clear air. Indirect effects involve the interaction between particles and cloud processes. A simplified one-layer radiation model gave cooling in the most polluted mid-latitude areas and heating due to soot absorption in the Arctic. This differential trend in heating rates may have significant effects on atmospheric meridional circulations, which is important for the atmosphere as a thermodynamic system. Recently the description of sulphur chemistry in the hemispheric scale dispersion model has been improved and will be used in a model for Mie scattering and absorption

  10. Incorporation of new particle formation and early growth treatments into WRF/Chem: Model improvement, evaluation, and impacts of anthropogenic aerosols over East Asia

    Science.gov (United States)

    Cai, Changjie; Zhang, Xin; Wang, Kai; Zhang, Yang; Wang, Litao; Zhang, Qiang; Duan, Fengkui; He, Kebin; Yu, Shao-Cai

    2016-01-01

    New particle formation (NPF) provides an important source of aerosol particles and cloud condensation nuclei, which may result in enhanced cloud droplet number concentration (CDNC) and cloud shortwave albedo. In this work, several nucleation parameterizations and one particle early growth parameterization are implemented into the online-coupled Weather Research and Forecasting model coupled with chemistry (WRF/Chem) to improve the model's capability in simulating NPF and early growth of ultrafine particles over East Asia. The default 8-bin over the size range of 39 nm-10 μm used in the Model for Simulating Aerosol Interactions and Chemistry aerosol module is expanded to the 12-bin over 1 nm-10 μm to explicitly track the formation and evolution of new particles. Although model biases remain in simulating H2SO4, condensation sink, growth rate, and formation rate, the evaluation of July 2008 simulation identifies a combination of three nucleation parameterizations (i.e., COMB) that can best represent the atmospheric nucleation processes in terms of both surface nucleation events and the resulting vertical distribution of ultrafine particle concentrations. COMB consists of a power law of Wang et al. (2011) based on activation theory for urban areas in planetary boundary layer (PBL), a power law of Boy et al. (2008) based on activation theory for non-urban areas in PBL, and the ion-mediated nucleation parameterization of YU10 for above PBL. The application and evaluation of the improved model with 12-bin and the COMB nucleation parameterization in East Asia during January, April, July, and October in 2001 show that the model has an overall reasonably good skill in reproducing most observed meteorological variables and surface and column chemical concentrations. Relatively large biases in simulated precipitation and wind speeds are due to inaccurate surface roughness and limitations in model treatments of cloud formation and aerosol-cloud-precipitation interactions

  11. On the aerosol-cloud relationship at a high-alpine site

    Energy Technology Data Exchange (ETDEWEB)

    Baltensperger, U.; Schwikowski, M.; Jost, D.T.; Nyeki, S.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Field experiments at the Jungfraujoch showed that during the presence of a cloud, most of the aerosol mass is transferred into the cloud phase. This results in smaller cloud droplets for increasing aerosol concentration, which increases the albedo of clouds (known as the indirect effect of climate forcing by aerosol particles). (author) 1 fig., 4 refs.

  12. STRAPS v1.0: evaluating a methodology for predicting electron impact ionisation mass spectra for the aerosol mass spectrometer

    Directory of Open Access Journals (Sweden)

    D. O. Topping

    2017-06-01

    Full Text Available Our ability to model the chemical and thermodynamic processes that lead to secondary organic aerosol (SOA formation is thought to be hampered by the complexity of the system. While there are fundamental models now available that can simulate the tens of thousands of reactions thought to take place, validation against experiments is highly challenging. Techniques capable of identifying individual molecules such as chromatography are generally only capable of quantifying a subset of the material present, making it unsuitable for a carbon budget analysis. Integrative analytical methods such as the Aerosol Mass Spectrometer (AMS are capable of quantifying all mass, but because of their inability to isolate individual molecules, comparisons have been limited to simple data products such as total organic mass and the O : C ratio. More detailed comparisons could be made if more of the mass spectral information could be used, but because a discrete inversion of AMS data is not possible, this activity requires a system of predicting mass spectra based on molecular composition. In this proof-of-concept study, the ability to train supervised methods to predict electron impact ionisation (EI mass spectra for the AMS is evaluated. Supervised Training Regression for the Arbitrary Prediction of Spectra (STRAPS is not built from first principles. A methodology is constructed whereby the presence of specific mass-to-charge ratio (m∕z channels is fitted as a function of molecular structure before the relative peak height for each channel is similarly fitted using a range of regression methods. The widely used AMS mass spectral database is used as a basis for this, using unit mass resolution spectra of laboratory standards. Key to the fitting process is choice of structural information, or molecular fingerprint. Our approach relies on using supervised methods to automatically optimise the relationship between spectral characteristics and these molecular

  13. STRAPS v1.0: evaluating a methodology for predicting electron impact ionisation mass spectra for the aerosol mass spectrometer

    Science.gov (United States)

    Topping, David O.; Allan, James; Rami Alfarra, M.; Aumont, Bernard

    2017-06-01

    Our ability to model the chemical and thermodynamic processes that lead to secondary organic aerosol (SOA) formation is thought to be hampered by the complexity of the system. While there are fundamental models now available that can simulate the tens of thousands of reactions thought to take place, validation against experiments is highly challenging. Techniques capable of identifying individual molecules such as chromatography are generally only capable of quantifying a subset of the material present, making it unsuitable for a carbon budget analysis. Integrative analytical methods such as the Aerosol Mass Spectrometer (AMS) are capable of quantifying all mass, but because of their inability to isolate individual molecules, comparisons have been limited to simple data products such as total organic mass and the O : C ratio. More detailed comparisons could be made if more of the mass spectral information could be used, but because a discrete inversion of AMS data is not possible, this activity requires a system of predicting mass spectra based on molecular composition. In this proof-of-concept study, the ability to train supervised methods to predict electron impact ionisation (EI) mass spectra for the AMS is evaluated. Supervised Training Regression for the Arbitrary Prediction of Spectra (STRAPS) is not built from first principles. A methodology is constructed whereby the presence of specific mass-to-charge ratio (m/z) channels is fitted as a function of molecular structure before the relative peak height for each channel is similarly fitted using a range of regression methods. The widely used AMS mass spectral database is used as a basis for this, using unit mass resolution spectra of laboratory standards. Key to the fitting process is choice of structural information, or molecular fingerprint. Our approach relies on using supervised methods to automatically optimise the relationship between spectral characteristics and these molecular fingerprints. Therefore

  14. Effect of Clouds on Sulfate Production and Aerosol Optical Depths in Western Pennsylvania During August 2004

    Science.gov (United States)

    Gustafson, W. I.; Chapman, E. G.; Fast, J. D.

    2005-12-01

    A new comprehensive model is being applied to better understand the effect of clouds on sulfate aerosol production and the resultant change in aerosol optical depths (AODs) over western Pennsylvania during August 2004. The modeled period corresponds with a series of measurements made by the Department of Energy's G-1 aircraft and a suite of ground observations taken during the International Consortium of Atmospheric Research on Transport and Transformation Project (ICARTT). The model setup employs three two-way interacting grids with grid point spacings of 18, 6, and 2 km. The 2 km grid encompasses western Pennsylvania and portions of states to the south and west, including several coal-fired power plants along the Ohio River valley and southern Pennsylvania border. The 18 km grid encompasses a large portion of eastern North America. The purpose of this larger domain is to provide realistic chemical and aerosol boundary conditions to the interior grid and to allow transport from the interior grid to the surrounding region to study the local interactions of emissions from Pittsburgh and nearby power plants with clouds, and their impact on aerosol formation and transformation processes downwind of Pennsylvania. In addition to direct radiative feedbacks coupled to the MOSAIC sectional aerosol module in WRF-Chem, testing is currently underway on cloud-aerosol modules that have been implemented. They allow investigation of the aerosol indirect effect over multiple spatial scales, and consist of a nucleation routine for cloud droplets in the Lin et al. microphysics scheme, a process for performing aerosol phase transitions between interstitial and cloud phases, an aqueous chemistry scheme, and wet aerosol scavenging. Because of the frequency of clouds, the ICARTT campaign is a favorable candidate for testing new cloud-aerosol modules, particularly the aqueous-phase oxidation of sulfur dioxide. The model will be evaluated using measurements of lidar-based AODs as a

  15. Evaluating Satellite Retrievals of Smoke Aerosol above Clouds using Airborne High Spectral Resolution Lidar Measurements during ORACLES

    Science.gov (United States)

    Ferrare, R. A.; Burton, S. P.; Cook, A. L.; Harper, D. B.; Hostetler, C. A.; Hair, J. W.; Vaughan, M.; Hu, Y.; Fenn, M. A.; Clayton, M.; Scarino, A. J.; Jethva, H. T.; Sayer, A. M.; Meyer, K.; Torres, O.; Josset, D. B.; Redemann, J.

    2017-12-01

    The NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-2) provided extensive measurements of smoke above shallow marine clouds while deployed from the NASA ER-2 aircraft during the NASA EV-S Observations of Aerosols above Clouds and their Interactions (ORACLES) mission. During the first ORACLES field campaign in September 2016, the ER-2 was deployed from Walvis Bay, Namibia and conducted flights over the southeastern Atlantic Ocean. HSRL-2 measured profiles of aerosol backscattering, extinction and aerosol optical depth (AOD) at 355 and 532 nm and aerosol backscattering and depolarization at 1064 nm and so provided an excellent characterization of the widespread smoke layers above shallow marine clouds. OMI, MODIS, and CALIOP satellite retrievals of above cloud AOD (ACAOD) are compared to the HSRL-2 measurements. The OMI above-cloud aerosols data product (OMACA) ACAOD product relies on the spectral contrast produced by aerosol absorption in two near-UV measurements (354 and 388 nm) to derive ACAOD. Two MODIS ACAOD products are examined; the first ("multichannel') relies on the spectral contrast in aerosol absorption derived from reflectance measurements at six MODIS channels from the visible to the shortwave infrared (swIR). The second method is an extension of the "Deep Blue" method and differs from the multichannel method in that it does not use swIR channels. The CALIOP V4 operational and "depolarization ratio (DR)" methods of retrieving ACAOD are also examined. The MODIS and OMI ACAOD values were well correlated (r2>0.6) with the HSRL-2 ACAOD values; bias differences were generally less than about 0.1 at 532 nm (10-30%). The CALIOP operational retrievals missed a significant amount of aerosol and so were biased low by 50-75% compared to HSRL-2. In contrast, the CALIOP DR method produced ACAOD values in excellent agreement (bias differences less than 0.03 (5%)) with HSRL-2. Aerosol extinction profiles computed for the smoke layer using

  16. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette C. Rohr; Petros Koutrakis; John Godleski

    2011-03-31

    Determining the health impacts of different sources and components of fine particulate matter (PM2.5) is an important scientific goal, because PM is a complex mixture of both inorganic and organic constituents that likely differ in their potential to cause adverse health outcomes. The TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) study focused on two PM sources - coal-fired power plants and mobile sources - and sought to investigate the toxicological effects of exposure to realistic emissions from these sources. The DOE-EPRI Cooperative Agreement covered the performance and analysis of field experiments at three power plants. The mobile source component consisted of experiments conducted at a traffic tunnel in Boston; these activities were funded through the Harvard-EPA Particulate Matter Research Center and will be reported separately in the peer-reviewed literature. TERESA attempted to delineate health effects of primary particles, secondary (aged) particles, and mixtures of these with common atmospheric constituents. The study involved withdrawal of emissions directly from power plant stacks, followed by aging and atmospheric transformation of emissions in a mobile laboratory in a manner that simulated downwind power plant plume processing. Secondary organic aerosol (SOA) derived from the biogenic volatile organic compound {alpha}-pinene was added in some experiments, and in others ammonia was added to neutralize strong acidity. Specifically, four scenarios were studied at each plant: primary particles (P); secondary (oxidized) particles (PO); oxidized particles + secondary organic aerosol (SOA) (POS); and oxidized and neutralized particles + SOA (PONS). Extensive exposure characterization was carried out, including gas-phase and particulate species. Male Sprague Dawley rats were exposed for 6 hours to filtered air or different atmospheric mixtures. Toxicological endpoints included (1) breathing pattern; (2) bronchoalveolar lavage

  17. PIXE and ICP-AES comparison in evaluating the efficiency of metal extraction and analysis in aerosol samples

    Energy Technology Data Exchange (ETDEWEB)

    Rugi, F.; Becagli, S.; Ghedini, C.; Marconi, M.; Severi, M.; Traversi, R.; Udisti, R. [Dep. of Chemistry, University of Florence, Sesto F.no (Fl) (Italy); Calzolai, G.; Chiari, M.; Lucarelli, F.; Nava, S. [Dep. of Physics and Astronomy , University of Florence and INFN, Sesto F. no (Fl) (Italy)

    2013-07-01

    Full text: A recent EU regulation (EN 149022005) requests the quantification of selected metals in the atmospheric particulate by mineralization with H{sub 2}0{sub 2} and HN0{sub 3} in microwave oven.This method might possibly conflict with the determination of the total metal content. In fact, the more the aerosol is enriched in crustal elements the more the difference in the two methods are expected, since the H{sub 2}0{sub 2}+ HN0{sub 3}, extraction is not reliable for metals in silicate form. In order to evaluate the extracted fraction, PIXE and ICP-AES measurements were carried out on the two halves of a series of PM10 and PM2.5 samples collected on Teflon filters in an urban site in the surrounding of Florence (Italy). An ICP-AES (Inductively Coupled Plasma -Atomic Emission Spectroscopy) method was optimized by an ultrasound nebuliser (CETAC 5000 AT+), in order to improve reproducibility and detection limit. In these conditions, it was possible quantifying AI, As, Cr, Cu, Fe, Mn, Ni, Pb and Vatsub-ppb levels. PIXE analysis using the external beam set-up at LABEC and a 3 MeV proton beam was carried out in order to measure the total elemental content of the metals. By comparing the ICP-AES and the PIXE results, a preliminary evaluation of the efficiency of the H{sub 2}0{sub 2} and HN0{sub 3} extraction method was performed. The obtained results (the mean values for the ICP-AES/PIXE ratio are reported in Table 1) show that the extraction procedure following the EN 14902 directive allows quantitative recoveries (80-120%, including the analytical uncertainties)for the majority of the analysed metals, especially for those mainly emitted by anthropic sources. This result points out that anthropic metals are present in the atmosphere as relatively available species (free metals, labile complexes, carbonates, oxides). On the contrary, lower recoveries were obtained for AI (mean value around 75%), a metal that has a relevant crustal fraction. Percentage of recovery of

  18. Evaluation of recently-proposed secondary organic aerosol models for a case study in Mexico City

    Directory of Open Access Journals (Sweden)

    K. Dzepina

    2009-08-01

    Full Text Available Recent field studies have found large discrepancies in the measured vs. modeled SOA mass loadings in both urban and regional polluted atmospheres. The reasons for these large differences are unclear. Here we revisit a case study of SOA formation in Mexico City described by Volkamer et al. (2006, during a photochemically active period when the impact of regional biomass burning is minor or negligible, and show that the observed increase in OA/ΔCO is consistent with results from several groups during MILAGRO 2006. Then we use the case study to evaluate three new SOA models: 1 the update of aromatic SOA yields from recent chamber experiments (Ng et al., 2007; 2 the formation of SOA from glyoxal (Volkamer et al., 2007a; and 3 the formation of SOA from primary semivolatile and intermediate volatility species (P-S/IVOC (Robinson et al., 2007. We also evaluate the effect of reduced partitioning of SOA into POA (Song et al., 2007. Traditional SOA precursors (mainly aromatics by themselves still fail to produce enough SOA to match the observations by a factor of ~7. The new low-NOx aromatic pathways with very high SOA yields make a very small contribution in this high-NOx urban environment as the RO2·+NO reaction dominates the fate of the RO2· radicals. Glyoxal contributes several μg m−3 to SOA formation, with similar timing as the measurements. P-S/IVOC are estimated from equilibrium with emitted POA, and introduce a large amount of gas-phase oxidizable carbon that was not in models before. With the formulation in Robinson et al. (2007 these species have a high SOA yield, and this mechanism can close the gap in SOA mass between measurements and models in our case study. However the volatility of SOA produced in the model is too high and the O/C ratio is somewhat lower than observations. Glyoxal SOA helps to bring the O/C ratio of predicted and observed SOA into better

  19. Illustrating the benefit of using hourly monitoring data on secondary inorganic aerosol and its precursors for model evaluation

    Directory of Open Access Journals (Sweden)

    M. Schaap

    2011-11-01

    Full Text Available Secondary inorganic aerosol, most notably ammonium nitrate and ammonium sulphate, is an important contributor to ambient particulate mass and provides a means for long range transport of acidifying components. The modelling of the formation and fate of these components is challenging. Especially, the formation of the semi-volatile ammonium nitrate is strongly dependent on ambient conditions and the precursor concentrations. For the first time an hourly artefact free data set from the MARGA instrument is available for the period of a full year (1 August 2007 to 1 August 2008 at Cabauw, the Netherlands. This data set is used to verify the results of the LOTOS-EUROS model. The comparison showed that the model underestimates the SIA levels. Closer inspection revealed that base line values appear well estimated for ammonium and sulphate and that the underestimation predominantly takes place at the peak concentrations. For nitrate the variability towards high concentrations is much better captured, however, a systematic relative underestimation was found. The model is able to reproduce many features of the intra-day variability observed for SIA. Although the model captures the seasonal and average diurnal variation of the SIA components, the modelled variability for the nitrate precursor gas nitric acid is much too large. It was found that the thermodynamic equilibrium module produces a too stable ammonium nitrate in winter and during night time in summer, whereas during the daytime in summer it is too unstable. We recommend to improve the model by verification of the equilibrium module, inclusion of coarse mode nitrate and to address the processes concerning SIA formation combined with a detailed analysis of the data set at hand. The benefit of the hourly data with both particulate and gas phase concentrations is illustrated and a continuation of these measurements may prove to be very useful in future model evaluation and improvement studies. Based

  20. Illustrating the benefit of using hourly monitoring data on secondary inorganic aerosol and its precursors for model evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Schaap, M. [TNO, Business unit Environment, Health and Safety, P.O. Box 80015, 3508 TA Utrecht (Netherlands); Otjes, R.P.; Weijers, E.P. [Energy research Centre of the Netherlands (ECN), P.O. Box 1, 1755 LE Petten (Netherlands)

    2011-11-08

    Secondary inorganic aerosol, most notably ammonium nitrate and ammonium sulphate, is an important contributor to ambient particulate mass and provides a means for long range transport of acidifying components. The modelling of the formation and fate of these components is challenging. Especially, the formation of the semi-volatile ammonium nitrate is strongly dependent on ambient conditions and the precursor concentrations. For the first time an hourly artefact free data set from the MARGA instrument is available for the period of a full year (1 August 2007 to 1 August 2008) at Cabauw, the Netherlands. This data set is used to verify the results of the LOTOS-EUROS model. The comparison showed that the model underestimates the SIA levels. Closer inspection revealed that base line values appear well estimated for ammonium and sulphate and that the underestimation predominantly takes place at the peak concentrations. For nitrate the variability towards high concentrations is much better captured, however, a systematic relative underestimation was found. The model is able to reproduce many features of the intra-day variability observed for SIA. Although the model captures the seasonal and average diurnal variation of the SIA components, the modelled variability for the nitrate precursor gas nitric acid is much too large. It was found that the thermodynamic equilibrium module produces a too stable ammonium nitrate in winter and during night time in summer, whereas during the daytime in summer it is too unstable. We recommend to improve the model by verification of the equilibrium module, inclusion of coarse mode nitrate and to address the processes concerning SIA formation combined with a detailed analysis of the data set at hand. The benefit of the hourly data with both particulate and gas phase concentrations is illustrated and a continuation of these measurements may prove to be very useful in future model evaluation and improvement studies. Based on our findings we

  1. A Numerical Testbed for Remote Sensing of Aerosols, and its Demonstration for Evaluating Retrieval Synergy from a Geostationary Satellite Constellation of GEO-CAPE and GOES-R

    Science.gov (United States)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael I.

    2014-01-01

    We present a numerical testbed for remote sensing of aerosols, together with a demonstration for evaluating retrieval synergy from a geostationary satellite constellation. The testbed combines inverse (optimal-estimation) software with a forward model containing linearized code for computing particle scattering (for both spherical and non-spherical particles), a kernel-based (land and ocean) surface bi-directional reflectance facility, and a linearized radiative transfer model for polarized radiance. Calculation of gas absorption spectra uses the HITRAN (HIgh-resolution TRANsmission molecular absorption) database of spectroscopic line parameters and other trace species cross-sections. The outputs of the testbed include not only the Stokes 4-vector elements and their sensitivities (Jacobians) with respect to the aerosol single scattering and physical parameters (such as size and shape parameters, refractive index, and plume height), but also DFS (Degree of Freedom for Signal) values for retrieval of these parameters. This testbed can be used as a tool to provide an objective assessment of aerosol information content that can be retrieved for any constellation of (planned or real) satellite sensors and for any combination of algorithm design factors (in terms of wavelengths, viewing angles, radiance and/or polarization to be measured or used). We summarize the components of the testbed, including the derivation and validation of analytical formulae for Jacobian calculations. Benchmark calculations from the forward model are documented. In the context of NASA's Decadal Survey Mission GEOCAPE (GEOstationary Coastal and Air Pollution Events), we demonstrate the use of the testbed to conduct a feasibility study of using polarization measurements in and around the O2 A band for the retrieval of aerosol height information from space, as well as an to assess potential improvement in the retrieval of aerosol fine and coarse mode aerosol optical depth (AOD) through the

  2. Evaluation of bio-aerosols concentration in the different wards of three educational hospitals in Iran

    Directory of Open Access Journals (Sweden)

    Heshmatollah Nourmoradi

    2012-01-01

    Full Text Available Aims: The aim of this study was to evaluate the bioaerosols level in the various parts of three educational hospitals of Isfahan, Iran. Materials and Methods: The collection of bioaerosols (including bacterial and fungal microorganisms was carried out with one-stage Anderson sampler. The sampling was carried out at the height of 1.5 m from the floor of various hospitals wards (infectious, surgery, urology wards, and operating room. The volume of each sample was determined based on pre-tests carried and was about 50 L. After sampling, the samples were incubated and analyzed. The effect of various environmental conditions including humidity, temperature, and outdoor bioaerosol levels was also investigated. Results: The lowest numbers of fungal and bacterial concentration were obtained in operating rooms of the hospitals and the highest concentration was observed in infectious disease wards of hospital 1 and 2 and surgery ward of hospital 3. The bacterial concentration was observed to be higher in hospital wards than outdoor, except hospitals′ operating rooms. Conclusion: The findings showed that the bioaerosols level in the hospitals was relatively high. The higher levels of indoor bacteria than outdoor might be associated with the presence of patients, their activity, unsuitable ventilation, and disinfection. Therefore, environmental monitoring and control measures are required to improve hospital environmental quality especially in the wards with immune deficiency patients.

  3. Comparison of methods for evaluation of aerosol deposition in the model of human lungs

    Directory of Open Access Journals (Sweden)

    Belka Miloslav

    2014-03-01

    Full Text Available It seems to be very convenient to receive a medicine by inhalation instead of injection. Unfortunately transport of particles and targeted delivery of a drug in human respiratory airways is very complicated task. Therefore we carried out experiments and tested different methods for evaluation of particle deposition in a model of human lungs. The model included respiratory airways from oral cavity to 7th generation of branching. Particles were dispersed by TSI Small-scale Powder Disperser 3433 and delivered to the model. The model was disassembled into segments after the deposition of the particles and local deposition was measured. Two methods were used to analyse the samples, fluorescence spectroscopy and optical microscopy. The first method was based on measuring the intensity of luminescence, which represented the particle deposition. The second method used the optical microscope with phase-contrast objective. A dispersion of isopropanol and particles was filtrated using a vacuum filtration unit, a filter was placed on glass slide and made transparent. The particles on the filter were counted manually and the deposition was calculated afterwards. The results of the methods were compared and both methods proved to be useful.

  4. Four-wavelength lidar evaluation of particle characteristics and aerosol densities

    Science.gov (United States)

    Uthe, E. E.; Livingston, J. M.; Delateur, S. A.; Nielsen, N. B.

    1985-06-01

    The SRI International four-wavelength (0.53, 1.06, 3.8, 10.6 micron) lidar systems was used during the SNOW-ONE-B and Smoke Week XI/SNOW-TWO field experiments to validate its capabilities in assessing obscurant optical and physical properties. The lidar viewed along a horizontal path terminated by a passive reflector. Data examples were analyzed in terms of time-dependent transmission, wavelength dependence of optical depth, and range-resolved extinction coefficients. Three methods were used to derive extinction data from the lidar signatures. These were target method, Klett method and experimental data method. The results of the field and analysis programs are reported in the journal and conference papers that are appended to this report, and include: comparison study of lidar extinction methods, submitted to applied optics, error analysis of lidar solution techniques for range-resolved extinction coefficients based on observational data, smoke/obscurants symposium 9, Four--Wavelength Lidar Measurements from smoke week 6/SNOW-TWO, smoke/obscurants symposium 8, SNOW-ONE-B multiple-wavelength lidar measurements. Snow symposium 3, and lidar applications for obscurant evaluations, smoke/obscurants Symposium 7. The report also provides a summary of background work leading to this project, and of project results.

  5. Evaluation of runners' exposure to microbial aerosol in selected sites in Cracow

    Directory of Open Access Journals (Sweden)

    Katarzyna Wolny-Koładka

    2015-06-01

    Full Text Available Introduction. The purpose of this study was to evaluate the microbiological quality of the air at the selected places which are located in Cracow and also to determine the influence of weather conditions, such as temperature, humidity and pollination on the number of microorganisms. Material and methods. Samples of air were taken during spring, summer, autumn and winter. The analyses were carried out by using a single-stage MAS-100 impactor (Merck and repeated three times. Results were compared to guidelines which are included in Polish Standards. Results. The results of the study suggest that there is correlation between seasons and number of microorganisms. Moreover the number of microbes depends on location. The highest concentration of all groups of microorganisms occurred in summer and autumn. Conversely the lowest number of microbes occurred in winter. The results indicated that the composition of bioaerozol is typical and consists of fungi: Cladosporium spp., Mucor spp., Penicillium spp., Alternaria spp., Trichothecium spp., Fusarium spp., bacteria: Micrococcus spp., Diplococcus spp., Tetracoccus spp., Streptobacillus spp., Staphylococcus spp. and actinomycetes. Conclusions. The results revealed that there is a big difference in the occurence of microorganisms and it depends on season and location as well. However our study indicates that air does not pose a microbiological threat to runners

  6. Evaluation of the TSI aerosol impactor 3306/3321 system using a redesigned impactor stage with solution and suspension metered-dose inhalers.

    Science.gov (United States)

    Harris, Julie A; Stein, Stephen W; Myrdal, Paul B

    2006-03-10

    The purpose of this research was to evaluate a redesigned impactor stage for the TSI Model 3306 Impactor Inlet with nozzles adjusted to obtain a target cut-point of 4.7 microm. It has been determined that the previous cut-point used in the Model 3306 was nominally closer to 4.14 microm, thus potentially impacting the characterization of aerosol mass. The reassessment of the Model 3306 was performed on 4 solution and 2 suspension metered-dose inhaler (MDI) formulations. The redesigned impactor stage resulted in a 5% to 6% increase in aerosol mass when compared with the previous impactor stage for the products Ventolin-HFA, Proventil-HFA, and 2 cyclosporin solution formulations with high ethanol concentrations (15% wt/wt). For the formulations with low ethanol concentrations (3% wt/wt), minimal differences were observed between the 2 cut-points. In addition, this study reevaluated the requirement of a vertical inlet extension length when using the TSI 3306/3321 system with the redesigned cut-point. It was shown that the use of a 20-cm extension provides mass and aerosol size distributions that are comparable to the Andersen 8-stage Cascade Impactor, for both solution and suspension MDIs. This work indicates that the TSI 3306/3321 system is suitable for preformulation studies of both suspension and solution MDI systems.

  7. The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS – Part 1: Model description and evaluation

    Directory of Open Access Journals (Sweden)

    S. R. Freitas

    2009-04-01

    Full Text Available We introduce the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS. CATT-BRAMS is an on-line transport model fully consistent with the simulated atmospheric dynamics. Emission sources from biomass burning and urban-industrial-vehicular activities for trace gases and from biomass burning aerosol particles are obtained from several published datasets and remote sensing information. The tracer and aerosol mass concentration prognostics include the effects of sub-grid scale turbulence in the planetary boundary layer, convective transport by shallow and deep moist convection, wet and dry deposition, and plume rise associated with vegetation fires in addition to the grid scale transport. The radiation parameterization takes into account the interaction between the simulated biomass burning aerosol particles and short and long wave radiation. The atmospheric model BRAMS is based on the Regional Atmospheric Modeling System (RAMS, with several improvements associated with cumulus convection representation, soil moisture initialization and surface scheme tuned for the tropics, among others. In this paper the CATT-BRAMS model is used to simulate carbon monoxide and particulate material (PM2.5 surface fluxes and atmospheric transport during the 2002 LBA field campaigns, conducted during the transition from the dry to wet season in the southwest Amazon Basin. Model evaluation is addressed with comparisons between model results and near surface, radiosondes and airborne measurements performed during the field campaign, as well as remote sensing derived products. We show the matching of emissions strengths to observed carbon monoxide in the LBA campaign. A relatively good comparison to the MOPITT data, in spite of the fact that MOPITT a priori assumptions imply several difficulties, is also obtained.

  8. Modeling and evaluation of the global sea-salt aerosol distribution: sensitivity to size-resolved and sea-surface temperature dependent emission schemes

    Directory of Open Access Journals (Sweden)

    M. Spada

    2013-12-01

    Full Text Available One of the major sources of uncertainty in model estimates of the global sea-salt aerosol distribution is the emission parameterization. We evaluate a new sea-salt aerosol life cycle module coupled to the online multiscale chemical transport model NMMB/BSC-CTM. We compare 5 yr global simulations using five state-of-the-art sea-salt open-ocean emission schemes with monthly averaged coarse aerosol optical depth (AOD from selected AERONET sun photometers, surface concentration measurements from the University of Miami's Ocean Aerosol Network, and measurements from two NOAA/PMEL cruises (AEROINDOEX and ACE1. Model results are highly sensitive to the introduction of sea-surface-temperature (SST-dependent emissions and to the accounting of spume particles production. Emission ranges from 3888 Tg yr−1 to 8114 Tg yr−1, lifetime varies between 7.3 h and 11.3 h, and the average column mass load is between 5.0 Tg and 7.2 Tg. Coarse AOD is reproduced with an overall correlation of around 0.5 and with normalized biases ranging from +8.8% to +38.8%. Surface concentration is simulated with normalized biases ranging from −9.5% to +28% and the overall correlation is around 0.5. Our results indicate that SST-dependent emission schemes improve the overall model performance in reproducing surface concentrations. On the other hand, they lead to an overestimation of the coarse AOD at tropical latitudes, although it may be affected by uncertainties in the comparison due to the use of all-sky model AOD, the treatment of water uptake, deposition and optical properties in the model and/or an inaccurate size distribution at emission.

  9. Intercomparison and Evaluation of Aerosol Microphysical Properties among AeroCom Global Models of a Range of Complexity

    Czech Academy of Sciences Publication Activity Database

    Mann, G.W.; Carslaw, K.S.; Reddington, C.L.; Pringle, K.J.; Schulz, M.; Asmi, A.; Spracklen, D.V.; Ridley, D.A.; Woodhouse, M.T.; Lee, L.A.; Zhang, K.; Ghan, S.H.; Easter, R.C.; Liu, X.; Stier, P.; Lee, Y.H.; Adams, P.J.; Tost, H.; Lelieveld, J.; Bauer, S.E.; Tsigaridis, K.; van Noije, T.P.C.; Strunk, A.; Vignati, E.; Bellouin, N.; Dalvi, M.; Johnson, C.E.; Bergman, T.; Kokkola, H.; von Salzen, K.; Yu, F.; Luo, G.; Petzold, A.; Heintzenberger, J.; Clarke, A.; Ogren, J.A.; Gras, J.; Baltensperger, U.; Kaminski, U.; Jennings, S.G.; O'Dowd, C.D.; Harrison, R.M.; Beddows, D.C.S.; Kulmala, M.; Viisanen, Y.; Ulevicius, V.; Mihalopoulos, N.; Ždímal, Vladimír; Fiebich, M.; Hansson, H.-C.; Swietlicki, E.; Henzig, J.S.

    2014-01-01

    Roč. 14, č. 9 (2014), s. 4679-4713 ISSN 1680-7316 Institutional support: RVO:67985858 Keywords : global climate models * aerosol processes * particle size distributions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.053, year: 2014

  10. Comparative evaluation of effects of bleaching on color stability and marginal adaptation of discolored direct and indirect composite laminate veneers under in vivo conditions

    Directory of Open Access Journals (Sweden)

    Veena Jain

    2015-01-01

    Clinical Significance: Indirect composites should be preferred to direct composites as veneering materials as they have better color stability. Special attention should be given to their marginal adaptation especially in the CE region. Bleaching should be avoided in patients with composite restorations in the mouth.

  11. Aerosol climate effects and air quality impacts from 1980 to 2030

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Menon, Surabi; Unger, Nadine; Koch, Dorothy; Francis, Jennifer; Garrett, Tim; Sednev, Igor; Shindell, Drew; Streets, David

    2007-11-26

    We investigate aerosol effects on climate for 1980, 1995 (meant to reflect present-day) and 2030 using the NASA Goddard Institute for Space Studies climate model coupled to an on-line aerosol source and transport model with interactive oxidant and aerosol chemistry. Aerosols simulated include sulfates, organic matter (OM), black carbon (BC), sea-salt and dust and additionally, the amount of tropospheric ozone is calculated, allowing us to estimate both changes to air quality and climate for different time periods and emission amounts. We include both the direct aerosol effect and indirect aerosol effects for liquid-phase clouds. Future changes for the 2030 A1B scenario are examined, focusing on the Arctic and Asia, since changes are pronounced in these regions. Our results for the different time periods include both emission changes and physical climate changes. We find that the aerosol indirect effect (AIE) has a large impact on photochemical processing, decreasing ozone amount and ozone forcing, especially for the future (2030-1995). Ozone forcings increase from 0 to 0.12 Wm{sup -2} and the total aerosol forcing increases from -0.10 Wm{sup -2} to -0.94 Wm{sup -2} (AIE increases from -0.13 to -0.68 Wm{sup -2}) for 1995-1980 versus 2030-1995. Over the Arctic we find that compared to ozone and the direct aerosol effect, the AIE contributes the most to net radiative flux changes. The AIE, calculated for 1995-1980, is positive (1.0 Wm{sup -2}), but the magnitude decreases (-0.3Wm{sup -2}) considerably for the future scenario. Over Asia, we evaluate the role of biofuel and transportation-based emissions (for BC and OM) via a scenario (2030A) that includes a projected increase (factor of two) in biofuel and transport-based emissions for 2030 A1B over Asia. Projected changes from present-day due to the 2030A emissions versus 2030 A1B are a factor of 4 decrease in summertime precipitation in Asia. Our results are sensitive to emissions used. Uncertainty in present

  12. Aerosol climate effects and air quality impacts from 1980 to 2030

    International Nuclear Information System (INIS)

    Menon, Surabi; Sednev, Igor; Unger, Nadine; Koch, Dorothy; Shindell, Drew; Francis, Jennifer; Garrett, Tim; Streets, David

    2008-01-01

    We investigate aerosol effects on climate for 1980, 1995 (meant to reflect present day) and 2030 using the NASA Goddard Institute for Space Studies climate model coupled to an on-line aerosol source and transport model with interactive oxidant and aerosol chemistry. Aerosols simulated include sulfates, organic matter (OM), black carbon (BC), sea-salt and dust and, additionally, the amount of tropospheric ozone is calculated, allowing us to estimate both changes to air quality and climate for different time periods and emission amounts. We include both the direct aerosol effect and indirect aerosol effects for liquid-phase clouds. Future changes for the 2030 A1B scenario are examined, focusing on the Arctic and Asia, since changes are pronounced in these regions. Our results for the different time periods include both emission changes and physical climate changes. We find that the aerosol indirect effect (AIE) has a large impact on photochemical processing, decreasing ozone amount and ozone forcing, especially for the future (2030-1995). Ozone forcings increase from 0 to 0.12 W m -2 and the total aerosol forcing decreases from -0.10 to -0.94 W m -2 (AIE decreases from -0.13 to -0.68 W m -2 ) for 1995-1980 versus 2030-1995. Over the Arctic we find that compared to ozone and the direct aerosol effect, the AIE contributes the most to net radiative flux changes. The AIE, calculated for 1995-1980, is positive (1.0 W m -2 ), but the magnitude decreases (-0.3 W m -2 ) considerably for the future scenario. Over Asia, we evaluate the role of biofuel- and transportation-based emissions (for BC and OM) via a scenario (2030A) that includes a projected increase (factor of 2) in biofuel- and transport-based emissions for 2030 A1B over Asia. Projected changes from present day due to the 2030A emissions versus 2030 A1B are a factor of 4 decrease in summertime precipitation in Asia. Our results are sensitive to emissions used. Uncertainty in present-day emissions suggests that

  13. A framework for cloud - Aerosol interaction study

    NARCIS (Netherlands)

    Sarna, K.; Russchenberg, H.W.J.

    2012-01-01

    Aerosols can indirectly influence climate either by cloud albedo or lifetime effect. In order to have better understanding of these processes it is crucial to measure detailed vertical profiles of the radiative transfer and the microphysical evolution of clouds. Best results can be achieved by using

  14. An Assessment of Uncertainties in the NASA GISS ModelE GCM due to Variations in the Representation of Aerosol/Cloud Interactions

    Science.gov (United States)

    Persad, G. G.; Menon, S.; Sednev, I.

    2008-12-01

    Aerosol indirect effects are known to have a significant impact on the evolution of the climate system. However, their representation via cloud/aerosol microphysics remains a major source of uncertainty in climate models. This study assesses uncertainties in the NASA Goddard Institute for Space Studies (GISS) ModelE global climate model produced by different representations of the cloud/aerosol interaction scheme. By varying the complexity of the cloud microphysics scheme included in the model and analyzing the range of results against cloud properties obtained from satellite retrievals, we evaluate the effect of the different schemes on climate. We examine four sets of simulations with the GISS ModelE: (1) using a new aerosol/cloud microphysics package implemented in ModelE (based on the two-moment cloud microphysics scheme recently implemented in CCSM), (2) using a version of the microphysics scheme previously included in ModelE, (3) using prescribed aerosol concentrations and fixed cloud droplet number (the main link between aerosols and the cloud microphysics scheme), and (4) varying the environment conditions with which the new aerosol/cloud microphysics package is run. The global mean cloud properties are analyzed and compared to global mean ranges as obtained from satellite retrievals. Results show that important climate parameters, such as total cloud cover, can be underestimated by 8-15% using the new aerosol/cloud microphysics scheme. Liquid water path (LWP) is particularly affected by variations to the aerosol/cloud microphysics representation, exhibiting both global mean variations of ~20% and strong regional differences. Significant variability in LWP between the various simulations may be attributed to differences in the autoconversion scheme used in the differing representations of aerosol/cloud interactions. These LWP differences significantly affect radiative parameters, such as cloud optical depth and net cloud forcing (used to evaluate the

  15. Importance of Raman Lidar Aerosol Extinction Measurements for Aerosol-Cloud Interaction Studies

    Directory of Open Access Journals (Sweden)

    Han Zaw

    2016-01-01

    Full Text Available Using a UV Raman Lidar for aerosol extinction, and combining Microwave Radiometer derived Liquid Water Path (LWP with Multifilter Rotating Shadowband Radiometer derived Cloud Optical depth, to get cloud effective radius (Reff, we observe under certain specialized conditions, clear signatures of the Twomey Aerosol Indirect effect on cloud droplet properties which are consistent with the theoretical bounds. We also show that the measurement is very sensitive to how far the aerosol layer is from the cloud base and demonstrate that surface PM25 is far less useful. Measurements from both the DOE ARM site and new results at CCNY are presented.

  16. Modelling winter organic aerosol at the European scale with CAMx: evaluation and source apportionment with a VBS parameterization based on novel wood burning smog chamber experiments

    Directory of Open Access Journals (Sweden)

    G. Ciarelli

    2017-06-01

    Full Text Available We evaluated a modified VBS (volatility basis set scheme to treat biomass-burning-like organic aerosol (BBOA implemented in CAMx (Comprehensive Air Quality Model with extensions. The updated scheme was parameterized with novel wood combustion smog chamber experiments using a hybrid VBS framework which accounts for a mixture of wood burning organic aerosol precursors and their further functionalization and fragmentation in the atmosphere. The new scheme was evaluated for one of the winter EMEP intensive campaigns (February–March 2009 against aerosol mass spectrometer (AMS measurements performed at 11 sites in Europe. We found a considerable improvement for the modelled organic aerosol (OA mass compared to our previous model application with the mean fractional bias (MFB reduced from −61 to −29 %. We performed model-based source apportionment studies and compared results against positive matrix factorization (PMF analysis performed on OA AMS data. Both model and observations suggest that OA was mainly of secondary origin at almost all sites. Modelled secondary organic aerosol (SOA contributions to total OA varied from 32 to 88 % (with an average contribution of 62 % and absolute concentrations were generally under-predicted. Modelled primary hydrocarbon-like organic aerosol (HOA and primary biomass-burning-like aerosol (BBPOA fractions contributed to a lesser extent (HOA from 3 to 30 %, and BBPOA from 1 to 39 % with average contributions of 13 and 25 %, respectively. Modelled BBPOA fractions were found to represent 12 to 64 % of the total residential-heating-related OA, with increasing contributions at stations located in the northern part of the domain. Source apportionment studies were performed to assess the contribution of residential and non-residential combustion precursors to the total SOA. Non-residential combustion and road transportation sector contributed about 30–40 % to SOA formation (with increasing

  17. Modelling winter organic aerosol at the European scale with CAMx: evaluation and source apportionment with a VBS parameterization based on novel wood burning smog chamber experiments

    Science.gov (United States)

    Ciarelli, Giancarlo; Aksoyoglu, Sebnem; El Haddad, Imad; Bruns, Emily A.; Crippa, Monica; Poulain, Laurent; Äijälä, Mikko; Carbone, Samara; Freney, Evelyn; O'Dowd, Colin; Baltensperger, Urs; Prévôt, André S. H.

    2017-06-01

    We evaluated a modified VBS (volatility basis set) scheme to treat biomass-burning-like organic aerosol (BBOA) implemented in CAMx (Comprehensive Air Quality Model with extensions). The updated scheme was parameterized with novel wood combustion smog chamber experiments using a hybrid VBS framework which accounts for a mixture of wood burning organic aerosol precursors and their further functionalization and fragmentation in the atmosphere. The new scheme was evaluated for one of the winter EMEP intensive campaigns (February-March 2009) against aerosol mass spectrometer (AMS) measurements performed at 11 sites in Europe. We found a considerable improvement for the modelled organic aerosol (OA) mass compared to our previous model application with the mean fractional bias (MFB) reduced from -61 to -29 %. We performed model-based source apportionment studies and compared results against positive matrix factorization (PMF) analysis performed on OA AMS data. Both model and observations suggest that OA was mainly of secondary origin at almost all sites. Modelled secondary organic aerosol (SOA) contributions to total OA varied from 32 to 88 % (with an average contribution of 62 %) and absolute concentrations were generally under-predicted. Modelled primary hydrocarbon-like organic aerosol (HOA) and primary biomass-burning-like aerosol (BBPOA) fractions contributed to a lesser extent (HOA from 3 to 30 %, and BBPOA from 1 to 39 %) with average contributions of 13 and 25 %, respectively. Modelled BBPOA fractions were found to represent 12 to 64 % of the total residential-heating-related OA, with increasing contributions at stations located in the northern part of the domain. Source apportionment studies were performed to assess the contribution of residential and non-residential combustion precursors to the total SOA. Non-residential combustion and road transportation sector contributed about 30-40 % to SOA formation (with increasing contributions at urban and near

  18. The GRAPE aerosol retrieval algorithm

    Directory of Open Access Journals (Sweden)

    G. E. Thomas

    2009-11-01

    Full Text Available The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations – this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998, as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE data-set.

    The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.

  19. Community-based clinic volunteering: an evaluation of the direct and indirect effects on the experience of health science college students.

    Science.gov (United States)

    Bird, Yelena; Islam, Adiba; Moraros, John

    2016-01-18

    The present study was conducted in a multi service-learning, student managed and operated, community-based clinic. Its aim was to measure the direct and indirect effects of how proximal factors (i.e., 'management', 'support received', 'duration of involvement', and 'average time spent per month') and mediators (i.e., 'training received', 'motivation', and 'commitment') influence distal outcomes (i.e., 'performance', 'satisfaction', and 'overall experience') within a volunteer organization. Participants were recruited through the use of an email list server. An online survey was used containing multi-item measures from validated scales. Data were collected from 170 volunteers from July to August 2013. Data analysis used a structural equation modeling (SEM) framework for the estimation of direct and indirect effects on constructs and variables of interest. Only statistically significant relationships were reported at p volunteers but has a relatively small impact on their 'commitment' (0.39) to the organization. Second, the mediator of 'motivation' proved to have the strongest impact on the distal outcome of volunteer 'performance' and 'satisfaction' levels (0.41 and 0.58 respectively), whereas 'commitment' (0.44) was the key in determining their 'overall experience' with the organization. These results in turn, help contextualize the indirect effects observed in our study. Namely, the proximal factor of 'management' played a distinctive role in influencing the distal outcomes of volunteer 'performance' (0.32) and 'overall experience' (0.66), whereas the organizational 'support received' by the volunteers was key to their 'satisfaction' (0.21). The findings of the present study shed light into the direct and indirect effects of how proximal factors and mediators, influence student volunteers distal outcomes within a community-based clinic. These results provide useful information and serve as a valuable tool to higher education (curriculum experts, accreditation

  20. Evaluation of clinical and radiological outcomes of mineral trioxide aggregate and calcium hydroxide as indirect pulp capping agents in the treatment of deep carious lesion of permanent teeth

    Directory of Open Access Journals (Sweden)

    Rafeza Sultana

    2016-09-01

    Full Text Available The maintenance of pulp vitality and conduction of reparative dentin can be possible by indirect pulp capping with mineral trioxide aggregate (MTA and calcium hydroxide as pulp capping agents. The objective of the study is to assess the clinical and radiological outcomes of MTA and calcium hydroxide as indirect pulp capping agents in deep carious lesions of permanent teeth. The present study included 50 permanent teeth having deep carious lesions with reversible pulp status were selected and then randomly divided into two groups of 25 teeth in a group. Standard indirect pulp capping procedures were followed. Patients were recalled at 3, 6 and 12 months interval to assess postoperative pain, the vitality of the pulp and formation of reparative dentin. In all observation periods, MTA showed more capable of reducing pain and maintain pulp vitality which was statistically significant than that of calcium hydroxide. At 12 months observation period, 24 teeth (96% of MTA and 19 teeth (76% of calcium hydroxide showed reparative dentin formation. It can be concluded that MTA is more effective than that of calcium hydroxide. 

  1. At-Sea Evaluation of the Obscuration Characteristics of a Hygroscopic Aerosol Smoke Produced by the CY85A Pyrotechnic

    Science.gov (United States)

    1983-12-01

    and IiWIU* by block nmber) Salty Dog Obscuration .2Hygroscopic aerosol Extinction ISmoke Pyrotechnically Generated ’For the past six years, Calapan, in...combustion. Such particles are especially advantageous due to their hygroscopicity. When exposed to a sufficient level of ambient humidity the...particles are especially advantageous due to their hygroscopicity. When exposed to a sufficient level of ambient humidity the particles deliquesce to form

  2. Performance evaluation of the pilot-scale, double-shell tank ventilation system using simulated aerosol streams

    Energy Technology Data Exchange (ETDEWEB)

    Brouns, T.M.; Peterson, M.E.

    1989-12-01

    Radioactive waste slurries are currently being stored in underground tanks on the Hanford Site. The slurries that are being stored in the double-shell tanks (DSTs) are various mixtures of radioactive solids, liquids, and aqueous wastes. The tanks must be maintained at a negative pressure relative to atmospheric pressure to safeguard against pressurization and the subsequent leakage of entrained radioactive aerosols to the environment. A ventilation system must be capable of withdrawing the total volume of off gas generated from the tanks while maintaining the tanks at a negative pressure. Westinghouse Hanford Company (WHC) has identified a need to improve the efficiency of the ventilation system being used on the tank farms to meet the more restrictive release limits for radioactive isotopes. Kaiser Engineers Hanford Company (KEH) has been contracted by WHC to design the new ventilation system for the existing tank farms. WHC contracted the Pacific Northwest Laboratory (PNL) to fabricate and test the prototypic pilot-scale design prior to finalizing the design of the ventilation system. The PNL has conducted tests to determine (1) the effectiveness of the system for removal of vapors condensable at 35{degrees}F, (2) the effectiveness for removal of soluble and insoluble aerosols, and (3) the life span of the mist eliminators to be used in the new system. The results of extensive testing of the pilot-scale system with condensables and both soluble and insoluble aerosols are presented in this report. 7 refs., 25 figs., 8 tabs.

  3. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  4. Final Report for Cloud-Aerosol Physics in Super-Parameterized Atmospheric Regional Climate Simulations (CAP-SPARCS)(DE-SC0002003) for 8/15/2009 through 8/14/2012

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Lynn M; Somerville, Richard C.J.

    2012-11-05

    Improving the representation of local and non-local aerosol interactions in state-of-the-science regional climate models is a priority for the coming decade (Zhang, 2008). With this aim in mind, we have combined two new technologies that have a useful synergy: (1) an aerosol-enabled regional climate model (Advanced Weather Research and Forecasting Model with Chemistry WRF-Chem), whose primary weakness is a lack of high quality boundary conditions and (2) an aerosol-enabled multiscale modeling framework (PNNL Multiscale Aerosol Climate Model (MACM)), which is global but captures aerosol-convection-cloud feedbacks, and thus an ideal source of boundary conditions. Combining these two approaches has resulted in an aerosol-enabled modeling framework that not only resolves high resolution details in a particular region, but crucially does so within a global context that is similarly faithful to multi-scale aerosol-climate interactions. We have applied and improved the representation of aerosol interactions by evaluating model performance over multiple domains, with (1) an extensive evaluation of mid-continent precipitation representation by multiscale modeling, (2) two focused comparisons to transport of aerosol plumes to the eastern United States for comparison with observations made as part of the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT), with the first being idealized and the second being linked to an extensive wildfire plume, and (3) the extension of these ideas to the development of a new approach to evaluating aerosol indirect effects with limited-duration model runs by nudging to observations. This research supported the work of one postdoc (Zhan Zhao) for two years and contributed to the training and research of two graduate students. Four peer-reviewed publications have resulted from this work, and ground work for a follow-on project was completed.

  5. Cloud Forming Potential of Aminium Carboxylate Aerosols

    Science.gov (United States)

    Gomez Hernandez, M. E.; McKeown, M.; Taylor, N.; Collins, D. R.; Lavi, A.; Rudich, Y.; Zhang, R.

    2014-12-01

    Atmospheric aerosols affect visibility, air quality, human health, climate, and in particular the aerosol direct and indirect forcings represent the largest uncertainty in climate projections. In this paper, we present laboratory measurements of the hygroscopic growth factors (HGf) and cloud condensation nuclei (CCN) activity of a series of aminium carboxylate salt aerosols, utilizing a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) coupled to a Condensation Particle Counter (CPC) and a CCN counter. HGf measurements were conducted for size-selected aerosols with diameters ranging from 46 nm to 151 nm and at relative humidity (RH%) values ranging from 10 to 90%. In addition, we have calculated the CCN activation diameters for the aminium carboxylate aerosols and derived the hygroscopicity parameter (k or kappa) values for all species using three methods, i.e., the mixing rule approximation, HGf, and CCN results. Our results show that variations in the ratio of acid to base directly affect the activation diameter, HGf, and (k) values of the aminium carboxylate aerosols. Atmospheric implications of the variations in the chemical composition of aminium carboxylate aerosols on their cloud forming potential will be discussed.

  6. Chromatography related performance of the Monitor for AeRosols and GAses in ambient air (MARGA: laboratory and field-based evaluation

    Directory of Open Access Journals (Sweden)

    X. Chen

    2017-10-01

    Full Text Available Evaluation of the semi-continuous Monitor for AeRosols and GAses in ambient air (MARGA, Metrohm Applikon B.V. was conducted with an emphasis on examination of accuracy and precision associated with processing of chromatograms. Using laboratory standards and atmospheric measurements, analytical accuracy, precision and method detection limits derived using the commercial MARGA software were compared to an alternative chromatography procedure consisting of a custom Java script to reformat raw MARGA conductivity data and Chromeleon (Thermo Scientific Dionex software for peak integration. Our analysis revealed issues with accuracy and precision resulting from misidentification and misintegration of chromatograph peaks by the MARGA automated software as well as a systematic bias at low concentrations for anions. Reprocessing and calibration of raw MARGA data using the alternative chromatography method lowered method detection limits and reduced variability (precision between parallel sampler boxes. Instrument performance was further evaluated during a 1-month intensive field campaign in the fall of 2014, including analysis of diurnal patterns of gaseous and particulate water-soluble species (NH3, SO2, HNO3, NH4+, SO42− and NO3−, gas-to-particle partitioning and particle neutralization state. At ambient concentrations below  ∼  1 µg m−3, concentrations determined using the MARGA software are biased +30 and +10 % for NO3− and SO42−, respectively, compared to concentrations determined using the alternative chromatography procedure. Differences between the two methods increase at lower concentrations. We demonstrate that positively biased NO3− and SO42− measurements result in overestimation of aerosol acidity and introduce nontrivial errors to ion balances of inorganic aerosol. Though the source of the bias is uncertain, it is not corrected by the MARGA online single-point internal LiBr standard. Our results show that

  7. Chromatography related performance of the Monitor for AeRosols and GAses in ambient air (MARGA): laboratory and field-based evaluation

    Science.gov (United States)

    Chen, Xi; Walker, John T.; Geron, Chris

    2017-10-01

    Evaluation of the semi-continuous Monitor for AeRosols and GAses in ambient air (MARGA, Metrohm Applikon B.V.) was conducted with an emphasis on examination of accuracy and precision associated with processing of chromatograms. Using laboratory standards and atmospheric measurements, analytical accuracy, precision and method detection limits derived using the commercial MARGA software were compared to an alternative chromatography procedure consisting of a custom Java script to reformat raw MARGA conductivity data and Chromeleon (Thermo Scientific Dionex) software for peak integration. Our analysis revealed issues with accuracy and precision resulting from misidentification and misintegration of chromatograph peaks by the MARGA automated software as well as a systematic bias at low concentrations for anions. Reprocessing and calibration of raw MARGA data using the alternative chromatography method lowered method detection limits and reduced variability (precision) between parallel sampler boxes. Instrument performance was further evaluated during a 1-month intensive field campaign in the fall of 2014, including analysis of diurnal patterns of gaseous and particulate water-soluble species (NH3, SO2, HNO3, NH4+, SO42- and NO3-), gas-to-particle partitioning and particle neutralization state. At ambient concentrations below ˜ 1 µg m-3, concentrations determined using the MARGA software are biased +30 and +10 % for NO3- and SO42-, respectively, compared to concentrations determined using the alternative chromatography procedure. Differences between the two methods increase at lower concentrations. We demonstrate that positively biased NO3- and SO42- measurements result in overestimation of aerosol acidity and introduce nontrivial errors to ion balances of inorganic aerosol. Though the source of the bias is uncertain, it is not corrected by the MARGA online single-point internal LiBr standard. Our results show that calibration and verification of instrument accuracy

  8. Field evaluation of repellents and insecticidal aerosol compositions for repelling and control of Siphunculina funicola (Diptera: Chloropidae) on aggregation sites in Thailand.

    Science.gov (United States)

    Chansang, Uruyakorn; Mulla, Mir S

    2008-06-01

    The oriental eye fly Siphunculina funicola, a small member (1.5-1.6 mm) of the family Chloropidae, is extremely annoying to humans and domestic animals, feeding on mucous membranes, secretions, and other moist surfaces of their hosts. In central Thailand heavy populations were detected during 2006-2007 in some rural, agricultural, and periurban areas of the region. They were noted to exhibit strong synanthropy and aggregation behavior, congregating on thin (1-5 mm diam) substrates hanging in or near human habitations and animal shelters and other structures open on one or more sides. We initiated studies on the repelling and control of this eye fly at their aggregation sites, the most vulnerable targets near or in human habitations. Four formulations of repellents consisting of Everside, 3 fatty acids (with 8, 9, and 10 carbons), permethrin, and the acids C8910 plus permethrin in Everside were diluted 1:3 in tap water and sprayed on to the aggregation sites. Prior to treatment all sites including controls were disturbed to dislodge eye flies, and then the blank sites were sprayed with the aqueous suspension of the repellents. Additionally, we evaluated 3 commercially available household insecticidal aerosol formulations by treating eye flies and their resting sites (without dislodging the flies) with puffs of the aerosols. Two treatments with permethrin alone and permethrin plus acids in Nakhorn Ratchasima Province caused a complete absence of flies from the sites up to 23 h. After treatment with the repellents, the repelled flies and others were found to congregate on untreated favorable sites close to the treated ones. The repellents tested against eye flies in Chonburi Province at 2 locations caused almost complete absence of this insect on aggregation sites up to 120 h. Three household insecticide aerosols applied to aggregation sites with resting and hovering eye flies produced high to complete mortality and reduction of eye flies for 48 h or possibly longer

  9. Comparative evaluation of effects of bleaching on color stability and marginal adaptation of discolored direct and indirect composite laminate veneers under in vivo conditions

    Science.gov (United States)

    Jain, Veena; Das, Taposh K.; Pruthi, Gunjan; Shah, Naseem; Rajendiran, Suresh

    2015-01-01

    Statement of Problem: Change in color and loss of marginal adaptation of tooth colored restorative materials is not acceptable. Bleaching is commonly used for treating discolored teeth. However, the literature is scanty regarding its effect on color and marginal adaptation of direct and indirect composite laminate veneers (CLVs) under in vivo conditions. Purpose: Purpose of the study was to determine the effect of bleaching on color change and marginal adaptation of direct and indirect CLVs over a period of time when exposed to the oral environment. Materials and Methods: For this purpose, a total of 14 subjects irrespective of age and sex indicated for CLV restorations on maxillary anterior teeth were selected following the inclusion and exclusion criteria. For each subject, indirect CLVs were fabricated and looted in the first quadrant (Group 1) and direct CLV's (Group 2), were given in the second quadrant. Color change was assessed clinically using intra-oral digital spectrophotometer and marginal adaptation was assessed on epoxy resin replica of the tooth-restoration interface under scanning electron microscope. After 6 months, the subjects underwent a home bleaching regimen for 14 days using 10% carbamide peroxide. The assessment of color change and marginal adaptation was done at 6 months after veneering (0–180 days), immediately after the bleaching regimen (0–194 days) and 3 months after the bleaching regimen (0–284 days). Results: The difference in median color change (ΔE) between the groups was tested using Wilcoxon rank sum test while the median color change with time within the groups was tested using Wilcoxon signed rank test. The difference in the rates of marginal adaptation was tested between the groups using Chi-square/Fisher's exact test. Bleaching led to statistically significant color change at cervical (CE), middle and incisal (IE) regions when direct and indirect composites were compared (P veneering materials as they have better color

  10. CONTRIBUTION OF INDIRECT TAXES

    Directory of Open Access Journals (Sweden)

    CHIRCULESCU MARIA FELICIA

    2015-08-01

    Full Text Available The work is based on the fact that at any time and in any society, taxation is regarded as undesirable for all taxpayers. The existence and it's manifestation is justified, because the operation of any company involves costs that must be covered by sufficient resources. Since ancient times, each state has adopted its own tax system, more or less perfected, as the state has experienced a greater or lesser economic and military power At the base of this work stays the fact that tax systems are a key factor influencing the overall efficiency of the economy. They determine the size tendency to save, invest and work, influencing the increase in production and employment, which is essential sights integral economic strategy, making tax reform an important component of economic reform. This paper aims to analyze the indirect taxes and their contribution to the public revenues in Romania, the purpose paper contains an analysis based on statistical series as indirect taxation is where tax harmonization was possible. Through analyzes, the paper aims to provide answers to the problem of the contradiction between the growing need for budgetary revenues, which entails a continuous amplification and diversification of taxation, on the one hand, and the need to stimulate economic development, on the other hand. The harmonization of indirect taxation had been achieved since this touches the free movement of goods and the freedom to supply services, not being able to say the same thing about direct taxation, which is why the European Community Treaty does not specify expressly the alignment of direct taxation, considering that direct taxation is a matter of Internal Policies that, for a country free option.

  11. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr

    2004-12-02

    This report documents progress made on the subject project during the period of March 1, 2004 through August 31, 2004. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the analysis and interpretation of the field data collected at the first power plant (henceforth referred to as Plant 0, and located in the Upper Midwest), followed by the performance and analysis of similar field experiments at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. Significant progress was made on the Project during this reporting period, with field work being initiated at Plant 0. Initial testing of the stack sampling system and reaction apparatus revealed that primary particle concentrations were lower than expected in the emissions entering the mobile chemical laboratory. Initial animal exposures to primary emissions were carried out (Scenario 1) to ensure successful implementation of all study methodologies and toxicological assessments. Results indicated no significant toxicological effects in response to primary emissions exposures. Exposures were then carried out to diluted, oxidized, neutralized emissions with the addition of secondary organic aerosol (Scenario 5), both during the day and also at night when primary particle concentrations in the sampled stack emissions

  12. Evaluation of trace elemental composition of aerosols in the atmosphere of Rawalpindi and Islamabad using radio analytical methods

    Energy Technology Data Exchange (ETDEWEB)

    Qadir, Muhammad Abdul, E-mail: mabdulqadir@gmail.com [Institute of Chemistry, University of the Punjab, Lahore-54590 (Pakistan); Zaidi, Jamshaid Hussain [Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad Capital Territory (Pakistan); Ahmad, Shaikh Asrar; Gulzar, Asad [Division of Science and Technology, University of Education, Township, Lahore (Pakistan); Yaseen, Muhammad [Department of Chemistry, Gugrat University, Gugrat (Pakistan); Atta, Sadia; Tufail, Asma [Institute of Chemistry, University of the Punjab, Lahore-54590 (Pakistan)

    2012-05-15

    Geological and anthropogenic contributions to air pollution were monitored by analyzing aerosol particulates present in the atmosphere of Rawalpindi and Islamabad, Pakistan, using instrumental neutron activation for trace elemental analysis. A scanning electron microscope was used to study particulate size distribution and morphology. Twenty two elements were analyzed and their likely sources were identified. It was found that 69% of the suspended particulate matter in the atmosphere of Islamabad, and 52% in Rawalpindi, were of a diameter less than 3 {mu}m. The presence of Yb, Cs, Sc, Rb, Co, Eu, La, Ba, Zn and Hf indicates that a major portion of the trace elements in the aerosol particulates was due to the geological nature of the land, while Sc was considered to be arising from coal burning. The presence of Cr, Fe, Ce, Pb and Cd was attributed to anthropogenic activities at Rawalpindi and Islamabad. Unusually high concentrations of Mo and Nb were found in the atmosphere of Islamabad, based on soil derived aerosols. - Highlights: Black-Right-Pointing-Pointer Discussion is made on Total suspended Particulate (TSP) matter in the atmosphere. Black-Right-Pointing-Pointer Measurement of Radio active elements in the TSP by using SSNTD which was found non significant. Black-Right-Pointing-Pointer 23 Trace element analysis of the TSPs in the atmosphere of twin cities i.e. Rawalpindi and Islamabad and their relation to their sources by using Neutron activation analysis. Black-Right-Pointing-Pointer The mountain of Islamabad has some unique and important deposits of Nb and Gd , this paper will help the Geological survey of Pakistan to explore their deposits. Black-Right-Pointing-Pointer There is high level of TSPs>10 um, which is a great threat to the peoples of Islamabad.

  13. Evaluation of trace elemental composition of aerosols in the atmosphere of Rawalpindi and Islamabad using radio analytical methods

    International Nuclear Information System (INIS)

    Qadir, Muhammad Abdul; Zaidi, Jamshaid Hussain; Ahmad, Shaikh Asrar; Gulzar, Asad; Yaseen, Muhammad; Atta, Sadia; Tufail, Asma

    2012-01-01

    Geological and anthropogenic contributions to air pollution were monitored by analyzing aerosol particulates present in the atmosphere of Rawalpindi and Islamabad, Pakistan, using instrumental neutron activation for trace elemental analysis. A scanning electron microscope was used to study particulate size distribution and morphology. Twenty two elements were analyzed and their likely sources were identified. It was found that 69% of the suspended particulate matter in the atmosphere of Islamabad, and 52% in Rawalpindi, were of a diameter less than 3 μm. The presence of Yb, Cs, Sc, Rb, Co, Eu, La, Ba, Zn and Hf indicates that a major portion of the trace elements in the aerosol particulates was due to the geological nature of the land, while Sc was considered to be arising from coal burning. The presence of Cr, Fe, Ce, Pb and Cd was attributed to anthropogenic activities at Rawalpindi and Islamabad. Unusually high concentrations of Mo and Nb were found in the atmosphere of Islamabad, based on soil derived aerosols. - Highlights: ► Discussion is made on Total suspended Particulate (TSP) matter in the atmosphere. ► Measurement of Radio active elements in the TSP by using SSNTD which was found non significant. ► 23 Trace element analysis of the TSPs in the atmosphere of twin cities i.e. Rawalpindi and Islamabad and their relation to their sources by using Neutron activation analysis. ► The mountain of Islamabad has some unique and important deposits of Nb and Gd , this paper will help the Geological survey of Pakistan to explore their deposits. ► There is high level of TSPs>10 um, which is a great threat to the peoples of Islamabad.

  14. Have tropospheric aerosol emissions contributed to the recent climate hiatus?

    Science.gov (United States)

    Kühn, Thomas; Partanen, Antti-Ilari; Laakso, Anton; Lu, Zifeng; Bergman, Tommi; Mikkonen, Santtu; Kokkola, Harri; Korhonen, Hannele; Räisänen, Petri; Streets, David G.; Romakkaniemi, Sami; Laaksonen, Ari

    2014-05-01

    During the last 15 years global warming has slowed considerably, with the resulting plateau in global temperature records being dubbed the climate hiatus. Apart from variations in solar irradiance and ocean temperature, increased anthropogenic aerosol emissions in South and East Asia have been suggested as possible causes for this hiatus. While European and and North American aerosol emissions have constantly decreased since the 1980's, emissions in China and India have started increasing at the same time and, although total global aerosol emissions have decreased, aerosol effects on the global energy budget are expected to enhance towards the equator due to stronger irradiance there. In this study we used the aerosol-climate model ECHAM5-HAM2 to assess the effect that this re-distribution of anthropogenic aerosol emissions towards the equator may have on climate. To this end, we computed radiative forcing and equilibrium temperature response due to the change in global aerosol emissions (black carbon (BC), organic carbon and sulphur dioxide) between 1996 and 2010, keeping all other anthropogenic influences fixed. Surprisingly we found that the cooling due the increased aerosol emissions in China and India is almost negligible compared to the warming caused by the decreasing aerosol emissions in Europe and North America. The radiative flux perturbation (RFP; includes aerosol indirect effects) was 0.42 W/m2 and the change in global equilibrium 2 m temperature increased by 0.25 °C. The lack of cooling in China and India stems from a cancellation of sulfate cooling and BC warming, especially over China. There, the strong cloud cover leads to both attenuation of sulphate aerosol light scattering and saturation tendency of indirect aerosol effects on clouds. BC levels on the other hand increase also above the clouds (relative increase of BC levels is almost uniform with height), leading to warming through light absorption.

  15. Aerosol scrubbers

    International Nuclear Information System (INIS)

    Sheely, W.F.

    1986-01-01

    The Submerged Gravel Scrubber is an air cleaning system developed by the Department of Energy's Liquid Metal Reactor Program. The Scrubber System has been patented by the Department of Energy. This technology is being transferred to industry by the DOE. Its basic principles can be adapted for individual applications and the commercialized version can be used to perform a variety of tasks. The gas to be cleaned is percolated through a continuously washed gravel bed. The passage of the gas through the gravel breaks the stream into many small bubbles rising in a turbulent body of water. These conditions allow very highly efficient removal of aerosols from the gas

  16. Calibration of aerosol radiometers. Special aerosol sources

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.

    1988-01-01

    Problems of calibration of artificial aerosol radiometry and information-measurement systems of radiometer radiation control, in particular, are considered. Special aerosol source is suggested, which permits to perform certification and testing of aerosol channels of the systems in situ without the dismantling

  17. Improvement of a snow albedo parameterization in the Snow-Atmosphere-Soil Transfer model: evaluation of impacts of aerosol on seasonal snow cover

    Science.gov (United States)

    Zhong, Efang; Li, Qian; Sun, Shufen; Chen, Wen; Chen, Shangfeng; Nath, Debashis

    2017-11-01

    The presence of light-absorbing aerosols (LAA) in snow profoundly influence the surface energy balance and water budget. However, most snow-process schemes in land-surface and climate models currently do not take this into consideration. To better represent the snow process and to evaluate the impacts of LAA on snow, this study presents an improved snow albedo parameterization in the Snow-Atmosphere-Soil Transfer (SAST) model, which includes the impacts of LAA on snow. Specifically, the Snow, Ice and Aerosol Radiation (SNICAR) model is incorporated into the SAST model with an LAA mass stratigraphy scheme. The new coupled model is validated against in-situ measurements at the Swamp Angel Study Plot (SASP), Colorado, USA. Results show that the snow albedo and snow depth are better reproduced than those in the original SAST, particularly during the period of snow ablation. Furthermore, the impacts of LAA on snow are estimated in the coupled model through case comparisons of the snowpack, with or without LAA. The LAA particles directly absorb extra solar radiation, which accelerates the growth rate of the snow grain size. Meanwhile, these larger snow particles favor more radiative absorption. The average total radiative forcing of the LAA at the SASP is 47.5 W m-2. This extra radiative absorption enhances the snowmelt rate. As a result, the peak runoff time and "snow all gone" day have shifted 18 and 19.5 days earlier, respectively, which could further impose substantial impacts on the hydrologic cycle and atmospheric processes.

  18. Climate forcing by anthropogenic aerosols

    Science.gov (United States)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  19. Climate forcing by anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley, J.A. Jr.; Hansen, J.E.; Hofmann, D.J. (University of Washington, Seattle, WA (USA). Inst. for Environmental Studies, Dept. of Atmospheric Sciences)

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of short wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square metre, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes. 73 refs., 4 figs., 2 tabs.

  20. Evaluation of a detailed model of secondary organic aerosol formation from α-pinene against dark ozonolysis experiments

    Science.gov (United States)

    Ceulemans, Karl; Compernolle, Steven; Peeters, Jozef; Müller, Jean-François

    2010-12-01

    BOREAM, a detailed model for the gas-phase oxidation of α-pinene and its subsequent formation of Secondary Organic Aerosol (SOA), is tested against a large set of SOA yield measurements obtained in dark ozonolysis experiments. For the majority of experiments, modelled SOA yields are found to agree with measured yields to within a factor 2. However, the comparisons point to a general underestimation of modelled SOA yields at high temperatures (above 30 °C), reaching an order of magnitude or more in the worst cases, whereas modelled SOA yields are often overestimated at lower temperature (by a factor of about 2). Comparisons of results obtained using four different vapour pressure prediction methods indicate a strong sensitivity to the choice of the method, although the overestimated temperature dependence of the yields is found in all cases. Accounting for non-ideality of the aerosol mixture (based on an adapted UNIFAC method) has significant effects, especially at low yields. Our simulations show that the formation of oligomers through the gas-phase reactions of Stabilised Criegee Intermediates (SCI) with other molecular organic products could increase the SOA yield significantly only at very low relative humidity (below 1%). Further tests show that the agreement between model and measurements is improved when the ozonolysis mechanism includes additional production of non-volatile compounds.

  1. Resolving the Aerosol Piece of the Global Climate Picture

    Science.gov (United States)

    Kahn, R. A.

    2017-12-01

    Factors affecting our ability to calculate climate forcing and estimate model predictive skill include direct radiative effects of aerosols and their indirect effects on clouds. Several decades of Earth-observing satellite observations have produced a global aerosol column-amount (AOD) record, but an aerosol microphysical property record required for climate and many air quality applications is lacking. Surface-based photometers offer qualitative aerosol-type classification, and several space-based instruments map aerosol air-mass types under favorable conditions. However, aerosol hygroscopicity, mass extinction efficiency (MEE), and quantitative light absorption, must be obtained from in situ measurements. Completing the aerosol piece of the climate picture requires three elements: (1) continuing global AOD and qualitative type mapping from space-based, multi-angle imagers and aerosol vertical distribution from near-source stereo imaging and downwind lidar, (2) systematic, quantitative in situ observations of particle properties unobtainable from space, and (3) continuing transport modeling to connect observations to sources, and extrapolate limited sampling in space and time. At present, the biggest challenges to producing the needed aerosol data record are: filling gaps in particle property observations, maintaining global observing capabilities, and putting the pieces together. Obtaining the PDFs of key particle properties, adequately sampled, is now the leading observational deficiency. One simplifying factor is that, for a given aerosol source and season, aerosol amounts often vary, but particle properties tend to be repeatable. SAM-CAAM (Systematic Aircraft Measurements to Characterize Aerosol Air Masses), a modest aircraft payload deployed frequently could fill this gap, adding value to the entire satellite data record, improving aerosol property assumptions in retrieval algorithms, and providing MEEs to translate between remote-sensing optical constraints

  2. Evaluation of three indirect calorimetry devices in mechanically ventilated patients: which device compares best with the Deltatrac II(®)? A prospective observational study.

    Science.gov (United States)

    Graf, Séverine; Karsegard, Véronique Laurie; Viatte, Valérie; Heidegger, Claudia Paula; Fleury, Yvan; Pichard, Claude; Genton, Laurence

    2015-02-01

    Indirect calorimetry (IC) is the gold standard to measure energy expenditure (EE) in hospitalized patients. The popular 30 year-old Deltatrac II(®) (Datex) IC is no more commercialized, but other manufacturers have developed new devices. This study aims at comparing for the first time simultaneously, two new IC, the CCM express(®) (Medgraphics) and the Quark RMR(®) (Cosmed) with the Deltatrac II(®) to assess their potential use in intensive care unit (ICU) patients. ICU patients on mechanical ventilation, with positive end-expiratory pressure consumption, VCO2 production, respiratory quotient and EE were recorded. Data were presented as mean (SD) and compared by linear regression, repeated measure one-way ANOVA and Bland & Altman diagrams. Forty patients (23 males, 60(17) yrs, BMI 25.4(7.0) kg/m(2)) were included. For the Deltatrac II(®), VO2 was 227(61) ml/min, VCO2 189(52) ml/min and EE 1562(412) kcal/d. VO2, VCO2, and EE differed significantly between Deltatrac II(®) and CCM express(®) (p II(®) and Quark RMR(®). For EE, diagrams showed a mean difference (2SD) of 25.2(441) kcal between Deltatrac II(®) vs. the Quark RMR(®), and -273 (532) kcal between Deltatrac II(®) vs CCM express(®). Quark RMR(®) compares better with Deltatrac II(®) than CCM express(®), but it suffers an EE variance of 441 kcal, which is not acceptable for clinical practice. New indirect IC should be further improved before recommending their clinical use in ICU. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  3. Indirect bipolar electrodeposition.

    Science.gov (United States)

    Loget, Gabriel; Roche, Jérome; Gianessi, Eugenio; Bouffier, Laurent; Kuhn, Alexander

    2012-12-12

    Based on the principles of bipolar electrochemistry, localized pH gradients are generated at the surface of conducting particles in solution. This allows the toposelective deposition of inorganic and organic polymer layers via a pH-triggered precipitation mechanism. Due to the intrinsic symmetry breaking of the process, the concept can be used to generate in a straightforward way Janus particles, with one section consisting of deposits obtained from non-electroactive precursors. These indirect electrodeposits, such as SiO(2), TiO(2), or electrophoretic paints, can be further used as an immobilization matrix for other species like dyes or nanoparticles, thus opening promising perspectives for the synthesis of a variety of bifunctional objects with a controlled shape.

  4. Evaluation of PM2.5 Surface Concentration Simulated by Version 1 of the Nasa's MERRA Aerosol Reanalysis Over Israel and Taiwan

    Science.gov (United States)

    Provencal, Simon; Buchard, Virginie; da Silva, Arlindo M.; Leduc, Richard; Barrette, Nathalie; Elhacham, Emily; Wang, Sheng-Hsiang

    2017-01-01

    Version 1 of the NASA MERRA Aerosol Reanalysis (MERRAero) assimilates bias-corrected 18 aerosol optical depth (AOD) data from MODIS-Terra and MODIS-Aqua, and simulates particulate 19 matter (PM) concentration data to reproduce a consistent database of AOD and PM concentration around 20 the world from 2002 to the end of 2015. The purpose of this paper is to evaluate MERRAeros simulation 21 of fine PM concentration against surface measurements in two regions of the world with relatively high 22 levels of PM concentration but with profoundly different PM composition, those of Israel and Taiwan. 23 Being surrounded by major deserts, Israels PM load is characterized by a significant contribution of 24 mineral dust, and secondary contributions of sea salt particles, given its proximity to the Mediterranean 25 Sea, and sulfate particles originating from Israels own urban activities and transported from Europe. 26 Taiwans PM load is composed primarily of anthropogenic particles (sulfate, nitrate and carbonaceous 27 particles) locally produced or transported from China, with an additional contribution of springtime 28 transport of mineral dust originating from Chinese and Mongolian deserts. The evaluation in Israel 29 produced favorable results with MERRAero slightly overestimating measurements by 6 on average 30 and reproducing an excellent year-to-year and seasonal fluctuation. The evaluation in Taiwan was less 31 favorable with MERRAero underestimating measurements by 42 on average. Two likely reasons 32 explain this discrepancy: emissions of anthropogenic PM and their precursors are largely uncertain in 33 China, and MERRAero doesnt include nitrate particles in its simulation, a pollutant of predominately 34 anthropogenic sources. MERRAero nevertheless simulates well the concentration of fine PM during the 35 summer, when Taiwan is least affected by the advection of pollution from China.

  5. The impact of residential combustion emissions on atmospheric aerosol, human health and climate

    Science.gov (United States)

    Butt, E. W.; Rap, A.; Schmidt, A.; Reddington, C.; Scott, C.; Pringle, K.; Woodhouse, M.; Spracklen, D. V.

    2015-12-01

    Combustion of fuels in the residential sector for cooking and heating, results in the emission of aerosol and aerosol precursors that effect air quality, human health and climate. Residential emissions are dominated by the combustion of solid fuels which are the primary energy source for nearly half the world's population. Despite this importance, residential emissions are poorly quantified, as are their impacts on air quality and climate. We used a global aerosol microphysics model to simulate the impact of residential emissions on atmospheric aerosol in the year 2000, and evaluated simulated concentrations against surface observations of aerosol mass and number. Residential emissions make the largest contributions to surface particulate matter (PM2.5) concentrations in East Asia, South Asia and Eastern Europe, matching regions of greatest emissions. We used concentration response functions to estimate a global annual excess adult (> 30 years of age) premature mortality due to residential emissions of between 113, 300 and 827, 000 when uncertainties in both residential emissions and health effects of PM2.5 were accounted for. Premature mortality was greatest in Asia, with China and India accounting for 50% of simulated global excess mortality. Using an offline radiative transfer model, we show that residential emissions exerted a global annual mean direct radiative effect of between -66 mW m-2 and +21 mW m-2, accounting for uncertainties in emissions flux and assumed ratio of carbonaceous and sulphur emissions. Residential emissions exerted a negative global annual mean first aerosol indirect effect of between -52 mW m-2 and -16 mW m-2, which was found to be sensitive to the assumed size distribution of carbonaceous emissions. Our results demonstrate that reducing residential combustion emissions would have substantial benefits for human health through reductions in ambient PM2.5 concentrations.

  6. Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species

    Science.gov (United States)

    Hu, Weiwei; Campuzano-Jost, Pedro; Day, Douglas A.; Croteau, Philip; Canagaratna, Manjula R.; Jayne, John T.; Worsnop, Douglas R.; Jimenez, Jose L.

    2017-08-01

    Aerosol mass spectrometers (AMSs) and Aerosol Chemical Speciation Monitors (ACSMs) commercialized by Aerodyne are widely used to measure the non-refractory species in submicron particles. With the standard vapourizer (SV) that is installed in all commercial instruments to date, the quantification of ambient aerosol mass concentration requires the use of the collection efficiency (CE) to correct for the loss of particles due to bounce. A new capture vapourizer (CV) has been designed to reduce the need for a bounce-related CE correction. Two high-resolution AMS instruments, one with a SV and one with a CV, were operated side by side in the laboratory. Four standard species, NH4NO3, NaNO3, (NH4)2SO4 and NH4Cl, which typically constitute the majority of the mass of ambient submicron inorganic species, are studied. The effect of vapourizer temperature (Tv ˜ 200-800 °C) on the detected fragments, CE and size distributions are investigated. A Tv of 500-550 °C for the CV is recommended. In the CV, CE was identical (around unity) for more volatile species (e.g. NH4NO3) and comparable to or higher than the SV for less-volatile species (e.g. (NH4)2SO4), demonstrating an improvement in CE for laboratory inorganic species in the CV. The detected relative intensities of fragments of NO3 and SO4 species observed with the CV are different from those observed with the SV, and are consistent with additional thermal decomposition arising from the increased residence time and multiple collisions. Increased residence times with the CV also lead to broader particle size distribution measurements than with the SV. A method for estimating whether pure species will be detected in AMS sizing mode is proposed. Production of CO2(g) from sampled nitrate on the vapourizer surface, which has been reported for the SV, is negligible for the CV for NH4NO3 and comparable to the SV for NaNO3. . We observe an extremely consistent fragmentation for ammonium compared to very large changes for the

  7. Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS through laboratory studies of inorganic species

    Directory of Open Access Journals (Sweden)

    W. Hu

    2017-08-01

    Full Text Available Aerosol mass spectrometers (AMSs and Aerosol Chemical Speciation Monitors (ACSMs commercialized by Aerodyne are widely used to measure the non-refractory species in submicron particles. With the standard vapourizer (SV that is installed in all commercial instruments to date, the quantification of ambient aerosol mass concentration requires the use of the collection efficiency (CE to correct for the loss of particles due to bounce. A new capture vapourizer (CV has been designed to reduce the need for a bounce-related CE correction. Two high-resolution AMS instruments, one with a SV and one with a CV, were operated side by side in the laboratory. Four standard species, NH4NO3, NaNO3, (NH42SO4 and NH4Cl, which typically constitute the majority of the mass of ambient submicron inorganic species, are studied. The effect of vapourizer temperature (Tv ∼ 200–800 °C on the detected fragments, CE and size distributions are investigated. A Tv of 500–550 °C for the CV is recommended. In the CV, CE was identical (around unity for more volatile species (e.g. NH4NO3 and comparable to or higher than the SV for less-volatile species (e.g. (NH42SO4, demonstrating an improvement in CE for laboratory inorganic species in the CV. The detected relative intensities of fragments of NO3 and SO4 species observed with the CV are different from those observed with the SV, and are consistent with additional thermal decomposition arising from the increased residence time and multiple collisions. Increased residence times with the CV also lead to broader particle size distribution measurements than with the SV. A method for estimating whether pure species will be detected in AMS sizing mode is proposed. Production of CO2(g from sampled nitrate on the vapourizer surface, which has been reported for the SV, is negligible for the CV for NH4NO3 and comparable to the SV for NaNO3. . We observe an extremely consistent fragmentation for ammonium compared to very

  8. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    Energy Technology Data Exchange (ETDEWEB)

    Keene, William C. [University of Virginia; Long, Michael S. [University of Virginia

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry's MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences

  9. Total aerosol effect

    OpenAIRE

    Lohmann, Ulrike; Rotstayn, Leon; Storelvmo, Trude; Jones, Andrew; Menon, Surabi; Quaas, Johannes; Ekman, Annica M. L.; Koch, Dorothy; Ruedy, Reto A.

    2015-01-01

    Uncertainties in aerosol radiative forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of precipitation formation. In former assessments of aerosol radiative forcings, these effects have not been quantified. Also, with global aerosol-climate models simulating interactively aerosols and cloud microphysical prope...

  10. Aerosols, clouds and their climatic impacts

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, M.; Laaksonen, A.; Korhonen, P. [Helsinki Univ. (Finland). Dept. of Physics

    1995-12-31

    The increasing atmospheric concentrations of greenhouse gases such as carbon dioxide and methane may drive a significant warming of the earth`s climate. However, a topic of more recent attention is the possibility that increased atmospheric concentrations of aerosol particles might drive a cooling of the planet. There are two distinct cooling mechanisms related to the enhanced concentrations of aerosol particles: the increase in the direct reflection of solar radiation (the direct effect), and the increase in cloud reflectivity caused by greater numbers of cloud condensation nuclei available (the indirect effect). Aerosols and clouds play a major role in the scattering and absorption of radiation in the Earth`s atmosphere. Locally the net effect can vary because of different kinds of surfaces. But according to measurements, the global net effect of clouds (and aerosols) on the atmosphere is net cooling and thus in opposition to the effect of greenhouse gases. The prediction of the future evolution of the climate involves substantial uncertainties. Clouds have a major effect on the radiation balance of the Earth and the prediction of amount and radiative properties of clouds is very difficult. Also the formation mechanisms and residence times of aerosol particles in the atmosphere involve large uncertainties. Thus the most serious difficulties arise in the area of the physics of clouds and aerosols

  11. Dust aerosol impact on North Africa climate: a GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data

    Directory of Open Access Journals (Sweden)

    Y. Gu

    2012-02-01

    Full Text Available The climatic effects of dust aerosols in North Africa have been investigated using the atmospheric general circulation model (AGCM developed at the University of California, Los Angeles (UCLA. The model includes an efficient and physically based radiation parameterization scheme developed specifically for application to clouds and aerosols. Parameterization of the effective ice particle size in association with the aerosol first indirect effect based on ice cloud and aerosol data retrieved from A-Train satellite observations have been employed in climate model simulations. Offline simulations reveal that the direct solar, IR, and net forcings by dust aerosols at the top of the atmosphere (TOA generally increase with increasing aerosol optical depth. When the dust semi-direct effect is included with the presence of ice clouds, positive IR radiative forcing is enhanced since ice clouds trap substantial IR radiation, while the positive solar forcing with dust aerosols alone has been changed to negative values due to the strong reflection of solar radiation by clouds, indicating that cloud forcing associated with aerosol semi-direct effect could exceed direct aerosol forcing. With the aerosol first indirect effect, the net cloud forcing is generally reduced in the case for an ice water path (IWP larger than 20 g m−2. The magnitude of the reduction increases with IWP.

    AGCM simulations show that the reduced ice crystal mean effective size due to the aerosol first indirect effect results in less OLR and net solar flux at TOA over the cloudy area of the North Africa region because ice clouds with smaller size trap more IR radiation and reflect more solar radiation. The precipitation in the same area, however, increases due to the aerosol indirect effect on ice clouds, corresponding to the enhanced convection as indicated by reduced OLR. Adding the aerosol direct effect into the model simulation reduces the precipitation in the

  12. Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol

    Science.gov (United States)

    Zotter, Peter; Herich, Hanna; Gysel, Martin; El-Haddad, Imad; Zhang, Yanlin; Močnik, Griša; Hüglin, Christoph; Baltensperger, Urs; Szidat, Sönke; Prévôt, André S. H.

    2017-03-01

    Equivalent black carbon (EBC) measured by a multi-wavelength Aethalometer can be apportioned to traffic and wood burning. The method is based on the differences in the dependence of aerosol absorption on the wavelength of light used to investigate the sample, parameterized by the source-specific absorption Ångström exponent (α). While the spectral dependence (defined as α values) of the traffic-related EBC light absorption is low, wood smoke particles feature enhanced light absorption in the blue and near ultraviolet. Source apportionment results using this methodology are hence strongly dependent on the α values assumed for both types of emissions: traffic αTR, and wood burning αWB. Most studies use a single αTR and αWB pair in the Aethalometer model, derived from previous work. However, an accurate determination of the source specific α values is currently lacking and in some recent publications the applicability of the Aethalometer model was questioned.Here we present an indirect methodology for the determination of αWB and αTR by comparing the source apportionment of EBC using the Aethalometer model with 14C measurements of the EC fraction on 16 to 40 h filter samples from several locations and campaigns across Switzerland during 2005-2012, mainly in winter. The data obtained at eight stations with different source characteristics also enabled the evaluation of the performance and the uncertainties of the Aethalometer model in different environments. The best combination of αTR and αWB (0.9 and 1.68, respectively) was obtained by fitting the Aethalometer model outputs (calculated with the absorption coefficients at 470 and 950 nm) against the fossil fraction of EC (ECF / EC) derived from 14C measurements. Aethalometer and 14C source apportionment results are well correlated (r = 0.81) and the fitting residuals exhibit only a minor positive bias of 1.6 % and an average precision of 9.3 %. This indicates that the Aethalometer model reproduces

  13. Design of experiments and multivariate analysis for evaluation of reversed-phase high-performance liquid chromatography with charged aerosol detection of sucrose caprate regioisomers.

    Science.gov (United States)

    Lie, Aleksander; Wimmer, Reinhard; Pedersen, Lars Haastrup

    2013-03-15

    The use of step-down gradient elution profiles to improve separation of sucrose caprate regioisomers was investigated as part of the development of a quantitative RP-HPLC analysis method with charged aerosol detection. The investigation was conducted using design-of-experiments methodology and evaluated by multivariate regression analysis. This approach was proven to be useful for systematic method development in HPLC analysis. The gradient elution profiles were described by four variables - two concentration variables and two duration variables. The regression analysis showed that the concentration variables had the most significant effects on retention times, both as individual terms and as part of variable interactions. All the regioisomers exhibited non-linear relationships between eluent acetonitrile concentration and retention time with similar curvatures. Kendall rank correlation coefficients confirmed that the curvatures of the regioisomer curves were highly dependent on each other. Charged aerosol detection provided a mass-sensitivity of 10-100 ng for the sucrose fatty acid ester regioisomers. Resolution deviation (RD) was defined as an aggregate objective function for evaluating the separation of three specific sucrose caprate regioisomers with similar elution properties substituted at positions 6-, 3- and 1'-, respectively. The investigation resulted in the development of elution strategies for separation and quantitative RP-HPLC analysis of regioisomers of sucrose caprate with all eight sucrose caprate regioisomers successfully identified. Thus, resolutions above the level of adequacy for quantification, R(s)≥1.0, were achieved for all regioisomers, both with isocratic and gradient elution strategies. For isocratic elutions, the best separation was achieved with eluent acetonitrile concentration 34%. Gradient elution resulted in a similar RD, but decreased the analysis time by 7-28%. For the gradient resulting in the most desirable combination of

  14. Development and evaluation of a truncated recombinant NS3 antigen-based indirect ELISA for detection of pestivirus antibodies in sheep and goats.

    Science.gov (United States)

    Kalaiyarasu, Semmannan; Mishra, Niranjan; Rajukumar, Katherukamem; Nema, Ram Kumar; Behera, Sthita Pragnya

    2015-01-01

    The aim of this study was to develop an indirect ELISA using the helicase domain of bovine viral diarrhoea virus (BVDV) NS3 protein instead of full-length NS3 protein for detection of BVDV and BDV antibodies in sheep and goats and its validation by comparing its sensitivity and specificity with virus neutralization test (VNT) as the reference test. The purified 50 kDa recombinant NS3 protein was used as the coating antigen in the ELISA. The optimal concentration of antigen was 320 ng/well at a serum dilution of 1:20 and the optimal positive cut-off optical density value was 0.40 based on test results of 418 VNT negative sheep and goat sera samples. When 569 serum samples from sheep (463) and goats (106) were tested, the ELISA showed a sensitivity of 91.71% and specificity of 94.59% with BVDV VNT. A good correlation (93.67%) was observed between the two tests. It showed a sensitivity of 85% and specificity of 86.6% with VNT in detecting BDV antibody positive or negative samples. This study demonstrates the efficacy of truncated recombinant NS3 antigen based ELISA for seroepidemiological study of pestivirus infection in sheep and goats.

  15. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    International Nuclear Information System (INIS)

    Gaffney, Jeffrey

    2012-01-01

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  16. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, Jeffrey [Univ. of Arkansas, Little Rock, AR (United States)

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  17. Global Aerosol Effect Retrieval From Passive Hyperspectral Measurements

    Science.gov (United States)

    de Graaf, M.; Tilstra, L. G.; Stammes, P.

    2013-12-01

    Absorbing aerosols can have a significant local direct radiative effect (DRE), while the global average aerosol DRE remains highly uncertain. Modelling studies have shown that the magnitude and sign of the aerosol DRE at the top of the atmosphere (TOA) depend on the scene, especially on the albedo of the scene under the aerosol layer. It changes with cloud fraction, from large positive for overcast conditions when aerosols are present above the cloud, to large negative for clear sky ocean scenes. Observational studies, which are necessary to constrain the model studies, have been scarce. The results of modelling studies depend strongly on the assumed aerosol properties. Observational studies also need to assume aerosol type and geophysical properties to derive aerosol optical properties from radiation measurements. This introduces large uncertainties in the retrieved aerosol DRE. Furthermore, the retrieval of aerosols over clouds from passive instruments is difficult, due to the large optical thickness of clouds. Therefore, observational studies of aerosol direct and indirect effects from passive satellite instruments are invariably restricted to aerosol studies close to the cloud edges. We have developed a method to derive the aerosol DRE for smoke over clouds directly from passive satellite hyperspectral reflectance measurements, independent of aerosol micro- physical property assumptions. This allows us to assess the local aerosol DRE from passive imagery directly on a pixel to pixel basis, even over clouds. The solar radiative absorption by smoke layers is quantified using the TOA reflectance spectrum from the ultraviolet (UV) to the shortwave infrared (SWIR). UV- absorbing aerosols have a strong signature that can be detected using UV reflectance measurements. Since the aerosol extinction optical thickness decreases rapidly with increasing wavelength for smoke, the properties of the scene below the aerosol layer can be retrieved in the SWIR, where aerosol

  18. Aerosol Radiative Forcing and Weather Forecasts in the ECMWF Model

    Science.gov (United States)

    Bozzo, A.; Benedetti, A.; Rodwell, M. J.; Bechtold, P.; Remy, S.

    2015-12-01

    Aerosols play an important role in the energy balance of the Earth system via direct scattering and absorpiton of short-wave and long-wave radiation and indirect interaction with clouds. Diabatic heating or cooling by aerosols can also modify the vertical stability of the atmosphere and influence weather pattern with potential impact on the skill of global weather prediction models. The Copernicus Atmosphere Monitoring Service (CAMS) provides operational daily analysis and forecast of aerosol optical depth (AOD) for five aerosol species using a prognostic model which is part of the Integrated Forecasting System of the European Centre for Medium-Range Weather Forecasts (ECMWF-IFS). The aerosol component was developed during the research project Monitoring Atmospheric Composition and Climate (MACC). Aerosols can have a large impact on the weather forecasts in case of large aerosol concentrations as found during dust storms or strong pollution events. However, due to its computational burden, prognostic aerosols are not yet feasible in the ECMWF operational weather forecasts, and monthly-mean climatological fields are used instead. We revised the aerosol climatology used in the operational ECMWF IFS with one derived from the MACC reanalysis. We analyse the impact of changes in the aerosol radiative effect on the mean model climate and in medium-range weather forecasts, also in comparison with prognostic aerosol fields. The new climatology differs from the previous one by Tegen et al 1997, both in the spatial distribution of the total AOD and the optical properties of each aerosol species. The radiative impact of these changes affects the model mean bias at various spatial and temporal scales. On one hand we report small impacts on measures of large-scale forecast skill but on the other hand details of the regional distribution of aerosol concentration have a large local impact. This is the case for the northern Indian Ocean where the radiative impact of the mineral

  19. Aerosol typing - key information from aerosol studies

    Science.gov (United States)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  20. Evaluation and modelling of the size fractionated aerosol particle number concentration measurements nearby a major road in Helsinki ─ Part I: Modelling results within the LIPIKA project

    Directory of Open Access Journals (Sweden)

    M. Ketzel

    2007-08-01

    Full Text Available A field measurement campaign was conducted near a major road "Itäväylä" in an urban area in Helsinki in 17–20 February 2003. Aerosol measurements were conducted using a mobile laboratory "Sniffer" at various distances from the road, and at an urban background location. Measurements included particle size distribution in the size range of 7 nm–10 μm (aerodynamic diameter by the Electrical Low Pressure Impactor (ELPI and in the size range of 3–50 nm (mobility diameter by Scanning Mobility Particle Sizer (SMPS, total number concentration of particles larger than 3 nm detected by an ultrafine condensation particle counter (UCPC, temperature, relative humidity, wind speed and direction, driving route of the mobile laboratory, and traffic density on the studied road. In this study, we have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI used in combination with an aerosol process model MONO32. For model comparison purposes, one of the cases was additionally computed using the aerosol process model UHMA, combined with the CAR-FMI model. The vehicular exhaust emissions, and atmospheric dispersion and transformation of fine and ultrafine particles was evaluated within the distance scale of 200 m (corresponding to a time scale of a couple of minutes. We computed the temporal evolution of the number concentrations, size distributions and chemical compositions of various particle size classes. The atmospheric dilution rate of particles is obtained from the roadside dispersion model CAR-FMI. Considering the evolution of total number concentration, dilution was shown to be the most important process. The influence of coagulation and condensation on the number concentrations of particle size modes was found to be negligible on this distance scale. Condensation was found to affect the evolution of particle diameter in the two smallest particle modes. The assumed value of the concentration of

  1. Evaluating the use of PAO (4 cSt polyalphaoelfin) oil instead of DOP (di-octyl phthalate) oil for measuring the aerosol capture of nuclear canister filters

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-18

    This document details the distinction between using PAO (4 cSt polyalphaoelfin) oil instead of DOP (di-octyl phthalate) oil for measuring the aerosol capture of filters. This document is developed to justify the use of PAO rather than DOP for evaluating the performance of filters in the SAVY 4000 and Hagan containers. The design criteria (Anderson et al, 2012) for purchasing SAVY 4000 containers and the Safety Analysis Report for the SAVY 4000 Container Series specified that the filter must “capture greater than 99.97% of 0.45 μm mean diameter dioctyl phthalate (DOP) aerosol at the rated flow with a DOP concentration of 65±15 micrograms per liter.”This corresponds to a leakage percent of 0.03% (3.0x10-2). The density of DOP oil is 985 kg/m3 and the density of PAO oil is 819 kg/m3. ATI Test Inc measured the mass mean diameter of aerosol distributions produced by a single Laskin type III-A nozzle operating at a 20 psig air pressure as 0.563 μm for DOP oil and 0.549 μm for PAO oil. (See Appendix A.) For both types of oil in this document, the single fiber method calculated the leakage percent to be 4.4x10-5 for DOP oil and 4.7x10-5 for PAO oil. Although the percent error between these two quantities is 7.7%, these calculated leakage percent values are more than two orders of magnitude less than the criterion specified in the SAVY canister SAR. As a point of reference, the photometer used to measure the SAVY canister filter performance cannot resolve values for the leakage percent below 1.0x10-5. Additionally, over a range of particle sizes from 0.01 μm to 3.0 μm, there was less than 4.0x10-5 error between the calculated filter efficiency for the two types of oil at any particular particle size diameter. In conclusion, the difference between using DOP and PAO for testing SAVY canister filters is of inconsequential concern.

  2. Indirect application of near infrared light induces neuro-protection in a mouse model of parkinsonism - an abscopal neuro-protective effective evaluation

    International Nuclear Information System (INIS)

    Johnstone, D.M.; Spana, S.; Purushothuman, S.; Stone, J.; Mitrofanis, J.; Johnstone, D.M.; Spana, S.; Purushothuman, S.; Stone, J.; El Massri, N.; Mitrofanis, J.; Moro, C.; Torres, N.; Chabrol, C.; De Jaeger, X.; Reinhart, F.; Benabid, A.L.; Wang, X.S.

    2014-01-01

    We have previously shown near infrared light (NIr), directed transcranially, mitigates the loss of dopaminergic cells in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated mice, a model of parkinsonism. These findings complement others suggesting NIr treatment protects against damage from various insults. However one puzzling feature of NIr treatment is that unilateral exposure can lead to a bilateral healing response, suggesting NIr may have 'indirect' protective effects. We investigated whether remote NIr treatment is neuro-protective by administering different MPTP doses (50-, 75-, 100-mg/kg) to mice and treating with 670-nm light directed specifically at either the head or body. Our results show that, despite no direct irradiation of the damaged tissue, remote NIr treatment produces a significant rescue of tyrosine hydroxylase-positive cells in the substantia nigra pars compacta at the milder MPTP dose of 50-mg/kg (30% increase vs sham-treated MPTP mice, p≤ 0.05). However this protection did not appear as robust as that achieved by direct irradiation of the head (50% increase vs sham-treated MPTP mice, p ≤0.001). There was no quantifiable protective effect of NIr at higher MPTP doses, irrespective of the delivery mode. Astrocyte and microglia cell numbers in substantia nigra pars compacta were not influenced by either mode of NIr treatment. In summary, the findings suggest that treatment of a remote tissue with NIr is sufficient to induce protection of the brain, reminiscent of the 'abscopal effect' sometimes observed in radiation treatment of metastatic cancer. This discovery has implications for the clinical translation of light-based therapies, providing an improved mode of delivery over trans-cranial irradiation. (authors)

  3. A 4-D climatology (1979–2009 of the monthly tropospheric aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products

    Directory of Open Access Journals (Sweden)

    P. Nabat

    2013-05-01

    Full Text Available Since the 1980s several spaceborne sensors have been used to retrieve the aerosol optical depth (AOD over the Mediterranean region. In parallel, AOD climatologies coming from different numerical model simulations are now also available, permitting to distinguish the contribution of several aerosol types to the total AOD. In this work, we perform a comparative analysis of this unique multi-year database in terms of total AOD and of its apportionment by the five main aerosol types (soil dust, sea-salt, sulfate, black and organic carbon. We use 9 different satellite-derived monthly AOD products: NOAA/AVHRR, SeaWiFS (2 products, TERRA/MISR, TERRA/MODIS, AQUA/MODIS, ENVISAT/MERIS, PARASOL/POLDER and MSG/SEVIRI, as well as 3 more historical datasets: NIMBUS7/CZCS, TOMS (onboard NIMBUS7 and Earth-Probe and METEOSAT/MVIRI. Monthly model datasets include the aerosol climatology from Tegen et al. (1997, the climate-chemistry models LMDz-OR-INCA and RegCM-4, the multi-model mean coming from the ACCMIP exercise, and the reanalyses GEMS and MACC. Ground-based Level-2 AERONET AOD observations from 47 stations around the basin are used here to evaluate the model and satellite data. The sensor MODIS (on AQUA and TERRA has the best average AOD scores over this region, showing a relevant spatio-temporal variability and highlighting high dust loads over Northern Africa and the sea (spring and summer, and sulfate aerosols over continental Europe (summer. The comparison also shows limitations of certain datasets (especially MERIS and SeaWiFS standard products. Models reproduce the main patterns of the AOD variability over the basin. The MACC reanalysis is the closest to AERONET data, but appears to underestimate dust over Northern Africa, where RegCM-4 is found closer to MODIS thanks to its interactive scheme for dust emissions. The vertical dimension is also investigated using the CALIOP instrument. This study confirms differences of vertical distribution between

  4. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.; Hillamo, R.; Maekinen, M.; Virkkula, A.; Maekelae, T.; Pakkanen, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  5. Evaluation and mapping of PM{sub 2.5} atmospheric aerosols in Arasia region using PIXE and gravimetric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Roumie, M. [Accelerator Laboratory, Lebanese Atomic Energy Commission, CNRSL, Beirut (Lebanon); Chiari, M. [INFN, Firenze and Department of Physics and Astronomy, University of Florence, Florence (Italy); Srour, A. [Accelerator Laboratory, Lebanese Atomic Energy Commission, CNRSL, Beirut (Lebanon); Sa’adeh, H. [Department of Physics, Faculty of Science, University of Jordan, Amman (Jordan); Reslan, A. [Accelerator Laboratory, Lebanese Atomic Energy Commission, CNRSL, Beirut (Lebanon); Sultan, M. [Ministry of Science and Technology MOST, Baghdad (Iraq); Ahmad, M. [Atomic Energy Commission of Syria AECS, Damascus (Syrian Arab Republic); Calzolai, G.; Nava, S. [INFN, Firenze and Department of Physics and Astronomy, University of Florence, Florence (Italy); Zubaidi, Th. [Ministry of Science and Technology MOST, Baghdad (Iraq); Rihawy, M.S. [Atomic Energy Commission of Syria AECS, Damascus (Syrian Arab Republic); Hussein, T. [Department of Physics, Faculty of Science, University of Jordan, Amman (Jordan); Department of Physics, Division of Atmospheric Sciences, University of Helsinki, Helsinki (Finland); Arafah, D.-E. [Department of Physics, Faculty of Science, University of Jordan, Amman (Jordan); Karydas, A.G.; Simon, A. [International Atomic Energy Agency IAEA, Vienna (Austria); Nsouli, B. [Accelerator Laboratory, Lebanese Atomic Energy Commission, CNRSL, Beirut (Lebanon)

    2016-03-15

    The present work is a part of a scientific study conducted among several Arab countries in west Asia, under an International Atomic Energy Agency (IAEA) regional technical cooperation project for Arasia region. The project aims at producing for the first time a database of particulate matter (PM) elemental concentrations in the region that will help in future air quality studies in order to identify commonalities and differences in the presence and contribution of fingerprint pollution sources among the Arasia Member States. The first regional campaign was launched simultaneously in Lebanon, Iraq, Jordan, Syria and United Arab Emirates, using a harmonized sampling and analysis protocol of PM{sub 10} and PM{sub 2.5} samples. Different samples, collected between October 2014 and February 2015, from the participating countries, were analyzed by PIXE technique and gravimetric measurements were also carried out. The first results of the study will be discussed in a regional perspective. Our study shows that concentrations of fine aerosol fractions are often exceeding the WHO standard values as well as showing some disparities in the obtained values between the different sampling sites. However, some trend similarities of variations with time could also be observed, suggesting a common influence by trans-boundary or external sources of air pollution.

  6. Development of Novel Chitosan Microcapsules for Pulmonary Delivery of Dapsone: Characterization, Aerosol Performance, and In Vivo Toxicity Evaluation.

    Science.gov (United States)

    Ortiz, Manoel; Jornada, Denise Soledade; Pohlmann, Adriana Raffin; Guterres, Sílvia Stanisçuaski

    2015-10-01

    Pneumocystis carinii pneumonia (PCP) is a major opportunistic infection that affects patients with human immunodeficiency virus. Although orally administered dapsone leads to high hepatic metabolism, decreasing the therapeutic index and causing severe side effects, this drug is an effective alternative for the treatment of PCP. In this context, microencapsulation for pulmonary administration can offer an alternative to increase the bioavailability of dapsone, reducing its adverse effects. The aim of this work was to develop novel dapsone-loaded chitosan microcapsules intended for deep-lung aerosolized drug delivery. The geometric particle size (D 4,3) was approximately 7 μm, the calculated aerodynamic diameter (d aero) was approximately 4.5 μm, and the mass median aerodynamic diameter from an Andersen cascade impactor was 4.7 μm. The in vitro dissolution profile showed an efficient dapsone encapsulation, demonstrating the sustained release of the drug. The in vitro deposition (measured by the Andersen cascade impactor) showed an adequate distribution and a high fine particles fraction (FPF = 50%). Scanning electron microscopy of the pulmonary tissues demonstrated an adequate deposition of these particles in the deepest part of the lung. An in vivo toxicity experiment showed the low toxicity of the drug-loaded microcapsules, indicating a protective effect of the microencapsulation process when the particles are microencapsulated. In conclusion, the pulmonary administration of the novel dapsone-loaded microcapsules could be a promising alternative for PCP treatment.

  7. Evaluation of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM encapsulated using a novel impinging aerosol method in fruit food products.

    Science.gov (United States)

    Sohail, Asma; Turner, Mark S; Prabawati, Elisabeth Kartika; Coombes, Allan G A; Bhandari, Bhesh

    2012-07-02

    This study investigated the effect of microencapsulation on the survival of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM and their acidification in orange juice at 25°C for nine days and at 4°C over thirty five days of storage. Alginate micro beads (10-40 μm) containing the probiotics were produced by a novel dual aerosol method of alginate and CaCl(2) cross linking solution. Unencapsulated L. rhamnosus GG was found to have excellent survivability in orange juice at both temperatures. However unencapsulated L. acidophilus NCFM showed significant reduction in viability. Encapsulation of these two bacteria did not significantly enhance survivability but did reduce acidification at 25°C and 4°C. In agreement with this, encapsulation of L. rhamnosus GG also reduced acidification in pear and peach fruit-based foods at 25°C, however at 4°C difference in pH was insignificant between free and encapsulated cells. In conclusion, L. rhamnosus GG showed excellent survival in orange juice and microencapsulation has potential in reducing acidification and possible negative sensory effects of probiotics in orange juice and other fruit-based products. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Study of uranium mine aerosols

    International Nuclear Information System (INIS)

    Barzic, J.-Y.

    1976-05-01

    With a view to radiation protection of uranium-miners a study was made of the behaviour of radioactive and non-radioactive aerosols in the atmosphere of an experimental mine where temperature, pressure, relative himidity and ventilation are kept constant and in the air of a working area where the nature of the aerosol is dependent on the stage of work. Measurements of radon and daughter products carried out in various points of working areas showed that the gas was quickly diluted, equilibrium between radon and its daughter products (RaA, RaB, RaC) was never reached and the radon-aerosol contact was of short duration (a few minutes). Using a seven-stage Andersen impactor particle size distribution of the mine aerosol (particle diameter >0.3μm) was studied. The characteristic diameters were determined for each stage of the Andersen impactor and statistical analysis verified that aerosol distributions on the lower stages of the impactor were log-normal in most cases. Finally, determination of size distribution of α-radioactivity showed it was retained on fine particles. The percentage of free α-activity was evaluated using a diffusion battery [fr

  9. RESULTS OF EVALUATING THE EFFICACY OF SECUKINUMAB VERSUS ADALIMUMAB IN TREATING PSORIATIC ARTHRITIS BY USING THE MATCHING-ADJUSTED INDIRECT COMPARISON METHOD

    Directory of Open Access Journals (Sweden)

    T. V. Korotaeva

    2016-01-01

    Full Text Available To date there have been no results of a direct comparison of the efficiency of using tumor necrosis factor-α inhibitors, secukinumab (SCM and adalimumab (ADA in particular, to treat psoriatic arthritis (PsA. This suggests that there is a need to apply the Matching-Adjusted Indirect Comparison (MAIC method that will be able to choose a treatment option for PsA. Objective: to compare the efficacy of SCM andADAby using the MAIC method in patients with active PsA.Patients and methods. The results of usingADAin the Adalimumab Effectiveness in Psoriatic Trial (ADEPT, a randomized clinical trial (RCT, and SCM in the FUTURE 2 RCT were compared according to theAmericanCollegeof Rheumatology (ACR and Psoriatic Area and Severity Index (PASI criteria. The analysis based on the MAIC principles included aggregated data on 151 patients with active PsA from the ADEPT RCT and 189 patients from the FUTURE 2 RCT.Results. At 16 weeks, ACR20/50/70 responses were observed in 74.4/50.1/18.5% of the patients treated with SCM 150 mg, in 65.5/50.1/50.1% of those treated with SCM 300 mg, and in 55.6/32.5/20.5% of those receivingADA, respectively. Both doses of SCM had a significant advantage over the dose ofADAaccording to ACR20 and ACR50 responses. A PASI75 response forADAand SCM 150/300 mg was observed in 60.9 and 59.5/64.1% of the patients; and a PASI90 response was seen in 39.1 and 47.7/40.8% of the patients, respectively. At 24 weeks of treatment, ACR20, ACR50, and HAQ-DI responses in patients receiving SCM 150 and 300 mg were significantly higher than in PsA patients takingADA. No statistically significant differences were observed in ACR70 response rates. The ratio of ACR20 and ACR50 indicators was similar after 48 weeks of treatment initiation. Assessment of the dynamics of psoriasis yielded similar results.Conclusion. Patients with active PsA demonstrated the advantage of therapy with SCM 150 and 300 mg over that withADA. There was a greater improvement in

  10. Aerosols and environmental pollution.

    Science.gov (United States)

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth's atmosphere and are central to many environmental issues; ranging from the Earth's radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  11. The Impacts of Chihuahua Desert Aerosol Intrusions on Convective Clouds and Regional Precipitation

    Science.gov (United States)

    Apodaca, Karina

    Growing up in a desert region influenced by a monsoon system and experiencing, first-hand, dust storms produced by convective thunderstorms stimulated my interest in the study of the impacts of aerosols on clouds. Contrary to other studies which focus more on anthropogenic aerosols, I chose to investigate the role of natural aerosols in the deserts of North America. Moreover, the role played by aerosols in desert regions within the North American Monsoon domain has not received as much attention as in other monsoon regions around the world. This dissertation describes my investigation of the connection between mineral aerosols (dust storms) and monsoon rainfall in the deserts of the Southwestern United States and Northwestern Mexico. To develop the context for the study of the role of mineral dust in summer-time convection on a regional scale, large-scale dynamical processes and their impact on the inter-annual variability of monsoon rainfall were analyzed. I developed the climatology of monsoonal rainfall and dust storms using surface observations to determine which mesoscale features influence North American Monsoon rainfall in the Paso Del Norte region. The strongest correlations were found between sea surface temperatures over the Gulf of California, Gulf of California moisture surges and monsoon rainfall in the Paso Del Norte region. A connection to ENSO could not be clearly established despite analyzing twenty-one years of data. However, by breaking the data into segments, a strong correlation was found for periods of intense rainfall. Twenty-one case studies were identified in which dust storms were produced in conjunction with thunderstorms during the 2005 - 2007 monsoon seasons. However, in some cases all the conditions were there for rainfall to occur but it did not precipitate. I concluded that strong thunderstorm outflow was triggering dust storms. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem V3.1.1) was used to evaluate

  12. Automobile Industry Retail Price Equivalent and Indirect Cost Multipliers

    Science.gov (United States)

    This report develops a modified multiplier, referred to as an indirect cost (IC) multiplier, which specifically evaluates the components of indirect costs that are likely to be affected by vehicle modifications associated with environmental regulation. A range of IC multipliers a...

  13. Aerosols and Climate

    Indian Academy of Sciences (India)

    atmosphere, aerosols have the potential to significantly influ- ence the climate. The global impact of aerosol is assessed as the change imposed on planetary radiation measured in Wm-2, which alters the global temperature. Effect of aerosols on the solar radiation (also called radiative forcing) can be broadly classified into ...

  14. Aerosols and Climate

    Indian Academy of Sciences (India)

    Large warming by elevated aerosols · AERONET – Global network (NASA) · Slide 25 · Slide 26 · Slide 27 · Slide 28 · Slide 29 · Slide 30 · Slide 31 · Long-term trends - Trivandrum · Enhanced warming over Himalayan-Gangetic region · Aerosol Radiative Forcing Over India _ Regional Aerosol Warming Experiment ...