WorldWideScience

Sample records for evaluate methyl eugenol

  1. Use of Biomonitoring Data to Evaluate Methyl Eugenol Exposure

    Science.gov (United States)

    Robison, Steven H.; Barr, Dana B.

    2006-01-01

    Methyl eugenol is a naturally occurring material found in a variety of food sources, including spices, oils, and nutritionally important foods such as bananas and oranges. Given its natural occurrence, a broad cross-section of the population is likely exposed. The availability of biomonitoring and toxicology data offers an opportunity to examine how biomonitoring data can be integrated into risk assessment. Methyl eugenol has been used as a biomarker of exposure. An analytical method to detect methyl eugenol in human blood samples is well characterized but not readily available. Human studies indicate that methyl eugenol is short-lived in the body, and despite the high potential for exposure through the diet and environment, human blood levels are relatively low. The toxicology studies in animals demonstrate that relatively high-bolus doses administered orally result in hepatic neoplasms. However, an understanding is lacking regarding how this effect relates to the exposures that result when food containing methyl eugenol is consumed. Overall, the level of methyl eugenol detected in biomonitoring studies indicates that human exposure is several orders of magnitude lower than the lowest dose used in the bioassay. Furthermore, there are no known health effects in humans that result from typical dietary exposure to methyl eugenol. PMID:17107870

  2. Evaluation of Cuelure and Methyl Eugenol solid lure and insecticide dispensers for fruit fly (Diptera: Tephritidae) monitoring and control in Tahiti

    Science.gov (United States)

    Performance of solid male lure (cuelure (C-L)/raspberry ketone (RK) - against Bactrocera tyroni (Froggatt), and methyl eugenol (ME) - against oriental fruit fly, B. dorsalis (Hendel) and insecticide formulations, were evaluated in Tahiti Island (French Polynesia), as alternatives to current monitori...

  3. Biological meaning of the methyl eugenol to fruit flies

    Energy Technology Data Exchange (ETDEWEB)

    Tachi, S.; Subahar, S

    1998-12-16

    The objective of this research is to test a hypothesis whether methyl eugenol has a benefit in sexual selection of fruit flies and to find at what age the male flies respond to methyl eugenol. This test was conducted using carambola fruit fly (Bractocera carambolae) at Inter University Center for Life Science of ITB. The results of the tests are summarized as follows ; 1. Males started to respond to methyl eugenol at the age of 11 days old and the maximum number of males were recorded on 14 and 15 days old. 2. Most of the carambola fruit fly start to respond to methyl eugenol before they become sexually mature. 3. A very small percentage of newly emerged males (less than 1%) survive to mate with females during treatment with methyl eugenol. Methyl eugenol has benefit in sexual selection of carabola fruit fly, i.e., males responded to methyl eugenol before they engage in sexual activities, while females responded to methyl eugenol only when males started their mating activities. (author)

  4. Methylation of Eugenol Using Dimethyl Carbonate and Bentonite as Catalyst

    Directory of Open Access Journals (Sweden)

    Dina Asnawati

    2015-11-01

    Full Text Available Eugenol is a compound with a variety of reactive functional groups such as allyl, hydroxy and methoxy. The presence of the functional groups brings eugenol possible to undertake the transformation into various derivative compounds with diverse activities. One of the simple and possible transformations is methylation or alkylation. Commonly, methyl halides and dimethyl sulphate are used as methylation agent. However, those kinds of methylation agents are toxic and carcinogenic. In this research dimethyl carbonate, an alternative methylation agent is used, because of its low toxicity, green, and economic. The synthesis has been carried out by using a catalyst. Bentonite was activated by heating to a temperature using 300 °C. Methylation was shown by the formation of a light yellow liquid (25.71% yield. The structures of products were characterized by GC-MS and obtained a compound, namely bis eugenol (4-allyl-2-methoxyphenoxy methane (2.37% yield.

  5. 40 CFR 180.1067 - Methyl eugenol and malathion combination; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Methyl eugenol and malathion... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1067 Methyl eugenol and malathion combination; exemption from the requirement of a tolerance. The insect attractant methyl eugenol and the...

  6. Estragole and methyl-eugenol-free extract of Artemisia dracunculus possesses immunomodulatory effects

    Directory of Open Access Journals (Sweden)

    Seyyed Meysam Abtahi Froushani

    2016-08-01

    Full Text Available Objective: Some evidence suggests that chronic uptake of estragole and methyl-eugenol, found in the essential oil of Artemisia dracunculus (tarragon, may be associated with an increased risk of hepato-carcinogenicity. The present study was conducted to investigate the immumodulatory and anti-inflammatory potentials of estragole and methyl-eugenol free extract of tarragon. Materials and Methods: Aqueous, hydroalcoholic, methanol and hexane extracts of dried and milled tarragon was prepared and analyzed by GC-MS. The estragole and methyl-eugenol free extract was characterized and used for evaluation of immunity in NMRI mice after challenging with sheep red blood cells. Results: It was shown that the aqueous extract of tarragon was free from potentially harmful estragole or methyl-eugenol. Moreover, the immunomodulatory effect of the aqueous extract of tarragon (100 mg/kg for 21 consecutive days was investigated. The extract significantly increased the level of anti-sheep red blood cells (SRBC (antibody and simultaneously decreased the level of cellular immunity in the treatment group. Moreover, tarragon caused a significant reduction in the production of pro-inflammatory IL-17 and IFN-γ in parallel with a reduction in the ratio of INF-γ to Il-10 or IL-17 to IL-10 in the splenocytes. In addition, the levels of the respiratory burst and nitric oxide production in peritoneal macrophages were significantly decreased. Additionally, the phagocytosis potential of macrophages was significantly increased in treated mice. Conclusion: These data showed that the aqueous extract of tarragon may be used as a natural source to modulate the immune system, because it can inhibit pro-inflammatory cytokines and induce anti-inflammatory macrophages.

  7. Mechanism underlying methyl eugenol attenuation of intestinal ischemia/reperfusion injury

    National Research Council Canada - National Science Library

    El-Shorbagy, Haidan M; Saleh, Hanan

    2017-01-01

    .... We aimed to determine whether a pure methyl eugenol (ME) given before intestinal ischemia, protects against intestinal I/R injury and the possible mechanism involved in this protection. Rat received ME (100 mg/kg...

  8. Evaluation of Methyl Eugenol and Cue-Lure Traps with Solid Lure and Insecticide Dispensers for Fruit Fly Monitoring and Male Annihilation in the Hawaii Area-Wide Pest Management Program

    Science.gov (United States)

    Methyl eugenol (ME) and cue-lure (C-L) traps with solid lure dispensers were deployed in areas with low and high populations of oriental fruit fly, Bactrocera dorsalis (Hendel) and melon fly, B. cucurbitae (Coquillett), respectively. In low density areas, standard Jackson traps or Hawaii fruit fly A...

  9. Inhibition of Nav1.7 channels by methyl eugenol as a mechanism underlying its antinociceptive and anesthetic actions.

    Science.gov (United States)

    Wang, Ze-Jun; Tabakoff, Boris; Levinson, Simon R; Heinbockel, Thomas

    2015-07-01

    Methyl eugenol is a major active component extracted from the Chinese herb Asari Radix et Rhizoma, which has been used to treat toothache and other pain. Previous in vivo studies have shown that methyl eugenol has anesthetic and antinociceptive effects. The aim of this study was to determine the possible mechanism underlying its effect on nervous system disorders. The direct interaction of methyl eugenol with Na(+) channels was explored and characterized using electrophysiological recordings from Nav1.7-transfected CHO cells. In whole-cell patch clamp mode, methyl eugenol tonically inhibited peripheral nerve Nav1.7 currents in a concentration- and voltage-dependent manner, with an IC50 of 295 μmol/L at a -100 mV holding potential. Functionally, methyl eugenol preferentially bound to Nav1.7 channels in the inactivated and/or open state, with weaker binding to channels in the resting state. Thus, in the presence of methyl eugenol, Nav1.7 channels exhibited reduced availability for activation in a steady-state inactivation protocol, strong use-dependent inhibition, enhanced binding kinetics, and slow recovery from inactivation compared to untreated channels. An estimation of the affinity of methyl eugenol for the resting and inactivated states of the channel also demonstrated that methyl eugenol preferentially binds to inactivated channels, with a 6.4 times greater affinity compared to channels in the resting state. The failure of inactivated channels to completely recover to control levels at higher concentrations of methyl eugenol implies that the drug may drive more drug-bound, fast-inactivated channels into drug-bound, slow-inactivated channels. Methyl eugenol is a potential candidate as an effective local anesthetic and analgesic. The antinociceptive and anesthetic effects of methyl eugenol result from the inhibitory action of methyl eugenol on peripheral Na(+) channels.

  10. USE OF METHYL EUGENOL SOLUTION AND RED GUAVA EXTRACT FOR FRUIT FLY CONTROL

    Directory of Open Access Journals (Sweden)

    Sulistiya

    2016-01-01

    Full Text Available One of the constraints increase fruit production in Indonesia is the fruit fly pests. The introduction of fruit fly pest attack prevention using attractant methyl eugenol is considered expensive and troublesome. Therefore, researchers are interested in doing this experiment. Objective: (1 determine the volume of a solution of methyl eugenol most appropriate in the fruit fly trap to get optimum results. (2 determine the most appropriate time of application. Conducted experiments using attractant methyl eugenol is mixed into the guava fruit extract. Research conducted in the guava orchard belonging to farmers in the village Sumberagung, Jetis, Bantul begins July through September 2015. The research used randomized block design factorial design with two treatment factors. The first factor is the concentration of the solution Petrogenol which consists of three levels, repeated five times. Data were analyzed by F test, if they depict real effect, continued treatment mean comparison test using HSD test at five percent level. Conclusions (1 The solution Methyl eugenol is a fruit fly attractant potential in the control of fruit flies in the crop guava. (2 The concentration of Methyl eugenol 0.60 ml per 100 ml guava fruit extract with the application time of 10 days is more effective to trap fruit flies in guava crop

  11. Transport of methyl eugenol-derived sex pheromonal components in the male fruit fly, Bactrocera dorsalis.

    Science.gov (United States)

    Kah-Wei Hee, Alvin; Tan, Keng-Hong

    2006-08-01

    Males of Bactrocera dorsalis (Diptera: Tephritidae) are attracted strongly to and feed compulsively on methyl eugenol (1,2-dimethoxy- 4 -(2-propenyl)benzene), a highly potent male attractant. Pharmacophagy of methyl eugenol results in the production of phenylpropanoids 2-allyl-4,5-dimethoxyphenol and (E)-coniferyl alcohol that are sequestered and stored in the rectal gland prior to release as sex pheromonal components during mating at dusk. While these pheromonal components have also been detected in the hemolymph and crop of methyl eugenol-fed males, there is currently little information on the transport of these compounds from the crop to rectal gland in male B. dorsalis. Therefore, using physiological techniques such as parabiosis, rectal gland transplantation and hemolymph transfusion coupled with gas chromatography-mass spectrometry (GC-MS) analyses, we were able to ascertain and confirm the role of the hemolymph in the transport of these sex pheromonal components from the crop to the rectal gland. Further, the temporal profile of these methyl eugenol-derived bioactive compounds in the hemolymph also shows an increase with time post-methyl eugenol-feeding, i.e., 2-allyl-4,5-dimethoxyphenol attaining maximum amounts 15 min after ME consumption and decreasing thereafter, while for (E)-coniferyl alcohol-the increase and decrease are more gradual. These results further demonstrate the ability of insect hemolymph to transport many diverse forms of bioactive molecules including attractant-derived sex pheromonal components.

  12. ONE-STEP CONVERSION OF EUGENOL TO METHYL ISOEUGENOL USING MICROWAVE IRRADIATION IN SOLVENT-FREE CONDITIONS

    Directory of Open Access Journals (Sweden)

    Marcellino Rudyanto

    2010-06-01

    Full Text Available A research on conversion of eugenol to methyl isoeugenol via one-step reaction with microwave irradiation has been carried out. Mixtures containing eugenol, sodium or potassium carbonate as solid support, with or without sodium or potassium hydroxide as base, with or without tetrabutylammonium bromide as phase transfer catalyst, with dimethyl sulfate as the methylating agent were irradiated in a domestic microwave oven for 20 - 50 seconds. It was revealed that one-step methylation and isomerization required combinations of sodium or potassium hydroxide base and tetrabutylammonium bromide. Without combination of base and TBAB only one product, i.e. methyl eugenol, was formed.   Keywords: eugenol, methyl eugenol, methyl isoeugenol, microwave

  13. Performance of Methyl Eugenol + Matrix + Toxicant combinations under field conditions in Hawaii and California for trapping B. dorsalis (Diptera:Tephritidae).

    Science.gov (United States)

    New solid formulations containing methyl eugenol and either naled or DDVP toxicants were compared to the standard formulations on cotton wicks in large scale field evaluation in Hawaii. Two “reduced risk” toxicants (spinosad and Rynaxypyr®) were also evaluated. In one test the solid lure-toxicant-ma...

  14. Pre-Release Consumption of Methyl Eugenol Increases the Mating Competitiveness of Sterile Males of the Oriental Fruit Fly, Bactrocera dorsalis, in Large Field Enclosures

    Science.gov (United States)

    Shelly, Todd E.; Edu, James; McInnis, Donald

    2010-01-01

    The sterile insect technique may be implemented to control populations of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), when environmental concerns preclude widespread use of chemical attractants or toxicants. The goal of the present study was to evaluate whether the mating competitiveness of sterile B. dorsalis males could be increased via pre-release feeding on methyl eugenol. Males of the oriental fruit fly are strongly attracted to this plant-borne compound, which they ingest and use in the synthesis of the sex pheromone. Previous studies conducted in the laboratory and small field-cages have shown that males given methyl eugenol produce a more attractive pheromone for females and have a higher mating success rate than males denied methyl eugenol. Here, levels of egg sterility were compared following the release of wild-like flies and either methyl eugenol-fed (treated) or methyl eugenol-deprived (control) sterile males in large field enclosures at four over flooding ratios ranging from 5:1 to 60:1 (sterile: wild-like males). Treated sterile males were fed methyl eugenol for 1–4 h (depending on the over flooding ratio tested) 3 d prior to release. Eggs were dissected from introduced fruits (apples), incubated in the laboratory, and scored for hatch rate. The effect of methyl eugenol was most pronounced at lower over flooding ratios. At the 5:1 and 10:1 over flooding ratios, the level of egg sterility observed for treated, sterile males was significantly greater than that observed for control, sterile males. In addition, the incidence of egg sterility reported for treated sterile males at these lower over flooding ratios was similar to that noted for treated or control sterile males at the 30:1 or 60:1 over flooding ratios. This latter result, in particular, suggests that pre-release feeding on methyl eugenol allows for a reduction in the number of sterile flies that are produced and released, thus increasing the cost

  15. Pre-release consumption of methyl eugenol increases the mating competitiveness of sterile males of the oriental fruit fly, Bactrocera dorsalis, in large field enclosures.

    Science.gov (United States)

    Shelly, Todd E; Edu, James; McInnis, Donald

    2010-01-01

    The sterile insect technique may be implemented to control populations of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), when environmental concerns preclude widespread use of chemical attractants or toxicants. The goal of the present study was to evaluate whether the mating competitiveness of sterile B. dorsalis males could be increased via pre-release feeding on methyl eugenol. Males of the oriental fruit fly are strongly attracted to this plant-borne compound, which they ingest and use in the synthesis of the sex pheromone. Previous studies conducted in the laboratory and small field-cages have shown that males given methyl eugenol produce a more attractive pheromone for females and have a higher mating success rate than males denied methyl eugenol. Here, levels of egg sterility were compared following the release of wild-like flies and either methyl eugenol-fed (treated) or methyl eugenol-deprived (control) sterile males in large field enclosures at four over flooding ratios ranging from 5:1 to 60:1 (sterile: wild-like males). Treated sterile males were fed methyl eugenol for 1-4 h (depending on the over flooding ratio tested) 3 d prior to release. Eggs were dissected from introduced fruits (apples), incubated in the laboratory, and scored for hatch rate. The effect of methyl eugenol was most pronounced at lower over flooding ratios. At the 5:1 and 10:1 over flooding ratios, the level of egg sterility observed for treated, sterile males was significantly greater than that observed for control, sterile males. In addition, the incidence of egg sterility reported for treated sterile males at these lower over flooding ratios was similar to that noted for treated or control sterile males at the 30:1 or 60:1 over flooding ratios. This latter result, in particular, suggests that pre-release feeding on methyl eugenol allows for a reduction in the number of sterile flies that are produced and released, thus increasing the cost

  16. Weathering and chemical degradation of methyl eugenol and raspberry ketone solid dispensers for detection, monitoring and male annihilation of Bactrocera dorsalis and Bactrocera cucurbitae (Diptera: Tephritidae) in Hawaii

    Science.gov (United States)

    Solid male lure dispensers containing methyl eugenol (ME) and raspberry ketone (RK), or mixtures of the lures (ME + RK), and dimethyl dichloro-vinyl phosphate (DDVP) were evaluated in AWPM bucket or Jackson traps in commercial papaya (Carica papaya L.) orchards where both oriental fruit fly, Bactroc...

  17. Methyl eugenol aromatherapy enhances the mating competitiveness of male Bactrocera carambolae Drew & Hancock (Diptera: Tephritidae).

    Science.gov (United States)

    Haq, Ihsan; Vreysen, Marc J B; Cacéres, Carlos; Shelly, Todd E; Hendrichs, Jorge

    2014-09-01

    Males of Bactrocera carambolae Drew & Hancock (Diptera: Tephritidae) are strongly attracted to methyl eugenol (ME) (1,2-dimethoxy-4-(2-propenyl)benzene), a natural compound occurring in variety of plant species. ME-feeding is known to enhance male B. carambolae mating competitiveness 3 days after feeding. Enhanced male mating competitiveness due to ME-feeding can increase the effectiveness of sterile insect technique (SIT) manifolds. However, the common methods for emergence and holding fruit flies prior to field releases do not allow the inclusion of any ME feeding treatment after fly emergence. Therefore this study was planned to assess the effects of ME-aromatherapy in comparison with ME feeding on male B. carambolae mating competitiveness as aromatherapy is pragmatic for fruit flies emergence and holding facilities. Effects of ME application by feeding or by aromatherapy for enhanced mating competitiveness were evaluated 3d after treatments in field cages. ME feeding and ME aromatherapy enhanced male mating competitiveness as compared to untreated males. Males treated with ME either by feeding or by aromatherapy showed similar mating success but mating success was significantly higher than that of untreated males. The results are discussed in the context of application of ME by aromatherapy as a pragmatic approach in a mass-rearing facility and its implications for effectiveness of SIT. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. GC-MS method validation and levels of methyl eugenol in a diverse range of tea tree (Melaleuca alternifolia) oils.

    Science.gov (United States)

    Raymond, Carolyn A; Davies, Noel W; Larkman, Tony

    2017-03-01

    Tea tree oil distilled from Melaleuca alternifolia has widespread use in the cosmetic industry as an antimicrobial as well as for other functions in topical products. Concerns were first raised by the European Commission's Scientific Committee on Consumer Products in 2004 about the level of the potentially carcinogenic phenylpropanoid compound methyl eugenol in tea tree oil. Limits on oil content in different types of cosmetic products were set based on a reported upper level of 0.9% methyl eugenol in the oil. A previous publication indicated that these levels were based on oil from a Melaleuca species not used in the commercial production of oil. Even the highest recorded levels in Melaleuca alternifolia, the overwhelmingly most common species used, were ∼15 times less than this, meaning that more oil could be safely used in the products. The current study, including details on methodology and reproducibility, extends that work across a suite of 57 plantation-sourced oils from a range of geographical locations and production years, as well as many Australian and international commercial oils. Lower levels of methyl eugenol in oils of known provenance were confirmed, with a recorded range of 160-552 ppm and a mean of 337 ppm. Analysis of variance showed methyl eugenol levels in Australian plantation oils to be correlated to the geographical region but not to the year of production. Average methyl eugenol levels in commercial oils were significantly lower, and these samples were divided into an authentic group and a group that were suspected of being adulterated based on an independent test. Authentic commercial oils had similar levels of methyl eugenol to Australian provenance material, whilst the oils classed as suspect had significantly lower levels.

  19. Attraction and Mortality of Oriental Fruit Flies (Diptera: Tephritidae) to SPLAT-MAT- Methyl Eugenol with Spinosad

    Science.gov (United States)

    Studies were conducted in Hawaii to quantify attraction and feeding responses resulting in mortality of male oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), to SPLAT-MAT-methyl eugenol (ME) with spinosad in comparison with Min-U-Gel-ME with naled (Dibrom). Our approach invol...

  20. Methyl Eugenol: Its Occurrence, Distribution, and Role in Nature, Especially in Relation to Insect Behavior and Pollination

    Science.gov (United States)

    Tan, Keng Hong; Nishida, Ritsuo

    2012-01-01

    This review discusses the occurrence and distribution (within a plant) of methyl eugenol in different plant species (> 450) from 80 families spanning many plant orders, as well as various roles this chemical plays in nature, especially in the interactions between tephritid fruit flies and plants. PMID:22963669

  1. Ring-fluorinated analog of methyl eugenol: Attractiveness to and metabolism in the oriental fruit fly, Bactrocera dorsalis (Hendel)

    Science.gov (United States)

    Oriental fruit fly, Bactrocera dorsalis (Hendel), males are highly attractive to the natural phenylpropanoid methyl eugenol (ME). They compulsively feed on ME and metabolize it to ring and side-chain hydroxylated compounds which have both pheromonal and allomonal functions. Side-chain metabolic act...

  2. Field trials of solid triple lure (trimedlure, methyl eugenol, raspberry ketone, and DDVP) dispensers for detection and male annihilation of Ceratitis capitata (Wiedemann), Bactrocera dorsalis (Hendel) and Bactrocera cucurbit

    Science.gov (United States)

    Solid Mallet TMR (trimedlure [TML], methyl eugenol [ME], raspberry ketone [RK]) wafers and Mallet CMR (ceralure, ME, RK, benzyl acetate) wafers impregnated with DDVP insecticide were evaluated in traps as potential detection and male annihilation devices. Comparisons were made with 1) liquid lure a...

  3. Pharmacophagy of methyl eugenol by males enhances sexual selection of Bactrocera carambolae.

    Science.gov (United States)

    Wee, Suk-Ling; Tan, Keng-Hong; Nishida, Ritsuo

    2007-06-01

    After pharmacophagy of methyl eugenol (ME), males of Bactrocera carambolae (Diptera: Tephritidae) produced (E)-coniferyl alcohol (CF) along with its endogenously synthesized pheromonal compounds. CF was shown to be released into the air by the ME-fed males only during the courtship period at dusk and attracted significantly more males and females than the ME-deprived males in wind tunnel assays. However, earlier onset of sexual attraction and a higher mating success were observed only in the wind tunnel and field cage assays on the third day posttreatment of ME. Field cage observations on the male-to-male interaction indicated that the ME-deprived males did not exhibit aggregation behavior, but that ME feeding promoted aggregation behavior in B. carambolae. Field cage observations revealed that the ME-deprived males were not only attracted to the ME-fed males, but also appeared to feed on their anal secretions. The secretions were subsequently confirmed to contain CF along with endogenously produced pheromonal compounds. Results obtained for B. carambolae were compared to those previously obtained from its sibling species, Bactrocera dorsalis, and are discussed in light of species advancement in fruit fly-plant relationships.

  4. Evaluation of analytical techniques to determine AQUI-S® 20E (eugenol) concentrations in water

    Science.gov (United States)

    Meinertz, Jeffery R.; Hess, Karina R.

    2014-01-01

    There is a critical need in U.S. public aquaculture and fishery management programs for an immediate-release sedative, i.e. a compound that can be safely and effectively used to sedate fish and subsequently, allow for their immediate release. AQUI-S® 20E (10% active ingredient, eugenol; any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government) is being pursued for U.S. approval as an immediate-release sedative. As part of the approval process, data describing animal safety and efficacy are needed. Essential to conducting studies that generate those data, is a method to accurately and precisely determine AQUI-S® 20E concentrations in exposure baths. Spectrophotometric and solid phase extraction (SPE)–high pressure liquid chromatography (LC) methods were developed and evaluated as methods to determine AQUI-S® 20E (eugenol) concentrations in water, methods that could be applied to any situation where eugenol was being evaluated as a fish sedative. The spectrophotometric method was accurate and precise (accuracy, > 87%; precision, 86%; precision eugenol concentrations in solutions of 50 to 1000 mg/L AQUI-S® 20E made with LC grade water and water with varying pH and hardness. The SPE–LC method was influenced to a lesser degree by the presence of fish feed indicating greater specificity for eugenol.

  5. Ring-fluorinated analog of methyl eugenol: attractiveness to and metabolism in the oriental fruit fly, Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Khrimian, Ashot; Siderhurst, Matthew S; Mcquate, Grant T; Liquido, Nicanor J; Nagata, Janice; Carvalho, Lori; Guzman, Filadelfo; Jang, Eric B

    2009-02-01

    Oriental fruit fly, Bactrocera dorsalis (Hendel), males are highly attracted to the natural phenylpropanoid methyl eugenol (ME). They compulsively feed on ME and metabolize it to ring and side-chain hydroxylated compounds that have both pheromonal and allomonal functions. Side-chain metabolic activation of ME leading to (E)-coniferyl alcohol has long been recognized as a primary reason for hepatocarcinogenicity of this compound in rodents. Earlier, we demonstrated that introduction of a fluorine atom at the terminal carbon of the ME side chain significantly depressed metabolism and specifically reduced formation of coniferyl alcohol but had little effect on field attractiveness to B. dorsalis. In the current paper, we demonstrate that fluorination of ME at the 4 position of the aromatic ring blocks metabolic ring-hydroxylation but overall enhances side-chain metabolism by increasing production of fluorinated (E)-coniferyl alcohol. In laboratory experiments, oriental fruit fly males were attracted to and readily consumed 1,2-dimethoxy-4-fluoro-5-(2-propenyl)benzene (I) at rates similar to ME but metabolized it faster. Flies that consumed the fluorine analog were as healthy post feeding as ones fed on methyl eugenol. In field trials, the fluorine analog I was approximately 50% less attractive to male B. dorsalis than ME.

  6. Field Estimates of Attraction of Ceratitis capitata to Trimedlure and Bactrocera dorsalis (Diptera: Tephritidae) to Methyl Eugenol in Varying Environments.

    Science.gov (United States)

    Manoukis, Nicholas C; Siderhurst, Matthew; Jang, Eric B

    2015-06-01

    Measuring and modeling the attractiveness of semiochemical-baited traps is of significant importance to detection, delimitation, and control of invasive pests. Here, we describe the results of field mark-release-recapture experiments with Ceratitis capitata (Wiedemann) and Bactrocera dorsalis (Hendel) to estimate the relationship between distance from a trap baited with trimedlure and methyl eugenol, respectively, and probability of capture for a receptive male insect. Experiments were conducted using a grid of traps with a central release point at two sites on Hawaii Island, a Macadamia orchard on the East side of the island and a lava field on the West side. We found that for B. dorsalis and methyl eugenol there is a 65% probability of capture at ∼36 m from a single trap, regardless of habitat. For C. capitata, we found a 65% probability of capture at a distance of ∼14 m from a single trap in the orchard and 7 m in the lava field. We also present results on the spatial and temporal pattern of recaptures. The attraction data are analyzed via a hyperbolic secant-based capture probability model. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  7. Evaluation of a Method for Quantifying Eugenol Concentrations in the Fillet Tissue from Freshwater Fish Species.

    Science.gov (United States)

    Meinertz, Jeffery R; Schreier, Theresa M; Porcher, Scott T; Smerud, Justin R

    2016-01-01

    AQUI-S 20E(®) (active ingredient, eugenol; AQUI-S New Zealand Ltd, Lower Hutt, New Zealand) is being pursued for approval as an immediate-release sedative in the United States. A validated method to quantify the primary residue (the marker residue) in fillet tissue from AQUI-S 20E-exposed fish was needed. A method was evaluated for determining concentrations of the AQUI-S 20E marker residue, eugenol, in freshwater fish fillet tissue. Method accuracies from fillet tissue fortified at nominal concentrations of 0.15, 1, and 60 μg/g from six fish species ranged from 88-102%. Within-day and between-day method precisions (% CV) from the fortified tissue were ≤8.4% CV. There were no coextracted compounds from the control fillet tissue of seven fish species that interfered with eugenol analyses. Six compounds used as aquaculture drugs did not interfere with eugenol analyses. The lower limit of quantitation (LLOQ) was 0.012 μg/g. The method was robust, i.e., in most cases, minor changes to the method did not impact method performance. Eugenol was stable in acetonitrile-water (3 + 7, v/v) for at least 14 days, in fillet tissue extracts for 4 days, and in fillet tissue stored at ~ -80°C for at least 84 days.

  8. Evaluation of analytical techniques to determine AQUI-S(R) 20E (eugenol) concentrations in water

    Science.gov (United States)

    Meinertz, Jeffery R.; Hess, Karina R.

    2013-01-01

    There is a critical need in U.S. public aquaculture and fishery management programs for an immediate-release sedative, i.e. a compound that can be safely and effectively used to sedate fish and subsequently, allow for their immediate release. AQUI-S® 20E (10% active ingredient, eugenol; any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government) is being pursued for U.S. approval as an immediate-release sedative. As part of the approval process, data describing animal safety and efficacy are needed. Essential to conducting studies that generate those data, is a method to accurately and precisely determine AQUI-S® 20E concentrations in exposure baths. Spectrophotometric and solid phase extraction (SPE)–high pressure liquid chromatography (LC) methods were developed and evaluated as methods to determine AQUI-S® 20E (eugenol) concentrations in water, methods that could be applied to any situation where eugenol was being evaluated as a fish sedative. The spectrophotometric method was accurate and precise (accuracy, > 87%; precision, eugenol concentrations in solutions of 50 to 1000 mg/L AQUI-S® 20E made with LC grade water and water with varying pH and hardness. The spectrophotometric method's accuracy was negatively affected when analyzing water containing fish feed. The SPE–LC method was also accurate and precise (accuracy > 86%; precision eugenol concentrations in solutions of 50 to 1000 mg/L AQUI-S® 20E made with LC grade water and water with varying pH and hardness. The SPE–LC method was influenced to a lesser degree by the presence of fish feed indicating greater specificity for eugenol.

  9. Di- and Tri-flourinated analogs of methyl eugenol: attractiveness to and metabolism in the oriental fruit fly, bactrocera dorsalis (hendel)

    Science.gov (United States)

    Oriental fruit fly, Bactrocera dorsalis (Hendel), males are highly 1 attracted to the natural phenylpropanoid methyl eugenol (ME). They compulsively feed on ME and metabolize it to ring and side-chain hydroxylated compounds that have both pheromonal and allomonal properties. Previously, we demonstra...

  10. Antimicrobial eugenol nanoemulsion prepared by gum arabic and lecithin and evaluation of drying technologies.

    Science.gov (United States)

    Hu, Qiaobin; Gerhard, Hannah; Upadhyaya, Indu; Venkitanarayanan, Kumar; Luo, Yangchao

    2016-06-01

    The purpose of present work was to develop eugenol oil nanoemulsions using gum arabic and lecithin as food grade natural emulsifiers, and study their antimicrobial activity. In addition, our study also evaluated different drying techniques (spray drying and freeze drying) on the morphology and redispersibility of nanoemulsion powders. The optimal fabrication method, physicochemical and structural characterization, stability, and antimicrobial activity were investigated. Results showed that nanoemusions with a particle size of 103.6±7.5nm were obtained by mixing aqueous phase (0.5% gum arabic, 0.5% lecithin, w/v) and eugenol oil (1.25%, w/v), which was premixed with ethanol (as a co-surfactant), followed by high speed homogenization process. The molecular interactions among emulsifiers and eugenol were evidenced by Fourier transform infrared spectroscopy. Buchi B-90 Nano Spray Dryer was evaluated as a powerful tool to obtain ultrafine spherical powders with a size of less than 500nm, compared to flake-like aggregation obtained by freeze-drying. The dried powders exhibited excellent re-dispersibility in water and maintained their physicochemical properties after re-hydration. The nanoemulsions did not adversely affect the antimicrobial activity of eugenol against Listeria monocytogenes and Salmonella Enteritidis. Therefore, the nanoemulsions have the potential to be applied in the food industry as a food preservative or sanitizer. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Simultaneous quantitative determination of cinnamaldehyde and methyl eugenol from stem bark of Cinnamomum zeylanicum Blume using RP-HPLC.

    Science.gov (United States)

    Gursale, Atish; Dighe, Vidya; Parekh, Guarang

    2010-01-01

    A simple, sensitive, and precise reversed-phase high performance liquid chromatographic (HPLC) method has been developed, validated and used for simultaneous quantitative determination of cinnamaldehyde and methyl eugenol from the methanolic extract of dried bark powder of Cinnamomum zeylanicum Blume (family Lauraceae). The ultrasonic extraction method was used for the extraction of these compounds. The reversed-phase HPLC analysis was carried out using a Intersil ODS-3V-C(18) (150 mm x 4.6 mm, 5 microm) column and a mobile phase comprising of methanol-acetonitrile-water in the volume ratio of 35:20:45, delivered at a flow rate of 1.0 cm(3)/min. The detection and quantitation of both the compounds was carried out at 221 nm.

  12. Alkylphenol Activity against Candida spp. and Microsporum canis: A Focus on the Antifungal Activity of Thymol, Eugenol and O-Methyl Derivatives

    Directory of Open Access Journals (Sweden)

    Ynayara C. Lima

    2011-07-01

    Full Text Available In recent years there has been an increasing search for new antifungal compounds due to the side effects of conventional antifungal drugs and fungal resistance. The aims of this study were to test in vitro the activity of thymol, eugenol, estragole and anethole and some O-methyl-derivatives (methylthymol and methyleugenol against Candida spp. and Microsporum canis. The broth microdilution method was used to determine the minimum inhibitory concentration (MIC. The minimum fungicidal concentrations (MFC for both Candida spp. and M. canis were found by subculturing each fungal suspension on potato dextrose agar. Thymol, methylthymol, eugenol, methyl-eugenol, anethole, estragole and griseofulvin respectively, presented the following MIC values against M. canis: 4.8–9.7; 78–150; 39; 78–150; 78–150; 19–39 µg/mL and 0.006–2.5 mg/mL. The MFC values for all compounds ranged from 9.7 to 31 µg/mL. Concerning Candida spp, thymol, methylthymol, eugenol, methyleugenol, anethole, estragole and amphotericin, respectively, showed the following MIC values: 39; 620–1250; 150–620; 310–620; 620; 620–1250 and 0.25–2.0 mg/mL. The MFC values varied from 78 to 2500 µg/mL. All tested compounds thus showed in vitro antifungal activity against Candida spp. and M. canis. Therefore, further studies should be carried out to confirm the usefulness of these alkylphenols in vivo.

  13. A cytotoxic study of eugenol and its ortho dimer (bis-eugenol)

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, Yasushi [Meikai Univ., Sakado, Saitama (Japan). School of Dentistry

    2000-07-01

    Eugenol is widely used not only as a dental material such as pulp capping material, provisional cement, root canal sealer, and impression paste, but also as a perfume ingredients. Eugenol has antioxidant, bactericidal, and sedative activities, inhibits and non-enzymatic peroxidation. It was previously reported that eugenol exhibited the cytotoxic activity toward pulp cells and gingial fibroblasts and also that the cytotoxic activity was predominantly performed by radicals derived from the oxidation of eugenol. This study was based on the hypothesis that the toxicity of eugenol may be greately reduced if the radicalization of eugenol was diminished by the dimerization of eugenol. Thus, bis-eugenol, the dimer of eugenol, was synthesized to characterize the effect of this eugenol-related compound. The cytotoxic activity of bis-eugenol against human gingival fibroblasts (HGF cell) or human submandibular gland cancer cells (HSG cell) was studied in the presence or absence of light irradiation (visible or ultraviolet light), and compared with that of eugenol. The cytotoxic activity of eugenol was significantly greater than that of bis-eugenol. The cytotoxic activity of irradiated eugenol, but not that of irradiated bis-eugenol, was significantly higher than that of the non-irradiated counterpart. Bis-eugenol at a relatively low concentration declined the phototoxic activity of irradiation on living cells. Also, the generation of reactive oxygen in HSG cells in the ab-sence or the presence of irradiated bis-eugenol or eugenol was evaluated by an ACAS laser cytometry, and the results indicated that eugenol, but not bis-eugenol, generated reactive oxygen in the cells. The DPPH-radical scavenging activity of bis-eugenol was larger than that of eugenol. Furthermore, eugenol had a positive apoptosis-inducing effect on HSG cells. The structure-activity relationships of eugenol-related compounds showed that the nature of the substituent at the ortho or para-position of eugenol

  14. Comparative sensitivity to methyl eugenol of four putative Bactrocera dorsalis complex sibling species ? further evidence that they belong to one and the same species B. dorsalis

    OpenAIRE

    Hee, Alvin K.W.; Ooi, Yue-Shin; Wee, Suk-Ling; Tan,Keng-Hong

    2015-01-01

    Abstract Males of certain species belonging to the Bactrocera dorsalis complex are strongly attracted to, and readily feed on methyl eugenol (ME), a plant secondary compound that is found in over 480 plant species worldwide. Amongst those species is one of the world?s most severe fruit pests the Oriental fruit fly, Bactrocera dorsalis s.s., and the former taxonomic species Bactrocera invadens , Bactrocera papayae and Bactrocera philippinensis . The latter species have been recently synonymise...

  15. Synthesis and Biological Evaluation of New Eugenol Mannich Bases as Promising Antifungal Agents.

    Science.gov (United States)

    Abrão, Pedro Henrique O; Pizi, Rafael B; de Souza, Thiago B; Silva, Naiara C; Fregnan, Antonio M; Silva, Fernanda N; Coelho, Luiz Felipe L; Malaquias, Luiz Cosme C; Dias, Amanda Latercia T; Dias, Danielle F; Veloso, Marcia P; Carvalho, Diogo T

    2015-10-01

    New Mannich base-type eugenol derivatives were synthesized and evaluated for their anticandidal activity using a broth microdilution assay. Among the synthesized compounds, 4-allyl-2-methoxy-6-(morpholin-4-ylmethyl) phenyl benzoate (7) and 4-{5-allyl-2-[(4-chlorobenzoyl)oxy]-3-methoxybenzyl}morpholin-4-ium chloride (8) were found to be the most effective antifungal compounds with low IC50 values, some of them well below those of reference drug fluconazole. The most significant IC50 values were those of 7 against C. glabrata (1.23 μm), C. albicans and C. krusei (both 0.63 μm). Additionally, the synthesized compounds were evaluated for their in vitro cytotoxic effects on human mononuclear cells. As result, the cytotoxic activity of eugenol in eukaryotic cells decreased with the introduction of the morpholinyl group. Given these findings, we point out compounds 7 and 8 as the most promising derivatives because they showed potency values greater than those of eugenol and fluconazole and they also presented high selectivity indexes. © 2014 John Wiley & Sons A/S.

  16. Optimizing methyl-eugenol aromatherapy to maximize posttreatment effects to enhance mating competitiveness of male Bactrocera carambolae (Diptera: Tephritidae).

    Science.gov (United States)

    Haq, Ihsan ul; Vreysen, Marc J B; Cacéres, Carlos; Shelly, Todd E; Hendrichs, Jorge

    2015-10-01

    Methyl-eugenol (ME) (1,2-dimethoxy-4-(2-propenyl)benzene), a natural phytochemical, did enhance male Bactrocera carambolae Drew & Hancock (Diptera: Tephritidae) mating competitiveness 3 d after ingestion. Enhanced male mating competitiveness can significantly increase the effectiveness of the sterile insect technique (SIT). ME application to mass reared sterile flies by feeding is infeasible. ME application by aromatherapy however, would be a very practical way of ME application in fly emergence and release facilities. This approach was shown to enhance mating competitiveness of B. carambolae 3 d posttreatment (DPT). Despite this added benefit, every additional day of delaying release will reduce sterile fly quality and will add cost to SIT application. The present study was planned to assess the effects of ME-aromatherapy on male B. carambolae mating competitiveness 1DPT and 2DPT. ME aromatherapy 1DPT or 2DPT did enhance mating competitiveness of B. carambolae males whereas ME feeding 1DPT and 2DPT did not. Male mating competitiveness was enhanced by the ME aromatherapy irrespective if they received 1DPT, 2DPT or 3DPT. ME aromatherapy, being a viable approach for its application, did enhance mating competitiveness of male B. carambolae 1 d posttreatment as ME feeding did 3 d after ingestion. ©2014 The Authors Journal compliation © Insititute of Zoology, Chinese Academy of Science.

  17. Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines.

    Science.gov (United States)

    Yi, Jin-Ling; Shi, Song; Shen, Yan-Li; Wang, Ling; Chen, Hai-Yan; Zhu, Jun; Ding, Yan

    2015-01-01

    Drug combination therapies are common practice in the treatment of cancer. In this study, we evaluated the anticancer effects of myricetin (MYR), methyl eugenol (MEG) and cisplatin (CP) both separately as well as in combination against cervical cancer (HeLa) cells. To demonstrate whether MYR and MEG enhance the anticancer activity of CP against cervical cancer cells, we treated HeLa cells with MYR and MEG alone or in combination with cisplatin and evaluated cell growth and apoptosis using MTT (3 (4, 5 dimethyl thiazol 2yl) 2, 5 diphenyltetrazolium bromide) assay, LDH release assay, flow cytometry and fluorescence microscopy. The results revealed that, as compared to single drug treatment, the combination of MYR or MEG with CP resulted in greater effect in inhibiting cancer cell growth and inducing apoptosis. Cell apoptosis induction, Caspase-3 activity, cell cycle arrest and mitochondrial membrane potential loss were systematically studied to reveal the mechanisms of synergy between MYR, MEG and CP. Combination of MYR or MEG with CP resulted in more potent apoptosis induction as revealed by fluorescence microscopy using Hoechst 33258 and AO-ETBR staining. The combination treatment also increased the number of cells in G0/G1 phase dramatically as compared to single drug treatment. Mitochondrial membrane potential loss (ΛΨm) as well as Caspase-3 activity was much higher in combination treatment as compared to single drug treatment. Findings of this investigation suggest that MYR and MEG combined with cisplatin is a potential clinical chemotherapeutic approach in human cervical cancer.

  18. Use of eugenol in Jundiá da Amazônia (Leiarius marmoratus: effects on sedation and evaluation hemogasometry

    Directory of Open Access Journals (Sweden)

    Claucia Aparecida Honorato

    2014-10-01

    Full Text Available This work aims to evaluate the use of eugenol as an anesthetic for jundiá da Amazônia (Leiarius marmoratus, measuring the time to anesthesia induction in different concentrações and their effects in gas exchange. The results were analyzed according to a completely randomized design (DIC with eight treatments (control, 10, 20, 40, 80, 120, 150, 200 mg L-1 of eugenol and ten repetitions. Time values of anesthetic induction and recovery, according to the level of eugenol underwent polynomial regression (p<0.05. The analysis of variance (ANOVA and averages were compared by Tukey test. Were determined the time of anesthesia and recovery. The parameters were analyzed blood glucose, pH, partial pressure of oxygen (PaO2, partial pressure of carbon dioxide (PaCO2, concentration of bicarbonate (HCO-3, sodium (Na, potassium (K, calcium (Ca and chloride (Cl. The concentrations of 40 and 80 mg.L-1 of eugenol were the ones who presented time deep anesthesia induction of 59.5 ± 17.5 sec. and 58.4 ± 18.6 sec. respectively. The concentrations above 120 mg. L-¹ presented mortality. These fish subjected to different level of eugenol did not show changes in blood oxygen pressure (PaO2 and carbon dioxide (PaCO2. The fish when subjected to concentrations above 80 mg L-1 showed an increase of bicarbonate. The plasma glucose values showed significant elevation in response to the bath with anesthetic eugenol. The concentrations of sodium, chloride, potassium and plasma protein remained constants indicating that the process of anesthesia was not long lasting enough to induce changes in the electrolyte balance. Within the conditions of this study, it can be concluded that eugenol is a suitable anesthetic for the silver. This product may be used at a concentration of 40 mg. L-1 without causing changes hemogasométrica.

  19. Recent advances in methyl eugenol and cue-lure technologies for fruit fly detection, monitoring, and control in Hawaii.

    Science.gov (United States)

    Vargas, Roger I; Shelly, Todd E; Leblanc, Luc; Piñero, Jaime C

    2010-01-01

    Worldwide, an important aspect of invasive insect pest management is more effective, safer detection and control systems. Phenyl propanoids are attractive to numerous species of Dacinae fruit flies. Methyl eugenol (ME) (4-allyl-1, 2-dimethoxybenzene-carboxylate), cue-lure (C-L) (4-(p-acetoxyphenyl)-2-butanone), and raspberry ketone (RK) (4-(p-hydroxyphenyl)-2-butanone) are powerful male-specific lures. Most evidence suggests a role of ME and C-L/RK in pheromone synthesis and mate attraction. ME and C-L/RK are used in current fruit fly programs for detection, monitoring, and control. During the Hawaii Area-Wide Pest Management Program in the interest of worker safety and convenience, liquid C-L/ME and insecticide (i.e., naled and malathion) mixtures were replaced with solid lures and insecticides. Similarly, Male Annihilation Technique (MAT) with a sprayable Specialized Pheromone and Lure Application Technology (SPLAT), in combination with ME (against Bactrocera dorsalis, oriental fruit fly) or C-L/RK (against B. cucurbitae, melon fly), and the reduced-risk insecticide, spinosad, was developed for area-wide suppression of fruit flies. The nontarget effects of ME and C-L/RK to native invertebrates were examined. Although weak attractiveness was recorded to flower-visiting insects, including bees and syrphid flies, by ME, effects to native Drosophila and other Hawaiian endemics were found to be minimal. These results suggested that the majority of previously published records, including those of endemic Drosophilidae, were actually for attraction to dead flies inside fruit fly traps. Endemic insect attraction was not an issue with C-L/RK, because B. cucurbitae were rarely found in endemic environments. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Attraction and consumption of methyl eugenol by male Bactrocera umbrosa Fabricius (Diptera: Tephritidae) promotes conspecific sexual communication and mating performance.

    Science.gov (United States)

    Wee, S L; Abdul Munir, M Z; Hee, A K W

    2018-02-01

    The Artocarpus fruit fly, Bactrocera umbrosa (Fabricius) (Diptera: Tephritidae), is an oligophagous fruit pest infesting Moraceae fruits, including jackfruit (Artocarpus heterophyllus Lamarck), a fruit commodity of high value in Malaysia. The scarcity of fundamental biological, physiological and ecological information on this pest, particularly in relation to behavioural response to phytochemical lures, which are instrumental to the success of many area-wide fruit fly control and management programmes, underpins the need for studies on this much-underrated pest. The positive response of B. umbrosa males to methyl eugenol (ME), a highly potent phytochemical lure, which attracts mainly males of many Bactrocera species, was shown to increase with increasing age. As early as 7 days after emergence (DAE), ca. 22% of males had responded to ME and over 50% by 10 DAE, despite no occurrence of matings (i.e. the males were still sexually immature). Male attraction to ME peaked from 10 to 27 DAE, which corresponded with the flies' attainment of sexual maturity. In wind-tunnel assays during the dusk courtship period, ME-fed males exhibited earlier calling activity and attracted a significantly higher percentage of virgin females compared with ME-deprived males. ME-fed males enjoyed a higher mating success than ME-deprived males at 1-day post ME feeding in semi-field assays. ME consumption also promotes aggregation behaviour in B. umbrosa males, as demonstrated in wind-tunnel and semi-field assays. We suggest that ME plays a prominent role in promoting sexual communication and enhancing mating performance of the Artocarpus fruit fly, a finding that is congruent with previous reports on the consequences of ME acquisition by other economically important Bactrocera species.

  1. Safety assessment of allylalkoxybenzene derivatives used as flavouring substances - methyl eugenol and estragole

    NARCIS (Netherlands)

    Smith, R.L.; Adams, T.B.; Doull, J.; Feron, V.J.; Goodman, J.I.; Marnett, L.J.; Portoghese, P.S.; Waddell, W.J.; Wagner, B.M.; Rogers, A.E.; Caldwell, J.; Sipes, I.G.

    2002-01-01

    This publication is the seventh in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers' Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavouring substances under conditions of

  2. Weathering and Chemical Degradation of Methyl Eugenol and Raspberry Ketone Solid Dispensers for Detection, Monitoring, and Male Annihilation of Bactrocera dorsalis and Bactrocera cucurbitae (Diptera: Tephritidae) in Hawaii.

    Science.gov (United States)

    Vargas, Roger I; Souder, Steven K; Nkomo, Eddie; Cook, Peter J; Mackey, Bruce; Stark, John D

    2015-08-01

    Solid male lure dispensers containing methyl eugenol (ME) and raspberry ketone (RK), or mixtures of the lures (ME + RK), and dimethyl dichloro-vinyl phosphate (DDVP) were evaluated in area-wide pest management bucket or Jackson traps in commercial papaya (Carica papaya L.) orchards where both oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, Bactrocera cucurbitae (Coquillett), are pests. Captures of B. dorsalis with fresh wafers in Jackson and bucket traps were significantly higher on the basis of ME concentration (Mallet ME [56%] > Mallet MR [31.2%] > Mallet MC [23.1%]). Captures of B. cucurbitae with fresh wafers in Jackson and bucket traps were not different regardless of concentration of RK (Mallet BR [20.1%] = Mallet MR [18.3%] = Mallet MC [15.9%]). Captures of B. dorsalis with fresh wafers, compared with weathered wafers, were significantly different after week 12; captures of B. cucurbitae were not significantly different after 16 wk. Chemical analyses revealed presence of RK in dispensers in constant amounts throughout the 16-wk trial. Degradation of both ME and DDVP over time was predicted with a high level of confidence by nonlinear asymptotic exponential decay curves. Results provide supportive data to deploy solid ME and RK wafers (with DDVP) in fruit fly traps for detection programs, as is the current practice with solid TML dispensers placed in Jackson traps. Wafers with ME and RK might be used in place of two separate traps for detection of both ME and RK responding fruit flies and could potentially reduce cost of materials and labor by 50%. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  3. Evaluation on antithrombotic effect of aspirin eugenol ester from the view of platelet aggregation, hemorheology, TXB2/6-keto-PGF1? and blood biochemistry in rat model

    OpenAIRE

    Ma, Ning; Liu, Xi-Wang; Yang, Ya-Jun; Shen, Dong-Shuai; Zhao, Xiao-le; Mohamed, Isam; Kong, Xiao-Jun; Li, Jian-Yong

    2016-01-01

    Background Based on the prodrug principle, aspirin and eugenol, as starting precursors, were esterified to synthesize aspirin eugenol ester (AEE). The aim of the present study was to evaluate the antithrombotic effect of AEE in an animal disease model. In order to compare the therapeutic effects of AEE and its precursors, aspirin, eugenol and a combination of aspirin and eugenol were designed at the same molar quantities as the AEE medium dose in the control group. Methods After oral administ...

  4. Comparative functional characterization of eugenol synthase from four different Ocimum species: Implications on eugenol accumulation.

    Science.gov (United States)

    Anand, Atul; Jayaramaiah, Ramesha H; Beedkar, Supriya D; Singh, Priyanka A; Joshi, Rakesh S; Mulani, Fayaj A; Dholakia, Bhushan B; Punekar, Sachin A; Gade, Wasudeo N; Thulasiram, Hirekodathakallu V; Giri, Ashok P

    2016-11-01

    Isoprenoids and phenylpropanoids are the major secondary metabolite constituents in Ocimum genus. Though enzymes from phenylpropanoid pathway have been characterized from few plants, limited information exists on how they modulate levels of secondary metabolites. Here, we performed phenylpropanoid profiling in different tissues from five Ocimum species, which revealed significant variations in secondary metabolites including eugenol, eugenol methyl ether, estragole and methyl cinnamate levels. Expression analysis of eugenol synthase (EGS) gene showed higher transcript levels especially in young leaves and inflorescence; and were positively correlated with eugenol contents. Additionally, transcript levels of coniferyl alcohol acyl transferase, a key enzyme diverting pool of substrate to phenylpropanoids, were in accordance with their abundance in respective species. In particular, eugenol methyl transferase expression positively correlated with higher levels of eugenol methyl ether in Ocimum tenuiflorum. Further, EGSs were functionally characterized from four Ocimum species varying in their eugenol contents. Kinetic and expression analyses indicated, higher enzyme turnover and transcripts levels, in species accumulating more eugenol. Moreover, biochemical and bioinformatics studies demonstrated that coniferyl acetate was the preferred substrate over coumaryl acetate when used, individually or together, in the enzyme assay. Overall, this study revealed the preliminary evidence for varied accumulation of eugenol and its abundance over chavicol in these Ocimum species. Current findings could potentially provide novel insights for metabolic modulations in medicinal and aromatic plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. In vitro Evaluation of Sheep Rumen Fermentation Pattern After Adding Different Levels of Eugenol – Fumaric acid Combinations

    OpenAIRE

    T A M Baraka; Abdl-Rahman, M. A.

    2012-01-01

    In vitro gas production technique was used to evaluate the effect of three different levels of eugenol + fumaric acid combinations on rumen fermentation. Rumen contents were collected from five rams immediately after slaughtering and used for preparation of inoculums of mixed rumen microbes that were used in generation of five treatment systems, negative control with no additives (T1), fumaric acid 0.5 mg L–1 (T2) and fumaric acid 0.5 mg L–1 in combination with three differe...

  6. In vitro Evaluation of Sheep Rumen Fermentation Pattern After Adding Different Levels of Eugenol – Fumaric acid Combinations

    Directory of Open Access Journals (Sweden)

    T A M Baraka

    2012-04-01

    Full Text Available In vitro gas production technique was used to evaluate the effect of three different levels of eugenol + fumaric acid combinations on rumen fermentation. Rumen contents were collected from five rams immediately after slaughtering and used for preparation of inoculums of mixed rumen microbes that were used in generation of five treatment systems, negative control with no additives (T1, fumaric acid 0.5 mg L–1 (T2 and fumaric acid 0.5 mg L–1 in combination with three different doses of eugenol, 100, 200 and 400 mg L–1 (T3, T4 and T5 respectively. Incubations were conducted in triplicates with gas production, pH, ammonia nitrogen (NH3-N, total and fractional volatile fatty acids (VFAs concentrations, cellulase activity, amount of substrate degraded, microbial yield (YATP, fermentation efficiency (FE and VFAs utilization index (NGGR were determined after 24 hours of incubation. The results revealed that, different levels of eugenol + fumaric acid combinations were associated with decreased pH value, NH3-N concentrations and methane production and increased valeric and isovaleric acids molar proportions. T3 and T4 were associated with increased propionates at the expence of acetates (low A/P, decreased methane production and increased FE, microbial yield (YATP and VFAs utilization. In contrast, T5 showed decreased total VFAs concentrations, cellulase activity, the amount of substrate degraded, microbial mass generated and VFAs utilization. In conclusion, the authors recommend using 200 mg L–1 eugenol + fumaric acid combination as an alternative for antibiotic feed additives to optimize rumen fermentation pattern. Further investigations are required to apply this work in vivo experiments. [Vet. World 2012; 5(2.000: 110-117

  7. Di- and tri-fluorinated analogs of methyl eugenol: attraction to and metabolism in the Oriental fruit fly, Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Jang, Eric B; Khrimian, Ashot; Siderhurst, Matthew S

    2011-06-01

    Oriental fruit fly, Bactrocera dorsalis (Hendel), males are attracted to the natural phenylpropanoid methyl eugenol (ME). They feed compulsively on ME and metabolize it to ring and side-chain hydroxylated compounds that have both pheromonal and allomonal properties. Previously, we demonstrated that mono-fluorination at the terminal carbon of the ME side-chain significantly reduced metabolic side-chain hydroxylation, while mono-fluorination of ME at position 4 of the aromatic ring blocked ring-hydroxylation but surprisingly enhanced side-chain hydroxylation. Here, we demonstrated that the introduction of fluorine atoms on both the ring and side-chain of ME blocks both positions that undergo enzymatic hydroxylation and, in particular, completely inhibits oxidative biotransformation of the allyl group. In laboratory experiments, B. dorsalis males initially were more attracted to both 1-fluoro-4,5-dimethoxy-2-(3,3-difluoro-2-propenyl)benzene (I) and 1-fluoro-4,5-dimethoxy-2-(3-fluoro-2-propenyl)benzene (II) than to ME. However, both I and II were taken up by flies at rates significantly less than that of ME. Flies fed with difluoroanalog II partially metabolized it to 5-fluoro-4-(3-fluoroprop-2-en-1-yl)-2-methoxyphenol (III), and flies fed with trifluoroanalog I produced 4-(3,3-difluoroprop-2-en-1-yl)-5-fluoro-2-methoxyphenol (V), but the rates of metabolism relative to rates of intakes were much lower compared to those of ME. Flies that consumed either the tri- or difluorinated analog showed higher post-feeding mortality than those that fed on methyl eugenol. In field trials, trifluoroanalog I was ∼90% less attractive to male B. dorsalis than ME, while difluoroanalog II was ∼50% less attractive. These results suggest that increasing fluorination can contribute to fly mortality, but the trade off with attractancy makes it unlikely that either a di or trifluorinated ME would be an improvement over ME for detection and/or eradication of this species.

  8. Cytotoxicity evaluation of ZnO-eugenol (ZOE) using different ZnO structure on human gingival fibroblast

    Science.gov (United States)

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Masudi, Sam'an Malik; Seeni, Azman; Mohamad, Dasmawati; Ann, Ling Chuo; Sirelkhatim, Amna

    2017-07-01

    Application of ZnO is widely used in many industries, such as in optoelectronic devices, automotive, textile, cosmetics, medical and dentistry. In this study, emphasis was given on ZnO-eugenol (ZOE) that has been used in dental restoration. ZOE contained 80% ZnO and 20% eugenol. ZOE exhibited selective toxicity that could kill bacteria but safe on human cells. The safety of ZOE on humans is critically important. Two types of ZnO with different morphology, namely ZnO-A and ZnO-K were used to make ZOE (ZOE-A and ZOE-K) and the cytotoxicity level on human gingival fibroblast (HGF) cell line were evaluated. Both ZnO were characterized for its morphology and structural using Field Emission Scanning Electron Microscopy (FESEM) and X-ray Diffraction (XRD), respectively. The cytotoxicity level was evaluated using CCK-8 assay where the percentage of viable cells after 72 h were observed. The result showed ZnO-A, containing mostly rod-like shape with a crystallite size of 37.5 nm, had a higher percentage of viable cells after 72 h. Sample ZnO-K, containing irregular shape morphology with bigger crystallite size of 42.2 nm, had a lower percentage of viable cells after 72 h. The HGF cell line was treated with extract dilution of ZOE-A and ZOE-K at 5, 10 and 15%, respectively. At 15% of extracts dilution, 97.3% of the HGF cells survived (for ZOE-A) while the survival percentage of ZOE-K was only 88.1%. This fact was probably due to the larger surface-to-volume ratio of ZnO-A that gave better interlocking bond in ZOE-A. This interlocking bond can prevent the ZnO and eugenol elements leaching out from the ZOE matrix thereby decrease in cytotoxicity effects on HGF.

  9. Captures in methyl eugenol and cue-lure detection traps with and without insecticides and with a Farma Tech solid lure and insecticide dispenser.

    Science.gov (United States)

    Vargas, Roger I; Burns, R E; Mau, Ronald F L; Stark, John D; Cook, Peter; Piñero, Jaime C

    2009-04-01

    Methyl eugenol (ME) and cue-lure (C-L) traps to detect tephritid flies on the U.S. mainland were tested with and without insecticides under Hawaiian weather conditions against small populations of oriental fruit fly, Bactrocera dorsalis (Hendel) and melon fly, Bactrocera cucurbitae (Coquillett), respectively. In comparative tests, standard Jackson traps with naled and the Hawaii fruit fly areawide pest management (AWPM) trap with 2,2-dichorovinyl dimethyl phosphate (DDVP) insecticidal strips outperformed traps without an insecticide. Addition of the reduced risk insecticide spinosad did not increase trap capture significantly compared with Jackson traps without an insecticide. Captures in AWPM traps with DDVP compared favorably with those for the Jackson trap with liquid naled (the Florida standard). In subsequent tests, captures with solid Farma Tech wafer dispensers with ME or C-L and DDVP placed inside Jackson and AWPM traps were equal to those for a Jackson trap with naled, currently used for detection of ME and C-L responding fruit flies in Florida. Farma Tech ME and C-L wafers with DDVP would be more convenient and safer to handle than current liquid insecticide formulations (e.g., naled) used for detection programs in Florida.

  10. Effects of Methyl Eugenol Feeding on Mating Compatibility of Asian Population of Bactrocera dorsalis (Diptera: Tephritidae) with African Population and with B. carambolae.

    Science.gov (United States)

    Haq, Ihsan Ul; Vreysen, Marc J B; Schutze, Mark; Hendrichs, Jorge; Shelly, Todd

    2016-02-01

    Males of some species included in the Bactrocera dorsalis complex are strongly attracted to methyl eugenol (ME) (1,2-dimethoxy-4-(2-propenyl) benzene), a natural compound occurring in a variety of plant species. ME feeding of males of the B. dorsalis complex is known to enhance their mating competitiveness. Within B. dorsalis, recent studies show that Asian and African populations of B. dorsalis are sexually compatible, while populations of B. dorsalis and Bactrocera carambolae are relatively incompatible. The objectives of this study were to examine whether ME feeding by males affects mating compatibility between Asian and African populations of B. dorsalis and ME feeding reduces male mating incompatibility between B. dorsalis (Asian population) and B. carambolae. The data confirmed that Asian and African populations of B. dorsalis are sexually compatible for mating and showed that ME feeding only increased the number of matings. Though ME feeding also increased the number of matings of B. dorsalis (Asian population) and B. carambolae males but the sexual incompatibility between both species was not reduced by treatment with ME. These results conform to the efforts resolving the biological species limits among B. dorsalis complex and have implications for fruit fly control programs in fields and horticultural trade. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America.

  11. Comparative sensitivity to methyl eugenol of four putative Bactrocera dorsalis complex sibling species – further evidence that they belong to one and the same species B. dorsalis

    Science.gov (United States)

    Hee, Alvin K.W.; Ooi, Yue-Shin; Wee, Suk-Ling; Tan, Keng-Hong

    2015-01-01

    Abstract Males of certain species belonging to the Bactrocera dorsalis complex are strongly attracted to, and readily feed on methyl eugenol (ME), a plant secondary compound that is found in over 480 plant species worldwide. Amongst those species is one of the world’s most severe fruit pests the Oriental fruit fly, Bactrocera dorsalis s.s., and the former taxonomic species Bactrocera invadens, Bactrocera papayae and Bactrocera philippinensis. The latter species have been recently synonymised with Bactrocera dorsalis based on their very similar morphology, mating compatibility, molecular genetics and identical sex pheromones following consumption of ME. Previous studies have shown that male fruit fly responsiveness to lures is a unique phenomenon that is dose species-specific, besides showing a close correlation to sexual maturity attainment. This led us to use ME sensitivity as a behavioural parameter to test if Bactrocera dorsalis and the three former taxonomic species had similar sensitivity towards odours of ME. Using Probit analysis, we estimated the median dose of ME required to elicit species’ positive response in 50% of each population tested (ED50). ED50 values were compared between Bactrocera dorsalis and the former species. Our results showed no significant differences between Bactrocera dorsalis s.s., and the former Bactrocera invadens, Bactrocera papayae and Bactrocera philippinensis in their response to ME. We consider that the Bactrocera males’ sensitivity to ME may be a useful behavioural parameter for species delimitation and, in addition to other integrative taxonomic tools used, provides further supportive evidence that the four taxa belong to one and the same biological species, Bactrocera dorsalis. PMID:26798265

  12. Comparative sensitivity to methyl eugenol of four putative Bactrocera dorsalis complex sibling species - further evidence that they belong to one and the same species B. dorsalis.

    Science.gov (United States)

    Hee, Alvin K W; Ooi, Yue-Shin; Wee, Suk-Ling; Tan, Keng-Hong

    2015-01-01

    Males of certain species belonging to the Bactrocera dorsalis complex are strongly attracted to, and readily feed on methyl eugenol (ME), a plant secondary compound that is found in over 480 plant species worldwide. Amongst those species is one of the world's most severe fruit pests the Oriental fruit fly, Bactrocera dorsalis s.s., and the former taxonomic species Bactrocera invadens, Bactrocera papayae and Bactrocera philippinensis. The latter species have been recently synonymised with Bactrocera dorsalis based on their very similar morphology, mating compatibility, molecular genetics and identical sex pheromones following consumption of ME. Previous studies have shown that male fruit fly responsiveness to lures is a unique phenomenon that is dose species-specific, besides showing a close correlation to sexual maturity attainment. This led us to use ME sensitivity as a behavioural parameter to test if Bactrocera dorsalis and the three former taxonomic species had similar sensitivity towards odours of ME. Using Probit analysis, we estimated the median dose of ME required to elicit species' positive response in 50% of each population tested (ED50). ED50 values were compared between Bactrocera dorsalis and the former species. Our results showed no significant differences between Bactrocera dorsalis s.s., and the former Bactrocera invadens, Bactrocera papayae and Bactrocera philippinensis in their response to ME. We consider that the Bactrocera males' sensitivity to ME may be a useful behavioural parameter for species delimitation and, in addition to other integrative taxonomic tools used, provides further supportive evidence that the four taxa belong to one and the same biological species, Bactrocera dorsalis.

  13. Combining Cue-Lure and Methyl Eugenol in Traps Significantly Decreases Catches of Most Bactrocera, Zeugodacus and Dacus Species (Diptera: Tephritidae: Dacinae) in Australia and Papua New Guinea.

    Science.gov (United States)

    Royer, Jane E; Mayer, David G

    2018-02-09

    Male fruit fly attractants, cue-lure (CL) and methyl eugenol (ME), are important in the monitoring and control of pest fruit fly species. Species respond to CL or ME but not both, and there are conflicting reports on whether combining CL (or its hydroxy analogue raspberry ketone) and ME decreases their attractiveness to different species. Fruit fly monitoring programs expend significant effort using separate CL and ME traps and avoiding lure cross-contamination, and combining the two lures in one trap would create substantial savings. To determine if combining lures has an inhibitory effect on trap catch, CL and ME wicks placed in the same Steiner trap were field tested in comparison to CL alone and ME alone in Australia and Papua New Guinea (PNG). In Australia, 24 out of 27 species trapped were significantly more attracted to CL or ME alone than the combination ME/CL lure, including the pests Bactrocera bryoniae (Tryon), B. frauenfeldi (Schiner), B. kraussi (Hardy), B. neohumeralis (Hardy), B. tryoni (Froggatt) (CL-responsive), and B. musae (Tryon) (ME-responsive). In PNG, 13 out of 16 species trapped were significantly more attracted to CL or ME alone than the ME/CL combination, including the pests B. bryoniae, B. frauenfeldi, B. neohumeralis, B. trivialis (Drew), Zeugodacus cucurbitae (Coquillett) (CL-responsive) and B. dorsalis (Hendel), B. musae, and B. umbrosa (Fabricius) (ME-responsive). This study shows that combining CL and ME in the one trap in equal parts significantly reduces catches of most species of Dacini fruit flies in Australia and PNG. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Clinical and radiographic evaluation of zinc oxide eugenol and metapex in root canal treatment of primary teeth

    Directory of Open Access Journals (Sweden)

    S Gupta

    2011-01-01

    Full Text Available Objectives: The aim of this study was to evaluate clinically and radiographically zinc oxide eugenol (ZOE and Metapex as root canal filling material in primary teeth. Materials and Methods: Forty-two necrotic primary teeth in two groups of children in the age group of 4−7 years were obturated with ZOE and Metapex and were followed up clinically and radiographically for a period of 6 months postoperatively. Results: The overall success rates of ZOE and Metapex were 85.71% and 90.48%, respectively. Conclusion: Both ZOE and Metapex gave encouraging results; however, Metapex can be used more safely whenever there is a doubt about the patient′s return for follow-up.

  15. An experimental evaluation of the anti-atherogenic potential of the plant, Piper betle, and its active constitutent, eugenol, in rats fed an atherogenic diet.

    Science.gov (United States)

    Venkadeswaran, Karuppasamy; Thomas, Philip A; Geraldine, Pitchairaj

    2016-05-01

    Hypercholesterolemia is a major risk factor for systemic atherosclerosis and subsequent cardiovascular disease. Lipoperoxidation-mediated oxidative damage is believed to contribute strongly to the progression of atherogenesis. In the current investigation, putative anti-atherogenic and antioxidative properties of an ethanolic extract of Piper betle and of its active constituent, eugenol, were sought in an experimental animal model of chronic hypercholesterolemia. Atherogenic diet-fed rats that received either Piper betle extract orally (500mg/kg b.wt) or eugenol orally (5mg/kg b.wt) for 15days (commencing 30days after the atherogenic diet had been started) exhibited the following variations in different parameters, when compared to atherogenic diet-fed rats that received only saline: (1) significantly lower mean levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol and very low density lipoprotein cholesterol in both serum and hepatic tissue samples; (2) lower mean serum levels of aspartate amino-transferase, alanine amino-transferase, alkaline phosphatase, lactate dehydrogenase and lipid-metabolizing enzymes (lipoprotein lipase, 3-hydroxy-3-methyl-glutaryl-CoA reductase; (3) significantly lower mean levels of enzymatic antioxidants (catalase, superoxide dismutase, glutathione peroxidase, glutathione-S-transferase) and non-enzymatic antioxidants (reduced glutathione, vitamin C and vitamin E) and significantly higher mean levels of malondialdehyde in haemolysate and hepatic tissue samples. Histopathological findings suggested a protective effect of the Piper betle extract and a more pronounced protective effect of eugenol on the hepatic and aortic tissues of atherogenic diet-fed (presumed atherosclerotic) rats. These results strongly suggest that the Piper betle extract and its active constituent, eugenol, exhibit anti-atherogenic effects which may be due to their anti-oxidative properties. Copyright © 2016 Elsevier Masson SAS. All rights

  16. Evaluation of antifungal activity in essential oil of the Syzygium aromaticum (L. by extraction, purification and analysis of its main component eugenol

    Directory of Open Access Journals (Sweden)

    Inder Singh Rana

    2011-12-01

    Full Text Available Antifungal properties of some essential oils have been well documented. Clove oil is reported to have strong antifungal activity against many fungal species. In this study we have evaluated antifungal potential of essential oil of Syzygium aromaticum (L. against some common fungal pathogens of plants and animals namely, Fusarium moniliforme NCIM 1100, Fusarium oxysporum MTCC 284, Aspergillus sp., Mucor sp., Trichophyton rubrum and Microsporum gypseum. All fungal species were found to be inhibited by the oil when tested through agar well diffusion method. Minimum inhibitory concentration (MIC was determined for all the species. Column chromatography was performed to separate the eugenol rich fraction from clove oil. Out of seven fractions maximum activity was obtained in column fraction II. TLC and HPLC data confirmed presence of considerable Eugenol in fraction II and clove oil. Microscopic study on effect of clove oil and column fraction II on spores of Mucor sp. and M. gypseum showed distortion and shrinkage while it was absent in other column fractions. So it can be concluded that the antifungal action of clove oil is due to its high eugenol content.

  17. Effects of eugenol on resting tension of rat atria

    Directory of Open Access Journals (Sweden)

    R.R. Olivoto

    2014-04-01

    Full Text Available In cardiac and skeletal muscle, eugenol (μM range blocks excitation-contraction coupling. In skeletal muscle, however, larger doses of eugenol (mM range induce calcium release from the sarcoplasmic reticulum. The effects of eugenol are therefore dependent on its concentration. In this study, we evaluated the effects of eugenol on the contractility of isolated, quiescent atrial trabeculae from male Wistar rats (250-300 g; n=131 and measured atrial ATP content. Eugenol (1, 3, 5, 7, and 10 mM increased resting tension in a dose-dependent manner. Ryanodine [100 µM; a specific ryanodine receptor (RyR blocker] and procaine (30 mM; a nonspecific RyR blocker did not block the increased resting tension induced by eugenol regardless of whether extracellular calcium was present. The myosin-specific inhibitor 2,3-butanedione monoxime (BDM, however, reversed the increase in resting tension induced by eugenol. In Triton-skinned atrial trabeculae, in which all membranes were solubilized, eugenol did not change resting tension, maximum force produced, or the force vs pCa relationship (pCa=-log [Ca2+]. Given that eugenol reduced ATP concentration, the increase in resting tension observed in this study may have resulted from cooperative activation of cardiac thin filaments by strongly attached cross-bridges (rigor state.

  18. Effects of eugenol on resting tension of rat atria.

    Science.gov (United States)

    Olivoto, R R; Damiani, C E N; Kassouf Silva, I; Lofrano-Alves, M S; Oliveira, M A; Fogaça, R T H

    2014-04-01

    In cardiac and skeletal muscle, eugenol (μM range) blocks excitation-contraction coupling. In skeletal muscle, however, larger doses of eugenol (mM range) induce calcium release from the sarcoplasmic reticulum. The effects of eugenol are therefore dependent on its concentration. In this study, we evaluated the effects of eugenol on the contractility of isolated, quiescent atrial trabeculae from male Wistar rats (250-300 g; n=131) and measured atrial ATP content. Eugenol (1, 3, 5, 7, and 10 mM) increased resting tension in a dose-dependent manner. Ryanodine [100 µM; a specific ryanodine receptor (RyR) blocker] and procaine (30 mM; a nonspecific RyR blocker) did not block the increased resting tension induced by eugenol regardless of whether extracellular calcium was present. The myosin-specific inhibitor 2,3-butanedione monoxime (BDM), however, reversed the increase in resting tension induced by eugenol. In Triton-skinned atrial trabeculae, in which all membranes were solubilized, eugenol did not change resting tension, maximum force produced, or the force vs pCa relationship (pCa=-log [Ca2+]). Given that eugenol reduced ATP concentration, the increase in resting tension observed in this study may have resulted from cooperative activation of cardiac thin filaments by strongly attached cross-bridges (rigor state).

  19. Eugenol nanocapsule for enhanced therapeutic activity against periodontal infections.

    Science.gov (United States)

    Pramod, Kannissery; Aji Alex, M R; Singh, Manisha; Dang, Shweta; Ansari, Shahid H; Ali, Javed

    2016-01-01

    Eugenol is a godsend to dental care due to its analgesic, local anesthetic, and anti-inflammatory and antibacterial effects. The aim of the present research work was to prepare, characterize and evaluate eugenol-loaded nanocapsules (NCs) against periodontal infections. Eugenol-loaded polycaprolactone (PCL) NCs were prepared by solvent displacement method. The nanometric size of the prepared NCs was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The in vitro drug release was found to follow a biphasic pattern and followed Michaelis-Menten like model. The percentage cell viability values near to 100 in the cell viability assay indicated that the NCs are not cytotoxic. In the in vivo studies, the eugenol NC group displayed significant difference in the continuity of epithelium of the interdental papilla in comparison to the untreated, pure eugenol and placebo groups. The in vivo performance of the eugenol-loaded NCs using ligature-induced periodontitis model in rats indicated that eugenol-loaded NCs could prevent septal bone resorption in periodontitis. On the basis of our research findings it could be concluded that eugenol-loaded PCL NCs could serve as a novel colloidal drug delivery system for enhanced therapeutic activity of eugenol in the treatment of periodontal infections.

  20. Eugenol Toxicity in Human Dental Pulp Fibroblasts of Primary Teeth.

    Science.gov (United States)

    Escobar-García, Maria; Rodríguez-Contreras, Karen; Ruiz-Rodríguez, Socorro; Pierdant-Pérez, Mauricio; Cerda-Cristerna, Bernardino; Pozos-Guillén, Amaury

    2016-01-01

    The aim of the study was to determine the eugenol concentrations at which toxicity occurs in human dental pulp fibroblasts of primary teeth. Samples of primary dental pulp tissue were taken. Tissue samples were seeded by means of explant technique and used in the 4(th)-5th pass. Single Cell Gel Electrophoresis (Comet), phenazine MeThoSulfate (MTS), LIVE/DEAD Cell Viability/Toxicity and trypan blue assays for evaluation of the cytotoxicity of increasing concentrations of eugenol (0.06 to 810 μM) were performed. The results of toxicity tests showed toxic effects on dental pulp fibroblasts, even at very low concentrations of eugenol (0.06 μM). Very low concentrations of eugenol produce high toxicity in human dental pulp fibroblasts. All of the concentrations of eugenol that we evaluated produced high toxicity in human dental pulp fibroblasts of primary teeth.

  1. Study the Photochemical of Fragrance Allergens of Eugenol Derivatives in Commercial Essential Oils and Containing Clove Drugs Using Gas Chromatography and Liquid Chromatography-Mass Spectrometry

    OpenAIRE

    Lai-Hao Wang; Yu-Yo Lin; Jhih-Cheng Chen

    2016-01-01

    Screening the content of fragrance allergens (citral, geraniol, trans-cinnamaldehyde, hydroxycitronellal, cinnamyl alcohol, eugenol, dihydrocoumarin, methyl eugenol, iso-eugenol, coumarin, eugeyl acetate, α-hexylcinnamadehyde) in commercial essential oils and containing essential oil drugs has been using a gas chromatographic method. We selected 7 essential oils based on eugenol Derivatives for more content and can be used to process photo-irradiation. Comparision with results of photochemica...

  2. Evaluation on antithrombotic effect of aspirin eugenol ester from the view of platelet aggregation, hemorheology, TXB2/6-keto-PGF1α and blood biochemistry in rat model.

    Science.gov (United States)

    Ma, Ning; Liu, Xi-Wang; Yang, Ya-Jun; Shen, Dong-Shuai; Zhao, Xiao-Le; Mohamed, Isam; Kong, Xiao-Jun; Li, Jian-Yong

    2016-06-14

    Based on the prodrug principle, aspirin and eugenol, as starting precursors, were esterified to synthesize aspirin eugenol ester (AEE). The aim of the present study was to evaluate the antithrombotic effect of AEE in an animal disease model. In order to compare the therapeutic effects of AEE and its precursors, aspirin, eugenol and a combination of aspirin and eugenol were designed at the same molar quantities as the AEE medium dose in the control group. After oral administration of AEE (dosed at 18, 36 and 72 mg/kg) for seven days, rats were treated with k-carrageenan to induce tail thrombosis. Following the same method, aspirin (20 mg/kg), eugenol (18 mg/kg) and 0.5 % CMC-Na (30 mg/kg) were administered as control drug. Different drug effects on platelet aggregation, hemorheology, TXB2/6-keto-PGF1α ratio and blood biochemistry were studied. AEE significantly inhibited ADP and AA-induced platelet aggregation in vivo. AEE also significantly reduced blood and plasma viscosity. Moreover, AEE down-regulated TXB2 and up-regulated 6-keto-PGF1α, normalizing the TXB2/6-keto-PGF1α ratio and blood biochemical profile. In comparison with aspirin and eugenol, AEE produced more positive therapeutic effects than its precursors under the same molar quantity. It may be concluded that AEE was a good candidate for new antithrombotic and antiplatelet medicine. Additionally, this study may help to understand how AEE works on antithrombosis in different ways.

  3. Consumption and metabolism of 1,2-dimethoxy-4-(3-fluoro-2-propenyl)benzene, a fluorine analog of methyl eugenol, in the oriental fruit fly Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Khrimian, Ashot; Jang, Eric B; Nagata, Janice; Carvalho, Lori

    2006-07-01

    Methyl eugenol (ME) is a natural phenylpropanoid highly attractive to oriental fruit fly Bactrocera dorsalis (Hendel) males. The flies eagerly feed on ME and produce hydroxylated metabolites with both pheromonal and allomonal functions. Side-chain metabolic activation of ME has long been recognized as a primary reason for hepatocarcinogenicity of this compound on rodents. In an attempt to develop a safer alternative to ME for fruit fly management, we developed a fluorine analog 1,2-dimethoxy-4-(3-fluoro-2-propenyl)benzene (I), which, in earlier field tests, was as active to the oriental fruit fly as ME. Now we report that B. dorsalis males are not only attracted to, but also eagerly consume (up to approximately 1 mg/insect) compound I, thus recognizing this fluorinated benzene as a close kin of the natural ME. The flies metabolized the fluorine analog I in a similar fashion producing mostly two hydroxylated products, 2-(3-fluoro-2-propenyl)-4,5-dimethoxyphenol (II) and (E)-coniferyl alcohol (III), which they stored in rectal glands. However, the introduction of the fluorine atom at the terminal carbon atom of the double bond favors the ring hydroxylation over a side-chain metabolic oxidation pathway, by which coniferyl alcohol is produced. It also appears that fluorination overall impedes the metabolism: at high feed rate (10 mul per 10 males), the flies consumed in total more fluorine analog I than ME but were unable to metabolize it as efficiently as ME.

  4. Anthelmintic activity of essential oil of Ocimum gratissimum Linn. and eugenol against Haemonchus contortus

    National Research Council Canada - National Science Library

    Pessoa, L.M; Morais, S.M; Bevilaqua, C.M.L; Luciano, J.H.S

    2002-01-01

    The ovicidal activity of the essential oil of Ocimum gratissimum Linn. (Labideae) and its main component eugenol was evaluated against Haemonchus contortus, gastrointestinal parasite of small ruminants...

  5. Genotoxic evaluation of aspirin eugenol ester using the Ames test and the mouse bone marrow micronucleus assay.

    Science.gov (United States)

    Li, Jianyong; Kong, Xiaojun; Li, Xiwang; Yang, Yajun; Zhang, Jiyu

    2013-12-01

    Aspirin eugenol ester (AEE) is a promising drug candidate for treatment of inflammation, pain and fever and prevention of cardiovascular diseases with less side effects and it is important to characterize its genotoxicity. In this study, the genotoxicity of AEE was assessed with two standard genotoxicity assays of the Salmonella typhimurium mutagenicity assay (Ames test) and the mouse bone marrow micronucleus assay. In the Ames test, Salmonella strains TA97, TA98, TA100, TA102 and TA1535 were treated with or without the metabolic activation with a S9 fraction from Acroclor-induced rat liver. The doses of AEE were 5 mg/plate, 2.5 mg/plate, 1.25 mg/plate, 0.625 mg/plate and 0.3125 mg/plate, respectively. In the above tested strains, mutagenicity with or without the S-9 mixture was not detected. In the mammalian erythrocyte micronucleus assay, fifty mice were divided into five groups evenly and the AEE dose at 5000 mg/kg, 2500 mg/kg and 1250 mg/kg and the cyclophosphamide dose at 40 mg/kg as a positive control, the 0.5% of CMC-Na as negative control were administered. The results showed that AEE did not induce any significant increase in micronucleated erythrocytes after 24 h (p<0.01). Our results suggested that AEE was non-genotoxic in vivo or in vitro. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Eugenol for anesthesia of African clawed frogs (Xenopus laevis).

    Science.gov (United States)

    Guénette, Sarah A; Hélie, Pierre; Beaudry, Francis; Vachon, Pascal

    2007-05-01

    To determine the level of anesthesia attained in Xenopus laevis frogs with eugenol at different doses and by different routes of administration. Prospective experimental trial. Sixty X. laevis nonbreeding female frogs weighing between 90 and 140 g. Three different routes of administration were tested - subcutaneous injections into the dorsal lymph sacs, topical administration using a gauze patch, and immersion in a bath containing eugenol. Following the determination of the best route of administration, the acetic acid test, the withdrawal reflex, righting reflex, heart rate, and respiratory frequency were used to evaluate central nervous system depression following eugenol bath administration. In an additional group, the response to a surgical incision of the abdominal wall was evaluated. The pharmacokinetics of eugenol were determined following bath immersion administration, and pharmacokinetic parameters were calculated following blood concentration determination by tandem liquid chromatography/mass spectrometry analyses. It was not possible to induce anethesia with subcutaneous and patch administration, independent of the eugenol dose administered. The immersion bath was the only efficacious route for anesthesia inducing surgical anesthesia for at least 30 minutes with postoperative analgesia. Histopathology of selected tissues (heart, lung, liver, kidneys, eyes) showed no evidence of lesions 24 hours following bath immersion. The elimination half-life (T(1/2)) was 4 hours. When administered as a single-bath immersion (dose 350 mg L(-1)) for 15 minutes, eugenol may serve as an effective anesthetic in X. laevis frogs for short surgical procedures.

  7. Reaksi Asetilasi Eugenol Dan Oksidasi Metil ISO Eugenol

    OpenAIRE

    Rumondang Bulan

    2004-01-01

    kimia-rumondang Minyak daun cengkeh dihasilkan dari daun-daun cengkeh yang telah jatuh dengan destilasi uap. Disamping mengandung dua komponen utama yaitu eugenol dan karyofillen, Oleh RUMONDANG BULAN

  8. Evaluation of Methyl-Binding Domain Based Enrichment Approaches Revisited.

    Directory of Open Access Journals (Sweden)

    Karolina A Aberg

    Full Text Available Methyl-binding domain (MBD enrichment followed by deep sequencing (MBD-seq, is a robust and cost efficient approach for methylome-wide association studies (MWAS. MBD-seq has been demonstrated to be capable of identifying differentially methylated regions, detecting previously reported robust associations and producing findings that replicate with other technologies such as targeted pyrosequencing of bisulfite converted DNA. There are several kits commercially available that can be used for MBD enrichment. Our previous work has involved MethylMiner (Life Technologies, Foster City, CA, USA that we chose after careful investigation of its properties. However, in a recent evaluation of five commercially available MBD-enrichment kits the performance of the MethylMiner was deemed poor. Given our positive experience with MethylMiner, we were surprised by this report. In an attempt to reproduce these findings we here have performed a direct comparison of MethylMiner with MethylCap (Diagenode Inc, Denville, NJ, USA, the best performing kit in that study. We find that both MethylMiner and MethylCap are two well performing MBD-enrichment kits. However, MethylMiner shows somewhat better enrichment efficiency and lower levels of background "noise". In addition, for the purpose of MWAS where we want to investigate the majority of CpGs, we find MethylMiner to be superior as it allows tailoring the enrichment to the regions where most CpGs are located. Using targeted bisulfite sequencing we confirmed that sites where methylation was detected by either MethylMiner or by MethylCap indeed were methylated.

  9. An in vitro evaluation of effect of eugenol exposure time on the shear bond strength of two-step and one-step self-etching adhesives to dentin

    Science.gov (United States)

    Nasreen, Farhat; Guptha, Anila Bandlapalli Sreenivasa; Srinivasan, Raghu; Chandrappa, Mahesh Martur; Bhandary, Shreetha; Junjanna, Pramod

    2014-01-01

    Objectives: To evaluate the effect of the eugenol exposure time of an eugenol-based provisional restorative material on the shear bond strength of two-step and one-step self-etching adhesives to dentin, at three different time intervals of 24 h, 7 days, and 14 days. Materials and Methods: Forty extracted human posterior teeth were sectioned mesiodistally to obtain two halves and the resulting 80 halves were randomly assigned into four groups of 20 specimens each (Group-I, -II, -III, and -IV). Cavities of specified dimensions were prepared to expose dentin surface. In Group-I, temporarization was carried out with noneugenol cement (Orafil-G) for 24 h (control group). In Group-II, -III, and -IV, temporarization was carried out with eugenol cement (intermediate restorative material (IRM)) for 24 h, 7 days, and 14 days, respectively. Each group was further divided into two subgroups of 10 teeth each for two-step (Adper SE Plus) and one-step (Adper Easy One) self-etch adhesive systems, respectively. A plastic tube loaded with microhybrid composite resin (Filtek Z-350, 3M) was placed over the dentin surface and light cured. The specimens were subjected to shear stress in universal testing machine. Results: Group-II yielded low shear bond strength values compared with Group-III, -IV, and Group-I, which was statistically significant. Conclusions: The prior use of eugenol containing temporary restorative material reduced the bond strength of self-etch adhesive systems at 24-h period. No reduction in bond strength at 7 or 14 days exposure was observed with either two-step or one-step self-etch adhesive. PMID:24944455

  10. An in vitro evaluation of effect of eugenol exposure time on the shear bond strength of two-step and one-step self-etching adhesives to dentin.

    Science.gov (United States)

    Nasreen, Farhat; Guptha, Anila Bandlapalli Sreenivasa; Srinivasan, Raghu; Chandrappa, Mahesh Martur; Bhandary, Shreetha; Junjanna, Pramod

    2014-05-01

    To evaluate the effect of the eugenol exposure time of an eugenol-based provisional restorative material on the shear bond strength of two-step and one-step self-etching adhesives to dentin, at three different time intervals of 24 h, 7 days, and 14 days. Forty extracted human posterior teeth were sectioned mesiodistally to obtain two halves and the resulting 80 halves were randomly assigned into four groups of 20 specimens each (Group-I, -II, -III, and -IV). Cavities of specified dimensions were prepared to expose dentin surface. In Group-I, temporarization was carried out with noneugenol cement (Orafil-G) for 24 h (control group). In Group-II, -III, and -IV, temporarization was carried out with eugenol cement (intermediate restorative material (IRM)) for 24 h, 7 days, and 14 days, respectively. Each group was further divided into two subgroups of 10 teeth each for two-step (Adper SE Plus) and one-step (Adper Easy One) self-etch adhesive systems, respectively. A plastic tube loaded with microhybrid composite resin (Filtek Z-350, 3M) was placed over the dentin surface and light cured. The specimens were subjected to shear stress in universal testing machine. Group-II yielded low shear bond strength values compared with Group-III, -IV, and Group-I, which was statistically significant. The prior use of eugenol containing temporary restorative material reduced the bond strength of self-etch adhesive systems at 24-h period. No reduction in bond strength at 7 or 14 days exposure was observed with either two-step or one-step self-etch adhesive.

  11. Antioxidant activity and kinetics studies of eugenol and 6-bromoeugenol.

    Science.gov (United States)

    Mahboub, Radia; Memmou, Faiza

    2015-01-01

    In this work, we report the antioxidant and free radical scavenging activity of 6-bromoeugenol and eugenol. EC50, the concentration providing 50% inhibition, is calculated and the antioxidant activity index (AAI) is evaluated. The antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging method. EC50 values of 6-bromoeugenol, ascorbic acid and eugenol were 34.270 μg/mL, 54.888 μg/mL and 130.485 μg/mL, respectively. 6-Bromoeugenol showed higher AAI value (1.122) followed by ascorbic acid (0.700), then by eugenol (0.295). We also investigate the kinetics of DPPH radical scavenging activity of our products to determine the useful parameter TEC50 to evaluate their antiradical efficiency (ARE). Our results have shown high ARE. This study has provided the following ARE ( × 10(-3)) order for the tested antioxidants: ascorbic acid (70.119)>6-bromoeugenol (34.842) > eugenol (21.313). Finally, we classify ascorbic acid and eugenol as fast kinetics reaction (TEC50 8.82 and 11.38 min, respectively) and 6-bromoeugenol as medium kinetics reaction (TEC50 39.24 min).

  12. Anti-inflammatory and antinociceptive activities A of eugenol essential oil in experimental animal models

    Directory of Open Access Journals (Sweden)

    Apparecido N. Daniel

    Full Text Available Eugenia caryophyllata, popular name "clove", is grown naturally in Indonesia and cultivated in many parts of the world, including Brazil. Clove is used in cooking, food processing, pharmacy; perfumery, cosmetics and the clove oil (eugenol have been used in folk medicine for manifold conditions include use in dental care, as an antiseptic and analgesic. The objective of this study was evaluated the anti-inflammatory and antinociceptive activity of eugenol used for dentistry purposes following oral administration in animal models in vivo. The anti-inflammatory activity of eugenol was evaluated by inflammatory exudates volume and leukocytes migration in carrageenan-induced pleurisy and carrageenan-induced paw edema tests in rats. The antinociceptive activity was evaluated using the acetic acid-induced writhing and hot-plate tests in mice. Eugenol (200 and 400 mg/kg reduced the volume of pleural exudates without changing the total blood leukocyte counts. At dose of 200 mg/kg, eugenol significantly inhibited carrageenan-induced edema, 2-4 h after injection of the flogistic agent. In the hot-plate test, eugenol administration (100 mg/kg showed unremarkable activity against the time-to-discomfort reaction, recorded as response latency, which is blocked by meperidine. Eugenol at doses of 50, 75 and 100 mg/kg had a significant antinociceptive effect in the test of acetic-acid-induced abdominal writhing, compared to the control animals. The data suggest that eugenol possesses anti-inflammatory and peripheral antinociceptive activities.

  13. Eugenol as an anesthetic for juvenile common snook

    Directory of Open Access Journals (Sweden)

    Jurandir Joaquim Bernardes Júnior

    2013-08-01

    Full Text Available The objective of this work was to evaluate the efficacy of eugenol as an anesthetic for juvenile common snook, and to determine the minimum effective concentration for use in handling procedures. In the first trial, juvenile common snook were subjected to immersion baths at 25, 50, 75, 100, 125, and 150 mg L-1 eugenol concentrations, after which induction and recovery times were evaluated. In the second experiment, the lethal exposure time (LT50 at 75 mg L-1 was estimated. Minimum effective eugenol concentration was 50 mg L-1, andthe stage of deep anesthesia and recovery were, respectively, reached at 126.3 and 208.8 s. At 75 mg L-1, LT50 was 1,314 s, and induction time and recovery were also satisfactory; however, fish cannot tolerate over 229 s exposure.

  14. Effect of 4-Allyl-1-hydroxy-2-methoxybenzene (Eugenol) on Inflammatory and Apoptosis Processes in Dental Pulp Fibroblasts.

    Science.gov (United States)

    Martínez-Herrera, Andrea; Pozos-Guillén, Amaury; Ruiz-Rodríguez, Socorro; Garrocho-Rangel, Arturo; Vértiz-Hernández, Antonio; Escobar-García, Diana María

    2016-01-01

    Eugenol (mixed with zinc oxide powder) is widely used as direct capping material during pulp therapy in primary teeth. The aim of the present study was to evaluate the effect of eugenol on diverse genes involved in inflammatory and cell apoptosis processes. The regulatory effect of eugenol on the expression of inflammation and apoptotic genes was evaluated in dental pulp fibroblasts from extracted third molars, cultured under concentration of eugenol of 13 μM. Eugenol allowed the expression of inflammatory and apoptotic genes when compared with positive and negative controls. Eugenol is a proinflammatory agent when it is in direct contact with healthy tissues and behaves as an anti-inflammatory agent in tissues undergoing inflammatory/apoptotic processes, as in cases of pulp inflammation in primary teeth. These findings are relevant for dentistry, when considering the application of safer pulp treatments to grossly carious children's teeth.

  15. No induction of antimicrobial resistance in Staphylococcus aureus and Listeria monocytogenes during continuous exposure to eugenol and citral.

    Science.gov (United States)

    Apolónio, Joana; Faleiro, Maria L; Miguel, Maria G; Neto, Luís

    2014-05-01

    The aim of this study was to evaluate the adaptation response of Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and Listeria monocytogenes to the essential oil (EO), eugenol, and citral. The minimum inhibitory concentration of eugenol and citral was determined by agar dilution and microdilution. Adaptation to eugenol and citral was done by sequential exposure of the pathogens to increasing concentrations of the essential oils. The M2-A9 standard was used to determine the antibiotic susceptibility. The effect of eugenol and citral on the adherence ability was evaluated by the crystal violet assay. The impact of adaptation to eugenol on virulence was estimated using the Galleria mellonella model. No development of resistance to the components and antibiotics was observed in the adapted cells of S. aureus, MRSA, and L. monocytogenes. Eugenol and citral at subinhibitory concentration reduced the bacterial adherence. Adaptation to subinhibitory concentration of eugenol affected the virulence potential of S. aureus, MRSA, and L. monocytogenes. Eugenol and citral do not pose a risk of resistance development in a continuous mode of use. These EO components showed a high efficacy as antistaphylococcal and antilisterial biofilm agents. Adaptation at subinhibitory concentration of eugenol protected the larvae against listerial and staphylococcal infection. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Eugenol: a phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms.

    Science.gov (United States)

    Yadav, Mukesh Kumar; Chae, Sung-Won; Im, Gi Jung; Chung, Jae-Woo; Song, Jae-Jun

    2015-01-01

    Inhibition and eradication of Staphylococcus aureus biofilms with conventional antibiotic is difficult, and the treatment is further complicated by the rise of antibiotic resistance among staphylococci. Consequently, there is a need for novel antimicrobials that can treat biofilm-related infections and decrease antibiotics burden. Natural compounds such as eugenol with anti-microbial properties are attractive agents that could reduce the use of conventional antibiotics. In this study we evaluated the effect of eugenol on MRSA and MSSA biofilms in vitro and bacterial colonization in vivo. Effect of eugenol on in vitro biofilm and in vivo colonization were studied using microtiter plate assay and otitis media-rat model respectively. The architecture of in vitro biofilms and in vivo colonization of bacteria was viewed with SEM. Real-time RT-PCR was used to study gene expression. Check board method was used to study the synergistic effects of eugenol and carvacrol on established biofilms. Eugenol significantly inhibited biofilms growth of MRSA and MSSA in vitro in a concentration-dependent manner. Eugenol at MIC or 2×MIC effectively eradicated the pre-established biofilms of MRSA and MSSA clinical strains. In vivo, sub-MIC of eugenol significantly decreased 88% S. aureus colonization in rat middle ear. Eugenol was observed to damage the cell-membrane and cause a leakage of the cell contents. At sub-inhibitory concentration, it decreases the expression of biofilm-and enterotoxin-related genes. Eugenol showed a synergistic effect with carvacrol on the eradication of pre-established biofilms. This study demonstrated that eugenol exhibits notable activity against MRSA and MSSA clinical strains biofilms. Eugenol inhibited biofilm formation, disrupted the cell-to-cell connections, detached the existing biofilms, and killed the bacteria in biofilms of both MRSA and MSSA with equal effectiveness. Therefore, eugenol may be used to control or eradicate S. aureus biofilm

  17. Anthelmintic activity of essential oil of Ocimum gratissimum Linn. and eugenol against Haemonchus contortus.

    Science.gov (United States)

    Pessoa, L M; Morais, S M; Bevilaqua, C M L; Luciano, J H S

    2002-10-16

    The ovicidal activity of the essential oil of Ocimum gratissimum Linn. (Labideae) and its main component eugenol was evaluated against Haemonchus contortus, gastrointestinal parasite of small ruminants. The oil and eugenol were diluted in Tween 20 (0.5%) at five different concentrations. In the egg hatch test, H. contortus eggs were obtained from feces of goats experimentally infected. At 0.50% concentration, the essential oil and eugenol showed a maximum eclodibility inhibition. These results suggest a possible utilization of the essential oil of O. gratissimum as an aid to the control of gastrointestinal helmintosis of small ruminants.

  18. Eugenol derivatives as potential anti-oxidants: is phenolic hydroxyl necessary to obtain an effect?

    Science.gov (United States)

    d' Avila Farias, Marília; Oliveira, Pathise Souto; Dutra, Filipe S Pereira; Fernandes, Thiely Jacobsen; de Pereira, Claudio M P; de Oliveira, Simone Quintana; Stefanello, Francieli Moro; Lencina, Claiton Leonetti; Barschak, Alethéa Gatto

    2014-05-01

    Eugenol, obtained from clove oil (Eugenia caryophyllata), possess several biological activities. It is anti-inflammatory, analgesic, anaesthesic, antipyretic, antiplatelet, anti-anaphylactic, anticonvulsant, anti-oxidant, antibacterial, antidepressant, antifungal and antiviral. The anti-oxidant activity of eugenol have already been proven. From this perspective testing, a series of planned structural derivatives of eugenol were screened to perform structural optimization and consequent increase of the potency of these biological activities. In an attempt to increase structural variability, 16 compounds were synthesized by acylation and alkylation of the phenolic hydroxyl group. Anti-oxidant activity capacity was based on the capture of DPPH radical (2,2-diphenyl-1-picryl-hydrazyl), ABTS radical 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), measure of TBARS (thiobarbituric acid-reactive species), total sulfhydryl and carbonyl content (eugenol derivatives final concentrations range from 50 to 200 μm). Four derivatives presented an efficient concentration to decrease 50% of the DPPH radical (EC50 ) Eugenol derivatives presenting alkyl or aryl (alkylic or arylic) groups substituting hydroxyl 1 of eugenol were effective in reducing lipid peroxidation, protein oxidative damage by carbonyl formation and increase total thiol content in cerebral cortex homogenates. In liver, the eugenol derivatives evaluated had no effect. Our results suggest that these molecules are promising anti-oxidants agents. © 2013 Royal Pharmaceutical Society.

  19. Antifungal Activity of New Eugenol-Benzoxazole Hybrids against Candida spp.

    Directory of Open Access Journals (Sweden)

    Larissa Incerti Santos de Carvalho

    2017-01-01

    Full Text Available Eugenol is a natural allylphenol responsible for a wide range of biological activities, especially antimicrobial. Benzoxazoles are heterocycles with recognized antimicrobial activities. This paper describes the design, synthesis, and the biological results for benzoxazole type derivatives of eugenol as antifungal agents. The products were obtained in good yields by a four-step synthetic sequence involving aromatic nitration, nitroreduction, amide formation, and cycle condensation. They were evaluated against species of Candida spp. in microdilution assays, and four products (5a, 5b′, 5c, and 5d′ were about five times more active than eugenol against C. albicans and C. glabrata. Two of them (5b′ and 5d′ showed good activity against C. krusei, a species which is naturally resistant to fluconazole. Furthermore, the active products were more selective than eugenol against human blood cells, showing that they are interesting substances for further optimization.

  20. Potential Dual Role of Eugenol in Inhibiting Advanced Glycation End Products in Diabetes: Proteomic and Mechanistic Insights.

    Science.gov (United States)

    Singh, Priyanka; Jayaramaiah, Ramesha H; Agawane, Sachin B; Vannuruswamy, Garikapati; Korwar, Arvind M; Anand, Atul; Dhaygude, Vitthal S; Shaikh, Mahemud L; Joshi, Rakesh S; Boppana, Ramanamurthy; Kulkarni, Mahesh J; Thulasiram, Hirekodathakallu V; Giri, Ashok P

    2016-01-07

    Medicinally important genus Ocimum harbors a vast pool of chemically diverse metabolites. Current study aims at identifying anti-diabetic candidate compounds from Ocimum species. Major metabolites in O. kilimandscharicum, O. tenuiflorum, O. gratissimum were purified, characterized and evaluated for anti-glycation activity. In vitro inhibition of advanced glycation end products (AGEs) by eugenol was found to be highest. Preliminary biophysical analysis and blind docking studies to understand eugenol-albumin interaction indicated eugenol to possess strong binding affinity for surface exposed lysines. However, binding of eugenol to bovine serum albumin (BSA) did not result in significant change in secondary structure of protein. In vivo diabetic mice model studies with eugenol showed reduction in blood glucose levels by 38% likely due to inhibition of α-glucosidase while insulin and glycated hemoglobin levels remain unchanged. Western blotting using anti-AGE antibody and mass spectrometry detected notably fewer AGE modified peptides upon eugenol treatment both in vivo and in vitro. Histopathological examination revealed comparatively lesser lesions in eugenol-treated mice. Thus, we propose eugenol has dual mode of action in combating diabetes; it lowers blood glucose by inhibiting α-glucosidase and prevents AGE formation by binding to ε-amine group on lysine, protecting it from glycation, offering potential use in diabetic management.

  1. Specialized (iso)eugenol-4-O-methyltransferases (s-IEMTs) and methods of making and using the same

    Science.gov (United States)

    Liu, Chang-Jun; Cai, Yuanheng

    2017-01-31

    Specialized (iso)eugenol 4-O-methyltransferase (s-IEMT) enzymes having increased capacity for methylation of monolignols are disclosed. The s-IEMTs have unique activity favoring methylation of coniferyl alcohol versus sinapyl alcohol. Various s-IEMTs methylate ferulic acid. Means for producing the various s-IEMTs are provided. The s-IEMTs are useful for modification of lignin content and production of aromatic compounds.

  2. Pharmacokinetics and anesthetic activity of eugenol in male Sprague-Dawley rats.

    Science.gov (United States)

    Guenette, S A; Beaudry, F; Marier, J F; Vachon, P

    2006-08-01

    Eugenol, the principle chemical constituent of clove oil, has recently been evaluated for its anesthetic and analgesic properties in fish and amphibians. The objective of this study was to determine the pharmacokinetic (PK) and anesthetic activity of eugenol in rats. Male Sprague-Dawley rats received single i.v. doses of eugenol (0, 5, 10, 20, 40 and 60 mg/kg) and anesthetic level was evaluated with the withdrawal reflex. For the 20 mg/kg dose level, blood and urinary samples were collected over 1 h for the PK assessment. Plasma and blood concentrations of eugenol, as well as metabolite identification in urine, were determined using a novel dansyl chloride derivatization method with liquid chromatography mass spectrometry (LC/MS/MS). PK parameters were calculated using noncompartmental methods. Eugenol-induced loss of consciousness in a dose-dependent manner, with mean (+/-SEM) recovery in reflex time of 167 +/- 42 sec observed at the highest dose level. Mean systemic clearance (Cl) in plasma and blood were 157 and 204 mL/min/kg, respectively. Glucuronide and sulfate conjugates were identified in urine. Overall, eugenol produced a reversible, dose-dependent anesthesia in male Sprague-Dawley rats.

  3. Eugenol and Its Role in Chronic Diseases.

    Science.gov (United States)

    Fujisawa, S; Murakami, Y

    2016-01-01

    The active components in cloves are eugenol and isoeugenol. Eugenol has recently become a focus of interest because of its potential role in alleviating and preventing chronic diseases such as cancer, inflammatory reactions, and other conditions. The radical-scavenging and anti-inflammatory activities of eugenol have been shown to modulate chronic diseases in vitro and in vivo, but in humans, the therapeutic use of eugenol still remains to be explored. Based on a review of the recent literature, the antioxidant, anti-proliferative, and anti-inflammatory activities of eugenol and its related compounds are discussed in relation to experimentally determined antioxidant activity (stoichiometric factor n and inhibition rate constant) and theoretical parameters [phenolic O-H bond dissociation enthalpy (BDE), ionization potential (IP according to Koopman's theorem), and electrophilicity (ω)], calculated using a density functional theory method. Dimers of eugenol and its related compounds showed large antioxidant activities and high ω values and also exerted efficient anti-inflammatory activities. Eugenol appears to possess multiple antioxidant activities (dimerization, recycling, and chelating effect) in one molecule, thus having the potential to alleviate and prevent chronic diseases.

  4. Eugenol Reduces the Expression of Virulence-Related Exoproteins in Staphylococcus aureus▿

    Science.gov (United States)

    Qiu, Jiazhang; Feng, Haihua; Lu, Jing; Xiang, Hua; Wang, Dacheng; Dong, Jing; Wang, Jianfeng; Wang, Xiaoliang; Liu, Juxiong; Deng, Xuming

    2010-01-01

    Eugenol, an essential oil component in plants, has been demonstrated to possess activity against both Gram-positive and Gram-negative bacteria. This study examined the influence that subinhibitory concentrations of eugenol may have on the expression of the major exotoxins produced by Staphylococcus aureus. The results from a tumor necrosis factor (TNF) release assay and a hemolysin assay indicated that S. aureus cultured with graded subinhibitory concentrations of eugenol (16 to 128 μg/ml) dose dependently decreased the TNF-inducing and hemolytic activities of culture supernatants. Western blot analysis showed that eugenol significantly reduced the production of staphylococcal enterotoxin A (SEA), SEB, and toxic shock syndrome toxin 1 (the key exotoxins to induce TNF release), as well as the expression of α-hemolysin (the major hemolysin to cause hemolysis). In addition, this suppression was also evaluated at the transcriptional level via real-time reverse transcription (RT)-PCR analysis. The transcriptional analysis indicated that 128 μg/ml of eugenol remarkably repressed the transcription of the S. aureus sea, seb, tst, and hla genes. According to these results, eugenol has the potential to be rationally applied on food products as a novel food antimicrobial agent both to inhibit the growth of bacteria and to suppress the production of exotoxins by S. aureus. PMID:20639367

  5. Anti-inflammatory effects of eugenol nanoemulsion as a topical delivery system.

    Science.gov (United States)

    Esmaeili, Fariba; Rajabnejhad, Saeid; Partoazar, Ali Reza; Mehr, Shahram Ejtemaei; Faridi-Majidi, Reza; Sahebgharani, Mousa; Syedmoradi, Leila; Rajabnejhad, Mohammad Reza; Amani, Amir

    2016-11-01

    Eugenol is the main constituent of clove oil with anti-inflammatory properties. In this work, for the first time, O/W nanoemulsion of eugenol was designed for the evaluation of anti-inflammatory effects as a topical delivery system. Topical formulations containing 1%, 2% and 4% of eugenol as well as a nanoemulsion system containing 4% eugenol and 0.5% piroxicam were prepared. Further to physicochemical examinations, such as determination of particle size, polydispersity index, zeta potential and physical stability, anti-inflammatory activity was examined in carrageenan-induced paw edema in rats. The optimum formulation was found to contain 2% eugenol (oil phase), 14% Tween 20 (surfactant) and 14% isopropyl alcohol (co-surfactant) in water. Nanoemulsion with polydispersity index of 0.3 and median droplet diameter of 24.4 nm (d50) was obtained. Animal studies revealed that the nanoemulsions exhibited significantly improved anti-inflammatory activity after 1.5 h, compared with marketed piroxicam gel. Additionally, it was shown that increasing the concentration of eugenol did not show higher inhibition of inflammation. Also, the nanoemulsion having piroxicam showed less anti-inflammatory properties compared with the nanoemulsion without piroxicam.

  6. Thymol and eugenol derivatives as potential antileishmanial agents.

    Science.gov (United States)

    de Morais, Selene Maia; Vila-Nova, Nadja Soares; Bevilaqua, Claudia Maria Leal; Rondon, Fernanda Cristina; Lobo, Carlos Henrique; de Alencar Araripe Noronha Moura, Arlindo; Sales, Antônia Débora; Rodrigues, Ana Paula Ribeiro; de Figuereido, José Ricardo; Campello, Claudio Cabral; Wilson, Mary E; de Andrade, Heitor Franco

    2014-11-01

    In Northeastern Brazil visceral leishmaniasis is endemic with lethal cases among humans and dogs. Treatment is toxic and 5-10% of humans die despite treatment. The aim of this work was to survey natural active compounds to find new molecules with high activity and low toxicity against Leishmania infantum chagasi. The compounds thymol and eugenol were chosen to be starting compounds to synthesize acetyl and benzoyl derivatives and to test their antileishmanial activity in vitro and in vivo against L. i. chagasi. A screening assay using luciferase-expressing promastigotes was used to measure the growth inhibition of promastigotes, and an ELISA in situ was performed to evaluate the growth inhibition of amastigote. For the in vivo assay, thymol and eugenol derivatives were given IP to BALB/c mice at 100mg/kg/day for 30 days. The thymol derivatives demonstrated the greater activity than the eugenol derivatives, and benzoyl-thymol was the best inhibitor (8.67 ± 0.28 μg/mL). All compounds demonstrated similar activity against amastigotes, and acetyl-thymol was more active than thymol and the positive control drug amphotericin B. Immunohistochemistry demonstrated the presence of Leishmania amastigote only in the spleen but not the liver of mice treated with acetyl-thymol. Thus, these synthesized derivatives demonstrated anti-leishmanial activity both in vitro and in vivo. These may constitute useful compounds to generate new agents for treatment of leishmaniasis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Assessment of Antioxidant Activities of Eugenol by in vitro and in vivo Methods

    Science.gov (United States)

    Nagababu, Enika; Rifkind, Joseph M.; Sesikeran, Boindala; Lakshmaiah, Nakka

    2011-01-01

    Summary Reactive oxygen species are implicated in many human diseases and aging process. Much of the evidence is based on experimental data indicating increasing rates of lipid peroxidation in disease states and the ameliorating effects of antioxidants. It is becoming increasingly evident that the natural antioxidants, which have basically a phenolic structure, play an important role in protecting tissues against free radical damage. Eugenol (4-allyl-2 methoxyphenol), is one among such naturally occurring phenolic compounds. The antioxidant activity of eugenol is evaluated by the extent of protection offered against free radical mediated lipid peroxidation using both in vitro and in vivo studies. The in vitro lipid peroxidation is induced in mitochondria by (Fe(II)-ascorbate) or (Fe(II) + H2O2). The lipid peroxidation is assessed colorimetrically by measuring the formation of thiobarbituric acid reactive substances (TBARS) following the reaction of oxidized lipids with TBA. Eugenol inhibits both iron and Fenton reagent mediated lipid peroxidation. The inhibitory activity of eugenol is about five fold higher than α-tocopherol and about ten fold less than the synthetic antioxidant, BHT. The in vivo antioxidant activity of eugenol is evaluated by the determination of certain biochemical parameters (SGOT, Cyt.P450, glucose-6-phosphatase), peroxidation products and histopathological examination of •CCl3 radical induced hepatotoxicity in rats. Eugenol significantly inhibits the rise in SGOT activity and cell necrosis without protecting the endoplasmic reticulum (ER) damage as assessed by its failure to prevent a decrease in glucose-6-phosphatase activity. The protective action of eugenol has been found to be due to interception of secondary radicals derived from ER lipids rather than interfering with primary radicals of CCl4 (•CCl3/CCl3OO•). PMID:20013178

  8. The Role of Eugenol in the Prevention of Acute Pancreatitis-Induced Acute Kidney Injury: Experimental Study

    Science.gov (United States)

    Markakis, Charalampos; Tsaroucha, Alexandra; Papalois, Apostolos E.; Lambropoulou, Maria; Spartalis, Eleftherios; Tsigalou, Christina; Romanidis, Konstantinos; Simopoulos, Constantinos

    2016-01-01

    Aim. Acute pancreatitis is an inflammatory intra-abdominal disease, which takes a severe form in 15–20% of patients and can result in high mortality especially when complicated by acute renal failure. The aim of this study is to assess the possible reduction in the extent of acute kidney injury after administration of eugenol in an experimental model of acute pancreatitis. Materials and Methods. 106 male Wistar rats weighing 220–350 g were divided into 3 groups: (1) Sham, with sham surgery; (2) Control, with induction of acute pancreatitis, through ligation of the biliopancreatic duct; and (3) Eugenol, with induction of acute pancreatitis and eugenol administration at a dose of 15 mg/kg. Serum urea and creatinine, histopathological changes, TNF-α, IL-6, and MPO activity in the kidneys were evaluated at predetermined time intervals. Results. The group that was administered eugenol showed milder histopathological changes than the Control group, TNF-α activity was milder in the Eugenol group, and there was no difference in activity for MPO and IL-6. Serum urea and creatinine levels were lower in the Eugenol group than in the Control group. Conclusions. Eugenol administration was protective for the kidneys in an experimental model of acute pancreatitis in rats. PMID:26884642

  9. Ameliorating effect of eugenol on hyperglycemia by attenuating the key enzymes of glucose metabolism in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Srinivasan, Subramani; Sathish, Gajendren; Jayanthi, Mahadevan; Muthukumaran, Jayachandran; Muruganathan, Udaiyar; Ramachandran, Vinayagam

    2014-01-01

    Epidemiological studies have demonstrated that diabetes mellitus is a serious health burden for both governments and healthcare providers. This study was hypothesized to evaluate the antihyperglycemic potential of eugenol by determine the activities of key enzymes of glucose metabolism in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced into male albino Wistar rats by intraperitoneal administration of STZ (40 mg/kg body weight (b.w.)). Eugenol was administered to diabetic rats intragastrically at 2.5, 5, and 10 mg/kg b.w. for 30 days. The dose 10 mg/kg b.w. significantly reduced the levels of blood glucose and glycosylated hemoglobin (HbA1c) and increased plasma insulin level. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, glucose-6-phosphate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, and liver marker enzymes (AST, ALT, and ALP), creatine kinase and blood urea nitrogen in serum and blood of diabetic rats were significantly reverted to near normal levels by the administration of eugenol. Further, eugenol administration to diabetic rats improved body weight and hepatic glycogen content demonstrated the antihyperglycemic potential of eugenol in diabetic rats. The present findings suggest that eugenol can potentially ameliorate key enzymes of glucose metabolism in experimental diabetes, and it is sensible to broaden the scale of use of eugenol in a trial to alleviate the adverse effects of diabetes.

  10. The assessment of tolerability of prolonged oral eugenol administration in rats

    Directory of Open Access Journals (Sweden)

    Jezdimirović Milanka

    2012-01-01

    Full Text Available The potential toxicity and general tolerability of eugenol following two-week or four-week continuous p.o. administration to rats has been investigated. An experiment was performed on 72 male rats of the Wistar strain. Four groups of rats were treated with different doses of eugenol (10 mg/kg bm/day, 50 mg/kg, 200 mg/kg and 400 mg/kg bm/day, the fifth group was administered vehicle (0.5 % methylcellulose, propylene glycol and water, and the sixth group comprised absolutely untreated controls. The corresponding doses of eugenol and vehicle were applied using a gastric probe in a volume of 1 ml/100 g body mass. The general tolerability of eugenol was evaluated on the basis of the daily intake of water and food, body mass, general health condition, behaviour, and lethality in the course of the experiment. In the investigated doses, eugenol applied p.o. in the course of two or four weeks does not influence significantly the intake of food, water, or body mass of rats. The dose of 400 mg/kg/day produced undesired reactions (agitation and hyperesthesia that were first observed on day 21 and lasted until the end of the experiment. Low subacute toxicity of eugenol was established following p.o. administration to rats. Eugenol in doses of 200 and 400 mg/kg tm/day has a low toxic potential and is safe for administration to this animal species. [Projekat Ministarstva nauke Republike Srbije, br. 46009

  11. Quantitative analysis of eugenol in clove extract by a validated HPLC method.

    Science.gov (United States)

    Yun, So-Mi; Lee, Myoung-Heon; Lee, Kwang-Jick; Ku, Hyun-Ok; Son, Seong-Wan; Joo, Yi-Seok

    2010-01-01

    Clove (Eugenia caryophyllata) is a well-known medicinal plant used for diarrhea, digestive disorders, or in antiseptics in Korea. Eugenol is the main active ingredient of clove and has been chosen as a marker compound for the chemical evaluation or QC of clove. This paper reports the development and validation of an HPLC-diode array detection (DAD) method for the determination of eugenol in clove. HPLC separation was accomplished on an XTerra RP18 column (250 x 4.6 mm id, 5 microm) with an isocratic mobile phase of 60% methanol and DAD at 280 nm. Calibration graphs were linear with very good correlation coefficients (r2 > 0.9999) from 12.5 to 1000 ng/mL. The LOD was 0.81 and the LOQ was 2.47 ng/mL. The method showed good intraday precision (%RSD 0.08-0.27%) and interday precision (%RSD 0.32-1.19%). The method was applied to the analysis of eugenol from clove cultivated in various countries (Indonesia, Singapore, and China). Quantitative analysis of the 15 clove samples showed that the content of eugenol varied significantly, ranging from 163 to 1049 ppb. The method of determination of eugenol by HPLC is accurate to evaluate the quality and safety assurance of clove, based on the results of this study.

  12. Eugenol Anesthesia in African Clawed Frogs (Xenopus laevis) of Different Body Weights

    Science.gov (United States)

    Goulet, Félix; Hélie, Pierre; Vachon, Pascal

    2010-01-01

    The objective of this prospective study was to determine the duration of anesthesia in Xenopus laevis frogs of different body weights relative to exposure time in a eugenol (350 µL/L) bath. Two groups of 5 female frogs each weighing 7.5 ± 2.1 g (small frogs) or 29.2 ± 7.4 g (medium frogs) were used. The acetic acid test (AAT), withdrawal reflex, righting reflex, heart rate, and blood oxygen saturation were used to evaluate CNS depression after eugenol bath administration. No responses to the AAT, withdrawal reflex, and righting reflex were seen for 1 h (small frogs) or 0.5 h (medium frogs) after immersion in a eugenol bath for 5 or 10 min, respectively. Oxygen saturation was not affected by anesthesia, but heart rate was depressed for as long as 1 h in both groups of frogs. Surgical anesthesia evaluated by using skin and abdominal incisions revealed that small frogs were anesthetized for a maximum of 15 min compared with 30 min in medium frogs. Frogs showed no ill effects 24 h after eugenol bath administration. These results suggest that body weight is an important parameter to consider when using a eugenol bath for anesthesia of Xenopus frogs. PMID:20819393

  13. Synergistic Interactions of Eugenol-tosylate and Its Congeners with Fluconazole against Candida albicans.

    Science.gov (United States)

    Ahmad, Aijaz; Wani, Mohmmad Younus; Khan, Amber; Manzoor, Nikhat; Molepo, Julitha

    2015-01-01

    We previously reported the antifungal properties of a monoterpene phenol "Eugenol" against different Candida strains and have observed that the addition of methyl group to eugenol drastically increased its antimicrobial potency. Based on the results and the importance of medicinal synthetic chemistry, we synthesized eugenol-tosylate and its congeners (E1-E6) and tested their antifungal activity against different clinical fluconazole (FLC)- susceptible and FLC- resistant C. albicans isolates alone and in combination with FLC by determining fractional inhibitory concentration indices (FICIs) and isobolograms calculated from microdilution assays. Minimum inhibitory concentration (MIC) results confirmed that all the tested C. albicans strains were variably susceptible to the semi-synthetic derivatives E1-E6, with MIC values ranging from 1-62 μg/ml. The test compounds in combination with FLC exhibited either synergy (36%), additive (41%) or indifferent (23%) interactions, however, no antagonistic interactions were observed. The MICs of FLC decreased 2-9 fold when used in combination with the test compounds. Like their precursor eugenol, all the derivatives showed significant impairment of ergosterol biosynthesis in all C. albicans strains coupled with down regulation of the important ergosterol biosynthesis pathway gene-ERG11. The results were further validated by docking studies, which revealed that the inhibitors snugly fitting the active site of the target enzyme, mimicking fluconazole, may well explain their excellent inhibitory activity. Our results suggest that these compounds have a great potential as antifungals, which can be used as chemosensitizing agents with the known antifungal drugs.

  14. Antifungal treatment with carvacrol and eugenol of oral candidiasis in immunosuppressed rats

    Directory of Open Access Journals (Sweden)

    N. Chami

    Full Text Available Carvacrol and eugenol, the main (phenolic components of essential oils of some aromatic plants, were evaluated for their therapeutic efficacy in the treatment of experimental oral candidiasis induced by Candida albicans in immunosuppressed rats. This anticandidal activity was analyzed by microbiological and histopathological techniques, and it was compared with that of nystatin, which was used as a positive control. Microbiologically, carvacrol and eugenol significantly (p<0.05 reduced the number of colony forming units (CFU sampled from the oral cavity of rats treated for eight consecutive days, compared to untreated control rats. Treatment with nystatin gave similar results. Histologically, the untreated control animals showed numerous hyphae on the epithelium of the dorsal surface of the tongue. In contrast no hyphal colonization of the epithelium was seen in carvacrol-treated animals, while in rats treated with eugenol, only a few focalized zones of the dorsal surface of the tongue were occupied by hyphae. In the nystatin treated group, hyphae were found in the folds of the tongue mucosa. Thus, the histological data were confirmed by the microbiological tests for carvacrol and eugenol, but not for the nystatin-treated group. Therefore, carvacrol and eugenol could be considered as strong antifungal agents and could be proposed as therapeutic agents for oral candidiasis.

  15. Efficiency of eugenol as anesthetic for the early life stages of Nile tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    Paula A.P. Ribeiro

    2015-03-01

    Full Text Available In aquaculture, activities with anesthetic compounds are usually used in order to ensure the welfare of farmed fish, allowing handling out of water with decreased trauma by stress. Presently, there is no information about anesthetic action of eugenol in early life stages of Nile tilapia (Oreochromis niloticus. The objective of this study was to evaluate different concentrations of eugenol for larvae and juveniles of Nile tilapia. Sixty animals were used for each group of weight, group I = 0.02 g; group II = 0.08 g; group III = 0.22 g; group IV = 2.62 g; and group V = 11.64 g. The eugenol concentrations tested were 50, 75, 100, 125, 150 and 175 mg L-1. No mortality was reported during the tests with eugenol. Tilapia larvae with 0.02 g and juveniles around 11.64 g can be anesthetized with eugenol concentrations between 150 and 175 mg L-1, since they determine the shortest sedation time (23 and 72 seconds, for the group of lowest and highest weights, respectively.

  16. Efficiency of eugenol as anesthetic for the early life stages of Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Ribeiro, Paula A P; Miranda-Filho, Kleber C; Melo, Daniela C de; Luz, Ronald K

    2015-03-01

    In aquaculture, activities with anesthetic compounds are usually used in order to ensure the welfare of farmed fish, allowing handling out of water with decreased trauma by stress. Presently, there is no information about anesthetic action of eugenol in early life stages of Nile tilapia (Oreochromis niloticus). The objective of this study was to evaluate different concentrations of eugenol for larvae and juveniles of Nile tilapia. Sixty animals were used for each group of weight, group I = 0.02 g; group II = 0.08 g; group III = 0.22 g; group IV = 2.62 g; and group V = 11.64 g. The eugenol concentrations tested were 50, 75, 100, 125, 150 and 175 mg L-1. No mortality was reported during the tests with eugenol. Tilapia larvae with 0.02 g and juveniles around 11.64 g can be anesthetized with eugenol concentrations between 150 and 175 mg L-1, since they determine the shortest sedation time (23 and 72 seconds, for the group of lowest and highest weights, respectively).

  17. Differentially Methylated Loci Distinguish Ovarian Carcinoma Histological Types: Evaluation of a DNA Methylation Assay in FFPE Tissue

    Directory of Open Access Journals (Sweden)

    Linda E. Kelemen

    2013-01-01

    Full Text Available Epigenomic markers can identify tumor subtypes, but few platforms can accommodate formalin-fixed paraffin-embedded (FFPE tumor tissue. We tested different amounts of bisulfite-converted (bs DNA from six FFPE ovarian carcinomas (OC of serous, endometrioid, and clear cell histologies and two HapMap constitutional genomes to evaluate the performance of the GoldenGate methylation assay. Methylation status at each 1,505 CpG site was expressed as β-values. Comparing 400 ng versus 250 ng bsDNA, reproducibility of the assay ranged from Spearman r2=0.41 to 0.90, indicating that β-values obtained with a lower DNA amount did not always correlate well with the higher amount. Average methylation for the six samples was higher using 250 ng (β-value = 0.45, SD=0.29 than with 400 ng (β-value = 0.36, SD=0.32. Reproducibility between duplicate HapMap samples (r2=0.76 to 0.92 was also variable. Using 400 ng input bsDNA, THBS2 and ERG were differentially methylated across all histologic types and between endometrioid and clear cell types at <0.1% false discovery rate. Methylation did not always correlate with gene expression (r2=-0.70 to 0.15. We found that lower bsDNA overestimates methylation, and, using higher bsDNA amounts, we confirmed a previous report of higher methylation of THBS2 in clear cell OC, which could provide new insight into biological pathways that distinguish OC histological types.

  18. Protective effect of eugenol against restraint stress-induced gastrointestinal dysfunction: Potential use in irritable bowel syndrome.

    Science.gov (United States)

    Garabadu, Debapriya; Shah, Ankit; Singh, Sanjay; Krishnamurthy, Sairam

    2015-07-01

    Eugenol, an essential constituent found in plants such as Eugenia caryophyllata Thunb. (Myrtaceae) is reported to possess neuroprotective and anti-stress activities. These activities can potentially be useful in the treatment of stress-induced irritable bowel syndrome (IBS). The protective effect of eugenol was assessed against restraint stress (RS)-induced IBS-like gastrointestinal dysfunction in rats. Further, its centrally mediated effect was evaluated in this model. Eugenol (12.5, 25, and 50 mg/kg), ondansetron (4.0 mg/kg, p.o.), and vehicle were administered to rats for 7 consecutive days before exposure to 1 h RS. One control group was not exposed to RS-induction. The effect of eugenol (50 mg/kg) with and without RS exposure was evaluated for mechanism of action and per se effect, respectively. The hypothalamic-pituitary-adrenal cortex (HPA)-axis function was evaluated by estimating the plasma corticosterone level. The levels of brain monoamines, namely serotonin, norepinephrine, dopamine, and their metabolites were estimated in stress-responsive regions such as hippocampus, hypothalamus, pre-frontal cortex (PFC), and amygdala. Oxidative damage and antioxidant defenses were also assessed in brain regions. Eugenol (50 mg/kg) reduced 80% of RS-induced increase in fecal pellets similar to that of ondansetron. Eugenol attenuated 80% of stress-induced increase in plasma corticosterone and modulated the serotonergic system in the PFC and amygdala. Eugenol attenuated stress-induced changes in norepinephrine and potentiated the antioxidant defense system in all brain regions. Eugenol protected against RS-induced development of IBS-like gastrointestinal dysfunction through modulation of HPA-axis and brain monoaminergic pathways apart from its antioxidant effect.

  19. Calcium dependence of eugenol tolerance and toxicity in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Stephen K Roberts

    Full Text Available Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections.

  20. Calcium dependence of eugenol tolerance and toxicity in Saccharomyces cerevisiae.

    Science.gov (United States)

    Roberts, Stephen K; McAinsh, Martin; Cantopher, Hanna; Sandison, Sean

    2014-01-01

    Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA) revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections.

  1. Eugenol-induced suppression of biofilm-forming genes in Streptococcus mutans: An approach to inhibit biofilms.

    Science.gov (United States)

    Adil, Mohd; Singh, Kunal; Verma, Praveen K; Khan, Asad U

    2014-12-01

    Streptococcus mutans is well documented as a major aetiological agent of dental caries. The ability to form a biofilm on tooth surfaces is the major virulence factor of this bacterium. The objective of this study was to evaluate the effect of eugenol on suppression of biofilm- and quorum sensing (QS)-related genes of S. mutans and to determine its putative mode of action. Eugenol was evaluated for its inhibitory activity against virulence properties such as adherence and biofilm formation. Morphological changes in the architecture of S. mutans and in the biofilm were analysed and observed using confocal laser scanning microscopy and transmission electron microscopy. The effects of eugenol on expression of biofilm- and QS-related genes (gtfB, gtfC, comDE, smu630, vicR, brpA, ftf, relA, gbpB and spaP) were checked by quantitative real-time PCR (qRT-PCR). The present data revealed that eugenol at a sub-minimum inhibitory concentration (sub-MIC) significantly downregulated the expression of tested genes but did not affect bacterial growth. These results suggest that a sub-MIC of eugenol can effectively suppress virulence genes. Thus, the results indicated that eugenol can inhibit caries-associated biofilm and showed its therapeutic potential against oral biofilm. Copyright © 2014 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  2. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint.

    Science.gov (United States)

    Marchese, Anna; Barbieri, Ramona; Coppo, Erika; Orhan, Ilkay Erdogan; Daglia, Maria; Nabavi, Seyed Fazel; Izadi, Morteza; Abdollahi, Mohammad; Nabavi, Seyed Mohammad; Ajami, Marjan

    2017-11-01

    Eugenol is a hydroxyphenyl propene, naturally occurring in the essential oils of several plants belonging to the Lamiaceae, Lauraceae, Myrtaceae, and Myristicaceae families. It is one of the major constituents of clove (Syzygium aromaticum (L.) Merr. & L.M. Perry, Myrtaceae) oil and is largely used in both foods and cosmetics as a flavoring agent. A large body of recent scientific evidence supports claims from traditional medicine that eugenol exerts beneficial effects on human health. These effects are mainly associated with antioxidant and anti-inflammatory activities. Eugenol has also shown excellent antimicrobial activity in studies, being active against fungi and a wide range of gram-negative and gram-positive bacteria. The aim of this review is to analyze scientific data from the main published studies describing the antibacterial and antifungal activities of eugenol targeting different kind of microorganisms, such as those responsible for human infectious diseases, diseases of the oral cavity, and food-borne pathogens. This article also reports the effects of eugenol on multi-drug resistant microorganisms. On the basis of this collected data, eugenol represents a very interesting bioactive compound with broad spectrum antimicrobial activity against both planktonic and sessile cells belonging to food-decaying microorganisms and human pathogens.

  3. Immunomodulatory activity of geranial, geranial acetate, gingerol, and eugenol essential oils: evidence for humoral and cell-mediated responses

    Directory of Open Access Journals (Sweden)

    Seema Farhath

    2013-05-01

    Full Text Available Objective: The immunomodulatory effect of geranial, geranial acetate, gingerol, and eugenol essential oils were evaluated by studying humoral and cell-mediated immune responses. Materials and Method: The essential oils were evaluated for immunomodulatory activity in in vivo studies, using rats as the animal model. The essential oils were tested for hypersensitivity and hemagglutination reactions, using sheep red blood cells (SRBC as the antigen while sodium carboxy methyl cellulose (SCMC served as the control in all the tests. Result: Orally administrated essential oils showed a significant increase of test parameters, viz., haemagglutinating antibody titre (HAT and delayed type hypersensitivity (DTH response. In rats immunized with sheep RBC, essential oils enhanced the humoral antibody response to the antigen and significantly potentiated the cellular immunity by facilitating the foot pad thickness response to sheep RBC in sensitized rats with doses of 50-800 mg/ml. Haemagglutination titre of geraniol showed the highest increase of 139.3±6.38 and with 5.9±0.7 DTH, respectively. For geranial acetate, the haemagglutination titre showed a moderate increase of 87.5±5.9 and highest increase in DTH with 5.9±0.8, respectively. Using gingerol, the haemagglutination titre showed a moderate increase with 88.2±6.306 and DTH 3.5±0.5, respectively and for eugenol, the haemaggulation titre showed a moderate increase with 112.06±6.169 and DTH 4.4±0.6, respectively. These differences were statistically significant. Conclusion: The essential oils were found to have a significant immunostimulant activity on both the specific and non-specific immune mechanisms.

  4. Citral and eugenol modulate DNA damage and pro-inflammatory mediator genes in murine peritoneal macrophages.

    Science.gov (United States)

    Porto, Marilia de Paula; da Silva, Glenda Nicioli; Luperini, Bruno Cesar Ottoboni; Bachiega, Tatiana Fernanda; de Castro Marcondes, João Paulo; Sforcin, José Maurício; Salvadori, Daisy Maria Fávero

    2014-11-01

    Citral and eugenol have been broadly studied because of their anti-inflammatory, antioxidant and antiparasitic potentials. In this study, the effects of citral (25, 50 and 100 µg/mL) and eugenol (0.31, 0.62, 1.24 and 2.48 µg/mL) on the expression (RT-PCR) of the pro-inflammatory mediator genes NF-κB1, COX-2 and TNF-α were evaluated in mouse peritoneal macrophages with or without activation by a bacterial lipopolysaccharide (LPS). Additionally, the genotoxic potentials of two compounds and their capacities to modulate the DNA damage induced by doxorubicin (DXR) were investigated using the comet assay. The data revealed that neither citral nor eugenol changed COX-2, NF-κB1 or TNF-α expression in resting macrophages. However, in LPS-activated cells, citral induced the hypoexpression of COX-2 (100 µg/mL) and TNF-α (50 and 100 µg/mL). Hypoexpression of TNF-α was also detected after cellular exposure to eugenol at the highest concentration (2.48 µg/mL). Both compounds exhibited genotoxic potential (citral at 50 and 100 µg/mL and eugenol at all concentrations) but also showed chemopreventive effects, in various treatment protocols. Both citral and eugenol might modulate inflammatory processes and DXR-induced DNA damage, but the use of these compounds must be viewed with caution because they are also able to induce primary DNA lesions.

  5. Eugenol and its synthetic analogues inhibit cell growth of human cancer cells (Part I)

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco A, H.; Cardona, W. [Universidad Andres Bello, Vina del Mar (Chile). Dept. de Ciencias Quimicas]. E-mail: hcarrasco@unab.cl; Espinoza C, L.; Gallardo, C.; Catalan M, K. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Quimica; Cardile, V.; Lombardo, L. [University of Catania (Italy). Dept. of Physiological Sciences; Cuellar F, M. [Universidad de Valparaiso (Chile). Facultad de Farmacia; Russo, A. [University of Catania (Italy). Dept. of Biological Chemistry, Medical Chemistry and Molecular Biology

    2008-07-01

    Eugenol (4-allyl-2-methoxyphenol) (1) has been reported to possess antioxidant and anticancer properties. In an attempt to enhance intrinsic activity of this natural compound, some derivatives were synthesized. Eugenol was extracted from cloves oil and further, the eugenol analogues (2-6) were obtained through acetylation and nitration reactions. Eugenol (1) and its analogues (2-6) were examined by in vitro model of cancer using two human cancer cell lines: DU-145 (androgeninsensitive prostate cancer cells) and KB (oral squamous carcinoma cells). Cell viability, by tetrazolium salts assay, was measured. Lactic dehydrogenase (LDH) release was also investigated to evaluate the presence of cell toxicity as a result of cell disruption, subsequent to membrane rupture. In the examined cancer cells, all compounds showed cell-growth inhibition activity. The obtained results demonstrate that the compounds 5-allyl-3-nitrobenzene-1,2-diol (3) and 4-allyl- 2-methoxy-5-nitrophenyl acetate (5) were significantly (p < 0,001) more active than eugenol, with IC{sub 50} values in DU-145 cells of 19.02 x 10{sup -6} and 21.5 x 10{sup -6} mol L{sup -1}, respectively, and in KB cells of 18.11 x 10{sup -6} and 21.26 x 10{sup -6} mol L{sup -1}, respectively, suggesting that the presence of nitro and hydroxyl groups could be important in the activity of these compounds. In addition, our results seem to indicate that apoptotic cell demise appears to be induced in KB and DU-145 cells. In fact, in our experimental conditions, no statistically significant increase in LDH release was observed in cancer cells treated with eugenol and its analogues. (author)

  6. Synergized antimicrobial activity of eugenol incorporated polyhydroxybutyrate films against food spoilage microorganisms in conjunction with pediocin.

    Science.gov (United States)

    Narayanan, Aarthi; Neera; Mallesha; Ramana, Karna Venkata

    2013-07-01

    Biopolymers and biopreservatives produced by microorganisms play an essential role in food technology. Polyhydroxyalkanoates and bacteriocins produced by bacteria are promising components to safeguard the environment and for food preservation applications. Polyhydroxybutyrate (PHB)-based antimicrobial films were prepared incorporating eugenol, from 10 to 200 μg/g of PHB. The films were evaluated for antimicrobial activity against foodborne pathogens, spoilage bacteria, and fungi such as Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Bacillus cereus, Aspergillus flavus, Aspergillus niger, Penicillium sp., and Rhizopus sp. The synergistic antimicrobial activity of the films in the presence of crude pediocin was also investigated. The broth system containing pediocin (soluble form) as well as antimicrobial PHB film demonstrated an extended lag phase and a significant growth reduction at the end of 24 h against the bacteria. Crude pediocin alone could not elicit antifungal activity, while inhibition of growth and sporulation were observed in the presence of antimicrobial PHB film containing eugenol (80 μg/g) until 7 days in the case of molds, i.e., A. niger, A. flavus, Penicillium sp., and Rhizopus sp. in potato dextrose broth. In the present study, we identified that use of pediocin containing broth in conjunction with eugenol incorporated PHB film could function in synergized form, providing effective hurdle toward food contaminating microorganisms. Furthermore, tensile strength, percent crystallinity, melting point, percent elongation to break, glass transition temperature, and seal strength of the PHB film with and without eugenol incorporation were investigated. The migration of eugenol on exposure to different liquid food simulants was also analyzed using Fourier transform infrared spectroscopy. The study is expected to provide applications for pediocin in conjunction with eugenol containing PHB film to enhance the shelf life of foods in the

  7. Eugenol reduces acute pain in mice by modulating the glutamatergic and tumor necrosis factor alpha (TNF-α) pathways.

    Science.gov (United States)

    Dal Bó, Wladmir; Luiz, Ana Paula; Martins, Daniel F; Mazzardo-Martins, Leidiane; Santos, Adair R S

    2013-10-01

    Eugenol is utilized together with zinc oxide in odontological clinical for the cementation of temporary prostheses and the temporary restoration of teeth and cavities. This work explored the antinociceptive effects of the eugenol in different models of acute pain in mice and investigated its possible modulation of the inhibitory (opioid) and excitatory (glutamatergic and pro-inflammatory cytokines) pathways of nociceptive signaling. The administration of eugenol (3-300 mg/kg, p.o., 60 min or i.p., 30 min) inhibited 82 ± 10% and 90 ± 6% of the acetic acid-induced nociception, with ID₅₀ values of 51.3 and 50.2 mg/kg, respectively. In the glutamate test, eugenol (0.3-100 mg/kg, i.p.) reduced the response behavior by 62 ± 5% with an ID₅₀ of 5.6 mg/kg. In addition, the antinociceptive effect of eugenol (10 mg/kg, i.p.) in the glutamate test was prevented by the i.p. treatment for mice with naloxone. The pretreatment of mice with eugenol (10 mg/kg, i.p.) was able to inhibit the nociception induced by the intrathecal (i.t.) injection of glutamate (37 ± 9%), kainic (acid kainite) (41 ± 12%), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (55 ± 5%), and substance P (SP) (39 ± 8%). Furthermore, eugenol (10 mg/kg, i.p.) also inhibited biting induced by tumor necrosis factor alpha (TNF-α, 65 ± 8%). These results extend our current knowledge of eugenol and confirm that it promotes significant antinociception against different mouse models of acute pain. The mechanism of action appears to involve the modulation of the opioid system and glutamatergic receptors (i.e., kainate and AMPA), and the inhibition of TNF-α. Thus, eugenol could represent an important compound in the treatment for acute pain. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de Pharmacologie et de Thérapeutique.

  8. Activation of transient receptor potential ankyrin 1 by eugenol.

    Science.gov (United States)

    Chung, G; Im, S T; Kim, Y H; Jung, S J; Rhyu, M-R; Oh, S B

    2014-03-07

    Eugenol is a bioactive plant extract used as an analgesic agent in dentistry. The structural similarity of eugenol to cinnamaldehyde, an active ligand for transient receptor potential ankyrin 1 (TRPA1), suggests that eugenol might produce its effect via TRPA1, in addition to TRPV1 as we reported previously. In this study, we investigated the effect of eugenol on TRPA1, by fura-2-based calcium imaging and patch clamp recording in trigeminal ganglion neurons and in a heterologous expression system. As the result, eugenol induced robust calcium responses in rat trigeminal ganglion neurons that responded to a specific TRPA1 agonist, allyl isothiocyanate (AITC), and not to capsaicin. Capsazepine, a TRPV1 antagonist failed to inhibit eugenol-induced calcium responses in AITC-responding neurons. In addition, eugenol response was observed in trigeminal ganglion neurons from TRPV1 knockout mice and human embryonic kidney 293 cell lines that express human TRPA1, which was inhibited by TRPA1-specific antagonist HC-030031. Eugenol-evoked TRPA1 single channel activity and eugenol-induced TRPA1 currents were dose-dependent with EC50 of 261.5μM. In summary, these results demonstrate that the activation of TRPA1 might account for another molecular mechanism underlying the pharmacological action of eugenol. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling.

    Science.gov (United States)

    Pidsley, Ruth; Zotenko, Elena; Peters, Timothy J; Lawrence, Mitchell G; Risbridger, Gail P; Molloy, Peter; Van Djik, Susan; Muhlhausler, Beverly; Stirzaker, Clare; Clark, Susan J

    2016-10-07

    In recent years the Illumina HumanMethylation450 (HM450) BeadChip has provided a user-friendly platform to profile DNA methylation in human samples. However, HM450 lacked coverage of distal regulatory elements. Illumina have now released the MethylationEPIC (EPIC) BeadChip, with new content specifically designed to target these regions. We have used HM450 and whole-genome bisulphite sequencing (WGBS) to perform a critical evaluation of the new EPIC array platform. EPIC covers over 850,000 CpG sites, including >90 % of the CpGs from the HM450 and an additional 413,743 CpGs. Even though the additional probes improve the coverage of regulatory elements, including 58 % of FANTOM5 enhancers, only 7 % distal and 27 % proximal ENCODE regulatory elements are represented. Detailed comparisons of regulatory elements from EPIC and WGBS show that a single EPIC probe is not always informative for those distal regulatory elements showing variable methylation across the region. However, overall data from the EPIC array at single loci are highly reproducible across technical and biological replicates and demonstrate high correlation with HM450 and WGBS data. We show that the HM450 and EPIC arrays distinguish differentially methylated probes, but the absolute agreement depends on the threshold set for each platform. Finally, we provide an annotated list of probes whose signal could be affected by cross-hybridisation or underlying genetic variation. The EPIC array is a significant improvement over the HM450 array, with increased genome coverage of regulatory regions and high reproducibility and reliability, providing a valuable tool for high-throughput human methylome analyses from diverse clinical samples.

  10. Evaluation of Colorimetric Assays for Analyzing Reductively Methylated Proteins: Biases and Mechanistic Insights

    Science.gov (United States)

    Brady, Pamlea N.; Macnaughtan, Megan A.

    2015-01-01

    Colorimetric protein assays, such as the Coomassie blue G-250 dye-binding (Bradford) and bicinchoninic acid (BCA) assays, are commonly used to quantify protein concentration. The accuracy of these assays depends on the amino acid composition. Because of the extensive use of reductive methylation in the study of proteins and the importance of biological methylation, it is necessary to evaluate the impact of lysyl methylation on the Bradford and BCA assays. Unmodified and reductively methylated proteins were analyzed using the absorbance at 280 nm to standardize the concentrations. Using model compounds, we demonstrate that the dimethylation of lysyl ε-amines does not affect the proteins’ molar extinction coefficients at 280 nm. For the Bradford assay, the response (absorbance per unit concentration) of the unmodified and reductively methylated proteins were similar with a slight decrease in the response upon methylation. For the BCA assay, the responses of the reductively methylated proteins were consistently higher, overestimating the concentrations of the methylated proteins. The enhanced color-formation in the BCA assay may be due to the lower acid dissociation constants of the lysyl ε-dimethylamines, compared to the unmodified ε-amine, favoring Cu(II) binding in biuret-like complexes. The implications for the analysis of biologically methylated samples are discussed. PMID:26342307

  11. Autofit and the Spectrum of Eugenol

    Science.gov (United States)

    Riffe, Erika; Welden, Sawyer; Cockram, Emma; Ervin, Katherine; Shipman, Steven; Funderburk, Cameron M.; Brown, Gordon G.; Widicus Weaver, Susanna L.

    2016-06-01

    The rotational spectrum of eugenol, the primary constituent in clove oil, was obtained via chirped-pulse Fourier transform microwave spectroscopy from 3-8 GHz in a supersonic expansion on a sample that was extracted from cloves via steam distillation. Ab initio calculations indicate that this molecule possesses several conformers with energies that are only a few hundred wavenumbers above that of the global minimum conformation, due to different relative orientations of the molecule's methoxy and allyl groups. Eugenol's spectrum was analyzed with a new version of the Autofit software that has been designed to run in cluster computing environments. Here we will present the results of this study, including benchmarking results for the new version of Autofit.

  12. Effects of combined acupuncture and eugenol on learning-memory ability and antioxidation system of hippocampus in Alzheimer disease rats via olfactory system stimulation.

    Science.gov (United States)

    Liu, Zhibin; Niu, Wenmin; Yang, Xiaohang; Wang, Yuan

    2013-06-01

    To investigate the effects of combined acupuncture and eugenol on learning-memory ability and the antioxidation system of the hippocampus in Alzheimer disease (AD) rats. Sixty Sprague Dawley rats, weighing (300 +/- 10) g, were randomly divided with 10 rats per group into a normal control group, AD model group, AD with cut olfactory nerve group, Xiu three-needle group, eugenol group, and combined acupuncture and eugenol group. The AD model was established by injection of amyloid beta1-40 (Abeta 1-40). Morris maze tests were conducted for evaluating the learning-memory ability. Content of malondialdehyde (MDA) and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the hippocampus were detected. The average escape latency and the mean swimming distance in the normal control group, the Xiu three-needle group, the eugenol group, and the combined acupuncture and eugenol group were significantly shorter than those in the AD model group (all P 0.05). Compared with the normal control group, the MDA content in the hippocampus significantly increased (P 0.05). Both Xiu three-needle and eugenol can increase learning-memory ability, decrease MDA content, and increase SOD and GSH-Px activities in the hippocampus in AD rats. The combination of acupuncture with eugenol has stronger effects, and the effects depend on the olfactory pathway.

  13. Targeting of eugenol-loaded solid lipid nanoparticles to the epidermal layer of human skin.

    Science.gov (United States)

    Garg, Anuj; Singh, Sanjay

    2014-01-01

    The purpose of this study was to formulate carbopol hydrogels containing eugenol-loaded solid lipid nanoparticles (EG-SLNs) for epidermal targeting to treat fungal infections in skin. EG-SLNs were incorporated into carbopol hydrogels and the physiochemical characteristics of EG-SLN in hydrogels were investigated by dynamic light scattering, transmission electron microscopy and atomic force microscopy. Rheological behavior and mechanical properties of hydrogels were also studied before and after incorporation of EG-SLNs. The epidermal-targeting ability of EG-SLN-enriched hydrogels was evaluated by estimation of eugenol in the epidermis of human cadaver skin. An occlusion (hydration) study was also performed to elucidate the mechanism of epidermal targeting of EG-SLN-enriched hydrogels. The particle size (d90) and morphology of EG-SLNs were not significantly changed after incorporation into the hydrogel. EG-SLN of stearic acid-enriched hydrogels follow the Carreau model that describes pseudoplastic flow. The hydrogel containing EG-SLN of stearic acid and of Compritol(®) (Gattefose, Mumbai, India) showed significantly greater accumulation of eugenol in the epidermis (62.65 ± 4.35 and 52.86 ± 3.76 µg/cm(2), respectively) than that of eugenol-hydroxypropyl-β-cyclodextrin complex in hydrogel (9.77 ± 1.16 µg/cm(2)) and almond oil solution of eugenol (3.45 ± 0.6 µg/cm(2)). The occlusion study demonstrated greater hydration of human cadaver skin treated with EG-SLN-enriched hydrogel compared with that of hydrogel and intact skin. Hydrogels containing EG-SLNs could be a promising formulation for epidermal targeting to treat fungal infections in skin.

  14. EUGENOL POLYMER MODIFIED TITANIUM ELECTRODE FOR THE ANALYSIS OF CARBOCYSTEINE

    Directory of Open Access Journals (Sweden)

    S. EL QOUATLI

    2012-06-01

    Full Text Available A eugenol polymer immobilized electrode was developed for the assay of the carbocysteine compound. The electrochemical sensor was made by in situ electropolymerization of eugenol at titanium electrode. Cyclic voltamperometry at prepared electrode permitted to point out a reversible pattern for carbocysteine electrooxidation.

  15. Eugenol synthase genes in floral scent variation in Gymnadenia species.

    Science.gov (United States)

    Gupta, Alok K; Schauvinhold, Ines; Pichersky, Eran; Schiestl, Florian P

    2014-12-01

    Floral signaling, especially through floral scent, is often highly complex, and little is known about the molecular mechanisms and evolutionary causes of this complexity. In this study, we focused on the evolution of "floral scent genes" and the associated changes in their functions in three closely related orchid species of the genus Gymnadenia. We developed a benchmark repertoire of 2,571 expressed sequence tags (ESTs) in Gymnadenia odoratissima. For the functional characterization and evolutionary analysis, we focused on eugenol synthase, as eugenol is a widespread and important scent compound. We obtained complete coding complementary DNAs (cDNAs) of two copies of putative eugenol synthase genes in each of the three species. The proteins encoded by these cDNAs were characterized by expression and testing for activity in Escherichia coli. While G. odoratissima and Gymnadenia conopsea enzymes were found to catalyze the formation of eugenol only, the Gymnadenia densiflora proteins synthesize eugenol, as well as a smaller amount of isoeugenol. Finally, we showed that the eugenol and isoeugenol producing gene copies of G. densiflora are evolutionarily derived from the ancestral genes of the other species producing only eugenol. The evolutionary switch from production of one to two compounds evolved under relaxed purifying selection. In conclusion, our study shows the molecular bases of eugenol and isoeugenol production and suggests that an evolutionary transition in a single gene can lead to an increased complexity in floral scent emitted by plants.

  16. Evaluation of [(11)C]methyl-losartan and [(11)C]methyl-EXP3174 for PET imaging of renal AT1receptor in rats.

    Science.gov (United States)

    Ismail, Basma; Hadizad, Tayebeh; Antoun, Rawad; Lortie, Mireille; deKemp, Robert A; Beanlands, Rob S B; DaSilva, Jean N

    2015-11-01

    The angiotensin II type 1 receptor (AT1R) is responsible for the main effects of the renin-angiotensin system (RAS), and its expression pattern is altered in several diseases. The [(11)C]methylated derivatives of the clinically used AT1R blocker (ARB) losartan and its active metabolite EXP3174, that binds with higher affinity to AT1R, were evaluated as potential PET imaging tracers in rat kidneys. [(11)C]Methyl-losartan and [(11)C]methyl-EXP3174 were synthesized by [(11)C]methylation of the tetrazole-protected analogs using [11C]methyl iodide. Tissue uptake and binding selectivity of [(11)C]methyl-losartan were assessed by ex-vivo biodistribution and in-vitro autoradiography. Radiolabeled metabolites in rat plasma and kidneys were analysed by column-switch HPLC. Both tracers were evaluated with small animal PET imaging. Due to better pharmacokinetics, [(11)C]methyl-EXP3174 was further investigated via PET by co-injection with AT1R antagonist candesartan or the AT2R antagonist PD123,319. Binding selectivity to renal AT1 over AT2 and Mas receptors was demonstrated for [(11)C]methyl-losartan. Plasma metabolite analysis at 10 min revealed stability of [(11)C]methyl-losartan and [(11)C]methyl-EXP3174 with the presence of unchanged tracer at 70.8 ± 9.9% and 81.4 ± 6.0%, of total radioactivity, respectively. Contrary to [(11)C]methyl-losartan, co-injection of candesartan with [(11)C]methyl-EXP3174 reduced the proportion of unchanged tracer (but not metabolites), indicating that these metabolites do not bind to AT1R in rat kidneys. MicroPET images for both radiotracers displayed high kidney-to-background contrast. Candesartan significantly reduced [(11)C]methyl-EXP3174 uptake in the kidney, whereas no difference was observed following PD123,319 indicating binding selectivity for AT1R. [(11)C]Methyl-EXP3174 displayed a favorable binding profile compared to [(11)C]methyl-losartan for imaging renal AT1Rs supporting further studies to assess its full potential as a

  17. Storage stability and antibacterial activity of eugenol nanoliposomes prepared by an ethanol injection-dynamic high-pressure microfluidization method.

    Science.gov (United States)

    Peng, Shengfeng; Zou, Liqiang; Liu, Wei; Gan, Lu; Liu, Weilin; Liang, Ruihong; Liu, Chengmei; Niu, Jing; Cao, Yanlin; Liu, Zhen; Chen, Xing

    2015-01-01

    Eugenol is a major phenolic component with diverse biological activities. However, it is difficult to formulate into an aqueous solution due to poor water solubility, and this limits its application. In the present study, eugenol nanoliposomes (EN) were prepared by combining the ethanol injection method with the dynamic high-pressure microfluidization method. Good physicochemical characterizations of EN were obtained. The successful encapsulation of eugenol in nanoliposomes was confirmed by Fourier transform infrared spectroscopy. A good storage stability of EN was confirmed by its low variation of average particle diameter and encapsulation efficiency after 8 weeks of storage. No oil drops were found in EN after 8 weeks of storage at 4°C and at room temperature, which suggested that the poor water solubility of eugenol was overcome by nanoliposome encapsulation. Compared with that of eugenol solution, a relatively good sustained release property was observed in EN. The antibacterial activity of EN against four common foodborne pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes) was evaluated in both Luria broth and milk medium.

  18. Eugenol confers resistance to Tomato yellow leaf curl virus (TYLCV) by regulating the expression of SlPer1 in tomato plants.

    Science.gov (United States)

    Sun, Wei-Jie; Lv, Wen-Jing; Li, Li-Na; Yin, Gan; Hang, Xiaofang; Xue, Yanfeng; Chen, Jian; Shi, Zhiqi

    2016-05-25

    Tomato yellow leaf curl virus (TYLCV) is one of the most devastating plant diseases, and poses a significant agricultural concern because of the lack of an efficient control method. Eugenol is a plant-derived natural compound that has been widely used as a food additive and in medicine. In the present study, we demonstrated the potential of eugenol to enhance the resistance of tomato plants to TYLCV. The anti-TYLCV efficiency of eugenol was significantly higher than that of moroxydine hydrochloride (MH), a widely used commercial antiviral agent. Eugenol application stimulated the production of endogenous nitric oxide (NO) and salicylic acid (SA) in tomato plants. The full-length cDNA of SlPer1, which has been suggested to be a host R gene specific to TYLCV, was isolated from tomato plants. A sequence analysis suggested that SlPer1 might be a nucleobase-ascorbate transporter (NAT) belonging to the permease family. The transcript levels of SlPer1 increased markedly in response to treatment with eugenol or TYLCV inoculation. The results of this study also showed that SlPer1 expression was strongly induced by SA, MeJA (jasmonic acid methyl ester), and NO. Thus, we propose that the increased transcription of SlPer1 contributed to the high anti-TYLCV efficiency of eugenol, which might involve in the generation of endogenous SA and NO. Such findings provide the basis for the development of eugenol as an environmental-friendly agricultural antiviral agent. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Success Rate of Zinc Oxide Eugenol in Pulpectomy of Necrotic Primary Molars: A Retrospective Study

    OpenAIRE

    Zahra Bahrololoomi; Shiva Zamaninejad

    2015-01-01

    Introduction: Pulpectomy is a conservative treatment plan for primary necrotic teeth and Zinc Oxide Eugenol is still a good choice as root canal filling material but long term studies on poor prognosis molars are limited and almost contradictory. The purpose of this study is to evaluate the clinical and radiographical success rate of pulpectomy of necrotic primary molars using ZOE as the root canal filling material. Methods: 152 records of 76 primary molars on which two-visit pulpectomy had b...

  20. Comparative evaluation of the fracture resistance of teeth prepared with rotary system, filled with single cone gutta-percha and laterally condensed with zinc oxide eugenol and resin based (AH26) sealers to that of Resilon.

    Science.gov (United States)

    Vishwanathan, P Kashi; Muliyar, Sabir; Chavan, Prakash; Reddy, P Manoranjan; Reddy, T Praveen Kumar; Nilawar, Sanjay

    2012-11-01

    To compare the fracture resistance of teeth prepared with rotary system and filled with single cone guttapercha followed by lateral condensation with different sealers like zinc oxide eugenol and resin based (AH26) to that of resilon. A total number of 70 extracted intact human permanent maxillary incisors were selected. All prepared samples were divided into one control group (n = 10) and three experimental groups (n = 20 per group). Group 1 control. This group received no obturation; the root canal opening was sealed with a temporary filling material (Cavit, Premier Dental Products, Plymouth Meeting, PA) Group 2: Gutta-Percha and zinc oxide Eugenol sealer. Group 3: Gutta-Percha and AH26 sealer. (DiaDent, Korea) dipped in AH26 sealer. Group 4: Resilon cones and RealSeal Resin Sealer. Obturation was accomplished using a 0.06 taper size 40 gutta-percha master point. All the root samples were stored in 100% humidity at 37 °C for 2 weeks to allow the sealer to set completely. The root samples were then prepared for mechanical testing and the data was recorded and analyzed statistically. One-way ANOVA and Post hoc test (Duncan Multiple range test) were employed to determine possible statistical variation among the groups tested in this study. The force for group 2 was significantly greater than that for the control group 1 (no obturation).The force for group 3 was significantly greater than that for group 2. The force for group 4 was significantly greater than that for group 3. All other groupwise comparisons were not significant at 5% level. Group 4 seemed to have the greatest force among the three groups of interest in the study. Root canals filled with Resilon increased the in vitro resistance of single canal extracted teeth compared to other experimental groups. The mean fracture resistance value for the experimental groups in ascending order was as follows: Root canals instrumented but not filled, filled with gutta-percha and zinc oxide eugenol sealer, filled

  1. Clove (Syzygium aromaticum Linn) extract rich in eugenol and eugenol derivatives shows bone-preserving efficacy.

    Science.gov (United States)

    Karmakar, Subhra; Choudhury, Monalisa; Das, Asankur Sekhar; Maiti, Anasuya; Majumdar, Sangita; Mitra, Chandan

    2012-01-01

    This study examined the efficacy of hydroalcoholic extract of dried clove buds, which is rich in phenolic compounds namely eugenol and eugenol derivatives (precursors of flavones, isoflavones and flavonoids), on different primary and secondary osteoporotic marker changes in an ovariectomised (OVX) rat model of osteoporosis. Female Wistar rats were randomly divided into three groups: sham-operated control (A), OVX (B) and OVX plus 50% hydroalcoholic extract of dried clove buds for 4 weeks (C). Results indicated that, compared to control, serum alkaline phosphatase (AP; 48.25%, p clove buds. Results of bone density, bone mineral content, bone tensile strength and histological analysis also showed similar trend of results, which supported initial observations of this study. It is proposed that hydroalcoholic extract of dried clove buds has bone-preserving efficacy against hypogonadal osteoporosis.

  2. Antifungal effect of eugenol and carvacrol against foodborne pathogens Aspergillus carbonarius and Penicillium roqueforti in improving safety of fresh-cut watermelon

    Directory of Open Access Journals (Sweden)

    Mirela and #352;imovi and #263;

    2014-06-01

    Full Text Available Essential oil components eugenol and carvacrol (ranging between 100 and 200 ppm for carvacrol and between 250 and 750 ppm for eugenol were tested for antifungal activity against foodborne pathogenic fungal species A. carbonarius A1102 and P. roqueforti PTFKK29 in vitro and in situ conditions. In vitro antifungal activity of eugenol and carvacrol was evaluated by macrobroth method, while watermelon Citrullus lanatus L. Sorento slices were used for antifungal assays in situ. Selected components, eugenol and carvacrol showed significant inhibitory effect against tested fungi (A. carbonarius A1102 and P.roqueforti PTFKK29 in YES broth, as well as in in situ conditions. The minimal inhibitory concentration (MIC of eugenol against A. carbonarius A1102 determined by macrobroth method was 2000 ppm, while against P.roqueforti PTFKK29 determined MIC was 1000 ppm. Carvacrol inhibited growth of A. carbonarius A1102 at minimal concentration of 500 ppm, while against P.roqueforti PTFKK29, MIC was 250 ppm. The assays in real food system and #8211; watermelon slices for eugenol and carvacrol show that inhibitory effect against both selected fungal species was concentration dependent. Furthermore, our results showed that antifungal effect of carvacrol as well as eugenol applied on watermelon slices in all concentrations was a result of effective synergy between an active antifungal compound and lower incubation temperature (15 and deg;C in inhibition of A. carbonarius A1102. The present study suggests that the use of eugenol and carvacrol is promising natural alternative to the use of food chemical preservatives, in order to improve safety and quality of fresh-cut and ready-to-eat fruits. [J Intercult Ethnopharmacol 2014; 3(3.000: 91-96

  3. Assembly of AuNRs and eugenol for trace analysis of eugenol using resonance light scattering technique.

    Science.gov (United States)

    Bi, Shuyun; Wang, Yu; Zhou, Huifeng; Zhao, Tingting

    2016-01-01

    A new resonance light scattering (RLS) method for determining eugenol was developed using gold nanorods (AuNRs) as probes which were synthesized in our lab. The weak RLS intensity of eugenol was obviously enhanced by the use of AuNRs. All of the results from the SEM, RLS and UV spectra indicated that eugenol induced the assembly of AuNRs; thus, a new complex of AuNRs-eugenol was formed. The assembly of this new complex was achieved through a coordination bond between eugenol and AuNRs. Under optimum experimental conditions, a direct linear relationship was established between the enhancement of RLS intensity and the concentration of eugenol in the range of 0.043-10.60 μg ml(-1) (r=0.9927). Moreover, the limit of detection (LOD) was found at a nanogram level (7.28 ng ml(-1) by 3S0/S). The recovery and RSD (n=5) of three synthetic samples were 99.7-104.2% and 0.81-1.19%, respectively. The method was successfully employed for the analysis of eugenol in curry powder samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Effect of Eugenol on Cell Surface Hydrophobicity, Adhesion, and Biofilm of Candida tropicalis and Candida dubliniensis Isolated from Oral Cavity of HIV-Infected Patients

    Directory of Open Access Journals (Sweden)

    Suelen Balero de Paula

    2014-01-01

    Full Text Available Most Candida spp. infections are associated with biofilm formation on host surfaces. Cells within these communities display a phenotype resistant to antimicrobials and host defenses, so biofilm-associated infections are difficult to treat, representing a source of reinfections. The present study evaluated the effect of eugenol on the adherence properties and biofilm formation capacity of Candida dubliniensis and Candida tropicalis isolated from the oral cavity of HIV-infected patients. All isolates were able to form biofilms on different substrate surfaces. Eugenol showed inhibitory activity against planktonic and sessile cells of Candida spp. No metabolic activity in biofilm was detected after 24 h of treatment. Scanning electron microscopy demonstrated that eugenol drastically reduced the number of sessile cells on denture material surfaces. Most Candida species showed hydrophobic behavior and a significant difference in cell surface hydrophobicity was observed after exposure of planktonic cells to eugenol for 1 h. Eugenol also caused a significant reduction in adhesion of most Candida spp. to HEp-2 cells and to polystyrene. These findings corroborate the effectiveness of eugenol against Candida species other than C. albicans, reinforcing its potential as an antifungal applied to limit both the growth of planktonic cells and biofilm formation on different surfaces.

  5. Antifungal activity of essential oil isolated from Ocimum gratissimum L. (eugenol chemotype against phytopathogenic fungi

    Directory of Open Access Journals (Sweden)

    Terezinha de Jesus Faria

    2006-11-01

    Full Text Available An investigation of antifungal activity of the essential oil obtained by steam-distillation (1.1% w/w of the aerial parts of Ocimum gratissimum and of an ethanolic extract from the steam-distillation residue was carried out using the agar diffusion method. The results revealed that the essential oil inhibited the growth of all fungi tested, including the phytopathogens, Botryosphaeria rhodina, Rhizoctonia sp. and two strains of Alternaria sp., while the extract from the residue was inactive. The essential oil was subjected to TLC bioautography used to detect fungitoxic constituents. The compound that showed antifungal activity was isolated and identified as eugenol. GC/MS analysis showed that eugenol was the main constituent of the essential oil studied. The antifungal activity of eugenol was evaluated against a species of Alternaria isolated from tomato (A1 and Penicillium chrysogenum. The minimal inhibitory concentrations of eugenol were 0.16 and 0.31 mg/disc for Alternaria sp. (A1 and P. chrysogenum, respectively.O óleo essencial resultante da destilação por arraste a vapor das partes aéreas de Ocimum gratissimum e o extrato etanólico obtido do resíduo da destilação foram avaliados quanto à atividade antifúngica, utilizando-se o método de difusão em agar. O óleo essencial inibiu o crescimento de todos os fungos testados, incluindo os fitopatogênicos Botryosphaeria rhodina e duas espécies de Alternaria sp, enquanto que o extrato do resíduo da destilação não apresentou atividade. O óleo essencial foi, então, submetido ao método de bioautografia em TLC para detecção do composto ativo. O componente ativo foi isolado e identificado através da análise por cromatografia gasosa acoplada à espectrometria de massas como o eugenol, constituinte majoritário do óleo estudado. Ensaios de atividade antifúngica revelaram a atividade do eugenol contra Alternaria isolada de tomate (A1 e Penicillium chrysogenum. As concentra

  6. The Botanical Monoterpenes Linalool and Eugenol Flush-Out Nymphs of Triatoma infestans (Hemiptera: Reduviidae).

    Science.gov (United States)

    Moretti, A N; Seccacini, E A; Zerba, E N; Canale, D; Alzogaray, R A

    2017-09-01

    Monoterpenes are the main components of essential oils. Some members of this chemical family present insecticidal activity. Triatoma infestans (Klug) is the main vector of Chagas disease in Argentina, Bolivia, Paraguay, and Perú. The objective of this work was to evaluate the effect of six monoterpenes (1,8-cineole, eugenol, linalool, menthol, α-terpineol, and thymol) on the locomotor and flushing out activity of T. infestans. A video tracking technique was used to evaluate the locomotor activity of nymphs exposed to different concentrations of these chemicals applied as films on filter paper. Papers treated with acetone alone were used as negative controls, while solutions of tetramethrin were applied as positive controls. Only linalool and menthol produced hyperactivation. Flushing out was assessed under laboratory conditions using a standardized aerosolization method. All monoterpenes were applied at 1.5 g/m3. 1,8-Cineole, α-terpineol, and thymol flushed out 10% or less nymphs. The average flushing out produced by eugenol was 36.7%. Values of median flushing out time (FT50) could only be calculated for linalool and menthol (16.67 and 42.98 min, respectively). The FT50 value for the positive control tetramethrin (applied at 0.006 g/m3) was 8.29 min. Following these results, the flushing out activity of a mixture of linalool and eugenol was evaluated. The FT50 of this 2:1 linalool:eugenol mixture was 40.73 min. Finally, flushing out assays performed in semifield conditions showed similar results to those obtained at the laboratory. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Eugenol como anestésico para a tilápia-do-nilo Eugenol as an anesthetic for Nile tilapia

    Directory of Open Access Journals (Sweden)

    Luiz Vítor Oliveira Vidal

    2008-08-01

    Full Text Available O objetivo deste trabalho foi avaliar o eugenol como anestésico para a tilápia-do-nilo. Para a concentração ideal, foram avaliados seis tratamentos (50, 75, 100, 150, 200 e 250 mg L-1, com dez peixes por tratamento, anestesiados individualmente, acompanhados durante a indução e recuperação. A toxicidade foi estimada pela submissão de 210 peixes a 7 concentrações de eugenol (50, 75, 100, 150, 200, 250, 300 mg L-1, durante 600 s e, para a margem de segurança, 120 peixes foram submetidos a 75 mg L-1 durante cinco intervalos de tempo (600, 1.200, 1.800 e 2.400 s. As concentrações eficientes foram 50 e 75 mg L-1. Os valores de toxicidade letal (CL, aos 600 s, foram: CL01, 81,97 mg L-1; CL50, 184,26 mg L-1; e CL99, 286,55 mg L-1; e os tempos de concentrações letais (TCL foram: TCL01, 566,97 s; TCL50, 1.611,66 s; e TCL99, 2.656,34 s. Concluiu-se que 75 mg L-1 são suficientes para a anestesia profunda de curta duração, com margem de segurança de 484,27 s, e 50 mg L-1 para longos períodos (600 s. A maior concentração terapêutica do eugenol custa R$ 0,065 por litro de água. A eutanásia pode ser realizada com 286,55 mg L-1 durante 600 s.The objective of this work was to evaluate eugenol as anesthetic for Nile tilápia. For the best concentration of the anaesthetic, six treatments (50, 75, 100, 150, 200, and 250 mg L-1 were evaluated, with ten fishes per treatment, anesthetised individually and monitored during the induction and recovery. Toxicity was estimated in 210 fish submitted to seven eugenol concentrations (50, 75, 100, 150, 200, 250, and 300 mg L-1 for 600 s; and for safety margin, 120 fish were submitted to 75 mg L-1 for five time intervals (600, 1,200, 1,800, and 2,400 s. The effective concentrations were 50 and 75 mg L-1. Lethal concentration (LC values for 600 s were: LC01 81.97 mg L-1, LC50 184.26 mg L-1, and LC99 286.55 mg L-1. Times of lethal concentration (TLC were TLC01 566.97 s, TLC50 1,611.66 s, and TLC99 2

  8. The Inhibition Effect of Eugenol to the Biocorrosion of Titanium in Saliva Medium

    Directory of Open Access Journals (Sweden)

    Latifa KINANI

    2014-02-01

    Full Text Available The inhibition efficiency of eugenol in controlling corrosion of titanium grade 2 in saliva medium containing bacteria at different pH has been evaluated by electrochemical polarization methods, and electrochemical impedance spectroscopy. The electrochemical data show that the corrosion resistance is greatly enhanced after surface modification. The best protection is obtained with eugenol at pH 7. The Scanning electron microscopy analysis showed that theses inhibitors act by establishment of a thin film at the metal surface. The film, act as a barrier to the transport of the metal ions from the metal to the solution at high concentration of inhibitor acts by establishment of a thin film at the metal surface.

  9. New Eugenol Glucoside-based Derivative Shows Fungistatic and Fungicidal Activity against Opportunistic Candida glabrata.

    Science.gov (United States)

    de Souza, Thiago Belarmino; Brito, Keila Mercês de Oliveira; Silva, Naiara Chaves; Rocha, Raissa Prado; de Sousa, Grasiely Faria; Duarte, Lucienir Pains; Coelho, Luiz Felipe Leomil; Dias, Amanda Latércia Tranches; Veloso, Marcia Paranho; Carvalho, Diogo Teixeira; Dias, Danielle Ferreira

    2016-01-01

    A new series of glucosides modified in their saccharide units were synthesized, evaluated against Candida sp., and compared to prototype 1, an eugenol tetracetyl glucoside previously synthesized and shown to be active against Candida glabrata. Among the new glucosides, benzyl derivative 5 was the most promising, showing fungistatic activity at IC50 18.1 μm against Candida glabrata (threefold higher than fluconazole) and fungicidal activity with a low IC90 value of 36.2 μm. Moreover, the cytotoxic activity of compound 5 (CC50 : 580.9 μm), tested in peripheral blood mononuclear cells, suggests its potential as an agent to treat Candida glabrata infections, with a selectivity index of 32. The new eugenol glucoside 5 may be considered as a novel structural pattern in the development of new anti-Candida drugs. © 2015 John Wiley & Sons A/S.

  10. Intrinsically antibacterial materials based on polymeric derivatives of eugenol for biomedical applications.

    Science.gov (United States)

    Rojo, Luis; Barcenilla, Jose M; Vázquez, Blanca; González, Ramón; San Román, Julio

    2008-09-01

    Infections are the most common cause of biomaterial implant failure representing a constant challenge to the more widespread application of medical implants. This study reports on the preparation and characterization of novel hydrophilic copolymeric systems provided with antibacterial properties coming from eugenol residues anchored to the macromolecular chains. Thus, high conversion copolymers were prepared from the hydrophilic monomer 2-hydroxyethyl methacrylate (HEMA) and different eugenol monomeric derivatives, eugenyl methacrylate (EgMA) and ethoxyeugenyl methacrylate (EEgMA), by bulk polymerization reaction. Thermal evaluation revealed glass transition temperature values in the range 95-58 degrees C following the order HEMA-co-EgMA > PHEMA > HEMA-co-EEgMA and a clear increase in thermal stability with the presence of any eugenyl monomer in the system. In vitro wettability studies showed a reduction of water sorption capacity and surface free energy values with increasing the content of eugenol residues in the copolymer. The antimicrobial activity of copolymeric discs was evaluated by determining their capacity to reduce or inhibit colony formation by different bacterial species. All eugenyl containing materials showed bacteria growth inhibition, this one being higher for the EEgMA derivative copolymers.

  11. Eugenol inhibits the GABAA current in trigeminal ganglion neurons.

    Science.gov (United States)

    Lee, Sang Hoon; Moon, Jee Youn; Jung, Sung Jun; Kang, Jin Gu; Choi, Seung Pyo; Jang, Jun Ho

    2015-01-01

    Eugenol has sedative, antioxidant, anti-inflammatory, and analgesic effects, but also serves as an irritant through the regulation of a different set of ion channels. Activation of gamma aminobutyric acid (GABA) receptors on sensory neurons leads to the stabilization of neuronal excitability but contributes to formalin-induced inflammatory pain. In this study, we examined the effect of eugenol on the GABA-induced current in rat trigeminal ganglia (TG) neurons and in human embryonic kidney (HEK) 293 cells expressing the GABAA receptor α1β2γ2 subtype using the whole-cell patch clamp technique. RT-PCR and Western blot analysis were used to confirm the expression of GABAA receptor γ2 subunit mRNA and protein in the TG and hippocampus. Eugenol decreased the amplitude ratio of the GABA-induced current to 27.5 ± 3.2% (p eugenol inhibited GABA-induced currents in a dose-dependent manner. Application of eugenol also decreased the GABA response in the presence of a G-protein blocker. Eugenol pretreatment with different concentrations of GABA resulted in similar inhibition of the GABA-induced current in a non-competitive manner. In conclusion, eugenol inhibits the GABA-induced current in TG neurons and HEK 293 cells expressing the GABAA receptor in a reversible, dose-dependent, and non-competitive manner, but not via the G-protein pathway. We suggest that the GABAA receptor could be a molecular target for eugenol in the modulation of nociceptive information.

  12. Neuroprotective effects of eugenol against aluminiuminduced toxicity in the rat brain.

    Science.gov (United States)

    Said, Mahmoud M; Rabo, Marwa M Abd

    2017-03-01

    Aluminium (Al) is a neurotoxic metal that contributes to the progression of several neurodegenerative diseases. The aim of the present study was to evaluate the protective effect of dietary eugenol supplementation against aluminium (Al)- induced cerebral damage in rats. Male Wistar rats were divided into four groups: normal controls, rats fed a diet containing 6,000 μg g-1 eugenol, rats intoxicated daily with aluminium chloride (84 mg kg-1 body weight) p. o. and fed either a basal diet or a eugenol-containing diet. Daily oral administration of Al for four consecutive weeks to rats significantly reduced brain total antioxidant status (TAS) (11.42±0.31 μmol g-1 tissue, peugenol with Al intoxication restored brain BDNF (108.76±2.64 pg mg-1 protein) and 5-HT (2.13±0.27 ng mg-1 tissue) to normal levels, enhanced brain TAS (13.43±0.24 μmol g-1 tissue, peugenol holds potential as a neuroprotective agent through its hydrophobic, antioxidant, and anti-apoptotic properties, as well as its neurotrophic ability against Al-induced brain toxicity in rats.

  13. Lowering effects of aspirin eugenol ester on blood lipids in rats with high fat diet.

    Science.gov (United States)

    Karam, Isam; Ma, Ning; Liu, Xi-Wang; Kong, Xiao-Jun; Zhao, Xiao-Le; Yang, Ya-Jun; Li, Jian-Yong

    2016-11-17

    Aspirin and eugenol were esterified to synthesize aspirin eugenol ester (AEE). As a pale yellow and odourless crystal, AEE reduced the gastrointestinal damage of aspirin and vulnerability of eugenol. The study was conducted to evaluate the preventive effects of AEE on blood lipids in rats with high fat diet (HFD). Suspensions of AEE and simvastatin were prepared in 5% carboxymethyl cellulose sodium (CMC-Na). In order to observe the intervention effects, the drugs and HFD were administrated at the same time. Based on individual weekly body weight (BW), AEE was intragastrically administrated at the dosage of 18, 36 and 54 mg/kg. Simvastatin (10 mg/kg) and CMC-Na (20 mg/kg) were used as control drug. After 6 weeks of administration, the changes of BW and blood lipid indices including triglyceride (TG), low density lipoprotein (LDL), high density lipoprotein (HDL) and total cholesterol (TCH) were determined in the experiment. The rat blood lipids profile in model group was remarkably different after feeding 6-weeks HFD. TG, TCH and LDL indexes in model group were increased significantly compared with those in control group (p mechanism of action of AEE should be investigated in further studies.

  14. Catalytic activity of titania zirconia mixed oxide catalyst for dimerization eugenol

    Science.gov (United States)

    Tursiloadi, S.; Kristiani, A.; Jenie, S. N. Aisyiyah; Laksmono, J. A.

    2017-01-01

    Clove oil has been found to possess antibacterial, antifungal, antiviral, antitumor, antioxidant and insecticidal properties. The major compound of clove oil is eugenol about 49-87%. Eugenol as phenolic compounds exhibits antioxidant and antimicrobial activities. The derivative compound of eugenol, dieugenol, show antioxidant potency better than parent eugenol. A series of TiO2-ZrO2 mixed oxides (TZ) with various titanium contents from 0 to 100wt%, prepared by using sol gel method were tested their catalytic activity for dimerization eugenol, Their catalytic activity show that these catalysts resulted a low yield of dimer eugenol, dieugenol, about 2-9 % and the purity is more than 50%.

  15. Endoflas, zinc oxide eugenol and metapex as root canal filling materials in primary molars--a comparative clinical study.

    Science.gov (United States)

    Subramaniam, Priya; Gilhotra, Kanupriya

    2011-01-01

    Several materials have been used to fill root canals of primary teeth. Traditionally, zinc oxide eugenol was used for the purpose, until the introduction of calcium hydroxide and iodoform based materials. Another root canal filling material that contains zinc oxide eugenol, calcium hydroxide and iodoform is commercially available as Endoflas. The aim of the study was to evaluate and compare the efficacy of Endoflas, zinc oxide eugenol and Metapex as root canal filling materials. A total of forty-five primary molars from children aged 5-9 years were selected for a one stage pulpectomy procedure. Teeth were randomly divided into three groups of fifteen teeth each based on the type of root canal filling material used. All the molars were evaluated clinically and radiographically at regular intervals of 3, 6, 12 and 18 months. The observations were tabulated and statistically analyzed. Endoflas and zinc oxide eugenol showed 93.3% success, whereas a higher percentage of success was observed with Metapex (100%). Overfilling and voids were more commonly seen in teeth filled with Metapex. There was no significant difference between the three root canal filling materials.

  16. O-methylation of natural phenolic compounds based on green chemistry using dimethyl carbonate

    Science.gov (United States)

    Prakoso, N. I.; Pangestu, P. H.; Wahyuningsih, T. D.

    2016-02-01

    The alkyl aryl ether compounds, of which methyl eugenol and veratraldehyde are the simplest intermediates can be synthesized by reacting eugenol and vanillin with the green reagent dimethyl carbonate (DMC). The reaction was carried out under mild of temperature and pressure. Excellent yields and selective products were obtained (95-96%) after a few hours. In the end of the reaction, the catalysts (base and Phase Transfer Catalyst) can be recovered and regenerated.

  17. Investigations of eugenol efficacy in treatment of mange in swine

    Directory of Open Access Journals (Sweden)

    Jezdimirović Milanka

    2006-01-01

    Full Text Available The acaricide efficacy, tolerability and safety of the active ingredient of the etheric oil of cloves eugenol was investigated in the treatment of mange in swine, and the obtained results were compared with the results of acaricide efficacy of the synthetic acaricide permethrin, which has been in use for quite a some time. A single application of permethrin in the form of a 1% solution showed maximum efficacy of 62.5%, and after three applications of 75.0% in the treatment of sarcoptes in swine mange. A single application of eugenol in the form of a 10% solution had maximum efficacy of 75.0%, and applied three times an efficacy of 100% in curbing Sarcoptes scabiei var. suis. A single administration of 20% eugenol solution showed maximum efficacy of 87.5%, and applied three times it was 100% efficient in curbing Sarcoptes scabeiei var. suis. The best efficacy in the treatment of sarcoptes mange in swine was achieved with three applications of eugenol in a concentration of 20%. This maximum effect (100% was obtained already after the second treatment. Eugenol in a concentration of 10% was safe for local application on skin because it does not cause any undesired reactions, while a 20% concentration caused irritation followed by a passing redness and disquiet in a smaller number of treated animals. The results of comparative investigations of acaricide efficacy of permethrin and eugenol demonstrate that there is resistence in Sarcoptes scabiei var. suis to permethrin. The biocide eugenol can safely be recommended for the treatment of sarcoptes mange in swine.

  18. Stimulus Selection for Intranasal Sensory Isolation: Eugenol Is an Irritant

    Science.gov (United States)

    Wise, Paul M.; Lundström, Johan N.

    2012-01-01

    Both the olfactory and the trigeminal systems are able to respond to intranasal presentations of chemical vapor. Accordingly, when the nose detects a volatile chemical, it is often unclear whether we smell it, feel it, or both. The distinction may often be unimportant in our everyday perception of fragrances or aromas, but it can matter in experiments that purport to isolate olfactory processes or study the interaction between olfaction and chemesthesis. Researchers turn to a small pool of compounds that are believed to be “pure olfactory” stimuli with little or no trigeminal impact. The current report reexamines one such commonly used compound, namely eugenol, a flavor and fragrance ingredient that has anesthetic properties under some conditions. Using a standard method involving many trials during an experimental session (Experiment 1), subjects were unable to reliably lateralize eugenol, consistent with claims that this compound is detected primarily through olfaction. However, with more limited exposure (Experiments 2 and 3), subjects were able to lateralize eugenol. We speculate that anesthetic properties of eugenol could blunt its trigeminal impact in some paradigms. Regardless, the current experiments suggest that eugenol can in fact stimulate the trigeminal nerve but in a complex concentration–dependent manner. Implications and strategies for selection of model odorants are discussed. PMID:22293937

  19. Enhancement of production of eugenol and its glycosides in transgenic aspen plants via genetic engineering.

    OpenAIRE

    KOEDUKA, Takao; Suzuki, Shiro; Iijima, Yoko; Ohnishi, Toshiyuki; Suzuki, Hideyuki; Watanabe, Bunta; Shibata, Daisuke; UMEZAWA, Toshiaki; Pichersky, Eran; Hiratake, Jun

    2013-01-01

    Eugenol, a volatile phenylpropene found in many plant species, exhibits antibacterial and acaricidal activities. This study attempted to modify the production of eugenol and its glycosides by introducing petunia coniferyl alcohol acetyltransferase (PhCFAT) and eugenol synthase (PhEGS) into hybrid aspen. Gas chromatography analyses revealed that wild-type hybrid aspen produced small amount of eugenol in leaves. The heterologous overexpression of PhCFAT alone resulted in up to 7-fold higher eug...

  20. An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles

    NARCIS (Netherlands)

    Medina-Puche, L.; Molina-Hidalgo, F.J.; Boersma, M.; Schuurink, R.C.; López-Vidriero, I.; Solano, R.; Franco-Zorrilla, J.M.; Caballero, J.L.; Blanco-Portales, R.; Muñoz-Blanco, J.

    2015-01-01

    Eugenol is a volatile phenylpropanoid that contributes to flower and ripe fruit scent. In ripe strawberry (Fragaria x ananassa) fruit receptacles, eugenol is biosynthesized by eugenol synthase (FaEGS2). However, the transcriptional regulation of this process is still unknown. We have identified and

  1. Effect of eugenol on the genotoxicity of established mutagens in the liver

    NARCIS (Netherlands)

    Rompelberg, C.J.M.; Evertz, S.J.C.J.; Bruijntjes-Rozier, G.C.D.M.; Heuvel, P.D. van den; Verhagen, H.

    1996-01-01

    The influence of in vivo treatment with eugenol on established mutagens was studied to determine whether eugenol has antigenotoxic potential. The effects of eugenol in rats was investigated in the unscheduled DNA synthesis (UDS) assay with established mutagens and the Salmonella typhimurium

  2. Effect of short-term dietary administration of eugenol in humans

    NARCIS (Netherlands)

    Rompelberg, C.J.M.; Vogels, J.T.W.E.; Vogel, N. de; Bruijntjes-Rozier, G.C.D.M.; Stenhuis, W.H.; Bogaards, J.J.P.; Verhagen, H.

    1996-01-01

    1. In order to study the antigenotoxic potential of eugenol in humans, ten healthy non-smoking males ingested a daily amount of 150 mg eugenol or the placebo for seven consecutive days. After a washout period of one week, groups ingesting eugenol or the placebo were crossed and received the other

  3. Enhancement of production of eugenol and its glycosides in transgenic aspen plants via genetic engineering.

    Science.gov (United States)

    Koeduka, Takao; Suzuki, Shiro; Iijima, Yoko; Ohnishi, Toshiyuki; Suzuki, Hideyuki; Watanabe, Bunta; Shibata, Daisuke; Umezawa, Toshiaki; Pichersky, Eran; Hiratake, Jun

    2013-06-21

    Eugenol, a volatile phenylpropene found in many plant species, exhibits antibacterial and acaricidal activities. This study attempted to modify the production of eugenol and its glycosides by introducing petunia coniferyl alcohol acetyltransferase (PhCFAT) and eugenol synthase (PhEGS) into hybrid aspen. Gas chromatography analyses revealed that wild-type hybrid aspen produced small amount of eugenol in leaves. The heterologous overexpression of PhCFAT alone resulted in up to 7-fold higher eugenol levels and up to 22-fold eugenol glycoside levels in leaves of transgenic aspen plants. The overexpression of PhEGS alone resulted in a subtle increase in either eugenol or eugenol glycosides, and the overexpression of both PhCFAT and PhEGS resulted in significant increases in the levels of both eugenol and eugenol glycosides which were nonetheless lower than the increases seen with overexpression of PhCFAT alone. On the other hand, overexpression of PhCFAT in transgenic Arabidopsis and tobacco did not cause any synthesis of eugenol. These results indicate that aspen leaves, but not Arabidopsis and tobacco leaves, have a partially active pathway to eugenol that is limited by the level of CFAT activity and thus the flux of this pathway can be increased by the introduction of a single heterologous gene. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Evaluation of alternatives to methyl bromide in melon crops in Guatemala.

    Science.gov (United States)

    Díaz-Pérez, M; Camacho-Ferre, F; Diánez-Martínez, F; De Cara-García, M; Tello-Marquina, J C

    2009-02-01

    The monoculture of melon in Guatemala has caused the massive appearance of plants with an analogous syndrome for the well-known disease commonly called melon collapse, or vine decline, causing significant losses in crops. Methyl bromide is commonly used to sterilize soil prior to planting in Guatemala, but it must be phased out by 2015. The objective of this study was to evaluate the technique of grafting melon onto hybrids of Cucurbita (Cucurbita maxima x Cucurbita moschata), as an alternative to using soil disinfectants (such as Metam sodium, 1,3-dichloropropene, and methyl bromide) for the control of collapse. The results suggested that both soil disinfection and grafting were not necessary in these locations, since there were no statistical differences in terms of yields between the treatments and the untreated control. Furthermore, these results demonstrate that decisions to disinfect the soil must be based on the firm identification of the causal agents, in addition to preliminary assessments of yield losses.

  5. Eugenol derived immunomodulatory molecules against visceral leishmaniasis.

    Science.gov (United States)

    Charan Raja, Mamilla R; Velappan, Anand Babu; Chellappan, Davidraj; Debnath, Joy; Kar Mahapatra, Santanu

    2017-10-20

    Visceral leishmaniasis (VL) is a life threatening infectious disease caused by Leishmania donovani. It leads to the severe immune suppression in the host defense system. Higher cytotoxicity, rigorous side effects and lower therapeutic indexes (TI) of current antileishmanial drugs have created a necessity to develop new molecules with better antileishmanial activity and high TI value. In this study, we have synthesized 36 derivatives of eugenol and screened them for their activity against promastigote and amastigote forms of L. donovani. Among the synthesized derivatives, comp.35 showed better antileishmanial activity against extra cellular promastigotes (IC50- 20.13 ± 0.91 μM) and intracellular amastigotes (EC50-4.25 ± 0.26 μM). The TI value (82.24 ± 3.77) was found to improve by 10-13 fold compared to Amphotericin B and Miltefosine respectively. Treatment with comp.35 (5 μg/ml) enhanced the nitric oxide (NO) generation, iNOS2 mRNA expression (∼8 folds increase) and decreased the arginase-1 activity (∼4 folds) in L. donovani infected peritoneal macrophages. Comp.35 had also increased the IL-12 (∼6 folds) and decreased the IL-10 (∼3 folds) mRNA expression and release in vitro. Results of in vivo studies revealed that comp.35 treatment at 25 mg/kg body weight efficiently cleared the hepatic and splenic parasite burden with enhanced Th1 response in L. donovani infected BALB/c mice. Hence, this study clearly represents comp.35, as an immunomodulatory molecule, can induce host protective immune response against visceral leishmaniasis through enhanced NO generation and Th1 response, which are essentials against this deadly disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Inhibitory effect of eugenol on aflatoxin B1 production in Aspergillus parasiticus by downregulating the expression of major genes in the toxin biosynthetic pathway.

    Science.gov (United States)

    Jahanshiri, Zahra; Shams-Ghahfarokhi, Masoomeh; Allameh, Abdolamir; Razzaghi-Abyaneh, Mehdi

    2015-07-01

    Aflatoxin contamination of grains and agro-products is a serious food safety issue and a significant economic concern worldwide. In the present study, the effects of eugenol on Aspergillus parasiticus growth and aflatoxin production were studied in relation to the expression of some essential genes involved in aflatoxin biosynthetic pathway. The fungus was cultured in presence of serial two-fold concentrations of eugenol (15.62-500 μg mL(-1)) for 3 days at 28 °C. Mycelia dry weight was determined as an index of fungal growth, while aflatoxin production was assessed by high performance liquid chromatography. The expression of aflatoxin biosynthetic genes including ver-1, nor-1, pksA, omtA and aflR were evaluated by real-time PCR. Eugenol strongly inhibited A. parasiticus growth in the range of 19.16-95.83 % in a dose-dependent manner. Aflatoxin B1 production was also inhibited by the compound in the range of 15.07-98.0 %. The expressions of ver-1, nor-1, pksA, omtA and aflR genes were significantly suppressed by eugenol at concentrations of 62.5 and 125 μg mL(-1). These results indicate that eugenol may be considered as a good candidate to control toxigenic fungal growth and the subsequent contamination of food, feed and agricultural commodities by carcinogenic aflatoxins.

  7. Effect of eugenol on hematological parameters in rats

    OpenAIRE

    Jezdimirović Milanka; Aleksić Nevenka; Milovanović Mirjana; Stojanović Dragica; Jezdimirović Nemanja; Đurđević Dragan; Kureljušić Jasna

    2013-01-01

    Investigations covered the possible hematotoxic effect of eugenol in rats following two-week and four-week continuous p.o. application. An experiment was conducted on 72 maleWistar rats divided into six groups. Four groups were treated with different doses of eugenol (10 mg/kg bm/day, 50 mg/kg/day, 200 mg/kg/day and 400 mg/kg bm/day), the control group was administered a vehiculum (0,5 % methylcellulose, 20 % propylene glycol and water), and the sixth group...

  8. Effect of eugenol on hematological parameters in rats

    Directory of Open Access Journals (Sweden)

    Jezdimirović Milanka

    2013-01-01

    Full Text Available Investigations covered the possible hematotoxic effect of eugenol in rats following two-week and four-week continuous p.o. application. An experiment was conducted on 72 maleWistar rats divided into six groups. Four groups were treated with different doses of eugenol (10 mg/kg bm/day, 50 mg/kg/day, 200 mg/kg/day and 400 mg/kg bm/day, the control group was administered a vehiculum (0,5 % methylcellulose, 20 % propylene glycol and water, and the sixth group was the absolute untreated control. Eugenol and the vehiculum were administered using a gastric probe in a volume of 1 ml/100 g body mass of rat. Blood was sampled using cardiac puncture on days 14 and 28 of the experiment in order to determine hematological parameters (hematocrit, number of erythrocytes, MCV, haemoglobin concentration, MCH, number of leukocytes, leukocyte formula, and number of thrombocytes. The results have shown that eugenol administered over 14 and 28 days in doses of 10, 50, 200 i 400 mg/kg bm/day has no hemolytic activity. Furthermore, administered over four weeks, it does not significantly affect the number of erythrocytes, haemoglobin concentration, hematocrit, erythrocyte volume, number of leukocytes, and the leukocyte formula. Applied over two weeks, eugenol causes a significant increase in the mass of haemoglobin per erythrocyte, in comparison with controls. This effect is non-specific and does not depend on the dose or on the duration of treatment. The eugenol doses of 10 and 200 mg/kg/day administered over a period of four weeks result in a statistically significant reduction in the number of thrombocytes in comparison with the absolute control, while the highest investigated dose (400 mg/kg causes a significant increase in comparison with the numbers for rats treated with a dose of 10 and 200 mg/kg/day. The changes in thrombocyte number caused by eugenol are qualitatively different and depend neither on the dose nor on the duration of treatment. Eugenol applied

  9. Encapsulation of eugenol from clove oil using casein micelle for solid preparation

    Science.gov (United States)

    Wijayanto, Andri; Putri, Yeshinta Risky Priasmara; Hermansyah, Heri; Sahlan, Muhamad

    2017-02-01

    Liquid preparation of eugenol in clove oil form is one of eugenol preparation form that is easiest to get it nowadays in many level of purity. The problem is the liquid preparation of chemical is often not easy to handle than the solid one. In this study, we observe the effectivity of cow milk casein in case of encapsulating eugenol from clove oil for creating the solid preparation of eugenol in nanoscale size. The result is 63.86% eugenol from clove oil can be encapsulated by the casein. The average particle diameter is about 377.5 nm, with loading capacity until 67.2%.

  10. Modification of radiation-induced oxidative damage in liposomal and microsomal membrane by eugenol

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B.N. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Lathika, K.M. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Mishra, K.P. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: kpm@magnum.barc.ernet.in

    2006-03-15

    Radiation-induced membrane oxidative damage, and their modification by eugenol, a natural antioxidant, was investigated in liposomes and microsomes. Liposomes prepared with DPH showed decrease in fluorescence after {gamma}-irradiation, which was prevented significantly by eugenol and correlated with magnitude of oxidation of phospholipids. Presence of eugenol resulted in substantial inhibition in MDA formation in irradiated liposomes/microsomes, which was less effective when added after irradiation. Similarly, the increase in phospholipase C activity observed after irradiation in microsomes was inhibited in samples pre-treated with eugenol. Results suggest association of radio- oxidative membrane damage with alterations in signaling molecules, and eugenol significantly prevented these membrane damaging events.

  11. Modification of radiation-induced oxidative damage in liposomal and microsomal membrane by eugenol

    Science.gov (United States)

    Pandey, B. N.; Lathika, K. M.; Mishra, K. P.

    2006-03-01

    Radiation-induced membrane oxidative damage, and their modification by eugenol, a natural antioxidant, was investigated in liposomes and microsomes. Liposomes prepared with DPH showed decrease in fluorescence after γ-irradiation, which was prevented significantly by eugenol and correlated with magnitude of oxidation of phospholipids. Presence of eugenol resulted in substantial inhibition in MDA formation in irradiated liposomes/microsomes, which was less effective when added after irradiation. Similarly, the increase in phospholipase C activity observed after irradiation in microsomes was inhibited in samples pre-treated with eugenol. Results suggest association of radio- oxidative membrane damage with alterations in signaling molecules, and eugenol significantly prevented these membrane damaging events.

  12. Stress responses to handling in Nile tilapia (Oreochromis niloticus Linnaeus: assessment of eugenol as an alternative anesthetic = Respostas metabólicas da tilápia do Nilo (Oreochromis niloticus submetida ao manuseio e ao anestésico eugenol

    Directory of Open Access Journals (Sweden)

    Graziele Fernanda Deriggi

    2006-07-01

    Full Text Available Eugenol, the main component of clove oil, has been proposed as an alternative fish anesthetic with no apparent toxic effects to people and environment. In addition, anesthesia may reduce stress and risk of trauma to fish during handling. Therefore, the use of anestheticsmay reduce fish mortality. However, studies are required on short-term exposures to eugenol to assure the target animal safety of this product. The present work reports evaluation of biochemical responses of Nile tilapia to handling with concurrent two environmental concentrations of eugenol. Based on the results of this study, eugenol appears to be a safe anesthetic for use in this species.O eugenol é o principal componente do óleo de cravo, sendo proposto como anestésico alternativo para peixes, pois aparentemente não apresenta características tóxicas aos trabalhadores e ao meio ambiente. Ainda, o uso de anestésicos durante o manejo de peixes pode reduzir o estresse e riscos de acidentes pela movimentação excessiva dos animais. Portanto, a anestesia em peixes pode evitar mortalidade durante o manejo. Entretanto, ainda são necessários estudos sobre os efeitos do eugenol em peixes, o que pode assegurar a sua viabilidade de uso. O presente trabalho avaliou as respostas bioquímicas da tilápia do Nilo submetida ao manuseio e a duas concentrações de eugenol. Os resultados indicam esse produto como seguro para uso nessa espécie.

  13. Antimicrobial activities of Eugenia caryophyllata extract and its major chemical constituent eugenol against Streptococcus pneumoniae.

    Science.gov (United States)

    Yadav, Mukesh Kumar; Park, Seok-Won; Chae, Sung-Won; Song, Jae-Jun; Kim, Ho Chul

    2013-12-01

    In this study, we investigate the antimicrobial activities of both Eugenia caryophyllata (Ec) extract and its major component eugenol (4-allyl-2-methoxyphenol) against Streptococcus pneumoniae. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by microdilution method. Pneumococcal biofilms were detected by crystal-violet microtiter plate assay, followed by colony-forming unit counts and visualized by scanning electron microscope (SEM). The synergistic effect of eugenol and penicillin was determined by checker-board method. Both the eugenol and the Ec extract inhibited pneumococcal growth in a concentration-dependent manner. The MIC and MBC of eugenol were 0.06% and 0.12%, respectively. Eugenol at a concentration of 0.12% completely killed S. pneumoniae within 60 min of exposure. The kill rate of planktonic cells was most rapid during the first 15 min of contact with eugenol. The addition of eugenol or Ec extract inhibited in vitro biofilm formation. In already established biofilms, the inhibitory effect of eugenol or Ec extract was more significant in terms of cell viability than in terms of disruption of the biofilm matrix. SEM analysis revealed non-viable and disruptive action of eugenol on the cell membrane of bacteria of biofilms. It was found that eugenol and penicillin produced a synergistic effect against S. pneumoniae. In conclusion, eugenol and Ec extract efficiently inhibited S. pneumoniae in planktonic growth and within biofilms. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  14. Eugenol prevents amyloid formation of proteins and inhibits amyloid-induced hemolysis

    Science.gov (United States)

    Dubey, Kriti; Anand, Bibin G.; Shekhawat, Dolat Singh; Kar, Karunakar

    2017-02-01

    Eugenol has attracted considerable attention because of its potential for many pharmaceutical applications including anti-inflammatory, anti-tumorigenic and anti-oxidant properties. Here, we have investigated the effect of eugenol on amyloid formation of selected globular proteins. We find that both spontaneous and seed-induced aggregation processes of insulin and serum albumin (BSA) are significantly suppressed in the presence of eugenol. Isothermal titration calorimetric data predict a single binding site for eugenol-insulin complex confirming the affinity of eugenol for native soluble insulin species. We also find that eugenol suppresses amyloid-induced hemolysis. Our findings reveal the inherent ability of eugenol to stabilize native proteins and to delay the conversion of protein species of native conformation into β-sheet assembled mature fibrils, which seems to be crucial for its inhibitory effect.

  15. Evaluation of pyraclostrobin and acibenzolar-S-methyl on common bacterial blight of snap bean

    OpenAIRE

    Renata de Cássia Camara; Antonio Carlos Maringoni; Sandra Cristina Vigo; Giuseppina Pace Pereira Lima

    2012-01-01

    Assays were done under greenhouse conditions in order to evaluate the effect of pyraclostrobin (0.0375, 0.0750 and 0.150 mL.L-1) and acibenzolar-S-methyl (ASM) (0.025 g.L-1) in common bacterial blight, using leaves of snap beans cultivar Bragança. These chemicals were sprayed at three different times: five days before; five days before + five days after; and five days after leaf inoculation with an isolate of Xanthomonas axonopodis pv. phaseoli. They were determinate the levels of polyphenolo...

  16. Baseline characteristics in the Bardoxolone methyl EvAluation in patients with Chronic kidney disease and type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Lambers Heerspink, Hiddo J; Chertow, Glenn M; Akizawa, Tadao

    2013-01-01

    Type 2 diabetes mellitus (T2DM) is the most important contributing cause of end-stage renal disease (ESRD) worldwide. Bardoxolone methyl, a nuclear factor-erythroid-2-related factor 2 activator, augments estimated glomerular filtration. The Bardoxolone methyl EvAluation in patients with Chronic k...... kidney disease and type 2 diabetes mellitus: the Occurrence of renal eveNts (BEACON) trial was designed to establish whether bardoxolone methyl slows or prevents progression to ESRD. Herein, we describe baseline characteristics of the BEACON population....

  17. Pengaruh Cara Aplikasi Minyak Suling Melaleuca bracteata dan Metil Eugenol terhadap Daya Pikat Lalat Buah Bactrocera dorsalis

    Directory of Open Access Journals (Sweden)

    Agus Kardinan

    1998-07-01

    Full Text Available Research has been conducted at farmer’s fruit garden in Cilebut area, Bogor during 1997–1998. The objective is to know the effect of some application techniques of oil distilled from Melaleuca bracteata leaves on trapping fruit fly. Research consisted of three activities, those were the effect of some techniques of application on trapping fruit flies (I weekly, (2 in two weeks and (3 the effects of some concentrations of methyl eugenol (ME on trapping fruit fly. All treatments were hung at the fruit trees as high as 1.5 m. Observations were done in the number and gender of fruit flies trapped weekly and two-weekly. Result revealed that melaleuca distilled oil can be applied either by dropping into water or into cotton ball. Melaleuca leaves distilled oil should be applied once in two weeks, since its effectiveness lasted for two weeks only. The minimum concentration of methyl eugenol which could fruit flies effectively was 57%. Key words: Melaleuca bracteata, Bactrocera dorsalis

  18. Evaluation and Characterization of Biodiesels Obtained Through Ethylic or Methylic Transesterification of Tryacylglicerides in Corn Oil

    Directory of Open Access Journals (Sweden)

    Douglas Queiroz Santos

    2014-06-01

    Full Text Available This work was devoted to the transesterification of corn oil either with methyl or ethyl alcohol and to the characterization of the biodiesels (composed by FAME—fatty acid methyl esters—or FAEE—fatty acid ethyl esters, respectively produced. As an initial hypothesis, it was argued whether or not the two alcohols, both with short molecular chains, would impart significant differences to the chemical characteristics of the two biodiesels from corn oil. The most common properties of the biodiesels were evaluated by determining corresponding parameters for acid value, peroxide value, water content, oxidative stability, free and total glycerin, kinematic viscosity at 40 ℃ and density at 20 ℃, for both chemical routes, FAME and FAEE. In general, values were found to be well within the recommended limits for commercial biodiesel, in accordance with the Brazilian, European and American standard recommendations, except only for the oxidative stability. The methyl biodiesel presented acidity of 0.08 mg KOH/g; peroxide index, 23.77 meq/kg; oxidation stability, 3.10 h; water content, 297.1 mg/kg; total glycerin, 0.092 %; free glycerin, 0.009 %; viscosity, 4.05 mm2/s and density, 878.7 kg/m. The methyl biodiesel presented acidity of 0.11 mg/ KOH; peroxide index, 22.39 meq/kg; oxidation stability, 2.13 h; water content, 264.8 mg/kg; total glycerin, 0.25 %; free glycerin, 0.02 %; viscosity, 4.37 mm2/s and density, 874.0 kg/m. From a direct inspection of chemical data for the two products prepared via the two chemical routes, it can be drawn that values of the physical and chemical parameters for both, methyl and ethyl biodiesels, are essentially similar, except for the oxidative stability. However, the oxidative stability can be suitably adjusted by adding an anti-oxidizing agent to the ethyl biodiesel medium. The two biodiesels are thus promising alternatives to fully replace or to be admixed to the mineral diesel. Relatively to the pure petrol

  19. The effect of eugenol on the cariogenic properties of Streptococcus mutans and dental caries development in rats

    OpenAIRE

    XU, JING-SHU; Yao LI; Cao, Xue; Cui, Yun

    2013-01-01

    Eugenol has been widely used in medicine due to its antibacterial, anti-inflammatory, antioxidant, anticancer and analgesic properties. The present study was designed to investigate the effects of eugenol on the cariogenic properties of Streptococcus mutans and dental caries development in rats. Eugenol demonstrated significant inhibitory effects against acid production by S. mutans. The synthesis of water-insoluble glucans by glucosyltransferases was reduced by eugenol. Eugenol also markedly...

  20. The proposed mechanism of bactericidal action of eugenol

    African Journals Online (AJOL)

    ... same condition. Gamma terpinene displayed the highest activity toward lipid content leakage at 2 x MIC while -terpineol and eugenol showed similar effect after 120 min of exposure. The result revealed that both cell wall and membrane of the treated gram negative and gram positive bacteria were significantly damaged.

  1. Using Ozone in Organic Chemistry Lab: The Ozonolysis of Eugenol

    Science.gov (United States)

    Branan, Bruce M.; Butcher, Joshua T.; Olsen, Lawrence R.

    2007-01-01

    An ozonolysis experiment, suitable for undergraduate organic chemistry lab, is presented. Ozonolysis of eugenol (clove oil), followed by reductive workup furnishes an aldehyde that is easily identified by its NMR and IR spectra. Ozone (3-5% in oxygen) is produced using an easily built generator. (Contains 2 figures and 1 scheme.)

  2. Inhibitory Effect of Cinnamaldehyde, Citral, and Eugenol on Aflatoxin Biosynthetic Gene Expression and Aflatoxin B1 Biosynthesis in Aspergillus flavus.

    Science.gov (United States)

    Liang, Dandan; Xing, Fuguo; Selvaraj, Jonathan Nimal; Liu, Xiao; Wang, Limin; Hua, Huijuan; Zhou, Lu; Zhao, Yueju; Wang, Yan; Liu, Yang

    2015-12-01

    In order to reveal the inhibitory effects of cinnamaldehyde, citral, and eugenol on aflatoxin biosynthesis, the expression levels of 5 key aflatoxin biosynthetic genes were evaluated by real-time PCR. Aspergillus flavus growth and AFB1 production were completely inhibited by 0.80 mmol/L of cinnamaldehyde and 2.80 mmol/L of citral. However, at lower concentration, cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L) significantly reduced AFB1 production with inhibition rate of 68.9%, 95.4%, and 41.8%, respectively, while no effect on fungal growth. Real-time PCR showed that the expressions of aflR, aflT, aflD, aflM, and aflP were down-regulated by cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L). In the presence of cinnamaldehyde, AflM was highly down-regulated (average of 5963 folds), followed by aflP, aflR, aflD, and aflT with the average folds of 55, 18, 6.5, and 5.8, respectively. With 0.80 mmol/L of eugenol, aflP was highly down-regulated (average of 2061-folds), followed by aflM, aflR, aflD, and aflT with average of 138-, 15-, 5.2-, and 4.8-folds reduction, respectively. With 0.56 mmol/L of citral, aflT was completely inhibited, followed by aflM, aflP, aflR, and aflD with average of 257-, 29-, 3.5-, and 2.5-folds reduction, respectively. These results suggest that the reduction in AFB1 production by cinnamaldehyde, eugenol, and citral at low concentration may be due to the down-regulations of the transcription level of aflatoxin biosynthetic genes. Cinnamaldehyde and eugenol may be employed successfully as a good candidate in controlling of toxigenic fungi and subsequently contamination with aflatoxins in practice. © 2015 Institute of Food Technologists®

  3. Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing, Chrysopa nigricornis.

    Science.gov (United States)

    James, David G

    2003-07-01

    Synthetic methyl salicylate (MeSA), a herbivore-induced plant volatile (HIPV), was demonstrated to be an attractant for the green lacewing, Chrysopa nigricornis, in two field experiments conducted in a Washington hop yard. Significantly greater numbers of C. nigricornis were trapped on MeSA-baited sticky cards (mean: 2.8 +/- 0.4/card/week) than on unbaited cards (0.45 +/- 0.15) during June-September. Cards baited with two other HIPVs, hexenyl acetate and dimethyl nonatriene, did not attract more C. nigricornis than did unbaited traps (0.30 +/- 0.10, 0.44 +/- 0.15, respectively). MeSA-baited Unitraps captured 1.9 +/- 0.5 C. nigricornis/trap/week during July-August compared to 0.20 +/- 0.20/trap/week in methyl eugenol-baited traps and 0.03 +/- 0.03/trap/week in unbaited traps. The potential use of MeSA in enhancing C. nigricornis populations in Washington hop yards as an aid to conservation biological control of aphids and mites is discussed.

  4. Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds

    Science.gov (United States)

    Abd-Elsalam, Kamel A.; Khokhlov, Alexei R.

    2015-02-01

    The current research deals with the formulation and characterization of bio-based oil-in-water nanoemulsion. The formulated eugenol oil nanoemulsion was characterized by dynamic light scattering, stability test, transmission electron microscopy and thin layer chromatography. The nanoemulsion droplets were found to have a Z-average diameter of 80 nm and TEM study reveals the spherical shape of eugenol oil nanoemulsion (EON). The size of the nanoemulsion was found to be physically stable up to more than 1-month when it was kept at room temperature (25 °C). The TEM micrograph showed that the EON was spherical in shape and moderately mono or di-dispersed and was in the range of 50-110 nm. Three concentrations of the nanoformulation were used to evalute the anti-fusarium activity both in vitro and in vivo experiments. SDS-PAGE results of total protein from the Fusarium oxysporum f. sp. vasinfectum (FOV) isolate before and after treatment with eugenol oil nanoemulsion indicate that the content of extra cellular soluble small molecular proteins decreased significantly in EON-treated fungus. Light micrographs of mycelia and spores treated with EON showed the disruption of the fungal structures. The analysis of variance (ANOVA) for Fusarium wilt incidence indicated highly significant ( p = 0.000) effects of concentration, genotype, and their interaction. The difference in wilt incidence between concentrations and control was not the same for each genotype, that is, the genotypes responded differently to concentrations. Effects of three EON concentration on germination percentage, and radicle length, were determined in the laboratory. One very interesting finding in the current study is that cotton genotypes was the most important factors in determining wilt incidence as it accounted for 93.18 % of the explained (model) variation. In vitro experiments were conducted to evaluate the potential phytotoxic effect of three EON concentrations. Concentration, genotype and

  5. Cch1p mediates Ca2+ influx to protect Saccharomyces cerevisiae against eugenol toxicity.

    Science.gov (United States)

    Roberts, Stephen K; McAinsh, Martin; Widdicks, Lisa

    2012-01-01

    Eugenol has antifungal activity and is recognised as having therapeutic potential. However, little is known of the cellular basis of its antifungal activity and a better understanding of eugenol tolerance should lead to better exploitation of eugenol in antifungal therapies. The model yeast, Saccharomyces cerevisiae, expressing apoaequorin was used to show that eugenol induces cytosolic Ca(2+) elevations. We investigated the eugenol Ca(2+) signature in further detail and show that exponentially growing cells exhibit Ca(2+) elevation resulting exclusively from the influx of Ca(2+) across the plasma membrane whereas in stationary growth phase cells Ca(2+) influx from intracellular and extracellular sources contribute to the eugenol-induced Ca(2+) elevation. Ca(2+) channel deletion yeast mutants were used to identify the pathways mediating Ca(2+) influx; intracellular Ca(2+) release was mediated by the vacuolar Ca(2+) channel, Yvc1p, whereas the Ca(2+) influx across the plasma membrane could be resolved into Cch1p-dependent and Cch1p-independent pathways. We show that the growth of yeast devoid the plasma membrane Ca(2+) channel, Cch1p, was hypersensitive to eugenol and that this correlated with reduced Ca(2+) elevations. Taken together, these results indicate that a cch1p-mediated Ca(2+) influx is part of an intracellular signal which protects against eugenol toxicity. This study provides fresh insight into the mechanisms employed by fungi to tolerate eugenol toxicity which should lead to better exploitation of eugenol in antifungal therapies.

  6. Microencapsulation of eugenol molecules by β-cyclodextrine as a thermal protection method of antibacterial action.

    Science.gov (United States)

    Piletti, R; Bugiereck, A M; Pereira, A T; Gussati, E; Dal Magro, J; Mello, J M M; Dalcanton, F; Ternus, R Z; Soares, C; Riella, H G; Fiori, M A

    2017-06-01

    Eugenol is natural oil that has excellent antibacterial properties but cannot be used to fabricate many products that require thermal processing. One possible alternative to the use of the eugenol molecules in high-temperature processes is the encapsulation of these molecules in a structure that is not toxic and is resistant to thermal treatment. This work investigated the encapsulation process of eugenol molecules in β-cyclodextrine and the antibacterial properties of eugenol-β-cyclodextrine (the eugenol-βCD complex) against Escherichia coli and Staphylococcus aureus. The FTIR, DSC, MEV and TGA results show that the encapsulation method is an excellent alternative to increase the thermal stability of eugenol molecules. A value of 241.32L.mol-1 was determined for the formation constant (Kc) of the eugenol-βCD complex, which confirmed the success of the encapsulation process. The MEV analysis shows the formation of approximately 12μm microcapsules. After the thermal treatment of the eugenol-βCD complex at a temperature of 80°C for 2h, the complex retained significant antibacterial action, which confirms the thermal protection of the eugenol molecules. The minimum inhibitory concentration (MIC) and agar diffusion results show that the microcapsules containing 17.08mmol.L-1 of eugenol exhibited excellent antibacterial action against Escherichia coli and Staphylococcus aureus after thermal treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Cch1p Mediates Ca2+ Influx to Protect Saccharomyces cerevisiae against Eugenol Toxicity

    Science.gov (United States)

    Roberts, Stephen K.; McAinsh, Martin; Widdicks, Lisa

    2012-01-01

    Eugenol has antifungal activity and is recognised as having therapeutic potential. However, little is known of the cellular basis of its antifungal activity and a better understanding of eugenol tolerance should lead to better exploitation of eugenol in antifungal therapies. The model yeast, Saccharomyces cerevisiae, expressing apoaequorin was used to show that eugenol induces cytosolic Ca2+ elevations. We investigated the eugenol Ca2+ signature in further detail and show that exponentially growing cells exhibit Ca2+ elevation resulting exclusively from the influx of Ca2+ across the plasma membrane whereas in stationary growth phase cells Ca2+ influx from intracellular and extracellular sources contribute to the eugenol-induced Ca2+ elevation. Ca2+ channel deletion yeast mutants were used to identify the pathways mediating Ca2+ influx; intracellular Ca2+ release was mediated by the vacuolar Ca2+ channel, Yvc1p, whereas the Ca2+ influx across the plasma membrane could be resolved into Cch1p-dependent and Cch1p-independent pathways. We show that the growth of yeast devoid the plasma membrane Ca2+ channel, Cch1p, was hypersensitive to eugenol and that this correlated with reduced Ca2+ elevations. Taken together, these results indicate that a cch1p-mediated Ca2+ influx is part of an intracellular signal which protects against eugenol toxicity. This study provides fresh insight into the mechanisms employed by fungi to tolerate eugenol toxicity which should lead to better exploitation of eugenol in antifungal therapies. PMID:23028482

  8. Spectroscopic study on the interaction of eugenol with salmon sperm DNA in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bi Shuyun, E-mail: sy_bi@sina.com [College of Chemistry, Changchun Normal University, Changchun 130032 (China); Yan Lili; Wang Yu; Pang Bong; Wang Tianjiao [College of Chemistry, Changchun Normal University, Changchun 130032 (China)

    2012-09-15

    Fluorescence spectra, absorption spectra, melting temperature, ionic strength effect, and viscosity experiments were described that characterize the interaction of eugenol with salmon sperm DNA in vitro. Eugenol was found to bind but weakly to DNA, with binding constants of 4.23 Multiplication-Sign 10{sup 3}, 3.62 Multiplication-Sign 10{sup 3} and 2.47 Multiplication-Sign 10{sup 3} L mol{sup -1} at 18, 28 and 38 Degree-Sign C respectively. The Stern-Volmer plots at different temperatures suggested that the quenching type of fluorescence of eugenol by DNA was a static quenching. Both the relative viscosity and the melting temperature of DNA were increased by the addition of eugenol. The changes of ionic strength had no affect on the binding. In addition, the binding constant of eugenol with single stranded DNA (ssDNA) was larger than that of eugenol with double stranded DNA (dsDNA). These results revealed that the binding mode of eugenol to DNA was intercalative binding. The thermodynamic parameters {Delta}H, {Delta}G and {Delta}S were also obtained according to the Van't Hoff equations, which suggested that hydrogen bond or van der Waals force might play an important role in a binding of eugenol to DNA. Based on the theory of the Foerster energy transference, the binding distance between DNA and eugenol was determined as 4.40 nm, indicating that the static fluorescence quenching of eugenol by DNA was also a non-radiation energy transfer process. - Highlights: Black-Right-Pointing-Pointer DNA quenched the fluorescence of eugenol. Black-Right-Pointing-Pointer Binding constant, binding site and binding force were determined. Black-Right-Pointing-Pointer Binding mode of eugenol to DNA was intercalative. Black-Right-Pointing-Pointer Energy transfer occurred between eugenol and DNA.

  9. Obtaining the essential oil of Syzygium aromaticum, identification of eugenol and its effect on Streptococcus mutans.

    Directory of Open Access Journals (Sweden)

    Osvelia Rodríguez

    2014-12-01

    Full Text Available Dental caries is a disease which affects the human oral cavity. Currently, the search for active principles of plants with antimicrobial effect seems promising for dental therapy. In this article the activity of the essential oil of Syzygium aromaticum (clove was evaluated with an emphasis on its antimicrobial properties. The oil was obtained by hydrodistillation, characterized by thin layer chromatography and chemical tests. The main compound was identified in the oil obtained from the flower buds and its antibacterial activity against planktonic cells Streptcoccus mutans ATCC700611 was assessed by performing serial dilutions, from 15 up to 1000µg/mL, compared with 0.12% chlorhexidine and dimethylsulfoxide. MIC was also determined. Subsequently, UFC was analyzed and compared with CMR® Test Ivoclar Vivadent. The efficiency in obtaining the oil was 2.20%. By using the CCD technique, a fraction was revealed by UV light, corresponding to eugenol. It had a good response for triterpenoids and flavonoids. It showed greater antimicrobial activity at concentrations of 1000, 500 and 250µg/ml. The MIC and MBC of the oil was 125 to 250µg/mL, respectively. Eugenol was found as an active principle in the oil obtained. Currently, the impact of using plant extracts has favored the evaluation of alternative, effective and biocompatible antibacterial agents for the formulations of oral hygiene products applied to the prevention or treatment of oral diseases.

  10. The effect of eugenol-free temporary cement's remnants on retention of full metal crowns: comparative study.

    Science.gov (United States)

    Sabouhi, Mahmoud; Nosouhian, Saeid; Davoudi, Amin; Nourbakhshian, Farzaneh; Badrian, Hamid; Nabe, Fatemeh Naderi

    2013-05-01

    The aim of this study was to evaluate the effects of eugenol-free temporary cement's remnants on the retentive strength of full metal crowns luted via zinc phosphate and resin cement (Maxcem) to the tooth structure. Forty complete standardized Ni-Cr crowns in four groups were cemented by two types of permanent cements: zinc phosphate cement and resin cement (Maxcem). In the two groups before permanent cementation of crowns, temporary acrylic crowns were cemented by eugenol-free temporary cement. Crowns' retention was evaluated by Universal testing machine. All data were analyzed by means of one-way ANOVA test in SPSS software version 11.5 (α=0.05). There was no significant difference in groups with prior using eugenol-free temporary cement and groups with just using two permanents cement (p-value≥0.05). The application of temporary cement before permanent cementation of full metal crowns does not have any adverse effect on retention of full metal crowns, when temporary cements are removed properly.

  11. Formulation and Evaluation of Pharmaceutically Equivalent Parenteral Depot Suspension of Methyl Prednisolone Acetate

    Science.gov (United States)

    Alam, A.; Ahuja, Alka; Baboota, Sanjula; Gidwani, S. K.; Ali, J.

    2009-01-01

    The aim of the present study was to formulate and evaluate pharmaceutically equivalent injectable aqueous suspension for parenteral depot of methyl prednisolone acetate. Various aqueous suspensions were prepared by rapid stirring and colloid milling method. The prepared aqueous suspensions were subjected to particle size determination, sedimentation study, in vitro release studies (pH dependent dissolution study), and stability studies. The optimized formulation consisted of 4% w/w of methyl prednisolone acetate, 2.91% w/w of PEG-3350, 0.19% w/v of injection grade Tween-80, 0.68% w/w of monobasic sodium phosphate, 0.15% w/w of di-basic sodium phosphate, 0.91% w/v of benzyl alcohol, 0.32% w/w sodium meta bisulphate. The f2 value was calculated for innovator (DepoMedrol®, Batch No. MPH-0254) and optimized formulation at pH 6.8 and pH 7.4 phosphate buffers. The f2 values of 62.94 and 54.37 were obtained at pH 6.8 and pH 7.4 phosphate buffers respectively. The particle size ranged 23-27 μm at D value of 0.9 for both test and innovator product. PMID:20177452

  12. Evaluation of Methyl Bromide Alternatives Efficacy against Soil-Borne Pathogens, Nematodes and Soil Microbial Community

    Science.gov (United States)

    Xie, Hongwei; Yan, Dongdong; Mao, Liangang; Wang, Qiuxia; Li, Yuan; Ouyang, Canbin; Guo, Meixia; Cao, Aocheng

    2015-01-01

    Methyl bromide (MB) and other alternatives were evaluated for suppression of Fusarium spp., Phytophthora spp., and Meloidogyne spp. and their influence on soil microbial communities. Both Fusarium spp. and Phytophthora spp. were significantly reduced by the MB (30.74 mg kg-1), methyl iodide (MI: 45.58 mg kg-1), metham sodium (MS: 53.92 mg kg-1) treatments. MS exhibited comparable effectiveness to MB in controlling Meloidogyne spp. and total nematodes, followed by MI at the tested rate. By contrast, sulfuryl fluoride (SF: 33.04 mg kg-1) and chloroform (CF: 23.68 mg kg-1) showed low efficacy in controlling Fusarium spp., Phytophthora spp., and Meloidogyne spp. MB, MI and MS significantly lowered the abundance of different microbial populations and microbial biomass in soil, whereas SF and CF had limited influence on them compared with the control. Diversity indices in Biolog studies decreased in response to fumigation, but no significant difference was found among treatments in PLFA studies. Principal component and cluster analyses of Biolog and PLFA data sets revealed that MB and MI treatments greatly influenced the soil microbial community functional and structural diversity compared with SF treatment. These results suggest that fumigants with high effectiveness in suppressing soil-borne disease could significantly influence soil microbial community. PMID:25723395

  13. Evaluation of methyl bromide alternatives efficacy against soil-borne pathogens, nematodes and soil microbial community.

    Directory of Open Access Journals (Sweden)

    Hongwei Xie

    Full Text Available Methyl bromide (MB and other alternatives were evaluated for suppression of Fusarium spp., Phytophthora spp., and Meloidogyne spp. and their influence on soil microbial communities. Both Fusarium spp. and Phytophthora spp. were significantly reduced by the MB (30.74 mg kg-1, methyl iodide (MI: 45.58 mg kg-1, metham sodium (MS: 53.92 mg kg-1 treatments. MS exhibited comparable effectiveness to MB in controlling Meloidogyne spp. and total nematodes, followed by MI at the tested rate. By contrast, sulfuryl fluoride (SF: 33.04 mg kg-1 and chloroform (CF: 23.68 mg kg-1 showed low efficacy in controlling Fusarium spp., Phytophthora spp., and Meloidogyne spp. MB, MI and MS significantly lowered the abundance of different microbial populations and microbial biomass in soil, whereas SF and CF had limited influence on them compared with the control. Diversity indices in Biolog studies decreased in response to fumigation, but no significant difference was found among treatments in PLFA studies. Principal component and cluster analyses of Biolog and PLFA data sets revealed that MB and MI treatments greatly influenced the soil microbial community functional and structural diversity compared with SF treatment. These results suggest that fumigants with high effectiveness in suppressing soil-borne disease could significantly influence soil microbial community.

  14. Establishment of a DNA methylation marker to evaluate cancer cell fraction in gastric cancer.

    Science.gov (United States)

    Zong, Liang; Hattori, Naoko; Yoda, Yukie; Yamashita, Satoshi; Takeshima, Hideyuki; Takahashi, Takamasa; Maeda, Masahiro; Katai, Hitoshi; Nanjo, Sohachi; Ando, Takayuki; Seto, Yasuyuki; Ushijima, Toshikazu

    2016-04-01

    Tumor samples are unavoidably contaminated with coexisting normal cells. Here, we aimed to establish a DNA methylation marker to estimate the fraction of gastric cancer (GC) cells in any DNA sample by isolating genomic regions specifically methylated in GC cells. Genome-wide and gene-specific methylation analyses were conducted with an Infinium HumanMethylation450 BeadChip array and by quantitative methylation-specific PCR, respectively. Purified cancer and noncancer cells were prepared by laser-capture microdissection. TP53 mutation data were obtained from our previous study using next-generation target sequencing. Genome-wide DNA methylation analysis of 12 GC cell lines, 30 GCs, six normal gastric mucosae, one sample of peripheral leukocytes, and four noncancerous gastric mucosae identified OSR2, PPFIA3, and VAV3 as barely methylated in normal cells and highly methylated in cancer cells. Quantitative methylation-specific PCR using 26 independent GCs validated that one or more of them was highly methylated in all of the GCs. Using four pairs of purified cells, we confirmed the three genes were highly methylated (85 % or more) in cancer cells and barely methylated (5 % or less) in noncancer cells. The cancer cell fraction assessed by the panel of the three genes showed good correlation with that assessed by the TP53 mutant allele frequency in 13 GCs (r = 0.77). After correction of the GC cell fraction, unsupervised clustering analysis of the genome-wide DNA methylation profiles yielded clearer clustering. A DNA methylation marker-namely, the panel of the three genes-is useful to estimate the cancer cell fraction in GCs.

  15. Statistical method evaluation for differentially methylated CpGs in base resolution next-generation DNA sequencing data.

    Science.gov (United States)

    Zhang, Yun; Baheti, Saurabh; Sun, Zhifu

    2016-12-31

    High-throughput bisulfite methylation sequencing such as reduced representation bisulfite sequencing (RRBS), Agilent SureSelect Human Methyl-Seq (Methyl-seq) or whole-genome bisulfite sequencing is commonly used for base resolution methylome research. These data are represented either by the ratio of methylated cytosine versus total coverage at a CpG site or numbers of methylated and unmethylated cytosines. Multiple statistical methods can be used to detect differentially methylated CpGs (DMCs) between conditions, and these methods are often the base for the next step of differentially methylated region identification. The ratio data have a flexibility of fitting to many linear models, but the raw count data take consideration of coverage information. There is an array of options in each datatype for DMC detection; however, it is not clear which is an optimal statistical method. In this study, we systematically evaluated four statistic methods on methylation ratio data and four methods on count-based data and compared their performances with regard to type I error control, sensitivity and specificity of DMC detection and computational resource demands using real RRBS data along with simulation. Our results show that the ratio-based tests are generally more conservative (less sensitive) than the count-based tests. However, some count-based methods have high false-positive rates and should be avoided. The beta-binomial model gives a good balance between sensitivity and specificity and is preferred method. Selection of methods in different settings, signal versus noise and sample size estimation are also discussed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Evaluation of carbopol-methyl cellulose based sustained-release ocular delivery system for pefloxacin mesylate using rabbit eye model.

    Science.gov (United States)

    Sultana, Yasmin; Aqil, M; Ali, Asgar; Zafar, Shadaab

    2006-01-01

    The major purpose of this study was to develop and characterize a series of carbopol- and methyl cellulose-based solutions as the in situ gelling vehicles for ophthalmic drug delivery. The rheological properties, in vitro release as well as in vivo pharmacological response of a combination of polymer solutions, including carbopol and methyl cellulose, were evaluated. It was found that the optimum concentration of carbopol solution for the in situ gel-forming delivery systems was 0.3% (w/w), and that for methyl cellulose solution was 1.5% (w/w). The mixture of 0.3% carbopol and 1.5% methyl cellulose solutions showed a significant enhancement in gel strength in the physiological condition; this gel mixture was also found to be free flowing at pH 4.0 and 25 degrees C. The rheological behaviors of carbopol/methyl cellulose solution were not affected by the incorporation of the drug. Drug levels in the aqueous humor of the rabbits were well above the MIC-values of relevant bacteria after 12 hours, the results of an optimized formulation containing 0.18% of pefloxacin mesylate compared well with the 0.3% marketed eye drop formulation, indicating our formulation to be significantly better considering that a similar effect was obtained at half the concentration. Both the in vitro release and in vivo pharmacological studies indicated that the carbopol/methyl cellulose solution had better ability to retain drug than did the carbopol or methyl cellulose solutions alone. The results demonstrated that the carbopol/methyl cellulose mixture can be used as an in situ gelling vehicle to enhance the ocular bioavailability of pefloxacin mesylate.

  17. Antiproliferative and Molecular Mechanism of Eugenol-Induced Apoptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eko Supriyanto

    2012-05-01

    Full Text Available Phenolic phytochemicals are a broad class of nutraceuticals found in plants which have been extensively researched by scientists for their health-promoting potential. One such a compound which has been comprehensively used is eugenol (4-allyl-2-methoxyphenol, which is the active component of Syzigium aromaticum (cloves. Aromatic plants like nutmeg, basil, cinnamon and bay leaves also contain eugenol. Eugenol has a wide range of applications like perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. Increasing volumes of literature showed eugenol possesses antioxidant, antimutagenic, antigenotoxic, anti-inflammatory and anticancer properties. Molecular mechanism of eugenol-induced apoptosis in melanoma, skin tumors, osteosarcoma, leukemia, gastric and mast cells has been well documented. This review article will highlight the antiproliferative activity and molecular mechanism of the eugenol induced apoptosis against the cancer cells and animal models.

  18. Anti-inflammatory, Antithrombotic and Cardiac Remodeling Preventive Effects of Eugenol in Isoproterenol-Induced Myocardial Infarction in Wistar Rat.

    Science.gov (United States)

    Mnafgui, Kais; Hajji, Raouf; Derbali, Fatma; Gammoudi, Anis; Khabbabi, Gaddour; Ellefi, Hedi; Allouche, Noureddine; Kadri, Adel; Gharsallah, Neji

    2016-10-01

    This study aimed to evaluate the antithrombotic, anti-inflammatory and anti-cardiac remodeling properties of eugenol in isoproterenol-induced myocardial infarction in rats. Male Wistar rats were randomly divided into four groups, control, iso [100 mg/kg body weight was injected subcutaneously into rats at an interval of 24 h for 2 days (6th and 7th day) to induce MI] and pretreated animals with clopidogrel (0.2 mg/kg) and eugenol (50 mg/kg) orally for 7 days and intoxicated with isoproterenol (Iso + Clop) and (Iso + EG) groups. Isoproterenol-induced myocardial infarcted rats showed notable changes in the ECG pattern, increase in heart weight index, deterioration in the hemodynamic function and rise in plasma level of troponin-T, CK-MB and LDH and ALT by 316, 74, 172 and 45 %, respectively, with histological myocardium necrosis and cells inflammatory infiltration. In addition, significant increases in plasma levels of inflammatory biomarkers such as fibrinogen, α1, α2, β1, β2 and γ globulins with decrease level of albumin were observed in infarcted rats as compared to normal ones. Else, the angiotensin-converting enzyme (ACE) activity in plasma, kidney and heart of the isoproterenol-induced rats was significantly increased by 34, 47 and 93 %, respectively, as compared to normal group. However, the administration of eugenol induced a clear improvement in cardiac biomarkers injury, reduced inflammatory mediators proteins, increased heart activities of superoxide dismutase and glutathione peroxidase with reduce in thiobarbituric acid-reactive substances content and inhibition of ventricular remodeling process through inhibition of ACE activity. Overall, eugenol evidences high preventive effects from cardiac remodeling process.

  19. Preventive Effect of Aspirin Eugenol Ester on Thrombosis in κ-Carrageenan-Induced Rat Tail Thrombosis Model.

    Science.gov (United States)

    Ma, Ning; Liu, Xi-Wang; Yang, Ya-Jun; Li, Jian-Yong; Mohamed, Isam; Liu, Guang-Rong; Zhang, Ji-Yu

    2015-01-01

    Based on the prodrug principle, aspirin eugenol ester (AEE) was synthesized, which can reduce the side effects of aspirin and eugenol. As a good candidate for new antithrombotic and anti-inflammatory medicine, it is essential to evaluate its preventive effect on thrombosis. Preventive effect of AEE was investigated in κ-carrageenan-induced rat tail thrombosis model. AEE suspension liquids were prepared in 0.5% sodium carboxymethyl cellulose (CMC-Na). AEE was administrated at the dosage of 18, 36 and 72 mg/kg. Aspirin (20 mg/kg), eugenol (18 mg/kg) and 0.5% CMC-Na (30 mg/kg) were used as control drug. In order to compare the effects between AEE and its precursor, integration of aspirin and eugenol group (molar ratio 1:1) was also designed in the experiment. After drugs were administrated intragastrically for seven days, each rat was injected intraperitoneally with 20 mg/kg BW κ-carrageen dissolved in physiological saline to induce thrombosis. The length of tail-thrombosis was measured at 24 and 48 hours. The blank group just was given physiological saline for seven days without κ-carrageenan administrated. The results indicated that AEE significantly not only reduced the average length of thrombus, PT values and FIB concentration, but also reduced the red blood cell (RBC), hemoglobin (HGB), hematocrit (HCT) and platelet (PLT). The effects of AEE on platelet aggregation and anticoagulant in vitro showed that AEE could inhibit adenosine diphosphate (ADP)-induced platelet aggregation as dose-dependence but no notable effect on blood clotting. From these results, it was concluded that AEE possessed positive effect on thrombosis prevention in vivo through the reduction of FIB, PLT, inhibition of platelet aggregation and the change of TT and PT values.

  20. Preventive Effect of Aspirin Eugenol Ester on Thrombosis in κ-Carrageenan-Induced Rat Tail Thrombosis Model

    Science.gov (United States)

    Ma, Ning; Liu, Xi-Wang; Yang, Ya-Jun; Li, Jian-Yong; Mohamed, Isam; Liu, Guang-Rong; Zhang, Ji-Yu

    2015-01-01

    Based on the prodrug principle, aspirin eugenol ester (AEE) was synthesized, which can reduce the side effects of aspirin and eugenol. As a good candidate for new antithrombotic and anti-inflammatory medicine, it is essential to evaluate its preventive effect on thrombosis. Preventive effect of AEE was investigated in κ-carrageenan-induced rat tail thrombosis model. AEE suspension liquids were prepared in 0.5% sodium carboxymethyl cellulose (CMC-Na). AEE was administrated at the dosage of 18, 36 and 72 mg/kg. Aspirin (20 mg/kg), eugenol (18 mg/kg) and 0.5% CMC-Na (30 mg/kg) were used as control drug. In order to compare the effects between AEE and its precursor, integration of aspirin and eugenol group (molar ratio 1:1) was also designed in the experiment. After drugs were administrated intragastrically for seven days, each rat was injected intraperitoneally with 20 mg/kg BW κ-carrageen dissolved in physiological saline to induce thrombosis. The length of tail-thrombosis was measured at 24 and 48 hours. The blank group just was given physiological saline for seven days without κ-carrageenan administrated. The results indicated that AEE significantly not only reduced the average length of thrombus, PT values and FIB concentration, but also reduced the red blood cell (RBC), hemoglobin (HGB), hematocrit (HCT) and platelet (PLT). The effects of AEE on platelet aggregation and anticoagulant in vitro showed that AEE could inhibit adenosine diphosphate (ADP)-induced platelet aggregation as dose-dependence but no notable effect on blood clotting. From these results, it was concluded that AEE possessed positive effect on thrombosis prevention in vivo through the reduction of FIB, PLT, inhibition of platelet aggregation and the change of TT and PT values. PMID:26193677

  1. Antimicrobial efficacy of sequentially applied eugenol against food spoilage micro-organisms.

    Science.gov (United States)

    Manrique, Y; Gibis, M; Schmidt, H; Weiss, J

    2016-12-01

    Compare the survival behaviour of food spoilage micro-organisms treated with sequential doses or all at once treatments of eugenol. Staphylococcus carnosus, Listeria innocua, Escherichia coli and Pseudomonas fluorescens were exposed to a minimal lethal concentration (MLC) initially, or to half doses over time, with first half dose applied immediately and a second half dose applied after 3, 4, 6 and 8 h, of eugenol. Direct plate counts were determined at regular time intervals. Population dynamics were analysed using a combined growth and mortality model. Effect of sequential dosing varied significantly between tested organisms. High antimicrobial efficacy on E. coli K12 was observed regardless of timing of the two doses. Reduced effectiveness was observed against Staph. carnosus and L. innocua the later the second half dose was applied. Complete cell reduction occurred after immediate exposure to full MLC dose, while sequential half doses were bacteriostatic regardless of application times. Time in between antimicrobial dose application had substantial impact on effectiveness, attributed to organisms becoming more tolerant. This study contributes to the evaluation of encapsulated antimicrobial systems, where antimicrobials are released over time and antimicrobial concentrations may only reach MLC levels after some time. © 2016 The Society for Applied Microbiology.

  2. Zinc Oxide-Eugenol Pulpotomy in Primary Teeth: A 24-Month Follow-up.

    Science.gov (United States)

    Gonzalez-Lara, Adriana; Ruiz-Rodriguez, M Socorro; Pierdant-Perez, Mauricio; Garrocho-Rangel, J Arturo; Pozos-Guillen, Amaury J

    2016-01-01

    The purpose of the present study was to evaluate the clinical and radiographic effectiveness of zinc oxide-eugenol (ZOE) as the only pulp capping agent in pulpotomies carried out on decayed primary molars after a follow-up period of 24 months. In total, 60 pulpotomies were performed on 38 patients aged 3 to 11 years. Pulpotomy treatment consisted of the removal of the coronal pup tissue, subsequent hemostasis, irrigation with saline solution, drying and pressure with sterile cotton pellets, and placement of a thick regular ZOE base with a minimal amount of eugenol directly over the vital radicular pulp. Additionally, a histopathologic study was carried out on some of the molars treated. After a 24-month follow-up, we considered 51 procedures to be successful and 9 failures using clinical and radiographic criteria; most of the failures occurred between the 12th and 18th month. Results suggest that the proposed pulpotomy treatment with ZOE as the only capping agent may be considered as an alternative technique in the pulp treatment of primary molars.

  3. Conversion of eugenol to methyleugenol: Computational study and experimental

    Science.gov (United States)

    Kurniawan, Muhammad Arsyik; Matsjeh, Sabirin; Triono, Sugeng

    2017-03-01

    This study provides comprehensive benchmark calculations for the computational study and experimental research on conversion of eugenol to methyleugenol with different pathway of the transition state compounds. First-principle calculation (DFT) were used to generate the structure optimization, energies of species. The calculation parameter are used to predict reactant, product and transition state species as guide to predict the experimental development of chemical characterization method including NMR and IR. The calculation showed significant effect of NaOH in formation of transition state in reaction. Experimentally, the step was nucleophilic substitution reaction of eugenolate ion to dimethylsulfate compound, it was obtained methyleugenol compound with purity of 90.73 %, which analyzed by Infrared and H-NMR spectrometer.

  4. Leukocyte DNA as surrogate for the evaluation of imprinted Loci methylation in mammary tissue DNA.

    Directory of Open Access Journals (Sweden)

    Ludovic Barault

    Full Text Available There is growing interest in identifying surrogate tissues to identify epimutations in cancer patients since primary target tissues are often difficult to obtain. Methylation patterns at imprinted loci are established during gametogenesis and post fertilization and their alterations have been associated with elevated risk of cancer. Methylation at several imprinted differentially methylated regions (GRB10 ICR, H19 ICR, KvDMR, SNRPN/SNURF ICR, IGF2 DMR0, and IGF2 DMR2 were analyzed in DNA from leukocytes and mammary tissue (normal, benign diseases, or malignant tumors from 87 women with and without breast cancer (average age of cancer patients: 53; range: 31-77. Correlations between genomic variants and DNA methylation at the studied loci could not be assessed, making it impossible to exclude such effects. Methylation levels observed in leukocyte and mammary tissue DNA were close to the 50% expected for monoallellic methylation. While no correlation was observed between leukocyte and mammary tissue DNA methylation for most of the analyzed imprinted genes, Spearman's correlations were statistically significant for IGF2 DMR0 and IGF2 DMR2, although absolute methylation levels differed. Leukocyte DNA methylation levels of selected imprinted genes may therefore serve as surrogate markers of DNA methylation in cancer tissue.

  5. PERBANDINGAN VARIABEL PADA ISOLASI DAN PEMURNIAN EUGENOL DARI MINYAK DAUN CENGKEH

    Directory of Open Access Journals (Sweden)

    Nyoman Fitri

    2012-09-01

    Full Text Available Tanaman cengkeh (Eugenia aromatika O.K. termasuk dalam familia Myrtaceae, tersebar luas di Indonesia, Malaysia, Pulau Madagaskar dan Tanzania. Tanaman ini mengandung minyak atsiri yang banyak dipakai untuk bahan baku eugenol dan pembuatan vanilin. Penelitian ini bertujuan untuk memperoleh suatu prosedur isolasi eugenol dari minyak daun cengkeh yang lebih efisien dengan membandingkan beberapa variabel, yaitu pendiaman setelah pengocokan dengan natrium hidroksida selama 19 dan 24 jam (variabel 1 dan perbandingan fase air: n-heksana yang digunakan dalam pencucian yaitu 1:1; 1:1; 1:1; dan 1: 1; 1: 1/2 ; 1: 1/2 (variabel 2; melakukan pemurnian terhadap eugenol yang diperoleh dari hasil isolasi tersebut dengan cara destilasi sederhana bervakum; dan membandingkan eugenol yang diperoleh dari hasil pemurnian tersebut dengan sediaan eugenol yang diperoleh dari perdagangan yaitu eugenol A (lokal dan eugenol B (impor dengan cara menggunakan kromatografi gas. Hasil yang diperoleh dari peragaman variabel menurut uji statistik, yaitu terdapat perbedaan bermakna dari rendemen hasil isolasi yang disebabkan oleh perbedaan lama pendiaman setelah pengocokan dengan natrium hidroksida dan perbedaan banyaknya n-heksana yang digunakan dalam pencucian. Artinya pemilihan variabel 19 jam untuk pendiaman setelah pengocokan dan pencucian dengan memakai rasio 1:1; 1: 1/2 ; 1: 1/2 akan lebih efisien. Proses pemurnian lebih lanjut dari eugenol hasil isolasi dilakukan dengan cara destilasi sederhana dengan vakum. Eugenol yang didapat mempunyai warna yang lebih baik yaitu kuning pucat, dan kemurniannya juga lebih tinggi daripada eugenol hasil isolasi dan telah menyamai sediaan eugenol dalam perdagangan. Kata kunci: oils, plants, medicinal, eugenol 

  6. Performance and emission evaluation of a compression ignition engine using a biodiesel (apricot seed kernel oil methyl ester) and its blends with diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gumus, M. [Department of Mechanical Education, Marmara University, 34722, Istanbul (Turkey); Kasifoglu, S. [Occupational High School, Duezce University, 81010, Duezce (Turkey)

    2010-01-15

    In this study, apricot (Prunus armeniaca) seed kernel oil was transesterified with methanol using potassium hydroxide as catalyst to obtain apricot seed kernel oil methyl ester. Neat apricot seed kernel oil methyl ester and its blends with diesel fuel were tested in a compression ignition diesel engine to evaluate performance and emissions. Apricot seed kernel oil methyl ester and its blends can be successfully used in diesel engines without any modification. Lower concentration of apricot seed kernel oil methyl ester in blends gives a better improvement in the engine performance and exhaust emissions. Therefore lower percent of apricot seed kernel oil methyl ester can be used as additive. (author)

  7. Acaricidal activity of eugenol based compounds against scabies mites.

    Directory of Open Access Journals (Sweden)

    Cielo Pasay

    2010-08-01

    Full Text Available Human scabies is a debilitating skin disease caused by the "itch mite" Sarcoptes scabiei. Ordinary scabies is commonly treated with topical creams such as permethrin, while crusted scabies is treated with topical creams in combination with oral ivermectin. Recent reports of acaricide tolerance in scabies endemic communities in Northern Australia have prompted efforts to better understand resistance mechanisms and to identify potential new acaricides. In this study, we screened three essential oils and four pure compounds based on eugenol for acaricidal properties.Contact bioassays were performed using live permethrin-sensitive S. scabiei var suis mites harvested from pigs and permethrin-resistant S. scabiei var canis mites harvested from rabbits. Results of bioassays showed that clove oil was highly toxic against scabies mites. Nutmeg oil had moderate toxicity and ylang ylang oil was the least toxic. Eugenol, a major component of clove oil and its analogues--acetyleugenol and isoeugenol, demonstrated levels of toxicity comparable to benzyl benzoate, the positive control acaricide, killing mites within an hour of contact.The acaricidal properties demonstrated by eugenol and its analogues show promise as leads for future development of alternative topical acaricides to treat scabies.

  8. Evaluation of alternariol and alternariol methyl ether for mutagenic activity in Salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Davis, V.M.; Stack, M.E. (Food and Drug Administration, Washington, DC (United States))

    1994-10-01

    Alternariol and alternariol methyl ether were tested in the Ames Salmonella typhimurium assay, and both were shown, with and without metabolic activation, to be nonmutagenic to strains TA98 and TA100. The finding of other investigators that alternariol methyl ether is weakly mutagenic to Ta98 without metabolic activation could have resulted from the presence of a small amount of one of the highly mutagenic altertoxins in the alternariol methyl ether originally tested. 9 refs., 3 figs., 1 tab.

  9. Antihypercholesterolemic and Antioxidative Potential of an Extract of the Plant, Piper betle, and Its Active Constituent, Eugenol, in Triton WR-1339-Induced Hypercholesterolemia in Experimental Rats

    Directory of Open Access Journals (Sweden)

    Karuppasamy Venkadeswaran

    2014-01-01

    Full Text Available Hypercholesterolemia is a dominant risk factor for atherosclerosis and cardiovascular diseases. In the present study, the putative antihypercholesterolemic and antioxidative properties of an ethanolic extract of Piper betle and of its active constituent, eugenol, were evaluated in experimental hypercholesterolemia induced by a single intraperitoneal injection of Triton WR-1339 (300 mg/kg b.wt in Wistar rats. Saline-treated hypercholesterolemic rats revealed significantly higher mean blood/serum levels of glucose, total cholesterol, triglycerides, low density and very low density lipoprotein cholesterol, and of serum hepatic marker enzymes; in addition, significantly lower mean serum levels of high density lipoprotein cholesterol and significantly lower mean activities of enzymatic antioxidants and nonenzymatic antioxidants were noted in hepatic tissue samples from saline-treated hypercholesterolemic rats, compared to controls. However, in hypercholesterolemic rats receiving the Piper betle extract (500 mg/kg b.wt or eugenol (5 mg/kg b.wt for seven days orally, all these parameters were significantly better than those in saline-treated hypercholesterolemic rats. The hypercholesterolemia-ameliorating effect was better defined in eugenol-treated than in Piper betle extract-treated rats, being as effective as that of the standard lipid-lowering drug, lovastatin (10 mg/kg b.wt. These results suggest that eugenol, an active constituent of the Piper betle extract, possesses antihypercholesterolemic and other activities in experimental hypercholesterolemic Wistar rats.

  10. Respostas metabólicas do matrinxã submetido a banhos anestésicos de eugenol - DOI: 10.4025/actascibiolsci.v29i3.474 Metabolic responses of matrinxã to eugenol in anesthetic baths - DOI: 10.4025/actascibiolsci.v29i3.474

    Directory of Open Access Journals (Sweden)

    Luis Antônio Kioshi Aoki Inoue

    2007-12-01

    Full Text Available O matrinxã (Brycon amazonicus é uma espécie de interesse comercial. Porém, este peixe movimenta-se em excesso durante práticas de manejo, podendo sofrer ferimentos e perdas de escamas que, muitas vezes, resultam em taxas elevadas de mortalidade. O eugenol, principal componente do óleo de cravo, tem sido bastante utilizado como um anestésico alternativo para peixes por ser um produto natural e de baixo custo. Entretanto, estudos que tratam de respostas metabólicas, em peixes tropicais expostos a diferentes anestésicos, são ainda necessários. Dentro deste intuito, o presente trabalho avaliou respostas metabólicas do Brycon amazonicus ao eugenol, em simulações de banhos anestésicos. A demanda metabólica do matrinxã foi suprida principalmente pelo catabolismo de aminoácidos. Respostas típicas ao estresse foram detectadas por causa do manuseio imposto aos peixes para a realização dos banhos anestésicos. O eugenol não reduziu totalmente essas reações ao estresse. Por outro lado, esse anestésico não provocou estresse adicional em virtude de sua presença em exposições curtas de até 60 mg L-1 por 10 min. O eugenol proporciona segurança aos trabalhadores durante práticas de manejo, sem maiores prejuízos ao matrinxã.Matrinxã (Brycon amazonicus is a commercial fish that presents excessive movements during handling. This characteristic predisposes the animals to injuries and losses of scales that may result in high mortality rates. Eugenol, the main component of clove oil, has been reported as an alternative fish anesthetic because it is a natural product and cheap. However, studies remain necessary about the metabolic responses of tropical fishes to anesthetics. The present work evaluated metabolic responses of Brycon amazonicus to eugenol in simulated anesthetic baths. The fish metabolic demand was supplied mainly by amino acids catabolism. Typical metabolic stress responses to handling were detected but eugenol could

  11. Evaluation of Methylation Biomarkers for Detection of Circulating Tumor DNA and Application to Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Susan M. Mitchell

    2016-12-01

    Full Text Available Solid tumors shed DNA into circulation, and there is growing evidence that the detection of circulating tumor DNA (ctDNA has broad clinical utility, including monitoring of disease, prognosis, response to chemotherapy and tracking tumor heterogeneity. The appearance of ctDNA in the circulating cell-free DNA (ccfDNA isolated from plasma or serum is commonly detected by identifying tumor-specific features such as insertions, deletions, mutations and/or aberrant methylation. Methylation is a normal cell regulatory event, and since the majority of ccfDNA is derived from white blood cells (WBC, it is important that tumour-specific DNA methylation markers show rare to no methylation events in WBC DNA. We have used a novel approach for assessment of low levels of DNA methylation in WBC DNA. DNA methylation in 29 previously identified regions (residing in 17 genes was analyzed in WBC DNA and eight differentially-methylated regions (DMRs were taken through to testing in clinical samples using methylation specific PCR assays. DMRs residing in four genes, BCAT1, GRASP, IKZF1 and IRF4, exhibited low positivity, 3.5% to 7%, in the plasma of colonoscopy-confirmed healthy subjects, with the sensitivity for detection of ctDNA in colonoscopy-confirmed patients with colorectal cancer being 65%, 54.5%, 67.6% and 59% respectively.

  12. Evaluation of methylation pattern in promoter region of E-cadherin ...

    African Journals Online (AJOL)

    The data indicate that CDH1 promoter methylation might be a potential mechanism for epigenetic silencing of CDH1 in primary breast cancer suggesting a valuable molecular marker for detection of breast cancer progression. Key words: Breast cancer, E-cadherin, methylation pattern, tumor stage, tumor grade.

  13. Efficacy of various eugenol and non-eugenol root canal sealers in the treatment of teeth with periapical radiolucent area--a clinical and radiological study.

    OpenAIRE

    Bal C; Sikri V; Agrawal R.

    1990-01-01

    A clinical and radiological study was conducted to compare the efficacy of various eugenol containing Viz. Zinc oxide eugenol, CRCS and Rosen′s Cement and non eugenol containing sealers and N2 on forty eight non-vital anterior teeth, with a periapical radiolucent area of 1-7mm in diameter. The patients were recalled after 30,90,150 and 210 days On radiological examination after 210 days CRCS showed maximum decrease in periapical radiolucency from 4.39 mm. to 1.80mm. The teeth treated w...

  14. The involvement of mitochondrial apoptotic pathway in eugenol-induced cell death in human glioblastoma cells.

    Science.gov (United States)

    Liang, Wei-Zhe; Chou, Chiang-Ting; Hsu, Shu-Shong; Liao, Wei-Chuan; Shieh, Pochuen; Kuo, Daih-Huang; Tseng, Hui-Wen; Kuo, Chun-Chi; Jan, Chung-Ren

    2015-01-05

    Eugenol, a natural phenolic constituent of clove oil, has a wide range of applications in medicine as a local antiseptic and anesthetic. However, the effect of eugenol on human glioblastoma is unclear. This study examined whether eugenol elevated intracellular free Ca(2+) levels ([Ca(2+)]i) and induced apoptosis in DBTRG-05MG human glioblastoma cells. Eugenol evoked [Ca(2+)]i rises which were reduced by removing extracellular Ca(2+). Eugenol-induced [Ca(2+)]i rises were not altered by store-operated Ca(2+) channel blockers but were inhibited by the PKC inhibitor GF109203X and the transient receptor potential channel melastatin 8 (TRPM8) antagonist capsazepine. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (TG) or 2,5-di-tert-butylhydroquinone (BHQ) abolished eugenol-induced [Ca(2+)]i rises. The phospholipase C (PLC) inhibitor U73122 significantly inhibited eugenol-induced [Ca(2+)]i rises. Eugenol killed cells which were not reversed by prechelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). Eugenol induced apoptosis through increasing reactive oxygen species (ROS) production, decreasing mitochondrial membrane potential, releasing cytochrome c and activating caspase-9/caspase-3. Together, in DBTRG-05MG cells, eugenol evoked [Ca(2+)]i rises by inducing PLC-dependent release of Ca(2+) from the endoplasmic reticulum and caused Ca(2+) influx possibly through TRPM8 or PKC-sensitive channels. Furthermore, eugenol induced the mitochondrial apoptotic pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Dermoscopy and methyl aminolevulinate: A study for detection and evaluation of field cancerization.

    Science.gov (United States)

    Rossi, A; Garelli, V; Pranteda, G; Cardone, M; Anzalone, A; Fortuna, M C; Di Nunno, D; Mari, E; De Vita, G; Carlesimo, M

    2016-09-01

    Actinic keratosis (AK) is a keratinocyte intraepidermal neoplasia UV light-induced that frequently appears in sun-exposed areas of the skin. Although historically AK was defined as "precancerous", actually it is considered as the earliest stage of squamous cell carcinoma (SCC) in situ. Since AKs can progress into invasive SCC, their treatment is recommended. AKs rarely develop as a single lesion; usually multiple lesions commonly affect an entire area of chronically actinic damaged skin. This has led to the concept of "field cancerization", an area chronically sun-exposed that surrounds peripherally visible lesions, in which are individualized subclinical alterations. One of the main principles endpoint in the management of AKs is the evaluation and the treatment of field cancerization. In this view, in order to detect and quantify field cancerization, we employed a method based on the topical application of methyl aminolevulinate (MAL) and the detection of the fluorescence emitted by its metabolite Protoporphyrin IX (PpIX); then, considering the extension and the intensity of measured fluorescence, we create a score of field cancerization. The results show that patients underwent to daylight PDT had a reduction of total score, from T0 to T2. Whereas in the group untreated we observed a stability of total score or a slightly worse. So, the method and the score used allows to evaluate with a good approximation the dimension of field cancerization and show the modification of it after treatment. Copyright © 2016. Published by Elsevier B.V.

  16. To study the flow property of seven commercially available zinc oxide eugenol impression material at various time intervals after mixing.

    Science.gov (United States)

    Katna, Vishal; Suresh, S; Vivek, Sharma; Meenakshi, Khandelwal; Ankita, Gaur

    2014-12-01

    Aims and objective of the study was to evaluate the flow property of seven commercially available zinc oxide eugenol impression materials at various time intervals, after mixing 49 samples (seven groups) were fabricated for flow property of the material. The sample were fabricated as equal length of base and accelerator paste of the test materials was taken on the glass slab and mixed with a rigid stainless steel spatula as per manufacturers recommendation till the homogenous mix was obtained. The mix material was loaded in glass syringe and 0.5 ml material was injected on a cellophane sheet placed on marked glass plate. A cellophane sheet and glass plate 70 and 500 g weight was carefully placed on freshly dispensed zinc oxide eugenol impression paste sequentially. The diameter of the mix was noted after 30 s and 1 min of load application and also after the final set of material. The diameter gives the flow of material. The samples were stored at the room temperature. The data of the flow property was analyzed with analysis of variance, Post hoc test and t test. The flow of the zinc oxide eugenol impression paste after 30 s, 1 min and final set of load application for Group A to Group G was noted. Maximum flow was seen for Group G zinc oxide eugenol impression material followed by Group F, D, E, B, C and A in descending order respectively after 30 s, where as the flow property changed after 1 min in the sequence of maximum for Group G followed by Group E, D, B, A, C, and F. Lastly after final set of the impression material the flow maximum for Group G followed by Group E, D, C, F, A and B in descending order. Based on statistical analysis of the results and within in the limitations of this in-vitro study, the following conclusions were drawn that; the flow of zinc oxide eugenol impression material after 30 s, 1 min and that after the final set was maximum for P.S.P. (Group G) and the flow for PYREX (Group A) was minimum.

  17. Inhibitory effect of eugenol on seed germination and pre-harvest sprouting of hybrid rice (Oryza sativa L.)

    OpenAIRE

    Hu, Qijuan; Lin, Cheng; Guan, Yajing; Sheteiwy, Mohamed Salah; Hu, Weimin; Hu, Jin

    2017-01-01

    Pre-harvest sprouting (PHS) is a constrain problem in hybrid rice production. The present study was conducted to investigate the inhibitory effect of eugenol on seed germination and PHS of hybrid rice variety (Qian You 1). The results showed that seed germination speed and the activities of ?-amylase were inhibited by eugenol pre-soaking and these effects enhanced with the increasing of eugenol concentrations; while seedling growth was not negatively affected. In field trials, eugenol applica...

  18. Chemosensitivity of MCF-7 cells to eugenol: release of cytochrome-c and lactate dehydrogenase

    Science.gov (United States)

    Al Wafai, Rana; El-Rabih, Warde; Katerji, Meghri; Safi, Remi; El Sabban, Marwan; El-Rifai, Omar; Usta, Julnar

    2017-01-01

    Phytochemicals have been extensively researched for their potential anticancer effects. In previous study, direct exposure of rat liver mitochondria to eugenol main ingredient of clove, uncoupled mitochondria and increased F0F1ATPase activity. In the present study, we further investigated the effects of eugenol on MCF-7 cells in culture. Eugenol demonstrated: a dose-dependent decrease in viability (MTT assay), and proliferation (real time cell analysis) of MCF-7 cells, (EC50: 0.9 mM); an increase in reactive oxygen species; a decrease in ATP level and mitochondrial membrane potential (MitoPT JC-1 assay); and a release of cytochrome-c and lactate dehydrogenase (Cytotoxicity Detection Kit PLUS) into culture media at eugenol concentration >EC50. Pretreatment with the antioxidants Trolox and N-acetyl cysteine partially restored cell viability and decreased ROS, with Trolox being more potent. Expression levels of both anti- and pro-apoptotic markers (Bcl-2 and Bax, respectively) decreased with increasing eugenol concentration, with no variation in their relative ratios. Eugenol-treated MCF-7 cells overexpressing Bcl-2 exhibited results similar to those of MCF-7. Our findings indicate that eugenol toxicity is non-apoptotic Bcl-2 independent, affecting mitochondrial function and plasma membrane integrity with no effect on migration or invasion. We report here the chemo-sensitivity of MCF-7 cells to eugenol, a phytochemical with anticancer potential. PMID:28272477

  19. Inhibition of rat, mouse, and human glutathione S-transferase by eugenol and its oxidation products

    NARCIS (Netherlands)

    Rompelberg, C.J.M.; Ploemen, J.H.T.M.; Jespersen, S.; Greef, J. van der; Verhagen, H.; Bladeren, P.J. van

    1996-01-01

    The irreversible and reversible inhibition of glutathione S-transferases (GSTs) by eugenol was studied in rat, mouse and man. Using liver cytosol of human, rat and mouse, species differences were found in the rate of irreversible inhibition of GSTs by eugenol in the presence of the enzyme

  20. Ortho-eugenol exhibits anti-nociceptive and anti-inflammatory activities.

    Science.gov (United States)

    Fonsêca, Diogo V; Salgado, Paula R R; Aragão Neto, Humberto de C; Golzio, Adriana M F O; Caldas Filho, Marcelo R D; Melo, Cynthia G F; Leite, Fagner C; Piuvezam, Marcia R; Pordeus, Liana Clébia de Morais; Barbosa Filho, José M; Almeida, Reinaldo N

    2016-09-01

    Ortho-eugenol is a much used phenylpropanoid whose ability to reduce pain and inflammation has never been studied. Researching ortho-eugenol's antinociceptive and anti-inflammatory activity, and its possible mechanisms of action is therefore of interest. The administration of vehicle, ortho-eugenol (50, 75 and 100mg/kg i.p.), morphine (6mg/kg, i.p.) or dexamethasone (2mg/kg, s.c.) occurred 30min before the completion of pharmacological tests. Pretreatment with ortho-eugenol did not change motor coordination test results, but reduced the number of writhes and licking times in the writhing test and glutamate test, respectively. The reaction time from thermal stimulus was significantly increased in the hot plate test after administration of ortho-eugenol. Treatment with yohimbine reversed the antinociceptive effect of ortho-eugenol, suggesting involvement of the adrenergic system. In anti-inflammatory tests, ortho-eugenol inhibited acetic acid induced vascular permeability and leukocyte migration, reducing TNF-α and IL-1β by virtue of its suppression of NF-κB and p38 phosphorylated forms in the peritonitis test. From these results, ortho-eugenol antinociceptive effects mediated by the adrenergic system and anti-inflammatory activity through regulation of proinflammatory cytokines and phosphorylation of NF-kB and p38 become evident for the first time. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. [Case of cutaneous necrosis in African clawed frogs Xenopus laevis after the topical application of eugenol].

    Science.gov (United States)

    Ross, Andréanne; Guénette, Sarah Annie; Hélie, Pierre; Vachon, Pascal

    2006-11-01

    Case of cutaneous necrosis in African Clawed frogs Xenopus laevis after the topical application of eugenol. African Clawed frogs showed necrotic cutaneous lesions after a topical application of high concentrations of eugenol, an analgesic and anesthetic agent. Microscopically, ulceration of the epidermis, a loss of mucous and serous glands as well as an infiltration of inflammatory cells were observed.

  2. Comparison of Endoflas and Zinc oxide Eugenol as root canal filling materials in primary dentition

    Directory of Open Access Journals (Sweden)

    Nivedita Rewal

    2014-01-01

    Full Text Available Background: Zinc oxide eugenol has long been the material of choice of pediatric dentists worldwide, although it fails to meet the ideal requirements of root canal filling material for primary teeth. Endoflas, a mixture of zinc oxide eugenol, calcium hydroxide, and iodoform, can be considered to be an effective root canal filling material in primary teeth as compared with zinc oxide eugenol. This study was carried out to compare zinc oxide eugenol with endoflas for pulpectomy in primary dentition. Aim: The objective of the study was to compare clinically and radiographically success rates of zinc oxide eugenol with endoflas for the root canal filling of primary teeth at 3, 6, and 9 months. Design: Fifty primary molars were included in the study with 26 teeth in Group I (Endoflas and 24 in Group II (zinc oxide eugenol. A single visit pulpectomy was carried out. Results: The overall success rate of zinc oxide eugenol was 83% whereas 100% success was found in the case of endoflas. The obtained results were compiled and subjected to statistical analysis using the chi-square test. The difference in the success rate between the two was statistically significant (P < 0.05. Conclusion: Endoflas has shown to have better results than zinc oxide eugenol. It should therefore be the material of choice for root canal treatment in deciduous dentition.

  3. Histopathological evaluation of the Zebrafish (Danio rerio testis following exposure to methyl paraben

    Directory of Open Access Journals (Sweden)

    Nasrin Hassanzadeh

    2017-04-01

    Full Text Available Methyl paraben (MP is widely used as a preservative in various products. It frequently enters into aquatic environment and renders potential threat to fish. The aim of this study was to evaluate reproductive toxicity of MP on zebrafish (Danio rerio under laboratory conditions. Male zebrafish were exposed to four concentrations of MP (0.001, 0.01, 1, and 10 mg L-1 for 21 days in semi-static condition. Changes in mean length, mean weight, gonadosomatic index (GSI and histology of testis were studied. Treatment at 0.001 to 10 mg L-1 MP had no significant effect on the survival, mean length and mean weight of fish. But, GSI decreased in a dose dependent manner and the decrease was significant in the group that received the highest dose. Histological alteration of testis consisted of general testicular atrophy, multi-nucleated gonocytes (MNGs, impaired germ cell, spermatogonial proliferation, Leydig cell hyperplasia, interstitial fibrosis and apoptosis of Sertoli cells. It was concluded that sub-chronic exposures of MP could adversely affect GSI, disrupt the histology of testis and produce estrogenic and antispermatogenic activity in male zebra fish.

  4. Bio-based thermosetting copolymers of eugenol and tung oil

    Science.gov (United States)

    Handoko, Harris

    There has been an increasing demand for novel synthetic polymers made of components derived from renewable sources to cope with the depletion of petroleum sources. In fact, monomers derived vegetable oils and plant sources have shown promising results in forming polymers with good properties. The following is a study of two highly viable renewable sources, eugenol and tung oil (TO) to be copolymerized into fully bio-based thermosets. Polymerization of eugenol required initial methacrylate-functionalization through Steglich esterification and the synthesized methacrylated eugenol (ME) was confirmed by 1H-NMR. Rheological studies showed ideal Newtonian behavior in ME and five other blended ME resins containing 10 -- 50 wt% TO. Free-radical copolymerization using 5 mol% of tert-butyl peroxybenzoate (crosslinking catalyst) and curing at elevated temperatures (90 -- 160 °C) formed a series of soft to rigid highly-crosslinked thermosets. Crosslinked material (89 -- 98 %) in the thermosets were determined by Soxhlet extraction to decrease with increase of TO content (0 -- 30%). Thermosets containing 0 -- 30 wt% TO possessed ultimate flexural (3-point bending) strength of 32.2 -- 97.2 MPa and flexural moduli of 0.6 -- 3.5 GPa, with 3.2 -- 8.8 % strain-to-failure ratio. Those containing 10 -- 40 wt% TO exhibited ultimate tensile strength of 3.3 -- 45.0 MPa and tensile moduli of 0.02 GPa to 1.12 GPa, with 8.5 -- 76.7 % strain-to-failure ratio. Glass transition temperatures ranged from 52 -- 152 °C as determined by DMA in 3-point bending. SEM analysis on fractured tensile test specimens detected a small degree of heterogeneity. All the thermosets are thermally stable up to approximately 300 °C based on 5% weight loss.

  5. Novel eugenol derivatives: Potent acetylcholinesterase and carbonic anhydrase inhibitors.

    Science.gov (United States)

    Topal, Fevzi; Gulcin, Ilhami; Dastan, Arif; Guney, Murat

    2017-01-01

    Eugenol was used as starting material to obtain some phenolic compounds. The synthesis of these phenolic compounds was performed in a two-step procedure. The structures of the formed products (novel eugenol derivatives 1-6) have been determined on the basis of NMR spectroscopy and other spectroscopic methods. The compounds were tested in terms of carbonic anhydrase (CA) inhibition potency. Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes, which catalyse the reaction between carbon dioxide (CO2) and water (H2O), to generate bicarbonate (HCO3-) and protons (H+). CO2, HCO3- and H+ are essential molecules and ions for many important physiologic processes occurring in all living organisms. Acetylcholinesterase (AChE, E.C.3.1.1.7) is found in high concentrations in the red blood cells and brain. Novel eugenol derivatives (1-6) were tested for the inhibition of two cytosolic CA isoforms I, and II (hCA I, and II) and AChE. These compounds demonstrated effective inhibitory profiles with Ki values in ranging of 113.48-738.69nM against hCA I, 92.35-530.81nM against hCA II, and 90.10-379.57nM against AChE, respectively. On the other hand, acetazolamide clinically used as CA inhibitor, shoed Ki value of 594.11nM against hCA I, and 120.68nM against hCA II, respectively. Also, AChE was inhibited by tacrine as an AChE inhibitor at the 71.18nM level. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Evaluation of Properties of Mineral Trioxide Aggregate with Methyl Cellulose as Liquid.

    Science.gov (United States)

    Dianat, Omid; Naseri, Mandana; Tabatabaei, Seyedeh Farnaz

    2017-01-01

    Mineral trioxide aggregate (MTA) is extensively used in endodontics. However, MTA is difficult to handle because of its granular consistency, low mechanical properties and initial looseness. The objective of this study was to assess the compressive strength (CS), diametral tensile strength (DTS), and pH of set MTA using methyl cellulose as liquid. White ProRoot MTA was used as the control group; modified MTA cement was prepared by mixing Portland cement, bismuth oxide and calcium sulfate (75%, 20% and 5%, respectively) as the experiment group. Methyl cellulose was used as hydrating liquid and compared with distilled water. The data were analyzed by two-way ANOVA. The pH values of modified MTA cement set using deionized water and methyl cellulose were slightly, but not significantly, different (P>0.05). The DTS and CS tests for modified MTA cement hydrated with methyl cellulose showed a significant difference at one day and one week (PMTA.

  7. Investigations of eugenol efficacy in treatment of mange in swine

    OpenAIRE

    Jezdimirović Milanka; Kulišić Zoran; Aleksić Nevenka; Bjelić Nebojša; Ivanović Saša

    2006-01-01

    The acaricide efficacy, tolerability and safety of the active ingredient of the etheric oil of cloves eugenol was investigated in the treatment of mange in swine, and the obtained results were compared with the results of acaricide efficacy of the synthetic acaricide permethrin, which has been in use for quite a some time. A single application of permethrin in the form of a 1% solution showed maximum efficacy of 62.5%, and after three applications of 75.0% in the treatment of sarcoptes in swi...

  8. Evaluation and Characterization of Biodiesels Obtained Through Ethylic or Methylic Transesterification of Tryacylglicerides in Corn Oil

    OpenAIRE

    Douglas Queiroz Santos; Ana Paula de Lima; Maíra Martins Franco; David Maikel Fernandes; Waldomiro Borges Neto; José Domingos Fabris

    2014-01-01

    This work was devoted to the transesterification of corn oil either with methyl or ethyl alcohol and to the characterization of the biodiesels (composed by FAME—fatty acid methyl esters—or FAEE—fatty acid ethyl esters, respectively) produced. As an initial hypothesis, it was argued whether or not the two alcohols, both with short molecular chains, would impart significant differences to the chemical characteristics of the two biodiesels from corn oil. The most common properties of the biodies...

  9. Evaluation of wetland methyl mercury export as a function of experimental manipulations.

    Science.gov (United States)

    Gustin, Mae Sexauer; Chavan, Prithviraj V; Dennett, Keith E; Marchand, Eric A; Donaldson, Susan

    2006-01-01

    Mercury associated with natural enrichment, historic mining, and ore processing is a contaminant of concern in watersheds of the western USA. In this region, water is a highly managed resource and wetlands, known to be important sites of methyl mercury production, are often an integral component of watersheds. This study applied controlled manipulations of four replicated experimental wetland designs with different water and soil mercury concentrations to determine the potential impacts on methyl mercury export. Wetlands were manipulated by drying and wetting, changing hydraulic retention time, and adding sulfate and nitrate to influent waters. In a summer drying and wetting manipulation, an immediate increase in total methyl mercury release was observed with rewetting, however, concentrations decreased quickly. Drying all wetlands over the winter and rewetting in the spring resulted in high net methyl mercury output relative to that observed before drying. Net methyl mercury output was not influenced by changes in hydraulic retention time from 4 to 8 h or to 30 min, or by increasing the nitrate concentration from 0.1 to 10 mg L(-1). The addition of sulfate to the inlet waters of two mesocosms to increase concentrations from approximately 100 to 250 mg L(-1) did not result in a clear effect on methyl mercury output, most likely due to sulfate concentrations being higher than optimal for methyl mercury production. Despite the lack of response to sulfate amendments, the change in sulfate concentration between the inlet and outlet of the mesocosms and temperature were the parameters best correlated with methyl mercury outputs.

  10. An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles.

    Science.gov (United States)

    Medina-Puche, Laura; Molina-Hidalgo, Francisco Javier; Boersma, Maaike; Schuurink, Robert C; López-Vidriero, Irene; Solano, Roberto; Franco-Zorrilla, José-Manuel; Caballero, José Luis; Blanco-Portales, Rosario; Muñoz-Blanco, Juan

    2015-06-01

    Eugenol is a volatile phenylpropanoid that contributes to flower and ripe fruit scent. In ripe strawberry (Fragaria × ananassa) fruit receptacles, eugenol is biosynthesized by eugenol synthase (FaEGS2). However, the transcriptional regulation of this process is still unknown. We have identified and functionally characterized an R2R3 MYB transcription factor (emission of benzenoid II [FaEOBII]) that seems to be the orthologous gene of PhEOBII from Petunia hybrida, which contributes to the regulation of eugenol biosynthesis in petals. The expression of FaEOBII was ripening related and fruit receptacle specific, although high expression values were also found in petals. This expression pattern of FaEOBII correlated with eugenol content in both fruit receptacle and petals. The expression of FaEOBII was repressed by auxins and activated by abscisic acid, in parallel to the ripening process. In ripe strawberry receptacles, where the expression of FaEOBII was silenced, the expression of cinnamyl alcohol dehydrogenase1 and FaEGS2, two structural genes involved in eugenol production, was down-regulated. A subsequent decrease in eugenol content in ripe receptacles was also observed, confirming the involvement of FaEOBII in eugenol metabolism. Additionally, the expression of FaEOBII was under the control of FaMYB10, another R2R3 MYB transcription factor that regulates the early and late biosynthetic genes from the flavonoid/phenylpropanoid pathway. In parallel, the amount of eugenol in FaMYB10-silenced receptacles was also diminished. Taken together, these data indicate that FaEOBII plays a regulating role in the volatile phenylpropanoid pathway gene expression that gives rise to eugenol production in ripe strawberry receptacles. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. Dual effects of eugenol on the neuronal excitability: An in vitro study.

    Science.gov (United States)

    Vatanparast, Jafar; Khalili, Samira; Naseh, Maryam

    2017-01-01

    Besides its well-known actions on sensory afferents, eugenol also affects general excitability of the nervous system, but the mechanisms involved in the recent effect, especially through modulation of ion channels, have received much less attention. In this study, we studied the effects of eugenol on the excitability of central neurons of land snail Caucasotachea atrolabiata and tried to elucidate the underlying ionic mechanisms. The lower concentration of eugenol (0.5mM) reversibly reduced the frequency of spontaneous action potentials that was associated with elevation of threshold, reduction of maximum slope of rising phase and prolongation of actin potentials. These effects were mimicked by riluzole, suggesting that they might be mediated by inhibition of Na+ channels. Eugenol also prolonged the single-spike afterhyperpolarization and post stimulus inhibitory period, but these effects seemed to be consequent to action potential prolongation that indirectly augment Ca2+ inward currents and Ca2+-activated K+ currents. This concentration of eugenol was also able to prevent or abolish pentylenetetrazole-induced epileptiform activity. On the other hand, a higher concentration of eugenol (2mM) reversibly increased the frequency of action potentials and then induced epileptiform activity in majority of treated neurons. Several criteria suggest that the inhibition of K+ channels by higher concentration of eugenol and indirect augmentation of Ca2+ currents are central to the hyperexcitability and epileptiform activity induced by eugenol. Our findings indicate that while low concentration of eugenol could have antiepileptic properties, at higher concentration it induces epileptiform activity. It seems that does dependent inhibition of the ionic currents underlying rising and falling phases of action potential is relevant to the eugenol suppressant and excitatory actions, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Efficacy of eugenol and the methanolic extract of Condalia buxifolia during the transport of the silver catfish Rhamdia quelen

    OpenAIRE

    Becker,Alexssandro Geferson; Cunha,Mauro Alves da; Garcia,Luciano de Oliveira; Zeppenfeld,Carla Cristina; Parodi,Thaylise Vey; Maldaner,Graciela; Morel,Ademir Farias; Baldisserotto,Bernardo

    2013-01-01

    This study evaluated extracts of Condalia buxifolia as anesthetics for the silver catfish Rhamdia quelen. The effectiveness of eugenol and of the methanolic extract (ME) of C. buxifolia during the transport of this species was also assessed. Fish of two different weights (1.50±0.02 g and 165.70±22.50 g) were transferred to aquaria containing water with the C. buxifolia ME or with fractions obtained from the ME, such as the n-hexane, dichloromethane, ethyl acetate, n-butane and aqueou...

  13. Evaluation of green solvents: Oil extraction from oleaginous yeast Lipomyces starkeyi using cyclopentyl methyl ether (CPME).

    Science.gov (United States)

    Probst, Kyle V; Wales, Michael D; Rezac, Mary E; Vadlani, Praveen V

    2017-07-01

    Cyclopentyl methyl ether (CPME) was evaluated for extracting oil or triacylglycerol (TAG) from wet cells of the oleaginous yeast Lipomyces starkeyi. CPME is a greener alternative to chloroform as a potential solvent for oil recovery. A monophasic system of CPME and biphasic system of CPME:water (1:0.7) performed poorly having the lowest TAG extraction efficiency and TAG selectivity compared to other monophasic systems of hexane and chloroform and the biphasic Bligh and Dyer method (chloroform:methanol:water). Biphasic systems of CPME:water:alcohol (methanol/ethanol/1-propanol) were tested and methanol achieved the best oil extraction efficiency compared to ethanol and 1-propanol. Different biphasic systems of CPME:methanol:water were tested, the best TAG extraction efficiency and TAG selectivity achieved was 9.9 mg/mL and 64.6%, respectively, using a starting ratio of 1:1.7:0.6 and a final ratio of 1:1:0.8 (CPME:methanol:water). Similar results were achieved for the Bligh and Dyer method (TAG extraction efficiency of 10.2 mg/mL and TAG selectivity of 66.0%) indicating that the biphasic CPME system was comparable. The fatty acid profile remained constant across all the solvent systems tested indicating that choice of solvent was not specific for any certain fatty acid. This study was able to demonstrate that CPME could be used as an alternative solvent for the extraction of oil from the wet biomass of oleaginous yeast. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1096-1103, 2017. © 2017 American Institute of Chemical Engineers.

  14. Evaluation of DNA methylation markers and their potential to predict human aging.

    Science.gov (United States)

    Soares Bispo Santos Silva, Deborah; Antunes, Joana; Balamurugan, Kuppareddi; Duncan, George; Sampaio Alho, Clarice; McCord, Bruce

    2015-08-01

    We present epigenetic methylation data for two genetic loci, GRIA2, and NPTX2, which were tested for prediction of age from different donors of biofluids. We analyzed 44 saliva samples and 23 blood samples from volunteers with ages ranging from 5 to 72 years. DNA was extracted and bisulfite modified using commercial kits. Specific primers were used for amplification and methylation profiles were determined by pyrosequencing. Methylation data from both markers and their relationship with age were determined using linear regression analysis, which indicates a positive correlation between methylation and age. Older individuals tend to have increased methylation in both markers compared to younger individuals and this trend was more pronounced in the GRIA2 locus when compared to NPTX2. The epigenetic predicted age, calculated using a GRIA2 regression analysis model, was strongly correlated to chronological age (R(2) = 0.801), with an average difference of 6.9 years between estimated and observed ages. When using a NPTX2 regression model, we observed a lower correlation between predicted and chronological age (R(2) = 0.654), with an average difference of 9.2 years. These data indicate these loci can be used as a novel tool for age prediction with potential applications in many areas, including clinical and forensic investigations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Evaluation of Properties of Mineral Trioxide Aggregate with Methyl Cellulose as Liquid

    Directory of Open Access Journals (Sweden)

    Omid Dianat

    2017-02-01

    Full Text Available Objectives: Mineral trioxide aggregate (MTA is extensively used in endodontics. However, MTA is difficult to handle because of its granular consistency, low mechanical properties and initial looseness. The objective of this study was to assess the compressive strength (CS, diametral tensile strength (DTS, and pH of set MTA using methyl cellulose as liquid.Materials and Methods: White ProRoot MTA was used as the control group; modified MTA cement was prepared by mixing Portland cement, bismuth oxide and calcium sulfate (75%, 20% and 5%, respectively as the experiment group. Methyl cellulose was used as hydrating liquid and compared with deionized water. The data were analyzed by two-way ANOVA.Results: The pH values of modified MTA cement set using deionized water and methyl cellulose were slightly, but not significantly, different (P>0.05. The DTS and CS tests for modified MTA cement hydrated with methyl cellulose showed a significant difference at one day and one week (P<0.05.Conclusions: The results suggest that using methyl cellulose as the hydrating liquid enhances some mechanical properties but does not compromise pH of white ProRoot MTA.Keywords: Compressive Strength; Mineral Trioxide Aggregate; Tensile Strength

  16. The effect of eugenol on the cariogenic properties of Streptococcus mutans and dental caries development in rats.

    Science.gov (United States)

    Xu, Jing-Shu; Li, Yao; Cao, Xue; Cui, Yun

    2013-06-01

    Eugenol has been widely used in medicine due to its antibacterial, anti-inflammatory, antioxidant, anticancer and analgesic properties. The present study was designed to investigate the effects of eugenol on the cariogenic properties of Streptococcus mutans and dental caries development in rats. Eugenol demonstrated significant inhibitory effects against acid production by S. mutans. The synthesis of water-insoluble glucans by glucosyltransferases was reduced by eugenol. Eugenol also markedly suppressed the adherence of S. mutans to saliva-coated hydroxyapatite beads. Furthermore, topical application of eugenol reduced the incidence and severity of carious lesions in rats. These results suggest that the natural compound eugenol may be a useful therapeutic agent for dental caries.

  17. The application of anethole, menthone, and eugenol in transdermal penetration of valsartan: Enhancement and mechanistic investigation.

    Science.gov (United States)

    Ahad, Abdul; Aqil, Mohd; Ali, Asgar

    2016-01-01

    The main barrier for transdermal delivery is the obstacle property of the stratum corneum. Many types of chemical penetration enhancers have been used to breach the skin barrier; among the penetration enhancers, terpenes are found as the most highly advanced, safe, and proven category. In the present investigation, the terpenes anethole, menthone, and eugenol were used to enhance the permeation of valsartan through rat skin in vitro and their enhancement mechanism was investigated. Skin permeation studies of valsartan across rat skin in the absence and the presence of terpenes at 1% w/v, 3% w/v, and 5% w/v in vehicle were carried out using the transdermal diffusion cell sampling system across rat skin and samples were withdrawn from the receptor compartment at 1, 2, 3, 4, 6, 8, 10, 12, and 24 h and analysed for drug content by the HPLC method. The mechanism of skin permeation enhancement of valsartan by terpenes treatment was evaluated by Fourier transform infrared spectroscopy (FTIR) analysis and differential scanning calorimetry (DSC). All the investigated terpenes provided a significant (p  menthone > eugenol with 4.4-, 4.0-, and 3.0-fold enhancement ratio over control, respectively. DSC study showed that the treatment of stratum corneum with anethole shifted endotherm down to lower melting point while FTIR studies revealed that anethole produced maximum decrease in peak height and area than other two terpenes. The investigated terpenes can be successfully used as potential enhancers for the enhancement of skin permeation of lipophilic drug.

  18. SYNTHESIS OF 4-ALLYL-2-METHOXY-6-AMINOPHENOL FROM NATURAL EUGENOL

    Directory of Open Access Journals (Sweden)

    I Made Sudarma

    2010-06-01

    Full Text Available The aim of this preliminary research was to synthesize derivatives of eugenol such as 4-allyl-2-methoxy-6-nitrophenol (2 and 4-allyl-2-methoxy-6-aminophenol (3. The result could be used as a reference on the transformation of eugenol to its derivatives. Theoriticaly nitration of eugenol (1 by nitric acid could produced 4-allyl-2-methoxy-6-nitrophenol (2 and followed by reduction could achieved 4-allyl-2-mehtoxy-6-aminophenol (3. The formation of this product was analyzed by analytical thin layer chromatography (TLC and GC-MS. These analysis showed the formation of product (2 and (3 were visible. TLC showed product (1 less polar than eugenol and gave orange colour, and supported by GC-MS which showed molecular ion at m/z 209 due to the presence of -NO2 by replacing one H at 6 position of eugenol. Product (3 was afforded by reduction of (2 with Sn/HCl and tlc analysis showed compound (3 more polar than eugenol (1 and (2 and supported by GC-MS which showed molecular ion at m/z 179 due to the presence of -NH2.   Keywords: Synthesis, 4-allyl-2-methoxy-6-aminophenol, Eugenol

  19. Eugenol dilates rat cerebral arteries by inhibiting smooth muscle cell voltage-dependent calcium channels.

    Science.gov (United States)

    Peixoto-Neves, Dieniffer; Leal-Cardoso, Jose Henrique; Jaggar, Jonathan H

    2014-11-01

    Plants high in eugenol, a phenylpropanoid compound, are used as folk medicines to alleviate diseases including hypertension. Eugenol has been demonstrated to relax conduit and ear arteries and reduce systemic blood pressure, but mechanisms involved are unclear. Here, we studied eugenol regulation of resistance-size cerebral arteries that control regional brain blood pressure and flow and investigated mechanisms involved. We demonstrate that eugenol dilates arteries constricted by either pressure or membrane depolarization (60 mM K) in a concentration-dependent manner. Experiments performed using patch-clamp electrophysiology demonstrated that eugenol inhibited voltage-dependent calcium (Ca) currents, when using Ba as a charge carrier, in isolated cerebral artery smooth muscle cells. Eugenol inhibition of voltage-dependent Ca currents involved pore block, a hyperpolarizing shift (∼-10 mV) in voltage-dependent inactivation, an increase in the proportion of steady-state inactivating current, and acceleration of inactivation rate. In summary, our data indicate that eugenol dilates cerebral arteries by means of multimodal inhibition of voltage-dependent Ca channels.

  20. Utilização do eugenol como anestésico para o manejo de juvenis de Pintado (Pseudoplatystoma corruscans - DOI: 10.4025/actascibiolsci.v28i3.400 The use of eugenol as an anaesthetic for the handling of Pintado juveniles (Pseudoplatystoma corruscans - DOI: 10.4025/actascibiolsci.v28i3.400

    Directory of Open Access Journals (Sweden)

    Gustavo Rodamilans de Mecêdo

    2007-11-01

    Full Text Available Neste trabalho, foi avaliada a eficiência do eugenol como anestésico em juvenis de pintado (Pseudoplatystoma corruscans através de ensaios. No primeiro, os peixes (n=6 foram individualmente expostos a concentrações de 25, 50, 75, 100 mg L-1 de eugenol durante 10 minutos e os parâmetros de observação estabelecidos foram: perda de equilíbrio, efeito calmante e redução do movimento opercular. No segundo ensaio, foram utilizadas as concentrações de 50, 75, 100 mg L-1 de eugenol, em que os animais foram mantidos na água com anestésico até atingirem o estágio IV de anestesia: perda total de equilíbrio, do tônus muscular e redução dos movimentos operculares. A recuperação foi conduzida em um aquário, contendo 10 litros de água livre de anestésico, com aeração constante. Após os dois ensaios, foi constatada a eficiência do eugenol como substância anestésica em juvenis de pintado, sendo a concentração de 50 mg L-1 considerada a mais adequada para procedimentos usuais no manejo desses animais em piscicultura.In this work the efficacy of eugenol as an anaesthetic in Pintado juveniles (Pseudoplatystoma corruscans was evaluated by two experimental assays. In the first one, the animals (n=6 were exposed for 10 minutes to four concentrations of eugenol (25; 50; 75; 100 mg L-1. The observed behavioral patterns were: loss of equilibrium, sedative effect and reduction of opercular movement. In the second assay, the concentrations of 50; 75; 100 mg L-1 of eugenol were tested. The animals were maintained in the anaesthetic bath until they reached the stage of anaesthesia IV: total loss of equilibrium, muscle tonus and reduction of opercular movement. The recovery was conducted in an aquarium containing 10 liters of anaesthetic free water, with constant aeration. The efficacy of clove oil as an anaestetics for Pintado juveniles were demonstrated after the assays and the 50 mg L-1 concentration was defined as the most adequate to

  1. Eugenol dilates mesenteric arteries and reduces systemic BP by activating endothelial cell TRPV4 channels.

    Science.gov (United States)

    Peixoto-Neves, Dieniffer; Wang, Qian; Leal-Cardoso, Jose H; Rossoni, Luciana V; Jaggar, Jonathan H

    2015-07-01

    Eugenol, a vanilloid molecule found in some dietary plants, relaxes vasculature in part via an endothelium-dependent process; however, the mechanisms involved are unclear. Here, we investigated the endothelial cell-mediated mechanism by which eugenol modulates rat mesenteric artery contractility and systemic BP. The isometric tension of rat mesenteric arteries (size 200-300 μm) was measured using wire myography; non-selective cation currents (ICat ) were recorded in endothelial cells using patch clamp electrophysiology. Mean arterial pressure (MAP) and heart rate (HR) were determined in anaesthetized rats. Eugenol relaxed endothelium-intact arteries in a concentration-dependent manner and this effect was attenuated by endothelium denudation. L-NAME, a NOS inhibitor, a combination of TRAM-34 and apamin, selective blockers of intermediate and small conductance Ca(2+) -activated K(+) channels, respectively, and HC-067047, a TRPV4 channel inhibitor, but not indomethacin, a COX inhibitor, reduced eugenol-induced relaxation in endothelium-intact arteries. Eugenol activated HC-067047-sensitive ICat in mesenteric artery endothelial cells. Short interfering RNA (siRNA)-mediated TRPV4 knockdown abolished eugenol-induced ICat activation. An i.v. injection of eugenol caused an immediate, transient reduction in both MAP and HR, which was followed by prolonged, sustained hypotension in anaesthetized rats. This sustained hypotension was blocked by HC-067047. Eugenol activates TRPV4 channels in mesenteric artery endothelial cells, leading to vasorelaxation, and reduces systemic BP in vivo. Eugenol may be therapeutically useful as an antihypertensive agent and is a viable molecular candidate from which to develop second-generation TRPV4 channel activators that reduce BP. © 2015 The British Pharmacological Society.

  2. Carvacrol and eugenol effectively inhibit Rhizopus stolonifer and control postharvest soft rot decay in peaches.

    Science.gov (United States)

    Zhou, D; Wang, Z; Li, M; Xing, M; Xian, T; Tu, K

    2018-01-01

    This study aimed to investigate the antifungal mechanism of carvacrol and eugenol to inhibit Rhizopus stolonifer and the control of postharvest soft rot decay in peaches. To investigate the antifungal mechanism, the effects of carvacrol and eugenol on the mycelium growth, leakages of cytoplasmic contents, mycelium morphology, cell membrane and membrane composition of R. stolonifer were studied. Carvacrol and eugenol both exhibited dose-dependent antifungal activity against R. stolonifer, carvacrol at a concentration of 2 μl per plant and eugenol at a concentration of 4 μl per plant inhibited fungal growth completely. The two essential oils (EOs) increased cell membrane penetrability and caused the leakage of cytoplasm, nucleic acid and protein content. The observation using scanning electron microscopy and fluorescent microscopy showed modification of the hyphal morphology and breakage of the cell plasma membrane. Decreased ergosterol contents confirmed that the two EOs could destroy the membrane of R. stolonifer. For the in vivo test, the inhibition of soft rot disease and the induction of defence-related enzymes were investigated. Carvacrol and eugenol significantly reduced the incidence and severity of soft rot decay in inoculated peaches. The best treatments for controlling soft rot decay were obtained at 0·5 μl l -1 for carvacrol and 1 μl l -1 for eugenol. The activities of defence-related enzymes in peaches were also enhanced by fumigation with two EOs. This study showed that carvacrol and eugenol could effectively inhibit the growth of R. stolonifer in vitro and successfully control the incidence of soft rot decay in honey peaches. The above findings may be the main antifungal mechanism of carvacrol and eugenol on R. stolonifer. Furthermore, carvacrol and eugenol are helpful for their commercial application on the preservation of fresh fruit. © 2017 The Society for Applied Microbiology.

  3. Depletion of eugenol residues from the skin-on fillet tissue of rainbow trout exposed to 14C-labeled eugenol

    Science.gov (United States)

    Meinertz, Jeffery R.; Schreier, Theresa M.; Porcher, Scott T.; Smerud, Justin R.; Gaikowski, Mark P.

    2014-01-01

    The U.S. is lagging in access to an approved immediate-release sedative, i.e. a compound that can be safely and effectively used to sedate fish and has no withdrawal period. AQUI-S® 20E (10% active ingredient, eugenol) is under investigation as an immediate-release sedative for freshwater finfish. Because of its investigational status, data are needed to characterize the depletion, distribution, and identity of AQUI-S® 20E residues in fillet tissue. Rainbow trout (Oncorhynchus mykiss) were exposed to uniformly ring labeled 14C-eugenol at a nominal concentration of 10 mg/L for 60 min in 18 °C water. Fish (n = 6) were sampled immediately after the exposure (0 min) then at 30, 60, 120, and 240 min. Eugenol concentrations and characterization of 14C residues in the fillet tissue were determined by high pressure liquid chromatography and flow-through liquid scintillation counting techniques. Total 14C-residue burdens in fillet tissue were determined by tissue oxidation and static liquid scintillation counting techniques. Maximum eugenol and 14C-eugenol equivalent residue concentrations in the fillet tissue were measured immediately after the exposure (44.5 and 38.8 μg/g, respectively). Eugenol was the primary 14C-residue (> 90% of all 14C-residues) in extracts from fillet tissue taken from fish sampled immediately after the exposure (0 min) and from fish sampled at 30 and 60 min after the exposure. The depletion of 14C-eugenol residues from the fillet tissue was rapid (t1/2 = 26.25 min) after transferring the exposed fish to fresh flowing water.

  4. Effect of eugenol on growth and listeriolysin o production by Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Cristina Tostes Filgueiras

    2006-05-01

    Full Text Available The inhibitory effect of eugenol, a naturally occurring compound mainly present in the essential oil fraction of cloves, was studied on the growth and listeriolysin O (LLO production by Listeria monocytogenes. Potassium efflux from cells promoted by eugenol was also determined after 24 h incubation in phosphate buffered saline. Eugenol promoted a delay on the growth of L. monocytogenes at concentrations of 100, 300 and 500 µg mL-1and above 800 µg mL-1 the effect was bactericidal. Production of LLO by L. monocytogenes in the presence of eugenol was reduced 80-100%. An accumulation of external K+ was observed above 300 µg mL-1 of eugenol which indicated that the cell membrane was affected. The results showed the effectiveness of eugenol in controlling growth and LLO production of L. monocytogenes cells.O efeito inibitório do eugenol, o principal constituinte do óleo essencial de cravo, foi avaliado sobre o crescimento e produção de listeriolisina O (LLO por Listeria monocytogenes. O efluxo de íons potássio das células também foi determinado após 24 h de incubação em solução tampão, contendo eugenol. Concentrações de 100, 300 e 500 µg mL-1 de eugenol promoveram a inibição do crescimento de L. monocytogenes e, em concentrações acima de 800 µg mL-1, constatou-se um efeito bactericida. O crescimento de L. monocytogenes na presença de eugenol resultou na inibição de 80 a 100% da produção de LLO. O efluxo de K+ promovido pelo eugenol indicou que a membrana celular foi afetada. Estes resultados indicam a efetividade do eugenol para o controle do crescimento e da produção de LLO por L. monocytogenes.

  5. Eugenol exhibits anti-virulence properties by competitively binding to quorum sensing receptors.

    Science.gov (United States)

    Rathinam, Prasanth; Vijay Kumar, H S; Viswanathan, Pragasam

    2017-09-01

    The primary objective of this study was to ascertain the anti-biofilm and anti-virulence properties of sub-minimum inhibitory concentration (MIC) levels of eugenol against the standard strain PAO1 and two multi-drug resistant P. aeruginosa clinical isolates utilizing quorum sensing inhibition (QSI). Eugenol at 400 μM significantly reduced biofilm formation on urinary catheters and the virulence factors (VF) including extracellular polysaccharides, rhamnolipid, elastase, protease, pyocyanin, and pyoverdine (p associated genes besides the VF genes (p < 0.001). This study provides insights, for the first time, into the mechanism of the anti-virulence properties of eugenol.

  6. Induction of liver microsomal UDP-glucuronyltransferase in the rat administered with a plant phenol, eugenol.

    Science.gov (United States)

    Yokota, H; Yuasa, A

    1990-02-01

    UDP-glucuronyltransferase activity toward xenobiotics in rat liver microsomes was increased about 2.6-fold by administration of a eugenol (4-allyl-2-methoxyphenol). Km value of the induced enzyme toward UDP-glucuronic acid, however, did not change. Immunoblotting analysis revealed that the amount of UDP-glucuronyltransferase protein was increased in the microsomes of eugenol-treated rat liver. In vitro translation assay showed that the level of translatable mRNA encoding this enzyme increased in the liver. These results indicate that mRNA specific for production of UDP-glucuronyltransferase has accumulated, presumably by de novo synthesis in response to a plant phenol, eugenol.

  7. SYNTHESIS OF AZO COMPOUNDS DERIVATIVE FROM EUGENOL AND ITS APPLICATION AS A TITRATION INDICATOR

    OpenAIRE

    Bambang Purwono; Catur Mahardiani

    2010-01-01

    The synthesis of azo compounds from eugenol has been carried out by diazotation reaction. The diazonium salt was produced by reaction of aniline and sodium nitrite in acid condition at 0-5 °C temperature to yield benzenediazonium chloride salt. The salt was then reacted with eugenol to produce the azo derivatives. The azo product was analyzed by IR, 1H-NMR, dan GC-MS spectrometer. The results showed that the reaction of benzenediazonium chloride with eugenol gave 4-allyl-2-methoxy-6-hydroxyaz...

  8. Feces and liver tissue metabonomics studies on the regulatory effect of aspirin eugenol eater in hyperlipidemic rats.

    Science.gov (United States)

    Ma, Ning; Liu, Xiwang; Kong, Xiaojun; Li, Shihong; Jiao, Zenghua; Qin, Zhe; Dong, Pengcheng; Yang, Yajun; Li, Jianyong

    2017-12-11

    Based on the pro-drug principle, aspirin and eugenol were esterified to synthesize aspirin eugenol ester (AEE). The anti-hyperlipidemia effect of aspirin eugenol ester has been confirmed in hyperlipidemic rat induced by high fat diet (HFD). However, its effect on liver and feces metabonomic profiles remains unknown. Suspension of AEE was prepared in 5% carboxymethyl cellulose sodium (CMC-Na). Thirty rats were divided into control, model and AEE groups. The control and model rats were fed with normal diet or HFD for 13 weeks, respectively. Rats in AEE-treated group were fed with HFD for 8 weeks to induce hyperlipidemia, and then given AEE once daily by oral gavage for 5 weeks at the dosage of 54 mg/kg body weight. After drug intervention, lipid profile analysis and oil red O staining were carried out to confirm the lipid accumulation in liver tissue. UPLC-Q-TOF/MS-based liver and feces metabonomics coupled with pathway analysis were conducted to evaluate the changes of metabolic profile and endogenous metabolites. In liver tissue, oral administration of AEE significantly reduced lipid droplets and the levels of triglyceride (TG) and low-density lipoprotein (LDL). Using principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA), distinct changes in metabolite patterns in feces and liver were observed. Liver and feces samples in control, model and AEE groups were scattered in PLS-DA score plots. 28 metabolites in liver and 22 in feces were identified as potential biomarkers related to hyperlipidemia. As possible drug targets, the perturbations of those biomarkers can be regulated by administration of AEE. Anti-hyperlipidemia effect of AEE was confirmed by lipid analysis, oil red O staining and metabolomics analysis. The mechanism of AEE might be associated with the changes in the metabolism of glycerophospholipid, amino acid, fatty acid, sphingolipid, purine, bile acid and glutathione.

  9. Eugenol wash and chitosan based coating reduces Campylobacter jejuni counts on poultry products

    Science.gov (United States)

    Campylobacter, a leading cause of foodborne illness globally in humans, is strongly associated with the consumption of contaminated poultry products. Unfortunately, current strategies to reduce Campylobacter counts in poultry have had limited success. Our study investigated the efficacy of eugenol ...

  10. The Dual Antioxidant/Prooxidant Effect of Eugenol and Its Action in Cancer Development and Treatment

    Directory of Open Access Journals (Sweden)

    Daniel Pereira Bezerra

    2017-12-01

    Full Text Available The formation of reactive oxygen species (ROS during metabolism is a normal process usually compensated for by the antioxidant defense system of an organism. However, ROS can cause oxidative damage and have been proposed to be the main cause of age-related clinical complications and diseases such as cancer. In recent decades, the relationship between diet and cancer has been more studied, especially with foods containing antioxidant compounds. Eugenol is a natural compound widely found in many aromatic plant species, spices and foods and is used in cosmetics and pharmaceutical products. Eugenol has a dual effect on oxidative stress, which can action as an antioxidant or prooxidant agent. In addition, it has anti-carcinogenic, cytotoxic and antitumor properties. Considering the importance of eugenol in the area of food and human health, in this review, we discuss the role of eugenol on redox status and its potential use in the treatment and prevention of cancer.

  11. MARKOVNIKOV ADDITION OF CHLOROSULFURIC ACID TO EUGENOL ISOLATED FROM CLOVE OIL

    Directory of Open Access Journals (Sweden)

    I Made Sudarma

    2013-08-01

    Full Text Available The objective of this research was to synthesize new compounds with potential biological activity from readily accessed natural products. Eugenol has been reported to posses antioxidant and anticancer properties and was prepared by extracting from clove buds with dichloromethane and followed by isolation using column chromatography to afford pure eugenol (73%. In an attempt to enhance intrinsic activity of this natural compound, some derivatives were possible to synthesize. The main aim of this preliminary research was to transform eugenol to become sulfonic derivative. Eugenol was transformed to its sulfonic derivative in moderate yield (64% by treatment with chlorosulfuric acid which undergoes Markovnikov addition. This product was rapidly confirmed by GC-MS and NMR analyses. Selective inhibition was performed by cyclic sulfonic ester derivative which could inhibit Eschericia coli and Staphylococcus aureus but not for Bacillus cereus.

  12. Success Rate of Zinc Oxide Eugenol in Pulpectomy of Necrotic Primary Molars: A Retrospective Study

    National Research Council Canada - National Science Library

    Zahra Bahrololoomi; Shiva Zamaninejad

    2015-01-01

    Introduction: Pulpectomy is a conservative treatment plan for primary necrotic teeth and Zinc Oxide Eugenol is still a good choice as root canal filling material but long term studies on poor prognosis molars...

  13. SYNTHESIS OF AZO COMPOUNDS DERIVATIVE FROM EUGENOL AND ITS APPLICATION AS A TITRATION INDICATOR

    Directory of Open Access Journals (Sweden)

    Bambang Purwono

    2010-06-01

    Full Text Available The synthesis of azo compounds from eugenol has been carried out by diazotation reaction. The diazonium salt was produced by reaction of aniline and sodium nitrite in acid condition at 0-5 °C temperature to yield benzenediazonium chloride salt. The salt was then reacted with eugenol to produce the azo derivatives. The azo product was analyzed by IR, 1H-NMR, dan GC-MS spectrometer. The results showed that the reaction of benzenediazonium chloride with eugenol gave 4-allyl-2-methoxy-6-hydroxyazobenzene in 34.27% yield for 30 minutes reaction. The derivative of azo compound was dissolved in ethanol and then the color changing was observed in range of pH 9.8-11.1 from yellow to red. Application for titration indicator for acetic acid titrated with sodium hydroxide showed error less than 3.20% compared with phenol phtaline indicator.   Keywords: Eugenol, Azo compound, titration indicator

  14. STRUCTURE – ANTIOXIDANT ACTIVITIES RELATIONSHIP ANALYSIS OF ISOEUGENOL, EUGENOL, VANILIN AND THEIR DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Nur Aini

    2010-06-01

    Full Text Available Structure Activity Relationship (SAR technique between the theoretical parameters and antioxidant activities of isoeugenol, eugenol, vanillin and their derivatives as Mannich reaction products, have been analyzed. Antioxidant activities were examined by oxidation reaction of oleic acid at 60 °C with b-carotene methods, whereas theoretical parameters of the activities were determined by calculating Bonding Dissociation Enthalpy (BDE and net charge of oxygen atom(-OH using AM1 semi empiric methods. The result from both test showed in the following orders: BHT > Mannich product of isoeugenol > isoeugenol > Mannich product of eugenol > eugenol > Mannich product of vanillin > vanillin. The antioxidant activities increase with small the BDE value and high the net charge. Electron donating groups will increase the antioxidants activity with lowering the BDE value and increasing the net charge, while electron-withdrawing groups will decrease antioxidants activity.   Keywords: SAR, antioxidants, Bonding Dissociation Entalphy, eugenol.

  15. Detection and evaluation of DNA methylation markers found at SCGN and KLF14 loci to estimate human age.

    Science.gov (United States)

    Alghanim, Hussain; Antunes, Joana; Silva, Deborah Soares Bispo Santos; Alho, Clarice Sampaio; Balamurugan, Kuppareddi; McCord, Bruce

    2017-11-01

    Recent developments in the analysis of epigenetic DNA methylation patterns have demonstrated that certain genetic loci show a linear correlation with chronological age. It is the goal of this study to identify a new set of epigenetic methylation markers for the forensic estimation of human age. A total number of 27 CpG sites at three genetic loci, SCGN, DLX5 and KLF14, were examined to evaluate the correlation of their methylation status with age. These sites were evaluated using 72 blood samples and 91 saliva samples collected from volunteers with ages ranging from 5 to 73 years. DNA was bisulfite modified followed by PCR amplification and pyrosequencing to determine the level of DNA methylation at each CpG site. In this study, certain CpG sites in SCGN and KLF14 loci showed methylation levels that were correlated with chronological age, however, the tested CpG sites in DLX5 did not show a correlation with age. Using a 52-saliva sample training set, two age-predictor models were developed by means of a multivariate linear regression analysis for age prediction. The two models performed similarly with a single-locus model explaining 85% of the age variance at a mean absolute deviation of 5.8 years and a dual-locus model explaining 84% of the age variance with a mean absolute deviation of 6.2 years. In the validation set, the mean absolute deviation was measured to be 8.0 years and 7.1 years for the single- and dual-locus model, respectively. Another age predictor model was also developed using a 40-blood sample training set that accounted for 71% of the age variance. This model gave a mean absolute deviation of 6.6 years for the training set and 10.3years for the validation set. The results indicate that specific CpGs in SCGN and KLF14 can be used as potential epigenetic markers to estimate age using saliva and blood specimens. These epigenetic markers could provide important information in cases where the determination of a suspect's age is critical in developing

  16. Evaluation of Global Genomic DNA Methylation in Human Whole Blood by Capillary Electrophoresis UV Detection

    Directory of Open Access Journals (Sweden)

    Angelo Zinellu

    2017-01-01

    Full Text Available Alterations in global DNA methylation are implicated in various pathophysiological processes. The development of simple and quick, yet robust, methods to assess DNA methylation is required to facilitate its measurement and interpretation in clinical practice. We describe a highly sensitive and reproducible capillary electrophoresis method with UV detection for the separation and detection of cytosine and methylcytosine, after formic acid hydrolysis of DNA extracted from human whole blood. Hydrolysed samples were dried and resuspended with water and directly injected into the capillary without sample derivatization procedures. The use of a run buffer containing 50 mmol/L BIS-TRIS propane (BTP phosphate buffer at pH 3.25 and 60 mmol/L sodium acetate buffer at pH 3.60 (4 : 1, v/v allowed full analyte identification within 11 min. Precision tests indicated an elevated reproducibility with an interassay CV of 1.98% when starting from 2 μg of the extracted DNA. The method was successfully tested by measuring the DNA methylation degree both in healthy volunteers and in reference calf thymus DNA.

  17. Effects of eugenol on respiratory burst generation in newborn rat brainstem-spinal cord preparations.

    Science.gov (United States)

    Kotani, Sayumi; Irie, Saki; Izumizaki, Masahiko; Onimaru, Hiroshi

    2018-02-01

    Eugenol is contained in several plants including clove and is used as an analgesic drug. In the peripheral and central nervous systems, this compound modulates neuronal activity through action on voltage-gated ionic channels and/or transient receptor potential channels. However, it is unknown whether eugenol exerts any effects on the respiratory center neurons in the medulla. We examined the effects of eugenol on respiratory rhythm generation in the brainstem-spinal cord preparation from newborn rat (P0-P3). The preparations were superfused by artificial cerebrospinal fluid at 25-26 °C, and inspiratory C4 ventral root activity was monitored. Membrane potentials of respiratory neurons were recorded in the parafacial region of the rostral ventrolateral medulla. Bath application of eugenol (0.5-1 mM) decreased respiratory rhythm accompanied by strong inhibition of the burst activity of pre-inspiratory neurons. After washout, respiratory rhythm partly recovered, but the inspiratory burst duration was extremely shortened, and this continued for more than 60 min after washout. The shortening of C4 inspiratory burst by eugenol was not reversed by capsazepine (TRPV1 antagonist) or HC-030031 (TRPA1 antagonist), whereas the depression was partially blocked by GABAA antagonist bicuculline and glycine antagonist strychnine or GABAB antagonist phaclofen. A spike train of action potentials in respiratory neurons induced by depolarizing current pulse was depressed by application of eugenol. Eugenol decreased the negative slope conductance of pre-inspiratory neurons, suggesting blockade of persistent Na+ current. These results suggest that changes in both membrane excitability and synaptic connections are involved in the shortening of respiratory neuron bursts by eugenol.

  18. Eugenol triggers apoptosis in breast cancer cells through E2F1/survivin down-regulation.

    Science.gov (United States)

    Al-Sharif, Ibtehaj; Remmal, Adnane; Aboussekhra, Abdelilah

    2013-12-13

    Breast cancer is a major health problem that threatens the lives of millions of women worldwide each year. Most of the chemotherapeutic agents that are currently used to treat this complex disease are highly toxic with long-term side effects. Therefore, novel generation of anti-cancer drugs with higher efficiency and specificity are urgently needed. Breast cancer cell lines were treated with eugenol and cytotoxicity was measured using the WST-1 reagent, while propidium iodide/annexinV associated with flow cytometry was utilized in order to determine the induced cell death pathway. The effect of eugenol on apoptotic and pro-carcinogenic proteins, both in vitro and in tumor xenografts was assessed by immunoblotting. While RT-PCR was used to determine eugenol effect on the E2F1 and survivin mRNA levels. In addition, we tested the effect of eugenol on cell proliferation using the real-time cell electronic sensing system. Eugenol at low dose (2 μM) has specific toxicity against different breast cancer cells. This killing effect was mediated mainly through inducing the internal apoptotic pathway and strong down-regulation of E2F1 and its downstream antiapoptosis target survivin, independently of the status of p53 and ERα. Eugenol inhibited also several other breast cancer related oncogenes, such as NF-κB and cyclin D1. Moreover, eugenol up-regulated the versatile cyclin-dependent kinase inhibitor p21WAF1 protein, and inhibited the proliferation of breast cancer cells in a p53-independent manner. Importantly, these anti-proliferative and pro-apoptotic effects were also observed in vivo in xenografted human breast tumors. Eugenol exhibits anti-breast cancer properties both in vitro and in vivo, indicating that it could be used to consolidate the adjuvant treatment of breast cancer through targeting the E2F1/survivin pathway, especially for the less responsive triple-negative subtype of the disease.

  19. Effect of Eugenol against Streptococcus agalactiae and Synergistic Interaction with Biologically Produced Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Renata Perugini Biasi-Garbin

    2015-01-01

    Full Text Available Streptococcus agalactiae (group B streptococci (GBS is an important infections agent in newborns associated with maternal vaginal colonization. Intrapartum antibiotic prophylaxis in GBS-colonized pregnant women has led to a significant reduction in the incidence of early neonatal infection in various geographic regions. However, this strategy may lead to resistance selecting among GBS, indicating the need for new alternatives to prevent bacterial transmission and even to treat GBS infections. This study reported for the first time the effect of eugenol on GBS isolated from colonized women, alone and in combination with silver nanoparticles produced by Fusarium oxysporum (AgNPbio. Eugenol showed a bactericidal effect against planktonic cells of all GBS strains, and this effect appeared to be time-dependent as judged by the time-kill curves and viability analysis. Combination of eugenol with AgNPbio resulted in a strong synergistic activity, significantly reducing the minimum inhibitory concentration values of both compounds. Scanning and transmission electron microscopy revealed fragmented cells and changes in bacterial morphology after incubation with eugenol. In addition, eugenol inhibited the viability of sessile cells during biofilm formation and in mature biofilms. These results indicate the potential of eugenol as an alternative for controlling GBS infections.

  20. Gold nanoparticles modified carbon paste electrode for differential pulse voltammetric determination of eugenol.

    Science.gov (United States)

    Afzali, Daryoush; Zarei, Somaye; Fathirad, Fariba; Mostafavi, Ali

    2014-10-01

    In the present study, a carbon paste electrode chemically modified with gold nanoparticles was used as a sensitive electrochemical sensor for determination of eugenol. The differential pulse voltammetric method was employed to study the behavior of eugenol on this modified electrode. The effect of variables such as percent of gold nanoparticles, pH of solution, accumulation potential and time on voltammogram peak current were optimized. The proposed electrode showed good oxidation response for eugenol in 0.1 mol L(-1) phosphate buffer solution (pH8) and the peak potential was about +285 mV (vs. Ag/AgCl). The peak current increased linearly with the eugenol concentration in the range of 5-250 μmol L(-1). The detection limit was found to be 2.0 μmol L(-1) and the relative standard deviation was 1.2% (n=7). The effect of interferences on the eugenol peak current was studied. The method has been applied to the determination of eugenol in different real samples, spiked recoveries were in the range of 96%-99%. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Effects of linalool and eugenol on the survival of Leishmania (L.) infantum chagasi within macrophages.

    Science.gov (United States)

    Dutra, Fernando L; Oliveira, Maurício M; Santos, Reinaldo S; Silva, Wagner Seixas; Alviano, Daniela S; Vieira, Danielle P; Lopes, Angela H

    2016-12-01

    The most commonly used drugs against visceral leishmaniasis are based on pentavalent antimonial compounds, which have played a fundamental role in therapy for over 70 years. However, the treatment is painful and has severe toxic side effects that can be fatal. Antimonial resistance is spreading and reaching alarming proportions. Linalool and eugenol have been shown to kill Leishmania (L.) amazonensis and Trypanosoma cruzi at low doses. In the present study, we demonstrate the effects of linalool and eugenol, components of essential oils, on Leishmania (L.) infantum chagasi, one of the causative agents of visceral leishmaniasis. We compared the effects of those compounds to the effects of glucantime, a positive control. In L. infantum chagasi killing assays, the LD 50 for eugenol was 220μg/ml, and that for linalool was 550μg/ml. L. infantum chagasi was added to cultures of peritoneal mouse macrophages for four hours prior to drug treatment. Eugenol and linalool significantly decreased the number of parasites within the macrophages. Eugenol and linalool enhanced the activities of the L. infantum chagasi protein kinases PKA and PKC. Linalool also decreased L. infantum chagasi oxygen consumption. In conclusion, both linalool and eugenol promoted a decrease in the proliferation and viability of L. infantum chagasi. These effects were more pronounced during the interaction between the parasites and peritoneal mouse macrophages. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Organic Heat Stabilizers for Polyvinyl Chloride (PVC): A Synergistic Behavior of Eugenol and Uracil Derivative

    Science.gov (United States)

    Asawakosinchai, Aran; Jubsilp, Chanchira; Mora, Phattarin; Rimdusit, Sarawut

    2017-09-01

    Recycling ability, mechanical, and thermal properties of PVC stabilized with organic heat stabilizers, i.e., uracil (DAU) and eugenol were investigated to substitute PVCs stabilized with commercial lead, Ca/Zn, and organic-based stabilizer for PVC pipe production. PVC stabilized with the DAU and the eugenol can be processable at 30 °C lower than that of the PVC stabilized with commercial heat stabilizers. The most remarkable short-term thermal stability belonged to the PVC stabilized with the DAU, and its original color can be maintained at least up to 3 processing cycles. Synergistic behavior in thermal stability of the PVC mixed with DAU and eugenol at mass ratios of 1.5:1.5 was observed. Mechanical properties of DAU- and eugenol-stabilized PVC were higher than the samples with other heat stabilizers. Glass transition temperature of the PVC stabilized with all heat stabilizers was determined to be 99 °C with the exception of the value of 89 °C for eugenol-stabilized PVC. Therefore, the DAU and the eugenol showed high potential to be used as an organic heat stabilizer for PVC because of their non-toxic and good heat resistance properties.

  3. Investigation on mechanism of antifungal activity of eugenol against Trichophyton rubrum.

    Science.gov (United States)

    de Oliveira Pereira, Fillipe; Mendes, Juliana Moura; de Oliveira Lima, Edeltrudes

    2013-07-01

    Trichophyton rubrum is a worldwide agent responsible for chronic cases of dermatophytosis which have high rates of resistance to antifungal drugs. Attention has been drawn to the antimicrobial activity of aromatic compounds because of their promising biological properties. Therefore, we investigated the antifungal activity of eugenol against 14 strains of T. rubrum which involved determining its minimum inhibitory concentration (MIC) and effects on mycelial growth (dry weight), conidial germination and morphogenesis. The effects of eugenol on the cell wall (sorbitol protect effect) and the cell membrane (release of intracellular material, complex with ergosterol, ergosterol synthesis) were investigated. Eugenol inhibited the growth of 50% of T. rubrum strains employed in this study at an MIC = 256 μg/ml, as well as mycelial growth and conidia germination. It also caused abnormalities in the morphology of the dermatophyte in that we found wide, short, twisted hyphae and decreased conidiogenesis. The results of these studies on the mechanisms of action suggested that eugenol exerts antifungal effects on the cell wall and cell membrane of T. rubrum. Eugenol act on cell membrane by a mechanism that seems to involve the inhibition of ergosterol biosynthesis. The lower ergosterol content interferes with the integrity and functionality of the cell membrane. Finally, our studies support the potential use of the eugenol as an antifungal agent against T. rubrum.

  4. Differential pulse voltammetric determination of eugenol at a pencil graphite electrode.

    Science.gov (United States)

    Sağlam, Özlem; Dilgin, Didem Giray; Ertek, Bensu; Dilgin, Yusuf

    2016-03-01

    In this study, the electrochemical behavior of eugenol, a widely used herbal drug, was investigated at a pencil graphite electrode (PGE). A low-cost, disposable, sensitive and selective electrochemical sensor is proposed for the determination of eugenol by recording its differential pulse voltammograms in Britton-Robinson buffer solution containing 0.1 M KCl with pH of 2.0 at the PGE. The PGE displayed a very good electrochemical behavior with significant enhancement of the peak current compared to a glassy carbon electrode. Under experimental conditions, the PGE had a linear response range from 0.3 μM to 50.0 μM eugenol with a detection limit of 0.085 μM (based on 3S(b)). Relative standard deviations of 2.4 and 4.8% were obtained for five successive determinations of 30.0 and 5.0 μM eugenol, respectively, which indicate acceptable repeatability. This voltammetric method was successfully applied for the direct determination of eugenol in real samples. The effect of various interfering compounds on the eugenol peak current was also studied. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Eugenol enhances the resistance of tomato against tomato yellow leaf curl virus.

    Science.gov (United States)

    Wang, Chunmei; Fan, Yongjian

    2014-03-15

    Tomato yellow leaf curl virus disease (TYLCVD) causes severe to economic losses in tomato crops in China. The control of TYLCVD is based primarily on the use of synthetic insecticide to control its vector whitefly (Bemisia tabaci). To look for an alternative method for disease control, we investigated the effect of eugenol on controlling TYLCVD. The potential of eugenol to trigger systemic acquired resistance (SAR) in tomato (Jiangsu 14) plants against TYLCV was also investigated. In greenhouse experiments, eugenol significantly reduced disease severity when applied as a foliar spray, thus demonstrating a systemic effect. The disease spread rapidly in control plants and by the end of the experiment almost all control plants showed severe symptoms. Eugenol also induced H₂O₂ accumulation in tomato plants. Activities of peroxidase (POD), polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) were significantly induced compared with those of control plants. As further consequences, increase of salicylic acid (SA) levels and expression of PR-1 proteins, a molecular marker of SAR in tomato, could also be observed. This is the first report of eugenol as an elicitor and its ability to suppress plant virus diseases under greenhouse conditions. It is suggested that eugenol has the potential to be an effective biocontrol agent against TYLCV in tomato plants. © 2013 Society of Chemical Industry.

  6. Survival of spoilage bacteria subjected to sequential eugenol and temperature treatments.

    Science.gov (United States)

    Manrique, Yudith; Suriyarak, Sarisa; Gibis, Monika; Schmidt, Herbert; Weiss, Jochen

    2016-02-02

    Effects of a sequential application of eugenol and temperature on the survival of two model spoilage organisms, Staphylococcus carnosus LTH1502 and Escherichia coli K12 C600, were studied. To assess effects of a "temperature first-antimicrobial later" treatment, cultures were treated with eugenol at 20, 37 and 42 °C at the beginning of the incubation period, and after 3h and 8h. To assess effects of an "antimicrobial first-temperature later" treatment, eugenol was added at the beginning of the incubation period at 37 °C and temperature was changed to 20 or 42 °C after 3 or 8h. Cell numbers were determined in regular intervals during the incubation period using plate counts. Partitioning of eugenol was measured by HPLC, and cell morphology was assessed by electron microscopy. Combined treatments were more effective against the Gram negative E. coli than against S. carnosus. Order of application influenced the effectiveness of treatments, especially at 42 °C. There, the temperature first-eugenol later treatment was less effective than other treatments, likely due to temperature-induced adaptation processes occurring in cellular membranes making them more resistant against a later eugenol treatment. Results are of significance in situations where combinations of sublethal stresses are used to build a hurdle concept for food preservation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Eugenol improves physical and chemical stabilities of nanoemulsions loaded with β-carotene.

    Science.gov (United States)

    Guan, Yongguang; Wu, Jine; Zhong, Qixin

    2016-03-01

    Food-grade nanoemulsions are potential vehicles of labile lipophilic compounds such as β-carotene, but much work is needed to improve physical and chemical stabilities. The objective of this work was to study impacts of eugenol on physical and chemical stabilities of β-carotene-loaded nanoemulsions prepared with whey protein and lecithin. The combination of whey protein and lecithin resulted in stable nanoemulsions with eugenol added at 10% mass of soybean oil. Nanoemulsions, especially with eugenol, drastically reduced the degradation of β-carotene during ambient storage, heating at 60 and 80°C, and UV radiation at 254, 302, and 365nm. The droplet diameter of the nanoemulsion without eugenol increased from 153.6 to 227.3nm after 30-day ambient storage, contrasting with no significant changes of nanoemulsions with eugenol. Heating or UV radiation up to 8h did not significantly change the droplet diameter. Therefore, eugenol can be used to improve the stability of nanoemulsion delivery systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Organic Heat Stabilizers for Polyvinyl Chloride (PVC): A Synergistic Behavior of Eugenol and Uracil Derivative

    Science.gov (United States)

    Asawakosinchai, Aran; Jubsilp, Chanchira; Mora, Phattarin; Rimdusit, Sarawut

    2017-10-01

    Recycling ability, mechanical, and thermal properties of PVC stabilized with organic heat stabilizers, i.e., uracil (DAU) and eugenol were investigated to substitute PVCs stabilized with commercial lead, Ca/Zn, and organic-based stabilizer for PVC pipe production. PVC stabilized with the DAU and the eugenol can be processable at 30 °C lower than that of the PVC stabilized with commercial heat stabilizers. The most remarkable short-term thermal stability belonged to the PVC stabilized with the DAU, and its original color can be maintained at least up to 3 processing cycles. Synergistic behavior in thermal stability of the PVC mixed with DAU and eugenol at mass ratios of 1.5:1.5 was observed. Mechanical properties of DAU- and eugenol-stabilized PVC were higher than the samples with other heat stabilizers. Glass transition temperature of the PVC stabilized with all heat stabilizers was determined to be 99 °C with the exception of the value of 89 °C for eugenol-stabilized PVC. Therefore, the DAU and the eugenol showed high potential to be used as an organic heat stabilizer for PVC because of their non-toxic and good heat resistance properties.

  9. Eugenol as anesthetic for silver catfish (Rhamdia voulezi with different weightEugenol como anestésico para jundiá (Rhamdia voulezi em diferentes pesos

    Directory of Open Access Journals (Sweden)

    Wilson Rogerio Boscolo

    2012-08-01

    Full Text Available The study aimed to find the better concentration of eugenol for anesthesia of silver catfish (Rhamdia voulezi with different weights. Were used 240 catfish distributed in randomized blocks in factorial scheme (5x4 total 20 treatments, in others words, five different weights: 32,5; 75; 150; 300 e 450g and four eugenol concentrations: 50, 75, 100 e 125 mg.l-1. For each treatment were used 12 fish randomly chosen and exposed individually for each concentration. After of anesthesia the fish were transferred for net-cage with 0,7m3, being fed and observed by 96 hours for monitoring of mortality. The eugenol was efficient for anesthesia in silver catfish all concentrations and weights and after of 96 hours no mortality have been verified. At these experimental conditions the best concentration of eugenol for anesthetic inducing and recuperation of silver catfish with weight varying from 32,5 and 450 g is 50 mg.l-1. O presente estudo teve como objetivo encontrar a melhor dose de eugenol para a anestesia do jundiá (Rhamdia voulezi em diferentes classes de peso. Foram utilizados 240 jundiás distribuídos em delineamento experimental em blocos em esquema fatorial (5 x 4 totalizando 20 tratamentos, ou seja, cinco diferentes classes de peso: 32,5; 75; 150; 300 e 450g e quatro concentrações de eugenol (50, 75, 100 e 125 mg.l-1. Para cada tratamento foram utilizados 12 peixes escolhidos aleatoriamente (n = 12 e expostos individualmente para cada concentração. Após o procedimento de anestesia os peixes foram transferidos para tanques-rede com 0,7m3, onde receberam alimentação e ficaram em observação durante 96 horas para o monitoramento da mortalidade. O eugenol foi eficiente para a anestesia em jundiás nas diferentes concentrações analisadas e nos distintos pesos, e após 96 horas de acompanhamento à recuperação anestésica, não foram verificadas mortalidades dos animais. Nas condições deste experimento a melhor concentração de eugenol

  10. Live transport of Yellow Perch and Nile Tilapia in AQUI-S 20E (10% Eugenol) at high loading densities

    Science.gov (United States)

    Cupp, Aaron R.; Schreier, Theresa M.; Schleis, Sue M.

    2017-01-01

    Fish transport costs are a substantial portion of the operational expenses for aquaculture facilities in the USA. Safely transporting higher loading densities of fish would benefit haulers by increasing efficiency and reducing costs, but research evaluating transport for individual species is generally lacking. In this study, Yellow Perch Perca flavescens and Nile Tilapia Oreochromis niloticus were transported for 6 h immersed in water containing AQUI-S 20E (10% eugenol) at fish loading densities of 240 g/L (2 lb/gal) for perch and 480 g/L (4 lb/gal) for tilapia. Survival was quantified for fish transported in AQUI-S 20E concentrations of (1) control or 0 mg/L of water, (2) 100 mg/L, or (3) 200 mg/L. Yellow Perch had 98–100% survival, and Nile Tilapia had 100% survival up to through 14 d after transport across all AQUI-S 20E levels, including the control. Eugenol concentrations decreased rapidly in transport tank water, and fish showed no signs of sedation by the end of transport. We conclude that live transport of Yellow Perch and Nile Tilapia at higher loading densities resulted in high survival regardless of the AQUI-S 20E concentrations we tested.

  11. Synergy among thymol, eugenol, berberine, cinnamaldehyde and streptomycin against planktonic and biofilm-associated food-borne pathogens.

    Science.gov (United States)

    Liu, Q; Niu, H; Zhang, W; Mu, H; Sun, C; Duan, J

    2015-05-01

    Essential oils have been found to exert antibacterial, antifungal, spasmolytic, and antiplasmodial activity and therapeutic effect in cancer treatment. In this study, the antibacterial activities of four main essential oils' components (thymol (Thy), eugenol (Eug), berberine (Ber), and cinnamaldehyde (Cin)) were evaluated against two food-borne pathogens, Listeria monocytogenes and Salmonella Typhimurium, either alone or in combination with streptomycin. Checkerboard assay demonstrated that Thy and Cin elicited a synergistic effect with streptomycin against L. monocytogenes, while a synergy existed between Cin or Eug and streptomycin against Salm. Typhimurium. Further experiments showed that this synergy was sufficient to eradicate biofilms formed by these two bacteria. Thus, our data highlighted that the combinations of specific components from essential oils and streptomycin were useful for the treatment of food-borne pathogens, which might help prevent the spread of antibiotic resistance through improving antibiotic effectiveness. This study has shown the synergistic effect of four components of essential oil (thymol, eugenol, berberine and cinnamaldehyde) combined with streptomycin on planktonic and biofilm-associated food-borne pathogens Listeria monocytogenes and Salmonella Typhimurium. These findings indicate that combination of specific components of essential oils with streptomycin may provide alternative methods to overcome the problem of food-borne bacteria both in suspension and in biofilm. © 2015 The Society for Applied Microbiology.

  12. Efficacy of eugenol and the methanolic extract of Condalia buxifolia during the transport of the silver catfish Rhamdia quelen

    Directory of Open Access Journals (Sweden)

    Alexssandro Geferson Becker

    Full Text Available This study evaluated extracts of Condalia buxifolia as anesthetics for the silver catfish Rhamdia quelen. The effectiveness of eugenol and of the methanolic extract (ME of C. buxifolia during the transport of this species was also assessed. Fish of two different weights (1.50±0.02 g and 165.70±22.50 g were transferred to aquaria containing water with the C. buxifolia ME or with fractions obtained from the ME, such as the n-hexane, dichloromethane, ethyl acetate, n-butane and aqueous fractions, at concentrations from 0-300 °L L-1. The C. buxifolia ME in the 0.5-120 °L L-1range caused only light sedation, and the fractions did not have an effect on the fish. In the second experiment, another group of fish was transported for 12 h in 15 plastic bags. The fish were divided into five groups: control, 1 or 2.5 °L L-1 eugenol and 25 or 50 °L L-1C. buxifolia ME. The non-ionized ammonia levels were lower at the end of transport in the groups with the compounds than in that with water alone. Moreover, both compounds decreased the Na+, Cl-, and K+ net effluxes; therefore, their addition to the water during transport is advisable because they reduce fish mortality and ion loss.

  13. EXTENDING THE LIFE TIME OF POLYMER INCLUSION MEMBRANE CONTAINING COPOLY(EUGENOL-DVB AS CARRIER FOR PHENOL TRANSPORT

    Directory of Open Access Journals (Sweden)

    Agung Abadi Kiswandono

    2013-12-01

    Full Text Available A study of phenol transport was conducted in correlation to the evaluation of copoly(eugenol-divinylbenzene, DVB as carrier using polymer inclusion membrane (PIM method. The performance of copoly(eugenol-DVB was observed based on the parameters of Membrane Liquid (ML loss. Some variations, including the effect of plasticizer concentration, stirring speed, and measurement of lifetime of the membrane, were studied. Related to the lifetime, the effect of the concentration of NaNO3 salt was also studied. The tensile strength of membrane before and after the transport was measured and their morphology was characterized using SEM (Scanning Electron Microscope. Results of the study indicate that the value of the tensile strength of the membrane after the transport was lower than that before the transport. The lifetime of the membrane was not only depending on the capacity of the membrane in restraining ML loss, but also on the concentration of salt that was added to the solution of source phase. In addition, the lifetime of the membrane had correlation to the number of ML loss, i.e. the addition of salt lead to lower amount of ML loss and gave longer lifetime. With the addition of 0.1 M NaNO3, the lifetime of the membrane extended to 62 days, which is longer than the lifetime without the addition of NaO3 which was only 7 days.

  14. Immunotherapeutic Potential of Eugenol Emulsion in Experimental Visceral Leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Mohammad Islamuddin

    2016-10-01

    Full Text Available The therapy of visceral leishmaniasis (VL is limited by resistance, toxicity and decreased bioavailability of the existing drugs coupled with dramatic increase in HIV-co-infection, non-availability of vaccines and down regulation of cell-mediated immunity (CMI. Thus, we envisaged combating the problem with plant-derived antileishmanial drug that could concomitantly mitigate the immune suppression of the infected hosts. Several plant-derived compounds have been found to exert leishmanicidal activity via immunomodulation. In this direction, we investigated the antileishmanial activity of eugenol emulsion (EE, complemented with its immunomodulatory and therapeutic efficacy in murine model of VL.Oil-in-water emulsion of eugenol (EE was prepared and size measured by dynamic light scattering (DLS. EE exhibited significant leishmanicidal activity with 50% inhibitory concentration of 8.43±0.96 μg ml-1 and 5.05±1.72 μg ml─1, respectively against the promastigotes and intracellular amastigotes of Leishmania donovani. For in vivo effectiveness, EE was administered intraperitoneally (25, 50 and 75 mg/kg b.w./day for 10 days to 8 week-infected BALB/c mice. The cytotoxicity of EE was assessed in RAW 264.7 macrophages as well as in naive mice. EE induced a significant drop in hepatic and splenic parasite burdens as well as diminution in spleen and liver weights 10 days post-treatment, with augmentation of 24h-delayed type hypersensitivity (DTH response and high IgG2a:IgG1, mirroring induction of CMI. Enhanced IFN-γ and IL-2 levels, with fall in disease-associated Th2 cytokines (IL-4 and IL-10 detected by flow cytometric bead-based array, substantiated the Th1 immune signature. Lymphoproliferation and nitric oxide release were significantly elevated upon antigen revoke in vitro. The immune-stimulatory activity of EE was further corroborated by expansion of IFN-γ producing CD4+ and CD8+ splenic T lymphocytes and up-regulation of CD80 and CD86 on

  15. Immunotherapeutic Potential of Eugenol Emulsion in Experimental Visceral Leishmaniasis.

    Science.gov (United States)

    Islamuddin, Mohammad; Chouhan, Garima; Want, Muzamil Yaqub; Ozbak, Hani A; Hemeg, Hassan A; Afrin, Farhat

    2016-10-01

    The therapy of visceral leishmaniasis (VL) is limited by resistance, toxicity and decreased bioavailability of the existing drugs coupled with dramatic increase in HIV-co-infection, non-availability of vaccines and down regulation of cell-mediated immunity (CMI). Thus, we envisaged combating the problem with plant-derived antileishmanial drug that could concomitantly mitigate the immune suppression of the infected hosts. Several plant-derived compounds have been found to exert leishmanicidal activity via immunomodulation. In this direction, we investigated the antileishmanial activity of eugenol emulsion (EE), complemented with its immunomodulatory and therapeutic efficacy in murine model of VL. Oil-in-water emulsion of eugenol (EE) was prepared and size measured by dynamic light scattering (DLS). EE exhibited significant leishmanicidal activity with 50% inhibitory concentration of 8.43±0.96 μg ml-1 and 5.05±1.72 μg ml─1, respectively against the promastigotes and intracellular amastigotes of Leishmania donovani. For in vivo effectiveness, EE was administered intraperitoneally (25, 50 and 75 mg/kg b.w./day for 10 days) to 8 week-infected BALB/c mice. The cytotoxicity of EE was assessed in RAW 264.7 macrophages as well as in naive mice. EE induced a significant drop in hepatic and splenic parasite burdens as well as diminution in spleen and liver weights 10 days post-treatment, with augmentation of 24h-delayed type hypersensitivity (DTH) response and high IgG2a:IgG1, mirroring induction of CMI. Enhanced IFN-γ and IL-2 levels, with fall in disease-associated Th2 cytokines (IL-4 and IL-10) detected by flow cytometric bead-based array, substantiated the Th1 immune signature. Lymphoproliferation and nitric oxide release were significantly elevated upon antigen revoke in vitro. The immune-stimulatory activity of EE was further corroborated by expansion of IFN-γ producing CD4+ and CD8+ splenic T lymphocytes and up-regulation of CD80 and CD86 on peritoneal

  16. Structure and reaction mechanism of basil eugenol synthase.

    Directory of Open Access Journals (Sweden)

    Gordon V Louie

    2007-10-01

    Full Text Available Phenylpropenes, a large group of plant volatile compounds that serve in multiple roles in defense and pollinator attraction, contain a propenyl side chain. Eugenol synthase (EGS catalyzes the reductive displacement of acetate from the propenyl side chain of the substrate coniferyl acetate to produce the allyl-phenylpropene eugenol. We report here the structure determination of EGS from basil (Ocimum basilicum by protein x-ray crystallography. EGS is structurally related to the short-chain dehydrogenase/reductases (SDRs, and in particular, enzymes in the isoflavone-reductase-like subfamily. The structure of a ternary complex of EGS bound to the cofactor NADP(H and a mixed competitive inhibitor EMDF ((7S,8S-ethyl (7,8-methylene-dihydroferulate provides a detailed view of the binding interactions within the EGS active site and a starting point for mutagenic examination of the unusual reductive mechanism of EGS. The key interactions between EMDF and the EGS-holoenzyme include stacking of the phenyl ring of EMDF against the cofactor's nicotinamide ring and a water-mediated hydrogen-bonding interaction between the EMDF 4-hydroxy group and the side-chain amino moiety of a conserved lysine residue, Lys132. The C4 carbon of nicotinamide resides immediately adjacent to the site of hydride addition, the C7 carbon of cinnamyl acetate substrates. The inhibitor-bound EGS structure suggests a two-step reaction mechanism involving the formation of a quinone-methide prior to reduction. The formation of this intermediate is promoted by a hydrogen-bonding network that favors deprotonation of the substrate's 4-hydroxyl group and disfavors binding of the acetate moiety, akin to a push-pull catalytic mechanism. Notably, the catalytic involvement in EGS of the conserved Lys132 in preparing the phenolic substrate for quinone methide formation through the proton-relay network appears to be an adaptation of the analogous role in hydrogen bonding played by the equivalent

  17. Eugenol-inhibited root growth in Avena fatua involves ROS-mediated oxidative damage.

    Science.gov (United States)

    Ahuja, Nitina; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2015-02-01

    Plant essential oils and their constituent monoterpenes are widely known plant growth retardants but their mechanism of action is not well understood. We explored the mechanism of phytotoxicity of eugenol, a monoterpenoid alcohol, proposed as a natural herbicide. Eugenol (100-1000 µM) retarded the germination of Avena fatua and strongly inhibited its root growth compared to the coleoptile growth. We further investigated the underlying physiological and biochemical alterations leading to the root growth inhibition. Eugenol induced the generation of reactive oxygen species (ROS) leading to oxidative stress and membrane damage in the root tissue. ROS generation measured in terms of hydrogen peroxide, superoxide anion and hydroxyl radical content increased significantly in the range of 24 to 144, 21 to 91, 46 to 173% over the control at 100 to 1000 µM eugenol, respectively. The disruption in membrane integrity was indicated by 25 to 125% increase in malondialdehyde (lipid peroxidation byproduct), and decreased conjugated diene content (~10 to 41%). The electrolyte leakage suggesting membrane damage increased both under light as well as dark conditions measured over a period from 0 to 30 h. In defense to the oxidative damage due to eugenol, a significant upregulation in the ROS-scavenging antioxidant enzyme machinery was observed. The activities of superoxide dismutases, catalases, ascorbate peroxidases, guaiacol peroxidases and glutathione reductases were elevated by ~1.5 to 2.8, 2 to 4.3, 1.9 to 5.0, 1.4 to 3.9, 2.5 to 5.5 times, respectively, in response to 100 to 1000 µM eugenol. The study concludes that eugenol inhibits early root growth through ROS-mediated oxidative damage, despite an activation of the antioxidant enzyme machinery. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Investigation of comparative efficacy of eugenol and benzyl benzoate in therapy of sheep mange

    Directory of Open Access Journals (Sweden)

    Jezdimirović Milanka

    2010-01-01

    Full Text Available The acaricide efficacy, tolerance and safety of eugenol (10 and 20 % in the treatment of sarcoptic mange in sheep have been investigated. The results were compared with those corresponding for benzyl benzoate (25 %, which was applied to sheep in the same way. The treatment was applied on sheep three times in one-week intervals. Skin scrapings were sampled seven days after each treatment, as well as twenty-eight days following the third one. The changes on the skin were quantified and the mean recovery response (MRR was calculated. The clinical efficacy was assessed according to the MRR and the number of mites in the samples. Following the first treatment 10%eugenol was not significantly less efficacious in comparison with the higher concentration. Having been applied twice 20% eugenol was significantly more efficacious when compared to the lower concentration, which remained the same seven and twenty-eight days after the third application. The efficacy of 10% eugenol in the therapy of mange was significantly higher in comparison with benzyl benzoate following one, two or three administrations. The efficacy of benzyl benzoate four weeks after the third treatment was still significantly lower in comparison with 10% eugenol. The efficacy of 20% eugenol was significantly higher in comparison with its lower concentration as well as that of benzyl benzoate, following the second, and seven and twenty-eight days after the third one. No signs of local or systemic intolerance were observed in sheep treated with either 10 or 20% eugenol, or 25 % benzyl benzoate. .

  19. Evaluation of methyl fluoride and dimethyl ether as inhibitors of aerobic methane oxidation

    Science.gov (United States)

    Oremland, R.S.; Culbertson, C.W.

    1992-01-01

    Methyl fluoride (MF) and dimethyl ether (DME) were effective inhibitors of aerobic methanotrophy in a variety of soils. MF and DME blocked consumption of CH4 as well as the oxidation of 14CH4 to 14CO2, but neither MF nor DME affected the oxidation of [14C]methanol or [14C]formate to 14CO2. Cooxidation of ethane and propane by methane-oxidizing soils was also inhibited by MF. Nitrification (ammonia oxidation) in soils was inhibited by both MF and DME. Production of N2O via nitrification was inhibited by MF; however, MF did not affect N2O production associated with denitrification. Methanogenesis was partially inhibited by MF but not by DME. Methane oxidation was ~100-fold more sensitive to MF than was methanogenesis, indicating that an optimum concentration could be employed to selectively block methanotrophy. MF inhibited methane oxidation by cell suspensions of Methylococcus capsulatus; however, DME was a much less effective inhibitor.

  20. Evaluation of CP sil 8 film thickness for the capillary GC analysis of methyl mercury

    DEFF Research Database (Denmark)

    Petersen, Jens Højslev; Drabæk, Iver

    1992-01-01

    Different commercially available CP-Sil 8 CB capillary columns have been tested with a mixed standard containing methyl mercury chloride, ethyl mercury chloride and a stable nonpolar chlorinated hydrocarbon. The aim of the study was to see whether the columns tested could be used without special...... pretreatments and precautions for the determination of organo-mercury compounds. The GC conditions in these determinations where similar to those conditions used for the determination of chlorinated pesticides. The best peak shapes where found using a normal packed column injector, modified with a commercially...... available insert for on-column injections on wide bore columns, and a 5.35 mum thick stationary phase. It was concluded that this CP Sil 8 CB column gave good results although minor interactions between the organo-mercury compounds and the column could be seen....

  1. Synthesis and preliminary in vitro evaluation of a new memantine derivative 1-amino-3-[{sup 18}F]fluoromethyl-5-methyl-adamantane: a potential ligand for mapping the N-methyl-D-aspartate receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Samnick, S.; Ametamey, S.; Schubiger, P.A. [Paul Scherrer Institute, Villigen (Switzerland); Gold, M.R. [Merz and Co., GmbH, Reinheim (Germany)

    1997-03-01

    The new memantine derivative 1-amino-3-[{sup 18}F]fluoromethyl-5-methyl-adamantane ({sup 18}F-MEM) was prepared in a two-step reaction sequence for evaluation as a PET tracer. This involves the no-carrier-added nucleophilic radiofluorination of 1-[N-(tert-butyloxy)-carbamoyl]-3-(toluenesulfonyl)methyl-5-methyl -adamantane with K{sup 18}F/Kryptofix 2.2.2 in DMSO and the subsequent deprotection of the resulting {sup 18}F-BOC-MEM by addition of aqueous HCl. {sup 18}F-MEM was obtained after purification by reversed phase HPLC in 22{+-}7% radiochemical yield (decay corrected to EOB) with a radiochemical purity > 99% and a total synthesis time of 100 min. {sup 18}F-MEM is stable up to 6 h in aqueous solution at room temperature and revealed appropriate lipophilicity for good diffusion through the blood-brain-barrier. In vitro studies with the non-radioactive analog, 1-amino-3-fluoromethyl-5-methyl-adamantane ({sup 18}F-MEM) indicated that this compound binds selectively to the phencyclidine (PCP) binding site within the NMDA receptor complex. (author).

  2. Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage.

    Science.gov (United States)

    Ghosh, Vijayalakshmi; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2014-02-01

    Oil-in-water nanoemulsion was formulated using sesame oil, non-ionic surfactant (Tween20/Tween80) and water by ultrasound cavitation method. Development of nanoemulsion was optimized for process parameters such as surfactant type, surfactant concentration and emulsification time to obtain lower droplet diameter with greater stability. Increase in surfactant concentration and emulsification time resulted in nanoemulsion with minimized droplet diameter. Tween80 was more effective in reducing droplet size when compared to that of Tween20. Selected formulation with optimized process parameter (with oil-surfactant mixing ratio of 1:3 v/v and Tween80 as surfactant) was used for delivery of eugenol. Eugenol-loaded nanoemulsion was formulated with droplet diameter of 13 nm and was stable for more than 1 month. Sesame oil blended eugenol-loaded nanoemulsion demonstrated lower droplet size and higher stability than only-eugenol (without sesame oil) nanoemulsion. Eugenol-loaded nanoemulsion S3E3 exhibited antibacterial activity against Staphylococcus aureus. Inactivation kinetics of S. aureus showed time and concentration killing of bacteria upon treatment with S3E3 nanoemulsion. Fluorescence microscopy results demonstrated that S3E3 nanoemulsion treatment resulted in alteration of membrane permeability. In situ assessment of S3E3 in orange juice exhibited a significant reduction in the native bacteria population. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Success Rate of Zinc Oxide Eugenol in Pulpectomy of Necrotic Primary Molars: A Retrospective Study

    Directory of Open Access Journals (Sweden)

    Zahra Bahrololoomi

    2015-06-01

    Full Text Available Introduction: Pulpectomy is a conservative treatment plan for primary necrotic teeth and Zinc Oxide Eugenol is still a good choice as root canal filling material but long term studies on poor prognosis molars are limited and almost contradictory. The purpose of this study is to evaluate the clinical and radiographical success rate of pulpectomy of necrotic primary molars using ZOE as the root canal filling material. Methods: 152 records of 76 primary molars on which two-visit pulpectomy had been performed were selected. The records with a complete and enough clinical history and high quality radiographs of before the treatment and follow up sessions were included to the study. The least follow up was 6 months and the most one was 59 months (with the mean follow up of 24 months. The treatments were noted successful if clinically had no signs and symptoms and radiographically, the size of pathologic radiolucencies of before the treatment have been reduced or at least remained without any changes. Then obtained information was analyses in SPSS 17 and by Chi- square and Log Rank tests. Results: From all 76 cases 5 teeth (6.6% were radiographically failed that all of them were second primary molars and 2 teeth were clinically failed (2.6% that both were second primary molars. Conclusion: Two-visit pulpectomy of primary molars with ZOE as root canal filling materials is one of the most successful treatments for necrotic teeth

  4. Biomimetic synthesis of silver nanoparticles and evaluation of their catalytic activity towards degradation of methyl orange

    Science.gov (United States)

    Manjari Mishra, Pravat; Bihari Pani, Khirod

    2017-11-01

    This paper described the significant effect of process variables like reductant concentrations, substrate concentration, reaction pH and reaction temperature on the size, morphology and yield of the silver nanoparticles (AgNPs) synthesized using aqueous leaf extract of a medicinal plant Momordica charantia (Bitter guard). By means of UV–vis spectroscopy, XRD analysis, TEM analysis and Fluorescence analysis, it is observed that the reaction solution containing 10‑3 M of AgNO3 of pH 5.3  +  10 ml of aqueous leaf extract at normal room temperature, was optimum for synthesis of stable, polydisperse, predominantly spherical AgNPs with average size of 12.15 nm. FT-IR and TEM studies confirmed the stability of AgNPs was due to the capping of phytoconstituents present in the leaf extract. The aqueous solution of leaf extract containing AgNPs showed remarkable catalytic activity towards degradation of methyl orange (MO) in aqueous medium.

  5. Testicular toxicity of methyl thiophanate in the Italian wall lizard (Podarcis sicula): morphological and molecular evaluation.

    Science.gov (United States)

    Cardone, Anna

    2012-03-01

    The effects of the fungicide methyl thiophanate (MT) on testis were determined in the Italian wall lizard (Podarcis sicula) using morphological and molecular analyzes. Three experimental trials were performed: an acute test using six doses, a two-week chronic test, and "ecotoxicological" exposure (3 weeks). The minimal lethal dose (LD(50)) of pure MT, reached by the acute test, was 100 mg/kg body weight. Testicular histopathology of surviving animals showed a reduced lumen and several multinucleated giant cells 24 h after injection followed by large decreases in spermatogonia (72%) and secondary spermatocytes (58%) and a loss of spermatids and sperms 7 days after. In the chronic test, a dose equivalent to 1/100 of LD(50) was injected on alternate days. Complete shutting of the lumen and a great decrease in spermatogonia (82%) were observed. In "ecotoxicological" exposure, achieved with a commercial MT compound, testis showed a decrease in primary spermatocytes (20%) and several vacuoles. An increase in germ cell apoptosis was observed in all experimental groups using TUNEL assay. A decrease in expression of androgen and estrogen receptor (AR and ER) mRNAs was seen in all experimental groups. The reduction in AR and ER mRNAs was correlated to exposure time. Indeed, in the "ecotoxicological" treatment (30 days), the decrease reached 82 and 90% for AR and ER mRNAs, respectively. These data strongly indicate that treatment with MT, damaging the seminiferous epithelium and decreasing steroid receptor expression, might render exposed lizards infertile.

  6. Gliomatosis cerebri evaluated by {sup 18}F{alpha}-methyl tyrosine positron-emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sato, N.; Aoki, J. [Department of Diagnostic Radiology, Gunma University School of Medicine (Japan); Inoue, T. [Department of Radiology, Yokohama City University, Yokohama (Japan); Tomiyoshi, K.; Oriuchi, N.; Endo, K. [Department of Nuclear Medicine, Gunma University School of Medicine, Maebashi, Gunma (Japan); Takahashi, A.; Otani, T.; Kurihara, H.; Sasaki, T. [Department of Neurosurgery, Gunma University School of Medicine, Maebashi, Gunma (Japan)

    2003-10-01

    Gliomatosis cerebri is a rare condition in which an infiltrative glial neoplasm spreads through the brain with preservation of the underlying structure. CT and MRI show diffuse abnormal density or signal, without mass effect, and because these findings are nonspecific, it is difficult to make a definitive diagnosis. Our purpose was to assess the usefulness of a new tumour-detecting amino acid tracer for positron-emission tomography (PET), L-[3-{sup 18}F] {alpha}-methyl tyrosine (FMT), in patients with gliomatosis cerebri. We performed FMT PET, fluorodeoxyglucose FDG PET and MRI eight patients with gliomatosis cerebri and six with non-neoplastic disease, whose MRI also showed diffuse high signal on T2-weighted images. Standardised uptake (SUV) of FMT and FDG in the area of gliomatosis was obtained and the tumour-to-normal cortex (T/N) ratio of this was compared. The tumours were shown on FMT PET as areas of increased uptake, except in one patient with severe intracranial hypertension. There were significant differences between the SUV of FMT and the T/N ratio of FMT in patients and in controls (both P<0.01), and between the T/N ratio of FMT and FDG in patients (P <0.01). Increased uptake of FMT PET strongly suggests neoplasia. FMT PET is valuable for differentiating gliomatosis cerebri from non-neoplastic diseases showing similar diffuse high signal on T2-weighted images and little contrast enhancement. (orig.)

  7. Evaluation of integrated anaerobic-aerobic biofilm reactor for degradation of azo dye methyl orange.

    Science.gov (United States)

    Murali, V; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian

    2013-09-01

    This study was to investigate the mineralization of wastewater containing methyl orange (MO) in integrated anaerobic-aerobic biofilm reactor with coconut fiber as bio-material. Different aeration periods (3h in phase 1 and 2; 3, 6 and 15 h in phase 3; 24 h in phase 4 and 5) in aerobic chamber were studied with different MO concentration 50, 100, 200, 200 and 300 mg/L as influent from phase 1-5. The color removals estimated from the standard curve of dye versus optical density at its maximum absorption wavelength were 97%, 96%, 97%, 97%, and 96% and COD removals were 75%, 72%, 63%, 81%, and 73% in phase 1-5, respectively. The MO decolorization and COD degradation followed first-order kinetic model and second-order kinetic model, respectively. GC-MS analysis indicated the symmetrical cleavage of azo bond and the reduction in aromatic peak ensured the partial mineralization of MO. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Performance evaluation of common rail direct injection (CRDI engine fuelled with Uppage Oil Methyl Ester (UOME

    Directory of Open Access Journals (Sweden)

    D.N. Basavarajappa

    2015-02-01

    Full Text Available For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions. Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar. CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.

  9. Evaluation of the combination of dimethyl disulfide and dazomet as an efficient methyl bromide alternative for cucumber production in China.

    Science.gov (United States)

    Mao, Liangang; Yan, Dongdong; Wang, Qiuxia; Li, Yuan; Ouyang, Canbin; Liu, Pengfei; Shen, Jin; Guo, Meixia; Cao, Aocheng

    2014-05-28

    The combination of dimethyl disulfide (DMDS) and dazomet (DZ) is a potential alternative to methyl bromide (MB) for soil disinfestation. The efficacy of DMDS plus DZ in controlling key soilborne pests was evaluated in a laboratory study and in two commercial cucumber greenhouses. Laboratory studies found that all of the combinations had positive synergistic effects on root-knot nematodes, two key soilborne fungi, and two major weed seeds. Greenhouse trials revealed that the combination of DMDS and DZ (30 + 25 g m(-2)) successfully suppressed Meloidogyne spp. root galling, sharply reduced the colony-forming units of Fusarium spp. and Phytophthora spp. on media, maintained high cucumber yields, and was not significantly different from MB or DMDS alone, but better than DZ alone. All of the chemical treatments provided significantly better results than the nontreated control. The results indicate that the combination of DMDS and DZ is an efficient MB alternative for cucumber production.

  10. In vitro–in vivo evaluation of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate hydrogel implants containing cisplatin

    Directory of Open Access Journals (Sweden)

    Madhu Babu

    2011-12-01

    Full Text Available The aim of this study was to prepare hydrogel disc implants containing cisplatin from hydroxyethyl methacrylate (HEMA and methyl methacrylate (MMA. To control drug release, the monomers were cross-linked with ethyleneglycol dimethacrylate (EGDMA. Implants were characterized by FTIR, DSC and SEM and evaluated for drug content, swelling, tensile strength, in vitro and in vivo drug release, in vitro and in vivo biodegradation of the polymer and histopathological studies. The in vitro results showed that increasing the concentration of either MMA or EGDMA decreased drug release and prolonged the implant life. Histopathological studies showed that the implants were histocompatible with surrounding tissue. Stability studies on the optimized formulation showed it was stable over 90 days at 25±3 °C. The implants can be used to achieve controlled release of drug and attain effective treatment with reduced side effects.

  11. Improvement of colchicine oral bioavailability by incorporating eugenol in the nanoemulsion as an oil excipient and enhancer

    Science.gov (United States)

    Shen, Qi; Wang, Ying; Zhang, Yi

    2011-01-01

    The effect of eugenol on colchicine transport across an isolated rat intestinal membrane was studied using an in vitro diffusion chamber system. We found that eugenol increased the absorptive transport of the drug efficiently. The effect of eugenol on intestinal absorption of colchicine in an oral administrative nanoemulsion formulation was also demonstrated in vivo. The colchicine nanoemulsion was prepared with isopropyl myristate, eugenol, Tween80, ethanol and water, and eugenol was used as an oil phase in the formulation; an average particle size of this nanoemulsion was 41.2 ± 7.2 nm. The permeation of colchicine in the nanoemulsion across the intestinal membrane was significantly different from that of the control group (0.2 mM colchicine). Finally, co-administration of eugenol in colchicine nanoemulsion to enhance the colchicine bioavailability was investigated by an oral administration method. After oral administration of colchicine (8 mg/kg) in the form of either the nanoemulsion or in free colchicine solution, the relative bioavailability of nanoemulsion and eugenol–nanoemulsion were enhanced by about 1.6- and 2.1-fold, respectively, compared with free colchicine solution. The procedure indicated that the intestinal absorption of colchicine was enhanced significantly by eugenol in the tested nanoemulsion. All the results suggested that eugenol is an efficient component in an oral administrative formulation for improving the intestinal absorption of colchicine. PMID:21753875

  12. Regulation effect of Aspirin Eugenol Ester on blood lipids in Wistar rats with hyperlipidemia.

    Science.gov (United States)

    Karam, Isam; Ma, Ning; Liu, Xi-Wang; Li, Shi-Hong; Kong, Xiao-Jun; Li, Jian-Yong; Yang, Ya-Jun

    2015-08-20

    Aspirin eugenol ester (AEE) is a promising drug candidate for treatment of inflammation, pain and fever and prevention of cardiovascular diseases with less side effects. The experiment will be conducted to investigate the efficacy of AEE on curing hyperlipidemia in Wistar rats. The rats were fed with high fat diet (HFD) for 8 weeks to induce hyperlipidemia. Compared with the model group, the results showed that AEE at 54 mg/kg dosage could significantly decrease the hyperlipidemia indexes including triglyceride (TG), low density lipoprotein (LDL) and total cholesterol (TCH) (p eugenol and integration of ASA and eugenol. Under the experimental circumstance, the optimal dose of AEE to cure hyperlipidemia is 54 mg/kg for five weeks in Wistar rats.

  13. Performance evaluation of common rail direct injection (CRDI engine fuelled with Uppage Oil Methyl Ester (UOME

    Directory of Open Access Journals (Sweden)

    D.N. Basavarajappa

    2015-02-01

    Full Text Available For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar. CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.

  14. An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles1

    Science.gov (United States)

    Medina-Puche, Laura; Molina-Hidalgo, Francisco Javier; Boersma, Maaike; Schuurink, Robert C.; López-Vidriero, Irene; Solano, Roberto; Franco-Zorrilla, José-Manuel; Caballero, José Luis; Blanco-Portales, Rosario; Muñoz-Blanco, Juan

    2015-01-01

    Eugenol is a volatile phenylpropanoid that contributes to flower and ripe fruit scent. In ripe strawberry (Fragaria × ananassa) fruit receptacles, eugenol is biosynthesized by eugenol synthase (FaEGS2). However, the transcriptional regulation of this process is still unknown. We have identified and functionally characterized an R2R3 MYB transcription factor (EMISSION OF BENZENOID II [FaEOBII]) that seems to be the orthologous gene of PhEOBII from Petunia hybrida, which contributes to the regulation of eugenol biosynthesis in petals. The expression of FaEOBII was ripening related and fruit receptacle specific, although high expression values were also found in petals. This expression pattern of FaEOBII correlated with eugenol content in both fruit receptacle and petals. The expression of FaEOBII was repressed by auxins and activated by abscisic acid, in parallel to the ripening process. In ripe strawberry receptacles, where the expression of FaEOBII was silenced, the expression of CINNAMYL ALCOHOL DEHYDROGENASE1 and FaEGS2, two structural genes involved in eugenol production, was down-regulated. A subsequent decrease in eugenol content in ripe receptacles was also observed, confirming the involvement of FaEOBII in eugenol metabolism. Additionally, the expression of FaEOBII was under the control of FaMYB10, another R2R3 MYB transcription factor that regulates the early and late biosynthetic genes from the flavonoid/phenylpropanoid pathway. In parallel, the amount of eugenol in FaMYB10-silenced receptacles was also diminished. Taken together, these data indicate that FaEOBII plays a regulating role in the volatile phenylpropanoid pathway gene expression that gives rise to eugenol production in ripe strawberry receptacles. PMID:25931522

  15. Effectiveness of eugenol sedation to reduce the metabolic rates of cool and warm water fish at high loading densities

    Science.gov (United States)

    Cupp, Aaron R.; Hartleb, Christopher F.; Fredricks, Kim T.; Gaikowski, Mark P.

    2016-01-01

    Effects of eugenol (AQUI-S®20E, 10% active eugenol) sedation on cool water, yellow perch Perca flavescens (Mitchill), and warm water, Nile tilapia Oreochromis niloticus L. fish metabolic rates were assessed. Both species were exposed to 0, 10, 20 and 30 mg L−1 eugenol using static respirometry. In 17°C water and loading densities of 60, 120 and 240 g L−1, yellow perch controls (0 mg L−1 eugenol) had metabolic rates of 329.6–400.0 mg O2 kg−1 h−1, while yellow perch exposed to 20 and 30 mg L−1 eugenol had significantly reduced metabolic rates of 258.4–325.6 and 189.1–271.0 mg O2 kg−1 h−1 respectively. Nile tilapia exposed to 30 mg L−1 eugenol had a significantly reduced metabolic rate (424.5 ± 42.3 mg O2 kg−1 h−1) relative to the 0 mg L−1 eugenol control (546.6 ± 53.5 mg O2 kg−1 h−1) at a loading density of 120 g L−1 in 22°C water. No significant differences in metabolic rates for Nile tilapia were found at 240 or 360 g L−1 loading densities when exposed to eugenol. Results suggest that eugenol sedation may benefit yellow perch welfare at high densities (e.g. live transport) due to a reduction in metabolic rates, while further research is needed to assess the benefits of eugenol sedation on Nile tilapia at high loading densities.

  16. Inhibition of the corrosion of steel in 1 M HCl by eugenol derivatives

    Science.gov (United States)

    Chaieb, E.; Bouyanzer, A.; Hammouti, B.; Benkaddour, M.

    2005-06-01

    The effect of eugenol (Eug) and its derivative acetyleugenol (AcEug) extracted from the nail of giroflier on the corrosion of steel in molar hydrochloric acid has been studied using weight loss measurements, electrochemical polarisation and EIS methods. The naturally substances reduce the corrosion rate. The inhibition efficiency was found to increase with acetyleugenol content to attain 91% at 0.1737 g/l. Eugenol compounds act as mixed type inhibitors. The effect of temperature on the corrosion behaviour of steel indicates that inhibition efficiency of the natural substance increases with the rise of temperature. The adsorption of natural product on the steel is found to follow the Langmuir adsorption isotherm.

  17. The assessment of tolerability of prolonged oral eugenol administration in rats

    OpenAIRE

    Jezdimirović Milanka; Aleksić Nevenka; Trailović Saša; Ivanović Saša; Jezdimirović Nemanja

    2012-01-01

    The potential toxicity and general tolerability of eugenol following two-week or four-week continuous p.o. administration to rats has been investigated. An experiment was performed on 72 male rats of the Wistar strain. Four groups of rats were treated with different doses of eugenol (10 mg/kg bm/day, 50 mg/kg, 200 mg/kg and 400 mg/kg bm/day), the fifth group was administered vehicle (0.5 % methylcellulose, propylene glycol and water), and the sixth group co...

  18. SYNTHESIS OF 5,7-DIHYDROXY-3’,4’-DIMETHOXYISOFLAVON FROM EUGENOL

    Directory of Open Access Journals (Sweden)

    Andi Hairil Alimuddin

    2011-12-01

    Full Text Available Synthesis of 5,7-dihydroxy-3',4'-dimethoxyisoflavone from eugenol as isolated product of clove leaves oil had been done. Eugenol was firstly converted into 3,4-dimethoxybenzyl cyanide via several stages of reaction. Hoeben-Hoesch reaction of 3,4-dimethoxybenzyl cyanide with phloroglucin produced 3,4-dimethoxybenzyl-2',4',6'-trihydroxyphenyl ketone (deoxybenzoin intermediate in 58% yield. Eventually, cyclization of the intermediate with reagents of BF3.OEt2/DMF/POCl3 yielded 5,7-dihydroxy-3',4'-isoflavone in 88% yield.

  19. Evaluation of sorbent materials for the sampling and analysis of phosphine, sulfuryl fluoride and methyl bromide in air.

    Science.gov (United States)

    Magnusson, R; Rittfeldt, L; Åstot, C

    2015-01-02

    Phosphine (PH3), sulfuryl fluoride (SO2F2) and methyl bromide (CH3Br) are highly toxic chemical substances commonly used for fumigation, i.e., pest control with gaseous pesticides. Residues of fumigation agents constitute a health risk for workers affected, and therefore accurate methods for air sampling and analysis are needed. In this study, three commercial adsorbent tubes; Carbosieve SIII™, Air Toxics™ and Tenax TA™, were evaluated for sampling these highly volatile chemicals in air and their subsequent analysis by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). The breakthrough volume (BTV) of each fumigant was experimentally determined on the different adsorbents at concentrations at or above their permissible exposure limits, using a method based on frontal chromatography of generated fumigant atmospheres. Carbosieve SIII™, a molecular sieve possessing a very high specific area, proved to be a better adsorbent than both Air Toxics™ and Tenax TA™, resulting in at least a 4-fold increase of the BTV50%. BTV50% for Carbosieve SIII™ at 20°C was measured as 4.7L/g, 5.5L/g and 126L/g for phosphine, sulfuryl fluoride and methyl bromide, respectively, implying safe sampling volumes of 1.9L, 2.2L and 50L, respectively, for a commercial tube packed with 800mg Carbosieve SIII™. The temperature dependence of BTV was strong for Carbosieve SIII™, showing a reduction of 3-5%/°C in breakthrough volume within the range -20 to 40°C. Furthermore, although Carbosieve SIII™ reportedly has a higher affinity for water than most other adsorbents, relative humidity had only a moderate influence on the retention capacity of phosphine. Overall, the applicability of Carbosieve SIII™ adsorbent sampling in combination with TD-GC-MS analysis was demonstrated for highly volatile fumigants. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Using a medium-throughput comet assay to evaluate the global DNA methylation status of single cells

    Science.gov (United States)

    Lewies, Angélique; Van Dyk, Etresia; Wentzel, Johannes F.; Pretorius, Pieter J.

    2014-01-01

    The comet assay is a simple and cost effective technique, commonly used to analyze and quantify DNA damage in individual cells. The versatility of the comet assay allows introduction of various modifications to the basic technique. The difference in the methylation sensitivity of the isoschizomeric restriction enzymes HpaII and MspI are used to demonstrate the ability of the comet assay to measure the global DNA methylation level of individual cells when using cell cultures. In the experiments described here, a medium-throughput comet assay and methylation sensitive comet assay are combined to produce a methylation sensitive medium-throughput comet assay to measure changes in the global DNA methylation pattern in individual cells under various growth conditions. PMID:25071840

  1. Using a medium-throughput comet assay to evaluate the global DNA methylation status of single cells

    Directory of Open Access Journals (Sweden)

    Angelique eLewies

    2014-07-01

    Full Text Available The comet assay is a simple and cost effective technique, commonly used to analyse and quantify DNA damage in individual cells. The versatility of the comet assay allows introduction of various modifications to the basic technique. The difference in the methylation sensitivity of the isoschizomeric restriction enzymes HpaII and MspI are used to demonstrate the ability of the comet assay to measure the global DNA methylation level of individual cells when using cell cultures. In the experiments described here, a medium-throughput comet assay and methylation sensitive comet assay are combined to produce a methylation sensitive medium-throughput comet assay to measure changes in the global DNA methylation pattern in individual cells under various growth conditions.

  2. 78 FR 36507 - Notice of Availability of a Treatment Evaluation Document; Methyl Bromide Fumigation of Blueberries

    Science.gov (United States)

    2013-06-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service Notice of Availability of a Treatment Evaluation Document... hardship for the exporters, in 2009 Argentina requested and subsequently provided the supporting efficacy...

  3. Eugenol: propiedades farmacológicas y toxicológicas. Ventajas y desventajas de su uso

    Directory of Open Access Journals (Sweden)

    Raimara González Escobar

    2002-08-01

    Full Text Available El Eugenol es un derivado fenólico conocido comúnmente como esencia de clavo, que es utilizado desde hace varios siglos en la práctica odontológica. Por sus propiedades farmacológicas tiene diferentes usos. Sus efectos farmacológicos son complejos y dependen de la concentración del Eugenol libre a la cual el tejido se expone. En este trabajo se presentan sus características farmacológicas y toxicológicas; se mencionan algunos de los mecanismos de acción propuestos para ambos efectos, y se exponen algunos de los nuevos materiales que se utilizan actualmente en estomatología; se presentan sus usos y sus ventajas sobre las formulaciones de Eugenol ya existentes.Eugenol is a phenolic derivative, commonly known as "esencia de clavo", which has been used in dental practice for centuries. Its pharmacological properties determined different uses. Its pharmacological effects are complex and depend on the concentration of free Eugenol to which the tissue is exposed. This paper presents the pharmacological and toxicological characteristics of Eugenol; it mentions some of the mechanisms of action proposed for both effects and also presents some of the new materials used in dentistry nowadays. Their uses and advantages over already existing Eugenol formulations are set forth.

  4. Induction of Apoptosis by Eugenol and Capsaicin in Human Gastric Cancer AGS Cells--Elucidating the Role of p53.

    Science.gov (United States)

    Sarkar, Arnab; Bhattacharjee, Shamee; Mandal, Deba Prasad

    2015-01-01

    Loss of function of the p53 gene is implicated in defective apoptotic responses of tumors to chemotherapy. Although the pro-apoptotic roles of eugenol and capsaicin have been amply reported, their dependence on p53 for apoptosis induction in gastric cancer cells is not well elucidated. The aim of the study was to elucidate the role of p53 in the induction of apoptosis by eugenol and capsaicin in a human gastric cancer cell line, AGS. AGS cells were incubated with or without various concentrations of capsaicin and eugenol for 12 hrs, in the presence and absence of p53 siRNA. Cell cycling, annexin V and expression of apoptosis related proteins Bax, Bcl-2 ratio, p21, cyt c-caspase-9 association, caspase-3 and caspase-8 were studied. In the presence of p53, capsaicin was a more potent pro-apoptotic agent than eugenol. However, silencing of p53 significantly abrogated apoptosis induced by capsaicin but not that by eugenol. Western blot analysis of pro-apoptotic markers revealed that as opposed to capsaicin, eugenol could induce caspase-8 and caspase-3 even in the absence of p53. Unlike capsaicin, eugenol could induce apoptosis both in presence and absence of functional p53. Agents which can induce apoptosis irrespective of the cellular p53 status have immense scope for development as potential anticancer agents.

  5. The Antifungal Eugenol Perturbs Dual Aromatic and Branched-Chain Amino Acid Permeases in the Cytoplasmic Membrane of Yeast

    Science.gov (United States)

    Darvishi, Emad; Omidi, Mansoor; Bushehri, Ali Akbar Shahnejat; Golshani, Ashkan; Smith, Myron L.

    2013-01-01

    Eugenol is an aromatic component of clove oil that has therapeutic potential as an antifungal drug, although its mode of action and precise cellular target(s) remain ambiguous. To address this knowledge gap, a chemical-genetic profile analysis of eugenol was done using ∼4700 haploid Saccharomyces cerevisiae gene deletion mutants to reveal 21 deletion mutants with the greatest degree of susceptibility. Cellular roles of deleted genes in the most susceptible mutants indicate that the main targets for eugenol include pathways involved in biosynthesis and transport of aromatic and branched-chain amino acids. Follow-up analyses showed inhibitory effects of eugenol on amino acid permeases in the yeast cytoplasmic membrane. Furthermore, phenotypic suppression analysis revealed that eugenol interferes with two permeases, Tat1p and Gap1p, which are both involved in dual transport of aromatic and branched-chain amino acids through the yeast cytoplasmic membrane. Perturbation of cytoplasmic permeases represents a novel antifungal target and may explain previous observations that exposure to eugenol results in leakage of cell contents. Eugenol exposure may also contribute to amino acid starvation and thus holds promise as an anticancer therapeutic drug. Finally, this study provides further evidence of the usefulness of the yeast Gene Deletion Array approach in uncovering the mode of action of natural health products. PMID:24204588

  6. Essential Oils and Eugenols Inhibit Biofilm Formation and the Virulence of Escherichia coli O157:H7

    Science.gov (United States)

    Kim, Yong-Guy; Lee, Jin-Hyung; Gwon, Giyeon; Kim, Soon-Il; Park, Jae Gyu; Lee, Jintae

    2016-01-01

    Enterohemorrhagic Escherichia coli O157:H7 (EHEC) has caused foodborne outbreaks worldwide and the bacterium forms antimicrobial-tolerant biofilms. We investigated the abilities of various plant essential oils and their components to inhibit biofilm formation by EHEC. Bay, clove, pimento berry oils and their major common constituent eugenol at 0.005% (v/v) were found to markedly inhibit EHEC biofilm formation without affecting planktonic cell growth. In addition, three other eugenol derivatives isoeugenol, 2-methoxy-4-propylphenol, and 4-ethylguaiacol had antibiofilm activity, indicating that the C-1 hydroxyl unit, the C-2 methoxy unit, and C-4 alkyl or alkane chain on the benzene ring of eugenol play important roles in antibiofilm activity. Interestingly, these essential oils and eugenol did not inhibit biofilm formation by three laboratory E. coli K-12 strains that reduced curli fimbriae production. Transcriptional analysis showed that eugenol down-regulated 17 of 28 genes analysed, including curli genes (csgABDFG), type I fimbriae genes (fimCDH) and ler-controlled toxin genes (espD, escJ, escR, and tir), which are required for biofilm formation and the attachment and effacement phenotype. In addition, biocompatible poly(lactic-co-glycolic acid) coatings containing clove oil or eugenol exhibited efficient biofilm inhibition on solid surfaces. In a Caenorhabditis elegans nematode model, clove oil and eugenol attenuated the virulence of EHEC. PMID:27808174

  7. Essential Oils and Eugenols Inhibit Biofilm Formation and the Virulence of Escherichia coli O157:H7.

    Science.gov (United States)

    Kim, Yong-Guy; Lee, Jin-Hyung; Gwon, Giyeon; Kim, Soon-Il; Park, Jae Gyu; Lee, Jintae

    2016-11-03

    Enterohemorrhagic Escherichia coli O157:H7 (EHEC) has caused foodborne outbreaks worldwide and the bacterium forms antimicrobial-tolerant biofilms. We investigated the abilities of various plant essential oils and their components to inhibit biofilm formation by EHEC. Bay, clove, pimento berry oils and their major common constituent eugenol at 0.005% (v/v) were found to markedly inhibit EHEC biofilm formation without affecting planktonic cell growth. In addition, three other eugenol derivatives isoeugenol, 2-methoxy-4-propylphenol, and 4-ethylguaiacol had antibiofilm activity, indicating that the C-1 hydroxyl unit, the C-2 methoxy unit, and C-4 alkyl or alkane chain on the benzene ring of eugenol play important roles in antibiofilm activity. Interestingly, these essential oils and eugenol did not inhibit biofilm formation by three laboratory E. coli K-12 strains that reduced curli fimbriae production. Transcriptional analysis showed that eugenol down-regulated 17 of 28 genes analysed, including curli genes (csgABDFG), type I fimbriae genes (fimCDH) and ler-controlled toxin genes (espD, escJ, escR, and tir), which are required for biofilm formation and the attachment and effacement phenotype. In addition, biocompatible poly(lactic-co-glycolic acid) coatings containing clove oil or eugenol exhibited efficient biofilm inhibition on solid surfaces. In a Caenorhabditis elegans nematode model, clove oil and eugenol attenuated the virulence of EHEC.

  8. Influence of clove oil and eugenol on muscle contraction of silkworm (Bombyx mori).

    Science.gov (United States)

    Kheawfu, Kantaporn; Pikulkaew, Surachai; Hamamoto, Hiroshi; Sekimizu, Kazuhisa; Okonogi, Siriporn

    2017-05-30

    Clove oil is used in fish anesthesia and expected to have a mechanism via glutamic receptor. The present study explores the activities of clove oil and its major compound, eugenol, in comparison with L-glutamic acid on glutamic receptor of silkworm muscle and fish anesthesia. It was found that clove oil and eugenol had similar effects to L-glutamic acid on inhibition of silkworm muscle contraction after treated with D-glutamic acid and kainic acid. Anesthetic activity of the test samples was investigated in goldfish. The results demonstrated that L-glutamic acid at 20 and 40 mM could induce the fish to stage 3 of anesthesia that the fish exhibited total loss of equilibrium and muscle tone, whereas clove oil and eugenol at 60 ppm could induce the fish to stage 4 of anesthesia that the reflex activity of the fish was lost. These results suggest that clove oil and eugenol have similar functional activities and mechanism to L-glutamic acid on muscle contraction and fish anesthesia.

  9. Genes encoding chavicol/eugenol synthase from the creosote bush Larrea tridentata

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Norman G.; Davin, Laurence B.; Kim, Sung -Jin; Vassao, Daniel Giddings; Patten, Ann M.; Eichinger, Dietmar

    2015-09-15

    Particular aspects provide novel methods for redirecting carbon allocation in plants or cell culture from lignification to inherently more useful and tractable materials, and to facilitate the generation of, e.g., biofuels from the remaining plant ro culture biomass. Particular aspects provided novel methods for converting monolignols into allyl/propenyl phenols, and for chavicol/eugenol formation or production. Additional aspects relate to the discovery of novel chavicol/eugenol synthases that convert p-coumaryl/coniferyl alcohol esters into chavicol/eugenol, and to novel compositions (e.g., novel proteins and nucleic acids encoding same), and novel methods using same for producing or forming chavicol/eugenol and other derivatives in cell culture and/or genetically modified plants, and for re-engineering the composition of plant biomass. Particular aspects provide novel methods for generation in culture or in planta of liquid/combustible allyl/propenyl phenols, and these phenolic products are utilized for (non-ethanol) biofuel/bioenergy purposes, while the remaining plant biomass facilitates the generation of other biofuels.

  10. Attraction of Diabrotica barberi Smith and Lawrence (Coleoptera: Chrysomelidae) to eugenol-baited traps in soybean

    Science.gov (United States)

    Diabrotica barberi Smith and Lawrence (the northern corn rootworm) is a native North American leaf beetle and a major pest of corn. However, adult D. barberi forage in various habitats outside of corn, including soybean, roadside vegetation, and prairie. Eugenol is a common floral volatile that ha...

  11. Eugenol and carvacrol excite first- and second-order trigeminal neurons and enhance their heat-evoked responses.

    Science.gov (United States)

    Klein, A H; Joe, C L; Davoodi, A; Takechi, K; Carstens, M I; Carstens, E

    2014-06-20

    Eugenol and carvacrol from clove and oregano, respectively, are agonists of the warmth-sensitive transient receptor potential channel TRPV3 and the irritant-sensitive transient receptor potential ankyrin (TRPA)-1. Eugenol and carvacrol induce oral irritation that rapidly desensitizes, accompanied by brief enhancement of innocuous warmth and heat pain in humans. We presently investigated if eugenol and carvacrol activate nociceptive primary afferent and higher order trigeminal neurons and enhance their heat-evoked responses, using calcium imaging of cultured trigeminal ganglion (TG) and dorsal root ganglion (DRG) neurons, and in vivo single-unit recordings in trigeminal subnucleus caudalis (Vc) of rats. Eugenol and carvacrol activated 20-30% of TG and 7-20% of DRG cells, the majority of which additionally responded to menthol, mustard oil and/or capsaicin. TG cell responses to innocuous (39°) and noxious (42 °C) heating were enhanced by eugenol and carvacrol. We identified dorsomedial Vc neurons responsive to noxious heating of the tongue in pentobarbital-anesthetized rats. Eugenol and carvacrol dose-dependently elicited desensitizing responses in 55% and 73% of heat-sensitive units, respectively. Responses to noxious heat were briefly enhanced by eugenol and carvacrol. Many eugenol- and carvacrol-responsive units also responded to menthol, cinnamaldehyde and capsaicin. These data support a peripheral site for eugenol and carvacrol to enhance warmth- and noxious heat-evoked responses of trigeminal neurons, and are consistent with the observation that these agonists briefly enhance warmth and heat pain on the human tongue. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Nonracemic, chiral homoenolate reagents derived from (cycloalk-1-enyl)methyl carbamates and evaluation of their configurational stabilities

    DEFF Research Database (Denmark)

    Özlügedik, M.; Kristensen, Jesper Langgaard; Wibbeling, B.

    2002-01-01

    11d, 11e and 11j. These turned out to be valuable reagents for enantioselective homoaldol reaction; er values of up to 96:4 could be achieved. X-ray crystal structure analyses with anomalous diffraction, obtained from the heavy atom containing products 22, 23b, 27d, and 27e derived from (2......-methylcyclopentenyl)methyl and (2-methyl-cyclohexenyl)methyl reagents, established the (1S) configuration of the major lithium compound. Thus, the kinetically controlled deprotonation of the corresponding allyl carbamates removes the (pro-S) proton. Overall, a simple method for the enantioselective synthesis...

  13. 4-coumarate: CoA ligase partitions metabolites for eugenol biosynthesis.

    Science.gov (United States)

    Rastogi, Shubhra; Kumar, Ritesh; Chanotiya, Chandan S; Shanker, Karuna; Gupta, Madan M; Nagegowda, Dinesh A; Shasany, Ajit K

    2013-08-01

    Biosynthesis of eugenol shares its initial steps with that of lignin, involving conversion of hydroxycinnamic acids to their corresponding coenzyme A (CoA) esters by 4-coumarate:CoA ligases (4CLs). In this investigation, a 4CL (OS4CL) was identified from glandular trichome-rich tissue of Ocimum sanctum with high sequence similarity to an isoform (OB4CL_ctg4) from Ocimum basilicum. The levels of OS4CL and OB4CL_ctg4-like transcripts were highest in O. sanctum trichome, followed by leaf, stem and root. The eugenol content in leaf essential oil was positively correlated with the expression of OS4CL in the leaf at different developmental stages. Recombinant OS4CL showed the highest activity with p-coumaric acid, followed by ferulic, caffeic and trans-cinnamic acids. Transient RNA interference (RNAi) suppression of OS4CL in O. sanctum leaves caused a reduction in leaf eugenol content and trichome transcript level, with a considerable increase in endogenous p-coumaric, ferulic, trans-cinnamic and caffeic acids. A significant reduction in the expression levels was observed for OB4CL_ctg4-related transcripts in suppressed trichome compared with transcripts similar to the other four isoforms (OB4CL_ctg1, 2, 3 and 5). Sinapic acid and lignin content were also unaffected in RNAi suppressed leaf samples. Transient expression of OS4CL-green fluorescent protein fusion protein in Arabidopsis protoplasts was associated with the cytosol. These results indicate metabolite channeling of intermediates towards eugenol by a specific 4CL and is the first report demonstrating the involvement of 4CL in creation of virtual compartments through substrate utilization and committing metabolites for eugenol biosynthesis at an early stage of the pathway.

  14. Critical Concentration of Lecithin Enhances the Antimicrobial Activity of Eugenol against Escherichia coli.

    Science.gov (United States)

    Zhang, Haoshu; Dudley, Edward G; Davidson, P Michael; Harte, Federico

    2017-04-15

    Lecithin is a natural emulsifier used in a wide range of food and nonfood applications to improve physical stability, with no known bioactive effects. In this study, the effect of lecithin on the antimicrobial performance of a constant eugenol concentration was tested against three Escherichia coli strains (C600, 0.1229, and O157:H7 strain ATCC 700728). This is the first study, to our knowledge, focusing on lecithin at concentrations below those commonly used in foods to improve the stability of oil in water emulsions (≤10 mg/100 ml). For all three cultures, significant synergistic antimicrobial effects were observed when E. coli cultures were exposed to a constant eugenol concentration (ranging from 0.043 to 0.050% [wt/wt]) together with critical lecithin concentrations ranging from 0.5 to 1 mg/100 ml. Increasing the concentration of lecithin above 1 mg/100 ml (up to 10 mg/100 ml lecithin) diminished the antibacterial effect to values similar to those with eugenol-only treatments. The formation of aggregates (eugenol antimicrobial effects.IMPORTANCE Essential oils (EOs) are effective natural antimicrobials. However, their hydrophobicity and strong aromatic character limit the use of essential oils in food systems. Emulsifiers (e.g., lecithin) increase the stability of EOs in water-based systems but fail to consistently improve antimicrobial effects. We demonstrate that lecithin, within a narrow critical concentration window, can enhance the antimicrobial properties of eugenol. This study highlights the potential bioactivity of lecithin when utilized to effectively control foodborne pathogens. Copyright © 2017 American Society for Microbiology.

  15. Synthesis and pharmacological evaluation of a series of new 3-methyl-1,4-disubstituted-piperidine analgesics.

    Science.gov (United States)

    Lalinde, N; Moliterni, J; Wright, D; Spencer, H K; Ossipov, M H; Spaulding, T C; Rudo, F G

    1990-10-01

    The synthesis and intravenous analgesic activity of a series of 3-methyl-4-(N-phenyl amido)piperidines, entries 34-79, is described. The methoxyacetamide pharmacophore produced a series of compounds with optimal analgesic potency and short duration of action. cis-42 was 13,036 times more potent than morphine and 29 times more potent than fentanyl; however, the corresponding diastereomer 43 was only 2778 and 6 times more potent, respectively. Compounds 40, 43, 47, and 57 are extremely short acting; all had durations of action of about 2 min, which was about 1/5 of that of fentanyl in the mouse hot-plate test at a dose equivalent to 2 times the ED50 analgesic dose. Among the many compounds that displayed exceptional analgesic activity, duration of action was one of the main factors for choosing a candidate for further pharmacological investigation. At present, cis-1-[2-(4-ethyl-4,5-dihydro-5-oxo-1H-tetrazol-1-yl)ethyl]-3-meth yl-4- [N-in equilibrium 2-fluorophenyl)methoxyacetamido]piperidine hydrochloride (40) (Anaquest, A-3331.HCl, Brifentanil) is in clinical evaluation. Opiate analgesics that possess short duration of action are excellent candidates for short surgical procedures in an outpatient setting where a rapid recovery is required.

  16. Baseline characteristics in the Bardoxolone methyl EvAluation in patients with Chronic kidney disease and type 2 diabetes mellitus : the Occurrence of renal eveNts (BEACON) trial

    NARCIS (Netherlands)

    Heerspink, Hiddo J. Lambers; Chertow, Glenn M.; Akizawa, Tadao; Audhya, Paul; Bakris, George L.; Goldsberry, Angie; Krauth, Melissa; Linde, Peter; McMurray, John J.; Meyer, Colin J.; Parving, Hans-Henrik; Remuzzi, Giuseppe; Christ-Schmidt, Heidi; Toto, Robert D.; Vaziri, Nosratola D.; Wanner, Christoph; Wittes, Janet; Wrolstad, Danielle; de Zeeuw, Dick

    2013-01-01

    Background. Type 2 diabetes mellitus (T2DM) is the most important contributing cause of end-stage renal disease (ESRD) worldwide. Bardoxolone methyl, a nuclear factor-erythroid-2-related factor 2 activator, augments estimated glomerular filtration. The Bardoxolone methyl EvAluation in patients with

  17. Fractionation of a herbal antidiarrheal medicine reveals eugenol as an inhibitor of Ca2+-Activated Cl- channel TMEM16A.

    Directory of Open Access Journals (Sweden)

    Zhen Yao

    Full Text Available The Ca(2+-activated Cl(- channel TMEM16A is involved in epithelial fluid secretion, smooth muscle contraction and neurosensory signaling. We identified a Thai herbal antidiarrheal formulation that inhibited TMEM16A Cl(- conductance. C18-reversed-phase HPLC fractionation of the herbal formulation revealed >98% of TMEM16A inhibition activity in one out of approximately 20 distinct peaks. The purified, active compound was identified as eugenol (4-allyl-2-methoxyphenol, the major component of clove oil. Eugenol fully inhibited TMEM16A Cl(- conductance with single-site IC(50~150 µM. Eugenol inhibition of TMEM16A in interstitial cells of Cajal produced strong inhibition of intestinal contraction in mouse ileal segments. TMEM16A Cl(- channel inhibition adds to the list of eugenol molecular targets and may account for some of its biological activities.

  18. Fractionation of a Herbal Antidiarrheal Medicine Reveals Eugenol as an Inhibitor of Ca2+-Activated Cl− Channel TMEM16A

    Science.gov (United States)

    Yao, Zhen; Namkung, Wan; Ko, Eun A.; Park, Jinhong; Tradtrantip, Lukmanee; Verkman, A. S.

    2012-01-01

    The Ca2+-activated Cl− channel TMEM16A is involved in epithelial fluid secretion, smooth muscle contraction and neurosensory signaling. We identified a Thai herbal antidiarrheal formulation that inhibited TMEM16A Cl− conductance. C18-reversed-phase HPLC fractionation of the herbal formulation revealed >98% of TMEM16A inhibition activity in one out of approximately 20 distinct peaks. The purified, active compound was identified as eugenol (4-allyl-2-methoxyphenol), the major component of clove oil. Eugenol fully inhibited TMEM16A Cl− conductance with single-site IC50∼150 µM. Eugenol inhibition of TMEM16A in interstitial cells of Cajal produced strong inhibition of intestinal contraction in mouse ileal segments. TMEM16A Cl− channel inhibition adds to the list of eugenol molecular targets and may account for some of its biological activities. PMID:22666439

  19. Evaluation of N-[(11)C]methyl-AMD3465 as a PET tracer for imaging of CXCR4 receptor expression in a C6 glioma tumor model.

    Science.gov (United States)

    Hartimath, S V; van Waarde, A; Dierckx, R A J O; de Vries, E F J

    2014-11-03

    The chemokine receptor CXCR4 and its ligand CXCL12 play an important role in tumor progression and metastasis. CXCR4 receptors are expressed by many cancer types and provide a potential target for treatment. Noninvasive detection of CXCR4 may aid diagnosis and improve therapy selection. It has been demonstrated in preclinical studies that positron emission tomography (PET) with a radiolabeled small molecule could enable noninvasive monitoring of CXCR4 expression. Here, we prepared N-[(11)C]methyl-AMD3465 as a new PET tracer for CXCR4. N-[(11)C]Methyl-AMD3465 was readily prepared by N-methylation with [(11)C]CH3OTf. The tracer was obtained in a 60 ± 2% yield (decay corrected), the purity of the tracer was >99%, and specific activity was 47 ± 14 GBq/μmol. Tracer stability was tested in vitro using liver microsomes and rat plasma; excellent stability was observed. The tracer was evaluated in rat C6 glioma and human PC-3 cell lines. In vitro cellular uptake of N-[(11)C]methyl-AMD3465 was receptor mediated. The effect of transition metal ions (Cu(2+), Ni(2+), and Zn(2+)) on cellular binding was examined in C6 cells, and the presence of these ions increased the cellular binding of the tracer 9-, 7-, and 3-fold, respectively. Ex vivo biodistribution and PET imaging of N-[(11)C]methyl-AMD3465 were performed in rats with C6 tumor xenografts. Both PET and biodistribution studies demonstrated specific accumulation of the tracer in the tumor (SUV 0.6 ± 0.2) and other CXCR4 expressing organs, such as lymph node (1.5 ± 0.2), liver (8.9 ± 1.0), bone marrow (1.0 ± 0.3), and spleen (1.0 ± 0.1). Tumor uptake was significantly reduced (66%, p tracer injection. Our data demonstrated that N-[(11)C]methyl-AMD3465 is capable of detecting physiologic CXCR4 expression in tumors and other CXCR4 expressing tissues. These results warrant further evaluation of N-[(11)C]methyl-AMD3465 as a potential PET tracer for CXCR4 receptor imaging.

  20. Preparation and evaluation of nanoparticles composed of thiolated methylated pyridinyl chitosan as a new strategy for bucal drug delivery of insulin

    Directory of Open Access Journals (Sweden)

    Babak Zolfagharnia

    2017-04-01

    Full Text Available Objective(s: The purpose of this study is about the preparation and evaluation of nanoparticles composed of thiolated methylated pyridinyl chitosan (TMPC which are made P.E.C method, for bucal drug delivery of insulin.Materials and Methods: First of all have to synthesize methylated pyridinyl chitosan and then for (TMPC L-cysteine should be attached to methylated pyridinyl chitosan by the formation amid bounds. After of synthesis the (TMPC nanoparticles were made and insulin loaded on them. The percentage of entrapment efficiency which was calculated for a nanoparticle which loaded by insulin is about to 91+2.6%.Results: The release of insulin from nanoparticles was studied in vitro in Phosphate buffer solution (PBS pH 6.8. After 240 minutes 71.3% of insulin released from (TMPC and after 360 minutes 72.9% of insulin was released. By considering the specifications of nanoparticles which leads us to this result that the Zeta potential is 28.3 mv, poly dispersity index (pdi is 0.33 and the size of the particles is about to 268 nm.Conclusion: this study suggests that thiolated methylated pyridinyl chitosan can act as a potential enhancer for bucal delivery of insulin.

  1. A comparison of eugenol and menthol on encapsulation characteristics with water-soluble quaternized β-cyclodextrin grafted chitosan.

    Science.gov (United States)

    Phunpee, Sarunya; Saesoo, Somsak; Sramala, Issara; Jarussophon, Suwatchai; Sajomsang, Warayuth; Puttipipatkhachorn, Satit; Puttipipatkhajorn, Satit; Soottitantawat, Apinan; Ruktanonchai, Uracha Rungsardthong

    2016-03-01

    Two guest molecules (eugenol and (-)-menthol) were investigated on inclusion complex formation with water-soluble quaternized β-CD grafted with chitosan (QCD-g-CS). The inclusion complexes were prepared at varying mole ratios between eugenol or (-)-menthol and β-CD (substituted on QCD-g-CS) by a conventional shaking method and obtained as solid powder by freeze-drying process. The results showed that encapsulation efficiency %EE decreased with increasing of initial eugenol or (-)-menthol loading whereas %loading increased with increasing of initial eugenol or (-)-menthol loading. The results indicated that inclusion complex formation between eugenol and QCD-g-CS was more favorable than that of (-)-menthol. To clarify this mechanism, molecular dynamics simulations were performed to explore their binding energy, solvation energy and total free energy of those complexes. It was found that the total free energy (ΔG) of eugenol and (-)-menthol against QCD-g-CS (mole ratio of 1) in water-explicit system were -2108.91 kJ/mol and -344.45 kJ/mol, respectively. Moreover, molecular dynamic simulation of eugenol absorbed on surface QCD-g-CS (-205.73 kJ/mol) was shown to have a higher negative value than that of (-)-menthol on QCD-gCS (3182.31 kJ/mol). Furthermore, the release characteristics of the encapsulated powder were also investigated in simulated saliva pH 6.8 at 32 °C. The results suggested that (-)-menthol had higher release rate from the complexes than eugenol. In all cases, the release characteristics for those guest molecules could be characterized by the limited-diffusion kinetics. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Effects of eugenol on hepatic glucose production and AMPK signaling pathway in hepatocytes and C57BL/6J mice.

    Science.gov (United States)

    Jeong, Kyong Ju; Kim, Do Yeon; Quan, Hai-Yan; Jo, Hee Kyung; Kim, Go Woon; Chung, Sung Hyun

    2014-03-01

    Eugenol is a phenylpropanoid with many pharmacological activities, but its anti-hyperglycemic activity is not yet fully explored. For in vitro study, HepG2 cells and primary rat hepatocytes were used, and glucose production was induced by adding 100 nM of glucagon in the presence of gluconeogenic substrates. In animal study, hyperglycemia was induced by high fat diet (HFD) in male C57BL/6J mice, and eugenol was orally administered at 20 or 40 mg per kg (E20, E40) for 15 weeks. Eugenol significantly inhibited glucagon-induced glucose production and phosphorylated AMPK in the HepG2 and primary rat hepatocytes, and these effects were reversed in the presence of compound C (an AMPK inhibitor) or STO-609 (a CAMKK inhibitor). In addition, the protein and gene expression levels of CREB, CRTC2·CREB complex, PGC-1α, PEPCK and G6Pase were all significantly suppressed. Moreover, inhibition of AMPK by over-expression of dominant negative AMPK prevented eugenol from suppressions of gluconeogenic gene expression and hepatic glucose production. In animal study, plasma glucose and insulin levels of the E40 group were decreased by 31% and 63%, respectively, when compared to those of HFD control. In pyruvate tolerance tests, pyruvate-induced glucose excursions were decreased, indicating that the anti-hyperglycemic activity of eugenol is primarily due to the suppression of hepatic gluconeogenesis. In summary, eugenol effectively ameliorates hyperglycemia through inhibition of hepatic gluconeogenesis via modulating CAMKK-AMPK-CREB signaling pathway. Eugenol or eugenol-containing medicinal plants could represent a promising therapeutic agent to prevent type 2 diabetes. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Essential Oils and Eugenols Inhibit Biofilm Formation and the Virulence of Escherichia coli O157:H7

    OpenAIRE

    Kim, Yong-Guy; Lee, Jin-Hyung; Gwon, Giyeon; Kim, Soon-Il; Park, Jae Gyu; Lee, Jintae

    2016-01-01

    Enterohemorrhagic Escherichia coli O157:H7 (EHEC) has caused foodborne outbreaks worldwide and the bacterium forms antimicrobial-tolerant biofilms. We investigated the abilities of various plant essential oils and their components to inhibit biofilm formation by EHEC. Bay, clove, pimento berry oils and their major common constituent eugenol at 0.005% (v/v) were found to markedly inhibit EHEC biofilm formation without affecting planktonic cell growth. In addition, three other eugenol derivativ...

  4. Clove and eugenol in noncytotoxic concentrations exert immunomodulatory/anti-inflammatory action on cytokine production by murine macrophages.

    Science.gov (United States)

    Bachiega, Tatiana Fernanda; de Sousa, João Paulo Barreto; Bastos, Jairo Kenupp; Sforcin, José Maurício

    2012-04-01

    The extract and essential oil of clove (Syzygium aromaticum) are widely used because of their medicinal properties. Eugenol is the most important component of clove, showing several biological properties. Herein we have analysed the immunomodulatory/anti-inflammatory effect of clove and eugenol on cytokine production (interleukin (IL)-1β, IL-6 and IL-10) in vitro. Macrophages were incubated with clove or eugenol (5, 10, 25, 50 or 100µg/well) for 24h. Concentrations that inhibited the production of cytokines were used before or after incubation with lipopolysaccharide (LPS), to verify a preventive or therapeutic effect. Culture supernatants were harvested for measurement of cytokines by enzyme-linked immunosorbent assay. Clove (100µg/well) inhibited IL-1β, IL-6 and IL-10 production and exerted an efficient action either before or after LPS challenge for all cytokines. Eugenol did not affect IL-1β production but inhibited IL-6 and IL-10 production. The action of eugenol (50 or 100µg/well) on IL-6 production prevented efficiently effects of LPS either before or after its addition, whereas on IL-10 production it counteracted significantly LPS action when added after LPS incubation. Clove exerted immunomodulatory/anti-inflammatory effects by inhibiting LPS action. A possible mechanism of action probably involved the suppression of the nuclear factor-κB pathway by eugenol, since it was the major compound found in clove extract. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  5. Inhibitory effects of eugenol on RANKL-induced osteoclast formation via attenuation of NF-κB and MAPK pathways.

    Science.gov (United States)

    Deepak, Vishwa; Kasonga, Abe; Kruger, Marlena C; Coetzee, Magdalena

    2015-06-01

    Bone loss diseases are often associated with increased receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation. Compounds that can attenuate RANKL-mediated osteoclast formation are of great biomedical interest. Eugenol, a phenolic constituent of clove oil possesses medicinal properties; however, its anti-osteoclastogenic potential is unexplored hitherto. Here, we found that eugenol dose-dependently inhibited the RANKL-induced multinucleated osteoclast formation and TRAP activity in RAW264.7 macrophages. The underlying molecular mechanisms included the attenuation of RANKL-mediated degradation of IκBα and subsequent activation of NF-κB pathway. Furthermore, increase in phosphorylation and activation of RANKL-induced mitogen-activated protein kinase pathways (MAPK) was perturbed by eugenol. RANKL-induced expression of osteoclast-specific marker genes such as TRAP, cathepsin K (CtsK) and matrix metalloproteinase-9 (MMP-9) was remarkably downregulated by eugenol. These findings provide the first line of evidence that eugenol mediated attenuation of RANKL-induced NF-κB and MAPK pathways could synergistically contribute to the inhibition of osteoclast formation. Eugenol could be developed as therapeutic agent against diseases with excessive osteoclast activity.

  6. Evaluation of residual levels of benomyl, methyl parathion, diuron, and vamidothion in pineapple pulp and bagasse (Smooth cayenne).

    Science.gov (United States)

    Cabrera, H A; Menezes, H C; Oliveira, J V; Batista, R F

    2000-11-01

    The objective of this research was to study the residual levels of benomyl, methyl parathion, diuron, and vamidothion in pineapple bagasse and pulp. Benomyl (benlate), methyl parathion (Folidol 600), diuron (Krovar), and Vamidothion (Kilval 300) were applied pre-harvest to pineapples (smooth cayenne). After harvesting, the fruits were washed (100 ppm sodium hypochlorite) and the pulp was separated from the sub-products (peel, core, tops, and tails). The pulp was not submitted to any heat treatment. The sub-products and the juice expressed from them, were submitted to a blanching process (95 degrees C for 1 min). After separating the juice, the bagasse and pulp were analyzed for residues of diuron and benomyl by high performance liquid chromatography, and for residues of vamidothion and methyl parathion by gas chromatography using a TSD detector. No residues of benomyl, diuron, vamidothion, or methyl parathion were detected in the pulp within the quantification limits of the methods (0.1 mg/kg, 0.1 mg/kg, 0.005 mg/kg, and 0.005 mg/kg, respectively). Only methyl parathion (0.052 mg/kg) and vamidothion (0.021 mg/kg) were detected in the bagasse. The presence of these residues in the bagasse was probably due to the action of the wax found in the peel, which prevented the methyl parathion and vamidothion from dissolving in the juice. According to these results, the pulp was fit for human consumption, as far as pesticide residues were concerned, and the bagasse was fit for animal feed and similar applications, because the residual levels found were below the limits established for these compounds.

  7. A comparison of two methods of removing zinc oxide-eugenol provisional cement residue from the internal surface of cast restorations.

    Science.gov (United States)

    Mosharraf, Ramin; Soleimani, Bahram; Sanaee-Nasab, Mehdi

    2009-05-01

    Remnants of provisional cement on the internal surface of cast restorations can have an adverse effect on the performance of the definitive luting agent. The purpose of this study was to evaluate the effect of eugenol-containing temporary cement removal by an ultrasonic or an organic solvent on the retentive strength of metallic rings cemented to amalgam cores using zinc phosphate cement. A total of 36 cylindrical amalgam cores measuring 5.9 x 6 mm were made by condensing amalgam in brass molds for use in this in vitro study. Thirty-six cylindrical spaces measuring 6 x 6 mm were machined in the center of cast rods of Rexillium III alloy to create simulated retainers. The amalgam cores were divided into two groups and provisionally cemented in these cylindrical spaces (retainers) using zinc oxide-eugenol cement. After separation of the cores from the retainers, one group was cleaned with an ultrasonic cleaning device with water and the other group was cleaned with Solitine organic solvent. All specimens were then cemented with zinc phosphate cement and the samples were stored at 100% humidity in a 37 degrees C water bath after which they were tested with a DARTEK testing machine at a 0.02 cm/minute cross head speed. The data were analyzed using the Independent t-test. The statistical analysis revealed a significant difference between the two groups (pcleaning the internal surface of cast restorations, the ultrasonic cleaning method is more effective for removing zinc-oxide temporary cement.

  8. Preclinical pharmacokinetic evaluation of praziquantel loaded in poly (methyl methacrylate) nanoparticle using a HPLC-MS/MS.

    Science.gov (United States)

    Malhado, Mayara; Pinto, Douglas P; Silva, Aline C A; Silveira, Gabriel P E; Pereira, Heliana M; Santos, Jorge G F; Guilarducci-Ferraz, Carla V V; Viçosa, Alessandra L; Nele, Márcio; Fonseca, Laís B; Pinto, José Carlos C S; Calil-Elias, Sabrina

    2016-01-05

    Praziquantel (PZQ) is the drug recommended by the World Health Organization for treatment of schistosomiasis. However, the treatment of children with PZQ tablets is complicated due to difficulties to adapt the dose and the extremely bitter taste of PZQ. For this reason, poly (methyl methacrylate) nanoparticles loaded with Praziquantel (PZQ-NP) were developed for preparation of a new formulation to be used in the suspension form. For this reason, the main aim of the present study was to evaluate the pharmacokinetic (PK) profile of PZQ-NP, through HPLC-MS/MS assays. Analyses were performed with an Omnisphere C18 column (5.0 μm×4.6 mm×150.0 mm), using a mixture of an aqueous solution containing 0.1 wt% of formic acid and methanol (15:85-v/v) as the mobile phase at a flow rate of 0.800mL/min. Detection was performed with a hybrid linear ion-trap triple quadrupole mass spectrometer with multiple reactions monitoring in positive ion mode via electrospray ionization. The monitored transitions were m/z 313.18>203.10 for PZQ and m/z 285.31>193.00 for the Internal Standard. The method was validated with the quantification limit of 1.00 ng/mL, requiring samples of 25 μL for analyses. Analytic responses were calibrated with known concentration data, leading to correlation coefficients (r) higher than 0.99. Validation performed with rat plasma showed that PZQ was stable for at least 10 months when stored below -70 °C (long-term stability), for at least 17 h when stored at room temperature (RT, 22 °C) (short-term stability), for at least 47 h when stored at room temperature in auto-sampler vials (post-preparative stability) and for at least 8 successive freeze/thaw cycles at -70 °C. For PK assays, Wistar rats, weighing between 200 and 300 g were used. Blood samples were collected from 0 to 24 h after oral administration of single doses of 60 mg/kg of PZQ-NP or raw PZQ (for the control group). PZQ was extracted from plasma by liquid-liquid extraction with terc-butyl methyl

  9. Constituintes químicos voláteis de especiarias ricas em eugenol

    Directory of Open Access Journals (Sweden)

    Rosilene Aparecida de Oliveira

    Full Text Available Utilizando a técnica de hidrodestilação, usando um adaptador Clevenger, foram extraídos óleos essenciais das espécies Pimenta dioica (folhas e frutos e Syzygium aromaticum (botões florais, talos e folhas. A composição química dos óleos foi determinada através da analise CG-EM. Os teores de óleos essenciais variaram de 0,97 a 1,41% e 2,30 a 15,40% nas espécies Pimenta dioica e Syzygium aromaticum, respectivamente. O componente majoritário presente nessas espécies foi o eugenol, variando de 72,87 a 90,41%. Syzygium aromaticum forneceu maior teor de óleo essencial rico em eugenol. Em quantidades menores foram também encontrados chavicol e? β-cariofileno.

  10. Efeito anestésico do eugenol em juvenis de pacamã

    Directory of Open Access Journals (Sweden)

    Paula Adriane Perez Ribeiro

    2013-08-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito do eugenol como anestésico para juvenis de pacamã (Lophiosilurus alexandri. Os animais foram divididos em dois grupos, denominados juvenil I (0,72 g e juvenil II (7,44 g, e submetidos a seis tratamentos de eugenol (20, 40, 60, 80, 100 e 120 mg L-1, em dez repetições. Durante o experimento, foram realizadas biometrias e cronometragens dos tempos de indução e recuperação. Com o aumento das doses, o tempo de anestesia foi reduzido de 69 para 27 s, em juvenis I, e de 93,8 para 37,3 s em juvenis II. A sobrevivência foi de 100%.

  11. The Physico-Mechanical Properties and Release Kinetics of Eugenol in Chitosan-Alginate Polyelectrolyte Complex Films as Active Food Packaging

    Directory of Open Access Journals (Sweden)

    Baiq Amelia Riyandari

    2018-02-01

    Full Text Available A study of eugenol release and its kinetics model from chitosan-alginate polyelectrolyte complex (PEC films has been conducted. Some factors that affected the eugenol release were also studied, including the composition of chitosan-alginate PEC and the concentration of eugenol. The chitosan-alginate-eugenol PEC films were synthesized at pH ± 4.0, then the PEC films were characterized using a Fourier-transform infrared spectroscopy (FTIR spectrophotometer. An investigation of the films’ properties was also conducted, including morphology analysis using a scanning electron microscope (SEM, differential thermal analysis (DTA / thermogravimetric analysis (TGA, mechanical strength, transparency testing, water absorption, and water vapor permeability. The release of eugenol was investigated through in vitro assay in ethanol 96% (v/v for four days, and the concentration of eugenol was measured using an ultraviolet-visible (UV-Vis spectrophotometer. The characterization of the films using FTIR showed that the formation of PEC occurred through ionic interaction between the amine groups (–NH3+of the chitosan and the carboxylate groups (–COO– of the alginate. The result showed that the composition of chitosan-alginate PEC and the concentration of eugenol can affect the release of eugenol from PEC films. A higher concentration of alginate and eugenol could increase the concentration of eugenol that was released from the films. The mechanism for the release of eugenol from chitosan-alginate PEC films followed the Korsmeyer-Peppas model with an n value of < 0.5, which means the release mechanism for eugenol was controlled by a Fickian diffusion process. The antioxidant activity assay of the films using the 2,2-diphenyl-1-picrylhydrazyl (DPPH method resulted in a high radical scavenging activity (RSA value of 55.99% in four days.

  12. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian

    2012-01-01

    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  13. STRUCTURE – ANTIOXIDANT ACTIVITIES RELATIONSHIP ANALYSIS OF ISOEUGENOL, EUGENOL, VANILIN AND THEIR DERIVATIVES

    OpenAIRE

    Nur Aini; Bambang Purwono; Iqmal Tahir

    2010-01-01

    Structure Activity Relationship (SAR) technique between the theoretical parameters and antioxidant activities of isoeugenol, eugenol, vanillin and their derivatives as Mannich reaction products, have been analyzed. Antioxidant activities were examined by oxidation reaction of oleic acid at 60 °C with b-carotene methods, whereas theoretical parameters of the activities were determined by calculating Bonding Dissociation Enthalpy (BDE) and net charge of oxygen atom(-OH) using AM1 semi empiric m...

  14. ADSORPTION CHARACTERISTIC OF IRON ONTO POLY[EUGENOL-CO-(DIVINYL BENZENE)] FROM AQUEOUS SOLUTION

    OpenAIRE

    Fitrilia Silvianti; Dwi Siswanta; Nurul Hidayat Aprilita; Agung Abadi Kiswandono

    2017-01-01

    A study on the adsorption characteristic of Iron onto Poly[eugenol-co-(divinyl benzene)] (EDVB) from aqueous solution has been conducted. EDVB was produced and characterized by using FTIR spectroscopy. The adsorption was studied by a batch method by considering the factors affecting the adsorption such as initial metal ion concentration, adsorption selectivity, and mechanism of adsorption using a sequential desorption method. The adsorption of Iron onto EDVB followed a pseudo-2 order kinetics...

  15. Modeling the Drug Discovery Process: The Isolation and Biological Testing of Eugenol from Clove Oil

    Science.gov (United States)

    Miles, William H.; Smiley, Patricia M.

    2002-01-01

    This experiment describes the isolation and biological testing of eugenol and neutral compounds from commercially available clove oil. By coupling the chemical separation of the components of clove oil (an experiment described in many introductory organic laboratory textbooks) with a simple antibiotic test, the students "discover" the biologically active compound in clove oil. This experiment models one of the primary methods used in the discovery of new pharmaceutical agents.

  16. Eugenol and carvone as relaxants of arsenic and mercury hypercontracted rat trachea.

    Science.gov (United States)

    Kundu, Swati; Shabir, Hiba; Basir, Seemi F; Khan, Luqman A

    2016-12-01

    Exposure to arsenic and mercury is known to cause respiratory problems in both humans and animals. In this study, we elicit and compare maximum contraction caused by As(III) and Hg(II) when the pollutants are fully equilibrated with contractile machinery in resting mode. Hypercontraction of 27% and 69% was obtained following exposure of tracheal rings to 25 µM As(III) and 6 nM Hg(II) for 40 min, respectively. Co-incubation of tracheal rings with pollutants and verapamil, sodium nitroprusside or apocynin indicates that major contributors to As(III) and Hg(II) caused hypercontraction are reactive oxygen species (ROS) elevation and nitric oxide (NO) depletion. Changes in calcium influx have minor contribution in As(III) and Hg(II) caused increased contraction of tracheal tissues. Eugenol and carvone caused relaxation of 38% and 45% in pollutant unexposed rings, 56% and 49% in As(III)-exposed tracheal rings, and 54% and 47% in Hg(II)-exposed tracheal rings. Pathway delineation studies indicate that the major effect of eugenol originates from quenching of ROS whereas that of carvone originates from the blockage of extracellular calcium influx. Both molecules also show a minor stimulatory effect on NO generation. In line with their suggested mode of relaxation, eugenol is found to better ameliorate both As(III)- and Hg(II)-caused hypercontraction. Carvone, though a better relaxant than eugenol, comes out as poor ameliorator of both As(III)- and Hg(II)-caused hypercontraction, as the pathway on which it acts is not elevated following exposure to these pollutants. © The Author(s) 2015.

  17. In vivo efficacy of a biotherapic and eugenol formulation against Rhipicephalus microplus.

    Science.gov (United States)

    Valente, Paula Pimentel; Moreira, Gustavo Henrique Ferreira Abreu; Serafini, Matheus Ferreira; Facury-Filho, Elias Jorge; Carvalho, Antônio Último; Faraco, André Augusto Gomes; Castilho, Rachel Oliveira; Ribeiro, Múcio Flávio Barbosa

    2017-03-01

    The control of Rhipicephalus microplus is essential to prevent cattle discomfort and economic losses. However, increased resistance and acaricides inefficiency lead producers to adopt strategies that could result in the accumulation of chemical residues in meat and milk with possibilities of poisoning in animals and people. This scenario demonstrates the necessity of research into the identification of novel, effective and environmentally safe therapeutic options for cattle tick control. The objectives of this study were to develop and assess the efficacy of R. microplus biotherapic and of 5% eugenol for the control of R. microplus in artificially infested calves. Eighteen male 6-month-old Holstein calves were divided into three groups of six animals. In Group 1, the animals did not receive medication (control group); in Group 2, the animals received 1 mL of R. microplus biotherapic at dilution 6CH (centesimal Hahnemannian), orally administered twice daily. And in Group 3, they received a single application of eugenol 5% in the pour-on formulation. The median efficacy for biotherapy and eugenol 5% was respectively 10.13 and 13.97%; however, upon analyzing reproductive efficiency, it is noteworthy that the biotherapic had 45.86% efficiency and was superior to the action of eugenol (12.03%) after 37 days of treatment. The ultrastructural study provided information about the effects of R. microplus biotherapic on the ovaries of engorged females and showed disorganization in the deposition of the oocyte exochorion. The results suggest hatchability inhibition of larvae, interference in R. microplus reproduction and future possibilities for eco-friendly control of R. microplus with biotherapic 6CH.

  18. Regulation effect of Aspirin Eugenol Ester on blood lipids in Wistar rats with hyperlipidemia

    OpenAIRE

    Karam, Isam; Ma, Ning; Liu, Xi-Wang; Li, Shi-Hong; Kong, Xiao-Jun; Li, Jian-Yong; Yang, Ya-Jun

    2015-01-01

    Background Aspirin eugenol ester (AEE) is a promising drug candidate for treatment of inflammation, pain and fever and prevention of cardiovascular diseases with less side effects. The experiment will be conducted to investigate the efficacy of AEE on curing hyperlipidemia in Wistar rats. The rats were fed with high fat diet (HFD) for 8?weeks to induce hyperlipidemia. Results Compared with the model group, the results showed that AEE at 54?mg/kg dosage could significantly decrease the hyperli...

  19. Anethol, cinnamaldehyde, and eugenol inclusion in feed affects postweaning performance and feeding behavior of piglets.

    Science.gov (United States)

    Blavi, L; Solà-Oriol, D; Mallo, J J; Pérez, J F

    2016-12-01

    The early exposure of the fetus to certain volatiles may result in a further preference for these compounds later in life and could positively affect the acceptance of feed containing a similar flavor and the zootechnical responses. The study consisted of 2 trials to determine if including Fluidarom 1003 (a commercially flavored feed additive containing >25% anethol and cinnamaldehyde and >10% eugenol; Norel S.A., Madrid, Spain, Spain) in sow and postweaning piglet diets 1) provokes the presence or absence of 3 major volatile compounds (anethol, cinnamaldehyde, and eugenol) in amniotic fluid and milk, affecting piglet performance (BW, ADG, ADFI, and feed conversion ratio) after weaning, and 2) modifies creep feed consumption and feed preference in a 2-choice test. The major compounds, anethol, cinnamaldehyde, and eugenol, were detected in amniotic fluid; however, only traces were observed in milk. The inclusion of flavor in the sow diets improved piglet consumption and growth after weaning ( = 0.001). Furthermore, the positive reward associated with the flavor included in the sow diet was stronger when piglets were offered a nonflavored creep feed ( early exposure of pigs' fetuses to maternal dietary clues at the end of gestation might allow for conditioning pigs after weaning.

  20. Benzocaína e eugenol como anestésicos para o quinguio (Carassius auratus

    Directory of Open Access Journals (Sweden)

    F. Bittencourt

    2012-12-01

    Full Text Available Avaliaram-se os tempos de indução e recuperação de quinguios (Carassius auratus expostos a dois anestésicos, eugenol e benzocaína. Foram utilizados 128 juvenis com peso médio de 2,07±0,53g e comprimento total médio de 5,51±0,56cm. A benzocaína mostrou ser mais eficiente do que o eugenol em relação ao tempo, tanto para indução ao coma quanto para a recuperação à fuga e também no que diz respeito à sobrevivência. As doses de benzocaína com melhores resultados foram de 87,5 e 100mg.L-1. O eugenol proporcionou demora na indução e na recuperação dos animais, além de ter apresentado mortalidades quando as doses anestésicas foram elevadas.

  1. Antimicrobial activities of Eugenol and Cinnamaldehyde against the human gastric pathogen Helicobacter pylori

    Science.gov (United States)

    Ali, Shaik Mahaboob; Khan, Aleem A; Ahmed, Irshad; Musaddiq, M; Ahmed, Khaja S; Polasa, H; Rao, L Venkateswar; Habibullah, Chittoor M; Sechi, Leonardo A; Ahmed, Niyaz

    2005-01-01

    Background Eradication of Helicobacter pylori is an important objective in overcoming gastric diseases. Many regimens are currently available but none of them could achieve 100% success in eradication. Eugenol and cinnamaldehyde that are commonly used in various food preparations are known to possess antimicrobial activity against a wide spectrum of bacteria. Aim The present study was performed to assess the in vitro effects of eugenol and cinnamaldehyde against indigenous and standard H. pylori strains, their minimum inhibitory concentrations (MICs) and time course lethal effects at various pH. Methods A total of 31 strains (29 indigenous and one standard strain of H. pylori ATCC 26695, one strain of E. coli NCIM 2089) were screened. Agar dilution method was used for the determination of drug sensitivity patterns of isolates to the commonly used antibiotics and broth dilution method for the test compounds. Results Eugenol and cinnamaldehyde inhibited the growth of all the 30 H. pylori strains tested, at a concentration of 2 μg/ml, in the 9th and 12th hours of incubation respectively. At acidic pH, increased activity was observed for both the compounds. Furthermore, the organism did not develop any resistance towards these compounds even after 10 passages grown at sub-inhibitory concentrations. Conclusion These results indicate that the two bioactive compounds we tested may prevent H. pylori growth in vitro, without acquiring any resistance. PMID:16371157

  2. IR/UV and UV/UV double-resonance study of guaiacol and eugenol dimers

    Science.gov (United States)

    Longarte, Asier; Redondo, Carolina; Fernández, José A.; Castaño, Fernando

    2005-04-01

    Guaiacol (2-methoxyphenol) and eugenol (4-allyl-2-methoxyphenol) molecules are biologically active phenol derivatives with an intramolecular -OH⋯OCH3 hydrogen bond (H bond). Pulsed supersonic expansions of mixtures of either of the two molecules with He yield weakly bound homodimers as well as other higher-order complexes. A number of complementary and powerful laser spectroscopic techniques, including UV-UV and IR-UV double resonances, have been employed to interrogate the species formed in the expansion in order to get information on their structures and spectroscopic properties. The interpretation of the spectra of eugenol dimer is complex and required a previous investigation on a similar but simpler molecule both to gain insight into the possible structures and support the conclusions. Guaiacol (2-methoxyphenol) has been used for that purpose. The combination of the broad laser study combined with ab initio calculations at the Becke 3 Lee-Yang-Parr/6-31+G(d) level has provided the isomer structures, the potential-energy wells, and shed light on the inter- and intramolecular interactions involved. Guaiacol homodimer has been shown to have a single isomer whereas eugenol dimer has at least two. The comparison between the computed geometries of the dimers, their respective energies, and the vibrational normal modes permits the identification of the spectra.

  3. A retrospective assessment of zinc oxide-eugenol pulpectomies in vital maxillary primary incisors successfully restored with composite resin crowns.

    Science.gov (United States)

    Primosch, Robert E; Ahmadi, Anissa; Setzer, Barry; Guelmann, Marcio

    2005-01-01

    The purpose of this retrospective study was to evaluate, via clinical and radiographic assessments, the treatment outcome of zinc oxide-eugenol (ZOE) pulpectomies performed in vital maxillary primary incisors successfully restored with composite resin crowns. Pulpectomized vital primary incisors were treated by a uniformed technique, filled with ZOE paste, and successfully restored with composite resin crowns. Those that remained intact and noncarious for the assessment interval were evaluated for the outcome (success or failure) based on clinical and radiographic findings and compared to: (1) the reason for treatment; (2) the canal filling extent; (3) the type of composite resin crown restoration performed; and (4) the eruption status of its succedaneous tooth. For 104 maxillary primary incisors meeting the inclusion criteria, failure, as judged by presence of pathologic root resorption and/or apical lucency, was determined to be 24% (25/104), for a mean duration of 18 months observation. Failures were statistically associated with the reason for treatment (higher for trauma), the extent of ZOE paste filler in the pulp canal (higher for gross overfill), and the eruption status of the associated succedaneous permanent incisor (higher for delayed eruption). This study determined a failure rate (24%) for pulpectomies-using ZOE paste and performed on vital primary incisors-comparable to that reported for nonvital pulpectomies. A statistically significant increase in failure rates was found for: (1) incisors treated for trauma (42%) vs those treated for dental caries (19%); and (2) grossly overfilled canals (80%) vs canals filled to the apex (0%).

  4. Outcome of zinc oxide eugenol paste as an obturating material in primary teeth pulpectomy: A systematic review

    Directory of Open Access Journals (Sweden)

    Harsha S Nalawade

    2017-01-01

    Full Text Available The aim of this systematic review is to use the principles of evidence-based dentistry to evaluate the outcome of zinc oxide eugenol (ZOE paste as an obturating material in primary teeth pulpectomies. Moderate-to-high success rates are reported with ZOE in preserving chronically infected primary teeth. However, it fails to meet many of the criteria for an ideal obturating material. Databases searched were PubMed, EBSCOhost, and Google Scholar. Articles published between January 1, 1993, and June 30, 2016, with in vivo studies for obturating materials in primary teeth pulpectomy with placement of preformed crown, reporting follow-up period of at least 12 months with clinical and radiographic success rates were selected for this review. In total, 122 articles were retrieved. After the removal of duplicates and screening, full-text articles were analyzed; of which eight articles were selected for the systematic review. No significant difference was seen in the outcome of obturating materials used in comparison with ZOE in the included studies. Outcomes of ZOE paste obtained with clinical and radiographic evaluation were similar when compared to the newer combinations of materials available for obturating primary teeth today. More number of randomized controlled clinical trials for primary teeth pulpectomies with at least 12 months follow-up period and placement of crown as final restoration need to be carried out for testing the newer materials in comparison with ZOE to conclude a suitable alternative obturating material.

  5. Microbial leakage of MTA, Portland cement, Sealapex and zinc oxide-eugenol as root-end filling materials.

    Science.gov (United States)

    Estrela, Carlos; Estrada-Bernabé, Pedro-Felício; de Almeida-Decurcio, Daniel; Almeida-Silva, Julio; Rodrigues-Araújo-Estrela, Cyntia; Poli-Figueiredo, José-Antonio

    2011-05-01

    The aim of this study was to compare the microbial leakage of mineral trioxide aggregate (MTA), Portland cement (PC), Sealapex and zinc oxide-eugenol (ZOE) as root-end filling materials. An in vitro microbial leakage test (MLT) with a split chamber was used in this study. A mixture of facultative bacteria and one yeast (S. aureus+E. faecalis+P. aeruginosa+B. subtilis+C. albicans) was placed in the upper chamber and it could only reach the lower chamber containing Brain Heart Infusion broth by way of leakage through the root-end filling. Microbial leakage was observed daily for 60 days. Sixty maxillary anterior human teeth were randomly assigned to different groups--MTA and PC (gray and white), Sealapex+zinc oxide and ZOE, control groups and subgroups to evaluate the influence of EDTA for smear layer removal. These materials were further evaluated by an agar diffusion test (ADT) to verify their antimicrobial efficacy. Data were analyzed statistically by Kruskal-Wallis and Mann-Whitney test. In the MLT, Sealapex+zinc oxide and ZOE did not show evidence of microbial leakage over the 60-day experimental period. The other materials showed leakage from the 15th day. The presence of smear layer influenced microbial leakage. Microbial inhibition zones were not observed in all samples tested by ADT. Sealapex+zinc oxide and ZOE did not show microbial leakage over the experimental period, whereas it was verified within 15 to 45 days in MTA and Portland cement.

  6. Inhibitory effect of beta-pinene, alpha-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria Efeito inibitório de eugenol, beta-pineno e alfa-pineno sobre o crescimento de bactérias Gram-positivas potencialmente causadoras de endocardite infecciosa

    Directory of Open Access Journals (Sweden)

    Aristides Medeiros Leite

    2007-03-01

    Full Text Available This study was led with the purpose of evaluating the effectiveness of eugenol, beta-pinene and alpha-pinene in inhibiting the growth of potential infectious endocarditis causing gram-positive bacteria. The phytochemicals Minimum Inhibitory Concentration-MIC was determined by solid medium diffusion procedure, while the interference of the MIC values on the bacterial cell viability was performed by viable cells count. Staphylococcus aureus, S. epidermidis, Streptococcus pneumoniae and S. pyogenes strains were used as test microorganisms. The assayed phytochemicals showed effectiveness in inhibiting all assayed bacteria strains presenting MIC values between 2.5 and 40 µL/mL. Eugenol showed the lowest MIC values which were between 2.5 and 5 µL/mL for the most bacteria strains. MIC values found to the phytochemicals were able to inhibit the cell viability of S. aureus providing a total elimination of the bacteria inoculum in a maximum time of 24 hours of exposure. These data showed the interesting antibacterial property of the assayed phytochemicals and support their possible and rational use in the antimicrobial therapy.Este estudo foi conduzido com a proposta de avaliar a efetividade de eugenol, beta-pineno e alfa-pineno em inibir o crescimento de cepas de bactérias Gram-positivas potencialmente causadoras de endocardite infecciosa. A Concentração Inibitória Mínima-CIM dos fitoconstituintes foi determinada através do método de difusão em meio sólido, enquanto a interferência da CIM sobre a viabilidade celular bacteriana foi avaliada através da contagem de células viáveis. Cepas de Staphylococcus aureus, S. epidermidis, Streptococcus pneumoniae e S. pyogenes foram utilizadas como microrganismos teste nos ensaios antimicrobianos. Os fitoconstituintes ensaiados mostraram efetividade em inibir todas as cepas bacterianas utilizadas como microrganismos testes apresentando valores de CIM entre 2.5 e 40 µL/mL. Eugenol apresentou os menores

  7. Efek eugenol terhadap jumlah sel inflamasi pada pulpa gigi molar tikus Sprague Dawley

    Directory of Open Access Journals (Sweden)

    Raras Ajeng Enggardipta

    2016-08-01

    Full Text Available Inflammatory cells infiltration after eugenol administration in Sprague Dawley rat’s molars. The purpose of this study was to determine effect of eugenol on inflammatory cells infiltration (neutrophils, macrophages and lymphocytes in the inflamed dental pulp. Thirty male Sprague Dawley rats aged 3-4 months and weighed 300-350 g were randomly divided into 2 groups: treated and control groups. Rats were injected with ketamine HCl i.m. (0.1 ml/100 grams BW before cavity preparation at occlusal surface of the upper molars. Cavity preparation was made using a round bur No.010 to pulp perforation. At the cavity base of treated group, 15 rats were given eugenol and of control group 15 rats were given aquadest, before filled with temporary filling. Three rats from each group were sacrificed at 1, 3, 5, 7 and 14 days after the cavity preparation. Rats were injected with ketamine HCl im (0.1 ml / 100 g BW on the thigh then tissues were collected for histological process and stained using haematoxylin eosin. The number of inflammatory cells (neutrophils, macrophages and lymphocytes was analysed by Two-Way Anova. The result of the study showed number of inflammatory cells infiltration of treated group was lower than control and showed significant differences between groups (p <0.05. The conclusion from this study is eugenol administration in Sprague Dawley rats’s inflamed dental pulp can reduce the number of inflammatory cells (neutrophils, macrophages and lymphocytes. ABSTRAK Penelitian ini bertujuan untuk mengetahui pengaruh eugenol terhadap jumlah sel inflamasi (netrofil, makrofag dan limfosit pada pulpa gigi terinflamasi. Tiga puluh ekor tikus Sprague Dawley jantan berumur  3-4 bulan dengan berat badan 300-350 g dibagi secara acak dalam 2 kelompok yaitu perlakuan dan kontrol. Tikus diinjeksi ketamine HCl i.m. (0,1 ml/100 gram BB sebelum dilakukan preparasi kavitas pada permukaan oklusal gigi molar satu rahang atas. Preparasi kavitas dibuat dengan

  8. On-Chip Evaluation of DNA Methylation with Electrochemical Combined Bisulfite Restriction Analysis Utilizing a Carbon Film Containing a Nanocrystalline Structure.

    Science.gov (United States)

    Kurita, Ryoji; Yanagisawa, Hiroyuki; Kamata, Tomoyuki; Kato, Dai; Niwa, Osamu

    2017-06-06

    This paper reports an on-chip electrochemical assessment of the DNA methylation status in genomic DNA on a conductive nanocarbon film electrode realized with combined bisulfite restriction analysis (COBRA). The film electrode consists of sp2 and sp3 hybrid bonds and is fabricated with an unbalanced magnetron (UBM) sputtering method. First, we studied the effect of the sp2/sp3 ratio of the UBM nanocarbon film electrode with p-aminophenol, which is a major electro-active product of the labeling enzyme from p-aminophenol phosphate. The signal current for p-aminophenol increases as the sp2 content in the UBM nanocarbon film electrode increases because of the π-π interaction between aromatic p-aminophenol and the graphene-like sp2 structure. Furthermore, the capacitative current at the UBM nanocarbon film electrode was successfully reduced by about 1 order of magnitude thanks to the angstrom-level surface flatness. Therefore, a high signal-to-noise ratio was achieved compared with that of conventional electrodes. Then, after performing an ELISA-like hybridization assay with a restriction enzyme, we undertook an electrochemical evaluation of the cytosine methylation status in DNA by measuring the oxidation current derived from p-aminophenol. When the target cytosine in the analyte sequence is methylated (unmethylated), the restriction enzyme of HpyCH4IV is able (unable) to cleave the sequence, that is, the detection probe cannot (can) hybridize. We succeeded in estimating the methylation ratio at a site-specific CpG site from the peak current of a cyclic voltammogram obtained from a PCR product solution ranging from 0.01 to 1 nM.

  9. Determination of free and glucosidically-bound volatiles in plants. Two case studies: L-menthol in peppermint (Mentha x piperita L.) and eugenol in clove (Syzygium aromaticum (L.) Merr. & L.M.Perry).

    Science.gov (United States)

    Sgorbini, Barbara; Cagliero, Cecilia; Pagani, Alberto; Sganzerla, Marla; Boggia, Lorenzo; Bicchi, Carlo; Rubiolo, Patrizia

    2015-09-01

    This study arises from both the today's trend towards exploiting plant resources exhaustively, and the wide quantitative discrepancy between the amounts of commercially-valuable markers in aromatic plants and those recovered from the related essential oil. The study addresses the determination of both the qualitative composition and the exhaustive distribution of free and glucosidically-bound L-menthol in peppermint aerial parts (Mentha x piperita L., Lamiaceae) and of eugenol in dried cloves (Syzygium aromaticum (L.) Merr. & L.M.Perry, Myrtaceae), two plants known to provide widely ranging essential oil yields. The two markers were investigated in essential oils and residual hydrodistillation waters, before and after enzymatic hydrolysis. Their amounts were related to those in the headspace taken as reference. The results showed that the difference between marker compound in headspace and in essential oil amounted to 22.8% for L-menthol in peppermint, and 16.5% for eugenol in cloves. The aglycones solubilised in the residual hydrodistillation waters were 7.2% of the headspace reference amount for L-menthol, and 13.3% for eugenol, respectively representing 9.3% and 15.9% of their amounts in the essential oil. The amount of L-menthol from its glucoside in residual hydrodistillation waters was 20.6% of that in the related essential oil, while eugenol from its glucoside accounted for 7.7% of the amount in clove essential oil. The yield of L-menthol, after submitting the plant material to enzymatic hydrolysis before hydrodistillation, increased by 23.1%, and for eugenol the increase was 8.1%, compared to the amount in the respective conventional essential oils. This study also aimed to evaluate the reliability of recently-introduced techniques that are little applied, if at all, in this field. The simultaneous use of high-concentration-capacity sample preparation techniques (SBSE, and HS-SPME and in-solution SPME) to run quali-quantitative analysis without sample

  10. Influence of the weight of juveniles Matrinxã (“Brycon cephalus” and Tambaqui (“Colossoma macropomum” to the anesthetic action of the eugenol Influência do peso de juvenis de matrinxã ("Brycon cephalus" e tambaqui ("Colossoma macropomum" à ação anestésica do eugenol

    Directory of Open Access Journals (Sweden)

    Elitieri Batista dos Santos Neto

    2007-10-01

    Full Text Available It was evaluated the influence of the weight in the effect of the anesthetic eugenol for juveniles of matrinxã and tambaqui. For that, it was used a total of 69 matrinxãs and 49 tambaquis. The animals were anesthetized individually, weighed and observed during the induction and the recover of the anesthesia. For the induction it was used the concentration of the anesthetic's 50 mg/L, previously diluted in alcohol. The obtained weights were gathered in five classes and no difference statistics was observed for the times of induction and recovery among them.Foi avaliada a influência do peso de juvenis de matrinxã e tambaqui sobre a ação do anestésico eugenol. Para isso, foram utilizados 69 matrinxãs e 49 tambaquis. Os animais foram individualmente anestesiados, pesados e observados durante a indução e a recuperação da anestesia. Para a indução foi utilizada a concentração de 50 mg/L do anestésico, previamente diluído em álcool. Os pesos obtidos foram reunidos em cinco classes, não sendo observada diferença estatística para os tempos de indução e de recuperação entre elas.

  11. Eugenol and carvacrol induce temporally desensitizing patterns of oral irritation and enhance innocuous warmth and noxious heat sensation on the tongue.

    Science.gov (United States)

    Klein, Amanda H; Carstens, Mirela Iodi; Carstens, Earl

    2013-10-01

    Eugenol and carvacrol, from the spices clove and oregano, respectively, are agonists of TRPV3, which is implicated in transduction of warmth and possibly heat pain. We investigated the temporal dynamics of lingual irritation elicited by these agents, and their effects on innocuous warmth and heat pain, using a half-tongue method in human subjects. The irritant sensation elicited by both eugenol and carvacrol decreased across repeated applications at a 1-minute interstimulus interval (self-desensitization) which persisted for at least 10 minutes. Both agents also cross-desensitized capsaicin-evoked irritation. Eugenol and carvacrol significantly increased the magnitude of perceived innocuous warmth (44 °C) for >10 minutes, and briefly (eugenol or carvacrol, indicating that the effect is not due solely to summation of chemoirritant and thermal sensations. Neither chemical affected sensations of innocuous cool or cold pain. A separate group of subjects was asked to subdivide eugenol and carvacrol irritancy into subqualities, the most frequently reported being numbing and warmth, with brief burning, stinging/pricking, and tingle, confirming an earlier study. Eugenol, but not carvacrol, reduced detection of low-threshold mechanical stimuli. Eugenol and carvacrol enhancement of innocuous warmth may involve sensitization of thermal gating of TRPV3 expressed in peripheral warm fibers. The brief heat hyperalgesia following eugenol may involve a TRPV3-mediated enhancement of thermal gating of TRPV1 expressed in lingual polymodal nociceptors. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  12. An assessment of detection canine alerts using flowers that release methyl benzoate, the cocaine odorant, and an evaluation of their behavior in terms of the VOCs produced.

    Science.gov (United States)

    Cerreta, Michelle M; Furton, Kenneth G

    2015-06-01

    In recent years, the high frequency of illicit substance abuse reported in the United States has made the development of efficient and rapid detection methods important. Biological detectors, such as canines (Canis familiaris), are valuable tools for rapid, on-site identification of illicit substances. However, research indicates that in many cases canines do not alert to the contraband, but rather to the volatile organic compounds (VOCs) that are released from the contraband, referred to as the "active odor." In 2013, canine accuracy and reliability were challenged in the Supreme Court case, State of Florida v. Jardines. In this case, it was stated that if a canine alerts to the active odor, and not the contraband, the canine's accuracy and selectivity could be questioned, since many of these compounds have been found in common household products. Specifically, methyl benzoate, the active odor of cocaine, has been found to be the most abundant compound produced by snapdragon flowers. Therefore, the purpose of this study is to evaluate the odor profiles of various species of snapdragon flowers to assess how significantly methyl benzoate contributes to the total VOC profile or fragrance that is produced. Particularly, this study examines the VOCs released from newly grown snapdragon flowers and determines its potential at eliciting a false alert from specially trained detection canines. The ability of detection canines to differentiate between cocaine and snapdragon flowers was determined in order to validate the field accuracy and discrimination power of these detectors. An optimized method using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS) was used to test the different types and abundances of compounds generated from snapdragon flowers at various stages throughout the plants' life cycle. The results indicate that although methyl benzoate is present in the odor profile of snapdragon flowers, other

  13. An evaluation of two-channel ChIP-on-chip and DNA methylation microarray normalization strategies

    Directory of Open Access Journals (Sweden)

    Adriaens Michiel E

    2012-01-01

    Full Text Available Abstract Background The combination of chromatin immunoprecipitation with two-channel microarray technology enables genome-wide mapping of binding sites of DNA-interacting proteins (ChIP-on-chip or sites with methylated CpG di-nucleotides (DNA methylation microarray. These powerful tools are the gateway to understanding gene transcription regulation. Since the goals of such studies, the sample preparation procedures, the microarray content and study design are all different from transcriptomics microarrays, the data pre-processing strategies traditionally applied to transcriptomics microarrays may not be appropriate. Particularly, the main challenge of the normalization of "regulation microarrays" is (i to make the data of individual microarrays quantitatively comparable and (ii to keep the signals of the enriched probes, representing DNA sequences from the precipitate, as distinguishable as possible from the signals of the un-enriched probes, representing DNA sequences largely absent from the precipitate. Results We compare several widely used normalization approaches (VSN, LOWESS, quantile, T-quantile, Tukey's biweight scaling, Peng's method applied to a selection of regulation microarray datasets, ranging from DNA methylation to transcription factor binding and histone modification studies. Through comparison of the data distributions of control probes and gene promoter probes before and after normalization, and assessment of the power to identify known enriched genomic regions after normalization, we demonstrate that there are clear differences in performance between normalization procedures. Conclusion T-quantile normalization applied separately on the channels and Tukey's biweight scaling outperform other methods in terms of the conservation of enriched and un-enriched signal separation, as well as in identification of genomic regions known to be enriched. T-quantile normalization is preferable as it additionally improves comparability

  14. Evaluation of mercury methylation and methylmercury demethylation rates in vegetated and non-vegetated saltmarsh sediments from two Portuguese estuaries.

    Science.gov (United States)

    Cesário, Rute; Hintelmann, Holger; Mendes, Ricardo; Eckey, Kevin; Dimock, Brian; Araújo, Beatriz; Mota, Ana Maria; Canário, João

    2017-07-01

    Neurotoxic methylmercury (MMHg) is formed from inorganic divalent mercury (Hg2+). However, it is poorly understood to what extent different mercury (Hg) pools contribute to existent MMHg levels. In this study, ambient concentrations of total Hg (THg) and MMHg as well as rates of methylation and demethylation were measured simultaneously in sediments with and without salt-marsh plant vegetation, which were collected in Guadiana and Tagus estuaries, Portugal. Concurrent processes of Hg methylation and MMHg demethylation were directly monitored and compared by spiking sediments cores with stable isotope tracers of 199Hg2+ and CH3201Hg+ followed by gas chromatographic separation and isotope-specific detection using inductively coupled plasma mass spectrometry. Compared to the Guadiana estuary, where concentrations were comparatively low, THg and MMHg levels varied between vegetated and non-vegetated sediments collected at the Rosário site (ROS) of the Tagus estuary. Methylation (KM) and demethylation rates (KD) were also different between estuaries being dependent on the presence of vegetation. In addition, the type of macrophyte species influenced KM and KD values. In fact, the highest KM value was found in Sarcocornia fruticosa vegetated sediments at the Castro Marim site in Guadiana (CM, 0.160 day-1) and the lowest KM was observed in non-vegetated sediments at the Alcochete site in Tagus (ALC, 0.009 day-1). KD varied by a factor of three among sites with highest rates of demethylation observed in non-vegetated sediments in Guadiana (12 ± 1.3 day-1, corresponding to a half-life of 1.4 ± 0.2 h). This study clearly shows that the presence of vegetation in sediments favors the formation of MMHg. Moreover, this effect might be site specific and further studies are needed to confirm the findings reported here. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Synergism of thymol, carvacrol and eugenol in larvae of the cattle tick, Rhipicephalus microplus, and brown dog tick, Rhipicephalus sanguineus.

    Science.gov (United States)

    Araújo, L X; Novato, T P L; Zeringota, V; Maturano, R; Melo, D; DA Silva, B C; Daemon, E; DE Carvalho, M G; Monteiro, C M O

    2016-12-01

    The effects of combinations of the monoterpenes thymol and carvacrol and the phenylpropanoid eugenol in larvae of Rhipicephalus microplus (Canestrini, 1888) (Acari: Ixodidae) and Rhipicephalus sanguineus sensu lato (s.l.) (Acari: Ixodidae) were assessed by the larval packet test. The CompuSyn program was used to make qualitative assessments of the effects (synergistic, additive and antagonistic) of the associations. The effects of all combinations tested against R. microplus larvae were synergistic, with combination indices (CIs) thymol mixture at LC50 presented a moderate synergistic effect, with CIs between 0.70-0.90. This study is the first to determine the effects of the interactions of these substances in the control of these two tick species. The combinations of carvacrol + thymol, carvacrol + eugenol and thymol + eugenol have synergistic effects in R. microplus and R. sanguineus s.l. larvae. © 2016 The Royal Entomological Society.

  16. Microwave-assisted synthesis, characterization and spectral properties of non-peripherally tetra-substituted phthalocyanines containing eugenol moieties

    Science.gov (United States)

    Kantar, Cihan; Şahin, Zarife Sibel; Büyükgüngör, Orhan; Şaşmaz, Selami

    2015-06-01

    The microwave-assisted synthesis and characterization of novel non-peripherally eugenol substituted metallophthalocyanines (M: Co(II), Ni(II), Cu(II), Zn(II)) have been reported for the first time in this study. All the new compounds were characterized by a combination of FT-IR, 1H NMR, 13C NMR, and UV/vis spectroscopy techniques. The crystal structure of compound (1) was also determined by the single crystal diffraction technique. Newly synthesized eugenol substituted phthalocyanines have more redshift Q bands (about 17-18 nm) than previously reported eugenol substituted phthalocyanines. Zinc(II)phthalocyanine (1d) has an extra absorption band at 746 nm that calling "X band" at UV/vis spectrum.

  17. In Vivo Identification of Eugenol-Responsive and Muscone-Responsive Mouse Odorant Receptors

    Science.gov (United States)

    Adipietro, Kaylin; Titlow, William B.; Breheny, Patrick; Walz, Andreas; Mombaerts, Peter; Matsunami, Hiroaki

    2014-01-01

    Our understanding of mammalian olfactory coding has been impeded by the paucity of information about the odorant receptors (ORs) that respond to a given odorant ligand in awake, freely behaving animals. Identifying the ORs that respond in vivo to a given odorant ligand from among the ∼1100 ORs in mice is intrinsically challenging but critical for our understanding of olfactory coding at the periphery. Here, we report an in vivo assay that is based on a novel gene-targeted mouse strain, S100a5–tauGFP, in which a fluorescent reporter selectively marks olfactory sensory neurons that have been activated recently in vivo. Because each olfactory sensory neuron expresses a single OR gene, multiple ORs responding to a given odorant ligand can be identified simultaneously by capturing the population of activated olfactory sensory neurons and using expression profiling methods to screen the repertoire of mouse OR genes. We used this in vivo assay to re-identify known eugenol- and muscone-responsive mouse ORs. We identified additional ORs responsive to eugenol or muscone. Heterologous expression assays confirmed nine eugenol-responsive ORs (Olfr73, Olfr178, Olfr432, Olfr610, Olfr958, Olfr960, Olfr961, Olfr913, and Olfr1234) and four muscone-responsive ORs (Olfr74, Olfr235, Olfr816, and Olfr1440). We found that the human ortholog of Olfr235 and Olfr1440 responds to macrocyclic ketone and lactone musk odorants but not to polycyclic musk odorants or a macrocyclic diester musk odorant. This novel assay, called the Kentucky in vivo odorant ligand–receptor assay, should facilitate the in vivo identification of mouse ORs for a given odorant ligand of interest. PMID:25411495

  18. Eugenol Production in Achenes and Receptacles of Strawberry Fruits Is Catalyzed by Synthases Exhibiting Distinct Kinetics1[W][OPEN

    Science.gov (United States)

    Aragüez, Irene; Osorio, Sonia; Hoffmann, Thomas; Rambla, José Luis; Medina-Escobar, Nieves; Granell, Antonio; Botella, Miguel Ángel; Schwab, Wilfried; Valpuesta, Victoriano

    2013-01-01

    Eugenol is a volatile that serves as an attractant for pollinators of flowers, acts as a defense compound in various plant tissues, and contributes to the aroma of fruits. Its production in a cultivated species such as strawberry (Fragaria × ananassa), therefore, is important for the viability and quality of the fruit. We have identified and functionally characterized three strawberry complementary DNAs (cDNAs) that encode proteins with high identity to eugenol synthases from several plant species. Based on a sequence comparison with the wild relative Fragaria vesca, two of these cDNAs, FaEGS1a and FaEGS1b, most likely correspond to transcripts derived from allelic gene variants, whereas the third cDNA, FaEGS2, corresponds to a different gene. Using coniferyl acetate as a substrate, FaEGS1a and FaEGS1b catalyze the in vitro formation of eugenol, while FaEGS2 catalyzes the formation of eugenol and also of isoeugenol with a lower catalytic efficiency. The expression of these genes is markedly higher in the fruit than in other tissues of the plant, with FaEGS1a and FaEGS1b mostly expressed in the green achenes, whereas FaEGS2 expression is almost restricted to the red receptacles. These expression patterns correlate with the eugenol content, which is highest in the achene at the green stage and in the receptacle at the red stage. The transient expression of the corresponding cDNAs in strawberry fruit and the subsequent volatile analyses confirm FaEGSs as genuine eugenol synthases in planta. These results provide new insights into the diversity of phenylpropene synthases in plants. PMID:23983228

  19. Simultaneous determination of eugenol, isoeugenol and methyleugenol in fish fillet using gas chromatography coupled to tandem mass spectrometry.

    Science.gov (United States)

    Ke, Changliang; Liu, Qi; Li, Liudong; Chen, Jiewen; Wang, Xunuo; Huang, Ke

    2016-09-15

    Gas chromatography (GC) coupled with triple quadrupole tandem mass spectrometry (MS/MS) operated in electron ionization mode (EI) has been shown to have advantages in the trace analysis of chemical compounds. Employing the instrument, a method has been built to simultaneously determine eugenol, isoeugenol' and methyleugenol, which have been widely used as fish anesthetic, in the fish fillet. Procedure for the sample preparation was achieved by using hexane extraction followed by phenyl solid phase extraction (SPE) cleanup, which was free of such steps as rotary evaporation and nitrogen blowing by taking the volatility of eugenol and its isomers into consideration. The method was validated by conducting recovery studies on fortified fish fillet samples at four concentrations. The linearity in the range of 5-500μg·L(-1) was forced through the origin giving a coefficient of determination (r(2)) greater than 0.9982. Limits of detection (LODs) for eugenol, isoeugenol' and methyleugenol were 0.4, 1.2' and 0.2μg·kg(-1), respectively. The limits of quantification (LOQs) were 1.2, 4' and 0.7μg·kg(-1) for eugenol, isoeugenol' and methyleugenol, respectively. The recoveries for eugenol and its isomers ranged from 76.4 to 99.9% with relative standard deviations (RSD) in a range from 2.18 to 15.5%. This method is quick, simple and suitable for determining the residues of eugenol, isoeugenol and methyleugenol simultaneously in batch samples of fish fillet. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Investigation of comparative efficacy of eugenol and benzyl benzoate in therapy of sheep mange

    OpenAIRE

    Jezdimirović Milanka; Aleksić Nevenka; Radojičić Biljana

    2010-01-01

    The acaricide efficacy, tolerance and safety of eugenol (10 and 20 %) in the treatment of sarcoptic mange in sheep have been investigated. The results were compared with those corresponding for benzyl benzoate (25 %), which was applied to sheep in the same way. The treatment was applied on sheep three times in one-week intervals. Skin scrapings were sampled seven days after each treatment, as well as twenty-eight days following the third one. The changes on the skin were quantified and the me...

  1. Model study of the enzymatic modification of natural extracts: peroxidase-based removal of eugenol from rose essential oil.

    Science.gov (United States)

    Bouhlel, Charfeddine; Dolhem, Gwenn'Ann; Fernandez, Xavier; Antoniotti, Sylvain

    2012-02-01

    A protocol based on the use of horseradish peroxidase (HRP) is proposed for the removal of allergenic eugenol from rose essential oil without loss of the organoleptic quality and with a good conservation of the chemical composition. For the first time, an enzyme-based strategy is proposed for essential oils treatment and opens new opportunities in the detoxification of natural extracts used in perfumery and cosmetics. Our results on eugenol in rose essential oil constitute a first step toward the development of efficient and mild processes for the removal of more toxic compounds of natural extracts.

  2. Field estimates of attraction of Ceratitis capitata to Trimedlure and Bactrocera dorsalis (Diptera: Tephritidae) to methyl eugenol in varying environments

    Science.gov (United States)

    Measuring and modeling the attractiveness of semiochemical-baited traps is of significant importance to detection, delimitation and control of invasive pests. Here we describe the results of field mark-release-recapture experiments with Ceratitis capitata (Wiedemann) and Bactrocera dorsalis (Hendel)...

  3. Evaluation of pyraclostrobin and acibenzolar-S-methyl on common bacterial blight of snap beanAvaliação de pyraclostrobin e acibenzolar-S-methyl sobre o crestamento bacteriano comum do feijão-vagem

    Directory of Open Access Journals (Sweden)

    Renata de Cássia Camara

    2012-04-01

    Full Text Available Assays were done under greenhouse conditions in order to evaluate the effect of pyraclostrobin (0.0375, 0.0750 and 0.150 mL.L-1 and acibenzolar-S-methyl (ASM (0.025 g.L-1 in common bacterial blight, using leaves of snap beans cultivar Bragança. These chemicals were sprayed at three different times: five days before; five days before + five days after; and five days after leaf inoculation with an isolate of Xanthomonas axonopodis pv. phaseoli. They were determinate the levels of polyphenoloxidase, peroxidase and total soluble proteins on inoculated and non-inoculated leaves of snap beans sprayed with pyraclostrobin (0.075 g.L-1 and ASM (0.025 g.L-1. All concentration of pyraclostrobin and ASM reduced the area under the disease progress curve (AUDPC on leaves of snap beans, and the least AUDPC value was observed when this products were sprayed five days before + five days after inoculation. Higher levels of polyphenoloxidase, peroxidase and the total soluble proteins were observed on leaves sprayed with pyraclostrobin or ASM.Ensaios foram conduzidos sob condições de casa-de-vegetação para avaliar o efeito de pyraclostrobin (0,0375; 0.0750 e 0,150 mL.L-1 e acibenzolar-S-methyl (ASM (0.025 g.L-1 sobre o crestamento bacteriano comum, em folhas de feijão-vagem cultivar Bragança. Os produtos foram pulverizados em três diferentes períodos: cinco dias antes, cinco dias antes + cinco dias após e cinco dias após a inoculação dos folíolos com um isolado de Xanthomonas axonopodis pv. phaseoli. Foram determinados os teores de polifenoloxidase, peroxidase e proteínas solúveis totais em folhas inoculadas e não-inoculadas de feijão-vagem pulverizadas com pyraclostrobin (0,075 g.L-1 e ASM (0,025 g.L-1. Todas as concentrações de pyraclostrobin e ASM reduziram os valores da área abaixo da curva do progresso da doença (AUPDC e o menor valor da AUPDC foi observado para a aplicação dos produtos cinco dias antes + cinco dias após a inocula

  4. Evaluation of Excess Free Volume and Internal Pressure in Binary Mixtures of Methyl Methacrylate(MMA with Alcohols

    Directory of Open Access Journals (Sweden)

    R. Vadamalar

    2009-01-01

    Full Text Available Methyl methacrylate (MMA is an important monomer attracting the attention of industrialists and scientists because of its various applications and reactivity. The knowledge of thermodynamic and transport properties of MMA in alcohols and other organic solvents is useful in industrial processes. Ultrasonic and viscometric parameters offer simple, easy and accurate ways for calculating several physical parameters which throw light on molecular interactions in solutions. In this paper, the interactions of two alcohols; tert-butanol and iso-butanol with MMA are reported for the first time. Comparison has been made on the interactive nature of the two alcohols. Computation of free volume, internal pressure and excess free volume has been made for the entire concentration range. Existence of mesomeric effects of MMA is clearly seen and the role of structure of alcohols is observed.

  5. Influence of glyceryl guaiacolate ether on anesthetics in tilapia compared to benzocaine and eugenol

    Directory of Open Access Journals (Sweden)

    Geovana R. Cosenza

    2014-03-01

    Full Text Available Objective. The study aimed to investigate the effectiveness of glyceryl guaiacolate ether (GGE and compare the times of induction, recovery, hematological changes, total protein and glycaemia among anesthetics in Nile tilapia, Oreochromis niloticus. Materials and methods. A total of 60 tilapia distributed in 3 aquariums (N=20 were used, which formed the group benzocaine (100 mg/L, eugenol (50 mg/L and guaiacol glyceryl ether (9.000 mg/L. After the induction of anesthesia fish blood samples were collected to determine the complete hemogram and glycemia. Then the animals were placed in aquariums with running water for assessing the anesthesia recovery. Results. It was verified that GGE showed longer induction and recovery times as well a significant increase (p0.05. An increase in the number of monocytes in the group treated with benzocaine (p <0.05 was observed in the analysis of the hematological parameters with no difference between groups for other variables. Conclusions. Eugenol and benzocaine allow rapid induction and recovery in Nile tilapia, without evidence of stress during handling and GGE showed high induction and recovery times, being inadequate for anesthetic use in Nile tilapia.

  6. TRANSPORT OF PHENOL THROUGH INCLUSION POLYMER MEMBRANE (PIM USING COPOLY(EUGENOL-DVB AS MEMBRANE CARRIERS

    Directory of Open Access Journals (Sweden)

    Agung Abadi Kiswandono

    2012-03-01

    Full Text Available Copoly(eugenol-DVB with DVB composition of 2%, 6% and 12% had been prepared and characterized by FTIR spectroscopy. The copolymers were used as membrane carriers for the transport of phenol using the polymer inclusion membranes (PIM based on polyvinylchloride (PVC as membrane support. The experimental conditions for investigation of the transport of phenol through the membranes were pH of the source phase, NaOH concentration in the stripping phase, membrane thickness, phenol concentration and transport time. The results showed that the optimum condition for phenol transport was achieved on the membrane based on copoly(eugenol-DVB 12% with the transport efficiency of 75.6% at pH of the source phase of 4.5, NaOH concentration of 0.25 M and transport time of 48 h. The reaction follows first order kinetics with mass transfer coefficient (k of 1.02×10-5 m/s and permeability (Ps of 8.5×10-6 m/s.

  7. Daya antibakteri penambahan Propolis pada zinc oxide eugenol dan zinc oxide terhadap kuman campur gigi molar sulung non vital (The antibacterial effect of propolis additional to zinc oxide eugenol and zinc oxide on polybacteria of necrotic primary molar

    Directory of Open Access Journals (Sweden)

    Yemy Ameliana

    2014-12-01

    Full Text Available Background: Materials commonly used for root canal filling of primary teeth is zinc oxide eugenol. Eugenol has some disadvantages that can irritate the periapical tissues, has the risk of disturbing the growth and development of permanent tooth buds, and has a narrow antibacterial spectrum. Studies showed that propolis at concentration of 20 % has antibacterial activity against Staphylococcus aureus. Purpose: The purpose of this study was to examine the antimicrobial activity of root canal pastes with the additional of propolis additional to zinc oxide eugenol (ZOEP and to zinc oxide (ZOP. Methods: Polybacteria cultures collected from root canals of necrotic primary molar from 5 children patients who received root canal treatment. The bacteria were grown in BHI Broth, and inoculated into Muller Hinton Agar media. The agar plates was divided into 3 areas, and one well was made at each area. The first well filled with ZOE as a control, second well filled with ZOEP and the third well filled with ZOP, then incubated for 24 hour at 370 C. Antimicrobial activity was determined by measuring the diameters of inhibition zones of polybacteria growth. The data were statistically analyzed by independent T-test. Results: The pasta mixture of zinc oxide propolis had the strongest antibacterial activity against polybacteria of necrotic primary molar, followed by zinc oxide eugenol propolis paste, and zinc oxide eugenol paste. There were significant differences of inhibition zones between ZOE, ZOEP and ZOP (p<0,05. Conclusion: The study suggested that the additional of propolis to zinc oxide paste could increase the antimicrobial effect against root canal polybacteria of necrotic primary molar.Latar belakang: Bahan yang sering digunakan untuk pengisian saluran akar gigi sulung adalah zinc oxide eugenol. Eugenol memiliki beberapa kekurangan yaitu dapat mengiritasi jaringan periapikal, beresiko mengganggu pertumbuhan dan perkembangan benih gigi permanen pengganti

  8. Associations of two-pore domain potassium channels and triple negative breast cancer subtype in The Cancer Genome Atlas: systematic evaluation of gene expression and methylation.

    Science.gov (United States)

    Dookeran, Keith A; Zhang, Wei; Stayner, Leslie; Argos, Maria

    2017-09-12

    It is unclear whether 2-pore domain potassium channels are novel molecular markers with differential expression related to biologically aggressive triple-negative type breast tumors. Our objective was to systematically evaluate associations of 2-pore domain potassium channel gene expression and DNA methylation with triple-negative subtype in The Cancer Genome Atlas invasive breast cancer dataset. Methylation and expression data for all fifteen 2-pore domain potassium family genes were examined for 1040 women, and associations with triple-negative subtype (vs. luminal A) were evaluated using age/race adjusted generalized-linear models, with Bonferroni-corrected significance thresholds. Subtype associated CpG loci were evaluated for functionality related to expression using Spearman's correlation. Overexpression of KCNK5, KCNK9 and KCNK12, and underexpression of KCNK6 and KCNK15, were significantly associated with triple-negative subtype (Bonferroni-corrected p triple-negative subtype (Bonferroni-corrected p triple-negative vs. luminal A subtype were demonstrated for: KCNK2 (gene body: cg04923840, cg13916421), KCNK5 (gene body: cg05255811, cg18705155, cg09130674, cg21388745, cg00859574) and KCNK9 (TSS1500: cg21415530, cg12175729; KCNK9/TRAPPC9 intergenic region: cg17336929, cg25900813, cg03919980). CpG loci listed for KCNK5 and KCNK9 all showed relative hypomethylation for probability of triple-negative vs. luminal A subtype. Triple-negative subtype was associated with distinct 2-pore domain potassium channel expression patterns. Both KCNK5 and KCNK9 overexpression appeared to be functionally related to CpG loci hypomethylation.

  9. Evaluation of the sealing ability of resin cement used as a root canal sealer: An in vitro study

    National Research Council Canada - National Science Library

    Kumar, R Vinod; Shruthi, Cs

    2012-01-01

    This study was designed to evaluate the apical seal of root canals obturated with resin cement as a root canal sealer and compare with that of the glass ionomer and zinc oxide eugenol sealers using...

  10. Antibacterial and antibiofilm activities of eugenol from essential oil of Syzygium aromaticum (L.) Merr. & L. M. Perry (clove) leaf against periodontal pathogen Porphyromonas gingivalis.

    Science.gov (United States)

    Zhang, Yi; Wang, Yue; Zhu, Xiaojing; Cao, Ping; Wei, Shaomin; Lu, Yanhua

    2017-12-01

    The antibacterial effect and mechanism of eugenol from Syzygium aromaticum (L.) Merr. & L. M. Perry (clove) leaf essential oil (CLEO) against oral anaerobe Porphyromonas gingivalis were investigated. The results showed that eugenol, with content of 90.84% in CLEO, exhibited antibacterial activity against P. gingivalis at a concentration of 31.25 μM. Cell shrink and lysis caused by eugenol were observed with Scanning Electron Microscopy (SEM). The release of macromolecules and uptake of fluorescent dye indicated that the antibacterial activity was due to the ability of eugenol to permeabilize the cell membrane and destroy the integrity of plasmatic membrane irreversibly. In addition, eugenol inhibited biofilm formation and reduced preformed biofilm of P. gingivalis at different concentrations. The down-regulation of virulence factor genes related to biofilm (fimA, hagA, hagB, rgpA, rgpB, kgp) explained that eugenol suppressed biofilm formation at the initial stage. These findings suggest that eugenol and CLEO may be potential additives in food and personal healthcare products as a prophylactic approach to periodontitis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Methylated genes as new cancer biomarkers.

    LENUS (Irish Health Repository)

    Duffy, M J

    2012-02-01

    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2 for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene methylation need to be standardised, simplified and evaluated in external quality assurance programmes. It is concluded that methylated genes have the potential to provide a new generation of cancer biomarkers.

  12. Effects and interactions of gallic acid, eugenol and temperature on thermal inactivation of Salmonella spp. in ground chicken

    Science.gov (United States)

    The combined effects of heating temperature (55 to 65C), gallic acid (0 to 2.0%), and eugenol (0 to 2.0%) on thermal inactivation of Salmonella in ground chicken were assessed. Thermal death times were determined in bags submerged in a heated water bath maintained at various set temperatures, follo...

  13. Eugenol in combination with lactic acid bacteria attenuates Listeria monocytogenes virulence in vitro and in invertebrate model Galleria mellonella.

    Science.gov (United States)

    Upadhyay, Abhinav; Upadhyaya, Indu; Mooyottu, Shankumar; Venkitanarayanan, Kumar

    2016-06-01

    Listeria monocytogenes is a human enteric pathogen that causes severe foodborne illness in high-risk populations. Crossing the intestinal barrier is the first critical step for Listeria monocytogenes infection. Therefore, reducing L. monocytogenes colonization and invasion of intestinal epithelium and production of virulence factors could potentially control listeriosis in humans. This study investigated the efficacy of sub-inhibitory concentration (SIC) of the plant-derived antimicrobial eugenol, either alone, or in combination with five lactic acid bacteria (LAB), namely Bifidobacterium bifidum (NRRL-B41410), Lactobacillus reuteri (B-14172), Lactobacillus fermentum (B-1840), Lactobacillus plantarum (B-4496) and Lactococcus lactis subspecies lactis (B-633) in reducing Listeria monocytogenes adhesion to and invasion of human intestinal epithelial cells (Caco-2). Additionally, the effect of the aforementioned treatments on Listeria monocytogenes listeriolysin production, epithelial E-cadherin binding and expression of virulence genes was investigated. Moreover, the in vivo efficacy of eugenol-LAB treatments in reducing Listeria monocytogenes virulence in the invertebrate model Galleria mellonella was studied. Eugenol and LAB, either alone or in combination, significantly reduced Listeria monocytogenes adhesion to and invasion of intestinal cells (P Listeria monocytogenes haemolysin production, E-cadherin binding and virulence gene expression (P Listeria monocytogenes (P < 0.05). The results highlight the antilisterial effect of eugenol either alone or in combination with LAB, and justify further investigations in a mammalian model.

  14. Microarray analysis of Salmonella Enteritidis Phage Type 8 treated with subinhibitory concentrations of trans-cinnamaldehyde or eugenol

    Science.gov (United States)

    Salmonella Enteritidis phage type 8 (PT8) is a major poultry-associated Salmonella isolate implicated in foodborne outbreaks in the United States. We previously reported that the GRAS-status plant-derived compounds trans-cinnamaldehyde (TC) and eugenol (EG) significantly reduced S. Enteritidis colon...

  15. Biocatalytic properties and structural analysis of eugenol oxidase from Rhodococcus jostii RHA1 : a versatile oxidative biocatalyst

    NARCIS (Netherlands)

    Nguyen, Quoc-Thai; De Gonzalo, Gonzalo; Binda, Claudia; Rioz, Ana; Mattevi, Andrea; Fraaije, Marco

    2016-01-01

    Eugenol oxidase (EUGO) from Rhodococcus jostii RHA1 was previously shown to convert only a limited set of phenolic compounds. In this study, we have explored the biocatalytic potential of this flavoprotein oxidase resulting in a broadened substrate scope and a deeper insight into its structural

  16. Antidepressant-like effect of bis-eugenol in the mice forced swimming test: evidence for the involvement of the monoaminergic system.

    Science.gov (United States)

    do Amaral, Jeferson Falcão; Silva, Maria Izabel Gomes; de Aquino Neto, Manuel Rufino; Moura, Brinell Arcanjo; de Carvalho, Alyne Mara Rodrigues; Vasconcelos, Patrícia Freire; Barbosa Filho, José Maria; Gutierrez, Stanley Juan Chavez; Vasconcelos, Silvânia Maria Mendes; Macêdo, Danielle Silveira; de Sousa, Francisca Cléa Florenço

    2013-10-01

    Dehydrodieugenol, known as bis-eugenol, is a eugenol ortho dimer, and both compounds were able to exhibit anti-inflammatory and antioxidant activities in previous studies. Furthermore, eugenol showed antidepressant-like effect; however, the biological actions of bis-eugenol on experimental models for screening antidepressant activity are still unknown. The present study investigated a possible antidepressant-like activity of bis-eugenol in the forced swimming test (FST) and tail suspension test (TST) in mice and the involvement in the monoaminergic system in this effect. In addition, a neurochemical analysis on brain monoamines of mice acutely treated with bis-eugenol was also conducted. Bis-eugenol decreased the immobility time in the FST and TST without accompanying changes in ambulation in the open field test at 10 mg/kg, i.p.. Nevertheless, it induced ambulation at 25 and 50 mg/kg doses. The anti-immobility effect of bis-eugenol (10 and 50 mg/kg, i.p.) was prevented by pretreatment of mice with p-chlorophenylalanine (PCPA, 100 mg/kg, i.p., an inhibitor of serotonin synthesis, for four consecutive days), yohimbine (1 mg/kg, i.p., an α2-adrenoceptor antagonist), SCH23390 (15 μg/kg, s.c., a dopamine D1 receptor antagonist) and sulpiride (50 mg/kg, i.p., a dopamine D2 receptor antagonist). Monoamines analysis using high-performance liquid chromatograph revealed significant increase in the 5-HT, NE and DA levels in brain striatum. The present study indicates that bis-eugenol possesses antidepressant-like activity in FST and TST by altering dopaminergic, serotonergic and noradrenergic systems function. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de Pharmacologie et de Thérapeutique.

  17. Phytochemical evaluation and molecular characterization of some important medicinal plants

    Directory of Open Access Journals (Sweden)

    Varahalarao Vadlapudi

    2012-05-01

    Full Text Available Objective: Phytochemical evaluation and molecular characterization of plants is an important task in medicinal botany and drug discovery. In the current study, Ocimum species, Pimenta officinalis and Piper betel were considered as medicinal plants by evaluation of phytochemical composition like phenol content, Flavonoid content, antioxidant content and other activities like antibacterial, antifungal, lethal dosage (LD 50 of the plant extracts. Among the selected plants P. officinalis shown higher medicinal properties and is selected for molecular characterization. Methods: Antimicrobial activity by agar well diffusion method and also estimated Total phenols, flavonoids content, Total Antioxidants, Cytotoxic assay on Artemia salina for determining lethal dosage (LD50, matK gene was sequenced by using ABI Prism 3700. Leaf extract of P. officinalis plant is further selected for GC-chromatographic analysis to know its chemical composition. DNA was isolated by different protocols, optimized, and is used for the PCR amplification of trnL-gene which is a universal marker among plants in molecular taxonomy. The trnL-gene is amplified by using PCR. The product obtained from PCR is purified and the sample is used for sequencing so that it can be used for comparative studies. Results: P.offcinalis has shown good antimicrobial activity against all organisms . A. flavus is resistant against O. sanctum (B. Phenolic content (26.5 毺 g/g is found to be rich in P. betel where as flavonoid and Antioxidant content are significant in P. betel. The chromatogram revealed the presence of high concentration of Eugenol in the leaf sample. On submitting to BLASTN, the genetic sequence has found similarity with Pimenta dioica plastid partial matK gene and Ugni molinae trnK gene. MatK did not shown any interactions with trnK or trnL genes. MatK has shown interactions with various genes like ycf5, pclpp, psbh, atph, NDVI, rpoc1, ndha, ndhd, psai. Conclusions: we can

  18. Evaluation of UV/O 3 process for removal of methyl tertiary-butyl ether in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Ali Assadi

    2012-01-01

    Full Text Available Aims: In the present investigation, the methyl tertiary-butyl ether (MTBE removal efficiency from the synthetic solutions by the means of advanced oxidation process of UV/O 3 was studied. Materials and Methods: To study the efficiency of process, the following variables were studied: ozone concentration, pH, MTBE initial concentration, and radiation duration. As The radiation source, a Mercury vapor UV lamp with moderate pressure (400W was used which was immersed vertically in the solution containing MTBE, in a glass reactor (Volume: 2 L. Results: The results showed that the efficiency of UV radiation and ozone alone in 50 mg/L concentration and pH: 7 on MTBE removal was 4 and 53%, respectively. The UV/O 3 compound process removal efficiency in 60 minutes was 63%. The pH played a significant role in the process, as with the increase in pH, the removal rate increased as well. The removal rates for the initial concentrations of 10, 20, 50, and 100 mg/L of MTBE were 98, 81.5, 72.8, and 63.8%, respectively. Conclusion: The results of the present survey indicated that the efficiency of the UV/O 3 combination process was more than ultraviolet (UV and Ozone alone. In the UV/O 3 combination process, the MTBE removal efficiency increased as the O 3 concentration and pH increased, while the efficiency decreased as the MTBE concentration decreased.

  19. Evaluation of the Efficacy of Methyl Bromide in the Decontamination of Building and Interior Materials Contaminated with Bacillus anthracis Spores

    Science.gov (United States)

    Wendling, Morgan; Richter, William; Lastivka, Andrew; Mickelsen, Leroy

    2016-01-01

    The primary goal of this study was to determine the conditions required for the effective inactivation of Bacillus anthracis spores on materials by using methyl bromide (MeBr) gas. Another objective was to obtain comparative decontamination efficacy data with three avirulent microorganisms to assess their potential for use as surrogates for B. anthracis Ames. Decontamination tests were conducted with spores of B. anthracis Ames and Geobacillus stearothermophilus, B. anthracis NNR1Δ1, and B. anthracis Sterne inoculated onto six different materials. Experimental variables included temperature, relative humidity (RH), MeBr concentration, and contact time. MeBr was found to be an effective decontaminant under a number of conditions. This study highlights the important role that RH has when fumigation is performed with MeBr. There were no tests in which a ≥6-log10 reduction (LR) of B. anthracis Ames was achieved on all materials when fumigation was done at 45% RH. At 75% RH, an increase in the temperature, the MeBr concentration, or contact time generally improved the efficacy of fumigation with MeBr. This study provides new information for the effective use of MeBr at temperatures and RH levels lower than those that have been recommended previously. The study also provides data to assist with the selection of an avirulent surrogate for B. anthracis Ames spores when additional tests with MeBr are conducted. PMID:26801580

  20. Synthesis, Characterization, and Biological Evaluations of 1,3,5-Triazine Derivatives of Metformin Cyclization with Berberine and Magnolol in the Presence of Sodium Methylate

    Directory of Open Access Journals (Sweden)

    Han Cao

    2017-10-01

    Full Text Available The novel target products were synthesized in the formation of a triazine ring from berberine, magnolol, and metformin catalyzed by sodium methylate. The structures of products 1–3 were firstly confirmed by extensive spectroscopic analyses and single-crystal X-ray diffraction. The crystal structures of the target product 2 and the intermediate product 7b were reported for the first time. All target products were evaluated for their anti-inflammatory and antidiabetic activities against INS-1 and RAW264.1 cells in vitro and all products showed excellent anti-inflammatory effects and anti-insulin resistance effects. Our studies indicated that new compounds 1–3 were found to be active against inflammation and insulin resistance.

  1. Evaluation of radioiodinated (R)-N-methyl-3-(2-iodophenoxy)-3-phenylpropanamine as a ligand for brain norepinephrine transporter imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kiyono, Yasushi; Kanegawa, Naoki; Kawashima, Hidekazu; Kitamura, Yoji; Iida, Yasuhiko; Saji, Hideo E-mail: hsaji@pharm.kyoto-u.ac.jp

    2004-02-01

    (R)-N-methyl-3-(2-iodophenoxy)-3-phenylpropanamine (MIPP) was evaluated as a radiopharmaceutical for investigating brain norepinephrine transporters (NET) by single photon emission computed tomography (SPECT). (R)-[{sup 125}I]MIPP was synthesized with high radiochemical yield (60%) and high radiochemical purity (> 98%). In biodistribution experiments, (R)-[{sup 125}I]MIPP indicated that the brain uptake of (R)-[{sup 125}I]MIPP was rapid and retained, and that the regional cerebral distribution was consistent with the density of NET. Moreover, the administration of desipramine decreased the accumulation of (R)-[{sup 125}I]MIPP in the brain. HPLC analysis of brain radioactivity showed that more than 90% was intact (R)-MIPP. These results suggested that (R)-[{sup 123}I]MIPP is a potential radiopharmaceutical for imaging brain NET.

  2. Synthesis and Biological Evaluation of 2-(3-Methyl-2-oxoquinoxalin-1(2H-yl-N'-(substituted phenyl-methyledene/ethylideneacetohydrazides

    Directory of Open Access Journals (Sweden)

    Gopal Krishna Rao

    2010-01-01

    Full Text Available A series of quinoxaline derivatives was prepared and evaluated for antitubercular, antibacterial and antifungal activities. The title compounds were prepared by condensation of substituted aromatic aldehydes and substituted acetophenones with 2-(3-methyl-2-oxoquinoxalin-1(2H-yl acetohydrazide. Structures of all these compounds were confirmed by their spectral studies. Among synthesized compounds (4r, 4t, 4u, 4w and 4x have shown good anti tubercular activity (25 µg mL-1 when compared to reference drugs pyrazinamide (10 µg mL-1 and streptomycin (7.5 µg mL-1. In this study, few derivatives showed broad spectrum of antimicrobial activity at low concentration. The MICs (Minimum inhibitory concentration of some compounds are 2-4 µg mL-1.

  3. Effect of eugenol-containing sealer and post diameter on the retention of fiber reinforced composite posts.

    Science.gov (United States)

    Izadi, Alireza; Azarsina, Mohadese; Kasraei, Shahin

    2013-01-01

    Fiber reinforced composite (FRC) posts are cemented with resin cements. It is reported that using resin cements in canals sealed with eugenol-containing sealers reduces the post retention. However, there is controversy on the subject. The aim was to investigate the influence of eugenol-containing sealers and the amount of dentin removal from root canal with different post diameters on retention of FRC posts. It was an in vitro study The roots of sixty teeth were cut with 14 mm distance from the apex and were instrumented to the working-length of 13 mm. The teeth were randomly distributed into 2 groups (n = 30). Following storage in normal saline for 7 days, the samples in both the groups were further divided into 3 subgroups (n = 10). Canals in the experimental subgroups (I, II, III) were obturated by gutta-percha and eugenol-containing sealer; and in the control subgroups (IV, V, VI) without any sealer. After storage in normal saline for 7 days, the post space was prepared by #3, #2, and #1 drills of DT Light-Post system. Post was cemented with Panavia-F2.0 resin-cement. A composite core was built for each sample. All samples were thermo cycled for 1000 cycles. The samples were tested for post retention with a mechanical testing machine. Data were analyzed by two-way ANOVA and Tukey-HSD test. There was not a significant difference in retention between FRC posts #1 and #2 (P > 0.05). Post #3 was more retentive than posts #1and #2 (P posts (P = 0.024), however, increasing post-space diameter significantly increased post retention in canals coated with ZOE sealer (P = 0.002). Eugenol-containing sealer reduced the retention of FRC posts cemented with resin cement. Removing more dentin from root-canals treated with eugenol-containing sealer for placing larger diameter posts caused an increase in post retention.

  4. "An Investigation on Methylation Methods of Hesperidin "

    Directory of Open Access Journals (Sweden)

    Fatemeh Fathiazad

    2004-07-01

    Full Text Available Since hesperidin is a poor water soluble compound, in pharmaceutical formulations its methylated derivatives (hesperidin methyl chalcone, HMC are used. The aim of this study was to establish an efficient methylation method for preparation of hesperidin methyl derivatives. For this purpose hesperidin was isolated from tangerine peel, purified and its methyl derivatives were prepared using three different techniques, i.e. diazomethane, methyl iodide-sodium hydride and dimethylsulfate. The efficiency of the methods was evaluated in terms of the percentage of unchanged and intact hesperidin in the final methylated products the and amount of unchanged hesperidin was an indication of the better efficiency of the method. A reversed phase HPLC method was also developed for determination and quantification of hesperidin in the final methylated products .The method involved the use of a Shim pack CLC-ODS column, a mixture of methanol-phosphate buffer (37:63, v/v of pH = 2.6 as a mobile phase in an isocratic mode at a flow rate of 1 ml/min and UV detection at 280 nm. The results showed that methylation with methyl iodide-sodium hydride have the highest efficiency among different methylation methods.

  5. Histopathological and histomicrobiological study of root canal therapy medication, comparison of calcium hydroxide versus gutta-percha with zinc oxide/eugenol in the teeth of dogs Avaliação histopatológica e histomicrobiológica de dentes de cães, após tratamento endodôntico com hidróxido de cálcio e guta-percha com óxido de zinco e eugenol

    Directory of Open Access Journals (Sweden)

    Léslie M. Domingues-Falqueiro

    2007-02-01

    Full Text Available The presence of microorganisms in dental structures with experimentally induced necrosis was evaluated. The materials were tested to evaluate their antimicrobial activity and tissue repair efficacy. Four dogs were used in this experiment, with a total of 64 roots of premolar teeth, divided into three groups. The root canals of Group I were filled with gutta-percha and zinc oxide/eugenol cement; Group II were filled with calcium hydroxide, and Group III were not filled. All animals were clinically and radiographically examined 15 days after surgery andthen again every subsequent 15 days until 120 days, when the teeth were extracted en bloc.Histopathological analysis showed inflammatory infiltration, cement and bone resorption andnecrotic tissue in the apical delta in different proportions. Histomicrobiological analysis showedthe presence of microorganisms inside the teeth structures, with different concentrationsaccording to the treatment used. There was statistical significance between the groups(p>0.05. Gutta-percha with zinc oxide/eugenol demonstrated good antimicrobial activity;calcium hydroxide was not efficient. The conclusion of this study is that gutta-percha withzinc oxide/eugenol is the better protocol for filling root canals in dogs.Avaliou-se a presença de microrganismos nas estruturas dentais com necrose pulpar induzida experimentalmente, testando a eficácia de materiais com relação à atividade antibacteriana e influência no reparo tecidual. Utilizaram-se quatro cães, totalizando 64 raízes, provenientes de pré-molares, divididas em grupos. O Grupo I foi obturado com guta percha e cimento à base de óxido de zinco e eugenol, o Grupo II, com hidróxido de cálcio e o Grupo III, não foram obturados. Todos tiveram controle clínico e radiográfico quinzenal e após 120 dias, foram extraídos em bloco para análises. A histopatologia evidenciou infiltrado inflamatório, reabsorção cementária e óssea e tecido necrótico no

  6. Reinvestigation of the synthesis and evaluation of [N-methyl-{sup 11}C]vorozole, a radiotracer targeting cytochrome P450 aromatase

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Won [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)], E-mail: swkim@bnl.gov; Biegon, Anat; Katsamanis, Zachary E. [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Ehrlich, Carolin W. [Johannes-Gutenberg Universitaet Mainz, Institut fuer Organische Chemie, Duesbergweg 10-14, Mainz (Germany); Hooker, Jacob M.; Shea, Colleen [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Muench, Lisa [National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD (United States); Xu Youwen; King, Payton; Carter, Pauline; Alexoff, David L. [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Fowler, Joanna S. [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Department of Psychiatry, Mount Sinai School of Medicine, New York, NY (United States); Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY (United States)

    2009-04-15

    Introduction: We reinvestigated the synthesis of [N-methyl-{sup 11}C]vorozole, a radiotracer for aromatase, and discovered the presence of an N-methyl isomer which was not removed in the original purification method. Herein we report the preparation and positron emission tomography (PET) studies of pure [N-methyl-{sup 11}C]vorozole. Methods: Norvorozole was alkylated with [{sup 11}C]methyl iodide as previously described and also with unlabeled methyl iodide. A high-performance liquid chromatography (HPLC) method was developed to separate the regioisomers. Nuclear magnetic resonance (NMR) spectroscopy ({sup 13}C and 2D-nuclear Overhauser effect spectroscopy NMR) was used to identify and assign structures to the N-methylated products. Pure [N-methyl-{sup 11}C]vorozole and the contaminating isomer were compared by PET imaging in the baboon. Results: Methylation of norvorozole resulted in a mixture of isomers (1:1:1 ratio) based on new HPLC analysis using a pentafluorophenylpropyl bonded silica column, in which vorozole coeluted one of its isomers under the original HPLC conditions. Baseline separation of the three labeled isomers was achieved. The N-3 isomer was the contaminant of vorozole, thus correcting the original assignment of isomers. PET studies of pure [N-methyl-{sup 11}C]vorozole with and without the contaminating N-3 isomer revealed that only [N-methyl-{sup 11}C]vorozole binds to aromatase. [N-methyl-{sup 11}C]Vorozole accumulated in all brain regions with highest accumulation in the aromatase-rich amygdala and preoptic area. Accumulation was blocked with vorozole and letrozole consistent with reports of some level of aromatase in many brain regions. Conclusions: The discovery of a contaminating labeled isomer and the development of a method for isolating pure [N-methyl-{sup 11}C]vorozole combine to provide a new scientific tool for PET studies of the biology of aromatase and for drug research and development.

  7. Perbandingan antara Bahan Cetak Silikon pada Bahan Cetak Zinc Oxide Eugenol Pasta pada Jaringan Lunak Palatum

    Directory of Open Access Journals (Sweden)

    Chaidar Masulili

    2015-11-01

    Full Text Available Untuk mendapatkan suatu detil pencetakan dipengaruhi oleh beberapa faktor seperti, viskositas, kebasahan, cara pengangan bahan cetak dan kemampuan bahan cetak untuk mengalir di atas jaringan lunak. Petunjuk anatomi palatum yaitu sutura palatum median, rugae dan papilla incisive dapat dipakai untuk mendeteksi hasil cetakan.Dalam penelitian ini dilakukan pencetakan dari 15 model cetakan paatu yang dicetak dengan bahan cetak silikon, dan 15 model cetakan palatum yang dicetak dengan bahan pasta zinc oxide eugenol, kemudian dievaluasi dengan menentukan jumlah skore detil jaringan dari masing-masing kelompok bahan cetak ini. Walaupun terlihat adanya perbedaan reproduksi detil, dari hasil uji statistik tidak menunjukkan adanya perbedaan yang bermakna antara hasil reproduksi detil dari kedua bahan cetak tersebut. Kenyataan yang bertentangan dapat disebabkan sifat kebasahan jaringan, kebasahan bahan cetak, adanya perbedaan efek penipisan karena sobekan, jumlah dan ukuran partikel bahan pengisi dan kompatibilitas gips dengan bahan cetak.

  8. Synthesis of novel 25-hydroxyprotopanaxadiol derivatives by methylation and methoxycarbonylation using dimethyl carbonate as a environment-friendly reagent and their anti-tumor evaluation.

    Science.gov (United States)

    Guo, Junhui; Xu, Zhe; Liu, Yafei; Wang, Xude; Zhao, Yuqing

    2016-10-01

    A previous study involving 25-hydroxyprotopanaxadiol (25-OH-PPD) illustrated that the anti-cancer activity increased by 1-3 times after C-3/C-12-OH was substituted by short-chain fatty acids. In addition, 25-OCH3-PPD was also one of our research interests; the unique difference in structure between 25-OH-PPD and 25-OCH3-PPD is that in C-25, the latter activity was 2-5 times higher than that of 25-OH-PPD. These data serves as the scientific basis of our continuing research. To further confirm the effect of short chain acylated and methylated products on the activity and to identify more potent, higher selectivity compounds, we modified 25-OH-PPD with a green environment-friendly and non-toxic chemical dimethyl carbonate (DMC), which plays the role of both solvent and reagent. This experiment yielded 14 derivatives. Their in vitro anti-tumor activities were tested on two different human tumor cell lines (HeLa and DU145) and one normal cell line (IOSE144) by standard MTT assay. The results showed that compounds 3, 5, 6, 10, 11, 12, and 13 exhibited higher cytotoxic activity on two cell lines, with IC50 values within the range of 1.1-12μM. Compounds 12 and 13 exhibited the highest potent activity, with IC50 values of 1.1 and 1.2μM, respectively, on HeLa cells. Antitumor activity significantly increased after the hydroxyl groups are substituted by methyl. The results of the present study may provide useful data for evaluating the structure-activity relationships of other dammarane-type sapogenins and developing new antitumor agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Evaluating methyl jasmonate for induction of resistance to Fusarium oxysporum, F. circinatum and Ophiostoma novo-ulmi

    Energy Technology Data Exchange (ETDEWEB)

    Vivas, M.; Martin, J. a.; Gil, L.; Solla, A.

    2012-11-01

    Damping off is probably the most common disease affecting seedlings in forest nurseries. In south-western Europe, the pitch canker and the Dutch elm disease cause relevant economic looses in forests, mostly in adult trees. The ability of the chemical plant elicitor methyl jasmonate (MeJA) to induce resistance in Pinus pinaster against Fusarium oxysporum and F. circinatum, and in Ulmus minor against Ophiostoma novo-ulmi was examined. In a first experiment, an aqueous solution of MeJA 5 mM was applied to P. pinaster seeds by immersion or spray, and different concentrations of MeJA (0, 0.1, 0.5, 1, 5 and 10 mM) were tested in seedlings before inoculations with F. oxysporum (105 and 107 spores mL{sup -}1). In a second experiment, 6-months-old P. pinaster seedlings were sprayed with 0 and 25 mM of MeJA, and later challenged with mycelium of F. circinatum. Finally, 4-year-old U. minor trees were sprayed with 0, 50 and 100 mM of MeJA and subsequently inoculated with O. novo-ulmi (106 spores mL{sup -}1). MeJA did not protect P. pinaster seeds and seedlings against F. oxysporum, probably because plants were too young for the physiological mechanisms responsible for resistance to be induced. Based on the morphological changes observed in the treated 6-months-old P. pinaster seedlings (reduction of growth and increased resin duct density), there is evidence that MeJA could have activated the mechanisms of resistance. However, 25 mM MeJA did not reduce plant mortality, probably because the spread of the virulent F. circinatum strain within the tree tissues was faster than the formation of effective defense responses. Based on the lack of phenological changes observed in the treated elms, there is no evidence that MeJA would cause induction of resistance. These results suggest that the use of MeJA to prevent F. oxysporum and F. circinatum in P. pinaster seedlings in nurseries and O. novo-ulmi in U. minor trees should be discarded. (Author) 42 refs.

  10. The Influence of Zinc Oxide Eugenol (ZOE) and Glass Ionomer (GI) Base Materials on the Microhardness of Various Composite and GI Restorative Materials

    National Research Council Canada - National Science Library

    Itskovich, Roee; Lewinstein, Israel; Zilberman, Uri

    2014-01-01

    Re-examining the well accepted concept that Zinc-Oxide-Eugenol bases (ZOE) have a negative effect on composite restoration materials microhardness, in light of the advancement in composite materials and newer publications...

  11. Aplikasi Reaksi Katalisis Heterogen untuk Pembuatan Vanili Sintetik (3-Hidroksi 2-Metoksibenzaldehida dari Eugenol (4-Allil-2-Metoksifenol Minyak Cengkeh

    Directory of Open Access Journals (Sweden)

    Henny Purwaningsih

    2002-12-01

    Full Text Available An Application of heterogenous catalysis reaction for synthesis of synthetic vanillin (3-hydroxy-2-methoxybenzaldehyde from eugenol (4-allyl-2-methoxyphenol of clove oil. It has been already known, that heterogeneous catalysts have more advantages compared to homogeneous catalysts. This research tried to utilize heterogeneous catalysts for an alternative reaction on synthesis of vanillin from eugenol of clove stem oil. This synthesis needs two steps reactions, isomerization reaction of eugenol to produce isoeugenol and oxidation reaction of isoeugenol to produce vanillin. Two types catalysts were used: (1 solid superbase, which was used on eugenol isomerization, and (2 phase transfer catalyst [18]-crown ether-6, which was used on oxidation of isoeugenol. Solid superbase catalyst was prepared using γ- and η-alumina, treated with sodium hydroxide and sodium metal. Alumina was extracted from kaolin from Belitung island by acid process, and the yield of aluminas were 9.0% γ-Al2O3 and 10.28% η-Al2O3. Heterogeneous catalysis study on eugenol isomerization showed that the reaction could proceed at low temperature. The eugenol isomerization reaction conditions were : temperature 10ºC, reaction time 9 hours, clove stem oil 25 mmol, and solid catalyst superbase γ-Al2O3/NaOH/Na 2 g. The result of products conversion were 64.42% trans-isoeugenol and 6.11% cis-isoeugenol. This study included the comparison activities study of three solid superbase catalysts : γ-Al2O3/NaOH/Na, η-Al2O3/NaOH/Na, and γ-Al2O3 (E.Merck/NaOH/Na, which showed that γ-Al2O3/NaOH/Na had better activity than those two latter solid superbase catalysts. Study on isoeugenol oxidation reaction using KMnO4 as an oxidazing agent and phase transfer catalyst [18]-crown ether-6, gave the indication that vanillin was produced mixed with other compounds. The yield of vanillin in acid medium (pH 2 was 0.021%, in neutral medium (pH 7 was 0.028% and in basic medium (pH 9 was 0.015%.

  12. Influence of Eugenol-based Sealers on Push-out Bond Strength of Fiber Post Luted with Resin Cement: Systematic Review and Meta-analysis.

    Science.gov (United States)

    Altmann, Aline Segatto Pires; Leitune, Vicente Castelo Branco; Collares, Fabrício Mezzomo

    2015-09-01

    It is unclear in the literature if the presence of eugenol in root dentin impairs the retention of a fiber post luted with resin cements. The aim of this study was to systematically review the literature and perform meta-analysis on the influence of eugenol on the bond strength of posts luted to root canals. A systematic electronic search was performed in PubMed, Scopus, Lilacs, and Web of Science databases. No language or publication date restrictions were applied. Eligible studies were those that assessed the immediate push-out bond strength of posts cemented to root dentin after the removal of eugenol-based sealer and compared it with a eugenol-free group. Thirteen studies met the inclusion criteria although 2 were excluded after full-text reading and 1 study was identified by cross-reference. Nine studies were included in the meta-analysis. Global analysis showed a significant influence of eugenol, which lowered the bond strength of fiber posts cemented to root canals (P negative effect of eugenol on bond strength in all subgroups assessed (P posts luted to root canal with resin cement, regardless of the type of adhesive system or resin cement used. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Regeneration of β-Carotene from Radical Cation by Eugenol, Isoeugenol, and Clove Oil in the Marcus Theory Inverted Region for Electron Transfer.

    Science.gov (United States)

    Chang, Hui-Ting; Cheng, Hong; Han, Rui-Min; Wang, Peng; Zhang, Jian-Ping; Skibsted, Leif H

    2017-02-01

    The rate of regeneration of β-carotene by eugenol from the β-carotene radical cation, an initial bleaching product of β-carotene, was found by laser flash photolysis and transient absorption spectroscopy to be close to the diffusion limit in chloroform/methanol (9:1, v/v), with a second-order rate constant (k2) of 4.3 × 109 L mol-1 s-1 at 23 °C. Isoeugenol, more reducing with a standard reduction potential of 100 mV lower than eugenol, was slower, with k2 = 7.2 × 108 L mol-1 s-1. Regeneration of β-carotene following photobleaching was found 50% more efficient by eugenol, indicating that, for the more reducing isoeugenol, the driving force exceeds the reorganization energy for electron transfer significantly in the Marcus theory inverted region. For eugenol/isoeugenol mixtures and clove oil, kinetic control by the faster eugenol determines the regeneration, with a thermodynamic backup of reduction equivalent through eugenol regeneration by the more reducing isoeugenol for the mixture. Clove oil, accordingly, is a potential protector of provitamin A for use in red palm oils.

  14. Eficácia do eugenol extraído da planta Eugenia aromatica como anestésico para realização de biometrias em adultos de tilápia do Nilo (Oreochromis niloticus = Efficacy of eugenol extracted from the plant Eugenia aromatica as an anesthetic for the biometry procedures in Nile tilapia (Oreochromis niloticus adults

    Directory of Open Access Journals (Sweden)

    Antonio Glaydson Lima Moreira

    2010-10-01

    Full Text Available Os anestésicos figuram como poderosa ferramenta na aquicultura, atuando na redução do estresse e mortalidade usualmente causados pelo manejo. O objetivo deste trabalho foi avaliar o efeito de diferentes concentrações de eugenol em adultos de tilápia e determinar a concentração ideal para realização de uma biometria. Foram avaliadas seis concentrações (30, 60, 120, 180, 240 e 300 mg L-1. Para cada tratamento, 12 peixes (comprimento médio: 32,7 ± 3,0; peso médio: 557,0 ± 160 g, foram imersos individualmente na solução anestésica durante 10 min. Durante a indução anestésica, foram monitorados todos os estágios de anestesia e ao atingir o estágio de anestesia profunda, foi monitorado o número de batimentos operculares durante o minuto seguinte. Após a indução anestésica, os peixes foram transferidos para aquário contendo água sem anestésico e aferido o tempo de recuperação. A concentração de 60 mg L-1 necessitou de maior tempo para atingir o estágio desejado de anestesia profunda (206,3 segundos, enquanto a concentração de 300 g L-1 atingiu este estágio mais rapidamente (77,8 segundos. Os resultados obtidos sugerem que a concentração ideal de eugenol para realização de uma biometria é de 120 mg L-1, e, que o aumento da dosagem do anestésico, implica na diminuição dos batimentos operculares.Anesthetics represent a powerful tool in aquaculture, working to reduce stress and mortality commonly caused by handling. The objective this work was evaluate the effect of various concentrations of eugenol in adults of Nile tilapia and determine its optimal concentration for biometry procedures. Six concentrations (30, 60, 120, 180, 240 e 300 mg L-1 were tested. For each treatment, 12 fishes (average length: 32.7 ± 3.0; average weight: 557.0 ± 160 g were individually immersed in anesthetic solution for 10 min. All stages of anesthesia were monitored during anesthetic induction, and upon profound anesthesia the

  15. Design, synthesis and pharmacological evaluation of some novel derivatives of 1-{[3-(furan-2-yl-5-phenyl-4,5-dihydro-1,2-oxazol-4-yl]methyl}-4-methyl piperazine

    Directory of Open Access Journals (Sweden)

    Jagdish Kumar

    2017-01-01

    Full Text Available A novel series of 1-{[3-(furan-2-yl-5-substituted phenyl-4,5-dihydro-1,2-oxazol-4-yl]methyl}-4-methyl piperazine, compounds 3a–l have been synthesized. The synthetic work was carried out beginning from 2-acetylfuran through Claisen Schmidt condensation with different types of aromatic aldehyde, affording 1-(furan-2-yl-3-substitutedphenylprop-2-en-1-ones which on cyclization with hydroxylamine hydrochloride resulted in 3-(furan-2-yl-5-substitutedphenyl-4,5-dihydro-1,2-oxazole formation. The isoxazolines were subjected to Mannich’s reaction in the presence of N-methyl piperazine to produce the desired product. The chemical structures of the compounds were proved by IR, 1H NMR, 13C-NMR and Mass spectrometric data. The antidepressant activities of the compounds were investigated by Porsolt’s behavioral despair (forced swimming test on albino mice. Moreover, the antianxiety activity of the newly synthesized compounds was investigated by the plus maze method. Compounds 3a and 3k reduced the duration of immobility times of 152.00–152.33% at 10 mg/kg dose level and compounds 3a and 3k have also shown significant antianxiety activity.

  16. In vitro activity of the essential oil of Cinnamomum zeylanicum and eugenol in peroxynitrite-induced oxidative processes.

    Science.gov (United States)

    Chericoni, Silvio; Prieto, José M; Iacopini, Patrizia; Cioni, Pierluigi; Morelli, Ivano

    2005-06-15

    The essential oil obtained from the bark of Cinnamomum zeylanicum Blume (Lauraceae) and three of its main components, eugenol, (E)-cinnamaldehyde, and linalool (representing 82.5% of the total composition), were tested in two in vitro models of peroxynitrite-induced nitration and lipid peroxidation. The essential oil and eugenol showed very powerful activities, decreasing 3-nitrotyrosine formation with IC50 values of 18.4 microg/mL and 46.7 microM, respectively (reference compound, ascorbic acid, 71.3 microg/mL and 405.0 microM) and also inhibiting the peroxynitrite-induced lipid peroxidation showing an IC50 of 2.0 microg/mL and 13.1 microM, respectively, against 59.0 microg/mL (235.5 microM) of the reference compound Trolox. On the contrary, (E)-cinnamaldehyde and linalool were completely inactive.

  17. Deciphering the Anti-Aflatoxinogenic Properties of Eugenol Using a Large-Scale q-PCR Approach

    OpenAIRE

    Isaura Caceres; Rhoda El Khoury; Ángel Medina; Yannick Lippi; Claire Naylies; Ali Atoui; André El Khoury; Oswald, Isabelle P.; Jean-Denis Bailly; Olivier Puel

    2016-01-01

    Produced by several species of Aspergillus, Aflatoxin B-1 (AFB(1)) is a carcinogenic mycotoxin contaminating many crops worldwide. The utilization of fungicides is currently one of the most common methods; nevertheless, their use is not environmentally or economically sound. Thus, the use of natural compounds able to block aflatoxinogenesis could represent an alternative strategy to limit food and feed contamination. For instance, eugenol, a 4-allyl-2-methoxyphenol present in many essential o...

  18. Clove and rosemary essential oils and encapsuled active principles (eugenol, thymol and vanillin blend) on meat quality of feedlot-finished heifers.

    Science.gov (United States)

    de Oliveira Monteschio, Jéssica; de Souza, Kennyson Alves; Vital, Ana Carolina Pelaes; Guerrero, Ana; Valero, Maribel Velandia; Kempinski, Emília Maria Barbosa Carvalho; Barcelos, Vinícius Cunha; Nascimento, Karina Favoreto; do Prado, Ivanor Nunes

    2017-08-01

    Forty Nellore heifers were fed (73days) with different diets: with or without essential oils (clove and/or rosemary essential oil) and/or active principle blend (eugenol, thymol and vanillin). The pH, fat thickness, marbling, muscle area and water losses (thawing and drip) were evaluated 24h post mortem on the Longissimus thoracis, and the effects of aging (14days) was evaluated on the meat cooking losses, color, texture and lipid oxidation. Antioxidant activity was also evaluated. Treatments had no effect (P>0.05) on pH, fat thickness, marbling, muscle area, thawing and drip losses. However, treatments affected (P<0.05) cooking losses, color, texture and lipid oxidation. The diets with essential oil and the active principle blend reduced the lipid oxidation and reduced the color losses in relation to control diet. Aging affected (P<0.05) texture and lipid oxidation. The essential oil and active principles or its blend have potential use in animal feed aiming to maintain/improve meat quality during shelf-life. Copyright © 2017. Published by Elsevier Ltd.

  19. Dissociation dynamics of methylal

    Energy Technology Data Exchange (ETDEWEB)

    Beaud, P.; Frey, H.-M.; Gerber, T.; Mischler, B.; Radi, P.P.; Tzannis, A.-P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The dissociation of methylal is investigated using mass spectrometry, combined with a pyrolytic radical source and femtosecond pump probe experiments. Based on preliminary results two reaction paths of methylal dissociation are proposed and discussed. (author) 4 fig., 3 refs.

  20. Toxicological evaluation of a novel umami flavour compound: 2-(((3-(2,3-Dimethoxyphenyl)-1H-1,2,4-triazol-5-yl)thio)methyl)pyridine.

    Science.gov (United States)

    Karanewsky, Donald S; Arthur, Amy J; Liu, Hanghui; Chi, Bert; Ida, Lily; Markison, Stacy

    2016-01-01

    A toxicological evaluation of a umami flavour compound, 2-(((3-(2,3-dimethoxyphenyl)-1 H -1,2,4-triazol-5-yl)thio)methyl)pyridine (S3643; CAS 902136-79-2), was completed for the purpose of assessing its safety for use in food and beverage applications. S3643 undergoes extensive oxidative metabolism in vitro with rat microsomes producing the S3643-sulfoxide and 4'-hydroxy-S3643 as the major metabolites. In incubations with human microsomes, the O -demethyl-S3643 and S3643-sulfoxide were produced as the major metabolites. In pharmacokinetic studies in rats, the S3643-sulfoxide represents the dominant biotransformation product. S3643 was not found to be mutagenic or clastogenic in vitro , and did not induce micronuclei in CHO-WB L cells. In subchronic oral toxicity studies in rats, the no-observed-adverse-effect-level (NOAEL) for S3643 was 100 mg/kg bw/day (highest dose tested) when administered in the diet for 90 consecutive days.

  1. Synthesis, molecular modeling and biological evaluation of novel 2-allyl amino 4-methyl sulfanyl butyric acid as α-amylase and α-glucosidase inhibitor

    Science.gov (United States)

    Balan, Kannan; Perumal, Perumal; Sundarabaalaji, Narayanan; Palvannan, Thayumanavan

    2015-02-01

    In the present study 2-allyl amino 4-methyl sulfanyl butyric acid (AMSB) was synthesized in good yield. AMSB was characterized by Fourier transforms infrared spectroscopy (FTIR), Nuclear magnetic resonance (NMR) (1H and 13C) and Liquid chromatography mass spectrometry (LCMS). The radical scavenging activity and reducing power assay of AMSB was assessed using 1-1-diphenyl 2-picryl hydrazyl (DPPH), 2,2‧-azino-bis (3-ethyl benzothiazoline-6-sulfonic acid) (ABTS) and ferric ion reducing antioxidant power assay (FRAP) and was found to be 44.1, 34.71 and 41.7 μg/ml respectively. The compound showed effective inhibition against α-amylase and α-glucosidase. AMSB was identified to be a reversible mixed noncompetitive inhibitor of α-amylase and α-glucosidase. The molecular docking study was carried out to evaluate the specific groove binding properties and affords valuable information of AMSB binding mode in the active site of α-glucosidase the study may lead to the which leads to the rational design of new class of antidiabetic drugs targeting α-glucosidase based on AMSB in near future.

  2. Evaluation of the potential of volatile organic compound (di-methyl benzene) removal using adsorption on natural minerals compared to commercial oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zaitan, Hicham, E-mail: hicham.zaitan@usmba.ac.ma [Laboratory LCMC, Faculty of Sciences and Techniques, University Sidi Mohamed BenAbdellah, B.P. 2202, Fez (Morocco); Korrir, Abdelhamid; Chafik, Tarik [Laboratory LGCVR, Faculty of Sciences and Techniques, University Abdelmalek Essaadi, B.P. 416, Tangier (Morocco); Bianchi, Daniel [Institut de Recherche sur la Catalyse et l’Environnement de Lyon (IRCELYON), UMR 5256 CNRS, University Claude Bernard Lyon I, Bat. Chevreul, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne (France)

    2013-11-15

    Highlights: • The adsorption of dMB on natural minerals and commercial oxides was evaluated. • The adsorption capacities were discussed considering the adsorbents cost and the bed size. • The adsorption capacity of bentonite is higher than other adsorbents. • Langmuir model provide best correlation of the experimental data. • The isotherms data allow determination of isosteric heat of adsorption. -- Abstract: This study is dedicated to the investigation of the potential of volatile organic compounds (VOC) adsorption over low cost natural minerals (bentonite and diatomite). The performances of these solids, in terms of adsorption/desorption properties, were compared to commercial adsorbents, such as silica, alumina and titanium dioxide. The solids were first characterized by different physico-chemical methods and di-methyl benzene (dMB) was selected as model VOC pollutant for the investigation of adsorptive characteristics. The experiments were carried out with a fixed bed reactor under dynamic conditions using Fourier Transform InfraRed spectrometer to measure the evolution of dMB concentrations in the gaseous stream at the outlet of the reactor. The measured breakthrough curves yields to adsorbed amounts at saturation that has been used to obtain adsorption isotherms. The latters were used for determination of the heat involved in the adsorption process and estimation of its values using the isosteric method. Furthermore, the performances of the studied materials were compared considering the adsorption efficiency/cost ratio.

  3. In vitro evaluation of N-methyl amide tripeptidomimetics as substrates for the human intestinal di-/tri-peptide transporter hPEPT1

    DEFF Research Database (Denmark)

    Andersen, Rikke; Nielsen, Carsten Uhd; Begtrup, Mikael

    2006-01-01

    application of N-methyl amide bioisosteres as peptide bond replacements in tripeptides in order to decrease degradation by peptidases and yet retain affinity for and transport via hPEPT1. Seven structurally diverse N-methyl amide tripeptidomimetics were selected based on a principal component analysis...... of structural properties of 6859 N-methyl amide tripeptidomimetics. In vitro extracellular degradation of the selected tripeptidomimetics as well as affinity for and transepithelial transport via hPEPT1 were investigated in Caco-2 cells. Decreased apparent degradation was observed for all tripeptidomimetics...... to be substrates for hPEPT1 than tripeptidomimetics with charged side chains. The results of the present study indicate that the N-methyl amide peptide bond replacement approach for increasing bioavailability of tripeptidomimetic drug candidates is not generally applicable to all tripeptides. Nevertheless...

  4. Assessment of antioxidative, chelating, and DNA-protective effects of selected essential oil components (eugenol, carvacrol, thymol, borneol, eucalyptol) of plants and intact Rosmarinus officinalis oil.

    Science.gov (United States)

    Horvathova, Eva; Navarova, Jana; Galova, Eliska; Sevcovicova, Andrea; Chodakova, Lenka; Snahnicanova, Zuzana; Melusova, Martina; Kozics, Katarina; Slamenova, Darina

    2014-07-16

    Selected components of plant essential oils and intact Rosmarinus officinalis oil (RO) were investigated for their antioxidant, iron-chelating, and DNA-protective effects. Antioxidant activities were assessed using four different techniques. DNA-protective effects on human hepatoma HepG2 cells and plasmid DNA were evaluated with the help of the comet assay and the DNA topology test, respectively. It was observed that whereas eugenol, carvacrol, and thymol showed high antioxidative effectiveness in all assays used, RO manifested only antiradical effect and borneol and eucalyptol did not express antioxidant activity at all. DNA-protective ability against hydrogen peroxide (H2O2)-induced DNA lesions was manifested by two antioxidants (carvacrol and thymol) and two compounds that do not show antioxidant effects (RO and borneol). Borneol was able to preserve not only DNA of HepG2 cells but also plasmid DNA against Fe(2+)-induced damage. This paper evaluates the results in the light of experiences of other scientists.

  5. In vitro evaluation of poly(ethylene glycol)-block-poly(ε-caprolactone) methyl ether copolymer coating effects on cells adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Rusen, Laurentiu [National Institute for Lasers, Plasma and Radiation Physics, Bucharest (Romania); Neacsu, Patricia; Cimpean, Anisoara [University of Bucharest, Department of Biochemistry and Molecular Biology, Bucharest (Romania); Valentin, Ion; Brajnicov, Simona; Dumitrescu, L.N. [National Institute for Lasers, Plasma and Radiation Physics, Bucharest (Romania); Banita, Janina [University of Bucharest, Faculty of Chemistry, Bucharest (Romania); IBAR, Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, RO-060031 Bucharest (Romania); Dinca, Valentina, E-mail: valentina.dinca@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Bucharest (Romania); Dinescu, Maria [National Institute for Lasers, Plasma and Radiation Physics, Bucharest (Romania)

    2016-06-30

    Understanding and controlling natural and synthetic biointerfaces is known to be the key to a wide variety of application within cell culture and tissue engineering field. As both material characteristics and methods are important in tailoring biointerfaces characteristics, in this work we explore the feasibility of using Matrix Assisted Pulsed Laser Evaporation technique for obtaining synthetic copolymeric biocoatings (i.e. poly(ethylene glycol)-block-poly(ε-caprolactone) methyl ether) for evaluating in vitro Vero and MC3T3-E1 pre-osteoblasts cell response. Characterization and evaluation of the coated substrates were carried out using different techniques. The Fourier transform infrared spectroscopy data demonstrated that the main functional groups in the MAPLE-deposited films remained intact. Atomic Force Microscopy images showed the coatings to be continuous, with the surface roughness depending on the deposition parameters. Moreover, the behaviour of the coatings in medium mimicking the pH and temperature of the human body was studied and corelated to degradation. Spectro-ellipsometry (SE) and AFM measurements revealed the degradation trend during immersion time by the changes in coating thickness and roughness. In vitro biocompatibility was studied by indirect contact tests on Vero cells in accordance with ISO 10993-5/2009. The results obtained in terms of cell morphology (phase contrast microscopy) and cytotoxicity (LDH and MTT assays) proved biocompatibility. Furthermore, direct contact assays on MC3T3-E1 pre-osteoblasts demonstrated the capacity of all analyzed specimens to support cell adhesion, normal cellular morphology and growth.

  6. In vitro evaluation of poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether copolymer coating effects on cells adhesion and proliferation

    Science.gov (United States)

    Rusen, Laurentiu; Neacsu, Patricia; Cimpean, Anisoara; Valentin, Ion; Brajnicov, Simona; Dumitrescu, L. N.; Banita, Janina; Dinca, Valentina; Dinescu, Maria

    2016-06-01

    Understanding and controlling natural and synthetic biointerfaces is known to be the key to a wide variety of application within cell culture and tissue engineering field. As both material characteristics and methods are important in tailoring biointerfaces characteristics, in this work we explore the feasibility of using Matrix Assisted Pulsed Laser Evaporation technique for obtaining synthetic copolymeric biocoatings (i.e. poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether) for evaluating in vitro Vero and MC3T3-E1 pre-osteoblasts cell response. Characterization and evaluation of the coated substrates were carried out using different techniques. The Fourier transform infrared spectroscopy data demonstrated that the main functional groups in the MAPLE-deposited films remained intact. Atomic Force Microscopy images showed the coatings to be continuous, with the surface roughness depending on the deposition parameters. Moreover, the behaviour of the coatings in medium mimicking the pH and temperature of the human body was studied and corelated to degradation. Spectro-ellipsometry (SE) and AFM measurements revealed the degradation trend during immersion time by the changes in coating thickness and roughness. In vitro biocompatibility was studied by indirect contact tests on Vero cells in accordance with ISO 10993-5/2009. The results obtained in terms of cell morphology (phase contrast microscopy) and cytotoxicity (LDH and MTT assays) proved biocompatibility. Furthermore, direct contact assays on MC3T3-E1 pre-osteoblasts demonstrated the capacity of all analyzed specimens to support cell adhesion, normal cellular morphology and growth.

  7. Synthesis and Biological Evaluation of 2-Methyl-4,5-Disubstituted Oxazoles as a Novel Class of Highly Potent Antitubulin Agents

    Science.gov (United States)

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Prencipe, Filippo; Oliva, Paola; Baraldi, Stefania; Salvador, Maria Kimatrai; Lopez-Cara, Luisa Carlota; Brancale, Andrea; Ferla, Salvatore; Hamel, Ernest; Ronca, Roberto; Bortolozzi, Roberta; Mariotto, Elena; Porcù, Elena; Basso, Giuseppe; Viola, Giampietro

    2017-04-01

    Antimitotic agents that interfere with microtubule formation are one of the major classes of cytotoxic drugs for cancer treatment. Multiple 2-methyl-4-(3‧,4‧,5‧-trimethoxyphenyl)-5-substituted oxazoles and their related 4-substituted-5-(3‧,4‧,5‧-trimethoxyphenyl) regioisomeric derivatives designed as cis-constrained combretastatin A-4 (CA-4) analogues were synthesized and evaluated for their antiproliferative activity in vitro against a panel of cancer cell lines and, for selected highly active compounds, interaction with tubulin, cell cycle effects and in vivo potency. Both these series of compounds were characterized by the presence of a common 3‧,4‧,5‧-trimethoxyphenyl ring at either the C-4 or C-5 position of the 2-methyloxazole ring. Compounds 4g and 4i, bearing a m-fluoro-p-methoxyphenyl or p-ethoxyphenyl moiety at the 5-position of 2-methyloxazole nucleus, respectively, exhibited the greatest antiproliferative activity, with IC50 values of 0.35-4.6 nM (4g) and 0.5-20.2 nM (4i), which are similar to those obtained with CA-4. These compounds bound to the colchicine site of tubulin and inhibited tubulin polymerization at submicromolar concentrations. Furthermore, 4i strongly induced apoptosis that follows the mitochondrial pathway. In vivo, 4i in a mouse syngeneic model demonstrated high antitumor activity which significantly reduced the tumor mass at doses ten times lower than that required for CA-4P, suggesting that 4i warrants further evaluation as a potential anticancer drug.

  8. Antimicrobial Efficacy of Mixtures of Nanosilver and Zinc Oxide Eugenol against Enterococcus faecalis.

    Science.gov (United States)

    Haghgoo, Roza; Ahmadvand, Motahareh; Nyakan, Mohammad; Jafari, Mojtaba

    2017-03-01

    This study aimed to assess the antimicrobial efficacy of 0, 0.5, 2, and 5 wt% nanosilver in conjunction with zinc oxide eugenol (ZOE) against Enterococcus faecalis. Nanosilver in 0.5, 2, and 5 wt% concentrations was added to ZOE and the antibacterial activity of the mixtures on E. faecalis was assessed using disk diffusion method, and the results were reported as the diameter of the growth inhibition zone. The diameters of the growth inhibition zones around 0, 0.5, 2, and 5 wt% concentrations of nanosilver particles were not significantly different at 24 and 48 hours and 1 week; however, the difference with the azithromycin disk was significant. Considering the lack of a significant increase in the diameter of the growth inhibition zones around 0, 0.5, 2, and 5 wt% ZOE containing nanosilver, it appears that addition of nanosilver up to 5 wt% cannot improve the antibacterial properties of ZOE sealer against E. faecalis. Microorganisms present in the root canal system of primary teeth are mainly responsible for endodontic infections. Enterococcus faecalis is the most important cause of endodontic failure. Application of sealers that decrease the adhesion and colonization of bacteria, as well as susceptibility to bacterial infections can greatly help in this regard. Using these sealers in conjunction with antibacterial agents, such as nanosilver particles may yield higher antibacterial efficacy.

  9. Square wave voltammetry with multivariate calibration tools for determination of eugenol, carvacrol and thymol in honey.

    Science.gov (United States)

    Tonello, Natalia; Moressi, Marcela Beatriz; Robledo, Sebastián Noel; D'Eramo, Fabiana; Marioli, Juan Miguel

    2016-09-01

    The simultaneous determination of eugenol (EU), thymol (Ty) and carvacrol (CA) in honey samples, employing square wave voltammetry (SWV) and chemometrics tools, is informed for the first time. For this purpose, a glassy carbon electrode (GCE) was used as working electrode. The operating conditions and influencing parameters (involving several chemical and instrumental parameters) were first optimized by cyclic voltammetry (CV). Thus, the effects of the scan rate, pH and analyte concentration on the electrochemical response of the above mentioned molecules were studied. The results show that the electrochemical responses of the three compounds are very similar and that the voltammetric traces present a high degree of overlap under all the experimental conditions used in this study. Therefore, two chemometric tools were tested to obtain the multivariate calibration model. One method was the partial least squares regression (PLS-1), which assumes a linear behaviour. The other nonlinear method was an artificial neural network (ANN). In this last case we used a supervised, feed-forward network with Levenberg-Marquardt back propagation training. From the accuracies and precisions analysis between nominal and estimated concentrations calculated by using both methods, it was inferred that the ANN method was a good model to quantify EU, Ty and CA in honey samples. Recovery percentages were between 87% and 104%, except for two samples whose values were 136% and 72%. The analytical methodology was simple, fast and accurate. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The preparation of high conversion polymeric systems containing eugenol residues and their rheological characterization.

    Science.gov (United States)

    Rojo, Luis; Borzacchiello, Assunta; Parra, Juan; Deb, Sanjukta; Vázquez, Blanca; San Román, Julio

    2008-04-01

    Copolymeric systems bearing eugenol covalently linked to the macromolecular chains have been prepared and characterised in terms of thermal, rheological and in vitro behaviour. Eugenyl methacrylate (EgMA) and ethoxyeugenyl methacrylate (EEgMA) were polymerized and copolymerized with ethyl methacrylate (EMA) in a wide range of feed composition by bulk at high conversion. Glass transition temperature (Tg) increased with the content of EgMA in the copolymer whereas Tg decreased with the content of EEgMA. The presence of any of the eugenyl monomers in the copolymer increased the thermal stability of the materials. Rheological analysis showed that EMA-co-EgMA copolymers present a higher density of crosslinking or entanglements among the chains compared with EMA-co-EEgMA materials, and copolymers containing more than 40% EgMA exhibited a pseudo-solid like behaviour with G' relatively independent of the frequency. The average molecular weight between cross-links (Mc) for the latter copolymers was in the order of 10(4) Da. For EEgMA copolymers, tan delta was lower than unity and G' showed a gradual and slight dependency with frequency over the whole range of composition. In vitro behaviour showed a higher hydrophilicity of the EEgMA containing copolymers manifested in higher water sorption values, lower water contact angle values and higher surface free energy due to an increase in polarity. All systems presented a good cytocompatibility with human fibroblasts assessed through direct and indirect assays.

  11. Optimization of solid-phase-extraction cleanup and validation of quantitative determination of eugenol in fish samples by gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Li, Jincheng; Zhang, Jing; Liu, Yang

    2015-08-01

    This paper describes a rapid and sensitive method for the determination of eugenol in fish samples, based on solid-phase extraction (SPE) and gas chromatography-tandem mass spectrometry (GC-MS-MS). Samples were extracted with acetonitrile, and then cleanup was performed using C18 solid-phase extraction (SPE). The determination of eugenol was achieved using an electron-ionization source (EI) in multiple-reaction-monitoring (MRM) mode. Under optimized conditions, the average recoveries of eugenol were in the range 94.85-103.61 % and the relative standard deviation (RSD) was lower than 12.0 %. The limit of detection (LOD) was 2.5 μg kg(-1) and the limit of quantification (LOQ) was 5.0 μg kg(-1). This method was applied to an exposure study of eugenol residue in carp muscle tissues. The results revealed that eugenol was nearly totally eliminated within 96 h. Graphical Abstract Flow diagram for sample pretreatment.

  12. Effect of dietary eugenol on xenobiotic metabolism and mediation of UDP-glucuronosyltransferase and cytochrome P450 1A1 expression in rat liver.

    Science.gov (United States)

    Iwano, Hidetomo; Ujita, Wakako; Nishikawa, Miyu; Ishii, Satomi; Inoue, Hiroki; Yokota, Hiroshi

    2014-03-01

    Xenobiotic-metabolizing enzymes (XMEs) play an important role in the elimination and detoxification of xenobiotics and drugs. A variety of natural dietary agents are known to protect against cancer by inducing XME. To elucidate the molecular mechanism of XME induction, we examined the effect of dietary eugenol (4-allyl-1-hydroxy-2-methoxybenzene) on xenobiotic metabolism. In this study, rats were administered dietary eugenol for 4 weeks to investigate the various effects of UDP-glucuronosyltransferase (UGT) and cytochrome P450 (CYP) expression. In rats administered dietary eugenol, expression levels of hepatic CYP1A 1 were reduced to 40% than of the controls, while expression of hepatic UGT1A6, UGT1A7 and UGT2B1 increased to 2-3 times than observed in the controls. Hepatic protein levels of UGT1A6 and 2B1 were also elevated in the eugenol-treated rats. These results suggest that the natural compound eugenol improves the xenobiotic-metabolizing systems that suppress and induce the expression of CYP1A1 and UGT, respectively.

  13. Effect of Eugenol and Cinnamaldehyde on the Growth Performance, Nutrient Digestibility, Blood Characteristics, Fecal Microbial Shedding and Fecal Noxious Gas Content in Growing Pigs

    Directory of Open Access Journals (Sweden)

    L. Yan

    2012-08-01

    Full Text Available A 5-wk trial with 96 ((Landrace× Yorkshire×Duroc pigs (BW = 26.56±0.42 kg was conducted to investigate the effect of eugenol and cinnamaldehyde as feed additive in growing pigs. Pigs were assigned to 1 of 3 treatments in a randomized complete block design according to their sex and BW. Each treatment contained 8 replications with 4 pigs (2 gilts and 2 barrows per pen. Treatments included: control (basal diet; CON; (basal diet+1,000 mg eugenol/kg; ET; (basal diet+1,000 mg cinnamaldehyde/kg; CT. Administration of eugenol and cinnamaldehyde did not did not affect (p>0.05 the growth performance and apparent total tract digestibility. Dietary CT and ET led to a higher (p0.05. Pigs fed the diets supplemented with eugenol and cinnamaldehyde had reduced (p<0.05 NH3 and H2S concentration throughout the experiment. In conclusion, results obtained in the present study indicated that supplementation of eugenol and cinamaldehyde had no effect on growth performance of pigs but exhibited lymphocyte-enhancing activity and decreased the fecal E. coli concentration and fecal noxious gas content (NH3 and H2S.

  14. Evaluation of airborne methyl salicylate for improved conservation biological control of two-spotted spider mite and hop aphid in Oregon hop yards.

    Science.gov (United States)

    Woods, J L; James, D G; Lee, J C; Gent, D H

    2011-12-01

    The use of synthetic herbivore-induced plant volatiles (HIPV) to attract natural enemies has received interest as a tool to enhance conservation biological control (CBC). Methyl salicylate (MeSA) is a HIPV that is attractive to several key predators of two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), and hop aphid, Phorodon humuli (Schrank) (Homoptera: Aphididae). A 2-year study was conducted to evaluate the recommended commercial use of MeSA in hop yards in Oregon. Slow-release MeSA dispensers were stapled to supporting poles in 0.5 ha plots and these plots were compared to a paired non-treated plot on each of three farms in 2008 and 2009. Across both years, there was a trend for reduced (range 40-91%) mean seasonal numbers of T. urticae in five of the six MeSA-baited plots. Stethorus spp., key spider mite predators, tended to be more numerous in MeSA-baited plots compared to control plots on a given farm. Mean seasonal densities of hop aphid and other natural enemies (e.g., Orius spp. and Anystis spp.) were similar between MeSA-treated and control plots. Variability among farms in suppression of two-spotted spider mites and attraction of Stethorus spp. suggests that the use of MeSA to enhance CBC of spider mites in commercial hop yards may be influenced by site-specific factors related to the agroecology of individual farms or seasonal effects that require further investigation. The current study also suggests that CBC of hop aphid with MeSA in this environment may be unsatisfactory.

  15. Microwave-Assisted Facile Synthesis, Anticancer Evaluation and Docking Study of N-((5-(Substituted methylene amino)-1,3,4-thiadiazol-2-yl)methyl) Benzamide Derivatives.

    Science.gov (United States)

    Tiwari, Shailee V; Siddiqui, Sumaiya; Seijas, Julio A; Vazquez-Tato, M Pilar; Sarkate, Aniket P; Lokwani, Deepak K; Nikalje, Anna Pratima G

    2017-06-15

    In the present work, 12 novel Schiff's bases containing a thiadiazole scaffold and benzamide groups coupled through appropriate pharmacophore were synthesized. These moieties are associated with important biological properties. A facile, solvent-free synthesis of a series of novel 7(a-l) N-((5-(substituted methylene amino)-1,3,4-thiadiazol-2-yl)methyl) benzamide was carried out under microwave irradiation. Structures of the synthesized compounds were confirmed by IR, NMR, mass spectral study and elemental analysis. All the synthesized hybrids were evaluated for their in vitro anticancer activity against a panel of four human cancer cell lines, viz. SK-MEL-2 (melanoma), HL-60 (leukemia), HeLa (cervical cancer), MCF-7 (breast cancer) and normal breast epithelial cell (MCF-10A) using 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay method. Most of the synthesized compounds exhibited promising anticancer activity, showed comparable GI50 values comparable to that of the standard drug Adriamycin. The compounds 7k, 7l, 7b, and 7a were found to be the most promising anticancer agents in this study. A molecular docking study was performed to predict the probable mechanism of action and computational study of the synthesized compounds 7(a-l) was performed to predict absorption, distribution, metabolism, excretion and toxicity (ADMET) properties, by using QikProp v3.5 (Schrödinger LLC). The results showed the good oral drug-like behavior of the synthesized compounds 7(a-l).

  16. Evaluation of plant-growth-promoting rhizobacteria, acibenzolar-S-methyl and hymexazol for integrated control of Fusarium crown and root rot on tomato.

    Science.gov (United States)

    Myresiotis, Charalampos K; Karaoglanidis, George S; Vryzas, Zisis; Papadopoulou-Mourkidou, Euphemia

    2012-03-01

    Plant growth-promoting rhizobacteria (PGPR) can be potential agents for biological control of plant pathogens, while their combined use with conventional pesticides may increase their efficacy and broaden the disease control spectrum. The effect of four different Bacillus sp. PGPR strains (B. subtilis GB03 and FZB24, B. amyloliquefaciens IN937a and B. pumilus SE34) applied individually and in mixtures, as well as in combined use with acibezolar-S-methyl (ASM) and hymexazol, on plant growth promotion and on the control of Fusarium crown and root rot (FCRR) of tomato was evaluated. All PGPR strains promoted the tested plant growth characteristics significantly. A higher promoting effect was provided by SE34. Experiments on population dynamics of PGPR strains revealed that, after 28 days of incubation, populations of strain SE34 remained stable, while the remaining bacterial strains showed a slight decline in their population densities. The GB03 and FZB24 strains provided a higher disease suppression when applied individually. However, application of IN937a in a mixture with GB03 provided a higher control efficacy of Fusarium oxysporum f. sp. radicis-lycopersici (Forl). Treatment of tomato plants with ASM resulted in a small reduction in disease index, while application of hymexazol provided significantly higher control efficacy. Combined applications of the four PGPR strains with either ASM or hymexazol were significantly more effective. The results of the study indicate that, when bacilli PGPR strains were combined with pesticides, there was an increased suppression of Forl on tomato plants, and thus they may prove to be important components in FCRR integrated management. Copyright © 2011 Society of Chemical Industry.

  17. [DNA sperm methylation in assisted reproductive techniques].

    Science.gov (United States)

    Benchaïb, M; Ajina, M; Braun, V; Niveleau, A; Guérin, J-F

    2006-09-01

    In the last few years, many tests were developed to study the fertilizing properties of the spermatozoa. However none of them was useful to obtain a prognostic factor. Indeed, the integrity of the spermatic DNA is also necessary to a successful fertilization for obtaining a pregnancy. DNA integrity could be evaluated by the measurement of the level of DNA methylation. Indeed, in the mammals, the methylation of the ADN is involved in diverse processes amongst them the regulation of the genome expression during the embryonic development. The objective of this study is to evaluate the impact of the level of methylation of the spermatic DNA in the success of in vitro fertilization (IVF), in terms of rate of fertilization, quality of the embryos and rate of pregnancy. The immunostaining of the 5-methylecytosine, then the quantification by image analysis or with flow cytometry, allowed an objective evaluation of the level of total methylation of spermatic DNA. Our data show that the level of DNA methylation influences neither the fertilization rate nor the embryos quality. On the other hand, the rate of pregnancy is decreased if the total level of DNA methylation is lower than a threshold value. The level of spermatic DNA methylation represents a new parameter of spermatic maturation.

  18. UPLC-Q-TOF/MS-based urine and plasma metabonomics study on the ameliorative effects of aspirin eugenol ester in hyperlipidemia rats.

    Science.gov (United States)

    Ma, Ning; Karam, Isam; Liu, Xi-Wang; Kong, Xiao-Jun; Qin, Zhe; Li, Shi-Hong; Jiao, Zeng-Hua; Dong, Peng-Cheng; Yang, Ya-Jun; Li, Jian-Yong

    2017-10-01

    The main objective of this study was to investigate the ameliorative effects of aspirin eugenol ester (AEE) in hyperlipidemic rat. After five-week oral administration of AEE in high fat diet (HFD)-induced hyperlipidemic rats, the impact of AEE on plasma and urine metabonomics was investigated to explore the underlying mechanism by UPLC-Q-TOF/MS analysis. Blood lipid levels and histopathological changes of liver, stomach and duodenum were also evaluated after AEE treatment. Without obvious gastrointestinal (GI) side effects, AEE significantly relieved fatty degeneration of liver and reduced triglyceride (TG), low density lipoprotein (LDL) and total cholesterol (TCH) (PAEE groups by using principal component analysis (PCA) and orthogonal partial least-squares-discriminate analysis (OPLS-DA). 16 endogenous metabolites in plasma and 18 endogenous metabolites in urine involved in glycerophospholipid metabolism, fatty acid metabolism, fatty acid beta-oxidation, amino acid metabolism, TCA cycle, sphingolipid metabolism, gut microflora and pyrimidine metabolism were considered as potential biomarkers of hyperlipidemia and be regulated by AEE administration. It might be concluded that AEE was a promising drug candidate for hyperlipidemia treatment. These findings could contribute to the understanding of action mechanisms of AEE and provide evidence for further studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Electrochemical biosensing strategies for DNA methylation analysis.

    Science.gov (United States)

    Hossain, Tanvir; Mahmudunnabi, Golam; Masud, Mostafa Kamal; Islam, Md Nazmul; Ooi, Lezanne; Konstantinov, Konstantin; Hossain, Md Shahriar Al; Martinac, Boris; Alici, Gursel; Nguyen, Nam-Trung; Shiddiky, Muhammad J A

    2017-08-15

    DNA methylation is one of the key epigenetic modifications of DNA that results from the enzymatic addition of a methyl group at the fifth carbon of the cytosine base. It plays a crucial role in cellular development, genomic stability and gene expression. Aberrant DNA methylation is responsible for the pathogenesis of many diseases including cancers. Over the past several decades, many methodologies have been developed to detect DNA methylation. These methodologies range from classical molecular biology and optical approaches, such as bisulfite sequencing, microarrays, quantitative real-time PCR, colorimetry, Raman spectroscopy to the more recent electrochemical approaches. Among these, electrochemical approaches offer sensitive, simple, specific, rapid, and cost-effective analysis of DNA methylation. Additionally, electrochemical methods are highly amenable to miniaturization and possess the potential to be multiplexed. In recent years, several reviews have provided information on the detection strategies of DNA methylation. However, to date, there is no comprehensive evaluation of electrochemical DNA methylation detection strategies. Herein, we address the recent developments of electrochemical DNA methylation detection approaches. Furthermore, we highlight the major technical and biological challenges involved in these strategies and provide suggestions for the future direction of this important field. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Field evaluation of synthetic lure (3-methyl-1-butanol) when compared to non odor-baited control in capturing Anopheles mosquitoes in varying land-use sites in Madagascar.

    Science.gov (United States)

    Zohdy, Sarah; Derfus, Kristin; Andrianjafy, Mbolatiana Tovo; Wright, Patricia C; Gillespie, Thomas R

    2015-03-07

    Malaria is the 4(th) largest cause of mortality in Madagascar. To better understand malaria transmission dynamics, it is crucial to map the distribution of the malaria vectors, mosquitoes belonging to the genus Anopheles. To do so, it is important to have a strong Anopheles-specific lure to ensure the maximum number of captures. Previous studies have isolated volatiles from the human skin microbiota and found the compound 3-methyl-1-butanol to be the most attractive to the malaria mosquito, Anopheles gambiae, in a laboratory setting; and recommended 3-methyl-1-butanol as a compound to increase An. gambiae captures in the field. To date, this compound's ability to lure wild mosquitoes in differing land-use settings has not been tested. In this study, we evaluate the role of the synthetic compound, 3-methyl-1-butanol in combination with field produced CO(2) in attracting Anopheles mosquitoes in varying land-use sites in Madagascar. CDC miniature light traps in combination with field produced CO(2) were deployed in and around six villages near Ranomafana National Park, Madagascar. To test the role of 3-methyl-1-butanol in luring Anopheles mosquitoes, two traps were set in each land-use site (village, agricultural sites, and forested habitats affiliated with each village). One was baited with the synthetic odor and the other was kept as a non-baited control. While 3-methyl-1-butanol baited traps did capture An. gambiae s.l. in this study, we did not find traps baited with synthetic 3-methyl-1-butanol to be more successful in capturing Anopheles mosquitoes, (including Anopheles gambiae s.l.) than the non odor-baited control traps in any of the land-use sites examined; however, regardless of odor bait, trapping near livestock pens resulted in the capture of significantly more Anopheles specimens. A strong synthetic lure in combination with insecticide has great potential as a mosquito control. Our findings suggest that trapping mosquitoes near livestock in malaria

  1. Determination of the exposure parameters that maximise the concentrations of the anaesthetic/sedative eugenol in rainbow trout (Oncorhynchus mykiss) skin-on fillet tissue.

    Science.gov (United States)

    Meinertz, J R; Porcher, S T; Smerud, J R; Gaikowski, M P

    2014-01-01

    Studies were conducted to determine the anaesthetic/sedative concentrations and durations that would maximise anaesthetic/sedative residue concentrations in rainbow trout (Oncorhynchus mykiss) skin-on fillet tissue. Rainbow trout (167-404 g) were exposed to 50 mg l(-1) AQUI-S(®) 20E (10% active ingredient, eugenol) in 17°C freshwater for durations up to 1440 min, 100 and 250 mg l(-1) AQUI-S(®) 20E for durations up to 240 min, and 500 and 1000 mg l(-1) AQUI-S(®) 20E for durations up to 90 min. Fish exposed to 100 mg l(-1) AQUI-S(®) 20E for durations of 30, 60, 120 and 240 min had the greatest eugenol concentrations in the fillet tissue, 50, 58, 54 and 62 µg g(-1), respectively. All other exposure concentrations and durations resulted in significantly lower eugenol concentrations, i.e. all < 39 µg g(-1).

  2. The interaction of eugenol with cell membrane models at the air-water interface is modulated by the lipid monolayer composition.

    Science.gov (United States)

    Gonçalves, Giulia E G; de Souza, Fernanda S; Lago, João Henrique G; Caseli, Luciano

    2015-12-01

    Eugenol, a natural phenylpropanoid derivative with possible action in biological surfaces as microbicide, anesthetic and antioxidant, was incorporated in lipid monolayers of selected lipids at the air-water interface, representing cell membrane models. Interaction of eugenol with the lipids dipalmitoylphosphatidylcholine (DPPC), dioctadecyldimethylammonium bromide (DODAB), and dipalmitoylphosphatidylserine (DPPS) could be inferred by means of surface pressure-area isotherms and Polarization-Modulation Reflection-Absorption Spectroscopy. The interaction showed different effects on the different lipids. A higher monolayer expansion was observed for DPPS and DODAB, while more significant effects on the polar groups of the lipids were observed for DPPS and DPPC. These results pointed to the fact that the interaction of eugenol with lipid monolayers at the air-water interface is modulated by the lipid composition, which may be important to comprehend at the molecular level the interaction of this drug with biological surfaces. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Methyl chloride via oxhydrochlorination of methane

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, R.F. Jr.

    1997-12-31

    Dow Corning is developing a route from methane to methyl chloride via oxyhydrochlorination (OHC) chemistry with joint support from the Gas Research Institute and the Department of Energy Federal Energy Technology Center. Dow Corning is the world`s largest producer of methyl chloride and uses it as an intermediate in the production of silicone materials. Other uses include production of higher hydrocarbons, methyl cellulose, quaternary ammonium salts and herbicides. The objective of this project is to demonstrate and develop a route to methyl chloride with reduced variable cost by using methane instead of methanol raw materials. Methyl chloride is currently produced from methanol, but U.S. demand is typically higher than available domestic supply, resulting in fluctuating prices. OHC technology utilizes domestic natural gas as a feedstock, which allows a lower-cost source of methyl chloride which is independent of methanol. In addition to other uses of methyl chloride, OHC could be a key step in a gas-to-liquid fuels process. These uses could divert significant methanol demand to methane. A stable and selective catalyst has been developed in the laboratory and evaluated in a purpose-built demonstration unit. Materials of construction issues have been resolved and the unit has been run under a range of conditions to evaluate catalyst performance and stability. Many technological advances have been made, especially in the areas of catalyst development, online FTIR analysis of the product stream, and recovery of methyl chloride product via an absorber/stripper system. Significant technological hurdles still remain including heat transfer, catalysts scaleup, orthogonality in modeling, and scaleable absorption data. Economics of the oxyhydrochlorination process have been evaluated an found to be unfavorable due to high capital and utility costs. Future efforts will focus on improved methane conversion at high methyl chloride selectivity.

  4. Synthesis and in vitro evaluation of N-alkyl-3-hydroxy-3-(2-imino-3-methyl-5-oxoimidazolidin-4-yl)indolin-2-one analogs as potential anticancer agents

    Science.gov (United States)

    Penthala, Narsimha Reddy; Yerramreddy, Thirupathi Reddy; Madadi, Nikhil Reddy; Crooks, Peter A.

    2013-01-01

    A series of novel 3-hydroxy-3-(2-imino-3-methyl-5-oxoimidazolidin-4-yl)indolin-2-one analogs (3) have been synthesized under microwave irradiation and conventional heating methods. These analogs were evaluated for in vitro cytotoxicity against a panel of 57 human tumor cell lines. Compound 3o had GI50 values of 190 nM and 750 nM against A549/ATTC non-small cell lung cancer and LOX IMVI melanoma cell lines, respectively, and both 3n and 3o exhibited GI50 values ranging from 2–5 μM against CCRF-CEM, HL-60(TB), K-562, MOLT-4, and RPMI-8226 leukemia cell lines. These results indicate that N-4-methoxybenzyl-3-hydroxy-(2-imino-3-methyl-5-oxo-4-yl)indolin-2-one analogs may be useful leads for anticancer drug development. PMID:20598531

  5. Eugenol ameliorates hepatic steatosis and fibrosis by down-regulating SREBP1 gene expression via AMPK-mTOR-p70S6K signaling pathway.

    Science.gov (United States)

    Jo, Hee Kyung; Kim, Go Woon; Jeong, Kyung Ju; Kim, Do Yeon; Chung, Sung Hyun

    2014-01-01

    Beneficial effect of eugenol on fatty liver was examined in hepatocytes and liver tissue of high fat diet (HFD)-fed C57BL/6J mice. To induce a fatty liver, palmitic acid or isolated hepatocytes from HFD-fed Sprague-Dawley (SD) rats were used in vitro studies, and C57BL/6J mice were fed HFD for 10 weeks. Lipid contents were markedly decreased when hepatocytes were treated with eugenol for up to 24 h. Gene expressions of sterol regulatory element binding protein 1 (SREBP1) and its target enzymes were suppressed but those of lipolysis-related proteins were increased. As a regulatory kinase for lipogenic transcriptional factors, the AMP-activated protein kinase (AMPK) signaling pathway was examined. Protein expressions of phosphorylated Ca(2+)-calmodulin dependent protein kinase kinase (CAMKK), AMPK and acetyl-CoA carboxylase (ACC) were significantly increased and those of phosphorylated mammalian target of rapamycin (mTOR) and p70S6K were suppressed when the hepatocytes were treated with eugenol at up to 100 µM. These effects were all reversed in the presence of specific inhibitors of CAMKK, AMPK or mTOR. In vivo studies, hepatic triglyceride (TG) levels and steatosis score were decreased by 45% and 72%, respectively, in eugenol-treated mice. Gene expressions of fibrosis marker protein such as α-smooth muscle actin (α-SMA), collagen type I (Col-I) and plasminogen activator inhibitor-1 (PAI-1) were also significantly reduced by 36%, 63% and 40% in eugenol-treated mice. In summary, eugenol may represent a potential intervention in populations at high risk for fatty liver.

  6. Enzymatic esterification of eugenol and benzoic acid by a novel chitosan-chitin nanowhiskers supported Rhizomucor miehei lipase: Process optimization and kinetic assessments.

    Science.gov (United States)

    Manan, Fatin Myra Abd; Attan, Nursyafreena; Zakaria, Zainoha; Keyon, Aemi S Abdul; Wahab, Roswanira Abdul

    2018-01-01

    A biotechnological route via enzymatic esterification was proposed as an alternative way to synthesize the problematic anti-oxidant eugenyl benzoate. The new method overcomes the well-known drawbacks of the chemical route in favor of a more sustainable reaction process. The present work reports a Box-Behnken design (BBD) optimization process to synthesize eugenyl benzoate by esterification of eugenol and benzoic acid catalyzed by the chitosan-chitin nanowhiskers supported Rhizomucor miehei lipase (RML-CS/CNWs). Effects of four reaction parameters: reaction time, temperature, substrate molar ratio of eugenol: benzoic acid and enzyme loading were assessed. Under optimum conditions, a maximum conversion yield as high as 66% at 50°C in 5h using 3mg/mL of RML-CS/CNWs, and a substrate molar ratio (eugenol: benzoic acid) of 3:1. Kinetic assessments revealed the RML-CS/CNWs catalyzed the reaction via a ping-pong bi-bi mechanism with eugenol inhibition, characterized by a Vmax of 3.83mMmin-1. The Michaelis-Menten constants for benzoic acid (Km,A) and eugenol (Km,B) were 34.04 and 138.28mM, respectively. The inhibition constant for eugenol (Ki,B) was 438.6mM while the turnover number (kcat) for the RML-CS/CNWs-catalyzed esterification reaction was 40.39min-1. RML-CS/CNWs were reusable up to 8 esterification cycles and showed higher thermal stability than free RML. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Efeito do eugenol como agente mitigador do estresse no transporte de juvenis de tilápia do Nilo

    Directory of Open Access Journals (Sweden)

    Antonio G.L. Moreira

    2015-11-01

    Full Text Available RESUMO O Brasil se destaca no cenário americano como um dos países com maior potencial para a piscicultura, principalmente a dulcícola. A tilápia do Nilo (Oreochromis niloticus se destaca sendo a espécie mais cultivada em nosso país. Metodologias para diminuir a interferência de agentes estressores nas funções vitais e fisiológicas dos peixes são importantes durante o manejo. O presente trabalho teve como objetivo avaliar o efeito do eugenol nas respostas metabólicas e iônicas de juvenis de tilápia do Nilo, submetidos ao transporte em sacos plásticos, em diferentes densidades, a fim de verificar a eficiência do produto como agente mitigador do estresse. O eugenol foi utilizado na concentração de 15mg/L em água. As densidades avaliadas foram 4, 7 e 10 peixes L-1, equivalente a 140, 245 e 350g L-1. Após quatro horas de transporte foram avaliados os parâmetros metabólicos (glicose e lactato e iônicos (cloreto, magnésio e cálcio, bem como a qualidade da água nos sacos plásticos. Em relação aos dois parâmetros metabólicos, o uso do eugenol com o intuito de diminuir as respostas do estresse não foi satisfatório. Houve elevação no nível de glicose nas densidades 140 e 350g L-1 imediatamente ao término do transporte, e o teor de lactato dos peixes na densidade 245g L-1 aumentou 24 horas depois, indicando que os animais não conseguiram manter a homeostase inicial. Dentre as concentrações de íons avaliados, o magnésio foi o que sofreu maior variação. Podemos concluir que a adição de 15mg L-1 de eugenol na água durante o transporte de juvenis de tilápia do Nilo nas densidades de 140, 245 e 350g L-1 não foi capaz de minimizar as respostas ao estresse.

  8. Evaluation of airborne methyl salicylate for improved conservation biological control of two-spotted spider mite and hop aphid in Oregon hop yards

    Science.gov (United States)

    The use of synthetic herbivore-induced plant volatiles (HIPV) to attract natural enemies has received interest as a tool to enhance conservation biological control (CBC). Methyl salicylate (MeSA) is a HIPV that is attractive to several key predators of two-spotted spider mite, Tetranychus urticae K...

  9. Evaluation of airborne methyl salicylate for improved conservation biological control of two-spotted spider mites and hop aphid in Oregon hop yards

    Science.gov (United States)

    The use of synthetic herbivore-induced plant volatiles (HIPV) to attract natural enemies has received interest as a tool to enhance conservation biological control (CBC). Methyl salicylate (MeSA) is a HIPV that is attractive to several key predators of two-spotted spider mite, Tetranychus urticae K...

  10. Effect of Eugenol and Cinnamaldehyde on the Growth Performance, Nutrient Digestibility, Blood Characteristics, Fecal Microbial Shedding and Fecal Noxious Gas Content in Growing Pigs

    OpenAIRE

    Yan, L.; Kim, I.H.

    2012-01-01

    A 5-wk trial with 96 ((Landrace× Yorkshire)×Duroc) pigs (BW = 26.56±0.42 kg) was conducted to investigate the effect of eugenol and cinnamaldehyde as feed additive in growing pigs. Pigs were assigned to 1 of 3 treatments in a randomized complete block design according to their sex and BW. Each treatment contained 8 replications with 4 pigs (2 gilts and 2 barrows) per pen. Treatments included: control (basal diet; CON); (basal diet+1,000 mg eugenol/kg; ET); (basal diet+1,000 mg cinnamaldehyde/...

  11. Heterogeneity of DNA methylation in multifocal prostate cancer.

    Science.gov (United States)

    Serenaite, Inga; Daniunaite, Kristina; Jankevicius, Feliksas; Laurinavicius, Arvydas; Petroska, Donatas; Lazutka, Juozas R; Jarmalaite, Sonata

    2015-01-01

    Most prostate cancer (PCa) cases are multifocal, and separate foci display histological and molecular heterogeneity. DNA hypermethylation is a frequent alteration in PCa, but interfocal heterogeneity of these changes has not been extensively investigated. Ten pairs of foci from multifocal PCa and 15 benign prostatic hyperplasia (BPH) samples were obtained from prostatectomy specimens, resulting altogether in 35 samples. Methylation-specific PCR (MSP) was used to evaluate methylation status of nine tumor suppressor genes (TSGs), and a set of selected TSGs was quantitatively analyzed for methylation intensity by pyrosequencing. Promoter sequences of the RASSF1 and ESR1 genes were methylated in all paired PCa foci, and frequent (≥75 %) DNA methylation was detected in RARB, GSTP1, and ABCB1 genes. MSP revealed different methylation status of at least one gene in separate foci in 8 out of 10 multifocal tumors. The mean methylation level of ESR1, GSTP1, RASSF1, and RARB differed between the paired foci of all PCa cases. The intensity of DNA methylation in these TSGs was significantly higher in PCa cases than in BPH (p methylation profile of paired PCa foci, while the foci from separate cases with biochemical recurrence showed similar methylation profile and the highest mean levels of DNA methylation. Our findings suggest that PCa tissue is heterogeneous, as between paired foci differences in DNA methylation status were found. Common epigenetic profile of recurrent tumors can be inferred from our data.

  12. Synthesis and evaluation of 9-hydroxy-5-methyl-(and 5,6-dimethyl)-6H-pyrido[4,3-b]carbazole-1-N- [(dialkylamino)alkyl]carboxamides, a new promising series of antitumor olivacine derivatives.

    Science.gov (United States)

    Jasztold-Howorko, R; Landras, C; Pierré, A; Atassi, G; Guilbaud, N; Kraus-Berthier, L; Léonce, S; Rolland, Y; Prost, J F; Bisagni, E

    1994-07-22

    Starting from 2-(2-aminoethyl)-6-methoxy-1-methylcarbazole, ethyl 9-methoxy-5-methyl-6H-pyrido[4,3-b]carbazole-1-carboxylate was obtained through a three-step sequence. This compound and its 6-methyl derivative react with (dialkylamino)alkylamines to provide various 9-methoxy-5-methyl-6H-pyrido[4,3-b]carbazole-1-(N-substituted carboxamides) whose boron tribromide demethylation afforded corresponding 9-hydroxy-1-(N-substituted carbamoyl)-olivacines. The same pathway but starting from 2-(2-aminoethyl)-6-methoxy-1,4-dimethylcarbazole led to ethyl 9-methoxy-5,11-dimethyl-6H-pyrido[4,3-b]carbazole-1-carboxylate which did not normally react with amines. It provided either the recovered starting material at 120 degrees C or 9-methoxyellipticine resulting from an unexpected decarboethylation in a steel vessel at 180 degrees C. Biological testing of the newly obtained 1-carbamoylolivacine derivatives showed that 9-hydroxylated compounds displayed high cytotoxicity for cultured L1210 and colon 38 cells (IC50 range 5-10 nM) and good antitumor activity in vivo in the P388 leukemia and colon 38 models when administered by the iv route. The most active compound in these series is 9-hydroxy-5,6-dimethyl-1-[N-[2-(dimethylamino)ethyl]carbamoyl]-6H- pyrido[4,3-b]carbazole which was selected for further evaluation on murine solid tumors and for toxicological studies.

  13. Deciphering the Anti-Aflatoxinogenic Properties of Eugenol Using a Large-Scale q-PCR Approach.

    Science.gov (United States)

    Caceres, Isaura; El Khoury, Rhoda; Medina, Ángel; Lippi, Yannick; Naylies, Claire; Atoui, Ali; El Khoury, André; Oswald, Isabelle P; Bailly, Jean-Denis; Puel, Olivier

    2016-04-26

    Produced by several species of Aspergillus, Aflatoxin B₁ (AFB₁) is a carcinogenic mycotoxin contaminating many crops worldwide. The utilization of fungicides is currently one of the most common methods; nevertheless, their use is not environmentally or economically sound. Thus, the use of natural compounds able to block aflatoxinogenesis could represent an alternative strategy to limit food and feed contamination. For instance, eugenol, a 4-allyl-2-methoxyphenol present in many essential oils, has been identified as an anti-aflatoxin molecule. However, its precise mechanism of action has yet to be clarified. The production of AFB₁ is associated with the expression of a 70 kB cluster, and not less than 21 enzymatic reactions are necessary for its production. Based on former empirical data, a molecular tool composed of 60 genes targeting 27 genes of aflatoxin B₁ cluster and 33 genes encoding the main regulatory factors potentially involved in its production, was developed. We showed that AFB₁ inhibition in Aspergillus flavus following eugenol addition at 0.5 mM in a Malt Extract Agar (MEA) medium resulted in a complete inhibition of the expression of all but one gene of the AFB₁ biosynthesis cluster. This transcriptomic effect followed a down-regulation of the complex composed by the two internal regulatory factors, AflR and AflS. This phenomenon was also influenced by an over-expression of veA and mtfA, two genes that are directly linked to AFB₁ cluster regulation.

  14. Influence of application sequence and timing of eugenol and lauric arginate (LAE) on survival of spoilage organisms.

    Science.gov (United States)

    Manrique, Yudith; Gibis, Monika; Schmidt, Herbert; Weiss, Jochen

    2017-06-01

    The effectiveness of sequential applications of the antimicrobials eugenol and lauric arginate (LAE) was investigated against Staphylococcus carnosus, Listeria innocua, Escherichia coli K12, and Pseudomonas fluorescens. The antimicrobials were applied simultaneously at half of their minimum lethal concentrations (MLC) or sequentially at t = 0 h and t = 3, 4, 6 or 8 h. Bacterial survival was determined by direct plate counts. Survivals kinetic were fitted to a growth and mortality model to obtain characteristic parameters that described time-dependent changes from growth to mortality or vice versa. The most effective was a simultaneous exposure of both antimicrobials to the spoilage organisms at the beginning of the incubation period. Efficiency decreases depending on order and timing of the two antimicrobials were observed upon sequential treatments. These were most effective when antimicrobials where applied within a short time period (3-4 h) and when eugenol was first applied against S. carnosus and P. fluorescens. No sequence effects were observed for L. innocua, and sequential treatments proved to be ineffective against E. coli K12. These results were attributed to cells adapting to the first applied antimicrobial. In some cases, this provided protection against the second antimicrobial rendering the overall treatment less effective. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Inhibition of As(III) and Hg(II) caused aortic hypercontraction by eugenol, linalool and carvone

    Science.gov (United States)

    Kundu, Swati; Shabir, Hiba; Basir, Seemi Farhat; Khan, Luqman Ahmad

    2015-01-01

    Acute and chronic exposure to arsenic and mercury is known to produce vasoconstriction. There is, however, no clarity concerning the pathways leading to this increased contraction. In this study we elicit and compare maximum contractility of rat aortas under resting conditions in the presence of arsenic and mercury, and delineate pathways mediating this effect. Phenylephrine (PE) induced hypercontraction of 37% and 32% were obtained when isolated aortic segments were exposed to 25 µM As(III) and 6 nM Hg(II), respectively. Isometric contraction measurements in presence of apocynin, verapamil and sodium nitroprusside indicates that the major causes of increased contraction are reactive oxygen species (ROS) and depletion of nitric oxide (NO). Calcium influx plays a minor role in arsenic and mercury caused hypercontraction. In unexposed aorta, eugenol causes relaxation by inhibiting ROS and elevating NO, linalool by blocking voltage dependent calcium channel (VDCC) and elevating NO, and carvone by blocking calcium influx through VDDC. Since the arsenic and mercury hypercontraction is mediated by increased ROS and depleted NO, we hypothesize that molecules which neutralize ROS or elevate NO will be better ameliorators. In line with this argument, we found eugenol to be the best ameliorator of arsenic and mercury hypercontraction followed by linalool and carvone. PMID:25891766

  16. Success of pulpectomy with zinc oxide-eugenol vs calcium hydroxide/iodoform paste in primary molars: a clinical study.

    Science.gov (United States)

    Trairatvorakul, Chutima; Chunlasikaiwan, Salinee

    2008-01-01

    The purpose of this study was to compare clinical and radiographic success rates of zinc oxide-eugenol cement (ZOE) vs calcium hydroxide/iodoform paste (Vitapex) in pulpectomized primary molars at 6 and 12 months. Fifty-four mandibular primary molars from 42 children (average age 5.6 +/- 1.2 years) that met the inclusion criteria were allocated to either test material via block randomization. A 1-visit pulpectomy and stainless steel crown was performed by 1 investigator. The clinical and radiographic diagnoses were blindly assessed by another investigator with an intraexaminer reliability of 0.85 to 0.95 (kappa value). At 6 and 12 months, the ZOE success rates were 48% and 85%, respectively, and the Vitopex success rates were 78% and 89%. The difference in success rates between materials at 6 months was statistically significant, but at 12 months it was not. Vitapex appeared to resolve furcation pathology at a foster rate than zinc oxide-eugenol at 6 months, while at 12 months, both materials yielded similar results.

  17. DNA methylation in plants.

    Science.gov (United States)

    Vanyushin, B F

    2006-01-01

    DNA in plants is highly methylated, containing 5-methylcytosine (m5C) and N6-methyladenine (m6A); m5C is located mainly in symmetrical CG and CNG sequences but it may occur also in other non-symmetrical contexts. m6A but not m5C was found in plant mitochondrial DNA. DNA methylation in plants is species-, tissue-, organelle- and age-specific. It is controlled by phytohormones and changes on seed germination, flowering and under the influence of various pathogens (viral, bacterial, fungal). DNA methylation controls plant growth and development, with particular involvement in regulation of gene expression and DNA replication. DNA replication is accompanied by the appearance of under-methylated, newly formed DNA strands including Okazaki fragments; asymmetry of strand DNA methylation disappears until the end of the cell cycle. A model for regulation of DNA replication by methylation is suggested. Cytosine DNA methylation in plants is more rich and diverse compared with animals. It is carried out by the families of specific enzymes that belong to at least three classes of DNA methyltransferases. Open reading frames (ORF) for adenine DNA methyltransferases are found in plant and animal genomes, and a first eukaryotic (plant) adenine DNA methyltransferase (wadmtase) is described; the enzyme seems to be involved in regulation of the mitochondria replication. Like in animals, DNA methylation in plants is closely associated with histone modifications and it affects binding of specific proteins to DNA and formation of respective transcription complexes in chromatin. The same gene (DRM2) in Arabidopsis thaliana is methylated both at cytosine and adenine residues; thus, at least two different, and probably interdependent, systems of DNA modification are present in plants. Plants seem to have a restriction-modification (R-M) system. RNA-directed DNA methylation has been observed in plants; it involves de novo methylation of almost all cytosine residues in a region of si

  18. Evaluation of chemical and integrated strategies as alternatives to methyl bromide for the control of root-knot nematodes in Greece.

    Science.gov (United States)

    Giannakou, Ioannis O; Karpouzas, Dimitrios G

    2003-08-01

    Current environmental awareness has led to a greater demand for alternative nematode control strategies. Three field experiments were established to compare management tactics on cucumber in commercial greenhouses naturally infested with root-knot nematodes (Meloidogyne spp). Cucumber rootstocks which have shown resistance to soil-borne diseases were tested to reveal any resistance/tolerance to root-knot nematodes, and integration of these rootstocks with nematicides was investigated. Metham-sodium and 1,3-dichloropropene (1,3-D) provided good control of nematode populations when their application was followed by the application of a non-fumigant nematicide such as cadusafos or oxamyl. Neither fumigant could provide season-long control of nematode populations, and a further application of cadusafos was required for satisfactory control. The efficacy of metham-sodium was significantly increased when injected into soil in comparison with its application through the drip irrigation system. The use of rootstocks resistant to soil-borne fungal pathogens used together with chemical means of nematode control provided promising results for their further use in integrated strategies as alternatives to methyl bromide. However, the latter was the superior treatment for the control of root-knot nematodes in soil infested with residues of galled roots. Dazomet, metham-sodium nor the non-fumigant nematicides oxamyl and fenamiphos could reduce nematode population as efficiently as methyl bromide. None of the chemicals tested except methyl bromide could enter galled roots and kill surviving nematodes.

  19. [Determination of capsaicinoids and eugenol in waste-edible-oil by liquid-liquid extraction and liquid chromatography-tandem mass spectrometry].

    Science.gov (United States)

    Zhang, Zhong; Ren, Fei; Zhang, Pan

    2012-11-01

    A method was developed for the determination of capsaicinoids (capsaicin, dihydrocapsaicin and synthetic capsaicin) and eugenol in waste-edible-oil extracted by liquid-liquid extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The capsaicinoids and eugenol in waste-edible-oil were extracted by methanol, and then separated by a SUPEL COSIL ABZ + Plus dC18 column (150 mm x4.6 mm, 5 microm). The analysis was performed by MS/MS with electrospray ionization in positive and negative ion modes with multiple reaction monitoring (MRM). The limits of detection for capsaicin, dihydrocapsaicin, synthetic capsaicin and eugenol were 0.02, 0.03, 0.03 and 0.6 microg/L, respectively. The good linear relationships were obtained in certain concentration ranges of capsaicinoids and eugenol. The relative standard deviations (RSDs, n=5) of same-worker and different-worker were less than 5%. The method is exclusive, sensitive and accurate, and can be used in waste-edible-oil determination.

  20. Gene expression response of Salmonella enterica serotype Enteritidis phage type 8 to the subinhibitory concentrations of the plant-derived compounds,trans-cinnamaldehyde,and eugenol

    Science.gov (United States)

    Background: Salmonella Enteritidis phage type 8 (PT8) is a major poultry-associated Salmonella strain implicated in foodborne outbreaks in the United States. We previously reported that two GRAS-status, plant-derived compounds, trans-cinnamaldehyde (TC) and eugenol (EG) significantly reduced S. Ent...

  1. Safrol e eugenol: estudo da reatividade química e uso em síntese de produtos naturais biologicamente ativos e seus derivados

    Directory of Open Access Journals (Sweden)

    Costa Paulo R. R.

    2000-01-01

    Full Text Available The chemical reactivity of safrole, eugenol, piperonal, vanillin and derivates toward ozone, aluminium chloride, brominating agents and butyl lithium was investigated. The synthesis of naturally occuring anthraquinones, furonaphthoquinones, naphthoquinones, lignans and pterocarpans from these easily available staring materials is also discussed.

  2. Piperine, a component of black pepper, decreases eugenol-induced cAMP and calcium levels in non-chemosensory 3T3-L1 cells.

    Science.gov (United States)

    Yoon, Yeo Cho; Kim, Sung-Hee; Kim, Min Jung; Yang, Hye Jeong; Rhyu, Mee-Ra; Park, Jae-Ho

    2015-01-01

    This study investigated the effects of an ethanol extract of black pepper and its constituent, piperine, on odorant-induced signal transduction in non-chemosensory cells. An ethanol extract of black pepper decreased eugenol-induced cAMP and calcium levels in preadipocyte 3T3-L1 cells with no toxicity. Phosphorylation of CREB (cAMP response element-binding protein) was down-regulated by the black pepper extract. The concentration (133.8 mg/g) and retention time (5.5 min) of piperine in the ethanol extract were quantified using UPLC-MS/MS. Pretreatment with piperine decreased eugenol-induced cAMP and calcium levels in 3T3-L1 cells. Piperine also decreased the phosphorylation of CREB, which is up-regulated by eugenol. These results suggest that piperine inhibits the eugenol-induced signal transduction pathway through modulation of cAMP and calcium levels and phosphorylation of CREB in non-chemosensory cells.

  3. Boll weevil (Coleoptera: Curculionidae) response to and volitilization rates of grandlure when combined with varying doses of eugenol in the extended-life pheromone lure

    Science.gov (United States)

    Boll weevil extended-life pheromone lures, impregnated with 25 mg grandlure and 30 mg eugenol, are replacing standard pheromone lures (10 mg grandlure) in boll weevil eradication programs, to increase the changing interval from 2 weeks, to 3 or 4 weeks, which reduces labor and material costs. The a...

  4. Reduction of Salmonella Enterica serovar Enteritidis colonization in 20-day-old broiler chickens by the plant derived compounds trans-cinnamaldehyde and eugenol

    Science.gov (United States)

    This study investigated the efficacy of trans-cinnamaldehyde (TC) and eugenol (EG) for reducing Salmonella Enteritidis (SE) colonization in broiler chicks. In three separate experiments for each compound, day-old, chicks (N=75/experiment) were randomly assigned to five treatments (n=15/treatment): a...

  5. Effect of therapeutic supplementation of plant molecules, trans-cinnamaldehyde and eugenol on Salmonella Enteritidis colonization in market-age broiler chickens

    Science.gov (United States)

    This study investigated the therapeutic efficacy of food-grade plant compounds, trans-cinnamaldehyde (TC) and eugenol (EG) on reducing SE in commercial, market-age broiler chickens. In two separate experiments, day-old commercial broiler chicks were randomly grouped into six groups of 14 birds each ...

  6. Effect of eugenol and cinnamaldehyde on the growth performance, nutrient digestibility, blood characteristics, fecal microbial shedding and fecal noxious gas content in growing pigs.

    Science.gov (United States)

    Yan, L; Kim, I H

    2012-08-01

    A 5-wk trial with 96 ((Landrace× Yorkshire)×Duroc) pigs (BW = 26.56±0.42 kg) was conducted to investigate the effect of eugenol and cinnamaldehyde as feed additive in growing pigs. Pigs were assigned to 1 of 3 treatments in a randomized complete block design according to their sex and BW. Each treatment contained 8 replications with 4 pigs (2 gilts and 2 barrows) per pen. Treatments included: control (basal diet; CON); (basal diet+1,000 mg eugenol/kg; ET); (basal diet+1,000 mg cinnamaldehyde/kg; CT). Administration of eugenol and cinnamaldehyde did not did not affect (p>0.05) the growth performance and apparent total tract digestibility. Dietary CT and ET led to a higher (p0.05). Pigs fed the diets supplemented with eugenol and cinnamaldehyde had reduced (peugenol and cinamaldehyde had no effect on growth performance of pigs but exhibited lymphocyte-enhancing activity and decreased the fecal E. coli concentration and fecal noxious gas content (NH3 and H2S).

  7. Acaricidal activity of essential oil of Syzygium aromaticum, hydrolate and eugenol formulated or free on larvae and engorged females of Rhipicephalus microplus.

    Science.gov (United States)

    Ferreira, F M; Delmonte, C C; Novato, T L P; Monteiro, C M O; Daemon, E; Vilela, F M P; Amaral, M P H

    2017-08-18

    The cattle tick, Rhipicephalus microplus (Canestrini, 1888) (Ixodida: Ixodidae), is the most important ectoparasite in cattle-breeding areas and is responsible for severe economic losses. Synthetic acaricides have been used to control this parasite. However, the need for safer products has stimulated the search for new acaricides, such as those to be obtained from medicinal plants. The essential oil of Syzygium aromaticum (clove) has many biological properties and shows great potential for use in veterinary applications. In the context of the need for new agents, this study investigated the in vitro properties of the hydrolate, essential oil and the main constituent of S. aromaticum, eugenol, in formulated and free applications against larvae and females of R. microplus. Eugenol and the essential oil caused 100% mortality in larvae at starting applications of 2.5 mg/mL and 5.0 mg/mL, respectively. The hydrolate showed no activity. Both eugenol and essential oil had good efficacy in adult immersion tests at 50 mg/mL and achieved 100% efficacy at a concentration of 100 mg/mL. The results of these tests reaffirm the important potential of clove essential oil and eugenol. © 2017 The Royal Entomological Society.

  8. Efeito do lipopolissacarídio bacteriano sobre o esvaziamento gástrico de ratos: avaliação do pré-tratamento com Nw-nitro-L-arginine methyl ester (L-NAME The effect of bacterial lipopolysaccharide on the gastric emptying of rats: a pretreatment evaluation using Nw-nitro-L-arginine methyl ester (L-NAME

    Directory of Open Access Journals (Sweden)

    Edgard Ferro Collares

    2006-09-01

    é-tratados com as mesmas doses do inibidor das óxido nítrico-sintetases e tratados com veículo (40,5% e 38,7%, respectivamente e àqueles pré-tratados com veículo e tratados com a mesma toxina. CONCLUSÃO: O pré-tratamento com Nw-nitro-L-arginine methyl ester numa dose baixa (1 mg/kg determinou redução discreta no efeito de retardo do esvaziamento gástrico determinado pelo lipopolissacarídio in vivo e aumento significativo do retardo com doses mais elevadas (2,5 e 5 mg/kg, doses estas que, per se, não interferem no esvaziamento.BACKGROUND: There is evidence that nitric oxide plays a role in the decrease in gastric emptying induced by bacterial lipopolysaccharide. AIM: To evaluate the effect of pretreatment with Nw-nitro-L-arginine methyl to ester, one competitive inhibitor of the nitric oxide syntases, on the gastric emptying delay induced by lipopolysaccharide. MATERIAL AND METHODS: Male Wistar rats, SPF, were used after 24 h fast and 1 h-water withdrawn. The pretreatment was done intravenously with vehicle (saline or Nw-nitro-L-arginine methyl to ester in the doses of 0.5, 1, 2.5 e 5 mg/kg. After 10 min, the animals were treated iv with lipopolysaccharide (50 mg/kg or received vehicle (saline. The gastric emptying was evaluated 1 h after the lipopolysaccharide administration. A saline solution containing phenol red was used as the test meal. The gastric emptying was indirectly assessed by the determination of percent gastric retention of the test meal 10 min after orogastric administration. RESULTS: The animals pretreated with vehicle and treatment with lipopolysaccharide have significant rise of the gastric retention (average = 57% in comparison with the controls receiving only vehicle (38.1%. The pretreatment with the different doses of Nw-nitro-L-arginine methyl to ester did not modify per se the gastric retention in comparison with the animals pretreated with vehicle. Pretreatment with Nw-nitro-L-arginine methyl to ester with the dose of 1 mg/kg determined a

  9. α-Aroylketene dithioacetal mediated synthesis of (E)-3-(benzo[d]thiazol-2-ylamino)-2-(1-methyl-1H-indole-3-carbonyl)-3-(methylthio)acrylonitrile derivatives and their biological evaluation ".

    Science.gov (United States)

    Bhale, Pravin; Chavan, Hemant Vilas; Dongare, Sakharam B; Sankpal, Sagar T; Bandgar, Babasaheb P

    2017-09-12

    • Background: The blending of two pharmacophores would generate novel molecular templates that are likely to exhibit interesting biological properties. • Objective: A facile, efficient and high yielding synthesis of (E)-3-(benzo[d]thiazol-2-ylamino)-2-(1-methyl-1H-indole-3-carbonyl)-3-(methylthio) acrylonitrile derivatives and evaluation of therapeutic potential. • Method: The synthesis of target molecules has been achieved by reacting 2-aminobenzothiazole and substituted 2-(1-methyl-1H-indole-3-carbonyl)-3,3-bis(methylthio)acrylonitrile in the presence of a catalytic amount of sodium hydride in THF. Structural investigations were carried using 1H NMR, 13C NMR, FT-IR, and HRMS data. • Results: In vitro anti-tumor evaluation of the synthesized compounds against MCF-7 (breast carcinoma) cell line revealed that they possess good anti-tumor activities. Compounds, 4j and 4i demonstrated significant activities against breast carcinoma (GI50 14.3 and 19.5 µM respectively). Most of the synthesized compounds were also found to be excellent NO, H2O2, DPPH, and superoxide radical scavengers. Anti-diabetic and anti-inflammatory evaluation also displayed moderate activity. • Conclusion: Among the compounds synthesized some of the compounds possess significant anticancer, antioxidant and anti-inflammatory properties. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Experimental and theoretical study of the structures and binding energies of eugenol (H2O)n, n=0-2

    Science.gov (United States)

    Longarte, Asier; Unamuno, Iñigo; Fernández, José A.; Castaño, Fernando; Redondo, Carolina

    2004-07-01

    Eugenol (4-Allyl-2-methoxyphenol), a phenol-derivative with an intramolecular -OH⋯OCH3 hydrogen bond (H bond), has been studied in a supersonic expansion using a number of complementary laser spectroscopic techniques. The mass-resolved excitation spectrum of eugenol and its water complexes are reported for the first time. The most intense set of bands on the resonantly enhanced multiphoton ionization (REMPI) spectrum of eugenol originate in a conformer whose S1←S0 transition is at 35 202 cm-1 and the ionization threshold at (I0←S0) 62 544±150 cm-1 (7.755±0.019 eV). In addition, two low intensity features redshifted with respect to the 000 transition have been identified as due to a second, less stable conformer. Ab initio calculations show that the potential energy landscape depicts at least three minima associated with one folded and two extended conformers, one of which is the most stable. Clusters of eugenol/water were prepared in a supersonic expansion by seeding eugenol and water in noble gas He and examined by two-color REMPI (R2PI) and IR-UV double resonance spectroscopies. Only one single isomer was observed for both 1:1 and 1:2 complexes, in contrast with the several stable conformers provided by the computations. The dissociation energies of the 1:1 and 1:2 complexes have been determined by the fragmentation threshold method and the results compared with those from ab initio calculations conducted at the B3LYP and MP2 levels with a variety of basis sets.

  11. Anesthesia of silver catfish with eugenol: time of induction, cortisol response and sensory analysis of fillet Anestesia de jundiás com eugenol: tempo de indução, resposta ao cortisol e análise sensorial do filé

    Directory of Open Access Journals (Sweden)

    Mauro Alves da Cunha

    2010-10-01

    Full Text Available The aim of this study was to identify the time of anesthetic induction and recovery of silver catfish (Rhamdia quelen exposed to eugenol. It was also determined the efficacy of the anesthetic as a stress reducing agent and performed a sensory analysis of the fillets from fish exposed to this substance. The silver catfish were exposed to air for 1min to carry out biometry, and blood was collected at 0, 1 and 4 hours later. Eugenol can be used in the range of 20-50mg L-1 for anesthetic induction in silver catfish, and recovery time from anesthesia was not affected by eugenol concentration. The control group showed significantly higher cortisol levels 4 hours after biometry than at time zero. Fish anesthetized with eugenol (50mg L-1 presented significantly lower plasma cortisol levels than control fish at the same time. These data indicate that eugenol inhibits the rise of cortisol in the blood. The sensory analysis test demonstrated that eugenol modifies the flavor of the fillet and therefore is contra-indicated for anesthetization of silver catfish that are intended for human consumption.O objetivo deste estudo foi identificar o tempo de indução e recuperação anestésica de jundiás (Rhamdia quelen expostos ao eugenol, bem como a eficácia desse anestésico na inibição do estresse e realizar análise sensorial dos filés dos peixes expostos a essa substância. Os jundiás foram expostos ao ar por um minuto para realização da biometria, e o sangue foi coletado zero, uma e quatro horas depois. O eugenol pode ser usado na faixa de 20-50mg L-1 para a indução da anestesia em jundiás, e o tempo de recuperação da anestesia não foi afetado pela concentração do eugenol. O grupo de controle mostrou níveis significativamente mais elevados do cortisol quatro horas após a biometria que no tempo zero. Os peixes anestesiados com eugenol (50mg L-1 apresentaram níveis significativamente mais baixos do cortisol plasmático do que peixes do grupo

  12. Pull-out retentive strength of fiber posts cemented at different times in canals obturated with a eugenol-based sealer.

    Science.gov (United States)

    Aleisa, Khalil; Al-Dwairi, Ziad Nawaf; Alsubait, Sara A; Morgano, Steven M

    2016-07-01

    Currently, no standard luting protocol exists for fiber posts. In addition, no agreement has been reached on the time interval between canal obturation and post space preparation and cementation. The purpose of this in vitro study was to evaluate the retention of fiber posts cemented with 3 different types of cement: Paracore, Variolink II, and RelyX Unicem cement after 24 hours or 2 weeks in root canals obturated with gutta percha and a eugenol-based sealer. Seventy-two caries-free, freshly extracted, single-rooted human mandibular first premolar teeth with straight root canals were prepared and obturated with gutta percha and Endofil sealer. Specimens were divided into 2 groups (n=36): post spaces prepared 24 hours after obturation and post spaces prepared 2 weeks after obturation. Posts in both groups were luted with 1 of 3 different luting agents (n=12), ParaCore, Variolink II, or RelyX Unicem cement. Each tooth specimen was vertically secured in a universal testing machine, and a constant pull-out loading rate of 0.5 mm/min was applied until cement failure occurred. Data were statistically analyzed with 2-way and 1-way ANOVAs and t tests. Two-way ANOVA indicated statistically significant differences in mean post retention among the 3 cement types (Ppost cementation significantly influenced fiber post retention, regardless of the type of resin cement. Fiber posts showed significantly higher retention if cemented after 24 hours of obturation than if cementation occurred after 2 weeks. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Adubação orgânica na produção, rendimento e composição do óleo essencial da alfavaca quimiotipo eugenol Organic fertilization in the production, yield and chemical composition of basil chemotype eugenol

    Directory of Open Access Journals (Sweden)

    Luiz Antonio Biasi

    2009-03-01

    , Paraná State, Brazil, from October 2005 to June 2006. The effect of organic fertilization with sheep manure was evaluated on Ocimum gratissimum development and the viability of this practice was determined to increase biomass and essential oil yield and quality. The plants were spaced 0.5 m from each other in the experimental units which were separated in 1 m. Three rates of organic fertlization (4; 8 and 12 kg m-2 were compared to control (without fertilizers, with 5 replications and 8 plants by experimental unit. Plants were harvested 150 and 226 days after planting, and the total, leaves, flowers and stems fresh and dried biomass, essential oil yield from leaves and flowers and composition by GC/MS beign evaluated. There was significant difference among the treatments on biomass production at the first harvest, where the plants treated with 8 kg m-2 of organic fertilizer presented higher flowers fresh biomass, and flowers and total dry biomass than plants without fertilizer (control plants, but with no difference compared to other organic fertilization levels. At the second harvest there were no differences among treatments. Regarding the essential oil yield no differences were found comparing the organic fertilization levels in both harvest times. In addition, the essential oil composition was similar on plants from all treatments. However, some variations in composition were observed when the essential oil was extracted from flowers and leaves, where the eugenol percentage was 90.4% on leaves and 80.8% on flowers at the first harvest. At the second harvest, a reduction of eugenol content and an increase of alpha trans trans farnesene, beta bisabolene, beta cariophilene, germacrene D and alfa selineno was found.

  14. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Science.gov (United States)

    Siegel, Erin M; Riggs, Bridget M; Delmas, Amber L; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  15. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Erin M Siegel

    Full Text Available Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2. A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003. Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  16. Inheritance and Variation of Genomic DNA Methylation in Diploid and Triploid Pacific Oyster (Crassostrea gigas).

    Science.gov (United States)

    Jiang, Qun; Li, Qi; Yu, Hong; Kong, Lingfeng

    2016-02-01

    DNA methylation is an important epigenetic mechanism that could be responsive to environmental changes indicating a potential role in natural selection and adaption. In order to evaluate an evolutionary role of DNA methylation, it is essential to first gain a better insight into inheritability. To address this question, this study investigated DNA methylation variation from parents to offspring in the Pacific oyster Crassostrea gigas using fluorescent-labeled methylation-sensitive amplified polymorphism (F-MSAP) analysis. Most of parental methylated loci were stably transmitted to offspring segregating following Medelian expectation. However, methylated loci deviated more often than non-methylated loci and offspring showed a few de novo methylated loci indicating DNA methylation changes from parents to offspring. Interestingly, some male-specific methylated loci were found in this study which might help to explore sex determination in oyster. Despite environmental stimuli, genomic stresses such as polyploidization also can induce methylation changes. This study also compared global DNA methylation level and individual methylated loci between diploid and triploid oysters. Results showed no difference in global methylation state but a few ploidy-specific loci were detected. DNA methylation variation during polyploidization was less than autonomous methylation variation from parents to offspring.

  17. Radiosynthesis and in vivo evaluation of N-[{sup 11}C]methylated imidazopyridineacetamides as PET tracers for peripheral benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Sekimata, Katsuhiko [Department of Brain Sciences and Molecular Imaging, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8522 (Japan); Hatano, Kentaro [Department of Brain Sciences and Molecular Imaging, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8522 (Japan)], E-mail: hatanok@nils.go.jp; Ogawa, Mikako [Photon Medical Research Center, Hamamatsu University School of Medicine, Shizuoka 431-3192 Japan (Japan); Abe, Junichiro [Department of Brain Sciences and Molecular Imaging, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8522 (Japan); Magata, Yasuhiro [Photon Medical Research Center, Hamamatsu University School of Medicine, Shizuoka 431-3192 Japan (Japan); Biggio, Giovanni; Serra, Mariangela [Department of Experimental Biology, University of Cagliari, Cagliari 09100 (Italy); Laquintana, Valentino; Denora, Nunzio; Latrofa, Andrea; Trapani, Giuseppe; Liso, Gaetano [Pharmaco-Chemistry Department, University of Bari, Bari 70125 (Italy); Ito, Kengo [Department of Brain Sciences and Molecular Imaging, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8522 (Japan)

    2008-04-15

    Imidazopyridineacetoamide 5-8, a series of novel and potentially selective peripheral benzodiazepine receptor (PBR) ligands with affinities comparable to those of known PBR ligands, was investigated. Radiosyntheses of [{sup 11}C]5, 6, 7 or 8 was accomplished by N-methylation of the corresponding desmethyl precursors with [{sup 11}C]methyl iodide in the presence of NaH in dimethylformamide (DMF), resulting in 25% to 77% radiochemical yield and specific activitiy of 20 to 150 MBq/nmol. Each of the labeled compounds was injected in ddY mice, and the radioactivity and weight of dissected peripheral organs and brain regions were measured. Organ distribution of [{sup 11}C]7 was consistent with the known PBR distribution. Moreover, [{sup 11}C]7 showed the best combination of brain uptake and PBR binding, leading to its high retention in the olfactory bulb and cerebellum, areas where PBR density is high in mouse brain. Coinjection of PK11195 or unlabeled 7 significantly reduced the brain uptake of [{sup 11}C]7. These results suggest that [{sup 11}C]7 could be a useful radioligand for positron emission tomography imaging of PBRs.

  18. Synthesis, characterization, and evaluation of (E)-methyl 2-((2-oxonaphthalen-1(2H)-ylidene)methylamino)acetate as a biological agent and an anion sensor.

    Science.gov (United States)

    Zeyrek, Celal Tuğrul; Boyacioğlu, Bahadir; Yıldız, Mustafa; Ünver, Hüseyin; Yolal, Devrim; Demir, Neslihan; Elmali, Ayhan; Tadesse, Solomon; Aslan, Kadir

    2016-11-01

    An amino acid based and bidentate Schiff base, (E)-methyl 2-((2-oxonaphthalen-1(2H)-ylidene)methylamino)acetate (ligand), was synthesized from the reaction of glycine-methyl ester hydrochloride with 2-hydroxy-1-naphthaldehyde. Characterization of the ligand was carried out using theoretical quantum-mechanical calculations and experimental spectroscopic methods. The molecular structure of the compound was confirmed using X-ray single-crystal data, NMR, FTIR and UV-Visible spectroscopy, which were in good agreement with the structure predicted by the theoretical calculations using density functional theory (DFT). Antimicrobial activity of the ligand was investigated for its minimum inhibitory concentration (MIC) to several bacteria and yeast cultures. UV-Visible spectroscopy studies also shown that the ligand can bind calf thymus DNA (CT-DNA) electrostatic binding. In addition, DNA cleavage study showed that the ligand cleaved DNA without the need for external agents. Energetically most favorable docked structures were obtained from the rigid molecular docking of the compound with DNA. The compound binds at the active site of the DNA proteins by weak non-covalent interactions. The colorimetric response of the ligand in DMSO to the addition of equivalent amount of anions (F-, Br-, I-, CN-, SCN-, ClO4-, HSO4-, AcO-, H2PO4-, N3- and OH-) was investigated and the ligand was shown to be sensitive to CN- anion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Decreased Fecundity and Sperm DNA Methylation Patterns

    Science.gov (United States)

    Jenkins, Timothy G.; Aston, Kenneth I.; Meyer, Tyson D.; Hotaling, James M.; Shamsi, Monis B.; Johnstone, Erica B.; Cox, Kyley J.; Stanford, Joseph B.; Porucznik, Christina A.; Carrell, Douglas T.

    2016-01-01

    Objective To evaluate the relationship between epigenetic patterns in sperm and fecundity. Design Prospective study of couples trying to conceive, utilizing semen samples collected through the HOPE study, at the University of Utah. Setting Academic Andrology and IVF Laboratory Patients DNA methylation alterations associated with fecundity were analyzed in 124 semen samples. 27 semen samples from couples who conceived within 2 months of attempting a pregnancy and a total of 29 semen samples from couples who were unable to achieve a pregnancy within 12 months were analyzed to identify regions of interest. Interventions None. Main Outcome Measures Genome-wide assessment of differential sperm DNA methylation and standard semen analysis. Results No differences in sperm count, sperm morphology, or semen volume were observed between the patients achieving a pregnancy within 2 months of study time and those not obtaining a pregnancy within 12 months. However, using data from the Human Methylation 450k array analysis we did identify 2 genomic regions with significantly decreased (FDR <0.01) methylation and 3 genomic regions with significantly increased methylation in the “failure-to-conceive” group. Interestingly, the only two sites where decreased methylation was associated with reduced fecundity are at closely related genes known to be expressed in sperm, HSPA1L and HSPA1B. Conclusions Our data suggest that there are genomic loci where DNA methylation alterations are associated with decreased fecundity. We have thus identified candidate loci for future study to verify these results and investigate the causative or contributory relationship between altered sperm methylation and decreased fecundity. PMID:26453269

  20. In Vitro Incorporation of Radioiodinated Eugenol on Adenocarcinoma Cell Lines (Caco2, MCF7, and PC3).

    Science.gov (United States)

    Dervis, Emine; Yurt Kilcar, Ayfer; Medine, Emin Ilker; Tekin, Volkan; Cetkin, Buse; Uygur, Emre; Muftuler, Fazilet Zumrut Biber

    2017-04-01

    Recently, the synthesis of radiolabeled plant origin compounds has been increased due to their high uptake on some cancer cell lines. Eugenol (EUG), a phenolic natural compound in the essential oils of different spices such as Syzygium aromaticum (clove), Pimenta racemosa (bay leaves), and Cinnamomum verum (cinnamon leaf), has been exploited for various medicinal applications. EUG has antiviral, antioxidant, and anti-inflammatory functions and several anticancer properties. The objective of this article is to synthesize radioiodinated (131I) EUG and investigate its effect on Caco2, MCF7, and PC3 adenocarcinoma cell lines. It is observed that radioiodinated EUG would have potential on therapy and imaging due to its notable uptakes in studied cells.

  1. Eugenol specialty chemical production in transgenic poplar (Populus tremula × P. alba) field trials.

    Science.gov (United States)

    Lu, Da; Yuan, Xianghe; Kim, Sung-Jin; Marques, Joaquim V; Chakravarthy, P Pawan; Moinuddin, Syed G A; Luchterhand, Randi; Herman, Barri; Davin, Laurence B; Lewis, Norman G

    2017-08-01

    A foundational study assessed effects of biochemical pathway introduction into poplar to produce eugenol, chavicol, p-anol, isoeugenol and their sequestered storage products, from potentially available substrates, coniferyl and p-coumaryl alcohols. At the onset, it was unknown whether significant carbon flux to monolignols vs. other phenylpropanoid (acetate) pathway metabolites would be kinetically favoured. Various transgenic poplar lines generated eugenol and chavicol glucosides in ca. 0.45% (~0.35 and ~0.1%, respectively) of dry weight foliage tissue in field trials, as well as their corresponding aglycones in trace amounts. There were only traces of any of these metabolites in branch tissues, even after ~4-year field trials. Levels of bioproduct accumulation in foliage plateaued, even at the lowest introduced gene expression levels, suggesting limited monolignol substrate availability. Nevertheless, this level still allows foliage collection for platform chemical production, with the remaining (stem) biomass available for wood, pulp/paper and bioenergy product purposes. Several transformed lines displayed unexpected precocious flowering after 4-year field trial growth. This necessitated terminating (felling) these particular plants, as USDA APHIS prohibits the possibility of their interacting (cross-pollination, etc.) with wild-type (native plant) lines. In future, additional biotechnological approaches can be employed (e.g. gene editing) to produce sterile plant lines, to avoid such complications. While increased gene expression did not increase target bioproduct accumulation, the exciting possibility now exists of significantly increasing their amounts (e.g. 10- to 40-fold plus) in foliage and stems via systematic deployment of numerous 'omics', systems biology, synthetic biology and metabolic flux modelling approaches. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and

  2. The effects of supplementation with a blend of cinnamaldehyde and eugenol on feed intake and milk production of dairy cows.

    Science.gov (United States)

    Wall, Emma H; Doane, Perry H; Donkin, Shawn S; Bravo, David

    2014-09-01

    Plant extracts (PE) are naturally occurring chemicals in plants, and many of these molecules have been reported to influence production efficiency of dairy and beef animals. Two experiments were conducted to determine the effect of a PE additive (CE; an encapsulated blend of cinnamaldehyde and eugenol) on the milk production performance of lactating dairy cows across a range of doses. In experiment 1, 32 Holstein multi- and primiparous dairy cows in mid-lactation were assigned to no additive or supplementation with CE (350mg/d; n=16 cows/treatment) for 6 wk. In experiment 2, 48 Holstein multi- and primiparous dairy cows were assigned to no additive or supplementation with CE (200, 400, or 600mg/d; n=12 animals/treatment) for 8 wk. A 1-wk covariate period was included in both experiments. In both experiments, individual dry matter intake (DMI), milk production, milk composition, and somatic cell count were recorded daily. In experiment 1, CE was associated with an increase in DMI in both parity groups but an increase in milk production of multiparous cows only. In experiment 2, milk yield of multiparous cows was decreased at the 2 highest doses, whereas milk yield of primiparous cows was increased at the low and high doses of CE. These responses were accompanied by similar changes in DMI; therefore, CE did not affect feed efficiency. We observed no effect of CE on SCC or milk composition; however, treatment by parity interactions were detected for each of these variables that have not been described previously. Based on the results of these experiments, we conclude that a blend of cinnamaldehyde and eugenol can increase DMI and milk production in lactating dairy cows. In addition, environmental factors appear to influence the response to CE, including dose and parity, and these should be explored further. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Deciphering the Anti-Aflatoxinogenic Properties of Eugenol Using a Large-Scale q-PCR Approach

    Directory of Open Access Journals (Sweden)

    Isaura Caceres

    2016-04-01

    Full Text Available Produced by several species of Aspergillus, Aflatoxin B1 (AFB1 is a carcinogenic mycotoxin contaminating many crops worldwide. The utilization of fungicides is currently one of the most common methods; nevertheless, their use is not environmentally or economically sound. Thus, the use of natural compounds able to block aflatoxinogenesis could represent an alternative strategy to limit food and feed contamination. For instance, eugenol, a 4-allyl-2-methoxyphenol present in many essential oils, has been identified as an anti-aflatoxin molecule. However, its precise mechanism of action has yet to be clarified. The production of AFB1 is associated with the expression of a 70 kB cluster, and not less than 21 enzymatic reactions are necessary for its production. Based on former empirical data, a molecular tool composed of 60 genes targeting 27 genes of aflatoxin B1 cluster and 33 genes encoding the main regulatory factors potentially involved in its production, was developed. We showed that AFB1 inhibition in Aspergillus flavus following eugenol addition at 0.5 mM in a Malt Extract Agar (MEA medium resulted in a complete inhibition of the expression of all but one gene of the AFB1 biosynthesis cluster. This transcriptomic effect followed a down-regulation of the complex composed by the two internal regulatory factors, AflR and AflS. This phenomenon was also influenced by an over-expression of veA and mtfA, two genes that are directly linked to AFB1 cluster regulation.

  4. Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: a short review.

    Science.gov (United States)

    Prakash, P; Gupta, Neelu

    2005-04-01

    The medicinal plants are widely used by the traditional medical practitioners for curing various diseases in their day to day practice. In traditional systems of medicine, different parts (leaves, stem, flower, root, seeds and even whole plant) of Ocimum sanctum Linn (known as Tulsi in Hindi), a small herb seen throughout India, have been recommended for the treatment of bronchitis, bronchial asthma, malaria, diarrhea, dysentery, skin diseases, arthritis, painful eye diseases, chronic fever, insect bite etc. The Ocimum sanctum L. has also been suggested to possess antifertility, anticancer, antidiabetic, antifungal, antimicrobial, hepatoprotective, cardioprotective, antiemetic, antispasmodic, analgesic, adaptogenic and diaphoretic actions. Eugenol (1-hydroxy-2-methoxy-4-allylbenzene), the active constituent present in Ocimum sanctum L., has been found to be largely responsible for the therapeutic potentials of Tulsi. Although because of its great therapeutic potentials and wide occurrence in India the practitioners of traditional systems of medicine have been using Ocimum sanctum L. for curing various ailments, a rational approach to this traditional medical practice with modern system of medicine is, however, not much available. In order to establish the therapeutic uses of Ocimum sanctum L. in modern medicine, in last few decades several Indian scientists and researchers have studied the pharmacological effects of steam distilled, petroleum ether and benzene extracts of various parts of Tulsi plant and eugenol on immune system, reproductive system, central nervous system, cardiovascular system, gastric system, urinary system and blood biochemistry and have described the therapeutic significance of Tulsi in management of various ailments. These pharmacological studies have established a scientific basis for therapeutic uses of this plant.

  5. Adsorption of egg albumin onto methylated yeast biomass

    OpenAIRE

    Seki, Hideshi; Suzuki, Akira; Maruyama, Hideo

    2004-01-01

    A new biosorbent, methylated yeast (MeYE), was prepared for the adsorptive separation of proteins from aqueous solutions. Yeast was methylated in a 0.1 M HCl methyl alcohol solution at room temperature. About 80% of the carboxylic groups of yeast could be methylated within 9 h. The adsorption of egg albumin to MeYE was studied to evaluate the protein adsorption ability of MeYE. At near neutral pH, egg albumin was scarcely adsorbed to unmethylated yeast and the adsorption amount of egg albumin...

  6. Detection of DNA Methylation by Whole-Genome Bisulfite Sequencing.

    Science.gov (United States)

    Li, Qing; Hermanson, Peter J; Springer, Nathan M

    2018-01-01

    DNA methylation plays an important role in the regulation of the expression of transposons and genes. Various methods have been developed to assay DNA methylation levels. Bisulfite sequencing is considered to be the "gold standard" for single-base resolution measurement of DNA methylation levels. Coupled with next-generation sequencing, whole-genome bisulfite sequencing (WGBS) allows DNA methylation to be evaluated at a genome-wide scale. Here, we described a protocol for WGBS in plant species with large genomes. This protocol has been successfully applied to assay genome-wide DNA methylation levels in maize and barley. This protocol has also been successfully coupled with sequence capture technology to assay DNA methylation levels in a targeted set of genomic regions.

  7. Evaluation of microwave irradiation for analysis of carbonyl sulfide, carbon disulfide, cyanogen, ethyl formate, methyl bromide, sulfuryl fluoride, propylene oxide, and phosphine in hay.

    Science.gov (United States)

    Ren, Yonglin; Mahon, Daphne

    2007-01-10

    Fumigant residues in hay were "extracted" by microwave irradiation. Hay, in gastight glass flasks, was placed in a domestic microwave oven, and fumigants were released into the headspace by microwave irradiation. Power settings for maximum release of fumigants were determined for carbonyl sulfide (COS), carbon disulfide (CS(2)), cyanogen (C(2)N(2)), ethyl formate (EF), methyl bromide (CH(3)Br), sulfuryl fluoride (SF), propylene oxide (PPO), and phosphine (PH(3)). Recoveries of fortified samples were >91% for COS, CS(2), CH(3)Br, SF, PPO, and PH(3) and >76% for C(2)N(2) and EF. Completeness of extraction was assessed from the amount of fumigant retained by the microwaved hay. This amount was determined from further microwave irradiation and was always small (microwave method is rapid and solvent-free. However, care is required in selecting the appropriate power setting. The safety implications of heating sealed flasks in microwave ovens should be noted.

  8. Synthesis and biological evaluation of 2-(phenyl-3H-benzo[d]imidazole-5-carboxylic acids and its methyl esters as potent anti-breast cancer agents

    Directory of Open Access Journals (Sweden)

    Chandrabose Karthikeyan

    2017-05-01

    Full Text Available A series of novel substituted 2-(phenyl-3H-benzo[d]imidazole-5-carboxylic acids (1a–1j and its methyl esters (2a–2f were synthesized and examined for their antiproliferative effects against three breast cancer cell lines (MDA-MB231, MDA-MB468 and MCF7 in vitro. Most of the compounds exhibited comparable or greater antiproliferative effects than the reference compound cisplatin. Compound 2e bearing 5-fluoro-2-hydroxyphenyl substituent was found to be the most active derivative of the series with GI50 values of 6.23, 4.09 and 0.18 μM against MDA-MB468, MDA-MB231 and MCF7 breast cancer cell lines, respectively. Our findings described here exemplify the usefulness of the title compounds as a lead for the development of more effective cancer therapeutics for the treatment of breast cancer.

  9. Synthesis, radiolabeling and evaluation of novel amine guanidine derivatives as potential positron emission tomography tracers for the ion channel of the N-methyl-d-aspartate receptor.

    Science.gov (United States)

    Klein, Pieter J; Chomet, Marion; Metaxas, Athanasios; Christiaans, Johannes A M; Kooijman, Esther; Schuit, Robert C; Lammertsma, Adriaan A; van Berckel, Bart N M; Windhorst, Albert D

    2016-08-08

    The N-Methyl-d-Aspartate receptor (NMDAR) is involved in many neurological and psychiatric disorders including Alzheimer's disease and schizophrenia. The aim of this study was to develop a positron emission tomography (PET) ligand to assess the bio-availability of the NMDAR ion channel in vivo. A series of tri-N-substituted diarylguanidines was synthesized and their in vitro binding affinities for the NMDAR ion channel assessed in rat forebrain membrane fractions. Compounds 21, 23 and 26 were radiolabeled with either carbon-11 or fluorine-18 and ex vivo biodistribution and metabolite studies were performed in Wistar rats. Biodistribution studies showed high uptake especially in prefrontal cortex and lowest uptake in cerebellum. Pre-treatment with MK-801, however, did not decrease uptake of the radiolabeled ligands. In addition, all three ligands showed fast metabolism. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. DNA methylation in an engineered heart tissue model of cardiac hypertrophy: common signatures and effects of DNA methylation inhibitors.

    Science.gov (United States)

    Stenzig, Justus; Hirt, Marc N; Löser, Alexandra; Bartholdt, Lena M; Hensel, Jan-Tobias; Werner, Tessa R; Riemenschneider, Mona; Indenbirken, Daniela; Guenther, Thomas; Müller, Christian; Hübner, Norbert; Stoll, Monika; Eschenhagen, Thomas

    2016-01-01

    DNA methylation affects transcriptional regulation and constitutes a drug target in cancer biology. In cardiac hypertrophy, DNA methylation may control the fetal gene program. We therefore investigated DNA methylation signatures and their dynamics in an in vitro model of cardiac hypertrophy based on engineered heart tissue (EHT). We exposed EHTs from neonatal rat cardiomyocytes to a 12-fold increased afterload (AE) or to phenylephrine (PE 20 µM) and compared DNA methylation signatures to control EHT by pull-down assay and DNA methylation microarray. A 7-day intervention sufficed to induce contractile dysfunction and significantly decrease promoter methylation of hypertrophy-associated upregulated genes such as Nppa (encoding ANP) and Acta1 (α-skeletal actin) in both intervention groups. To evaluate whether pathological consequences of AE are affected by inhibiting de novo DNA methylation we applied AE in the absence and presence of DNA methyltransferase (DNMT) inhibitors: 5-aza-2'-deoxycytidine (aza, 100 µM, nucleosidic inhibitor), RG108 (60 µM, non-nucleosidic) or methylene disalicylic acid (MDSA, 25 µM, non-nucleosidic). Aza had no effect on EHT function, but RG108 and MDSA partially prevented the detrimental consequences of AE on force, contraction and relaxation velocity. RG108 reduced AE-induced Atp2a2 (SERCA2a) promoter methylation. The results provide evidence for dynamic DNA methylation in cardiac hypertrophy and warrant further investigation of the potential of DNA methylation in the treatment of cardiac hypertrophy.

  11. Effect of eugenol on the mutagenicity of benzo[a]pyrene and the formation of benzo[a]pyrene-DNA adducts in the X-lacZ-transgenic mouse.

    NARCIS (Netherlands)

    Rompelberg, C.J.M.; Steenwinkel, M.J.S.T.; Asten, J.G. van; Delft, J.H.M. van; Baan, R.A.; Verhagen, H.

    1996-01-01

    To study the possible reduction by eugenol of the mutagenicity and genotoxicity of benzoja]pyrene (B[a]P) in vivo, the X-lacZ-transgenic mouse strain 40.6 (Muta(TM)Mouse) was used. Male mice were fed a diet containing 0.4% (w/w) eugenol or a control diet for 58 days. On day 10, half of the mice

  12. RARβ gene methylation is a candidate for primary glioblastoma ...

    African Journals Online (AJOL)

    Background: We screened RARβ methylation in primary glioblastoma multiforme (GBM) and the results were evaluated based on the clinical data and treatment type. Objective: The objective of this study was to find new areas for the usage of MS HRM applications in the determination of methylation levels in primary GBM ...

  13. DNA methylation in obesity

    Directory of Open Access Journals (Sweden)

    Małgorzata Pokrywka

    2014-11-01

    Full Text Available The number of overweight and obese people is increasing at an alarming rate, especially in the developed and developing countries. Obesity is a major risk factor for diabetes, cardiovascular disease, and cancer, and in consequence for premature death. The development of obesity results from the interplay of both genetic and environmental factors, which include sedentary life style and abnormal eating habits. In the past few years a number of events accompanying obesity, affecting expression of genes which are not directly connected with the DNA base sequence (e.g. epigenetic changes, have been described. Epigenetic processes include DNA methylation, histone modifications such as acetylation, methylation, phosphorylation, ubiquitination, and sumoylation, as well as non-coding micro-RNA (miRNA synthesis. In this review, the known changes in the profile of DNA methylation as a factor affecting obesity and its complications are described.

  14. Apoptosis and DNA Methylation

    Directory of Open Access Journals (Sweden)

    Richard R. Meehan

    2011-04-01

    Full Text Available Epigenetic mechanisms assist in maintaining gene expression patterns and cellular properties in developing and adult tissues. The molecular pathology of disease states frequently includes perturbation of DNA and histone methylation patterns, which can activate apoptotic pathways associated with maintenance of genome integrity. This perspective focuses on the pathways linking DNA methyltransferases and methyl-CpG binding proteins to apoptosis, and includes new bioinformatic analyses to characterize the evolutionary origin of two G/T mismatch-specific thymine DNA glycosylases, MBD4 and TDG.

  15. Mark-release-recapture experiments on the effectiveness of Methyl Eugenol-Spinosad male annihilation technique against an invading population of Bactrocera dorsalis

    Science.gov (United States)

    This paper describes the results of experiments compare two numbers of lure/insecticide spots per unit area upon detection of invading fruit flies. If the number of spots could be reduced with the same killing ability, then materials, labor, and time could be spared without compromising safety. Surp...

  16. Preprocessing differential methylation hybridization microarray data

    Directory of Open Access Journals (Sweden)

    Sun Shuying

    2011-05-01

    Full Text Available Abstract Background DNA methylation plays a very important role in the silencing of tumor suppressor genes in various tumor types. In order to gain a genome-wide understanding of how changes in methylation affect tumor growth, the differential methylation hybridization (DMH protocol has been developed and large amounts of DMH microarray data have been generated. However, it is still unclear how to preprocess this type of microarray data and how different background correction and normalization methods used for two-color gene expression arrays perform for the methylation microarray data. In this paper, we demonstrate our discovery of a set of internal control probes that have log ratios (M theoretically equal to zero according to this DMH protocol. With the aid of this set of control probes, we propose two LOESS (or LOWESS, locally weighted scatter-plot smoothing normalization methods that are novel and unique for DMH microarray data. Combining with other normalization methods (global LOESS and no normalization, we compare four normalization methods. In addition, we compare five different background correction methods. Results We study 20 different preprocessing methods, which are the combination of five background correction methods and four normalization methods. In order to compare these 20 methods, we evaluate their performance of identifying known methylated and un-methylated housekeeping genes based on two statistics. Comparison details are illustrated using breast cancer cell line and ovarian cancer patient methylation microarray data. Our comparison results show that different background correction methods perform similarly; however, four normalization methods perform very differently. In particular, all three different LOESS normalization methods perform better than the one without any normalization. Conclusions It is necessary to do within-array normalization, and the two LOESS normalization methods based on specific DMH internal

  17. Whole-genome methylation caller designed for methyl-DNA ...

    African Journals Online (AJOL)

    DNA methylation is an indispensable epigenetic modification required for regulating the expression of mammalian genomes. Continued efforts have been made to unravel the methylation states genome-wide, featuring the methyl-DNA immunoprecipitation (MeDIP) coupled with next-generation sequencing. Our method ...

  18. Laser capture microdissection as a tool to evaluate human papillomavirus genotyping and methylation as biomarkers of persistence and progression of anal lesions

    Science.gov (United States)

    Cornall, Alyssa M; Roberts, Jennifer M; Molano, Monica; Machalek, Dorothy A; Phillips, Samuel; Hillman, Richard J; Grulich, Andrew E; Jin, Fengyi; Poynten, I Mary; Templeton, David J; Garland, Suzanne M; Tabrizi, Sepehr N

    2015-01-01

    Introduction Anal squamous cell carcinoma is preceded by persistent infection with high-risk human papillomavirus (HPV) and the cancer precursor, high-grade squamous intraepithelial lesion (HSIL). Detection of specific HPV genotypes and HPV-related biomarkers may be an option for primary anal screening. However, more data on the natural history of HPV-related anal lesions are required. The outcomes from this study will enhance our understanding of the clinical and biological behaviour of HPV-related anal lesions and inform the development of future HPV genotype and/or biomarker screening tests. Methods and analysis HIV-negative and HIV-positive men who have sex with men, aged 35 years and over, recruited from community-based settings in Sydney, Australia, attend 6 clinic visits over 3 years. At the first 5 visits, participants undergo a digital anorectal examination, an anal swab for HPV genotyping and anal cytology, and high-resolution anoscopy with directed biopsy of any visible abnormalities that are suggestive of any abnormality suspicious of SIL. Tissue sections from participants diagnosed with histologically confirmed HSIL at the baseline clinic visit will undergo laser capture microdissection, HPV detection and genotyping, and quantitation of CpG methylation in baseline and follow-up biopsies. Histological and cytological findings in combination with HPV genotyping data will be used to identify persistent HSIL. HSIL will be stratified as non-persistent and persistent based on their status at 12 months. The performance of HPV genotype and methylation status in predicting disease persistence at 12 months will be assessed, along with associations with HIV status and other covariates such as age. Ethics and dissemination The St Vincent's Hospital Ethics Committee granted ethics approval for the study. Written informed consent is obtained from all individuals before any study-specific procedures are performed. Findings from this study will be disseminated

  19. Ternary liquid-liquid equilibrium for eugenol + tert-butanol + water system at 303.15 and 323.15K and atmospheric pressure

    Science.gov (United States)

    Sucipto, Retno Kumala Hesti; Kuswandi, Wibawa, Gede

    2017-05-01

    The objective of this study was to determine ternary liquid-liquid equilibrium for eugenol + tert-butanol + water system at 303.15 and 323.15K and atmospheric pressure. Using 25 mL equilibrium cell equipped jacketted water connected to water bath to maintain equilibrium temperature constant. The procedure of this experiment was conducted by inserting mixture of eugenol + tert-butanol + water system at certain composition into equilibrium cell. The solution was stirred for 4 hours and then was allowed for 20 hours in order to separate aqueous and organic phases completely. The temperature equilibrium cell of and the atmosphere pressure were recorded as equilibrium temperature and pressure for each measurenment. The equilibrium compositions of each phase were analyzed using Gas Chromatography. The experimental data obtained in this work were correlated with NRTL and UNIQUAC models with root mean square deviation between esperimental and calculated equilibrium compositions of 0.03% and 0.04% respectively.

  20. Methylated β-Cyclodextrins

    DEFF Research Database (Denmark)

    Schönbeck, Jens Christian Sidney; Westh, Peter; Madsen, Jens Christian

    2011-01-01

    groups at O2 promote complexation by extending the hydrophobic cavity. Like in the case of 2-hydroxypropylated cyclodextrins, the methyl substituents cause an increased release of ordered water from the hydration shell of the bile salts, resulting in a strong increase in both the enthalpy and the entropy...

  1. DNA Methylation and Cancer Diagnosis

    Science.gov (United States)

    Delpu, Yannick; Cordelier, Pierre; Cho, William C.; Torrisani, Jérôme

    2013-01-01

    DNA methylation is a major epigenetic modification that is strongly involved in the physiological control of genome expression. DNA methylation patterns are largely modified in cancer cells and can therefore be used to distinguish cancer cells from normal tissues. This review describes the main technologies available for the detection and the discovery of aberrantly methylated DNA patterns. It also presents the different sources of biological samples suitable for DNA methylation studies. We discuss the interest and perspectives on the use of DNA methylation measurements for cancer diagnosis through examples of methylated genes commonly documented in the literature. The discussion leads to our consideration for why DNA methylation is not commonly used in clinical practice through an examination of the main requirements that constitute a reliable biomarker. Finally, we describe the main DNA methylation inhibitors currently used in clinical trials and those that exhibit promising results. PMID:23873296

  2. Reduction of Salmonella enterica Serovar Enteritidis Colonization in 20-Day-Old Broiler Chickens by the Plant-Derived Compounds trans-Cinnamaldehyde and Eugenol

    OpenAIRE

    Kollanoor-Johny, Anup; Mattson, Tyler; Baskaran, Sangeetha Ananda; Amalaradjou, Mary Anne; Babapoor, Sankhiros; March, Benjamin; Valipe, Satyender; Darre, Michael; Hoagland, Thomas; Schreiber, David; Khan, Mazhar I.; Donoghue, Ann; Donoghue, Dan; Venkitanarayanan, Kumar

    2012-01-01

    The efficacies of trans-cinnamaldehyde (TC) and eugenol (EG) for reducing Salmonella enterica serovar Enteritidis colonization in broiler chickens were investigated. In three experiments for each compound, 1-day-old chicks (n = 75/experiment) were randomly assigned to five treatment groups (n = 15/treatment group): negative control (-ve S. Enteritidis, -ve TC, or EG), compound control (-ve S. Enteritidis, +ve 0.75% [vol/wt] TC or 1% [vol/wt] EG), positive control (+ve S. Enteritidis, -ve TC, ...

  3. Density functional theory analysis and molecular docking evaluation of 1-(2, 5-dichloro-4-sulfophenyl)-3-methyl-5-pyrazolone as COX2 inhibitor against inflammatory diseases

    Science.gov (United States)

    Kavitha, T.; Velraj, G.

    2017-08-01

    The molecular structure of 1-(2, 5-Dichloro-4-Sulfophenyl)-3-Methyl-5-Pyrazolone (DSMP) was optimized using DFT/B3LYP/6-31++G(d,p) level and its corresponding experimental as well as theoretical FT-IR, FT-Raman vibrational frequencies and UV-Vis spectral analysis were carried out. The vibrational assignments and total energy distributions of each vibration were presented with the aid of Veda 4xx software. The molecular electrostatic potential, HOMO-LUMO energies, global and local reactivity descriptors and natural bond orbitals were analyzed in order to find the most possible reactive sites of the molecule and it was found that DSMP molecule possess enhanced nucleophilic activity. One of the common known COX2 inhibitor, celecoxib (CXB) was also found to exhibit similar reactivity properties and hence DSMP was also expected to inhibit COX enzymes. In order to detect the COX inhibition nature of DSMP, molecular docking analysis was carried out with the help of Autodock software. For that, the optimized structure was in turn used for docking DSMP with COX enzymes. The binding energy scores and inhibitory constant values reveal that the DSMP molecule possess good binding affinity and low inhibition constant towards COX2 enzyme and hence it can be used as an anti-inflammatory drug after carrying out necessary biological tests.

  4. Synthesis and biological evaluation of 1-(4-[{sup 18}f]fluorobenzyl)-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]piperidine for in vivo studies of acetylcholinesterase

    Energy Technology Data Exchange (ETDEWEB)

    Leea, Sang-Yoon; Choe, Yearn Seong E-mail: yschoe@samsung.co.kr; Sugimoto, Hachiro; Kim, Sang Eun; Hwang, Sae Hwan; Lee, Kyung-Han; Choi, Yong; Lee, Jeewoo; Kim, Byung-Tae

    2000-11-01

    We synthesized and evaluated 1-(4-fluorobenzyl)-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]piperidine (4-FDP), which is an analog of donepezil. The 4-[{sup 18}F]FDP was prepared by reductive alkylation of debenzylated donepezil with 4-[{sup 18}F]fluorobenzaldehyde in high radiochemical yield (decay-corrected, 40-52%) and with high effective specific activity (30-38 GBq/{mu}mol). Tissue distribution studies in mice demonstrated nonspecific distribution of the 4-[{sup 18}F]FDP in brain regions, suggesting that this radioligand may not be a suitable agent for in vivo studies of acetylcholinesterase (AChE), despite its potent in vitro biological activity.

  5. Synthesis and characterization of poly(methyl methacrylate-co-vinyl acetate) and its evaluation as filtrate reducer; Sintese e caracterizacao de poli(metacrilato de metila-co-acetato de vinila) e sua avaliacao como redutor de filtrado

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Rita de Cassia P.; Pires, Renata V.; Segtovich, Iuri V.; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas, Laboratorio de Macromoleculas e Coloides na Industria de Petroleo, (UFRJ), RJ (Brazil)], e-mail: repires@ima.ufrj.br

    2011-07-01

    The drilling of petroleum well is extremely important and requires the use of suitable drilling fluids in order to ensure an efficient operation without causing rock damage. Specific polymers have been used in controlling infiltration during drilling, ensuring the operation success. In this work, spherical microparticles of poly(methyl methacrylate-co-vinyl acetate) (PMMA-VAc), prepared by suspension polymerization, were evaluated in terms of their performance in controlling filtrate loss of aqueous fluids. A filter press test with ceramic disc, simulating the rock, was used. The performance of the synthesized materials was compared to that of commercial polymers. It was observed that the performance of the material is directly associated to the relation between particle size and pore size of rock specimen. Furthermore, when the particle size is suitable, the rubbery characteristic of the material produces a more efficient filter cake, for filtrate control. (author)

  6. Methylation pattern of IFNG in periapical granulomas and radicular cysts.

    Science.gov (United States)

    Campos, Kelma; Gomes, Carolina Cavaliéri; de Fátima Correia-Silva, Jeane; Farias, Lucyana Conceição; Fonseca-Silva, Thiago; Bernardes, Vanessa Fátima; Pereira, Cláudia Maria; Gomez, Ricardo Santiago

    2013-04-01

    Interferon-γ plays an important role in the pathogenesis of periapical lesions, and the methylation of IFNG has been associated with transcriptional inactivation. The purpose of the present study was to investigate IFNG promoter methylation in association with gene transcription and protein levels in periapical granulomas and radicular cysts. Methylation-specific polymerase chain reaction was used to assess the DNA methylation pattern of the IFNG gene in 16 periapical granulomas and 13 radicular cyst samples. The transcription levels of IFNG mRNA were verified by quantitative real-time polymerase chain reaction, and protein expression was evaluated by immunohistochemistry. All the periapical lesion samples exhibited partial or total methylation of the IFNG gene. In addition, an increased methylation profile was found in radicular cysts compared with periapical granulomas. Increased IFNG mRNA expression was observed in the partially methylated periapical lesion samples relative to the samples that were completely methylated. The present study provides the first evidence of the possible impact of IFNG methylation on IFNG transcription in periapical lesions. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Aberration of p73 Promoter Methylation in Chondrosarcoma.

    Science.gov (United States)

    Liu, Pei; Garbutt, Cassandra; Hornicek, Francis J; Liu, Fuyun; Duan, Zhenfeng

    2017-06-01

    p73 is a tumor-suppressor gene with significant homology to p53. Abnormal promoter methylation of p73 is present in different types of cancer. However, the promoter methylation status of p73 in chondrosarcoma (CS) is unknown. p73 promoter methylation status was evaluated by quantitative polymerase chain reaction (PCR), p73 protein expression by western blot, and the relationship between p73 methylation and clinical data was analyzed. In 42 tumor tissues with CS, we found that three cases (7%) maintained methylation levels between 51% and 75%, and 39 cases (93%) had levels between 76% and 100%. p73 methylation level was significantly (p<0.05) positively associated with histological grade. Loss of p73 protein expression was correlated with high methylation of the p73 promoter; p73 expression was restored after exposure to a demethylating drug. p73 is epigenetically silenced in CS due to promoter methylation, which suggests the utility of p73 methylation as a biomarker. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Health profiles of methyl bromide applicators in greenhouses in Turkey.

    Science.gov (United States)

    Akca, Ergonen Toprak; Serpil, Salacin; Sezer, Uysal; Ozlem, Eminoglu; Ayşe, Gelal; Canan, Coker; Hakan, Baydur; Ozgur, Karcioglu; Banu, Onvural; Hulya, Guven

    2009-08-01

    Methyl bromide is a toxic substance that has hazardous effects on human health with acute and chronic exposure. Our previous study showed that methyl bromide applicators frequently use large amounts of methyl bromide haphazardly in greenhouses in the prefectures of Narlidere and Balcova in the Aegean city of Izmir. This study aims to evaluate the health conditions of these workers. Our previous study showed that there are 38 methyl bromide applicators in our study area. After the informed consent of methyl bromide applicators was obtained, a questionnaire was used for a survey of demography and symptoms. Each subject was examined before and after application of the compound. Blood and urine samples were collected and stored. Blood samples were analysed for methyl bromide and bromide ion, kidney and liver function tests and lipid profile. The age range of subjects was 19 to 53 years (mean age: 41 +/- 8.57). This study showed that methyl bromide applicators use large amounts of methyl bromide disregarding legal regulations and that some of them had nonspecific complaints. Subjects had been working as methyl bromide applicators for approximately 9.7 +/- 4.15 years. A total of 69.7% of methyl bromide applicators reported that they did not use protective equipment while 33.3% of them had a history of acute methyl bromide intoxication. A statistically significant relationship was found between the usage of protective equipment and the level of blood bromide ion in the blood (P <0.05). Usage of methyl bromide, training, screening and follow-up of applicators must be rigorously controlled in accordance with national legal arrangements and international protocols. Greater efforts are required in the implementation of controls to achieve the targets set by the legal regulations and to ensure continual improvement in the limitation of the risks of this environmental hazard.

  9. DNA methylation-based variation between human populations.

    Science.gov (United States)

    Kader, Farzeen; Ghai, Meenu

    2017-02-01

    Several studies have proved that DNA methylation affects regulation of gene expression and development. Epigenome-wide studies have reported variation in methylation patterns between populations, including Caucasians, non-Caucasians (Blacks), Hispanics, Arabs, and numerous populations of the African continent. Not only has DNA methylation differences shown to impact externally visible characteristics, but is also a potential biomarker for underlying racial health disparities between human populations. Ethnicity-related methylation differences set their mark during early embryonic development. Genetic variations, such as single-nucleotide polymorphisms and environmental factors, such as age, dietary folate, socioeconomic status, and smoking, impacts DNA methylation levels, which reciprocally impacts expression of phenotypes. Studies show that it is necessary to address these external influences when attempting to differentiate between populations since the relative impacts of these factors on the human methylome remain uncertain. The present review summarises several reported attempts to establish the contribution of differential DNA methylation to natural human variation, and shows that DNA methylation could represent new opportunities for risk stratification and prevention of several diseases amongst populations world-wide. Variation of methylation patterns between human populations is an exciting prospect which inspires further valuable research to apply the concept in routine medical and forensic casework. However, trans-generational inheritance needs to be quantified to decipher the proportion of variation contributed by DNA methylation. The future holds thorough evaluation of the epigenome to understand quantification, heritability, and the effect of DNA methylation on phenotypes. In addition, methylation profiling of the same ethnic groups across geographical locations will shed light on conserved methylation differences in populations.

  10. Eugenol-rich Fraction of Syzygium aromaticum (Clove) Reverses Biochemical and Histopathological Changes in Liver Cirrhosis and Inhibits Hepatic Cell Proliferation.

    Science.gov (United States)

    Ali, Shakir; Prasad, Ram; Mahmood, Amena; Routray, Indusmita; Shinkafi, Tijjani Salihu; Sahin, Kazim; Kucuk, Omer

    2014-12-01

    Dried flower bud of Syzygium aromaticum (clove) is rich in eugenol, an antioxidant and antiinflammatory compound that can protect liver against injury. Clove, besides eugenol, also contains other pharmacologically active phytochemicals such as β-sitosterol and ascorbic acid. This study reports the effect of eugenol-rich fraction (ERF) of clove on liver cirrhosis induced by thioacetamide. Cirrhosis of the liver, which predisposes to hepatocellular carcinoma, was induced by administering thioacetamide (0.03%) in drinking water for 16 weeks. Cirrhotic animals were divided into two groups; the treated group was administered ERF for 9 weeks, one week after discontinuation of thioacetamide, while the other group received normal saline for a similar duration of time. The treatment with ERF, as determined by histopathology and through a battery of biochemical markers of hepatic injury, oxidative stress and drug metabolizing enzymes, significantly ameliorated the signs of liver cirrhosis. It lowered the elevated levels of alkaline phosphatase, γ-glutamyl transferase and other biochemical changes in liver cirrhosis. Histopathology of the liver corroborated the effect of ERF with biochemical findings. ERF treatment further inhibited cell proliferation, as demonstrated by reduced [(3)H]-thymidine uptake. Data provide evidence supporting the protective action of ERF on liver cirrhosis. The study assumes significance because cirrhosis predisposes the liver to cancer, which is characterized by abnormal cell proliferation. ERF in this study is reported to inhibit hepatic cell proliferation and at the same time decrease oxidative stress, which might be the mechanism of protection against liver cirrhosis.

  11. Effects and mechanisms of eugenol, isoeugenol, coniferylaldehyde and dihydroeugenol on the riboflavin-sensitized photooxidation of α-terpinene in methanol.

    Science.gov (United States)

    Lee, Ju Yeon; Jung, Mun Yhung

    2017-04-01

    The effects of eugenol, isoeugenol, coniferylaldehyde, and dihydroeugenol on the riboflavin-sensitized photooxidation of α-terpinene in methanol were studied. Riboflavin greatly accelerated α-terpinene oxidation in methanol during light illumination, resulting in two major oxidation products (p-cymene and ascaridole). The results clearly showed the involvement of Type I and II mechanisms. All the eugenols exerted strong protective activity on riboflavin sensitized photooxidation of α-terpinene. Dihydroeugenol showed the highest protective activity, followed by isoeugenol, coniferylaldehyde, and eugenol, in a decreasing order. Dihydroeugenol greatly inhibited the production of ascaridole, but showed relatively low inhibitory activity on the formation of p-cymene. The protective activity of dihydroeugenol was higher than those of BHA, BHT and sodium azide. Sodium azide, a specific singlet oxygen quencher, showed strong inhibitory activity on the formation of ascaridole, but very low inhibitory activity on the formation of p-cymene, verifying the feasibility of mechanism study with the present model system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Cytotoxicity and anti-inflammatory effects of zinc ions and eugenol during setting of ZOE in immortalized human oral keratinocytes grown as three-dimensional spheroids.

    Science.gov (United States)

    Lee, Jung-Hwan; Lee, Hae-Hyoung; Kim, Kyoung-Nam; Kim, Kwang-Mahn

    2016-05-01

    The objective of this study is to assess the cytotoxic and anti-inflammatory effects of ZOE cement during setting in two-dimensional (2D) or three-dimensional (3D) cultures of immortalized human oral keratinocytes (IHOKs) with determining the extract components responsible for these effects. Extracts of mixed ZOE at different stages of setting were analyzed by a digital pH meter, ICP-MS, and GC-MS. Serial concentrations of extract and their mixture of ZnCl2, ZnSO4·H2O, and eugenol liquid were added to the 2D and 3D IHOK cultures to determine the half maximal effective concentration in investigating the cause of cytotoxicity by means of WST assay and to investigate mRNA expression levels of inflammatory cytokines by RT-PCR. Zn(2+) and eugenol (4-19 ppm) were detected in the extracts. In the early setting stage, significant cytotoxicity was observed in the 2D and 3D IHOK cultures (Peugenol was not detectable under 100 ppm. Along with the lower levels of inflammatory cytokine gene expressions in the extract, treatment of the 2D IHOKs with Zn(2+) alone and treatment of the 3D IHOKs with Zn(2+) plus eugenol resulted in significantly lower expression levels of IL-1β, IL-6, and IL-8 (Peugenol. Cytotoxic and anti-inflammatory effects differed between the 2D and 3D IHOK cultures. Copyright © 2016. Published by Elsevier Ltd.

  13. Reproducibility of methylated CpG typing with the Illumina MiSeq

    DEFF Research Database (Denmark)

    Kampmann, Marie-Louise; Meyer, Olivia Strunge; Greby Schmidt, Suzanne

    2017-01-01

    DNA methylation patterns may be used for identification of body fluids and for age estimation of human individuals. We evaluated some of the challenges and pitfalls of studying methylated CpG sites. We compared the methylated CpG analysis of two different methods 1) massively parallel sequencing...