WorldWideScience

Sample records for evaluate carbon based

  1. Evaluation of Ankistrodesmus falcatus for Bicarbonate-Based Integrated Carbon Capture System (BICCAPS

    Directory of Open Access Journals (Sweden)

    Beltran Arnel B.

    2018-01-01

    Full Text Available This study evaluates the performance of alkaliphilic microalgae Ankistrodesmus falcatus in the Bicarbonate-based Integrated Carbon Capture and Algae Production System (BICCAPS. The system utilized bicarbonate as carbon source for microalgae production. BICCAPS parameters such as pH, algal biomass productivity and CO2 utilization (inorganic carbon conversion, Ci were observed at different sodium bicarbonate (NaHCO3 loading concentration and type of culture media. The highest productivity was observed at 10 g/L of NaHCO3 loading in BRSP medium at 3.5539 mg/L/day. This value is 30% lower compared to the control experiment (continuously aerated bioreactor. The Ci values of the different system ranges from 1.17 x 10-4 to 1.51 x 10-4 moles/L/day. Both the pH of the BRSP and NPK media at 10 g/L and 30g/L loading of NaHCO3 increased through time. The result shows that A. falcatus has a potential in BICCAPS utilization.

  2. Carbon nanotube based stationary phases for microchip chromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kutter, Jörg Peter

    2012-01-01

    already been demonstrated in more classical formats, for improved separation performance in gas and liquid chromatography, and for unique applications in solid phase extraction. Carbon nanotubes are now also entering the field of microfluidics, where there is a large potential to be able to provide......The objective of this article is to provide an overview and critical evaluation of the use of carbon nanotubes and related carbon-based nanomaterials for microchip chromatography. The unique properties of carbon nanotubes, such as a very high surface area and intriguing adsorptive behaviour, have...... integrated, tailor-made nanotube columns by means of catalytic growth of the nanotubes inside the fluidic channels. An evaluation of the different implementations of carbon nanotubes and related carbon-based nanomaterials for microfluidic chromatography devices is given in terms of separation performance...

  3. Evaluation of thermo-mechanical properties data of carbon-based plasma facing materials

    International Nuclear Information System (INIS)

    Ulrickson, M.; Barabash, V.R.; Matera, R.; Roedig, M.; Smith, J.J.; Janev, R.K.

    1991-03-01

    This Report contains the proceedings, results and conclusions of the work done and the analysis performed during the IAEA Consultants' Meeting on ''Evaluation of thermo-mechanical properties data of carbon-based plasma facing materials'', convened on December 17-21, 1990, at the IAEA Headquarters in Vienna. Although the prime objective of the meeting was to critically assess the available thermo-mechanical properties data for certain types of carbon-based fusion relevant materials, the work of the meeting went well beyond this task. The meeting participants discussed in depth the scope and structure of the IAEA material properties database, the format of data presentation, the most appropriate computerized system for data storage, retrieval, exchange and management. The existing IAEA ALADDIN system was adopted as a convenient tool for this purpose and specific ALADDIN labelling schemes and dictionaries were established for the material properties data. An ALADDIN formatted test-file for the thermo-physical and thermo-mechanical properties of pyrolytic graphite is appended to this Report for illustrative purposes. (author)

  4. Evaluation of Carbon Nanotubes Functionalized Polydimethylsiloxane Based Coatings for In-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography

    OpenAIRE

    Neus Jornet-Martínez; Pascual Serra-Mora; Yolanda Moliner-Martínez; Rosa Herráez-Hernández; Pilar Campíns-Falcó

    2015-01-01

    In the present work, the performance of carbon nanotubes (c-CNTs) functionalized polydimethylsiloxane (PDMS) based coatings as extractive phases for in-tube solid phase microextraction (IT-SPME) coupled to Capillary LC (CapLC) has been evaluated. Carboxylic-single walled carbon nanotubes (c-SWNTs) and carboxylic-multi walled carbon nanotubes (c-MWNTs) have been immobilized on the activated surface of PDMS capillary columns. The effect of different percentages of diphenyl groups in the PDMS ex...

  5. Carbon emission analysis and evaluation of industrial departments in China: An improved environmental DEA cross model based on information entropy.

    Science.gov (United States)

    Han, Yongming; Long, Chang; Geng, Zhiqiang; Zhang, Keyu

    2018-01-01

    Environmental protection and carbon emission reduction play a crucial role in the sustainable development procedure. However, the environmental efficiency analysis and evaluation based on the traditional data envelopment analysis (DEA) cross model is subjective and inaccurate, because all elements in a column or a row of the cross evaluation matrix (CEM) in the traditional DEA cross model are given the same weight. Therefore, this paper proposes an improved environmental DEA cross model based on the information entropy to analyze and evaluate the carbon emission of industrial departments in China. The information entropy is applied to build the entropy distance based on the turbulence of the whole system, and calculate the weights in the CEM of the environmental DEA cross model in a dynamic way. The theoretical results show that the new weight constructed based on the information entropy is unique and optimal globally by using the Monte Carlo simulation. Finally, compared with the traditional environmental DEA and DEA cross model, the improved environmental DEA cross model has a better efficiency discrimination ability based on the data of industrial departments in China. Moreover, the proposed model can obtain the potential of carbon emission reduction of industrial departments to improve the energy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Base Carbone. Documentation about the emission factors of the Base CarboneR database

    International Nuclear Information System (INIS)

    2014-01-01

    The Base Carbone R is a public database of emission factors as required for carrying out carbon accounting exercises. It is administered by ADEME, but its governance involves many stakeholders and it can be added to freely. The articulation and convergence of environmental regulations requires data homogenization. The Base Carbone R proposes to be this centralized data source. Today, it is the reference database for article 75 of the Grenelle II Act. It is also entirely consistent with article L1341-3 of the French Transport Code and the default values of the European emission quotas exchange system. The data of the Base Carbone R can be freely consulted by all. Furthermore, the originality of this tool is that it enables third parties to propose their own data (feature scheduled for February 2015). These data are then assessed for their quality and transparency, then validated or refused for incorporation in the Base Carbone R . Lastly, a forum (planned for February 2015) will enable users to ask questions about the data, or to contest the data. The administration of the Base Carbone R is handled by ADEME. However, its orientation and the data that it contains are validated by a governance committee incorporating various public and private stakeholders. Lastly, transparency is one of the keystones of the Base Carbone R . Documentation details the hypotheses underlying the construction of all the data in the base, and refers to the studies that have enabled their construction. This document brings together the different versions of the Base Carbone R documentation: the most recent version (v11.5) and the previous versions (v11.0) which is shared in 2 parts dealing with the general case and with the specific case of overseas territories

  7. Carbon dioxide utilization in a microalga-based biorefinery: Efficiency of carbon removal and economic performance under carbon taxation.

    Science.gov (United States)

    Wiesberg, Igor Lapenda; Brigagão, George Victor; de Medeiros, José Luiz; de Queiroz Fernandes Araújo, Ofélia

    2017-12-01

    Coal-fired power plants are major stationary sources of carbon dioxide and environmental constraints demand technologies for abatement. Although Carbon Capture and Storage is the most mature route, it poses severe economic penalty to power generation. Alternatively, this penalty is potentially reduced by Carbon Capture and Utilization, which converts carbon dioxide to valuable products, monetizing it. This work evaluates a route consisting of carbon dioxide bio-capture by Chlorella pyrenoidosa and use of the resulting biomass as feedstock to a microalgae-based biorefinery; Carbon Capture and Storage route is evaluated as a reference technology. The integrated arrangement comprises: (a) carbon dioxide biocapture in a photobioreactor, (b) oil extraction from part of the produced biomass, (b) gasification of remaining biomass to obtain bio-syngas, and (c) conversion of bio-syngas to methanol. Calculation of capital and operational expenditures are estimated based on mass and energy balances obtained by process simulation for both routes (Carbon Capture and Storage and the biorefinery). Capital expenditure for the biorefinery is higher by a factor of 6.7, while operational expenditure is lower by a factor of 0.45 and revenues occur only for this route, with a ratio revenue/operational expenditure of 1.6. The photobioreactor is responsible for one fifth of the biorefinery capital expenditure, with footprint of about 1000 ha, posing the most significant barrier for technical and economic feasibility of the proposed biorefinery. The Biorefinery and Carbon Capture and Storage routes show carbon dioxide capture efficiency of 73% and 48%, respectively, with capture cost of 139$/t and 304$/t. Additionally, the biorefinery has superior performance in all evaluated metrics of environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Variability of building environmental assessment tools on evaluating carbon emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ng, S. Thomas, E-mail: tstng@hkucc.hku.hk; Chen Yuan, E-mail: chenyuan4@gmail.com; Wong, James M.W., E-mail: jmwwong@hku.hk

    2013-01-15

    With an increasing importance of sustainability in construction, more and more clients and designers employ building environmental assessment (BEA) tools to evaluate the environmental friendliness of their building facilities, and one important aspect of evaluation in the BEA models is the assessment of carbon emissions. However, in the absence of any agreed framework for carbon auditing and benchmarking, the results generated by the BEA tools might vary significantly which could lead to confusion or misinterpretation on the carbon performance of a building. This study thus aims to unveil the properties of and the standard imposed by the current BEA models on evaluating the life cycle carbon emissions. The analyses cover the (i) weighting of energy efficiency and emission levels among various environmental performance indicators; (ii) building life cycle stages in which carbon is taken into consideration; (iii) objectiveness of assessment; (iv) baseline set for carbon assessment; (v) mechanism for benchmarking the emission level; and (v) limitations of the carbon assessment approaches. Results indicate that the current BEA schemes focus primarily on operational carbon instead of the emissions generated throughout the entire building life cycle. Besides, the baseline and benchmark for carbon evaluation vary significantly among the BEA tools based on the analytical results of a hypothetical building. The findings point to the needs for a more transparent framework for carbon auditing and benchmarking in BEA modeling. - Highlights: Black-Right-Pointing-Pointer Carbon emission evaluation in building environmental assessment schemes are studied. Black-Right-Pointing-Pointer Simulative carbon emission is modeled for building environmental assessment schemes. Black-Right-Pointing-Pointer Carbon assessments focus primarily on operational stage instead of entire lifecycle. Black-Right-Pointing-Pointer Baseline and benchmark of carbon assessment vary greatly among BEA

  9. Variability of building environmental assessment tools on evaluating carbon emissions

    International Nuclear Information System (INIS)

    Ng, S. Thomas; Chen Yuan; Wong, James M.W.

    2013-01-01

    With an increasing importance of sustainability in construction, more and more clients and designers employ building environmental assessment (BEA) tools to evaluate the environmental friendliness of their building facilities, and one important aspect of evaluation in the BEA models is the assessment of carbon emissions. However, in the absence of any agreed framework for carbon auditing and benchmarking, the results generated by the BEA tools might vary significantly which could lead to confusion or misinterpretation on the carbon performance of a building. This study thus aims to unveil the properties of and the standard imposed by the current BEA models on evaluating the life cycle carbon emissions. The analyses cover the (i) weighting of energy efficiency and emission levels among various environmental performance indicators; (ii) building life cycle stages in which carbon is taken into consideration; (iii) objectiveness of assessment; (iv) baseline set for carbon assessment; (v) mechanism for benchmarking the emission level; and (v) limitations of the carbon assessment approaches. Results indicate that the current BEA schemes focus primarily on operational carbon instead of the emissions generated throughout the entire building life cycle. Besides, the baseline and benchmark for carbon evaluation vary significantly among the BEA tools based on the analytical results of a hypothetical building. The findings point to the needs for a more transparent framework for carbon auditing and benchmarking in BEA modeling. - Highlights: ► Carbon emission evaluation in building environmental assessment schemes are studied. ► Simulative carbon emission is modeled for building environmental assessment schemes. ► Carbon assessments focus primarily on operational stage instead of entire lifecycle. ► Baseline and benchmark of carbon assessment vary greatly among BEA schemes. ► A more transparent and comprehensive framework for carbon assessment is required.

  10. Carbon Nanotube Paper-Based Electroanalytical Devices

    Directory of Open Access Journals (Sweden)

    Youngmi Koo

    2016-04-01

    Full Text Available Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT array, grown using chemical vapor deposition (CVD, was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT sheet to a thin CNT sheet. A 200-layered HA-CNT sheet and a 100-layered HA-CNT sheet are explored as a working electrode. The device was fabricated using the following methods: (1 cellulose-based paper was patterned using a wax printer, (2 electrical connection was made using a silver ink-based circuit printer, and (3 three electrodes were stacked on a 2D Origami cell. Electrochemical behavior was evaluated using electrochemical impedance spectroscopy (EIS and cyclic voltammetry (CV. We believe that this platform could attract a great deal of interest for use in various chemical and biomedical applications.

  11. Satellite Based Cropland Carbon Monitoring System

    Science.gov (United States)

    Bandaru, V.; Jones, C. D.; Sedano, F.; Sahajpal, R.; Jin, H.; Skakun, S.; Pnvr, K.; Kommareddy, A.; Reddy, A.; Hurtt, G. C.; Izaurralde, R. C.

    2017-12-01

    Agricultural croplands act as both sources and sinks of atmospheric carbon dioxide (CO2); absorbing CO2 through photosynthesis, releasing CO2 through autotrophic and heterotrophic respiration, and sequestering CO2 in vegetation and soils. Part of the carbon captured in vegetation can be transported and utilized elsewhere through the activities of food, fiber, and energy production. As well, a portion of carbon in soils can be exported somewhere else by wind, water, and tillage erosion. Thus, it is important to quantify how land use and land management practices affect the net carbon balance of croplands. To monitor the impacts of various agricultural activities on carbon balance and to develop management strategies to make croplands to behave as net carbon sinks, it is of paramount importance to develop consistent and high resolution cropland carbon flux estimates. Croplands are typically characterized by fine scale heterogeneity; therefore, for accurate carbon flux estimates, it is necessary to account for the contribution of each crop type and their spatial distribution. As part of NASA CMS funded project, a satellite based Cropland Carbon Monitoring System (CCMS) was developed to estimate spatially resolved crop specific carbon fluxes over large regions. This modeling framework uses remote sensing version of Environmental Policy Integrated Climate Model and satellite derived crop parameters (e.g. leaf area index (LAI)) to determine vertical and lateral carbon fluxes. The crop type LAI product was developed based on the inversion of PRO-SAIL radiative transfer model and downscaled MODIS reflectance. The crop emergence and harvesting dates were estimated based on MODIS NDVI and crop growing degree days. To evaluate the performance of CCMS framework, it was implemented over croplands of Nebraska, and estimated carbon fluxes for major crops (i.e. corn, soybean, winter wheat, grain sorghum, alfalfa) grown in 2015. Key findings of the CCMS framework will be presented

  12. Carbon dioxide conversion over carbon-based nanocatalysts.

    Science.gov (United States)

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.

  13. Functional materials based on carbon nanotubes: Carbon nanotube actuators and noncovalent carbon nanotube modification

    Science.gov (United States)

    Fifield, Leonard S.

    Carbon nanotubes have attractive inherent properties that encourage the development of new functional materials and devices based on them. The use of single wall carbon nanotubes as electromechanical actuators takes advantage of the high mechanical strength, surface area and electrical conductivity intrinsic to these molecules. The work presented here investigates the mechanisms that have been discovered for actuation of carbon nanotube paper: electrostatic, quantum chemical charge injection, pneumatic and viscoelastic. A home-built apparatus for the measurement of actuation strain is developed and utilized in the investigation. An optical fiber switch, the first demonstrated macro-scale device based on the actuation of carbon nanotubes, is described and its performance evaluated. Also presented here is a new general process designed to modify the surface of carbon nanotubes in a non-covalent, non-destructive way. This method can be used to impart new functionalities to carbon nanotube samples for a variety of applications including sensing, solar energy conversion and chemical separation. The process described involves the achievement of large degrees of graphitic surface coverage with polycyclic aromatic hydrocarbons through the use of supercritical fluids. These molecules are bifunctional agents that anchor a desired chemical group to the aromatic surface of the carbon nanotubes without adversely disrupting the conjugated backbone that gives rise the attractive electronic and physical properties of the nanotubes. Both the nanotube functionalization work and the actuator work presented here emphasize how an understanding and control of nanoscale structure and phenomena can be of vital importance in achieving desired performance for active materials. Opportunities for new devices with improved function over current state-of-the-art can be envisioned and anticipated based on this understanding and control.

  14. Using measurements for evaluation of black carbon modeling

    Directory of Open Access Journals (Sweden)

    S. Gilardoni

    2011-01-01

    Full Text Available The ever increasing use of air quality and climate model assessments to underpin economic, public health, and environmental policy decisions makes effective model evaluation critical. This paper discusses the properties of black carbon and light attenuation and absorption observations that are the key to a reliable evaluation of black carbon model and compares parametric and nonparametric statistical tools for the quantification of the agreement between models and observations. Black carbon concentrations are simulated with TM5/M7 global model from July 2002 to June 2003 at four remote sites (Alert, Jungfraujoch, Mace Head, and Trinidad Head and two regional background sites (Bondville and Ispra. Equivalent black carbon (EBC concentrations are calculated using light attenuation measurements from January 2000 to December 2005. Seasonal trends in the measurements are determined by fitting sinusoidal functions and the representativeness of the period simulated by the model is verified based on the scatter of the experimental values relative to the fit curves. When the resolution of the model grid is larger than 1° × 1°, it is recommended to verify that the measurement site is representative of the grid cell. For this purpose, equivalent black carbon measurements at Alert, Bondville and Trinidad Head are compared to light absorption and elemental carbon measurements performed at different sites inside the same model grid cells. Comparison of these equivalent black carbon and elemental carbon measurements indicates that uncertainties in black carbon optical properties can compromise the comparison between model and observations. During model evaluation it is important to examine the extent to which a model is able to simulate the variability in the observations over different integration periods as this will help to identify the most appropriate timescales. The agreement between model and observation is accurately described by the overlap of

  15. Economic Evaluations for the Carbon Dioxide-involved Production of High-value Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hyun; Lee, Dong Woog; Jang, Se Gyu; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo [KEPCO Research Institute, Daejon (Korea, Republic of); Choi, Jong Shin [Korea East-West Power Co. LTD, Seoul (Korea, Republic of)

    2014-06-15

    Economic evaluation of the manufacturing technology of high-value chemicals through the carbonation reaction of carbon dioxide contained in the flue gas was performed, and analysis of the IRR (Internal Rate of Return) and whole profit along the production plan of the final product was conducted. Through a carbonation reaction with sodium hydroxide that is generated from electrolysis and by using carbon dioxide in the combustion gas that is generated in the power plant, it is possible to get a high value products such as sodium bicarbonate compound and also to reduce the carbon dioxide emission simultaneously. The IRR (Internal Rate of Return) and NPV (Net Present Value) methods were used for the economic evaluation of the process which could handle carbon dioxide of 100 tons per day in the period of the 20 years of plant operation. The results of economic evaluation showed that the IRR of baseline case of technology was 67.2% and the profit that obtained during the whole operation period (20 years) was 346,922 million won based on NPV value. When considering ETS due to the emissions trading enforcement that will be activated in 2015, the NPV was improved to a 6,000 million won. Based on this results, it could be concluded that this CO2 carbonation technology is an cost-effective technology option for the reduction of greenhouse gas.

  16. Economic Evaluations for the Carbon Dioxide-involved Production of High-value Chemicals

    International Nuclear Information System (INIS)

    Lee, Ji Hyun; Lee, Dong Woog; Jang, Se Gyu; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo; Choi, Jong Shin

    2014-01-01

    Economic evaluation of the manufacturing technology of high-value chemicals through the carbonation reaction of carbon dioxide contained in the flue gas was performed, and analysis of the IRR (Internal Rate of Return) and whole profit along the production plan of the final product was conducted. Through a carbonation reaction with sodium hydroxide that is generated from electrolysis and by using carbon dioxide in the combustion gas that is generated in the power plant, it is possible to get a high value products such as sodium bicarbonate compound and also to reduce the carbon dioxide emission simultaneously. The IRR (Internal Rate of Return) and NPV (Net Present Value) methods were used for the economic evaluation of the process which could handle carbon dioxide of 100 tons per day in the period of the 20 years of plant operation. The results of economic evaluation showed that the IRR of baseline case of technology was 67.2% and the profit that obtained during the whole operation period (20 years) was 346,922 million won based on NPV value. When considering ETS due to the emissions trading enforcement that will be activated in 2015, the NPV was improved to a 6,000 million won. Based on this results, it could be concluded that this CO2 carbonation technology is an cost-effective technology option for the reduction of greenhouse gas

  17. Shenzhen International Low Carbon City in Development: Practice of Low Carbon Planning Technology Strategy Based on Dynamic Demands

    Institute of Scientific and Technical Information of China (English)

    Yu; Han; Li; Caige

    2016-01-01

    Targeted at the dynamic demands in the rapid urban construction, the planning technology strategy of the Shenzhen International Low Carbon City studies the fl exible index model based on carbon emission evaluation, and adopts rolling development and micro-circulation construction mode to achieve quick returns with small investment. Meanwhile, it also evaluates the application of low carbon technology and gives feedback in time, so as to constantly optimize and complete the low carbon city planning. In detail, it involves industrial planning, ecological restoration, transport planning, energy resource planning, architectural design, etc., for which appropriate approaches are selected according to the principle of rolling development of unit cells and based on different requirements of different stages. The quick-response and fl exible technology system can help the low carbon city to choose an appropriate technology strategy in line with its own characteristics in the start-up stage and rapid development, thus realizing the sustainable leap-forward development and providing reference for other similar regions.

  18. Shenzhen International Low Carbon City in Development: Practice of Low Carbon Planning Technology Strategy Based on Dynamic Demands

    Institute of Scientific and Technical Information of China (English)

    Yu Han; Li Caige

    2016-01-01

    Targeted at the dynamic demands in the rapid urban construction,the planning technology strategy of the Shenzhen International Low Carbon City studies the flexible index model based on carbon emission evaluation,and adopts rolling development and micro-circulation construction mode to achieve quick returns with small investment.Meanwhile,it also evaluates the application of low carbon technology and gives feedback in time,so as to constantly optimize and complete the low carbon city planning.In detail,it involves industrial planning,ecological restoration,transport planning,energy resource planning,architectural design,etc.,for which appropriate approaches are selected according to the principle of rolling development of unit cells and based on different requirements of different stages.The quick-response and flexible technology system can help the low carbon city to choose an appropriate technology strategy in line with its own characteristics in the start-up stage and rapid development,thus realizing the sustainable leap-forward development and providing reference for other similar regions.

  19. Carbon Based Nanotechnology: Review

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1999-01-01

    This presentation reviews publicly available information related to carbon based nanotechnology. Topics covered include nanomechanics, carbon based electronics, nanodevice/materials applications, nanotube motors, nano-lithography and H2O storage in nanotubes.

  20. Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances

    International Nuclear Information System (INIS)

    Patthanaissaranukool, Withida; Polprasert, Chongchin; Englande, Andrew J.

    2013-01-01

    Highlights: ► We evaluate energy and carbon equivalence from CPO production based on a CBM. ► Energy spent and produced via carbon movement from palm oil mill was determined. ► Scenarios were formulated to evaluate the potential reduction of carbon emission. ► Utilization of biomass from palm oil mill shows the high potential of C-reduction. -- Abstract: This study aimed to evaluate energy and carbon equivalences (CE) associated with palm oil milling and to evaluate sustainability alternatives for energy consumption. Appropriate ways to reduce carbon emissions were also evaluated. A field survey was carried out to quantify the input and output of energy and materials following the conceptual framework of a carbon-balanced model (CBM), which exclude other non-CO 2 greenhouse gases. Survey results indicate that the electrical energy consumption for daily mill start-up averaged 18.7 ± 5.4 kWh/ton Fresh Fruit Bunches (FFBs). This energy is equivalent to 114.4 ± 33.2 kWh/ton Crude Palm Oil (CPO) which was found to be offset by that generated in the mills using palm fiber as a solid fuel. Currently, organic residues contained in the wastewater are anaerobically converted to methane. The methane is used as fuel to generate electricity and sold to an outside grid network at a generation rate of 8.1 ± 2.1 kWh/ton FFB. Based on the CBM approach, carbon emissions observed from the use of fossil energy in palm oil milling were very small; however, total carbon emission from oil palm plantation and palm oil milling were found to be 12.3 kg CE/ton FFB, resulting in the net carbon reduction in CPO production of 2.8 kg CE/ton FFB or 53.7 kg CE/ha-y. Overall, the sum of C-reduction was found 1.2 times greater than that of C-emission. This figure can be increased up to 5.5, if all biomass by-products are used as fuel to generate electricity only. The full potential for carbon reduction from palm oil milling is estimated at 0.94 kW of electric power for every hectare of

  1. An Evaluation of the Low-Carbon Effects of Urban Rail Based on Mode Shifts

    Directory of Open Access Journals (Sweden)

    Feng Chen

    2017-03-01

    Full Text Available Urban rail is widely considered to be a form of low-carbon green transportation, but there is a lack of specific quantitative research to support this. By comparing the mode, distance, and corresponding energy consumption of residents before and after the opening of rail transit, this paper establishes a carbon reduction method for rail transit. A measurement model takes the passenger carbon emissions before the line is opened as the baseline and compares them with the standard after the opening, determining the carbon emissions reduction. The model requires a combination of a large amount of research data, transit smart card data, and GIS network measurement tools as measured data and parameters. The model is then applied to rail transit lines that have opened in Beijing in recent years. The emissions reductions of four different routes are estimated and the carbon emissions reduction effect of rail transit is evaluated.

  2. Thermo-mechanical evaluation of carbon-carbon primary structure for SSTO vehicles

    Science.gov (United States)

    Croop, Harold C.; Lowndes, Holland B.; Hahn, Steven E.; Barthel, Chris A.

    1998-01-01

    An advanced development program to demonstrate carbon-carbon composite structure for use as primary load carrying structure has entered the experimental validation phase. The component being evaluated is a wing torque box section for a single-stage-to-orbit (SSTO) vehicle. The validation or demonstration component features an advanced carbon-carbon design incorporating 3D woven graphite preforms, integral spars, oxidation inhibited matrix, chemical vapor deposited (CVD) oxidation protection coating, and ceramic matrix composite fasteners. The validation component represents the culmination of a four phase design and fabrication development effort. Extensive developmental testing was performed to verify material properties and integrity of basic design features before committing to fabrication of the full scale box. The wing box component is now being set up for testing in the Air Force Research Laboratory Structural Test Facility at Wright-Patterson Air Force Base, Ohio. One of the important developmental tests performed in support of the design and planned testing of the full scale box was the fabrication and test of a skin/spar trial subcomponent. The trial subcomponent incorporated critical features of the full scale wing box design. This paper discusses the results of the trial subcomponent test which served as a pathfinder for the upcoming full scale box test.

  3. Initial Provincial Allocation and Equity Evaluation of China’s Carbon Emission Rights—Based on the Improved TOPSIS Method

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2018-03-01

    Full Text Available As the world’s largest carbon emitter, China considers carbon emissions trading to be an important measure in its national strategy for energy conservation and emissions reduction. The initial allocation of China’s carbon emissions rights at the provincial level is a core issue of carbon emissions trading. A scientific and reasonable distinction between the carbon emission rights of provinces is crucial for China to achieve emissions reduction targets. Based on the idea of multi-objective decision-making, this paper uses the improved Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS method to allocate China’s initial carbon emission rights to the provinces and uses the Gini coefficient sub-group decomposition method to evaluate the fairness of the allocation results. First, the results of a theoretical distribution show that in the initial allocation of carbon emission rights, a large proportion of China’s provinces have large populations and high energy use, such as Shandong Province, Jiangsu Province, Hebei Province and Henan Province; the provinces with a small proportion of the initial allocation of carbon emissions consist of two municipalities, Beijing and Shanghai, as well as Hainan Province, which is dominated by tourism. Overall, the initial allocation of carbon emission rights in the northern and eastern regions constituted the largest proportion, with the south-central region and the northwest region being the second largest and the southwest region being the smallest. Second, the difference between the theoretical allocation and the actual allocation of carbon emission rights in China was clear. The energy consumption of large provinces and provinces dominated by industry generally had a negative difference (the theoretical allocation of carbon emissions was less than the actual value, while Qinghai, dominated by agriculture and animal husbandry, showed a positive balance (the theoretical allocation of

  4. A study on the nondestructive evaluation of carbon/carbon disk using ultrasonics

    International Nuclear Information System (INIS)

    Im, Kwang Hee; Yang, In Young; Jeong, Hyun Jo

    1998-01-01

    It is useful to perform nondestructive evaluation (NDE) to assess material properties and part homogeneity for carbon/carbon (C/C) composites because the manufacturing of C/C brake disks requires complicated and costly processes. In this work several ultrasonic techniques were applied to attributable to the manufacturing process. In a carbon/carbon brake disk manufactured by a combination of pitch impregnation and CVI(Vapor infiltration method), the spatial variation of ultrasonic velocity was measured and found to be consistent with the nonuniform densification behavior in the manufacturing process. Low frequency(5 MHz) through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. These results were compared with those obtained by dry-coupling ultrasonics. A good correlation was found between ultrasonic velocity and material density on a set of small blocks cut out of the disk. Pulse-echo C-scans at higher frequency (25 MHz) were used to image near-sulfate material property anomalies associated with certain steps in the manufacturing process, such as the placement of spacers between disks during the final CVI.

  5. 1km Global Terrestrial Carbon Flux: Estimations and Evaluations

    Science.gov (United States)

    Murakami, K.; Sasai, T.; Kato, S.; Saito, M.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.

    2017-12-01

    Estimating global scale of the terrestrial carbon flux change with high accuracy and high resolution is important to understand global environmental changes. Furthermore the estimations of the global spatiotemporal distribution may contribute to the political and social activities such as REDD+. In order to reveal the current state of terrestrial carbon fluxes covering all over the world and a decadal scale. The satellite-based diagnostic biosphere model is suitable for achieving this purpose owing to observing on the present global land surface condition uniformly at some time interval. In this study, we estimated the global terrestrial carbon fluxes with 1km grids by using the terrestrial biosphere model (BEAMS). And we evaluated our new carbon flux estimations on various spatial scales and showed the transition of forest carbon stocks in some regions. Because BEAMS required high resolution meteorological data and satellite data as input data, we made 1km interpolated data using a kriging method. The data used in this study were JRA-55, GPCP, GOSAT L4B atmospheric CO2 data as meteorological data, and MODIS land product as land surface satellite data. Interpolating process was performed on the meteorological data because of insufficient resolution, but not on MODIS data. We evaluated our new carbon flux estimations using the flux tower measurement (FLUXNET2015 Datasets) in a point scale. We used 166 sites data for evaluating our model results. These flux sites are classified following vegetation type (DBF, EBF, ENF, mixed forests, grass lands, croplands, shrub lands, Savannas, wetlands). In global scale, the BEAMS estimations was underestimated compared to the flux measurements in the case of carbon uptake and release. The monthly variations of NEP showed relatively high correlations in DBF and mixed forests, but the correlation coefficients of EBF, ENF, and grass lands were less than 0.5. In the meteorological factors, air temperature and solar radiation showed

  6. Evaluation of Carbon Nanotubes Functionalized Polydimethylsiloxane Based Coatings for In-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Neus Jornet-Martínez

    2015-08-01

    Full Text Available In the present work, the performance of carbon nanotubes (c-CNTs functionalized polydimethylsiloxane (PDMS based coatings as extractive phases for in-tube solid phase microextraction (IT-SPME coupled to Capillary LC (CapLC has been evaluated. Carboxylic-single walled carbon nanotubes (c-SWNTs and carboxylic-multi walled carbon nanotubes (c-MWNTs have been immobilized on the activated surface of PDMS capillary columns. The effect of different percentages of diphenyl groups in the PDMS extractive phase has also been evaluated. The extraction capability of the capillary columns has been tested for different organic pollutants, nitrogen heterocyclic compounds and polycyclic aromatic compounds (PAHs. The results indicated that the use of the c-CNTs-PDMS capillary columns improve pyriproxyfen and mainly PAH extraction. Triazines were better extracted by unmodified TRB-35 and modified c-CNTs-PDMSTRB-5. The results showed that the extraction capability of the c-CNT capillary columns depends not only on the polarity of the analytes (as it occurs with PDMS columns but also on the interactions that the analytes can establish with the immobilized c-CNTs on the PDMS columns. The extraction efficiency has been evaluated on the basis of the preconcentration rate that can be achieved, and, in this sense, the best c-CNTs-PDMS capillary column for each group of compounds can be proposed.

  7. Carbon-based sputtered coatings for enhanced chitosan-based films properties

    Science.gov (United States)

    Fernandes, C.; Calderon V., S.; Ballesteros, Lina F.; Cerqueira, Miguel A.; Pastrana, L. M.; Teixeira, José A.; Ferreira, P. J.; Carvalho, S.

    2018-03-01

    In order to make bio-based packaging materials competitive in comparison to petroleum-based one, some of their properties need to be improved, among which gas permeability is of crucial importance. Thus, in this work, carbon-based coatings were applied on chitosan-based films by radiofrequency reactive magnetron sputtering aiming to improve their barrier properties. Chemical and morphological properties were evaluated in order to determine the effect of the coatings on the chemical structure, surface hydrophobicity and barrier properties of the system. Chemical analysis, performed by electron energy loss spectroscopy and Fourier transform infrared spectroscopy, suggests similar chemical characteristics among all coatings although higher incorporation of hydrogen as the acetylene flux increases was observed. On the other hand, scanning transmission electron microscopy revealed that the porosity of the carbon layer can be tailored by the acetylene flux. More importantly, the chitosan oxygen permeability showed a monotonic reduction as a function of the acetylene flux. This study opens up new opportunities to apply nanostructured coatings on bio-based polymer for enhanced oxygen barrier properties.

  8. Evaluation of kerma in carbon and the carbon cross sections

    International Nuclear Information System (INIS)

    Axton, E.J.

    1992-02-01

    A preliminary simultaneous least squares fit to measurements of kerma in carbon, and carbon cross sections taken from the ENDF/B-V file was carried out. In the calculation the shapes of the total cross section and the various partial cross sections were rigid but their absolute values were allowed to float in the fit within the constraints of the ENDF/B-V uncertainties. The construction of the ENDF/B-V file imposed improbable shapes, particularly in the case of the (12)C(n,n'3(alpha)) reaction, which were incompatible with direct measurements of kerma and of the reaction cross sections. Consequently a new evaluation of the cross section data became necessary. Since the available time was limited the new evaluation concentrated particularly on those aspects of the ENDF/B-V carbon file which would have most impact on kerma calculations. Following the new evaluation of cross sections new tables of kerma factors were produced. Finally, the simultaneous least squares fit to measurements of kerma and the new cross section file was repeated

  9. Evaluating the role of cogeneration for carbon management in Alberta

    International Nuclear Information System (INIS)

    Doluweera, G.H.; Jordaan, S.M.; Moore, M.C.; Keith, D.W.; Bergerson, J.A.

    2011-01-01

    Developing long-term carbon control strategies is important in energy intensive industries such as the oil sands operations in Alberta. We examine the use of cogeneration to satisfy the energy demands of oil sands operations in Alberta in the context of carbon management. This paper evaluates the role of cogeneration in meeting Provincial carbon management goals and discusses the arbitrary characteristics of facility- and product-based carbon emissions control regulations. We model an oil sands operation that operates with and without incorporated cogeneration. We compare CO 2 emissions and associated costs under different carbon emissions control regulations, including the present carbon emissions control regulation of Alberta. The results suggest that incorporating cogeneration into the growing oil sands industry could contribute in the near-term to reducing CO 2 emissions in Alberta. This analysis also shows that the different accounting methods and calculations of electricity offsets could lead to very different levels of incentives for cogeneration. Regulations that attempt to manage emissions on a product and facility basis may become arbitrary and complex as regulators attempt to approximate the effect of an economy-wide carbon price. - Highlights: ► We assess the effectiveness of cogeneration for carbon management in Alberta. ► Cogeneration can offset a significant portion of Alberta's high carbon electricity. ► CO 2 reduction potential of cogeneration may be higher if installed immediately. ► Product based policies should approximate the effect of an economy-wide policy.

  10. Evaluation of ammonia modified and conventionally activated biomass based carbons as CO2 adsorbents in postcombustion conditions

    OpenAIRE

    González Plaza, Marta; García López, Susana; Rubiera González, Fernando; Pis Martínez, José Juan; Pevida García, Covadonga

    2011-01-01

    Low cost carbons obtained from biomass residues, olive stones and almond shells, were evaluated as CO2 adsorbents in postcombustion conditions (low CO2 partial pressure). These carbons were prepared from biomass chars by means of two different methods: physical activation with CO2 and amination. All the prepared carbons present a high CO2 adsorption capacity at 303 K, although carbons developed from almond shells show a superior CO2/N2 selectivity (lower N2 adsorption) than those obtained fro...

  11. All-solid-state carbonate-selective electrode based on screen-printed carbon paste electrode

    International Nuclear Information System (INIS)

    Li, Guang; Lyu, Xiaofeng; Wang, Zhan; Rong, Yuanzhen; Hu, Ruifen; Wang, You; Luo, Zhiyuan

    2017-01-01

    A novel disposable all-solid-state carbonate-selective electrode based on a screen-printed carbon paste electrode using poly(3-octylthiophene-2,5-diyl) (POT) as an ion-to-electron transducer has been developed. The POT was dropped onto the reaction area of the carbon paste electrode covered by the poly(vinyl chloride) (PVC) membrane, which contains N,N-Dioctyl-3 α ,12 α -bis(4-trifluoroacetylbenzoyloxy)-5 β -cholan-24-amide as a carbonate ionophore. The electrode showed a near-Nernstian slope of  −27.5 mV/decade with a detection limit of 3.6 * 10 −5 mol l −1 . Generally, the detection time was 30 s. Because these electrodes are fast, convenient and low in cost, they have the potential to be mass produced and used in on-site testing as disposable sensors. Furthermore, the repeatability, reproducibility and stability have been studied to evaluate the properties of the electrodes. Measurement of the carbonate was also conducted in a human blood solution and achieved good performance. (paper)

  12. Purity Evaluation of Bulk Single Wall Carbon Nanotube Materials

    International Nuclear Information System (INIS)

    Dettlaff-Weglikowska, U.; Hornbostel, B.; Cech, J.; Roth, S.; Wang, J.; Liang, J.

    2005-01-01

    We report on our experience using a preliminary protocol for quality control of bulk single wall carbon nanotube (SWNT) materials produced by the electric arc-discharge and laser ablation method. The first step in the characterization of the bulk material is mechanical homogenization. Quantitative evaluation of purity has been performed using a previously reported procedure based on solution phase near-infrared spectroscopy. Our results confirm that this method is reliable in determining the nanotube content in the arc-discharge sample containing carbonaceous impurities (amorphous carbon and graphitic particles). However, the application of this method to laser ablation samples gives a relative purity value over 100 %. The possible reason for that might be different extinction coefficient meaning different oscillator strength of the laser ablation tubes. At the present time, a 100 % pure reference sample of laser ablation SWNT is not available, so we chose to adopt the sample showing the highest purity as a new reference sample for a quantitative purity evaluation of laser ablation materials. The graphitic part of the carbonaceous impurities has been estimated using X-ray diffraction of 1:1 mixture of nanotube material and C60 as an internal reference. To evaluate the metallic impurities in the as prepared and homogenized carbon nanotube soot inductive coupled plasma (ICP) has been used

  13. Construction and applied research of low-carbon building evaluation index system

    Science.gov (United States)

    Liu, Zhongwen; Dong, Xiaohong; Gao, Pengzhao

    2017-04-01

    Energy conservation in building is a key link on alleviating energy-deficient contradiction, improving the quality of human life environment, and realizing sustainable development in our country. In this paper, we construct low-carbon building evaluation index system and evaluation method from five aspects—low-carbon structure, low-carbon materials, low-carbon energy, low-carbon technology and low-carbon management. Finally, taking “Solar Valley” in Dezhou as an example, we make the evaluation to its situation of low-carbon building.

  14. Carbon based prosthetic devices

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, D.J.; Carroll, D.W.; Barbero, R.S.; Archuleta, T. [Los Alamos National Lab., NM (US); Klawitter, J.J.; Ogilvie, W.; Strzepa, P. [Ascension Orthopedics (US); Cook, S.D. [Tulane Univ., New Orleans, LA (US). School of Medicine

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to evaluate the use of carbon/carbon-fiber-reinforced composites for use in endoprosthetic devices. The application of these materials for the metacarpophalangeal (MP) joints of the hand was investigated. Issues concerning mechanical properties, bone fixation, biocompatibility, and wear are discussed. A system consisting of fiber reinforced materials with a pyrolytic carbon matrix and diamond-like, carbon-coated wear surfaces was developed. Processes were developed for the chemical vapor infiltration (CVI) of pyrolytic carbon into porous fiber preforms with the ability to tailor the outer porosity of the device to provide a surface for bone in-growth. A method for coating diamond-like carbon (DLC) on the articulating surface by plasma-assisted chemical vapor deposition (CVD) was developed. Preliminary results on mechanical properties of the composite system are discussed and initial biocompatibility studies were performed.

  15. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars).

    Science.gov (United States)

    Harvey, Omar R; Kuo, Li-Jung; Zimmerman, Andrew R; Louchouarn, Patrick; Amonette, James E; Herbert, Bruce E

    2012-02-07

    The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R(50), for assessing biochar quality for carbon sequestration is proposed. The R(50) is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R(50), with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R(50) and biochar recalcitrance. As presented here, the R(50) is immediately applicable to pre-land application screening of biochars into Class A (R(50) ≥ 0.70), Class B (0.50 ≤ R(50) carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, whereas Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R(50), to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.

  16. Optimization evaluation of cutting technology based on mechanical parts

    Science.gov (United States)

    Wang, Yu

    2018-04-01

    The relationship between the mechanical manufacturing process and the carbon emission is studied on the basis of the process of the mechanical manufacturing process. The formula of carbon emission calculation suitable for mechanical manufacturing process is derived. Based on this, a green evaluation method for cold machining process of mechanical parts is proposed. The application verification and data analysis of the proposed evaluation method are carried out by an example. The results show that there is a great relationship between the mechanical manufacturing process data and carbon emissions.

  17. Evaluation of the potential for operating carbon neutral WWTPs in China.

    Science.gov (United States)

    Hao, Xiaodi; Liu, Ranbin; Huang, Xin

    2015-12-15

    Carbon neutrality is starting to become a hot topic for wastewater treatment plants (WWTPs) all over the world, and carbon neutral operations have emerged in some WWTPs. Although China is still struggling to control its water pollution, carbon neutrality will definitely become a top priority for WWTPs in the near future. In this review, the potential for operating carbon neutral WWTPs in China is technically evaluated. Based on the A(2)/O process of a typical municipal WWTP, an evaluation model is first configured, which couples the COD/nutrient removals (mass balance) with the energy consumption/recovery (energy balance). This model is then applied to evaluate the potential of the organic (COD) energy with regards to carbon neutrality. The model's calculations reveal that anaerobic digestion of excess sludge can only provide some 50% of the total amount of energy consumption. Water source heat pumps (WSHP) can effectively convert the thermal energy contained in wastewater to heat WWTPs and neighbourhood buildings, which can supply a net electrical equivalency of 0.26 kWh when 1 m(3) of the effluent is cooled down by 1 °C. Photovoltaic (PV) technology can generate a limited amount of electricity, barely 10% of the total energy consumption. Moreover, the complexity of installing solar panels on top of tanks makes PV technology almost not worth the effort. Overall, therefore, organic and thermal energy sources can effectively supply enough electrical equivalency for China to approach to its target with regards to carbon neutral operations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Energy Utilization Evaluation of Carbon Performance in Public Projects by FAHP and Cloud Model

    Directory of Open Access Journals (Sweden)

    Lin Li

    2016-07-01

    Full Text Available With the low-carbon economy advocated all over the world, how to use energy reasonably and efficiently in public projects has become a major issue. It has brought many open questions, including which method is more reasonable in evaluating the energy utilization of carbon performance in public projects when the evaluation information is fuzzy; whether an indicator system can be constructed; and which indicators have more impact on carbon performance. This article aims to solve these problems. We propose a new carbon performance evaluation system for energy utilization based on project processes (design, construction, and operation. Fuzzy Analytic Hierarchy Process (FAHP is used to accumulate the indicator weights and cloud model is incorporated when the indicator value is fuzzy. Finally, we apply our indicator system to a case study of the Xiangjiang River project in China, which demonstrates the applicability and efficiency of our method.

  19. Directed graph based carbon flow tracing for demand side carbon obligation allocation

    DEFF Research Database (Denmark)

    Sun, Tao; Feng, Donghan; Ding, Teng

    2016-01-01

    In order to achieve carbon emission abatement, some researchers and policy makers have cast their focus on demand side carbon abatement potentials. This paper addresses the problem of carbon flow calculation in power systems and carbon obligation allocation at demand side. A directed graph based...... method for tracing carbon flow is proposed. In a lossy network, matrices such as carbon losses, net carbon intensity (NCI) and footprint carbon intensity (FCI) are obtained with the proposed method and used to allocate carbon obligation at demand side. Case studies based on realistic distribution...... and transmission systems are provided to demonstrate the effectiveness of the proposed method....

  20. Evaluation of a new carbon/zirconia-based sorbent for the cleanup of food extracts in multiclass analysis of pesticides and environmental contaminants

    Science.gov (United States)

    A novel carbon/zirconia based material, SupelTM QuE Verde (Verde), was evaluated in a filter-vial dispersive solid phase extraction (d-SPE) cleanup of QuEChERS extracts of pork, salmon, kale, and avocado for residual analysis of pesticides and environmental contaminants. Low pressure (LP) GC-MS/MS w...

  1. An Empirical Study on Low-Carbon: Human Resources Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Quan Chen

    2018-01-01

    Full Text Available Low-carbon logistics meets the requirements of a low-carbon economy and is the most effective operating model for logistic development to achieve sustainability by coping with severe energy consumption and global warming. Low-carbon logistics aims to reduce carbon intensity rather than simply reduce energy consumption and carbon emissions. Human resources are an important part of the great competition in the logistics market and significantly affect the operations of enterprises. Performance evaluations of human resources are particularly important for low-carbon logistics enterprises with scarce talents. Such evaluations in these enterprises are of great significance for their strategic development. This study constructed a human resource performance evaluation system to assess non-managerial employees’ low-carbon job capacity, job performance, and job attitude in the low-carbon logistics sector. The case study results revealed that the investigated company enjoyed initial success after having promoted low-carbon concepts and values to its non-managerial employees, and the success was demonstrated by excellent performance in its employees’ job attitude and knowledge. This study adopts the AHP method to reasonably determine an indicator system of performance evaluation and its weight to avoid certain human-caused bias. This study not only fills the gap in the related literature, but can also be applied to industrial practice.

  2. An Empirical Study on Low-Carbon: Human Resources Performance Evaluation

    Science.gov (United States)

    Chen, Quan; Tsai, Sang-Bing; Zhou, Jie; Yu, Jian; Chang, Li-Chung; Li, Guodong; Zheng, Yuxiang; Wang, Jiangtao

    2018-01-01

    Low-carbon logistics meets the requirements of a low-carbon economy and is the most effective operating model for logistic development to achieve sustainability by coping with severe energy consumption and global warming. Low-carbon logistics aims to reduce carbon intensity rather than simply reduce energy consumption and carbon emissions. Human resources are an important part of the great competition in the logistics market and significantly affect the operations of enterprises. Performance evaluations of human resources are particularly important for low-carbon logistics enterprises with scarce talents. Such evaluations in these enterprises are of great significance for their strategic development. This study constructed a human resource performance evaluation system to assess non-managerial employees’ low-carbon job capacity, job performance, and job attitude in the low-carbon logistics sector. The case study results revealed that the investigated company enjoyed initial success after having promoted low-carbon concepts and values to its non-managerial employees, and the success was demonstrated by excellent performance in its employees’ job attitude and knowledge. This study adopts the AHP method to reasonably determine an indicator system of performance evaluation and its weight to avoid certain human-caused bias. This study not only fills the gap in the related literature, but can also be applied to industrial practice. PMID:29301375

  3. An Empirical Study on Low-Carbon: Human Resources Performance Evaluation.

    Science.gov (United States)

    Chen, Quan; Tsai, Sang-Bing; Zhai, Yuming; Zhou, Jie; Yu, Jian; Chang, Li-Chung; Li, Guodong; Zheng, Yuxiang; Wang, Jiangtao

    2018-01-03

    Low-carbon logistics meets the requirements of a low-carbon economy and is the most effective operating model for logistic development to achieve sustainability by coping with severe energy consumption and global warming. Low-carbon logistics aims to reduce carbon intensity rather than simply reduce energy consumption and carbon emissions. Human resources are an important part of the great competition in the logistics market and significantly affect the operations of enterprises. Performance evaluations of human resources are particularly important for low-carbon logistics enterprises with scarce talents. Such evaluations in these enterprises are of great significance for their strategic development. This study constructed a human resource performance evaluation system to assess non-managerial employees' low-carbon job capacity, job performance, and job attitude in the low-carbon logistics sector. The case study results revealed that the investigated company enjoyed initial success after having promoted low-carbon concepts and values to its non-managerial employees, and the success was demonstrated by excellent performance in its employees' job attitude and knowledge. This study adopts the AHP method to reasonably determine an indicator system of performance evaluation and its weight to avoid certain human-caused bias. This study not only fills the gap in the related literature, but can also be applied to industrial practice.

  4. Theromdynamics of carbon in nickel-based multicomponent solid solutions

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1978-04-01

    The activity coefficient of carbon in nickel, nickel-titanium, nickel-titanium-chromium, nickel-titanium-molybdenum and nickel-titanium-molybdenum-chromium alloys has been measured at 900, 1100 and 1215 0 C. The results indicate that carbon obeys Henry's Law over the range studied (0 to 2 at. percent). The literature for the nickel-carbon and iron-carbon systems are reviewed and corrected. For the activity of carbon in iron as a function of composition, a new relationship based on re-evaluation of the thermodynamics of the CO/CO 2 equilibrium is proposed. Calculations using this relationship reproduce the data to within 2.5 percent, but the accuracy of the calibrating standards used by many investigators to analyze for carbon is at best 5 percent. This explains the lack of agreement between the many precise sets of data. The values of the activity coefficient of carbon in the various solid solutions are used to calculate a set of parameters for the Kohler-Kaufman equation. The calculations indicate that binary interaction energies are not sufficient to describe the thermodynamics of carbon in some of the nickel-based solid solutions. The results of previous workers for carbon in nickel-iron alloys are completely described by inclusion of ternary terms in the Kohler-Kaufman equation. Most of the carbon solid solution at high temperatures in nickel and nickel-titantium alloys precipitates from solution on quenching in water. The precipitate is composed of very small particles (greater than 2.5 nm) of elemental carbon. The results of some preliminary thermomigration experiments are discussed and recommendations for further work are presented

  5. Pilot-Scale Evaluation of an Advanced Carbon Sorbent-Based Process for Post-Combustion Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Hornbostel, Marc [SRI International, Menlo Park, CA (United States)

    2016-09-01

    The overall objective of this project is to achieve the DOE’s goal to develop advanced CO2 capture and separation technologies that can realize at least 90% CO2 removal from flue gas steams produced at a pulverized coal (PC) power plant at a cost of less than $40/tonne of CO2 captured. The principal objective is to test a CO2 capture process that will reduce the parasitic plant load by using a CO2 capture sorbent that will require a reduced amount of steam. The process is based on advanced carbon sorbents having a low heat of adsorption, high CO2 adsorption capacity, and excellent selectivity. While the intent of this project was to produce design and performance data by testing the sorbent using a slipstream of coal-derived flue gas at the National Carbon Capture Center (NCCC) under realistic conditions and continuous long-term operation, the project was terminated following completion of the detailing pilot plant design/engineering work on June 30, 2016.

  6. Activated, coal-based carbon foam

    Science.gov (United States)

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  7. A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-12-23

    A general methodology was developed for evaluation of carbon sequestration technologies. In this document, we provide a method that is quantitative, but is structured to give qualitative comparisons despite changes in detailed method parameters, i.e., it does not matter what ''grade'' a sequestration technology gets but a ''better'' technology should receive a better grade. To meet these objectives, we developed and elaborate on the following concepts: (1) All resources used in a sequestration activity should be reviewed by estimating the amount of greenhouse gas emissions for which they historically are responsible. We have done this by introducing a quantifier we term Full-Cycle Carbon Emissions, which is tied to the resource. (2) The future fate of sequestered carbon should be included in technology evaluations. We have addressed this by introducing a variable called Time-adjusted Value of Carbon Sequestration to weigh potential future releases of carbon, escaping the sequestered form. (3) The Figure of Merit of a sequestration technology should address the entire life-cycle of an activity. The figures of merit we have developed relate the investment made (carbon release during the construction phase) to the life-time sequestration capacity of the activity. To account for carbon flows that occur during different times of an activity we incorporate the Time Value of Carbon Flows. The methodology we have developed can be expanded to include financial, social, and long-term environmental aspects of a sequestration technology implementation. It does not rely on global atmospheric modeling efforts but is consistent with these efforts and could be combined with them.

  8. Sorbents based on carbonized rice peel

    International Nuclear Information System (INIS)

    Mansurova, R. M.; Taipova, R. A.; Zhylybaeva, N. K.; Mansurov, Z. A.; Bijsenbaev, M. A.

    2004-01-01

    The process receiving of sorbents based on carbonized rice peel (RP) was received and their sorption properties were investigated. Processing carbonization of samples leading on station, this was developed in laboratory of hybrid technology. Carbonization of samples was realized in nitric atmosphere on 400-8000 deg. C. On raising temperature of carbonization content of carbon in samples is rice, hydrogen and oxygen is reduce as a result isolation of volatility products is discover. The samples carbonized on 650 deg. C (910 m 2 /g) owners with maximum removed surface is discover. On carbonization temperature 600-800 deh. C the sorption of ions, which carbonized by sorbents based on rice peel is run to 95-100 %. Electron-microscopic investigation of samples leaded on EM-125 mechanism by accelerating pressure 100 kV. From electron-microscopic print of original samples of RP it is evident, that sample consists of carbonic fractions of different species: carbonic fiber of rounded fractions, fractions of ellipsoid form and of more thickly carbonic structure. Increasing sizes of pores and modification structure of synthesized sorbent is occur during carbonization process. The RP-samples, which carbonized by 650 deg. C has the higher specific surface. Samples consist of thin carbonic scum and reducing specific surface, by higher temperature

  9. An economic evaluation of carbon emission and carbon sequestration for the forestry sector in Malaysia

    International Nuclear Information System (INIS)

    Ismail, R.

    1995-01-01

    Forestry is an important sector in Malaysia. The long term development of the forestry sector will definitely affect the future amounts of carbon sequestration and emission of the country. This paper evaluates various forestry economic options that contribute to the reduction of carbon dioxide in the atmosphere. The analysis shows that, although forest plantation could sequester the highest amount of carbon per unit area, natural forests which are managed for sustainable timber production are the cheapest option for per-unit area carbon sequestrated. In evaluating forest options to address the issues of carbon sequestration and emission, the paper proposes that it should be assessed as an integral part of overall long term forestry development of the country which takes into account the future demands for forestry goods and services, financial resources, technology and human resource development. (Author)

  10. Evaluation of lead/carbon devices for utility applications : a study for the DOE Energy Storage Program.

    Energy Technology Data Exchange (ETDEWEB)

    Walmet, Paula S. (MeadWestvaco Corporation,North Charleston, SC)

    2009-06-01

    This report describes the results of a three-phase project that evaluated lead-based energy storage technologies for utility-scale applications and developed carbon materials to improve the performance of lead-based energy storage technologies. In Phase I, lead/carbon asymmetric capacitors were compared to other technologies that used the same or similar materials. At the end of Phase I (in 2005) it was found that lead/carbon asymmetric capacitors were not yet fully developed and optimized (cost/performance) to be a viable option for utility-scale applications. It was, however, determined that adding carbon to the negative electrode of a standard lead-acid battery showed promise for performance improvements that could be beneficial for use in utility-scale applications. In Phase II various carbon types were developed and evaluated in lead-acid batteries. Overall it was found that mesoporous activated carbon at low loadings and graphite at high loadings gave the best cycle performance in shallow PSoC cycling. Phase III studied cost/performance benefits for a specific utility application (frequency regulation) and the full details of this analysis are included as an appendix to this report.

  11. Mitigating climate change by sequestering carbon soils: A hypertext-based scientific assessment

    International Nuclear Information System (INIS)

    Rauscher, H.M.; Alban, D.H.; Johnson, D.W.

    1992-01-01

    The general objective of this project is the development of a hypertext-based scientific assessment on the subject of mitigating climate change by sequestering carbon in soils. Specifically, the authors want to (1) translate the scientific knowledge base on soil carbon cycling into a form meaningful for policy makers by using the theory of issue-based hypertext for problem solving using the argumentative approach developed by the late Horst Rittel, professor of planning and design at the University of California, Berkeley; (2) provide an organized and evaluated scientific knowledge base on soil carbon dynamics for research scientists to aid in the rapid and economical review and understanding of the subfield of science; and (3) test this new hybrid hypertext and AI methodology for use as a tool for program managers to help them evaluate a research domain to find knowledge gaps, to prioritize these knowledge gaps, to channel available research funding to these projects aimed at filling the most promising knowledge gaps in order to have the greatest possible impact on the entire knowledge base of the field, and to help explicitly measure scientific progress in terms that funding sources can understand. The authors began this project in fall 1991 and expect to complete it by fall 1993

  12. High performance thiol-ene thermosets based on fully bio-based poly(limonene carbonate)s

    NARCIS (Netherlands)

    Li, C.; Johansson, M.; Sablong, R.J.; Koning, C.E.

    2017-01-01

    High glass transition temperature (Tg) thiol-ene networks (TENs) based on poly(limonene carbonate)s (PLCs), derived from orange oils and of potential degradability are described here. PLCs with moderate molecular weight were prepared by copolymerization of limonene oxide with CO2 and subsequent

  13. Estimation of Global 1km-grid Terrestrial Carbon Exchange Part II: Evaluations and Applications

    Science.gov (United States)

    Murakami, K.; Sasai, T.; Kato, S.; Niwa, Y.; Saito, M.; Takagi, H.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.

    2015-12-01

    Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.Global terrestrial carbon cycle largely depends on a spatial pattern of land cover type, which is heterogeneously-distributed over regional and global scales. Many

  14. Impact of carbonation on water transport properties of cement-based materials

    International Nuclear Information System (INIS)

    Auroy, M.; Poyet, S.; Le Bescop, P.; Torrenti, J.M.

    2015-01-01

    Cement-based materials would be commonly used for nuclear waste management and, particularly for geological disposal vaults as well as containers in France. Under service conditions, the structures would be subjected to simultaneous drying and carbonation. Carbonation relates to the reaction between CO 2 and the hydrated cement phases (mainly portlandite and C-S-H). It induces mineralogical and microstructural changes (due to hydrates dissolution and calcium carbonate precipitation). It results in transport properties modifications, which can have important consequences on the durability of reinforced concrete structures. Concrete durability is greatly influenced by water: water is necessary for chemical reactions to occur and significantly impacts transport. The evaluation of the unsaturated water transport properties in carbonated materials is then an important issue. That is the aim of this study. A program has been established to assess the water transport properties in carbonated materials. In this context, four mature hardened cement pastes (CEM I, CEM III/A, CEM V/A according to European standards and a Low-pH blend) are carbonated. Accelerated carbonation tests are performed in a specific device, controlling environmental conditions: (i) CO 2 content of 3%, to ensure representativeness of the mineralogical evolution compared to natural carbonation and (ii) 25 C. degrees and 55% RH, to optimize carbonation rate. After carbonation, the data needed to describe water transport are evaluated in the framework of simplified approach. Three physical parameters are required: (1) the concrete porosity, (2) the water retention curve and, (3) the effective permeability. The obtained results allow creating link between water transport properties of non-carbonated materials to carbonated ones. They also provide a better understanding of the effect of carbonation on water transport in cementitious materials and thus, complement literature data. (authors)

  15. A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide.

    Science.gov (United States)

    Anthonysamy, Shahreen Binti Izwan; Afandi, Syahidah Binti; Khavarian, Mehrnoush; Mohamed, Abdul Rahman Bin

    2018-01-01

    Various types of carbon-based and non-carbon-based catalyst supports for nitric oxide (NO) removal through selective catalytic reduction (SCR) with ammonia are examined in this review. A number of carbon-based materials, such as carbon nanotubes (CNTs), activated carbon (AC), and graphene (GR) and non-carbon-based materials, such as Zeolite Socony Mobil-5 (ZSM-5), TiO 2 , and Al 2 O 3 supported materials, were identified as the most up-to-date and recently used catalysts for the removal of NO gas. The main focus of this review is the study of catalyst preparation methods, as this is highly correlated to the behaviour of NO removal. The general mechanisms involved in the system, the Langmuir-Hinshelwood or Eley-Riedeal mechanism, are also discussed. Characterisation analysis affecting the surface and chemical structure of the catalyst is also detailed in this work. Finally, a few major conclusions are drawn and future directions for work on the advancement of the SCR-NH 3 catalyst are suggested.

  16. Comprehensive evaluation on low-carbon development of coal enterprise groups.

    Science.gov (United States)

    Wang, Bang-Jun; Wu, Yan-Fang; Zhao, Jia-Lu

    2017-12-19

    Scientifically evaluating the level of low-carbon development in terms of theoretical and practical significance is extremely important to coal enterprise groups for implementing national energy-related systems. This assessment can assist in building institutional mechanisms that are conducive for the economic development of coal business cycle and energy conservation as well as promoting the healthy development of coal enterprises to realize coal scientific development and resource utilization. First, by adopting systematic analysis method, this study builds low-carbon development evaluation index system for coal enterprise groups. Second, to determine the weight serving as guideline and criteria of the index, analytic hierarchy process (AHP) is applied using integrated linear weighted sum method to evaluate the level of low-carbon development of coal enterprise groups. Evaluation is also performed by coal enterprise groups, and the process comprises field analysis and evaluation. Finally, industrial policies are proposed regarding the development of low-carbon coal conglomerate strategies and measures. This study aims mainly to guide the low-carbon development of coal enterprise groups, solve the problem of coal mining and the destruction of ecological environment, support the conservation of raw materials and various resources, and achieve the sustainable development of the coal industry.

  17. Identification of carbonate reservoirs based on well logging data for boreholes drilled using oil base muds

    International Nuclear Information System (INIS)

    Abdukhalikov, Ya.N; Serebrennikov, V.S.

    1979-01-01

    Experiment on carbonate reservoir identification according to well logging data for boreholes drilled using oil base muds is described. Pulse neutron-neutron logging (PNNL) was widely used at the territory of Pripyat' hole to solve the task. To evaluate volumetric clayiness of carbonate rocks the dependence of gamma-logging, that is data of gamma-logging against clayey rocks built for every hollow, is used. Quantitative estimation of clayiness of dense and clayey carbonate rocks-non-reservoirs is carried out on the basis of the data of neutron-gamma and acoustic logging. Porosity coefficient and lithological characteristic of rocks are also determined according to the data of acoustic and neutron gamma-logging

  18. Supplier Selection Study under the Respective of Low-Carbon Supply Chain: A Hybrid Evaluation Model Based on FA-DEA-AHP

    Directory of Open Access Journals (Sweden)

    Xiangshuo He

    2018-02-01

    Full Text Available With the development of global environment and social economy, it is an indispensable choice for enterprises to achieve sustainable growth through developing low-carbon economy and constructing low-carbon supply chain. Supplier is the source of chain, thus selecting excellent low-carbon supplier is the foundation of establishing efficient low-carbon supply chain. This paper presents a novel hybrid model for supplier selection integrated factor analysis (FA, data envelopment analysis (DEA, with analytic hierarchy process (AHP, namely FA-DEA-AHP. First, an evaluation index system is built, incorporating product level, qualification, cooperation ability, and environmental competitiveness. FA is utilized to extract common factors from the 18 pre-selected indicators. Then, DEA is applied to establish the pairwise comparison matrix and AHP is employed to rank these low-carbon suppliers comprehensively and calculate the validity of the decision-making units. Finally, an experiment study with seven cement suppliers in a large industrial enterprise is carried out in this paper. The results reveal that the proposed technique can not only select effective suppliers, but also realize a comprehensive ranking. This research has enriched the methodology of low-carbon supplier evaluation and selection, as well as owns theoretical value in exploring the coordinated development of low-carbon supply chain to some extent.

  19. Paintable Carbon-Based Perovskite Solar Cells with Engineered Perovskite/Carbon Interface Using Carbon Nanotubes Dripping Method.

    Science.gov (United States)

    Ryu, Jaehoon; Lee, Kisu; Yun, Juyoung; Yu, Haejun; Lee, Jungsup; Jang, Jyongsik

    2017-10-01

    Paintable carbon electrode-based perovskite solar cells (PSCs) are of particular interest due to their material and fabrication process costs, as well as their moisture stability. However, printing the carbon paste on the perovskite layer limits the quality of the interface between the perovskite layer and carbon electrode. Herein, an attempt to enhance the performance of the paintable carbon-based PSCs is made using a modified solvent dripping method that involves dripping of the carbon nanotubes (CNTs), which is dispersed in chlorobenzene solution. This method allows CNTs to penetrate into both the perovskite film and carbon electrode, facilitating fast hole transport between the two layers. Furthermore, this method is results in increased open circuit voltage (V oc ) and fill factor (FF), providing better contact at the perovskite/carbon interfaces. The best devices made with CNT dripping show 13.57% power conversion efficiency and hysteresis-free performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Evaluation of a reconfigurable portable instrument for copper determination based on luminescent carbon dots.

    Science.gov (United States)

    Salinas-Castillo, Alfonso; Morales, Diego P; Lapresta-Fernández, Alejandro; Ariza-Avidad, María; Castillo, Encarnación; Martínez-Olmos, Antonio; Palma, Alberto J; Capitan-Vallvey, Luis Fermin

    2016-04-01

    A portable reconfigurable platform for copper (Cu(II)) determination based on luminescent carbon dot (Cdots) quenching is described. The electronic setup consists of a light-emitting diode (LED) as the carbon dot optical exciter and a photodiode as a light-to-current converter integrated in the same instrument. Moreover, the overall analog conditioning is simply performed with one integrated solution, a field-programmable analog array (FPAA), which makes it possible to reconfigure the filter and gain stages in real time. This feature provides adaptability to use the platform as an analytical probe for carbon dots coming from different batches with some variations in luminescence characteristics. The calibration functions obtained that fit a modified Stern-Volmer equation were obtained using luminescence signals from Cdots quenching by Cu(II). The analytical applicability of the reconfigurable portable instrument for Cu(II) using Cdots has been successfully demonstrated in tap water analysis.

  1. Hybrid Composites Based on Carbon Fiber/Carbon Nanofilament Reinforcement

    Directory of Open Access Journals (Sweden)

    Mehran Tehrani

    2014-05-01

    Full Text Available Carbon nanofilament and nanotubes (CNTs have shown promise for enhancing the mechanical properties of fiber-reinforced composites (FRPs and imparting multi-functionalities to them. While direct mixing of carbon nanofilaments with the polymer matrix in FRPs has several drawbacks, a high volume of uniform nanofilaments can be directly grown on fiber surfaces prior to composite fabrication. This study demonstrates the ability to create carbon nanofilaments on the surface of carbon fibers employing a synthesis method, graphitic structures by design (GSD, in which carbon structures are grown from fuel mixtures using nickel particles as the catalyst. The synthesis technique is proven feasible to grow nanofilament structures—from ethylene mixtures at 550 °C—on commercial polyacrylonitrile (PAN-based carbon fibers. Raman spectroscopy and electron microscopy were employed to characterize the surface-grown carbon species. For comparison purposes, a catalytic chemical vapor deposition (CCVD technique was also utilized to grow multiwall CNTs (MWCNTs on carbon fiber yarns. The mechanical characterization showed that composites using the GSD-grown carbon nanofilaments outperform those using the CCVD-grown CNTs in terms of stiffness and tensile strength. The results suggest that further optimization of the GSD growth time, patterning and thermal shield coating of the carbon fibers is required to fully materialize the potential benefits of the GSD technique.

  2. Focused Ion Beam Nanopatterning for Carbon Nanotube Ropes Based Sensor

    Directory of Open Access Journals (Sweden)

    Vera LA FERRARA

    2007-11-01

    Full Text Available Focused Ion Beam (FIB technology has been used to realize electrode patterns for contacting Single Walled Carbon Nanotubes (SWCNTs ropes for chemical gas sensor applications. Two types of transducers, based on a single rope and on bundles, have been realized starting from silicon/Si3N4 substrate. Electrical behaviour, at room temperature, in toxic gas environments, has been investigated and compared to evaluate contribution of a single rope based sensor respect to bundles one. For all the devices, upon exposure to NO2 and NH3, the conductance has been found to increase or decrease respectively. Conductance signal is stronger for sensor based on bundles, but it also evident that response time in NO2 is faster for device based on a single rope. FIB technology offers, then, the possibility to contact easily a single sensitive nanowire, as carbon nanotube rope.

  3. Physical and chemical properties of selected agricultural byproduct-based activated carbons and their ability to adsorb geosmin

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.; Losso, J.N.; Rao, R.M. [Louisiana State University Agricultural Center, Baton Rouge, LA (United States). Department of Food Science; Marshall, W.E. [USDA-ARS, Southern Regional Research Center, New Orleans, LA (United States)

    2002-09-01

    The objectives of this study were to evaluate selected physical and chemical properties of agricultural byproduct-based activated carbons made from pecan shells and sugarcane bagasse, and compare those properties to a commercial coal-based activated carbon as well as to compare the adsorption efficiency of these carbons for geosmin. Comparison of the physical and chemical properties of pecan shell- and bagasse-based carbons to the commercial carbon, Calgon Filtrasorb 400, showed that pecan shell carbon, but not the bagasse carbon, compared favorably to Filtrasorb 400, especially in terms of surface area, bulk density, ash and attrition. A carbon dosage study done in a model system showed the amount of geosmin adsorbed to be greater for Filtrasorb 400 and the bagasse-based carbon at low carbon concentrations than for the pecan shell carbons, but geosmin adsorption was similar in all carbons at higher carbon dosages. Application of the Freundlich isotherm model to the adsorption data showed that carbons made by steam activation of pecan shells or sugarcane bagasse had geosmin adsorption characteristics most like those of the commercial carbon. In terms of physical, chemical and adsorptive properties, steam-activated pecan shell carbon most resembled the commercial carbon and has the potential to replace Filtrasorb 400 in applications involving removal of geosmin from aqueous environments. (author)

  4. Improved performance and safety of lithium ion cells with the use of fluorinated carbonate-based electrolytes

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Ryan, V. S.; Surampudi, S.; Prakashi, G. K. S.; Hu, J.; Cheung, I.

    2002-01-01

    There has been increasing interest in developing lithium-ion electrolytes that possess enhanced safety characteristics, while still able to provide the desired stability and performance. Toward this end, our efforts have been focused on the development of lithium-ion electrolytes which contain partially and fully fluorinated carbonate solvents. The advantage of using such solvents is that they possess the requisite stability demonstrated by the hydrocarbon-based carbonates, while also possessing more desirable physical properties imparted by the presence of the fluorine substituents, such as lower melting points, increased stability toward oxidation, and favorable SEI film forming Characteristics on carbon. Specifically, we have demonstrated the beneficial effect of electrolytes which contain the following fluorinated carbonate-based solvents: methyl 2,2,2-trifluoroethyl carbonate (MTFEC), ethyl-2,2,2 trifluoroethyl carbonate (ETFEC), propyl 2,2,2-trifluoroethyl carbonate (PTFEC), methyl-2,2,2,2',2',2' -hexafluoro-i-propyl carbonate (MHFPC), ethyl- 2,2,2,2',2',2' -hexafluoro-i-propyl carbonate (EHFPC), and di-2,2,2-trifluoroethyl carbonate (DTFEC). These solvents have been incorporated into multi-component ternary and quaternary carbonate-based electrolytes and evaluated in lithium-carbon and carbon-LiNio.8Coo.202 cells (equipped with lithium reference electrodes). In addition to determining the charge/discharge behavior of these cells, a number of electrochemical techniques were employed (i.e., Tafel polarization measurements, linear polarization measurements, and electrochemical impedance spectroscopy (EIS)) to further characterize the performance of these electrolytes, including the SEI formation characteristics and lithium intercalatiodde-intercalation kinetics. In addition to their evaluation in experimental cells, cyclic voltammetry (CV) and conductivity measurements were performed on select electrolyte formulations to further our understanding of the trends

  5. Production of palm kernel shell-based activated carbon by direct physical activation for carbon dioxide adsorption.

    Science.gov (United States)

    Rashidi, Nor Adilla; Yusup, Suzana

    2018-05-09

    The feasibility of biomass-based activated carbons has received a huge attention due to their excellent characteristics such as inexpensiveness, good adsorption behaviour and potential to reduce a strong dependency towards non-renewable precursors. Therefore, in this research work, eco-friendly activated carbon from palm kernel shell that has been produced from one-stage physical activation by using the Box-Behnken design of Response Surface Methodology is highlighted. The effect of three input parameters-temperature, dwell time and gas flow rate-towards product yield and carbon dioxide (CO 2 ) uptake at room temperature and atmospheric pressure are studied. Model accuracy has been evaluated through the ANOVA analysis and lack-of-fit test. Accordingly, the optimum condition in synthesising the activated carbon with adequate CO 2 adsorption capacity of 2.13 mmol/g and product yield of 25.15 wt% is found at a temperature of 850 °C, holding time of 60 min and CO 2 flow rate of 450 cm 3 /min. The synthesised activated carbon has been characterised by diverse analytical instruments including thermogravimetric analyser, scanning electron microscope, as well as N 2 adsorption-desorption isotherm. The characterisation analysis indicates that the synthesised activated carbon has higher textural characteristics and porosity, together with better thermal stability and carbon content as compared to pristine palm kernel shell. Activated carbon production via one-step activation approach is economical since its carbon yield is within the industrial target, whereas CO 2 uptake is comparable to the synthesised activated carbon from conventional dual-stage activation, commercial activated carbon and other published data from literature.

  6. Evaluating measurements of carbon dioxide emissions using a precision source--A natural gas burner.

    Science.gov (United States)

    Bryant, Rodney; Bundy, Matthew; Zong, Ruowen

    2015-07-01

    A natural gas burner has been used as a precise and accurate source for generating large quantities of carbon dioxide (CO2) to evaluate emissions measurements at near-industrial scale. Two methods for determining carbon dioxide emissions from stationary sources are considered here: predicting emissions based on fuel consumption measurements-predicted emissions measurements, and direct measurement of emissions quantities in the flue gas-direct emissions measurements. Uncertainty for the predicted emissions measurement was estimated at less than 1%. Uncertainty estimates for the direct emissions measurement of carbon dioxide were on the order of ±4%. The relative difference between the direct emissions measurements and the predicted emissions measurements was within the range of the measurement uncertainty, therefore demonstrating good agreement. The study demonstrates how independent methods are used to validate source emissions measurements, while also demonstrating how a fire research facility can be used as a precision test-bed to evaluate and improve carbon dioxide emissions measurements from stationary sources. Fossil-fuel-consuming stationary sources such as electric power plants and industrial facilities account for more than half of the CO2 emissions in the United States. Therefore, accurate emissions measurements from these sources are critical for evaluating efforts to reduce greenhouse gas emissions. This study demonstrates how a surrogate for a stationary source, a fire research facility, can be used to evaluate the accuracy of measurements of CO2 emissions.

  7. Observationally-based Metrics of Ocean Carbon and Biogeochemical Variables are Essential for Evaluating Earth System Model Projections

    Science.gov (United States)

    Russell, J. L.; Sarmiento, J. L.

    2017-12-01

    The Southern Ocean is central to the climate's response to increasing levels of atmospheric greenhouse gases as it ventilates a large fraction of the global ocean volume. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic forcing. Due to its complex water-mass structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, mixing, buoyancy fluxes and topography. Understanding how the ocean carries heat and carbon into its interior and how the observed wind changes are affecting this uptake is essential to accurately projecting transient climate sensitivity. Observationally-based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate models. As the community shifts toward Earth system models with explicit carbon simulations, more direct observations of important biogeochemical parameters, like those obtained from the biogeochemically-sensored floats that are part of the Southern Ocean Carbon and Climate Observations and Modeling project, are essential. One goal of future observing systems should be to create observationally-based benchmarks that will lead to reducing uncertainties in climate projections, and especially uncertainties related to oceanic heat and carbon uptake.

  8. Polanyi Evaluation of Adsorptive Capacities of Commercial Activated Carbons

    Science.gov (United States)

    Monje, Oscar; Surma, Jan M.

    2017-01-01

    Commercial activated carbons from Calgon (207C and OVC) and Cabot Norit (RB2 and GCA 48) were evaluated for use in spacecraft trace contaminant control filters. The Polanyi potential plots of the activated carbons were compared using to those of Barnebey-Cheney Type BD, an untreated activated carbon with similar properties as the acid-treated Barnebey-Sutcliffe Type 3032 utilized in the TCCS. Their adsorptive capacities under dry conditions were measured in a closed loop system and the sorbents were ranked for their ability to remove common VOCs found in spacecraft cabin air. This comparison suggests that these sorbents can be ranked as GCA 48 207C, OVC RB2 for the compounds evaluated.

  9. Carbon Footprint Analysis for Mechanization of Maize Production Based on Life Cycle Assessment: A Case Study in Jilin Province, China

    Directory of Open Access Journals (Sweden)

    Haina Wang

    2015-11-01

    Full Text Available The theory on the carbon footprint of agriculture can systematically evaluate the carbon emissions caused by artificial factors from the agricultural production process, which is the theoretical basis for constructing low-carbon agriculture and has important guiding significance for realizing low-carbon agriculture. Based on farm production survey data from Jilin Province in 2014, this paper aims to obtain a clear understanding of the carbon footprint of maize production through the following method: (1 one ton of maize production was evaluated systematically by using the Life Cycle Assessment (LCA; (2 the carbon emissions of the whole system were estimated based on field measurement data, (3 using the emission factors we estimated Jilin’s carbon footprint for the period 2006–2013, and forecasted it for the period from 2014 to 2020 using the grey system model GM (1, 1.

  10. Sorption of organic compounds to activated carbons. Evaluation of isotherm models

    NARCIS (Netherlands)

    Pikaar, I.; Koelmans, A.A.; Noort, van P.C.M.

    2006-01-01

    Sorption to 'hard carbon' (black carbon, coal, kerogen) in soils and sediments is of major importance for risk assessment of organic pollutants. We argue that activated carbon (AC) may be considered a model sorbent for hard carbon. Here, we evaluate six sorption models on a literature dataset for

  11. Decrudding and chemical cleaning of carbon steel components - an evaluation

    International Nuclear Information System (INIS)

    Gaonkar, K.B.; Elayathu, N.S.D.; Shibad, P.R.; Gadiyar, H.S.

    1982-01-01

    Corrosion and accumulation of corrosion products on the surfaces of structural components and plant equipments can cause se vereoperational problems during service. An illustration is the heat exchanger systems in nuclear power stations. Development and standardisation of appropriate chemical cleaning and decontamination procedures and their evaluation hence merit serious consideration. A number of chemical cleaning procedures using formulations based on hydrochloric and citric acid solutions have been examined to study their crud dissolving and derusting ability in addition to the attack on base material. The compositions were chosen: (1) along with complexing agents EDTA and ammonium citrate, (2) with pH control, and (3) with the use of inhibitors acridine, rhodine, hexamine and phenyl-thiourea. The evaluations have been made at 28 and 60 deg C. Rusted carbon steel coupons having a rust of 10-12 mg/cm 2 on the surface have been used for the purpose of the above evaluations. Data on corrosion rates of monel and cupronickel (70:30) in the descaling solutions have also been presented. Results on the above evaluation studies have been discussed. (author)

  12. Evaluation of carbon-14 life cycle in reactors VVER-1000

    International Nuclear Information System (INIS)

    Lysakova, Katerina; Neumann, Jan; Vonkova, Katerina

    2012-09-01

    This work is aimed at the evaluation of carbon-14 life cycle in light water reactors VVER-1000. Carbon-14 is generated as a side product in different systems of nuclear reactors and has been an issue not only in radioactive waste management but mainly in release into the environment in the form of gaseous effluents. The principal sources of this radionuclide are in primary cooling water and fuel. Considerable amount of C-14 is generated by neutron reactions with oxygen 17 O and nitrogen 14 N present in water coolant and fuel. The reaction likelihood and consequently volume of generated radioisotope depends on several factors, especially on the effective cross-section, concentrations of parent elements and conditions of power plant operating strategies. Due to its long half-life and high capability of integration into the environment and thus into the living species, it is very important to monitor the movement of carbon-14 in all systems of nuclear power plant and to manage its release out of NPP. The dominant forms of radioactive carbon-14 are the hydrocarbons owing to the combinations with hydrogen used for absorption of radiolytic oxygen. These organic compounds, such as formaldehyde, methyl alcohol, ethyl alcohol and formic acid can be mostly retained on ion exchange resins used in the system for purifying primary cooling water. The gaseous carbon compounds (CH 4 and CO 2 ) are released into the atmosphere via the ventilation systems of NPP. Based on the information and data obtained from different sources, it has been designed a balance model of possible carbon-14 pathways throughout the whole NPP. This model includes also mass balance model equations for each important node in system and available sampling points which will be the background for further calculations. This document is specifically not to intended to describe the best monitoring program attributes or technologies but rather to provide evaluation of obtained data and find the optimal way to

  13. Fatigue Damage Evaluation of Short Carbon Fiber Reinforced Plastics Based on Phase Information of Thermoelastic Temperature Change.

    Science.gov (United States)

    Shiozawa, Daiki; Sakagami, Takahide; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi

    2017-12-06

    Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft, or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to evaluate fatigue damage in short carbon fiber composites. The distribution of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damage was detected from the distribution of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was more clearly detected than before by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the property that carbon fiber shows opposite phase thermoelastic temperature change.

  14. Low-Cost Bio-Based Carbon Fibers for High Temperature Processing

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Ryan Michael [GrafTech International, Brooklyn Heights, OH (United States); Naskar, Amit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-03

    GrafTech International Holdings Inc. (GTI), under Award No. DE-EE0005779, worked with Oak Ridge National Laboratory (ORNL) under CRADA No. NFE-15-05807 to develop lignin-based carbon fiber (LBCF) technology and to demonstrate LBCF performance in high-temperature products and applications. This work was unique and different from other reported LBCF work in that this study was application-focused and scalability-focused. Accordingly, the executed work was based on meeting criteria based on technology development, cost, and application suitability. High-temperature carbon fiber based insulation is used in energy intensive industries, such as metal heat treating and ceramic and semiconductor material production. Insulation plays a critical role in achieving high thermal and process efficiency, which is directly related to energy usage, cost, and product competitiveness. Current high temperature insulation is made with petroleum based carbon fibers, and one goal of this protect was to develop and demonstrate an alternative lignin (biomass) based carbon fiber that would achieve lower cost, CO2 emissions, and energy consumption and result in insulation that met or exceeded the thermal efficiency of current commercial insulation. In addition, other products were targeted to be evaluated with LBCF. As the project was designed to proceed in stages, the initial focus of this work was to demonstrate lab-scale LBCF from at least 4 different lignin precursor feedstock sources that could meet the estimated production cost of $5.00/pound and have ash level of less than 500 ppm in the carbonized insulation-grade fiber. Accordingly, a preliminary cost model was developed based on publicly available information. The team demonstrated that 4 lignin samples met the cost criteria. In addition, the ash level for the 4 carbonized lignin samples was below 500 ppm. Processing as-received lignin to produce a high purity lignin fiber was a significant accomplishment in that most industrial

  15. Evaluation of Mechanical Property of Carbon Fiber/Polypropylene Composite According to Carbon Fiber Surface Treatment

    International Nuclear Information System (INIS)

    Han, Song Hee; Oh, Hyun Ju; Kim, Seong Su

    2013-01-01

    In this study, the mechanical properties of a carbon fiber/polypropylene composite were evaluated according to the carbon fiber surface treatment. Carbon fiber surface treatments such as silane coupling agents and plasma treatment were performed to enhance the interfacial strength between carbon fibers and polypropylene. The treated carbon fiber surface was characterized by XP S, Sem, and single-filament tensile test. The interlaminar shear strength (Ilks) of the composite with respect to the surface treatment was determined by a short beam shear test. The test results showed that the Ilks of the plasma-treated specimen increased with the treatment time. The Ilks of the specimen treated with a silane coupling agent after plasma treatment increased by 48.7% compared to that of the untreated specimen

  16. Evaluation of the activated carbon prepared from the algae ...

    African Journals Online (AJOL)

    Evaluation of the activated carbon prepared from the algae Gracilaria for the biosorption of Cu(II) from aqueous solutions. ... African Journal of Biotechnology ... This study shows the benefit of using activated carbon from marine red algae as a low cost sorbent for the removal of copper from aqueous solution wastewater.

  17. Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine.

    Science.gov (United States)

    Zhang, Yongbin; Petibone, Dayton; Xu, Yang; Mahmood, Meena; Karmakar, Alokita; Casciano, Dan; Ali, Syed; Biris, Alexandru S

    2014-05-01

    Carbon-based nanomaterials have attracted great interest in biomedical applications such as advanced imaging, tissue regeneration, and drug or gene delivery. The toxicity of the carbon nanotubes and graphene remains a debated issue although many toxicological studies have been reported in the scientific community. In this review, we summarize the biological effects of carbon nanotubes and graphene in terms of in vitro and in vivo toxicity, genotoxicity and toxicokinetics. The dose, shape, surface chemistry, exposure route and purity play important roles in the metabolism of carbon-based nanomaterials resulting in differential toxicity. Careful examination of the physico-chemical properties of carbon-based nanomaterials is considered a basic approach to correlate the toxicological response with the unique properties of the carbon nanomaterials. The reactive oxygen species-mediated toxic mechanism of carbon nanotubes has been extensively discussed and strategies, such as surface modification, have been proposed to reduce the toxicity of these materials. Carbon-based nanomaterials used in photothermal therapy, drug delivery and tissue regeneration are also discussed in this review. The toxicokinetics, toxicity and efficacy of carbon-based nanotubes and graphene still need to be investigated further to pave a way for biomedical applications and a better understanding of their potential applications to humans.

  18. Precise mass detector based on carbon nanooscillator

    Energy Technology Data Exchange (ETDEWEB)

    Lukashenko, S., E-mail: lukashenko13@mail.ru; Golubok, A. [Department of Nanotechnology and Material Science, ITMO University, Kronverskiy av. 49, 192000, St. Petersburg (Russian Federation); Institute for Analytical Instrumentation of RAS, Rizhsky pr 26, St. Petersburg, 190103 (Russian Federation); Komissarenko, F. [Department of Nanotechnology and Material Science, ITMO University, Kronverskiy av. 49, 192000, St. Petersburg (Russian Federation); Academic University, Russian Academy of Sciences, ul. Khlopina 8/3, 194021, St. Petersburg (Russian Federation); Mukhin, I. [Academic University, Russian Academy of Sciences, ul. Khlopina 8/3, 194021, St. Petersburg (Russian Federation); Sapozhnikov, I. [Institute for Analytical Instrumentation of RAS, Rizhsky pr 26, St. Petersburg, 190103 (Russian Federation); Veniaminov, A. [Centre for Information Optical Technologies, ITMO University, Birzhevaya ln. 14-16, 199034, St. Petersburg (Russian Federation); Lysak, V. [Department of Nanotechnology and Material Science, ITMO University, Kronverskiy av. 49, 192000, St. Petersburg (Russian Federation)

    2016-06-17

    Precise mass detectors based on an amorphous carbon nanowires, which localized on the top of a tungsten tip were fabricated and investigated. The nanowires were grown in the scanning electron microscope (SEM) chamber using focused electron beam technique. The movement trajectories and amplitude-frequency characteristics of the carbon nanowire oscillators were visualized at low and ambient pressure using SEM and confocal laser scanning microscope (CLSM), respectevely. The SiO{sub 2} and TiO{sub 2} nanospheres were clamped on the top of the carbon nanowires. The manipulations of nanospheres were provided by means of dielectrophoretic force in SEM. The sensitivity of the mass detector based on the carbon nanowire oscillator was estimated.

  19. Acid-base characteristics of powdered-activated-carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Reed, B.E. (West Virginia Univ., Morgantown (United States)); Jensen, J.N.; Matsumoto, M.R. (State Univ. of New York, Buffalo (United States))

    Adsorption of heavy metals onto activated carbon has been described using the surface-complex-formation (SCF) model, a chemical equilibrium model. The SCF model requires a knowledge of the amphoteric nature of activated carbon prior to metal adsorption modeling. In the past, a single-diprotic-acid-site model had been employed to describe the amphoteric nature of activated-carbon surfaces. During this study, the amphoteric nature of two powdered activated carbons were investigated, and a three-monoprotic site surface model was found to be a plausible alternative. The single-diprotic-acid-site and two-monoprotic-site models did not describe the acid-base behavior of the two carbons studied adequately. The two-diprotic site was acceptable for only one of the study carbons. The acid-base behavior of activated carbon surfaces seem to be best modeled as a series of weak monoprotic acids.

  20. Evaluation and control of poisoning of impregnated carbons used for organic iodide removal

    International Nuclear Information System (INIS)

    Kovach, J.L.; Rankovic, L.

    1979-01-01

    By the evaluation of the chemical reactions which have taken place on impregnated activated carbon surfaces exposed to nuclear reactor atmospheric environments, the role of various impregnants has been studied. The evaluation shows several different paths for the aging and posioning to take place. The four major causes were found to be: organic solvent contamination; inorganic acid gas contamination; formation of organic acids on carbon surface; and, formation of SO 2 from carbon sulfur content. Prevention of poisoning by the first two paths can be accomplished only by procedural changes within the facility. However the last three poisoning paths can be controlled to some extent by the selection of carbon pretreatment techniques and the type of impregnant used. Results were generated by evaluating used carbons from 14 nuclear power plants and by artificial poisoning of laboratory impregnated carbons. Impregnants which have antioxidant properties, besides reaction with organic iodides, can increase the life of the impregnated activated carbons

  1. Characterization of electrospun lignin based carbon fibers

    International Nuclear Information System (INIS)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri

    2015-01-01

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 – 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems

  2. Characterization of electrospun lignin based carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri [School of Engineering, Thornbrough Building, University of Guelph, Guelph, N1G 2W1, Ontario (Canada); Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, N1G 2W1, Ontario (Canada)

    2015-05-22

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 – 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  3. Heat dissipation for the Intel Core i5 processor using multiwalled carbon-nanotube-based ethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Thang, Bui Hung; Trinh, Pham Van; Quang, Le Dinh; Khoi, Phan Hong; Minh, Phan Ngoc [Vietnam Academy of Science and Technology, Ho Chi Minh CIty (Viet Nam); Huong, Nguyen Thi [Hanoi University of Science, Hanoi (Viet Nam); Vietnam National University, Hanoi (Viet Nam)

    2014-08-15

    Carbon nanotubes (CNTs) are some of the most valuable materials with high thermal conductivity. The thermal conductivity of individual multiwalled carbon nanotubes (MWCNTs) grown by using chemical vapor deposition is 600 ± 100 Wm{sup -1}K{sup -1} compared with the thermal conductivity 419 Wm{sup -1}K{sup -1} of Ag. Carbon-nanotube-based liquids - a new class of nanomaterials, have shown many interesting properties and distinctive features offering potential in heat dissipation applications for electronic devices, such as computer microprocessor, high power LED, etc. In this work, a multiwalled carbon-nanotube-based liquid was made of well-dispersed hydroxyl-functional multiwalled carbon nanotubes (MWCNT-OH) in ethylene glycol (EG)/distilled water (DW) solutions by using Tween-80 surfactant and an ultrasonication method. The concentration of MWCNT-OH in EG/DW solutions ranged from 0.1 to 1.2 gram/liter. The dispersion of the MWCNT-OH-based EG/DW solutions was evaluated by using a Zeta-Sizer analyzer. The MWCNT-OH-based EG/DW solutions were used as coolants in the liquid cooling system for the Intel Core i5 processor. The thermal dissipation efficiency and the thermal response of the system were evaluated by directly measuring the temperature of the micro-processor using the Core Temp software and the temperature sensors built inside the micro-processor. The results confirmed the advantages of CNTs in thermal dissipation systems for computer processors and other high-power electronic devices.

  4. Heat dissipation for the Intel Core i5 processor using multiwalled carbon-nanotube-based ethylene glycol

    International Nuclear Information System (INIS)

    Thang, Bui Hung; Trinh, Pham Van; Quang, Le Dinh; Khoi, Phan Hong; Minh, Phan Ngoc; Huong, Nguyen Thi

    2014-01-01

    Carbon nanotubes (CNTs) are some of the most valuable materials with high thermal conductivity. The thermal conductivity of individual multiwalled carbon nanotubes (MWCNTs) grown by using chemical vapor deposition is 600 ± 100 Wm -1 K -1 compared with the thermal conductivity 419 Wm -1 K -1 of Ag. Carbon-nanotube-based liquids - a new class of nanomaterials, have shown many interesting properties and distinctive features offering potential in heat dissipation applications for electronic devices, such as computer microprocessor, high power LED, etc. In this work, a multiwalled carbon-nanotube-based liquid was made of well-dispersed hydroxyl-functional multiwalled carbon nanotubes (MWCNT-OH) in ethylene glycol (EG)/distilled water (DW) solutions by using Tween-80 surfactant and an ultrasonication method. The concentration of MWCNT-OH in EG/DW solutions ranged from 0.1 to 1.2 gram/liter. The dispersion of the MWCNT-OH-based EG/DW solutions was evaluated by using a Zeta-Sizer analyzer. The MWCNT-OH-based EG/DW solutions were used as coolants in the liquid cooling system for the Intel Core i5 processor. The thermal dissipation efficiency and the thermal response of the system were evaluated by directly measuring the temperature of the micro-processor using the Core Temp software and the temperature sensors built inside the micro-processor. The results confirmed the advantages of CNTs in thermal dissipation systems for computer processors and other high-power electronic devices.

  5. Microporous carbon derived from polyaniline base as anode material for lithium ion secondary battery

    International Nuclear Information System (INIS)

    Xiang, Xiaoxia; Liu, Enhui; Huang, Zhengzheng; Shen, Haijie; Tian, Yingying; Xiao, Chengyi; Yang, Jingjing; Mao, Zhaohui

    2011-01-01

    Highlights: → Nitrogen-containing microporous carbon was prepared from polyaniline base by K 2 CO 3 activation, and used as anode material for lithium ion secondary battery. → K 2 CO 3 activation promotes the formation of amorphous and microporous structure. → High nitrogen content, and large surface area with micropores lead to strong intercalation between carbon and lithium ion, and thus improve the lithium storage capacity. -- Abstract: Microporous carbon with large surface area was prepared from polyaniline base using K 2 CO 3 as an activating agent. The physicochemical properties of the carbon were characterized by scanning electron microscope, X-ray diffraction, Brunauer-Emmett-Teller, elemental analyses and X-ray photoelectron spectroscopy measurement. The electrochemical properties of the microporous carbon as anode material in lithium ion secondary battery were evaluated. The first discharge capacity of the microporous carbon was 1108 mAh g -1 , whose first charge capacity was 624 mAh g -1 , with a coulombic efficiency of 56.3%. After 20 cycling tests, the microporous carbon retains a reversible capacity of 603 mAh g -1 at a current density of 100 mA g -1 . These results clearly demonstrated the potential role of microporous carbon as anode for high capacity lithium ion secondary battery.

  6. Carbon-Nanotube-Based Thermoelectric Materials and Devices

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, Jeffrey L. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden CO 80401-3305 USA; Ferguson, Andrew J. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden CO 80401-3305 USA; Cho, Chungyeon [Department of Mechanical Engineering, Texas A& M University, College Station TX 77843-3003 USA; Grunlan, Jaime C. [Department of Mechanical Engineering, Texas A& M University, College Station TX 77843-3003 USA

    2018-01-22

    Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g-1) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting.

  7. Non-covalently functionalized carbon nanostructures for synthesizing carbon-based hybrid nanomaterials.

    Science.gov (United States)

    Li, Haiqing; Song, Sing I; Song, Ga Young; Kim, Il

    2014-02-01

    Carbon nanostructures (CNSs) such as carbon nanotubes, graphene sheets, and nanodiamonds provide an important type of substrate for constructing a variety of hybrid nanomaterials. However, their intrinsic chemistry-inert surfaces make it indispensable to pre-functionalize them prior to immobilizing additional components onto their surfaces. Currently developed strategies for functionalizing CNSs include covalent and non-covalent approaches. Conventional covalent treatments often damage the structure integrity of carbon surfaces and adversely affect their physical properties. In contrast, the non-covalent approach offers a non-destructive way to modify CNSs with desired functional surfaces, while reserving their intrinsic properties. Thus far, a number of surface modifiers including aromatic compounds, small-molecular surfactants, amphiphilic polymers, and biomacromolecules have been developed to non-covalently functionalize CNS surfaces. Mediated by these surface modifiers, various functional components such as organic species and inorganic nanoparticles were further decorated onto their surfaces, resulting in versatile carbon-based hybrid nanomaterials with broad applications in chemical engineering and biomedical areas. In this review, the recent advances in the generation of such hybrid nanostructures based on non-covalently functionalized CNSs will be reviewed.

  8. Carbon Nanotube-Based Synthetic Gecko Tapes

    Science.gov (United States)

    Dhinojwala, Ali

    2008-03-01

    Wall-climbing geckos have unique ability to attach to different surfaces without the use of any viscoelastic glues. On coming in contact with any surface, the micron-size gecko foot-hairs deform, enabling molecular contact over large areas, thus translating weak van der Waals (vdW) interactions into enormous shear forces. We will present our recent results on the development of synthetic gecko tape using aligned carbon nanotubes to mimic the keratin hairs found on gecko feet. The patterned carbon nanotube-based gecko tape can support a shear stress (36 N/cm^2) nearly four times higher than the gecko foot and sticks to a variety of surfaces, including Teflon. Both the micron-size setae (replicated by nanotube bundles) and nanometer-size spatulas (individual nanotubes) are necessary to achieve macroscopic shear adhesion and to translate the weak vdW interactions into high shear forces. The carbon nanotube based tape offers an excellent synthetic option as a dry conductive reversible adhesive in microelectronics, robotics and space applications. The mechanism behind these large shear forces and self-cleaning properties of these carbon nanotube based synthetic gecko tapes will be discussed. This work was performed in collaboration with graduate students Liehui Ge, and Sunny Sethi, and collaborators from RPI; Lijie Ci and Professor Pulickel Ajayan.

  9. Adsorptive removal of hydrophobic organic compounds by carbonaceous adsorbents: a comparative study of waste-polymer-based, coal-based activated carbon, and carbon nanotubes.

    Science.gov (United States)

    Lian, Fei; Chang, Chun; Du, Yang; Zhu, Lingyan; Xing, Baoshan; Liu, Chang

    2012-01-01

    Adsorption of the hydrophobic organic compounds (HOCs) trichloroethylene (TCE), 1,3-dichlorobenzene (DCB), 1,3-dinitrobenzene (DNB) and gamma-hexachlorocyclohexane (HCH) on five different carbonaceous materials was compared. The adsorbents included three polymer-based activated carbons, one coal-based activated carbon (F400) and multiwalled carbon nanotubes (MWNT). The polymer-based activated carbons were prepared using KOH activation from waste polymers: polyvinyl chloride (PVC), polyethyleneterephthalate (PET) and tire rubber (TR). Compared with F400 and MWNT, activated carbons derived from PVC and PET exhibited fast adsorption kinetics and high adsorption capacity toward the HOCs, attributed to their extremely large hydrophobic surface area (2700 m2/g) and highly mesoporous structures. Adsorption of small-sized TCE was stronger on the tire-rubber-based carbon and F400 resulting from the pore-filling effect. In contrast, due to the molecular sieving effect, their adsorption on HCH was lower. MWNT exhibited the lowest adsorption capacity toward HOCs because of its low surface area and characteristic of aggregating in aqueous solution.

  10. Applying and Individual-Based Model to Simultaneously Evaluate Net Ecosystem Production and Tree Diameter Increment

    Science.gov (United States)

    Fang, F. J.

    2017-12-01

    Reconciling observations at fundamentally different scales is central in understanding the global carbon cycle. This study investigates a model-based melding of forest inventory data, remote-sensing data and micrometeorological-station data ("flux towers" estimating forest heat, CO2 and H2O fluxes). The individual tree-based model FORCCHN was used to evaluate the tree DBH increment and forest carbon fluxes. These are the first simultaneous simulations of the forest carbon budgets from flux towers and individual-tree growth estimates of forest carbon budgets using the continuous forest inventory data — under circumstances in which both predictions can be tested. Along with the global implications of such findings, this also improves the capacity for forest sustainable management and the comprehensive understanding of forest ecosystems. In forest ecology, diameter at breast height (DBH) of a tree significantly determines an individual tree's cross-sectional sapwood area, its biomass and carbon storage. Evaluation the annual DBH increment (ΔDBH) of an individual tree is central to understanding tree growth and forest ecology. Ecosystem Carbon flux is a consequence of key ecosystem processes in the forest-ecosystem carbon cycle, Gross and Net Primary Production (GPP and NPP, respectively) and Net Ecosystem Respiration (NEP). All of these closely relate with tree DBH changes and tree death. Despite advances in evaluating forest carbon fluxes with flux towers and forest inventories for individual tree ΔDBH, few current ecological models can simultaneously quantify and predict the tree ΔDBH and forest carbon flux.

  11. Methodologies for extraction of dissolved inorganic carbon for stable carbon isotope studies : evaluation and alternatives

    Science.gov (United States)

    Hassan, Afifa Afifi

    1982-01-01

    The gas evolution and the strontium carbonate precipitation techniques to extract dissolved inorganic carbon (DIC) for stable carbon isotope analysis were investigated. Theoretical considerations, involving thermodynamic calculations and computer simulation pointed out several possible sources of error in delta carbon-13 measurements of the DIC and demonstrated the need for experimental evaluation of the magnitude of the error. An alternative analytical technique, equilibration with out-gassed vapor phase, is proposed. The experimental studies revealed that delta carbon-13 of the DIC extracted from a 0.01 molar NaHC03 solution by both techniques agreed within 0.1 per mil with the delta carbon-13 of the DIC extracted by the precipitation technique, and an increase of only 0.27 per mil in that extracted by the gas evolution technique. The efficiency of extraction of DIC decreased with sulfate concentration in the precipitation technique but was independent of sulfate concentration in the gas evolution technique. Both the precipitation and gas evolution technique were found to be satisfactory for extraction of DIC from different kinds of natural water for stable carbon isotope analysis, provided appropriate precautions are observed in handling the samples. For example, it was found that diffusion of atmospheric carbon dioxide does alter the delta carbon-13 of the samples contained in polyethylene bottles; filtration and drying in the air change the delta carbon-13 of the samples contained in polyethylene bottles; filtration and drying in the air change the delta carbon-13 of the precipitation technique; hot manganese dioxide purification changes the delta carbon-13 of carbon dioxide. (USGS)

  12. IMPROVED SELECTIVE ELECTROCATALYTIC OXIDATION OF PHENOLS BY TYROSINASE-BASED CARBON PASTE ELECTRODE BIOSENSOR

    Science.gov (United States)

    Tyrosinase-based carbon paste electrodes are evaluated with respect to the viscosity and polarity of the binder liquids. The electrodes constructed using a lower viscosity mineral oil yielded a greater response to phenol and catechol than those using a higher viscosity oil of s...

  13. Microstructure study of PAN-pitch-based carbon-carbon composite

    International Nuclear Information System (INIS)

    Lee, K.J.; Chen, Z.Y.

    2003-01-01

    Scanning electron microscopy (SEM), polarized light microscopy (PLM), and transmission electron microscopy (TEM) techniques have been used to characterize the normal surface and flank surface microstructure of a two-dimensional polyacrylonitrile (PAN)-based fiber reinforced mesophase pitch-based matrix carbon-carbon (C-C) composite. Optical and SEM results indicate that the mesophase pitch appears generally well bonded to the fibers, as well as internal pores and cracks exist in both interbundle and intrabundle regions. TEM shows that matrix platelets were highly parallel to the fiber axis. Numerous microcracks, parallel to the fiber axis, were formed along fiber-matrix interface and within the matrix. The selected-area diffraction (SAD) patterns show that a random orientation of basal planes in the transverse fiber of flank surface and the domain near the fiber surface exhibited a better alignment

  14. Electrochemical Capacitors Based on Aligned Carbon Nanotubes Directly Synthesized on Tantalum Substrates

    International Nuclear Information System (INIS)

    Kim, Byung Woo; Chung, Hae Geun; Kim, Woong; Min, Byoung Koun; Kim, Hong Gon

    2010-01-01

    We demonstrate that vertically aligned carbon nanotubes can be synthesized directly on tantalum substrate via waterassisted chemical vapor deposition and evaluate their properties as electrochemical capacitors. The mean diameter of the carbon nanotubes was 7.1 ± 1.5 nm, and 70% of them had double walls. The intensity ratio of G-band to D-band in Raman spectra was as high as 5, indicating good quality of the carbon nanotubes. Owing to the alignment and low equivalent series resistance, the carbon nanotube based supercapacitors showed good rate performance. Rectangular shape of cyclic voltammogram was maintained even at the scan rate of > 1 V/s in 1 M sulfuric acid aqueous solution. Specific capacitance was well-retained (∼94%) even when the discharging current density dramatically increased up to 145 A/g. Consequently, specific power as high as 60 kW/kg was obtained from as-grown carbon nanotubes in aqueous solution. Maximum specific energy of ∼20 Wh/kg was obtained when carbon nanotubes were electrochemically oxidized and operated in organic solution. Demonstration of direct synthesis of carbon nanotubes on tantalum current collectors and their applications as supercapacitors could be an invaluable basis for fabrication of high performance carbon nanotube supercapacitors

  15. Tobacco Stem-Based Activated Carbons for High Performance Supercapacitors

    Science.gov (United States)

    Xia, Xiaohong; Liu, Hongbo; Shi, Lei; He, Yuede

    2012-09-01

    Tobacco stem-based activated carbons (TS-ACs) were prepared by simple KOH activation and their application as electrodes in the electrical double layer capacitor (EDLC) performed successfully. The BET surface area, pore volume, and pore size distribution of the TS-ACs were evaluated based on N2 adsorption isotherms at 77 K. The surface area of the obtained activated carbons varies over a wide range (1472.8-3326.7 m2/g) and the mesoporosity was enhanced significantly as the ratio of KOH to tobacco stem (TS) increased. The electrochemical behaviors of series TS-ACs were characterized by means of galvanostatic charging/discharging, cyclic voltammetry, and impedance spectroscopy. The correlation between electrochemical properties and pore structure was investigated. A high specific capacitance value as 190 F/g at 1 mA/cm2 was obtained in 1 M LiPF6-EC/DMC/DEC electrolyte solution. Furthermore, good performance is also achieved even at high current densities. A development of new use for TS into a valuable energy storage material is explored.

  16. Carbon-Nanotube-Based Thermoelectric Materials and Devices.

    Science.gov (United States)

    Blackburn, Jeffrey L; Ferguson, Andrew J; Cho, Chungyeon; Grunlan, Jaime C

    2018-03-01

    Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g -1 ) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Expedient Prediction of the Fuel Properties of Carbonized Woody Biomass Based on Hue Angle

    Directory of Open Access Journals (Sweden)

    Yuta Saito

    2018-05-01

    Full Text Available Woody biomass co-firing-based power generation can reduce CO2 emissions from pulverized coal boilers. Carbonization of woody biomass increases its calorific value and grindability, thereby improving the co-firing ratio. Carbonized biomass fuel properties depend on moisture, size and shape of feedstock, and carbonization conditions. To produce carbonized biomass with stable fuel properties, the carbonization conditions should be set according to the desired fuel properties. Therefore, we examined color changes accompanying woody biomass carbonization and proposed using them for rapid evaluation of fuel properties. Three types of woody biomasses were carbonized at a test facility with a capacity of 4 tons/day, and the fuel properties of the obtained materials were correlated with their color defined by the L*a*b* model. When fixed carbon, an important fuel property for carbonization, was 25 wt % or less, we observed a strong negative correlation, regardless of the tree species, between the hue angle, hab, and fixed carbon. The hab and fixed carbon were correlated even when the fixed carbon exceeded 25 wt %; however, this correlation was specific to the tree species. These results indicate that carbonized biomass fuel properties such as fixed carbon can be estimated rapidly and easily by measuring hab.

  18. Carbon-Based Fibrous EDLC Capacitors and Supercapacitors

    Directory of Open Access Journals (Sweden)

    C. Lekakou

    2011-01-01

    Full Text Available This paper investigates electrochemical double-layer capacitors (EDLCs including two alternative types of carbon-based fibrous electrodes, a carbon fibre woven fabric (CWF and a multiwall carbon nanotube (CNT electrode, as well as hybrid CWF-CNT electrodes. Two types of separator membranes were also considered. An organic gel electrolyte PEO-LiCIO4-EC-THF was used to maintain a high working voltage. The capacitor cells were tested in cyclic voltammetry, charge-discharge, and impedance tests. The best separator was a glass fibre-fine pore filter. The carbon woven fabric electrode and the corresponding supercapacitor exhibited superior performance per unit area, whereas the multiwall carbon nanotube electrode and corresponding supercapacitor demonstrated excellent specific properties. The hybrid CWF-CNT electrodes did not show a combined improved performance due to the lack of carbon nanotube penetration into the carbon fibre fabric.

  19. Towards a more objective evaluation of modelled land-carbon trends using atmospheric CO2 and satellite-based vegetation activity observations

    Directory of Open Access Journals (Sweden)

    D. Dalmonech

    2013-06-01

    Full Text Available Terrestrial ecosystem models used for Earth system modelling show a significant divergence in future patterns of ecosystem processes, in particular the net land–atmosphere carbon exchanges, despite a seemingly common behaviour for the contemporary period. An in-depth evaluation of these models is hence of high importance to better understand the reasons for this disagreement. Here, we develop an extension for existing benchmarking systems by making use of the complementary information contained in the observational records of atmospheric CO2 and remotely sensed vegetation activity to provide a novel set of diagnostics of ecosystem responses to climate variability in the last 30 yr at different temporal and spatial scales. The selection of observational characteristics (traits specifically considers the robustness of information given that the uncertainty of both data and evaluation methodology is largely unknown or difficult to quantify. Based on these considerations, we introduce a baseline benchmark – a minimum test that any model has to pass – to provide a more objective, quantitative evaluation framework. The benchmarking strategy can be used for any land surface model, either driven by observed meteorology or coupled to a climate model. We apply this framework to evaluate the offline version of the MPI Earth System Model's land surface scheme JSBACH. We demonstrate that the complementary use of atmospheric CO2 and satellite-based vegetation activity data allows pinpointing of specific model deficiencies that would not be possible by the sole use of atmospheric CO2 observations.

  20. Fixation of carbon dioxide into dimethyl carbonate over titanium-based zeolitic thiophene-benzimidazolate framework

    Data.gov (United States)

    U.S. Environmental Protection Agency — A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon...

  1. Evaluation of a membrane based carbon dioxide absorber for spacecraft ECLS applications

    NARCIS (Netherlands)

    Feron, P.H.M.; Eckhard, F.; Witt, J.

    1996-01-01

    In an on-going harmonized ESA/NIVR project, performed by Stork Comprimo and TNO-MEP, the removal of the carbon dioxide with membranes is studied. The use of membrane gas absorption for carbon dioxide removal is currently hampered by the fact that the commonly used alkanolamines result in leakage

  2. Evaluation of Anaerobic Biodegradation of Organic Carbon Extracted from Aquifer Sediment

    OpenAIRE

    Kelly, Catherine Aileen

    2006-01-01

    In conjunction with ongoing studies to develop a method for quantifying potentially biodegradable organic carbon (Rectanus et al 2005), this research was conducted to evaluate the extent to which organic carbon extracted using this method will biodegrade in anaerobic environments. The ultimate goal is to use this method for the evaluation of chloroethene contaminated sites in order to estimate the long-term sustainability of monitored natural attenuation (MNA) as a remediation strategy. Alt...

  3. Adsorptive removal of hydrophobic organic compounds by carbonaceous adsorbents: A comparative study of waste-polymer-based,coal-based activated carbon, and carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Fei Lian; Chun Chang; Yang Du; Lingyan Zhu; Baoshan Xing; Chang Liu

    2012-01-01

    Adsorption of the hydrophobic organic compounds (HOCs) trichloroethylene (TCE),1,3-dichlorobenzene (DCB),1,3-dinitrobenzene (DNB) and γ-hexachlorocyclohexane (HCH) on five different carbonaceous materials was compared.The adsorbents included three polymer-based activated carbons,one coal-based activated carbon (F400) and multiwalled carbon nanotubes (MWNT).The polymerbased activated carbons were prepared using KOH activation from waste polymers:polyvinyl chloride (PVC),polyethyleneterephthalate (PET) and tire rubber (TR).Compared with F400 and MWNT,activated carbons derived from PVC and PET exhibited fast adsorption kinetics and high adsorption capacity toward the HOCs,attributed to their extremely large hydrophobic surface area (2700 m2/g) and highly mesoporous structures.Adsorption of small-sized TCE was stronger on the tire-rubber-based carbon and F400 resulting from the pore-filling effect.In contrast,due to the molecular sieving effect,their adsorption on HCH was lower.MWNT exhibited the lowest adsorption capacity toward HOCs because of its low surface area and characteristic of aggregating in aqueous solution.

  4. Theoretical evaluation of indoor radon control using a carbon adsorption system

    International Nuclear Information System (INIS)

    Bocanegra, R.; Hopke, P.K.

    1989-01-01

    The conceptual framework for a carbon-based adsorption system for the control of indoor radon is presented. Based on the adsorptivity of typically available activated carbons, it is shown theoretically that carbon bed adsorbers can be effective in lowering indoor radon levels particularly when the area of radon ingress (the basement) has a relatively low exchange rate with the rest of the house

  5. Carbon nanotube based pressure sensor for flexible electronics

    International Nuclear Information System (INIS)

    So, Hye-Mi; Sim, Jin Woo; Kwon, Jinhyeong; Yun, Jongju; Baik, Seunghyun; Chang, Won Seok

    2013-01-01

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate

  6. Carbon nanotube based pressure sensor for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    So, Hye-Mi [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of); Sim, Jin Woo [Advanced Nano Technology Ltd., Seoul 132-710 (Korea, Republic of); Kwon, Jinhyeong [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Yun, Jongju; Baik, Seunghyun [SKKU Advanced Institute of Nanotechnology (SAINT), Department of Energy Science and School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Chang, Won Seok, E-mail: paul@kimm.re.kr [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of)

    2013-12-15

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate.

  7. Lignin-based carbon fibers: Carbon nanotube decoration and superior thermal stability

    KAUST Repository

    Xu, Xuezhu

    2014-08-23

    Lignin-based carbon fibers (CFs) decorated with carbon nanotubes (CNTs) were synthesized and their structure, thermal stability and wettability were systematically studied. The carbon fiber precursors were produced by electrospinning lignin/polyacrylonitrile solutions. CFs were obtained by pyrolyzing the precursors and CNTs were subsequently grown on the CFs to eventually achieve a CF–CNT hybrid structure. The processes of pyrolysis and CNT growth were conducted in a tube furnace using different conditions and the properties of the resultant products were studied and compared. The CF–CNT hybrid structure produced at 850 °C using a palladium catalyst showed the highest thermal stability, i.e., 98.3% residual weight at 950 °C. A mechanism for such superior thermal stability was postulated based on the results from X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, and electron energy loss spectroscopy analyses. The dense CNT decoration was found to increase the hydrophobicity of the CFs.

  8. Room temperature ferromagnetism in a phthalocyanine based carbon material

    International Nuclear Information System (INIS)

    Honda, Z.; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N.; Hagiwara, M.; Kida, T.

    2014-01-01

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T c  = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material

  9. Room temperature ferromagnetism in a phthalocyanine based carbon material

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Z., E-mail: honda@fms.saitama-u.ac.jp; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N. [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Hagiwara, M.; Kida, T. [KYOKUGEN (Center for Quantum Science and Technology under Extreme Conditions), Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2014-02-07

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c} = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.

  10. (Ca,Mg)-Carbonate and Mg-Carbonate at the Phoenix Landing Site: Evaluation of the Phoenix Lander's Thermal Evolved Gas Analyzer (TEGA) Data Using Laboratory Simulations

    Science.gov (United States)

    Sutter, B.; Ming, D. W.; Boynton, W. V.; Niles, P. B.; Morris, R. V.

    2011-01-01

    Calcium carbonate (4.5 wt. %) was detected in the soil at the Phoenix Landing site by the Phoenix Lander s The Thermal and Evolved Gas Analyzer [1]. TEGA operated at 12 mbar pressure, yet the detection of calcium carbonate is based on interpretations derived from thermal analysis literature of carbonates measured under ambient (1000 mbar) and vacuum (10(exp -3) mbar) conditions [2,3] as well as at 100 and 30 mbar [4,5] and one analysis at 12 mbar by the TEGA engineering qualification model (TEGA-EQM). Thermodynamics (Te = H/ S) dictate that pressure affects entropy ( S) which causes the temperature (Te) of mineral decomposition at one pressure to differ from Te obtained at another pressure. Thermal decomposition analyses of Fe-, Mg-, and Ca-bearing carbonates at 12 mbar is required to enhance the understanding of the TEGA results at TEGA operating pressures. The objectives of this work are to (1) evaluate the thermal and evolved gas behavior of a suite of Fe-, Mg-, Ca-carbonate minerals at 1000 and 12 mbar and (2) discuss possible emplacement mechanisms for the Phoenix carbonate.

  11. All carbon coaxial supercapacitors based on hollow carbon nanotube sleeve structure

    International Nuclear Information System (INIS)

    Zang, Xiaobei; Xu, Ruiqiao; Zhang, Yangyang; Zhang, Li; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Li, Xinming

    2015-01-01

    All carbon coaxial supercapacitors based on hollow carbon nanotube (CNT) sleeve structure are assembled and tested. The key advantage of the structure is that the inner core electrode is variable from CNT sleeve sponges, to CNT fibers, reduced graphene oxide fibers, and graphene woven fabrics. By changing core electrodes from sleeve sponges to CNT fibers, the electrochemical performance has been significantly enhanced. The capacitance based on sleeve sponge + CNT fiber double the capacitances of double-sleeve sponge supercapacitors thanks to reduction of the series and internal resistances. Besides, the coaxial sleeve structure possesses many other features, including high rate capacitance, long cycle life, and good flexibility. (paper)

  12. Carbon nanomaterial based electrochemical sensors for biogenic amines

    International Nuclear Information System (INIS)

    Yang, Xiao; He, Xiulan; Li, Fangping; Fei, Junjie; Feng, Bo; Ding, Yonglan

    2013-01-01

    This review describes recent advances in the use of carbon nanomaterials for electroanalytical detection of biogenic amines (BAs). It starts with a short introduction into carbon nanomaterials such as carbon nanotubes, graphene, nanodiamonds, carbon nanofibers, fullerenes, and their composites. Next, electrochemical sensing schemes are discussed for various BAs including dopamine, serotonin, epinephrine, norepinephrine, tyramine, histamine and putrescine. Examples are then given for methods for simultaneous detection of various BAs. Finally, we discuss the current and future challenges of carbon nanomaterial-based electrochemical sensors for BAs. The review contains 175 references. (author)

  13. Carbon based magnetism an overview of the magnetism of metal free carbon-based compounds and materials

    CERN Document Server

    Makarova, Tatiana

    2006-01-01

    Magnetism is one of the most intriguing phenomena observed in nature. Magnetism is relevant to physics and geology, biology and chemistry. Traditional magnets, an ubiquitous part of many everyday gadgets, are made of heavy iron- or nickel based materials. Recently there have been reports on the observation of magnetism in carbon, a very light and biocompatible element. Metal-free carbon structures exhibiting magnetic ordering represent a new class of materials and open a novel field of research that could lead to many new technologies. · The most complete, detailed, and accurate Guide in the magnetism of carbon · Dynamically written by the leading experts · Deals with recent scientific highlights · Gathers together chemists and physicists, theoreticians and experimentalists · Unified treatment rather than a series of individually authored papers · Description of genuine organic molecular ferromagnets · Unique description of new carbon materials with Curie temperatures well above ambient.

  14. Carbon-based fibrous EDLC capacitors and supercapacitors

    OpenAIRE

    Lekakou, C; Moudam, O; Markoulidis, F; Andrews, T; Watts, JF; Reed, GT

    2011-01-01

    This paper investigates electrochemical double-layer capacitors (EDLCs) including two alternative types of carbon-based fibrous electrodes, a carbon fibre woven fabric (CWF) and a multiwall carbon nanotube (CNT) electrode, as well as hybrid CWF-CNT electrodes. Two types of separator membranes were also considered. An organic gel electrolyte PEO-LiCIO4-EC-THF was used to maintain a high working voltage. The capacitor cells were tested in cyclic voltammetry, charge-discharge, and impedance test...

  15. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  16. Effects of Carbonization Parameters of Moso-Bamboo-Based Porous Charcoal on Capturing Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Pei-Hsing Huang

    2014-01-01

    Full Text Available This study experimentally analyzed the carbon dioxide adsorption capacity of Moso-bamboo- (Phyllostachys edulis- based porous charcoal. The porous charcoal was prepared at various carbonization temperatures and ground into powders with 60, 100, and 170 meshes, respectively. In order to understand the adsorption characteristics of porous charcoal, its fundamental properties, namely, charcoal yield, ash content, pH value, Brunauer-Emmett-Teller (BET surface area, iodine number, pore volume, and powder size, were analyzed. The results show that when the carbonization temperature was increased, the charcoal yield decreased and the pH value increased. Moreover, the bamboo carbonized at a temperature of 1000°C for 2 h had the highest iodine sorption value and BET surface area. In the experiments, charcoal powders prepared at various carbonization temperatures were used to adsorb 1.854% CO2 for 120 h. The results show that the bamboo charcoal carbonized at 1000°C and ground with a 170 mesh had the best adsorption capacity, significantly decreasing the CO2 concentration to 0.836%. At room temperature and atmospheric pressure, the Moso-bamboo-based porous charcoal exhibited much better CO2 adsorption capacity compared to that of commercially available 350-mesh activated carbon.

  17. Biological interactions of carbon-based nanomaterials: From coronation to degradation.

    Science.gov (United States)

    Bhattacharya, Kunal; Mukherjee, Sourav P; Gallud, Audrey; Burkert, Seth C; Bistarelli, Silvia; Bellucci, Stefano; Bottini, Massimo; Star, Alexander; Fadeel, Bengt

    2016-02-01

    Carbon-based nanomaterials including carbon nanotubes, graphene oxide, fullerenes and nanodiamonds are potential candidates for various applications in medicine such as drug delivery and imaging. However, the successful translation of nanomaterials for biomedical applications is predicated on a detailed understanding of the biological interactions of these materials. Indeed, the potential impact of the so-called bio-corona of proteins, lipids, and other biomolecules on the fate of nanomaterials in the body should not be ignored. Enzymatic degradation of carbon-based nanomaterials by immune-competent cells serves as a special case of bio-corona interactions with important implications for the medical use of such nanomaterials. In the present review, we highlight emerging biomedical applications of carbon-based nanomaterials. We also discuss recent studies on nanomaterial 'coronation' and how this impacts on biodistribution and targeting along with studies on the enzymatic degradation of carbon-based nanomaterials, and the role of surface modification of nanomaterials for these biological interactions. Advances in technology have produced many carbon-based nanomaterials. These are increasingly being investigated for the use in diagnostics and therapeutics. Nonetheless, there remains a knowledge gap in terms of the understanding of the biological interactions of these materials. In this paper, the authors provided a comprehensive review on the recent biomedical applications and the interactions of various carbon-based nanomaterials. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Carbon dots: Synthesis from renewable sources via hydrothermal carbonization, characterization and evaluation of their interaction with biological systems

    International Nuclear Information System (INIS)

    Moraes, Liz Specian de; Alves, Oswaldo Luiz

    2016-01-01

    Full text: Carbon dots (CDs) constitute a new class of carbon-based nanomaterials with interesting photoluminescent properties that enable their potential use in bioimaging, sensing and drug delivery applications. They consist of quasi spherical nanoparticles with size below 10 nm. As a consequence of their low toxicity and biocompatibility, CDs have been considered as a promising alternative to traditional semiconductor-based quantum dots. In addition, they can be synthesized from accessible renewable sources in an environmentally friendly perspective. In this work, we report the use of bovine serum albumin (BSA) and bovine plasma (BP) as precursors to synthesis of CDs applying hydrothermal carbonization method. The study also includes the physical chemical characterization and the evaluation of interaction between these nanomaterials and biosystems, using hemolytic assay. The morphology and size of the carbon nanoparticles were analyzed by Transmission Electronic Microscopy. CDs obtained from BSA (BSA-CDs) and BP (BP-CDs) had spherical shape with an average size of 5.6 and 3.7 nm, respectively. The fluorescence quantum yield was calculated using quinine sulfate as reference. BSA-CDs and BP-CDs exhibited quantum yields of 4.9% and 4.0%, when they were excited at wavelength of 315 and 300 nm, respectively. Furthermore, the red-shift phenomenon was observed in the emission spectra of both synthesized CDs, indicating the formation of particles with different sizes or the presence of surface energy traps distribution. The composition of CDs was determined by Elemental Analysis and X-ray Photoelectron Spectroscopy. Both nanomaterials contained C, N, O and S elements. The hemolytic assay demonstrated the synthesized CDs did not cause damage to red blood cell membrane at concentrations between 5 and 250 μg mL -1 . (author)

  19. Carbon dots: Synthesis from renewable sources via hydrothermal carbonization, characterization and evaluation of their interaction with biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Liz Specian de; Alves, Oswaldo Luiz, E-mail: liz.specian@hotmail.com.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2016-07-01

    Full text: Carbon dots (CDs) constitute a new class of carbon-based nanomaterials with interesting photoluminescent properties that enable their potential use in bioimaging, sensing and drug delivery applications. They consist of quasi spherical nanoparticles with size below 10 nm. As a consequence of their low toxicity and biocompatibility, CDs have been considered as a promising alternative to traditional semiconductor-based quantum dots. In addition, they can be synthesized from accessible renewable sources in an environmentally friendly perspective. In this work, we report the use of bovine serum albumin (BSA) and bovine plasma (BP) as precursors to synthesis of CDs applying hydrothermal carbonization method. The study also includes the physical chemical characterization and the evaluation of interaction between these nanomaterials and biosystems, using hemolytic assay. The morphology and size of the carbon nanoparticles were analyzed by Transmission Electronic Microscopy. CDs obtained from BSA (BSA-CDs) and BP (BP-CDs) had spherical shape with an average size of 5.6 and 3.7 nm, respectively. The fluorescence quantum yield was calculated using quinine sulfate as reference. BSA-CDs and BP-CDs exhibited quantum yields of 4.9% and 4.0%, when they were excited at wavelength of 315 and 300 nm, respectively. Furthermore, the red-shift phenomenon was observed in the emission spectra of both synthesized CDs, indicating the formation of particles with different sizes or the presence of surface energy traps distribution. The composition of CDs was determined by Elemental Analysis and X-ray Photoelectron Spectroscopy. Both nanomaterials contained C, N, O and S elements. The hemolytic assay demonstrated the synthesized CDs did not cause damage to red blood cell membrane at concentrations between 5 and 250 μg mL{sup -1}. (author)

  20. COMPARATIVE EVALUATION OF COMMERCIAL AND SEWAGE SLUDGE BASED ACTIVATED CARBONS FOR THE REMOVAL OF TEXTILE DYES FROM AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    S. Sreedhar Reddy, B. Kotaiah

    2006-10-01

    Full Text Available The sorption of dyes from aqueous solutions on to sludge-based activated carbon have been studied and compared with commercial activated carbon. Adsorption parameters for the Langmuir and Freundlich isotherms were determined and the effects of effluent pH, adsorbent dosage, contact time and initial dye concentration were studied. A pseudo-second order kinetic model has been proposed to correlate the experimental data.

  1. Carbon- versus sulphur-based zinc binding groups for carbonic anhydrase inhibitors?

    Science.gov (United States)

    Supuran, Claudiu T

    2018-12-01

    A set of compounds incorporating carbon-based zinc-binding groups (ZBGs), of the type PhX (X = COOH, CONH 2 , CONHNH 2 , CONHOH, CONHOMe), and the corresponding derivatives with sulphur(VI)-based ZBGs (X = SO 3 H, SO 2 NH 2 , SO 2 NHNH 2 , SO 2 NHOH, SO 2 NHOMe) were tested as inhibitors of all mammalian isoforms of carbonic anhydrase (CA, EC 4.2.1.1), CA I-XV. Three factors connected with the ZBG influenced the efficacy as CA inhibitor (CAI) of the investigated compounds: (i) the pKa of the ZBG; (ii) its geometry (tetrahedral, i.e. sulphur-based, versus trigonal, i.e. carbon-based ZBGs), and (iii) orientation of the organic scaffold induced by the nature of the ZBG. Benzenesulphonamide was the best inhibitor of all isoforms, but other ZBGs led to interesting inhibition profiles, although with an efficacy generally reduced when compared to the sulphonamide. The nature of the ZBG also influenced the CA inhibition mechanism. Most of these derivatives were zinc binders, but some of them (sulfonates, carboxylates) may interact with the enzyme by anchoring to the zinc-coordinated water molecule or by other inhibition mechanisms (occlusion of the active site entrance, out of the active site binding, etc.). Exploring structurally diverse ZBGs may lead to interesting new developments in the field of CAIs.

  2. Mesoporous carbon design for ionic liquid-based, double-layer supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, M.; Soavi, F.; Mastragostino, M. [Dipartimento di Scienza dei Metalli, Elettrochimica e Tecniche Chimiche, University of Bologna (Italy)

    2010-10-15

    The use of pyrrolidinium-based ionic liquids (ILs) in asymmetric electric double-layer capacitors (AEDLC) with positive and negative carbon electrodes of different weight is a powerful strategy for developing safe, high specific-energy supercapacitors operating at >3.5 V. The preparation and characterisation of ordered (OTC) and disordered (DTC) template carbons, the latter obtained by a fast and low-cost method, are reported. The porosity and capacitance features of the template carbons are discussed in view of their application in IL-based AEDLCs and compared with the properties of aero/cryo/xerogel carbons and a commercial activated carbon. The performance of an N-butyl-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl)imide-based AEDLC assembled with DTC carbon electrodes operating at 3.9 V featuring high specific energy of 47 Wh kg{sup -1} is then reported. The impact of porosity and surface chemistry of carbons on the electrode capacitive response in IL and on the performance of the IL-based AEDLC in terms of energy, power and weight distribution of module components is discussed. The effect of IL nature and carbon porosity on the time constant of the double-layer charging process was also investigated by voltammetric and impedance studies. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Self-evaluation System for Low carbon Industrial Park--A Case Study of TEDA Industrial Park in Tianjin

    Science.gov (United States)

    Wenyan, W.; Fanghua, H.; Ying, C.; Ouyang, W.; Yuan, Q.

    2013-12-01

    Massive fossil fuel burning caused by industrialization development is one major reason of global climate change. After Copenhagen climate summit, the studies of low-carbon city gain attentions from many countries. On 25th Nov. 2009, the State Council executive meeting announced that by 2020 China will reduce the carbon dioxide emissions per unit of GDP by 40% to 45% compared with the level of 2005. Industrial Park as an important part of city, has developed rapidly in recent years, and turns into a key element and an alternative mechanism to achieve emission reduction target. Thus, establishing a low carbon development model for industrial park is one of the most effective ways to build sustainable low carbon cities. By adopting the self-evaluation system of low carbon industrial park, this research aims to summarize the low carbon concept in industrial park practice. According to The Guide for Low Carbon Industrial Development Zones, the quantitative evaluation system is divided into 4 separate categories with 23 different quantitative indicators. The 4 categories include: 1) energy and GHG management (weigh 60%), 2) circular economy and environmental protection (weigh 15%), 3) administration and incentive mechanisms of industrial parks (weigh 15%), and 4) planning and urban forms (weigh 10%). By going through the necessary stages and by leading continuous improvements low carbon development goals can be achieved. Tianjin TEDA industrial park is selected as one case study to conduct an assessment on TEDA low-carbon development condition. Tianjin TEDA Industrial Park is already an ecological demonstration industrial park in China, with good foundations on environmental protection, resource recycling, etc. Based on the self-evaluation system, the indicators, such as the energy using efficiency and the degree of land intensive utilization, are also analyzed and assessed. Through field survey and data collection, in accordance with the quantitative self-evaluation

  4. Purity Evaluation of Single-Walled Carbon Nanotubes Using Thermogravimetric Analysis

    International Nuclear Information System (INIS)

    Goak, Jeung Choon; Kim, Tae Yang; Jung, Jongwan; Seo, Young-Soo; Lee, Naesung; Sok, Junghyun

    2013-01-01

    This study evaluated the purity of single-walled carbon nanotubes (SWCNTs) in the arc-synthesized SWCNT samples by using thermogravimetric analysis (TGA). The as-produced SWCNT samples were heat-treated in air for 20 h at 275-475°C and characterized by scanning and transmission electron microscopes and TGA to establish oxidation temperature ranges of SWCNTs and carbonaceous impurities comprising the samples. Based on these oxidation temperature ranges, derivative thermogravimetric curves were deconvoluted, and differentiated peaks were assigned to SWCNTs and carbonaceous impurities. The compositions and the SWCNT purities of the samples were obtained simply by calculating the areal ratios under the deconvoluted curves. TGA studies on purity evaluation and thermal stabilities of SWCNTs and carbonaceous impurities are likely to provide us with a simple route of thermal oxidation purification to acquire high-purity SWCNT samples.

  5. Photodetector based on carbon nanotubes

    Science.gov (United States)

    Pavlov, A.; Kitsyuk, E.; Ryazanov, R.; Timoshenkov, V.; Adamov, Y.

    2015-09-01

    Photodetector based on carbon nanotubes (CNT) was investigated. Sensors were done on quartz and silicon susbtrate. Samples of photodetectors sensors were produced by planar technology. This technology included deposition of first metal layer (Al), lithography for pads formation, etching, and formation of local catalyst area by inverse lithography. Vertically-aligned multi-wall carbon nanotubes were directly synthesized on substrate by PECVD method. I-V analysis and spectrum sensitivity of photodetector were investigated for 0.4 μm - 1.2 μm wavelength. Resistivity of CNT layers over temperature was detected in the range of -20°C to 100°C.

  6. Evaluation of methods for cleaning low carbon uranium metal and alloy samples

    International Nuclear Information System (INIS)

    Kirchner, K.; Dixon, M.

    1979-01-01

    Several methods for cleaning uranium samples prior to carbon analysis, using a Leco Carbon Analyzer, were evaluated. Use of Oakite Aluminum NST Cleaner followed by water and acetone rinse was found to be the best overall technique

  7. [In vivo evaluation of carbon fiber posts].

    Science.gov (United States)

    Lai, V; Lugliè, P F; Chessa, G

    2002-05-01

    The use of carbon fiber posts allows morpho-functional restoration of endodontically treated teeth with an assembly of materials of a modulus of elasticity similar to that of dentin. The study clinically evaluated the percentage of survival of dental elements treated and reconstructed with endocanal carbon fiber posts. At the Dentistry Clinic of the University of Sassari 60 dental elements were selected from 46 subjects. The teeth, which had been treated endodontically with success for at least six months, were classified by parameters taken from the international literature and reconstructed using Tech 2000 carbon fiber posts and adhesive resinous systems recommended by the post manufacturer. The success rate was 98.4%. Almost half (49%) of the samples were single-rooted elements, 37.4% of the posts were 1.2 mm in diameter; in 78.3% the opposing contact was with a natural tooth; 100% of the elements had a type A dental structure. Third generation posts are a valid alternative to metallic posts and improve the prognosis of the treated element. The carbon fiber posts fixed with the composite, forming a single unit with the dental element, thus improving mid-term RESULTS. The technique is easy to use under clinical conditions and can be performed in a single session. So far, the method has provided promising clinical results, as this study demonstrated.

  8. Neuromorphic function learning with carbon nanotube based synapses

    International Nuclear Information System (INIS)

    Gacem, Karim; Filoramo, Arianna; Derycke, Vincent; Retrouvey, Jean-Marie; Chabi, Djaafar; Zhao, Weisheng; Klein, Jacques-Olivier

    2013-01-01

    The principle of using nanoscale memory devices as artificial synapses in neuromorphic circuits is recognized as a promising way to build ground-breaking circuit architectures tolerant to defects and variability. Yet, actual experimental demonstrations of the neural network type of circuits based on non-conventional/non-CMOS memory devices and displaying function learning capabilities remain very scarce. We show here that carbon-nanotube-based memory elements can be used as artificial synapses, combined with conventional neurons and trained to perform functions through the application of a supervised learning algorithm. The same ensemble of eight devices can notably be trained multiple times to code successively any three-input linearly separable Boolean logic function despite device-to-device variability. This work thus represents one of the very few demonstrations of actual function learning with synapses based on nanoscale building blocks. The potential of such an approach for the parallel learning of multiple and more complex functions is also evaluated. (paper)

  9. Carbon nanotube-based black coatings

    Science.gov (United States)

    Lehman, J.; Yung, C.; Tomlin, N.; Conklin, D.; Stephens, M.

    2018-03-01

    Coatings comprising carbon nanotubes are very black, that is, characterized by uniformly low reflectance over a broad range of wavelengths from the visible to far infrared. Arguably, there is no other material that is comparable. This is attributable to the intrinsic properties of graphitic material as well as the morphology (density, thickness, disorder, and tube size). We briefly describe a history of other coatings such as nickel phosphorous, gold black, and carbon-based paints and the comparable structural morphology that we associate with very black coatings. The need for black coatings is persistent for a variety of applications ranging from baffles and traps to blackbodies and thermal detectors. Applications for space-based instruments are of interest and we present a review of space qualification and the results of outgassing measurements. Questions of nanoparticle safety depend on the nanotube size and aspect ratio as well as the nature and route of exposure. We describe the growth of carbon nanotube forests along with the catalyst requirements and temperature limitations. We also describe coatings derived from carbon nanotubes and applied like paint. Building the measurement apparatus and determining the optical properties of something having negligible reflectance are challenging and we summarize the methods and means for such measurements. There exists information in the literature for effective media approximations to model the dielectric function of vertically aligned arrays. We summarize this along with the refractive index of graphite from the literature that is necessary for modeling the optical properties. In our experience, the scientific questions can be overshadowed by practical matters, so we provide an appendix of recipes for making as-grown and sprayed coatings along with an example of reflectance measurements.

  10. Ethylene carbonate-free fluoroethylene carbonate-based electrolyte works better for freestanding Si-based composite paper anodes for Li-ion batteries

    Science.gov (United States)

    Yao, K.; Zheng, J. P.; Liang, R.

    2018-03-01

    Fluoroethylene carbonate (FEC)-based electrolytes using FEC as the co-solvent (50 wt%) are investigated and compared with the electrolyte using FEC as the additive (10 wt%) for freestanding Si-carbon nanotubes (CNTs) composite paper anodes for Li-ion batteries. The ethylene carbonate (EC)-free FEC-based electrolyte is found to achieve higher specific capacity and better capacity retention in terms of long-term cycling. After 500 cycles, the capacity retention of the cell using diethyl carbonate (DEC)-FEC (1:1 w/w) is increased by 88% and 60% compared to the cells using EC-DEC-FEC (45:45:10 w/w/w) and EC-FEC (1:1 w/w), respectively. Through SEM-EDX and XPS analyses, a possible reaction route of formation of fluorinated semicarbonates and polyolefins from FEC is proposed. The inferior cell performance related to the EC-containing electrolytes is likely due to the formation of more polyolefins, which do not favor Li ion migration.

  11. Characterization and performance evaluation of an innovative mesoporous activated carbon used for drinking water purification in comparison with commercial carbons.

    Science.gov (United States)

    Gong, Xu-Jin; Li, Wei-Guang; Wang, Guang-Zhi; Zhang, Duo-Ying; Fan, Wen-Biao; Yin, Zhao-Dong

    2015-09-01

    The preparation, characterization, and performance evaluation of an innovative mesoporous activated carbon (C-XHIT) were conducted in this study. Comparative evaluation with commercial carbons (C-PS and C-ZJ15) and long-term performance evaluation of C-XHIT were conducted in small-scale system-A (S-A) and pilot-scale system-B (S-B-1 and S-B-2 in series), respectively, for treating water from Songhua River. The cumulative uptake of micropollutants varied with KBV (water volume fed to columns divided by the mass of carbons, m(3) H2O/kg carbon) was employed in the performance evaluation. The results identified that mesoporous and microporous volumes were simultaneously well-developed in C-XHIT. Higher mesoporosity (63.94 %) and average pore width (37.91 Å) of C-XHIT ensured a higher adsorption capacity for humic acid compared to C-PS and C-ZJ15. When the KBV of S-A reached 12.58 m(3) H2O/kg carbon, cumulative uptake of organic pollutants achieved by C-XHIT increased by 32.82 and 156.29 % for DOC (QC) and 22.53 and 112.48 % for UV254 (QUV) compared to C-PS and C-ZJ15, respectively; in contrast, the adsorption capacity of NH4 (+)-N did not improve significantly. C-XHIT achieved high average removal efficiencies for DOC (77.43 ± 16.54 %) and UV254 (83.18 ± 13.88 %) in S-B over 253 days of operation (KBV = 62 m(3) H2O/kg carbon). Adsorption dominated the removal of DOC and UV254 in the initial phases of KBV (0-15 m(3) H2O/kg carbon), and simultaneous biodegradation and adsorption were identified as the mechanisms for organic pollutant uptake at KBV above 25 m(3) H2O/kg carbon. The average rates contributed by S-B-1 and S-B-2 for QC and QUV were approximately 0.75 and 0.25, respectively. Good linear and exponential correlations were observed between S-A and S-B in terms of QC and QUV obtained by C-XHIT, respectively, for the same KBV ranges, indicating a rapid and cost-saving evaluation method. The linear correlation between mesoporosity and QC

  12. TYROSINASE-BASED CARBON PASTE ELECTRODE BIOSENSOR FOR DETECTION OF PHENOLS: BINDER AND PRE-OXIDATION EFFECTS

    Science.gov (United States)

    Tyrosinase-based carbon paste electrodes are evaluated with respect to the viscosity and polarity of the binder liquids. The electrodes constructed using a lower viscosity mineral oil or paraffin wax oil yielded a greater response to phenol and catechol than those using the hi...

  13. Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans

    NARCIS (Netherlands)

    Kuempel, Eileen D; Jaurand, Marie-Claude; Møller, Peter; Morimoto, Yasuo; Kobayashi, Norihiro; Pinkerton, Kent E; Sargent, Linda M; Vermeulen, Roel C H; Fubini, Bice; Kane, Agnes B

    2017-01-01

    In an evaluation of carbon nanotubes (CNTs) for the IARC Monograph 111, the Mechanisms Subgroup was tasked with assessing the strength of evidence on the potential carcinogenicity of CNTs in humans. The mechanistic evidence was considered to be not strong enough to alter the evaluations based on the

  14. Techno-economic evaluation of different CO2-based processes for dimethyl carbonate production

    DEFF Research Database (Denmark)

    Kongpanna, Pichayapan; Pavarajarn, Varong; Gani, Rafiqul

    2015-01-01

    carbonate route is found to give the best performance in terms of energy consumption (11.4% improvement), net CO2 emission (13.4% improvement), in global warming potential (58.6% improvement) and in human toxicity-carcinogenic (99.9% improvement) compared to the BAYER process. Also, the ethylene carbonate...

  15. Study visit carbon sinks Peugeot. Evaluation after 5 years and perspectives

    International Nuclear Information System (INIS)

    Grosso, M.; Sao Nicolau, F.

    2005-01-01

    In the framework of its project of the climatic change control, PSA Peugeot Citroen, decided to involve in the decrease of the carbon dioxide emissions. In parallel to the vehicles consumption decrease and the biofuels utilization, the group developed since 5 years a pilot project of carbon sink. This project aims to study the impact of a trees plantation, at a big scale, on the atmospheric carbon dioxide fixation. This document is a first evaluation after the phase of trees plantation. (A.L.B.)

  16. Land-Based Mitigation Strategies under the Mid-Term Carbon Reduction Targets in Indonesia

    Directory of Open Access Journals (Sweden)

    Tomoko Hasegawa

    2016-12-01

    Full Text Available We investigated the key mitigation options for achieving the mid-term target for carbon emission reduction in Indonesia. A computable general equilibrium model coupled with a land-based mitigation technology model was used to evaluate specific mitigation options within the whole economic framework. The results revealed three primary findings: (1 If no climate policy were implemented, Indonesia’s total greenhouse gas emissions would reach 3.0 GtCO2eq by 2030; (2 To reduce carbon emissions to meet the latest Intended Nationally-Determined Contributions (INDC target, ~58% of total reductions should come from the agriculture, forestry and other land use sectors by implementing forest protection, afforestation and plantation efforts; (3 A higher carbon price in 2020 suggests that meeting the 2020 target would be economically challenging, whereas the INDC target for 2030 would be more economically realistic in Indonesia.

  17. Low-cost carbon-based counter electrodes for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Barberio, M; Imbrogno, A; Bonanno, A; Xu, F; Grosso, D R

    2015-01-01

    In this work, we present the realization of four carbon-based counter electrodes for dye-sensitized solar cells. The photovoltaic behaviours of counter electrodes realized with graphene, multiwalled carbon nanotubes, and nanocomposites of multiwalled carbon nanotubes and metal nanoparticles are compared with those of classical electrodes (amorphous carbon and platinum). Our results show an increase of about 50% in PCE for graphene and Ag/carbon nanotube electrodes with respect to amorphous carbon and of 25% in comparison to platinum. An improvement in cell stability is also observed; in fact, the PCE of all carbon-based cells assumes a constant value during a period of one month while that with the Pt electrode decreases by 50% in one week. (paper)

  18. CMOS-based carbon nanotube pass-transistor logic integrated circuits

    Science.gov (United States)

    Ding, Li; Zhang, Zhiyong; Liang, Shibo; Pei, Tian; Wang, Sheng; Li, Yan; Zhou, Weiwei; Liu, Jie; Peng, Lian-Mao

    2012-01-01

    Field-effect transistors based on carbon nanotubes have been shown to be faster and less energy consuming than their silicon counterparts. However, ensuring these advantages are maintained for integrated circuits is a challenge. Here we demonstrate that a significant reduction in the use of field-effect transistors can be achieved by constructing carbon nanotube-based integrated circuits based on a pass-transistor logic configuration, rather than a complementary metal-oxide semiconductor configuration. Logic gates are constructed on individual carbon nanotubes via a doping-free approach and with a single power supply at voltages as low as 0.4 V. The pass-transistor logic configurarion provides a significant simplification of the carbon nanotube-based circuit design, a higher potential circuit speed and a significant reduction in power consumption. In particular, a full adder, which requires a total of 28 field-effect transistors to construct in the usual complementary metal-oxide semiconductor circuit, uses only three pairs of n- and p-field-effect transistors in the pass-transistor logic configuration. PMID:22334080

  19. Pyrolytic carbon microelectrodes for impedance based cell sensing

    DEFF Research Database (Denmark)

    Hassan, Yasmin Mohamed; Caviglia, Claudia; Hemanth, Suhith

    2016-01-01

    Electrically conductive glass-like carbon structures can be obtained from a polymer template through a pyrolysis process. These structures can be used as electrodes for bio sensing applications such as electrochemical evaluation of cell adhesion and proliferation. This study focuses on the optimi...... to decrease the resistivity of the resulting carbon material and improve the performance in cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Finally, EIS was used to monitor adhesion and proliferation of HeLa cells....

  20. Capacitance of carbon-based electrical double-layer capacitors.

    Science.gov (United States)

    Ji, Hengxing; Zhao, Xin; Qiao, Zhenhua; Jung, Jeil; Zhu, Yanwu; Lu, Yalin; Zhang, Li Li; MacDonald, Allan H; Ruoff, Rodney S

    2014-01-01

    Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.

  1. Evaluating the capabilities of portable black carbon monitors and photometers for measuring airborne carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Naomi; Ogura, Isamu, E-mail: i-ogura@aist.go.jp; Kotake, Mari; Kishimoto, Atsuo; Honda, Kazumasa [Technology Research Association for Single Wall Carbon Nanotubes (TASC) (Japan)

    2013-11-15

    For daily monitoring of occupational exposure to aerosolized carbon nanotubes (CNTs) where CNTs are manufactured and handled, inexpensive real-time measuring methods are preferable. In this study, we evaluated the capabilities of a portable black carbon monitor (BCM; also called an aethalometer) and a light-scattering aerosol photometer in detecting airborne CNTs. The responses of these instruments to airborne CNTs, aerosolized through vortex shaking, were evaluated by comparing the measurements of CNT mass concentrations made by these instruments to those determined through thermal carbon analysis. Results showed that their raw readings underestimated CNT mass concentrations in most cases. Their sensitivities depended on the type of CNTs and decreased with the particle sizes of aerosolized CNT clumps. We also found that the sensitivity of the BCM tended to substantially decrease with increasing filter load, even before the point at which the filter should be replaced as recommended by the manufacturer, which could be attributed to a clean environmental condition (i.e., the absence of ubiquitous light-scattering material). As an example of the use of these instruments for measuring airborne CNTs in the presence of background aerosols, a CNT-handling simulation was also conducted. Although both the BCM and the photometer could detect CNT emissions, the BCM was more sensitive to the detection of emitted CNTs in the presence of background aerosols. The correction factors obtained from the response evaluations could enhance the measurement accuracy of these instruments, which will be helpful for the daily monitoring of CNTs at workplaces.

  2. Evaluating the capabilities of portable black carbon monitors and photometers for measuring airborne carbon nanotubes

    International Nuclear Information System (INIS)

    Hashimoto, Naomi; Ogura, Isamu; Kotake, Mari; Kishimoto, Atsuo; Honda, Kazumasa

    2013-01-01

    For daily monitoring of occupational exposure to aerosolized carbon nanotubes (CNTs) where CNTs are manufactured and handled, inexpensive real-time measuring methods are preferable. In this study, we evaluated the capabilities of a portable black carbon monitor (BCM; also called an aethalometer) and a light-scattering aerosol photometer in detecting airborne CNTs. The responses of these instruments to airborne CNTs, aerosolized through vortex shaking, were evaluated by comparing the measurements of CNT mass concentrations made by these instruments to those determined through thermal carbon analysis. Results showed that their raw readings underestimated CNT mass concentrations in most cases. Their sensitivities depended on the type of CNTs and decreased with the particle sizes of aerosolized CNT clumps. We also found that the sensitivity of the BCM tended to substantially decrease with increasing filter load, even before the point at which the filter should be replaced as recommended by the manufacturer, which could be attributed to a clean environmental condition (i.e., the absence of ubiquitous light-scattering material). As an example of the use of these instruments for measuring airborne CNTs in the presence of background aerosols, a CNT-handling simulation was also conducted. Although both the BCM and the photometer could detect CNT emissions, the BCM was more sensitive to the detection of emitted CNTs in the presence of background aerosols. The correction factors obtained from the response evaluations could enhance the measurement accuracy of these instruments, which will be helpful for the daily monitoring of CNTs at workplaces

  3. Report on fiscal 1998 results of R and D on industrial science and technology. R and D on 'frontier carbon technology' (R and D on carbon-based high function material); 1998 nendo tansokei kokino zairyo gijutsu no kenkyu kaihatsu seika hokokusho. Tansokei kokino zairyo gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Results of R and D for the initial year were compiled concerning the frontier carbon technology R and D project started in fiscal 1998. In the material formation and evaluation studies of SAW (surface acoustic wave) elements, an AlN (aluminum nitride) film and a diamond/Si film were successfully formed by a nitrogen radical assisted pulsed laser vapor deposition method and a reactive DC magnetron sputtering method. Also performed were the simulation analysis of diamond SAW element characteristics and the evaluation studies of the SAW elements. In the development of the film forming and evaluation technologies of ultra thin carbon-based protective film, carbon-based thin films were developed using an ECR (electron-cyclotron resonance) sputtering method. In the development of evaluation technology for the abrasion performance of ultra thin carbon-based protective films, examination and experiment were carried out for the evaluation device and method capable of simulating abrasion performance in an HDD (hard disk drive). In the development of a high performance display device using a carbon nano tube cold cathode electron source, the evaluation of electron emission characteristics was conducted, as was the manufacturing of a RGB surface light source. (NEDO)

  4. Environmental effect on the mechanical properties of commingled-yarn-based carbon fibre/polyamide 6 composites

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Toftegaard, Helmuth Langmaack

    2014-01-01

    The main objective of this experimental investigation was to evaluate the changes from accelerated ageing on selected properties of carbon fibre/polyamide 6 composites based on hybrid yarns. In this study, two types of mechanical tests were performed to measure the environmental influence...... on the material properties. They are three-point bending to measure the flexural strength and stiffness, and short beam three-point bending to measure the interlaminar shear strength. The 10-mm-thick quasi-isotropic carbon fibre/polyamide 6 composites with 52% volume fraction of carbon fibre to be tested were...... temperature. The interlaminar shear strength values also drop to about 75% at both −45 and 115. Extreme temperatures and long-time exposure to humidity of quasi-isotropic carbon fibre/polyamide 6 laminates can thus reduce the bending stiffness and strength by up to 35% and the interlaminar shear strength...

  5. Evaluations of carbon fluxes estimated by top-down and bottom-up approaches

    Science.gov (United States)

    Murakami, K.; Sasai, T.; Kato, S.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.; Nasahara, K.; Matsunaga, T.

    2013-12-01

    There are two types of estimating carbon fluxes using satellite observation data, and these are referred to as top-down and bottom-up approaches. Many uncertainties are however still remain in these carbon flux estimations, because the true values of carbon flux are still unclear and estimations vary according to the type of the model (e.g. a transport model, a process based model) and input data. The CO2 fluxes in these approaches are estimated by using different satellite data such as the distribution of CO2 concentration in the top-down approach and the land cover information (e.g. leaf area, surface temperature) in the bottom-up approach. The satellite-based CO2 flux estimations with reduced uncertainty can be used efficiently for identifications of large emission area and carbon stocks of forest area. In this study, we evaluated the carbon flux estimates from two approaches by comparing with each other. The Greenhouse gases Observing SATellite (GOSAT) has been observing atmospheric CO2 concentrations since 2009. GOSAT L4A data product is the monthly CO2 flux estimations for 64 sub-continental regions and is estimated by using GOSAT FTS SWIR L2 XCO2 data and atmospheric tracer transport model. We used GOSAT L4A CO2 flux as top-down approach estimations and net ecosystem productions (NEP) estimated by the diagnostic type biosphere model BEAMS as bottom-up approach estimations. BEAMS NEP is only natural land CO2 flux, so we used GOSAT L4A CO2 flux after subtraction of anthropogenic CO2 emissions and oceanic CO2 flux. We compared with two approach in temperate north-east Asia region. This region is covered by grassland and crop land (about 60 %), forest (about 20 %) and bare ground (about 20 %). The temporal variation for one year period was indicated similar trends between two approaches. Furthermore we show the comparison of CO2 flux estimations in other sub-continental regions.

  6. Properties and Structure of In Situ Transformed PAN-Based Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Jingjing Cao

    2018-06-01

    Full Text Available Carbon fibers in situ prepared during the hot-pressed sintering in a vacuum is termed in situ transformed polyacrylonitrile-based (PAN-based carbon fibers, and the fibrous precursors are the pre-oxidized PAN fibers. The properties and structure of in situ transformed PAN-based carbon fibers are investigated by Nano indenter, SEM, TEM, XRD, and Raman. The results showed that the microstructure of the fiber surface layer was compact, while the core was loose, with evenly-appearing microvoids. The elastic modulus and nanohardness of the fiber surface layer (303.87 GPa and 14.82 GPa were much higher than that of the core (16.57 GPa and 1.54 GPa, and its interlayer spacing d002 and crystallinity were about 0.347 nm and 0.97 respectively. It was found that the preferred orientation of the surface carbon layers with ordered carbon atomic arrangement tended to be parallel to the fiber axis, whereas the fiber core in the amorphous region exhibited a random texture and the carbon atomic arrangement was in a disordered state. It indicates that the in situ transformed PAN-based carbon fibers possess significantly turbostratic structure and anisotropy.

  7. The effect of carbon-chain oxygenation in the carbon-carbon dissociation.

    Science.gov (United States)

    Dos Santos, Lisandra Paulino; Baptista, Leonardo

    2018-06-01

    Currently, there is a trend of moving away from the use of fossil fuels to the use of biofuels. This modification changes the molecular structure of gasoline and diesel constituents, which should impact pollutant emissions and engine efficiency. An important property of automotive fuels is the resistance to autoignition. The goal of the present work is to evaluate thermochemical and kinetic parameters that govern the carbon-carbon bond dissociation and relate these parameters, in conjunction with molecular properties, to autoignition resistance. Three model reactions were investigated in the present work: dissociation of ethane, ethanol, and ethanal. All studies were conducted at the multiconfigurational level of theory, and the rate coefficients were evaluated from 300 to 2000 K. The comparison of dissociation energies and Arrhenius expressions indicates that autoignition resistance is related to the kinetic control of dissociation reactions and it is possible to relate the higher octane number of ethanol based fuels to the kinetics parameters of carbon-carbon bond fission. Graphical abstract Effect of the functional group in the Arrhenius parameters of the C-C dissociation. Arrhenius curves calculated at NEVPT2(6,6)/6-311G(2df,2pd).

  8. Transition between laser absorption dominated regimes in carbon-based plasma

    Directory of Open Access Journals (Sweden)

    K. Hajisharifi

    2017-09-01

    Full Text Available In this work, we investigate the energy absorption enhancement of a laser by adding a variety of light ion species to a primarily carbon-based plasma during the high-power laser interaction with the finite size targets. A developed Particle-In-Cell simulation code is used to study the reduction of laser reflectivity (stimulated backward scatterings in both Brillouin- and Raman-dominated regimes. The simulation is performed in various Carbon-light ion plasmas such as Carbon-Hydrogen, Carbon-Helium, Carbon-Deuterium, and Carbon-Tritium. The results show that, in the optimized condition, the inclusion of light Hydrogen ions into the Carbon-based plasma up to 50%-50% mixture enhances the laser absorption exceeding 20% in the Brillouin regime due to the suppression of laser reflectivity in contract to 4% in the Raman-dominated regime. Moreover, the absorption dominated regime switches from Raman to Brillouin regime by adding 50% of Hydrogen ions to a purely carbon target. The results of this investigation will be applicable to the laser-plasma experiments so long as the laser energy absorption in the Carbon plasma target, the most readily available material in laboratory, is concerned.

  9. Soil-Carbon Measurement System Based on Inelastic Neutron Scattering

    International Nuclear Information System (INIS)

    Orion, I.; Wielopolski, L.

    2002-01-01

    Increase in the atmospheric CO 2 is associated with concurrent increase in the amount of carbon sequestered in the soil. For better understanding of the carbon cycle it is imperative to establish a better and extensive database of the carbon concentrations in various soil types, in order to develop improved models for changes in the global climate. Non-invasive soil carbon measurement is based on Inelastic Neutron Scattering (INS). This method has been used successfully to measure total body carbon in human beings. The system consists of a pulsed neutron generator that is based on D-T reaction, which produces 14 MeV neutrons, a neutron flux monitoring detector and a couple of large NaI(Tl), 6'' diameter by 6'' high, spectrometers [4]. The threshold energy for INS reaction in carbon is 4.8 MeV. Following INS of 14 MeV neutrons in carbon 4.44 MeV photons are emitted and counted during a gate pulse period of 10 μsec. The repetition rate of the neutron generator is 104 pulses per sec. The gamma spectra are acquired only during the neutron generator gate pulses. The INS method for soil carbon content measurements provides a non-destructive, non-invasive tool, which can be optimized in order to develop a system for in field measurements

  10. Mineral Carbonation Potential of CO2 from Natural and Industrial-based Alkalinity Sources

    Science.gov (United States)

    Wilcox, J.; Kirchofer, A.

    2014-12-01

    Mineral carbonation is a Carbon Capture and Storage (CSS) technology where gaseous CO2 is reacted with alkaline materials (such as silicate minerals and alkaline industrial wastes) and converted into stable and environmentally benign carbonate minerals (Metz et al., 2005). Here, we present a holistic, transparent life cycle assessment model of aqueous mineral carbonation built using a hybrid process model and economic input-output life cycle assessment approach. We compared the energy efficiency and the net CO2 storage potential of various mineral carbonation processes based on different feedstock material and process schemes on a consistent basis by determining the energy and material balance of each implementation (Kirchofer et al., 2011). In particular, we evaluated the net CO2 storage potential of aqueous mineral carbonation for serpentine, olivine, cement kiln dust, fly ash, and steel slag across a range of reaction conditions and process parameters. A preliminary systematic investigation of the tradeoffs inherent in mineral carbonation processes was conducted and guidelines for the optimization of the life-cycle energy efficiency are provided. The life-cycle assessment of aqueous mineral carbonation suggests that a variety of alkalinity sources and process configurations are capable of net CO2 reductions. The maximum carbonation efficiency, defined as mass percent of CO2 mitigated per CO2 input, was 83% for CKD at ambient temperature and pressure conditions. In order of decreasing efficiency, the maximum carbonation efficiencies for the other alkalinity sources investigated were: olivine, 66%; SS, 64%; FA, 36%; and serpentine, 13%. For natural alkalinity sources, availability is estimated based on U.S. production rates of a) lime (18 Mt/yr) or b) sand and gravel (760 Mt/yr) (USGS, 2011). The low estimate assumes the maximum sequestration efficiency of the alkalinity source obtained in the current work and the high estimate assumes a sequestration efficiency

  11. Carbon-based nanomaterials: multifunctional materials for biomedical engineering.

    Science.gov (United States)

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2013-04-23

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), and extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications.

  12. Valuing Metal-Organic Frameworks for Postcombustion Carbon Capture: A Benchmark Study for Evaluating Physical Adsorbents

    KAUST Repository

    Adil, Karim

    2017-08-22

    The development of practical solutions for the energy-efficient capture of carbon dioxide is of prime importance and continues to attract intensive research interest. Conceivably, the implementation of adsorption-based processes using different cycling modes, e.g., pressure-swing adsorption or temperature-swing adsorption, offers great prospects to address this challenge. Practically, the successful deployment of practical adsorption-based technologies depends on the development of made-to-order adsorbents expressing mutually two compulsory requisites: i) high selectivity/affinity for CO2 and ii) excellent chemical stability in the presence of impurities. This study presents a new comprehensive experimental protocol apposite for assessing the prospects of a given physical adsorbent for carbon capture under flue gas stream conditions. The protocol permits: i) the baseline performance of commercial adsorbents such as zeolite 13X, activated carbon versus liquid amine scrubbing to be ascertained, and ii) a standardized evaluation of the best reported metal-organic framework (MOF) materials for carbon dioxide capture from flue gas to be undertaken. This extensive study corroborates the exceptional CO2 capture performance of the recently isolated second-generation fluorinated MOF material, NbOFFIVE-1-Ni, concomitant with an impressive chemical stability and a low energy for regeneration. Essentially, the NbOFFIVE-1-Ni adsorbent presents the best compromise by satisfying all the required metrics for efficient CO2 scrubbing.

  13. Evaluation of carbon fiber composites fabricated using ionic liquid based epoxies for cryogenic fluid applications

    Directory of Open Access Journals (Sweden)

    R.N. Grugel

    Full Text Available Utilizing tanks fabricated from fiber reinforced polymeric composites for storing cryogenic fluids such as liquid oxygen and liquid hydrogen is of great interest to NASA as considerable weight savings can be gained. Unfortunately such composites, especially at cryogenic temperatures, develop a mismatch that initiates detrimental delamination and crack growth, which promotes leaking. On-going work with ionic liquid-based epoxies appears promising in mitigating these detrimental effects. Some recent results are presented and discussed. Keywords: Ionic liquid, Carbon fiber, Epoxy, COPV, Cryogenic fluids

  14. Optimization of Preparation Program for Biomass Based Porous Active Carbon by Response Surface Methodology Based on Adsorptive Property

    Directory of Open Access Journals (Sweden)

    ZHANG Hao

    2017-06-01

    Full Text Available With waste walnut shell as raw material, biomass based porous active carbon was made by microwave oven method. The effects of microwave power, activation time and mass fraction of phosphoric acid on adsorptive property of biomass based porous active carbon in the process of physical activation of active carbon precursor were studied by response surface method and numerical simulation method, the preparation plan of biomass based porous active carbon was optimized, and the optimal biomass based porous active carbon property was characterized. The results show that three factors affect the adsorptive property of biomass based porous active carbon, but the effect of microwave power is obviously more significant than that of mass fraction of phosphoric acid, and the effect of mass fraction of phosphoric acid is more significant than that of activation time. The optimized preparation conditions are:microwave power is 746W, activation time is 11.2min and mass fraction of phosphoric acid is 85.9% in the process of physical activation of activated carbon precursor by microwave heating method. For the optimal biomass based porous active carbon, the adsorption value of iodine is 1074.57mg/g, adsorption value of methylene blue is 294.4mL/g and gain rate is 52.1%.

  15. Carbon nanotube based photocathodes

    International Nuclear Information System (INIS)

    Hudanski, Ludovic; Minoux, Eric; Schnell, Jean-Philippe; Xavier, Stephane; Pribat, Didier; Legagneux, Pierre; Gangloff, Laurent; Teo, Kenneth B K; Robertson, John; Milne, William I

    2008-01-01

    This paper describes a novel photocathode which is an array of vertically aligned multi-walled carbon nanotubes (MWCNTs), each MWCNT being associated with one p-i-n photodiode. Unlike conventional photocathodes, the functions of photon-electron conversion and subsequent electron emission are physically separated. Photon-electron conversion is achieved with p-i-n photodiodes and the electron emission occurs from the MWCNTs. The current modulation is highly efficient as it uses an optically controlled reconfiguration of the electric field at the MWCNT locations. Such devices are compatible with high frequency and very large bandwidth operation and could lead to their application in compact, light and efficient microwave amplifiers for satellite telecommunication. To demonstrate this new photocathode concept, we have fabricated the first carbon nanotube based photocathode using silicon p-i-n photodiodes and MWCNT bunches. Using a green laser, this photocathode delivers 0.5 mA with an internal quantum efficiency of 10% and an I ON /I OFF ratio of 30

  16. Carbon-Based Nanomaterials in Biomass-Based Fuel-Fed Fuel Cells

    Directory of Open Access Journals (Sweden)

    Le Quynh Hoa

    2017-11-01

    Full Text Available Environmental and sustainable economical concerns are generating a growing interest in biofuels predominantly produced from biomass. It would be ideal if an energy conversion device could directly extract energy from a sustainable energy resource such as biomass. Unfortunately, up to now, such a direct conversion device produces insufficient power to meet the demand of practical applications. To realize the future of biofuel-fed fuel cells as a green energy conversion device, efforts have been devoted to the development of carbon-based nanomaterials with tunable electronic and surface characteristics to act as efficient metal-free electrocatalysts and/or as supporting matrix for metal-based electrocatalysts. We present here a mini review on the recent advances in carbon-based catalysts for each type of biofuel-fed/biofuel cells that directly/indirectly extract energy from biomass resources, and discuss the challenges and perspectives in this developing field.

  17. ''Green'' path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim Z. [Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922 (United States); Veziroglu, T. Nejat [Clean Energy Research Institute, University of Miami, Coral Gables, FL 33124 (United States)

    2008-12-15

    While the dominant role of hydrogen in a sustainable energy future is widely accepted, the strategies for the transition from fossil-based to hydrogen economy are still actively debated. This paper emphasizes the role of carbon-neutral technologies and fuels during the transition period. To satisfy the world's growing appetite for energy and keep our planet healthy, at least 10 TW (or terawatt) of carbon-free power has to be produced by mid-century. Three prominent options discussed in the literature include: decarbonization of fossil energy, nuclear energy and renewable energy sources. These options are analyzed in this paper with a special emphasis on the role of hydrogen as a carbon-free energy carrier. In particular, the authors compare various fossil decarbonization strategies and evaluate the potential of nuclear and renewable energy resources to meet the 10 TW target. An overview of state-of-the-art technologies for production of carbon-free energy carriers and transportation fuels, and the assessment of their commercial potential is provided. It is shown that neither of these three options alone could provide 10 TW of carbon-neutral power without major changes in the existing infrastructure, and/or technological breakthroughs in many areas, and/or a considerable environmental risk. The authors propose a scenario for the transition from current fossil-based to hydrogen economy that includes two key elements: (i) changing the fossil decarbonization strategy from one based on CO{sub 2} sequestration to one that involves sequestration and/or utilization of solid carbon, and (ii) producing carbon-neutral synthetic fuels from bio-carbon and hydrogen generated from water using carbon-free sources (nuclear, solar, wind, geothermal). This strategy would allow taking advantage of the existing fuel infrastructure without an adverse environmental impact, and it would secure a smooth carbon-neutral transition from fossil-based to future hydrogen economy. (author)

  18. Analysis and application of classification methods of complex carbonate reservoirs

    Science.gov (United States)

    Li, Xiongyan; Qin, Ruibao; Ping, Haitao; Wei, Dan; Liu, Xiaomei

    2018-06-01

    There are abundant carbonate reservoirs from the Cenozoic to Mesozoic era in the Middle East. Due to variation in sedimentary environment and diagenetic process of carbonate reservoirs, several porosity types coexist in carbonate reservoirs. As a result, because of the complex lithologies and pore types as well as the impact of microfractures, the pore structure is very complicated. Therefore, it is difficult to accurately calculate the reservoir parameters. In order to accurately evaluate carbonate reservoirs, based on the pore structure evaluation of carbonate reservoirs, the classification methods of carbonate reservoirs are analyzed based on capillary pressure curves and flow units. Based on the capillary pressure curves, although the carbonate reservoirs can be classified, the relationship between porosity and permeability after classification is not ideal. On the basis of the flow units, the high-precision functional relationship between porosity and permeability after classification can be established. Therefore, the carbonate reservoirs can be quantitatively evaluated based on the classification of flow units. In the dolomite reservoirs, the average absolute error of calculated permeability decreases from 15.13 to 7.44 mD. Similarly, the average absolute error of calculated permeability of limestone reservoirs is reduced from 20.33 to 7.37 mD. Only by accurately characterizing pore structures and classifying reservoir types, reservoir parameters could be calculated accurately. Therefore, characterizing pore structures and classifying reservoir types are very important to accurate evaluation of complex carbonate reservoirs in the Middle East.

  19. Evaluation of climate-related carbon turnover processes in global vegetation models for boreal and temperate forests.

    Science.gov (United States)

    Thurner, Martin; Beer, Christian; Ciais, Philippe; Friend, Andrew D; Ito, Akihiko; Kleidon, Axel; Lomas, Mark R; Quegan, Shaun; Rademacher, Tim T; Schaphoff, Sibyll; Tum, Markus; Wiltshire, Andy; Carvalhais, Nuno

    2017-08-01

    Turnover concepts in state-of-the-art global vegetation models (GVMs) account for various processes, but are often highly simplified and may not include an adequate representation of the dominant processes that shape vegetation carbon turnover rates in real forest ecosystems at a large spatial scale. Here, we evaluate vegetation carbon turnover processes in GVMs participating in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT) using estimates of vegetation carbon turnover rate (k) derived from a combination of remote sensing based products of biomass and net primary production (NPP). We find that current model limitations lead to considerable biases in the simulated biomass and in k (severe underestimations by all models except JeDi and VISIT compared to observation-based average k), likely contributing to underestimation of positive feedbacks of the northern forest carbon balance to climate change caused by changes in forest mortality. A need for improved turnover concepts related to frost damage, drought, and insect outbreaks to better reproduce observation-based spatial patterns in k is identified. As direct frost damage effects on mortality are usually not accounted for in these GVMs, simulated relationships between k and winter length in boreal forests are not consistent between different regions and strongly biased compared to the observation-based relationships. Some models show a response of k to drought in temperate forests as a result of impacts of water availability on NPP, growth efficiency or carbon balance dependent mortality as well as soil or litter moisture effects on leaf turnover or fire. However, further direct drought effects such as carbon starvation (only in HYBRID4) or hydraulic failure are usually not taken into account by the investigated GVMs. While they are considered dominant large-scale mortality agents, mortality mechanisms related to insects and

  20. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes II. Steam:carbon ratio and current density

    Science.gov (United States)

    Kuhn, J.; Kesler, O.

    2015-03-01

    For the second part of a two part publication, coking thresholds with respect to molar steam:carbon ratio (SC) and current density in nickel-based solid oxide fuel cells were determined. Anode-supported button cell samples were exposed to 2-component and 5-component gas mixtures with 1 ≤ SC ≤ 2 and zero fuel utilization for 10 h, followed by measurement of the resulting carbon mass. The effect of current density was explored by measuring carbon mass under conditions known to be prone to coking while increasing the current density until the cell was carbon-free. The SC coking thresholds were measured to be ∼1.04 and ∼1.18 at 600 and 700 °C, respectively. Current density experiments validated the thresholds measured with respect to fuel utilization and steam:carbon ratio. Coking thresholds at 600 °C could be predicted with thermodynamic equilibrium calculations when the Gibbs free energy of carbon was appropriately modified. Here, the Gibbs free energy of carbon on nickel-based anode support cermets was measured to be -6.91 ± 0.08 kJ mol-1. The results of this two part publication show that thermodynamic equilibrium calculations with appropriate modification to the Gibbs free energy of solid-phase carbon can be used to predict coking thresholds on nickel-based anodes at 600-700 °C.

  1. Report on fiscal 1998 results of R and D on industrial science and technology. R and D on 'frontier carbon technology' (R and D on carbon-based high function material); 1998 nendo tansokei kokino zairyo gijutsu no kenkyu kaihatsu seika hokokusho. Tansokei kokino zairyo gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Results of R and D for the initial year were compiled concerning the frontier carbon technology R and D project started in fiscal 1998. In the material formation and evaluation studies of SAW (surface acoustic wave) elements, an AlN (aluminum nitride) film and a diamond/Si film were successfully formed by a nitrogen radical assisted pulsed laser vapor deposition method and a reactive DC magnetron sputtering method. Also performed were the simulation analysis of diamond SAW element characteristics and the evaluation studies of the SAW elements. In the development of the film forming and evaluation technologies of ultra thin carbon-based protective film, carbon-based thin films were developed using an ECR (electron-cyclotron resonance) sputtering method. In the development of evaluation technology for the abrasion performance of ultra thin carbon-based protective films, examination and experiment were carried out for the evaluation device and method capable of simulating abrasion performance in an HDD (hard disk drive). In the development of a high performance display device using a carbon nano tube cold cathode electron source, the evaluation of electron emission characteristics was conducted, as was the manufacturing of a RGB surface light source. (NEDO)

  2. Development and in vitro evaluation of potential electromodulated transdermal drug delivery systems based on carbon nanotube buckypapers.

    Science.gov (United States)

    Schwengber, Alex; Prado, Héctor J; Bonelli, Pablo R; Cukierman, Ana L

    2017-07-01

    Buckypapers based on different types of carbon nanotubes with and without the addition of four model drugs, two of basic nature (clonidine hydrochloride, selegiline hydrochloride) and the others of acidic character (flurbiprofen, ketorolac tromethamine) were prepared and characterized. The influence of the conditions employed in the preparation of the buckypapers (dispersion time and solvents used in the preparation, as well as the type of carbon nanotubes used and the characteristics of the drug involved) on their conductivity was especially examined. The in vitro performance of the drug loaded buckypapers as passive and active transdermal drug release systems, the latter being modulated by means of the application of electric voltages, was studied. Passive drug loaded buckypapers presented characteristic release profiles, also depending on the drug used, which indicate differences in the drug-carbon nanotubes non-covalent interactions. Application of electrical biases of appropriate polarities enabled the modulation of the drug release profiles in any desired direction. Different mathematical models were fitted to passive and electromodulated experimental release data for the four model drugs. Among these models, the most appropriate for data description was a two-compartment pseudo-second-order one. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Investigating Low-Carbon City: Empirical Study of Shanghai

    Directory of Open Access Journals (Sweden)

    Xuan Yang

    2018-04-01

    Full Text Available A low-carbon economy is an inevitable choice for achieving economic and ecological sustainable development. It is of significant importance to analyze a city’s low-carbon economy development level scientifically and reasonably. In order to achieve this goal, we propose an urban low-carbon economic development level evaluation model based on the matter-element extension method. First, we select some indicators from the existing indicator system based on past research and experience. Then, a matter-element model is established on the basis of weight to evaluate the level of a city’s low-carbon, the critical value of each index is determined through the classical domain and the section domain, calculating the correlation degree of a single index and a comprehensive index. Finally, we analyze the low-carbon economy development status and future development trends according to the analysis results. In this study, we select Shanghai as an empirical study—the results show that Shanghai is a city with a low-carbon level and there is a trend of further improvement in Shanghai’s low-carbon economy. But its low carbon construction and low carbon technology investment are relatively low. In summary, this method can provide another angle for evaluating a city’s low-carbon economy.

  4. Low Carbon Supplier Selection in the Hotel Industry

    Directory of Open Access Journals (Sweden)

    Chia-Wei Hsu

    2014-05-01

    Full Text Available This study presents a model for evaluating the carbon and energy management performance of suppliers by using multiple-criteria decision-making (MCDM. By conducting a literature review and gathering expert opinions, 10 criteria on carbon and energy performance were identified to evaluate low carbon suppliers using the Fuzzy Delphi Method (FDM. Subsequently, the decision-making trial and evaluation laboratory (DEMATEL method was used to determine the importance of evaluation criteria in selecting suppliers and the causal relationships between them. The DEMATEL-based analytic network process (DANP and VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR were adopted to evaluate the weights and performances of suppliers and to obtain a solution under each evaluation criterion. An illustrative example of a hotel company was presented to demonstrate how to select a low carbon supplier according to carbon and energy management. The proposed hybrid model can help firms become effective in facilitating low carbon supply chains in hotels.

  5. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    International Nuclear Information System (INIS)

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana; Bitenieks, Juris; Kuzhir, Polina; Maksimenko, Sergey; Kuznetsov, Vladimir; Moseenkov, Sergey

    2014-01-01

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC. Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix

  6. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana; Bitenieks, Juris [Institute of Polymer Materials, Riga Technical University, Azenes street 14/24, LV-1048, Riga (Latvia); Kuzhir, Polina; Maksimenko, Sergey [Institute of Nuclear Problems, Belarus State University, Bobruiskaya str. 11, 220030, Minsk (Belarus); Kuznetsov, Vladimir; Moseenkov, Sergey [Boreskov Institute of Catalyst Siberian branch of RAS, pr. Lavrentieva 5, 630090, Novosibirsk (Russian Federation)

    2014-05-15

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC. Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix.

  7. Carbon nanostructure based mechano-nanofluidics

    Science.gov (United States)

    Cao, Wei; Wang, Jin; Ma, Ming

    2018-03-01

    Fast transport of water inside carbon nanostructures, such as carbon nanotubes and graphene-based nanomaterials, has addressed persistent challenges in nanofluidics. Recently reported new mechanisms show that the coupling between phonons in these materials and fluids under-confinement could lead to the enhancement of the diffusion coefficient. These developments have led to the emerging field of mechano-nanofluidics, which studies the effects of mechanical actuations on the properties of nanofluidics. In this tutorial review, we provide the basic concepts and development of mechano-nanofluidics. We also summarize the current status of experimental observations of fluids flow in individual nanochannels and theoretical interpretations. Finally, we briefly discuss the challenges and opportunities for the utilization of mechano-nanofluidics, such as controlling the fluid flow through regulating the coupling between materials and fluids.

  8. Antibacterial validation of electrogenerated hypochlorite using carbon-based electrodes.

    Science.gov (United States)

    Locker, J; Fitzgerald, P; Sharp, D

    2014-12-01

    This proof-of-concept study explores the novel use of carbon-based electrodes for the electrochemical generation of hypochlorite and compares the antimicrobial efficacy against commercial hypochlorite solution. Antimicrobial concentrations of hypochlorite were generated using pad-printed carbon and carbon fibre electrodes, yielding up to 0·027% hypochlorite in 60 min and 0·1% hypochlorite in 15 min, respectively, in a nondivided assembly. The minimum inhibitory concentration (MIC) of the electrogenerated hypochlorite produced using carbon fibre electrodes was established for four medically important bacteria (Pseudomonas aeruginosa and Staphylococcus aureus approx. 0·025%, Escherichia coli and Enterococcus faecalis approx. 0·012%) and found to be in agreement with those determined using commercial hypochlorite solution. Therefore, carbon-based electrodes, particularly carbon fibre, have proven effective for the generation of antimicrobial concentrations of hypochlorite. The similarity of the MIC values to commercial hypochlorite solutions suggests that the antimicrobial efficacy is derived from the quantified hypochlorite generated and not due to marked cogeneration of reactive oxygen species, as identified for other assemblies. As such, the application of carbon electrodes may be suitable for the local production of hypochlorite for healthcare antisepsis. Carbon fibre electrodes can rapidly generate antimicrobial concentrations of hypochlorite; as such, these cheap and commercially available electrodes are proposed for the local production of hypochlorite for healthcare antisepsis. Importantly, the antimicrobial properties of the electrochemically generated hypochlorite mirror those of commercial hypochlorite, suggesting this is not enhanced by the cogeneration of reactive oxygen species. This illustrates the potential use of disposable carbon electrodes for localized small-volume production of hypochlorite for surface and skin cleansing, and opens a broader

  9. Promotion of Crystal Growth on Biomass-based Carbon using Phosphoric Acid Treatments

    Directory of Open Access Journals (Sweden)

    Liwei Yu

    2015-02-01

    Full Text Available The effect of phosphoric acid treatments on graphitic microcrystal growth of biomass-based carbons was investigated using X-ray diffraction, infrared spectroscopy, and Raman spectroscopy. Although biomass-based carbons are believed to be hard to graphitize even after heat treatments well beyond 2000 °C, we found that graphitic microcrystals of biomass-based carbons were significantly promoted by phosphoric acid treatments above 800 °C. Moreover, twisted spindle-like whiskers were formed on the surface of the carbons. This suggests that phosphorus-containing groups turn graphitic microcrystalline domains into graphite during phosphoric acid treatments. In addition, the porous texture of the phosphoric acid-treated carbon has the advantage of micropore development.

  10. Activated Biomass-derived Graphene-based Carbons for Supercapacitors with High Energy and Power Density.

    Science.gov (United States)

    Jung, SungHoon; Myung, Yusik; Kim, Bit Na; Kim, In Gyoo; You, In-Kyu; Kim, TaeYoung

    2018-01-30

    Here, we present a facile and low-cost method to produce hierarchically porous graphene-based carbons from a biomass source. Three-dimensional (3D) graphene-based carbons were produced through continuous sequential steps such as the formation and transformation of glucose-based polymers into 3D foam-like structures and their subsequent carbonization to form the corresponding macroporous carbons with thin graphene-based carbon walls of macropores and intersectional carbon skeletons. Physical and chemical activation was then performed on this carbon to create micro- and meso-pores, thereby producing hierarchically porous biomass-derived graphene-based carbons with a high Brunauer-Emmett-Teller specific surface area of 3,657 m 2  g -1 . Owing to its exceptionally high surface area, interconnected hierarchical pore networks, and a high degree of graphitization, this carbon exhibited a high specific capacitance of 175 F g -1 in ionic liquid electrolyte. A supercapacitor constructed with this carbon yielded a maximum energy density of 74 Wh kg -1 and a maximum power density of 408 kW kg -1 , based on the total mass of electrodes, which is comparable to those of the state-of-the-art graphene-based carbons. This approach holds promise for the low-cost and readily scalable production of high performance electrode materials for supercapacitors.

  11. Evaluation of the mechanical properties of carbon fiber after electron beam irradiation

    International Nuclear Information System (INIS)

    Giovedi, Claudia; Diva Brocardo Machado, Luci; Augusto, Marcos; Segura Pino, Eddy; Radino, Patricia

    2005-01-01

    Carbon fibers are used as reinforcement material in epoxy matrix in advanced composites. An important aspect of the mechanical properties of composites is associated to the adhesion between the surface of the carbon fiber and the epoxy matrix. This paper aimed to the evaluation of the effects of EB irradiation on the tensile properties of two different carbon fibers prepared as resin-impregnated specimens. The fibers were EB irradiated before the preparation of the resin-impregnated specimens for mechanical tests. Observations of the specimens after breakage have shown that EB irradiation promoted significant changes in the failure mode. Furthermore, the tensile strength data obtained for resin-impregnated specimens prepared with carbons fibers previously irradiated presented a slight tendency to be higher than those obtained from non-irradiated carbon fibers

  12. Surface Properties of PAN-based Carbon Fibers Modified by Electrochemical Oxidization in Organic Electrolyte Systems

    Directory of Open Access Journals (Sweden)

    WU Bo

    2016-09-01

    Full Text Available PAN-based carbon fibers were modified by electrochemical oxidization using fatty alcohol polyoxyethylene ether phosphate (O3P, triethanolamine (TEOA and fatty alcohol polyoxyethylene ether ammonium phosphate (O3PNH4 as organic electrolyte respectively. Titration analysis, single fiber fracture strength measurement and field emission scanning electron microscopy (FE-SEM were used to evaluate the content of acidic functional group on the surface, mechanical properties and surface morphology of carbon fiber. The optimum process of electrochemical treatment obtained is at 50℃ for 2min and O3PNH4 (5%, mass fraction as the electrolyte with current density of 2A/g. In addition, the surface properties of modified carbon fibers were characterized by X-ray photoelectron spectroscopy (XPS and single fiber contact angle test. The results show that the hydrophilic acidic functional groups on the surface of carbon fiber which can enhance the surface energy are increased by the electrochemical oxidation using O3PNH4 as electrolyte, almost without any weakening to the mechanical properties of carbon fiber.

  13. Carbon-based layer-by-layer nanostructures: from films to hollow capsules

    Science.gov (United States)

    Hong, Jinkee; Han, Jung Yeon; Yoon, Hyunsik; Joo, Piljae; Lee, Taemin; Seo, Eunyong; Char, Kookheon; Kim, Byeong-Su

    2011-11-01

    Over the past years, the layer-by-layer (LbL) assembly has been widely developed as one of the most powerful techniques to prepare multifunctional films with desired functions, structures and morphologies because of its versatility in the process steps in both material and substrate choices. Among various functional nanoscale objects, carbon-based nanomaterials, such as carbon nanotubes and graphene sheets, are promising candidates for emerging science and technology with their unique physical, chemical, and mechanical properties. In particular, carbon-based functional multilayer coatings based on the LbL assembly are currently being actively pursued as conducting electrodes, batteries, solar cells, supercapacitors, fuel cells and sensor applications. In this article, we give an overview on the use of carbon materials in nanostructured films and capsules prepared by the LbL assembly with the aim of unraveling the unique features and their applications of carbon multilayers prepared by the LbL assembly.

  14. Evaluating the effectiveness of carbon tax for total emission control of carbon dioxide. Systems analysis of a dynamic environmental-economic model

    International Nuclear Information System (INIS)

    Tamura, Hiroyuki; Abe, Makoto; Tomiyama, Shinji; Hatono, Itsuo

    1999-01-01

    This paper deals with how to evaluate the effectiveness of carbon tax (environmental tax) for regulating the carbon dioxide emissions. For this purpose we mainly deal with a primal problem and its dual problem of dynamic linear programming model. The primal problem is formulated by using Leontief type input-output model and the basic idea of commodity stocks. It represents the balance of materials. The dual problem is obtained and interpreted as cash balance. It is clarified in this paper whether the carbon tax is effective to decrease the total amount of carbon dioxide emissions. (author)

  15. Guiding osteogenesis of mesenchymal stem cells using carbon-based nanomaterials

    Science.gov (United States)

    Kang, Ee-Seul; Kim, Da-Seul; Suhito, Intan Rosalina; Choo, Sung-Sik; Kim, Seung-Jae; Song, Inbeom; Kim, Tae-Hyung

    2017-01-01

    In the field of regenerative medicine, stem cells are highly promising due to their innate ability to generate multiple types of cells that could replace/repair damaged parts of human organs and tissues. It has been reported that both in vitro and in vivo function/survival of stem cells could significantly be improved by utilizing functional materials such as biodegradable polymers, metal composites, nanopatterns and nanohybrid particles. Of various biocompatible materials available for use in stem cell-based therapy and research, carbon-based materials—including fullerenes graphene/graphene oxide and carbon nanotubes—have been found to possess unique physicochemical characteristics that contribute to the effective guidance of stem cell differentiation into specific lineages. In this review, we discuss a number of previous reports that investigated the use of carbon-based materials to control stem cell behavior, with a particular focus on their immense potential to guide the osteogenesis of mesenchymal stem cells (MSCs). We hope that this review will provide information on the full potential of using various carbon-based materials in stem cell-mediated regenerative therapy, particularly for bone regeneration and repair.

  16. Recent Progress in Producing Lignin-Based Carbon Fibers for Functional Applications

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Ryan [GrafTech International Holdings Inc.; Burwell, Deanna [GrafTech International Holdings Inc.; Dai, Xuliang [GrafTech International Holdings Inc.; Naskar, Amit [Oak Ridge National Laboratory; Gallego, Nidia [Oak Ridge National Laboratory; Akato, Kokouvi [Oak Ridge National Laboratory

    2015-10-29

    Lignin, a biopolymer, has been investigated as a renewable and low-cost carbon fiber precursor since the 1960s. Although successful lab-scale production of lignin-based carbon fibers has been reported, there are currently not any commercial producers. This paper will highlight some of the known challenges with converting lignin-based precursors into carbon fiber, and the reported methods for purifying and modifying lignin to improve it as a precursor. Several of the challenges with lignin are related to its diversity in chemical structure and purity, depending on its biomass source (e.g. hardwood, softwood, grasses) and extraction method (e.g. organosolv, kraft). In order to make progress in this field, GrafTech and Oak Ridge National Laboratory are collaborating to develop lignin-based carbon fiber technology and to demonstrate it in functional applications, as part of a cooperative agreement with the DOE Advanced Manufacturing Office. The progress made to date with producing lignin-based carbon fiber for functional applications, as well as developing and qualifying a supply chain and value proposition, are also highlighted.

  17. Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons.

    Science.gov (United States)

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-11-01

    The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.

  18. Erosion of soil organic carbon: implications for carbon sequestration

    Science.gov (United States)

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  19. Carbon Reduction Strategies Based on an NW Small-World Network with a Progressive Carbon Tax

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2017-09-01

    Full Text Available There is an increasingly urgent need to reduce carbon emissions. Devising effective carbon tax policies has become an important research topic. It is necessary to explore carbon reduction strategies based on the design of carbon tax elements. In this study, we explore the effect of a progressive carbon tax policy on carbon emission reductions using the logical deduction method. We apply experience-weighted attraction learning theory to construct an evolutionary game model for enterprises with different levels of energy consumption in an NW small-world network, and study their strategy choices when faced with a progressive carbon tax policy. The findings suggest that enterprises that adopt other energy consumption strategies gradually transform to a low energy consumption strategy, and that this trend eventually spreads to the entire system. With other conditions unchanged, the rate at which enterprises change to a low energy consumption strategy becomes faster as the discount coefficient, the network externality, and the expected adjustment factor increase. Conversely, the rate of change slows as the cost of converting to a low energy consumption strategy increases.

  20. Carbon microelectromechanical systems (C-MEMS) based microsupercapacitors

    KAUST Repository

    Agrawal, Richa

    2015-05-18

    The rapid development in miniaturized electronic devices has led to an ever increasing demand for high-performance rechargeable micropower scources. Microsupercapacitors in particular have gained much attention in recent years owing to their ability to provide high pulse power while maintaining long cycle lives. Carbon microelectromechanical systems (C-MEMS) is a powerful approach to fabricate high aspect ratio carbon microelectrode arrays, which has been proved to hold great promise as a platform for energy storage. C-MEMS is a versatile technique to create carbon structures by pyrolyzing a patterned photoresist. Furthermore, different active materials can be loaded onto these microelectrode platforms for further enhancement of the electrochemical performance of the C-MEMS platform. In this article, different techniques and methods in order to enhance C-MEMS based various electrochemical capacitor systems have been discussed, including electrochemical activation of C-MEMS structures for miniaturized supercapacitor applications, integration of carbon nanostructures like carbon nanotubes onto C-MEMS structures and also integration of pseudocapacitive materials such as polypyrrole onto C-MEMS structures. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  1. Carbon microelectromechanical systems (C-MEMS) based microsupercapacitors

    KAUST Repository

    Agrawal, Richa; Beidaghi, Majid; Chen, Wei; Wang, Chunlei

    2015-01-01

    The rapid development in miniaturized electronic devices has led to an ever increasing demand for high-performance rechargeable micropower scources. Microsupercapacitors in particular have gained much attention in recent years owing to their ability to provide high pulse power while maintaining long cycle lives. Carbon microelectromechanical systems (C-MEMS) is a powerful approach to fabricate high aspect ratio carbon microelectrode arrays, which has been proved to hold great promise as a platform for energy storage. C-MEMS is a versatile technique to create carbon structures by pyrolyzing a patterned photoresist. Furthermore, different active materials can be loaded onto these microelectrode platforms for further enhancement of the electrochemical performance of the C-MEMS platform. In this article, different techniques and methods in order to enhance C-MEMS based various electrochemical capacitor systems have been discussed, including electrochemical activation of C-MEMS structures for miniaturized supercapacitor applications, integration of carbon nanostructures like carbon nanotubes onto C-MEMS structures and also integration of pseudocapacitive materials such as polypyrrole onto C-MEMS structures. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  2. Evaluating Carbonate System Algorithms in a Nearshore System: Does Total Alkalinity Matter?

    Science.gov (United States)

    Jones, Jonathan M; Sweet, Julia; Brzezinski, Mark A; McNair, Heather M; Passow, Uta

    2016-01-01

    Ocean acidification is a threat to many marine organisms, especially those that use calcium carbonate to form their shells and skeletons. The ability to accurately measure the carbonate system is the first step in characterizing the drivers behind this threat. Due to logistical realities, regular carbonate system sampling is not possible in many nearshore ocean habitats, particularly in remote, difficult-to-access locations. The ability to autonomously measure the carbonate system in situ relieves many of the logistical challenges; however, it is not always possible to measure the two required carbonate parameters autonomously. Observed relationships between sea surface salinity and total alkalinity can frequently provide a second carbonate parameter thus allowing for the calculation of the entire carbonate system. Here, we assessed the rigor of estimating total alkalinity from salinity at a depth sampling water from a pier in southern California for several carbonate system parameters. Carbonate system parameters based on measured values were compared with those based on estimated TA values. Total alkalinity was not predictable from salinity or from a combination of salinity and temperature at this site. However, dissolved inorganic carbon and the calcium carbonate saturation state of these nearshore surface waters could both be estimated within on average 5% of measured values using measured pH and salinity-derived or regionally averaged total alkalinity. Thus we find that the autonomous measurement of pH and salinity can be used to monitor trends in coastal changes in DIC and saturation state and be a useful method for high-frequency, long-term monitoring of ocean acidification.

  3. High frequency electromechanical memory cells based on telescoping carbon nanotubes.

    Science.gov (United States)

    Popov, A M; Lozovik, Y E; Kulish, A S; Bichoutskaia, E

    2010-07-01

    A new method to increase the operational frequency of electromechanical memory cells based on the telescoping motion of multi-walled carbon nanotubes through the selection of the form of the switching voltage pulse is proposed. The relative motion of the walls of carbon nanotubes can be controlled through the shape of the interwall interaction energy surface. This allows the use of the memory cells in nonvolatile or volatile regime, depending on the structure of carbon nanotube. Simulations based on ab initio and semi-empirical calculations of the interwall interaction energies are used to estimate the switching voltage and the operational frequency of volatile cells with the electrodes made of carbon nanotubes. The lifetime of nonvolatile memory cells is also predicted.

  4. Electrochemical behavior of pitch-based activated carbon fibers for electrochemical capacitors

    International Nuclear Information System (INIS)

    Lee, Hye-Min; Kwac, Lee-Ku; An, Kay-Hyeok; Park, Soo-Jin; Kim, Byung-Joo

    2016-01-01

    Highlights: • Electrode materials for electrochemical capacitors were developed using pitch-based activated carbon fibers with steam activation. • Activated carbon fibers showed enhanced specific surface area from 1520 to 3230 m 2 /g. • The increase in the specific capacitance of the samples was determined by charged pore structure during charging and discharging. - Abstract: In the present study, electrode materials for electrochemical capacitors were developed using pitch-based activated carbon fibers with steam activation. The surface and structural characteristics of activated carbon fibers were observed using scanning electron microscopy and X-ray diffraction, respectively. Pore characteristics were investigated using N 2 /77 K adsorption isotherms. The activated carbon fibers were applied as electrodes for electrical double-layer capacitors and analyzed in relation to the activation time. The specific surface area and total pore volume of the activated carbon fibers were determined to be 1520–3230 m 2 /g and 0.61–1.87 cm 3 /g, respectively. In addition, when the electrochemical characteristics were analyzed, the specific capacitance was confirmed to have increased from 1.1 F/g to 22.5 F/g. From these results, it is clear that the pore characteristics of pitch-based activated carbon fibers changed considerably in relation to steam activation and charge/discharge cycle; therefore, it was possible to improve the electrochemical characteristics of the activated carbon fibers.

  5. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    Science.gov (United States)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m−2 yr−1, for biomass carbon ~1000 g C m−2 and for soil carbon ~2000 g C m−2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation

  6. Evaluating vertical concentration profile of carbon source released from slow-releasing carbon source tablets and in situ biological nitrate denitrification activity

    Science.gov (United States)

    Yeum, Y.; HAN, K.; Yoon, J.; Lee, J. H.; Song, K.; Kang, J. H.; Park, C. W.; Kwon, S.; Kim, Y.

    2017-12-01

    Slow-releasing carbon source tablets were manufactured during the design of a small-scale in situ biological denitrification system to reduce high-strength nitrate (> 30 mg N/L) from a point source such as livestock complexes. Two types of slow-releasing tablets, precipitating tablet (PT, apparent density of 2.0 g/mL) and floating tablet (FT), were prepared to achieve a vertically even distribution of carbon source (CS) in a well and an aquifer. Hydroxypropyl methylcellulose (HPMC) was used to control the release rate, and microcrystalline cellulose pH 101 (MCC 101) was added as a binder. The #8 sand was used as a precipitation agent for the PTs, and the floating agents for the FTs were calcium carbonate and citric acid. FTs floated within 30 min. and remained in water because of the buoyance from carbon dioxide, which formed during the acid-base reaction between citric acid and calcium carbonate. The longevities of PTs with 300 mg of HPMC and FTs with 400 mg of HPMC were 25.4 days and 37.3 days, respectively. We assessed vertical CS profile in a continuous flowing physical aquifer model (release test, RT) and its efficiency on biological nitrate denitrification (denitrification test, DT). During the RT, PTs, FTs and a tracer (as 1 mg rhodamine B/L) were initially injected into a well of physical aquifer model (PAM). Concentrations of CS and the tracer were monitored along the streamline in the PAM to evaluate vertical profile of CS. During the DT, the same experiment was performed as RT, except continuous injection of solution containing 30 mg N/L into the PAM to evaluate biological denitrification activity. As a result of RT, temporal profiles of CS were similar at 3 different depths of monitoring wells. These results suggest that simultaneous addition of PT and FT be suitable for achieving a vertically even distribution of the CS in the injection well and an aquifer. In DT, similar profile of CS was detected in the injection well, and nitrate was biologically

  7. Characterization of the Diamond-like Carbon Based Functionally Gradient Film

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Diamond-like carbon coatings have been used as solid lubricating coatings in vacuum technology for their goodphysical and chemical properties. In this paper, the hybrid technique of unbalanced magnetron sputtering and plasmaimmersion ion implantation (PIll) was adopted to fabricate diamond-like carbon-based functionally gradient film,N/TiN/Ti(N,C)/DLC, on the 304 stainless steel substrate. The film was characterized by using Raman spectroscopyand glancing X-ray diffraction (GXRD), and the topography and surface roughness of the film was observed usingAFM. The mechanical properties of the film were evaluated by nano-indentation. The results showed that the surfaceroughness of the film was approximately 0.732 nm. The hardness and elastic modulus, fracture toughness andinterfacial fracture toughness of N/TiN/Ti(N,C)/DLC functionally gradient film were about 19.84 GPa, 190.03 GPa,3.75 MPa.m1/2 and 5.68 MPa@m1/2, respectively. Compared with that of DLC monolayer and C/TiC/DLC multilayer,this DLC gradient film has better qualities as a solid lubricating coating.

  8. Gamma radiation damage in pixelated detector based on carbon nanotubes

    International Nuclear Information System (INIS)

    Leyva, A.; Pinnera, I.; Leyva, D.; Abreu, Y.; Cruz, C. M.

    2013-01-01

    The aim of this paper is to evaluate the possible gamma radiation damage in high pixelated based on multi-walled carbon nanotubes detectors, grown on two different substrata, when it is operating in aggressive radiational environments. The radiation damage in displacements per atom (dpa) terms were calculated using the MCCM algorithm, which takes into account the McKinley-Feshbach approach with the Kinchin-Pease approximation for the damage function. Was observed that with increasing of the gamma energy the displacement total number grows monotonically reaching values of 0.39 displacements for a 10 MeV incident photon. The profiles of point defects distributions inside the carbon nanotube pixel linearly rise with depth, increasing its slope with photon energy. In the 0.1 MeV - 10 MeV studied energy interval the electron contribution to the total displacement number become higher than the positron ones, reaching this last one a maximum value of 12% for the 10 MeV incident photons. Differences between the calculation results for the two used different substrata were not observed. (Author)

  9. Bacterial adherence on fluorinated carbon based coatings deposited on polyethylene surfaces

    International Nuclear Information System (INIS)

    Terriza, A; Del Prado, G; Perez, A Ortiz; Martinez, M J; Puertolas, J A; Manso, D Molina; Gonzalez-Elipe, A R; Yubero, F; Barrena, E Gomez; Esteban, J

    2010-01-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopaedic surgery. In this work we present a thorough study of several plasma based coatings that may be used with this functionality: diamond like carbon (DLC), fluorine doped DLC (F-DLC) and a high fluorine content carbon-fluor polymer (CF X ). The study correlates the surface chemistry and hydrophobicity of the coating surfaces with their antibacterial performance. The coatings were deposited by RF-plasma assisted deposition at room temperature on ultra high molecular weight polyethylene (UHMWPE) samples. Fluorine content and relative amount of C-C and C-F bond types was monitored by X-ray photoelectron spectroscopy and hydrophobicity by water contact angle measurements. Adherence of Staphylococcus aureus and Staphylococcus epidermidis to non-coated and coated UHMWPE samples was evaluated. Comparisons of the adherence performance were evaluated using a paired t test (two materials) and a Kruskall Wallis test (all the materials). S. aureus was statistically significant (p< 0.001) less adherent to DLC and F-DLC surfaces than S. epidermidis. Both bacteria showed reduction of adherence on DLC/UHMWPE. For S. aureus, reduction of bacterial adherence on F-DLC/UHMWPE was statistically significant respect to all other materials.

  10. Fabrication and Characterization of Carbon-Based Nanofluids through the Water Vortex Trap Method

    Directory of Open Access Journals (Sweden)

    Ching-Min Cheng

    2018-01-01

    Full Text Available This study designed an efficient one-step method for synthesizing carbon-based nanofluids (CBNFs. The method employs the vortex trap method (VTM and an oxygen-acetylene flame, serving as a carbon source, in a manufacturing system of the VTM (MSVTM. The flow rate ratio of O2 and C2H2 was adjusted to form suitable combustion conditions for the reduced flame. Four flow rate ratios of O2 and C2H2 were used: 1.5 : 2.5 (V1, 1.0 : 2.5 (V2, 0.5 : 2.5 (V3, and 0 : 2.5 (V4. The morphology, structure, particle size, stability, and basic physicochemical characteristics of the obtained carbon-based nanomaterials (CBNMs and CBNFs were investigated using transmission electron microscopy, field-emission scanning electron microscopy, X-ray diffraction, Raman spectrometry, ultraviolet–visible–near-infrared spectrophotometry, and a particle size-zeta potential analyzer. The static positioning method was utilized to evaluate the stability of the CBNFs with added EP dispersants. The evaluation results revealed the morphologies, compositions, and concentrations of the CBNFs obtained using various process parameters, and the relation between processing time and production rate was determined. Among the CBNMs synthesized, those obtained using the V4-0 flow rate ratio had the highest stability when no EP dispersant was added. Moreover, the maximum enhancement ratios of the viscosity and thermal conductivity were also obtained for V4-0: 4.65% and 1.29%, respectively. Different types and concentrations of dispersants should be considered in future research to enhance the stability of CBNFs for further application.

  11. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging

    Directory of Open Access Journals (Sweden)

    Jin Zhang

    2016-06-01

    Full Text Available Terahertz (THz time-domain spectroscopy (TDS imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations.

  12. Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers

    Directory of Open Access Journals (Sweden)

    Doo-Yeol Yoo

    2017-05-01

    Full Text Available This study was conducted to evaluate the effect of the carbon-based nanomaterial type on the electrical properties of cement paste. Three different nanomaterials, multi-walled carbon nanotubes (MWCNTs, graphite nanofibers (GNFs, and graphene (G, were incorporated into the cement paste at a volume fraction of 1%. The self-sensing capacity of the cement composites was also investigated by comparing the compressive stress/strain behaviors by evaluating the fractional change of resistivity (FCR. The electrical resistivity of the plain cement paste was slightly reduced by adding 1 vol % GNFs and G, whereas a significant decrease of the resistivity was achieved by adding 1 vol % MWCNTs. At an identical volume fraction of 1%, the composites with MWCNTs provided the best self-sensing capacity with insignificant noise, followed by the composites containing GNFs and G. Therefore, the addition of MWCNTs was considered to be the most effective to improve the self-sensing capacity of the cement paste. Finally, the composites with 1 vol % MWCNTs exhibited a gauge factor of 113.2, which is much higher than commercially available strain gauges.

  13. Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers.

    Science.gov (United States)

    Yoo, Doo-Yeol; You, Ilhwan; Lee, Seung-Jung

    2017-05-08

    This study was conducted to evaluate the effect of the carbon-based nanomaterial type on the electrical properties of cement paste. Three different nanomaterials, multi-walled carbon nanotubes (MWCNTs), graphite nanofibers (GNFs), and graphene (G), were incorporated into the cement paste at a volume fraction of 1%. The self-sensing capacity of the cement composites was also investigated by comparing the compressive stress/strain behaviors by evaluating the fractional change of resistivity (FCR). The electrical resistivity of the plain cement paste was slightly reduced by adding 1 vol % GNFs and G, whereas a significant decrease of the resistivity was achieved by adding 1 vol % MWCNTs. At an identical volume fraction of 1%, the composites with MWCNTs provided the best self-sensing capacity with insignificant noise, followed by the composites containing GNFs and G. Therefore, the addition of MWCNTs was considered to be the most effective to improve the self-sensing capacity of the cement paste. Finally, the composites with 1 vol % MWCNTs exhibited a gauge factor of 113.2, which is much higher than commercially available strain gauges.

  14. Gecko-Inspired Carbon Nanotube-Based Adhesives

    Science.gov (United States)

    Ge, Liehui; Sethi, Sunny; Goyal, Anubha; Ci, Lijie; Ajayan, Pulickel; Dhinojwala, Ali

    2009-03-01

    Nature has developed hierarchical hairy structure on the wall-climbing gecko's foot, consisting of microscopic hairs called setae, which further split into hundreds of smaller structures called spatulas. In the last five years, numerous attempts to mimic gecko foot-hair using polymer soft molding and photolithography methods have been reported. However, most of these polymer-based synthetic gecko hairs fall short of the clinging ability of geckos. Vertically aligned carbon nanotubes (CNT) have shown strong adhesion at nanometer scale. Here, we present our work on developing CNT-based macroscopic flexible tape mimicking the hierarchical structure found on gecko's foot. The synthetic gecko tape is made by transferring aligned CNT array onto flexible polymer tape. The unpatterned CNT-gecko tape can support a shear force stress similar to gecko foot (10 N/cm^2). The supported shear stress increase by a factor of four, when we use micro-patterned CNT patches (50 to 500 μm). We find that both setae (replicated by CNT bundles) and spatulas (individual CNT) are necessary to achieve large macroscopic shear adhesion. The carbon nanotube-based tape offers an excellent synthetic option as a dry conductive reversible adhesive in microelectronics, robotics, and space applications.

  15. Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering

    Science.gov (United States)

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali

    2013-01-01

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817

  16. Potential Applications of Gosat Based Carbon Budget Products to Refine Terrestrial Ecosystem Model

    Science.gov (United States)

    Kondo, M.; Ichii, K.

    2011-12-01

    Estimation of carbon exchange in terrestrial ecosystem associates with difficulties due to complex entanglement of physical and biological processes: thus, the net ecosystem productivity (NEP) estimated from simulation often differs among process-based terrestrial ecosystem models. In addition to complexity of the system, validation can only be conducted in a point scale since reliable observation is only available from ground observations. With a lack of large spatial data, extension of model simulation to a global scale results in significant uncertainty in the future carbon balance and climate change. Greenhouse gases Observing SATellite (GOSAT), launched by the Japanese space agency (JAXA) in January, 2009, is the 1st operational satellite promised to deliver the net land-atmosphere carbon budget to the terrestrial biosphere research community. Using that information, the model reproducibility of carbon budget is expected to improve: hence, gives a better estimation of the future climate change. This initial analysis is to seek and evaluate the potential applications of GOSAT observation toward the sophistication of terrestrial ecosystem model. The present study was conducted in two processes: site-based analysis using eddy covariance observation data to assess the potential use of terrestrial carbon fluxes (GPP, RE, and NEP) to refine the model, and extension of the point scale analysis to spatial using Carbon Tracker product as a prototype of GOSAT product. In the first phase of the experiment, it was verified that an optimization routine adapted to a terrestrial model, Biome-BGC, yielded the improved result with respect to eddy covariance observation data from AsiaFlux Network. Spatial data sets used in the second phase were consists of GPP from empirical algorithm (e.g. support vector machine), NEP from Carbon Tracker, and RE from the combination of these. These spatial carbon flux estimations was used to refine the model applying the exactly same

  17. Evaluation of Refrigerating and Air Conditioning Devices in Energy Cascade Systems under the Restriction of Carbon Dioxide Emissions

    Science.gov (United States)

    Shimazaki, Yoichi; Akisawa, Atsushi; Kashiwagi, Takao

    It is necessary to introduce energy cascade systems into the industrial sector in Japan to reduce carbon dioxide emissions. The aim of this study is to evaluate the refrigerating and air conditioning devices in cases of introducing both energy cascade systems and thermal recycling systems in industries located around urban areas. The authors have developed an energy cascade model based on linear programming so as to minimize the total system costs with carbon taxes. Five cases are investigated. Limitation of carbon dioxide emissions results in the enhancement of heat cascading, where high temperature heat is supplied for process heating while low temperature one is shifted to refrigeration. It was found that increasing the amount of garbage combustor waste heat can reduce electric power for the turbo refrigerator by promoting waste heat driven ammonia absorption refrigerator.

  18. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete.

    Science.gov (United States)

    Song, Weimin; Yin, Jian

    2016-08-18

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored.

  19. Transparent Electrodes: A Review of the Use of Carbon-Based Nanomaterials

    Directory of Open Access Journals (Sweden)

    Edgar J. López-Naranjo

    2016-01-01

    Full Text Available Transparent conducting electrodes (TCE are extensively applied in a great range of optoelectronic and photovoltaic equipment (e.g., solar cells, touch panels, and flexible devices. Carbon-based nanomaterials are considered as suitable replacements to substitute traditional materials to manufacture TCE due to their remarkable characteristics, for example, high optical transmittance and outstanding electrical properties. In comparison with traditional indium tin oxide electrodes, carbon-based electrodes show good mechanical properties, chemical stability, and low cost. Nevertheless, major issues related to the development of good quality manufacture methods to produce carbon-based nanomaterials have to be overcome to meet massive market requirements. Hence, the development of alternative TCE materials as well as appropriate large production techniques that meet the requirements of a proper sheet resistance along with a high optical transparency is a priority. Therefore, in this work, we summarize and discuss novel production and synthesis methods, chemical treatments, and hybrid materials developed to satisfy the worldwide request for carbon-based nanomaterials.

  20. Carbon material based microelectromechanical system (MEMS): Fabrication and devices

    Science.gov (United States)

    Xu, Wenjun

    This PhD dissertation presents the exploration and development of two carbon materials, carbon nanotubes (CNTs) and carbon fiber (CF), as either key functional components or unconventional substrates for a variety of MEMS applications. Their performance in three different types of MEMS devices, namely, strain/stress sensors, vibration-powered generators and fiber solar cells, were evaluated and the working mechanisms of these two non-traditional materials in these systems were discussed. The work may potentially enable the development of new types of carbon-MEMS devices. Carbon nanotubes were selected from the carbon family due to several advantageous characteristics that this nanomaterial offers. They carry extremely high mechanical strength (Ey=1TPa), superior electrical properties (current density of 4x109 A/cm2), exceptional piezoresistivity (G=2900), and unique spatial format (high aspect ratio hollow nanocylinder), among other properties. If properly utilized, all these merits can give rise to a variety of new types of carbon nanotube based micro- and nanoelectronics that can greatly fulfill the need for the next generation of faster, smaller and better devices. However, before these functions can be fully realized, one substantial issue to cope with is how to implement CNTs into these systems in an effective and controllable fashion. Challenges associated with CNTs integration include very poor dispersibility in solvents, lack of melting/sublimation point, and unfavorable rheology with regard to mixing and processing highly viscous, CNT-loaded polymer solutions. These issues hinder the practical progress of CNTs both in a lab scale and in the industrial level. To this end, a MEMS-assisted electrophoretic deposition technique was developed, aiming to achieve controlled integration of CNT into both conventional and flexible microsystems at room temperature with a relatively high throughput. MEMS technology has demonstrated strong capability in developing

  1. Hysteresis Compensation of Piezoresistive Carbon Nanotube/Polydimethylsiloxane Composite-Based Force Sensors

    Directory of Open Access Journals (Sweden)

    Ji-Sik Kim

    2017-01-01

    Full Text Available This paper provides a preliminary study on the hysteresis compensation of a piezoresistive silicon-based polymer composite, poly(dimethylsiloxane dispersed with carbon nanotubes (CNTs, to demonstrate its feasibility as a conductive composite (i.e., a force-sensitive resistor for force sensors. In this study, the potential use of the nanotube/polydimethylsiloxane (CNT/PDMS as a force sensor is evaluated for the first time. The experimental results show that the electrical resistance of the CNT/PDMS composite changes in response to sinusoidal loading and static compressive load. The compensated output based on the Duhem hysteresis model shows a linear relationship. This simple hysteresis model can compensate for the nonlinear frequency-dependent hysteresis phenomenon when a dynamic sinusoidal force input is applied.

  2. Carbon ion radiotherapy for chordomas and low-grade chondrosarcomas of the skull base. Results in 67 patients

    International Nuclear Information System (INIS)

    Schulz-Ertner, D.; Wannenmacher, M.; Nikoghosyan, A.; Thilmann, C.; Jaekel, O.; Karger, C.; Haberer, T.; Scholz, M.; Kraft, G.; Debus, J.

    2003-01-01

    Purpose: To prospectively evaluate outcome and toxicity after carbon ion radiotherapy (RT) in chordomas and low-grade chondrosarcomas. Patients and Methods: Between September 1998 and December 2001, 74 patients were treated for chordomas and chondrosarcomas with carbon ion RT at the ''Gesellschaft fuer Schwerionenforschung'' (GSI). Seven patients reirradiated with reduced carbon ion doses after conventional RT were excluded from the analysis, leaving 67 evaluable patients (44 chordomas and 23 chondrosarcomas) who received a full course of carbon ion therapy. Tumor-conform application of carbon ion beams was realized by intensity-controlled raster scanning with active energy variation. Three-dimensional treatment planning included intensity modulation and biological plan optimization. A median dose of 60 GyE was applied to the target volume within 20 consecutive days at a dose of 3.0 GyE per fraction. Results: Median follow-up was 15 months (range 3-46 months). At 3 years, actuarial local control was 100% for chondrosarcomas and 87% for chordomas, respectively. Partial tumor remission was observed in 14/44 (31%) chordoma patients and in 4/23 (17%) chondrosarcoma patients. At 3 years, actuarial overall survival was 100% for chondrosarcomas and 89% for chordomas, respectively. No severe side effects > CTC III have been observed. Conclusions: These data demonstrate the clinical efficiency and safety of scanning beam delivery of carbon ion beams in patients with skull base chordomas and chondrosarcomas. The observation of tumor regressions at a dose level of 60 GyE may indicate that the biological effectiveness of carbon ions in chordomas and chondrosarcomas is higher than initially estimated. (orig.)

  3. Quantitative evaluation of potential irradiation geometries for carbon-ion beam grid therapy.

    Science.gov (United States)

    Tsubouchi, Toshiro; Henry, Thomas; Ureba, Ana; Valdman, Alexander; Bassler, Niels; Siegbahn, Albert

    2018-03-01

    Radiotherapy using grids containing cm-wide beam elements has been carried out sporadically for more than a century. During the past two decades, preclinical research on radiotherapy with grids containing small beam elements, 25 μm-0.7 mm wide, has been performed. Grid therapy with larger beam elements is technically easier to implement, but the normal tissue tolerance to the treatment is decreasing. In this work, a new approach in grid therapy, based on irradiations with grids containing narrow carbon-ion beam elements was evaluated dosimetrically. The aim formulated for the suggested treatment was to obtain a uniform target dose combined with well-defined grids in the irradiated normal tissue. The gain, obtained by crossfiring the carbon-ion beam grids over a simulated target volume, was quantitatively evaluated. The dose distributions produced by narrow rectangular carbon-ion beams in a water phantom were simulated with the PHITS Monte Carlo code. The beam-element height was set to 2.0 cm in the simulations, while the widths varied from 0.5 to 10.0 mm. A spread-out Bragg peak (SOBP) was then created for each beam element in the grid, to cover the target volume with dose in the depth direction. The dose distributions produced by the beam-grid irradiations were thereafter constructed by adding the dose profiles simulated for single beam elements. The variation of the valley-to-peak dose ratio (VPDR) with depth in water was thereafter evaluated. The separation of the beam elements inside the grids were determined for different irradiation geometries with a selection criterion. The simulated carbon-ion beams remained narrow down to the depths of the Bragg peaks. With the formulated selection criterion, a beam-element separation which was close to the beam-element width was found optimal for grids containing 3.0-mm-wide beam elements, while a separation which was considerably larger than the beam-element width was found advantageous for grids containing 0.5-mm

  4. A real options-based CCS investment evaluation model: Case study of China's power generation sector

    International Nuclear Information System (INIS)

    Zhu, Lei; Fan, Ying

    2011-01-01

    Highlights: → This paper establishes a carbon captures and storage (CCS) investment evaluation model. → The model is based on real options theory and solved by the Least Squares Monte Carlo (LSM) method. → China is taken as a case study to evaluate the effects of regulations on CCS investment. → The findings show that the current investment risk of CCS is high, climate policy having the greatest impact on CCS development. -- Abstract: This paper establishes a carbon capture and storage (CCS) investment evaluation model based on real options theory considering uncertainties from the existing thermal power generating cost, carbon price, thermal power with CCS generating cost, and investment in CCS technology deployment. The model aims to evaluate the value of the cost saving effect and amount of CO 2 emission reduction through investing in newly-built thermal power with CCS technology to replace existing thermal power in a given period from the perspective of power generation enterprises. The model is solved by the Least Squares Monte Carlo (LSM) method. Since the model could be used as a policy analysis tool, China is taken as a case study to evaluate the effects of regulations on CCS investment through scenario analysis. The findings show that the current investment risk of CCS is high, climate policy having the greatest impact on CCS development. Thus, there is an important trade off for policy makers between reducing greenhouse gas emissions and protecting the interests of power generation enterprises. The research presented would be useful for CCS technology evaluation and related policy-making.

  5. Algae-Based Carbon Sequestration

    Science.gov (United States)

    Haoyang, Cai

    2018-03-01

    Our civilization is facing a series of environmental problems, including global warming and climate change, which are caused by the accumulation of green house gases in the atmosphere. This article will briefly analyze the current global warming problem and propose a method that we apply algae cultivation to absorb carbon and use shellfish to sequestrate it. Despite the importance of decreasing CO2 emissions or developing carbon-free energy sources, carbon sequestration should be a key issue, since the amount of carbon dioxide that already exists in the atmosphere is great enough to cause global warming. Algae cultivation would be a good choice because they have high metabolism rates and provides shellfish with abundant food that contains carbon. Shellfish’s shells, which are difficult to be decomposed, are reliable storage of carbon, compared to dead organisms like trees and algae. The amount of carbon that can be sequestrated by shellfish is considerable. However, the sequestrating rate of algae and shellfish is not high enough to affect the global climate. Research on algae and shellfish cultivation, including gene technology that aims to create “super plants” and “super shellfish”, is decisive to the solution. Perhaps the baton of history will shift to gene technology, from nuclear physics that has lost appropriate international environment after the end of the Cold War. Gene technology is vital to human survival.

  6. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests.

    Science.gov (United States)

    Keith, Heather; Mackey, Brendan G; Lindenmayer, David B

    2009-07-14

    From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized.

  7. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests

    Science.gov (United States)

    Keith, Heather; Mackey, Brendan G.; Lindenmayer, David B.

    2009-01-01

    From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized. PMID:19553199

  8. Evaluation of w values for carbon beams in air, using a graphite calorimeter.

    Science.gov (United States)

    Sakama, Makoto; Kanai, Tatsuaki; Fukumura, Akifumi; Abe, Kyoko

    2009-03-07

    Despite recent progress in carbon therapy, accurate values for physical data such as the w value in air or stopping power ratios for ionization chamber dosimetry have not been obtained. The absorbed dose to graphite obtained with the graphite calorimeter was compared with that obtained using the ionization chambers following the IAEA protocol in order to evaluate the w values in air for mono-energetic carbon beams of 135, 290, 400 and 430 MeV/n. Two cylindrical chambers (PTW type 30001 and PTW type 30011, Farmer) and two plane-parallel chambers (PTW type 23343, Markus and PTW type 34001, Roos) calibrated by the absorbed dose to graphite and exposure to the (60)Co photon beam were used. The comparisons to our calorimeter measurements revealed that, using the ionization chambers, the absorbed dose to graphite comes out low by 2-6% in this experimental energy range and with these chamber types and calibration methods. In the therapeutic energy range, the w values in air for carbon beams indicated a slight energy dependence; we, however, assumed these values to be constant for practical use because of the large uncertainty and unknown perturbation factors of the ionization chambers. The w values in air of the carbon beams were evaluated to be 35.72 J C(-1) +/- 1.5% in the energy range used in this study. This value is 3.5% larger than that recommended by the IAEA TRS 398 for heavy-ion beams. Using this evaluated result, the absorbed dose to water in the carbon beams would be increased by the same amount.

  9. Dye-sensitized solar cell with a pair of carbon-based electrodes

    International Nuclear Information System (INIS)

    Kyaw, Aung Ko Ko; Demir, Hilmi Volkan; Sun Xiaowei; Tantang, Hosea; Zhang Qichun; Wu Tao; Ke, Lin; Wei Jun

    2012-01-01

    We have fabricated a dye-sensitized solar cell (DSSC) with a pair of carbon-based electrodes using a transparent, conductive carbon nanotubes (CNTs) film modified with ultra-thin titanium-sub-oxide (TiO x ) as the working electrode and a bilayer of conductive CNTs and carbon black as the counter electrode. Without TiO x modification, the DSSC is almost nonfunctional whereas the power conversion efficiency (PCE) increases significantly when the working electrode is modified with TiO x . The performance of the cell could be further improved when the carbon black film was added on the counter electrode. The improved efficiency can be attributed to the inhibition of the mass recombination at the working electrode/electrolyte interface by TiO x and the acceleration of the electron transfer kinetics at the counter electrode by carbon black. The DSSC with a pair of carbon-based electrodes gives the PCE of 1.37%. (paper)

  10. High-cycle electromechanical aging of dielectric elastomer actuators with carbon-based electrodes

    Science.gov (United States)

    de Saint-Aubin, C. A.; Rosset, S.; Schlatter, S.; Shea, H.

    2018-07-01

    We present high-cycle aging tests of dielectric elastomer actuators (DEAs) based on silicone elastomers, reporting on the time-evolution of actuation strain and of electrode resistance over millions of cycles. We compare several types of carbon-based electrodes, and for the first time show how the choice of electrode has a dramatic influence on DEA aging. An expanding circle DEA configuration is used, consisting of a commercial silicone membrane with the following electrodes: commercial carbon grease applied manually, solvent-diluted carbon grease applied by stamping (pad printing), loose carbon black powder applied manually, carbon black powder suspension applied by inkjet-printing, and conductive silicone-carbon composite applied by stamping. The silicone-based DEAs with manually applied carbon grease electrodes show the shortest lifetime of less than 105 cycles at 5% strain, while the inkjet-printed carbon powder and the stamped silicone-carbon composite make for the most reliable devices, with lifetimes greater than 107 cycles at 5% strain. These results are valid for the specific dielectric and electrode configurations that were tested: using other dielectrics or electrode formulations would lead to different lifetimes and failure modes. We find that aging (as seen in the change in resistance and in actuation strain versus cycle number) is independent of the actuation frequency from 10 Hz to 200 Hz, and depends on the total accumulated time the DEA spends in an actuated state.

  11. A macro-economic and sectoral evaluation of carbon taxation in France

    International Nuclear Information System (INIS)

    Callonnec, Gael; Reynes, Frederic; Yeddir-Tamsamani, Yasser

    2011-01-01

    This paper evaluates the macro-economic and sectoral impact of a carbon tax in France using the Three-ME model that combines two important features: (1) The model has a detailed industrial structure and detailed description of the French tax system, particularly the taxation applied to energy. (2) It has the main properties of the neo-Keynesian models because it takes into account the slow process adjustment of prices and quantifies. Our results show under certain conditions the possibility of a double economic and environmental dividends resulting from carbon taxation, for both the short and long term. Carbon tax. Neo-Keynesian macro-economic model. Sectoral analysis. Initially published in 'Revue de l'OFCE / Debats et politiques' No. 120

  12. Poultry litter-based activated carbon for removing heavy metal ions in water.

    Science.gov (United States)

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  13. Multifunctional composite material based on carbon-filled polyurethane

    International Nuclear Information System (INIS)

    Malinovskaya, T; Melentyev, S; Pavlov, S

    2015-01-01

    The research paper deals with the performance of composite resistive material heating coatings based on the polyurethane binder, filled with colloidal-graphite preparation C- 1, which can be used in structures of electric heaters. Frequency dependences of transmission and reflection coefficients, dielectric permeability of composite materials with the various content of carbon fillers (technical carbon, graphite) in polyurethane varnish in ranges of frequencies 26-40 GHz and 110-260 GHz are experimentally investigated. (paper)

  14. Characterization of water commercial filters based on activated carbon for water treatment of the Tumbes river – Peru

    Directory of Open Access Journals (Sweden)

    Carmen Rosa Silupú García

    2017-09-01

    Full Text Available Comercial activated carbon samples (A, B, C, and D used in filters for the treatment of water were characterized and evaluated in the decontamination of heavy metals present in river water and in the elimination of coliform microorganisms. The carbon samples had microporous and mesoporous structures. Surface areas of between 705 and 906 m2/g were found. The carbons samples were amorphous and the presence of antibacterial agents such as Ag, Cl, Cu, and Si was detected. It was determined that for As and Pb, whose initial concentrations in contaminated water (water of the Tumbes river-Peru were 56.7 and 224.0 μg/L, respectively, the percentage of adsorption was close to 100%. The relationship between point of zero charge pH of the activated carbons and pH of the river water during the experiments plays a determinant role in the adsorption of the analyzed elements. The antibacterial capacity was evaluated satisfactorily against the following strains of fecal gram negative bacteria: Escherichia coli (ATCC® 25922™, Salmonella typhimurium (ATCC® 14028™, and Shigella flexneri (ATCC® 12022™. This ability is based on the surface presence in the carbons of the mentioned antibacterial agents.

  15. Evaluation of robustness in the validation of total organic carbon (TOC) methodology

    International Nuclear Information System (INIS)

    Benedetti, Stella; Monteiro, Elisiane G.; Almeida, Erika V.; Oliveira, Ideli M.; Cerqueira Filho, Ademar C.; Mengatti, Jair; Fukumori, Neuza T.O.; Matsuda, Margareth M.N.

    2009-01-01

    Water is used in many steps of production and quality control as raw material for reagent preparation or dilution of solutions and for cleaning apparatus and room areas in the pharmaceutical industry, including radiopharmaceutical plants. Regulatory requirements establish specifications of purified water for different purposes. The quality of water is essential to guarantee the safe utilization of radiopharmaceuticals. A variety of methods and systems can be used to produce purified water and water for injection and all of them must fulfill the requirements for their specific use, which include TOC (total organic carbon) analysis, an indirect measurement of organic molecules present in water. The principle of TOC method is the oxidation of organic molecules to carbon dioxide, related to the carbon concentration. The aim of this study was to evaluate the parameters of robustness in TOC method in water used in the production and quality control procedures in the Radiopharmacy Directory (DIRF), according to Resolution 899 from ANVISA (National Sanitary Agency). Purified water were obtained from Milli-RX45 system. TOC standard solutions in the range of 100-1000 ppb were prepared with potassium hydrogen phthalate anhydride, transferred to vials and sequentially analyzed by a catalytic photo-oxidation reaction with a TOC model Vwp equipment from Shimadzu Corporation (Japan). The evaluated parameters were: oxidizing volume from 0.5 to 2.5 mL, acidifying volume from 1 to 5%, integration time for TC (total carbon) and IC (inorganic carbon) curves from 2 to 10 minutes. (author)

  16. Development and characterization of polyacrylonitrile (PAN based carbon hollow fiber membrane

    Directory of Open Access Journals (Sweden)

    Syed Mohd Saufi

    2002-11-01

    Full Text Available This paper reports the development and characterization of polyacrylonitrile (PAN based carbon hollow fiber membrane. Nitrogen was used as an inert gas during pyrolysis of the PAN hollow fiber membrane into carbon membrane. PAN membranes were pyrolyzed at temperature ranging from 500oC to 800oC for 30 minutes of thermal soak time. Scanning Electron Microscope (SEM, Fourier Transform Infrared Spectroscopy (FTIR and gas sorption analysis were applied to characterize the PAN based carbon membrane. Pyrolysis temperature was found to significantly change the structure and properties of carbon membrane. FTIR results concluded that the carbon yield still could be increased by pyrolyzing PAN membranes at temperature higher than 800oC since the existence of other functional group instead of CH group. Gas adsorption analysis showed that the average pore diameter increased up to 800oC.

  17. Evaluating the electrical discharge machining (EDM) parameters with using carbon nanotubes

    Science.gov (United States)

    Sari, M. M.; Noordin, M. Y.; Brusa, E.

    2012-09-01

    Electrical discharge machining (EDM) is one of the most accurate non traditional manufacturing processes available for creating tiny apertures, complex or simple shapes and geometries within parts and assemblies. Performance of the EDM process is usually evaluated in terms of surface roughness, existence of cracks, voids and recast layer on the surface of product, after machining. Unfortunately, the high heat generated on the electrically discharged material during the EDM process decreases the quality of products. Carbon nanotubes display unexpected strength and unique electrical and thermal properties. Multi-wall carbon nanotubes are therefore on purpose added to the dielectric used in the EDM process to improve its performance when machining the AISI H13 tool steel, by means of copper electrodes. Some EDM parameters such as material removal rate, electrode wear rate, surface roughness and recast layer are here first evaluated, then compared to the outcome of EDM performed without using nanotubes mixed to the dielectric. Independent variables investigated are pulse on time, peak current and interval time. Experimental evidences show that EDM process operated by mixing multi-wall carbon nanotubes within the dielectric looks more efficient, particularly if machining parameters are set at low pulse of energy.

  18. Evaluating the electrical discharge machining (EDM) parameters with using carbon nanotubes

    International Nuclear Information System (INIS)

    Sari, M M; Brusa, E; Noordin, M Y

    2012-01-01

    Electrical discharge machining (EDM) is one of the most accurate non traditional manufacturing processes available for creating tiny apertures, complex or simple shapes and geometries within parts and assemblies. Performance of the EDM process is usually evaluated in terms of surface roughness, existence of cracks, voids and recast layer on the surface of product, after machining. Unfortunately, the high heat generated on the electrically discharged material during the EDM process decreases the quality of products. Carbon nanotubes display unexpected strength and unique electrical and thermal properties. Multi-wall carbon nanotubes are therefore on purpose added to the dielectric used in the EDM process to improve its performance when machining the AISI H13 tool steel, by means of copper electrodes. Some EDM parameters such as material removal rate, electrode wear rate, surface roughness and recast layer are here first evaluated, then compared to the outcome of EDM performed without using nanotubes mixed to the dielectric. Independent variables investigated are pulse on time, peak current and interval time. Experimental evidences show that EDM process operated by mixing multi-wall carbon nanotubes within the dielectric looks more efficient, particularly if machining parameters are set at low pulse of energy.

  19. Evaluation on carbon nanocapsules for supercapacitors using a titanium cavity electrode

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Yeou; Wu, Pu-Wei; Lin, Pang [Department of Materials Science and Engineering, National Chiao Tung University Hsin-Chu 300 (China)

    2010-08-01

    We synthesize carbon nanocapsules (CNCs) by a flame combustion method and evaluate their potential as the electrode material for electrochemical double layer capacitor using a titanium cavity electrode (TCE). Identical process is conducted on commercially available carbonaceous materials such as Vulcan XC72R, Black Pearl 2000 (BP2000), multi-walled carbon nanotubes (MWCNTs), and active carbon (AC1100) for comparison purposes. Images from Scanning electron microscope and Transmission electron microscope on the CNCs demonstrate irregular-shaped particles in average size of 10-20 nm with graphene layers on perimeter compassing a hollow core. Electrochemical characterizations including cyclic voltammetry (CV), current reversal chronopotentiometry (CRC), and impedance spectroscopy are carried out in 1N H{sub 2}SO{sub 4} to determine the specific capacitance and cycle life time. Among these samples, the BP2000 still delivers the highest specific capacitance in F g{sup -1} but the CNCs demonstrate the largest value in {mu}F cm{sup 2}. In addition, the CNCs exhibit impressive life time for 5000 cycles without notable degradation. Consistent results are obtained by CV, CRC, and impedance measurements, validating the TCE as a facile tool to perform reliable electrochemical evaluations. (author)

  20. Carbon Impact Analytics - Designing low carbon indices based on Carbon Impact Analytics indicators

    International Nuclear Information System (INIS)

    2016-01-01

    Investors are increasingly exposed to carbon risks and now face the challenge of managing these risks and developing climate-resilient investment strategies. Carbon Impact Analytics (CIA), an innovative methodology for analyzing the full carbon impact of a portfolio or index, equips investors and asset managers with the tools necessary to reduce their climate-related risks but also to seize the opportunities offered by the ongoing energy transition. Investors, asset managers and other financial institutions may use CIA results to: - measure and manage risks, - optimize their contribution to the energy transition, - seize opportunities associated with climate change mitigation, - report on GHG emissions and savings (for regulatory purposes or voluntarily), - engage in dialogue with companies, - reallocate investment portfolios, - and build new low-carbon indices. In this report, Carbone 4 offers a detailed look into how CIA indicators can be used to either 1) reallocate an existing portfolio or index to achieve maximal carbon performance or 2) build new low carbon indices from the ground up, drawn from Carbone 4's ever-growing database of CIA-analyzed firms. Two main levers were used to optimize CIA output: 1. Sectorial reallocation: exclusion of fossil fuel-related sectors or insertion of low carbon pure players; 2. Intra-sectorial reallocation: best-in-class approach within a sector. Sectorial and intra-sectorial methods may be applied in conjunction with one another to maximize results. For example, a best-in-class + fossil fuel-free index may be constructed by first excluding the fossil fuel sector and then applying a CIA best-in-class approach to all remaining sectors. This report offers a detailed look into how CIA indicators can be used to rework portfolios or indices to maximize carbon performance or to build low carbon indices from the ground up. These methods are illustrated via two preliminary examples of indices designed by Carbone 4: the reallocated

  1. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values...

    Science.gov (United States)

    2010-07-01

    ...-based fuel economy and carbon-related exhaust emission values for a model type. 600.208-12 Section 600... ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later...-based and HFET-based fuel economy and carbon-related exhaust emission values for a model type. (a) Fuel...

  2. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae

    International Nuclear Information System (INIS)

    Mesarič, Tina; Gambardella, Chiara; Milivojević, Tamara; Faimali, Marco; Drobne, Damjana; Falugi, Carla; Makovec, Darko; Jemec, Anita; Sepčić, Kristina

    2015-01-01

    Highlights: • Carbon-based nanomaterials adsorb onto the body surface of A. salina larvae. • Surface adsorption results in concentration–dependent inhibition of larval swimming. • Carbon-based nanomaterials induce no significant mortality of A. salina larvae. - Abstract: We investigated the effects of three different carbon-based nanomaterials on brine shrimp (Artemia salina) larvae. The larvae were exposed to different concentrations of carbon black, graphene oxide, and multiwall carbon nanotubes for 48 h, and observed using phase contrast and scanning electron microscopy. Acute (mortality) and behavioural (swimming speed alteration) responses and cholinesterase, glutathione-S-transferase and catalase enzyme activities were evaluated. These nanomaterials were ingested and concentrated in the gut, and attached onto the body surface of the A. salina larvae. This attachment was responsible for concentration–dependent inhibition of larval swimming, and partly for alterations in the enzyme activities, that differed according to the type of tested nanomaterials. No lethal effects were observed up to 0.5 mg/mL carbon black and 0.1 mg/mL multiwall carbon nanotubes, while graphene oxide showed a threshold whereby it had no effects at 0.6 mg/mL, and more than 90% mortality at 0.7 mg/mL. Risk quotients calculated on the basis of predicted environmental concentrations indicate that carbon black and multiwall carbon nanotubes currently do not pose a serious risk to the marine environment, however if uncontrolled release of nanomaterials continues, this scenario can rapidly change

  3. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae

    Energy Technology Data Exchange (ETDEWEB)

    Mesarič, Tina, E-mail: tina.mesaric84@gmail.com [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia); Gambardella, Chiara, E-mail: chiara.gambardella@ge.ismar.cnr.it [Institute of Marine Sciences, National Research Council, Genova (Italy); Milivojević, Tamara, E-mail: milivojevictamara@gmail.com [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia); Faimali, Marco, E-mail: marco.faimali@ismar.cnr.it [Institute of Marine Sciences, National Research Council, Genova (Italy); Drobne, Damjana, E-mail: damjana.drobne@bf.uni-lj.si [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia); Centre of Excellence in Nanoscience and Nanotechnology (CO Nanocentre), Ljubljana (Slovenia); Centre of Excellence in Advanced Materials and Technologies for the Future (CO NAMASTE), Ljubljana (Slovenia); Falugi, Carla, E-mail: carlafalugi@hotmail.it [Department of Earth, Environment and Life Sciences, University of Genova, Genova (Italy); Makovec, Darko, E-mail: darko.makovec@ijs.si [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Jemec, Anita, E-mail: anita.jemec@bf.uni-lj.si [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia); Sepčić, Kristina, E-mail: kristina.sepcic@bf.uni-lj.si [Department of Biology, Biotechnical Faculty, University of Ljubljana (Slovenia)

    2015-06-15

    Highlights: • Carbon-based nanomaterials adsorb onto the body surface of A. salina larvae. • Surface adsorption results in concentration–dependent inhibition of larval swimming. • Carbon-based nanomaterials induce no significant mortality of A. salina larvae. - Abstract: We investigated the effects of three different carbon-based nanomaterials on brine shrimp (Artemia salina) larvae. The larvae were exposed to different concentrations of carbon black, graphene oxide, and multiwall carbon nanotubes for 48 h, and observed using phase contrast and scanning electron microscopy. Acute (mortality) and behavioural (swimming speed alteration) responses and cholinesterase, glutathione-S-transferase and catalase enzyme activities were evaluated. These nanomaterials were ingested and concentrated in the gut, and attached onto the body surface of the A. salina larvae. This attachment was responsible for concentration–dependent inhibition of larval swimming, and partly for alterations in the enzyme activities, that differed according to the type of tested nanomaterials. No lethal effects were observed up to 0.5 mg/mL carbon black and 0.1 mg/mL multiwall carbon nanotubes, while graphene oxide showed a threshold whereby it had no effects at 0.6 mg/mL, and more than 90% mortality at 0.7 mg/mL. Risk quotients calculated on the basis of predicted environmental concentrations indicate that carbon black and multiwall carbon nanotubes currently do not pose a serious risk to the marine environment, however if uncontrolled release of nanomaterials continues, this scenario can rapidly change.

  4. A Spatio-Temporal Based Estimation of Sequestered Carbon in the ...

    African Journals Online (AJOL)

    Michael

    2015-06-01

    Jun 1, 2015 ... reduction in carbon emissions due to deforestation and forest ... global initiatives to reduce global warming, and the management of ... using a process-based equilibrium terrestrial. *Manuscript ..... aboveground biomass limits modeled for African lowland ... replacement of vegetation biomass carbon from.

  5. Quantum-Chemical Insights into the Self-Assembly of Carbon-Based Supramolecular Complexes

    Directory of Open Access Journals (Sweden)

    Joaquín Calbo

    2018-01-01

    Full Text Available Understanding how molecular systems self-assemble to form well-organized superstructures governed by noncovalent interactions is essential in the field of supramolecular chemistry. In the nanoscience context, the self-assembly of different carbon-based nanoforms (fullerenes, carbon nanotubes and graphene with, in general, electron-donor molecular systems, has received increasing attention as a means of generating potential candidates for technological applications. In these carbon-based systems, a deep characterization of the supramolecular organization is crucial to establish an intimate relation between supramolecular structure and functionality. Detailed structural information on the self-assembly of these carbon-based nanoforms is however not always accessible from experimental techniques. In this regard, quantum chemistry has demonstrated to be key to gain a deep insight into the supramolecular organization of molecular systems of high interest. In this review, we intend to highlight the fundamental role that quantum-chemical calculations can play to understand the supramolecular self-assembly of carbon-based nanoforms through a limited selection of supramolecular assemblies involving fullerene, fullerene fragments, nanotubes and graphene with several electron-rich π-conjugated systems.

  6. Carbon tax effects on the poor: a SAM-based approach

    Science.gov (United States)

    Chapa, Joana; Ortega, Araceli

    2017-09-01

    A SAM-based price model for Mexico is developed in order to assess the effects of the carbon tax, which was part of the fiscal reform approved in 2014. The model is formulated based on a social accounting matrix (SAM) that distinguishes households by the official poverty condition and geographical area. The main results are that the sector that includes coke, refined petroleum and nuclear fuel shows the highest price increase due to the direct impact of the carbon tax; in addition, air transport and inland transport are the most affected sectors, in an indirect manner, because both employ inputs from the former sector. Also, it is found that welfare diminishes more in the rural strata than in the urban one. In the urban area, the carbon tax is regressive: the negative impact of carbon tax on family welfare is greater on the poorest families.

  7. Experimental results on performance improvement of doped carbon-base materials

    International Nuclear Information System (INIS)

    Xu Zengyu

    2002-01-01

    Carbon-base materials is one of candidate plasma facing materials and have been widely used in current tokamak facilities in the world. But some defect properties are presented on high yield of chemical sputtering , high yield of radiation enhancement sublimate (RES), cracking after heat flux and so on. It can be improved by doped some little other elements into the carbon-base materials, such as boron, silicon, titanium and so on. Experimental results indicate that it is feasible and successful to improve thermo-physics and chemical properties of carbon-base materials by multi-element doped. Doped 12 % silicon can strained RES and chemical sputtering yield do not changed. It is the same level of chemical sputtering yield for B 4 C from 3 % to 10 % , but their resistance thermal shock properties ability increases with B 4 C increases

  8. A Novel Electro-Thermal Laminated Ceramic with Carbon-Based Layer

    Directory of Open Access Journals (Sweden)

    Yi Ji

    2017-06-01

    Full Text Available A novel electro-thermal laminated ceramic composed of ceramic tile, carbon-based layer, dielectric layer, and foaming ceramic layer was designed and prepared by tape casting. The surface temperature achieved at an applied voltage of 10 V by the laminated ceramics was 40.3 °C when the thickness of carbon-based suspension was 1.0 mm and the adhesive strength between ceramic tile and carbon-based layer was 1.02 ± 0.06 MPa. In addition, the thermal aging results at 100 °C up to 192 h confirmed the high thermal stability and reliability of the electro-thermal laminated ceramics. The development of this laminated ceramic with excellent electro-thermal properties and safety provides a new individual heating device which is highly expected to be widely applied in the field of indoor heat supply.

  9. Towards a model-based inventory of soil organic carbon in agricultural soils for the Swiss greenhouse gas reporting

    Science.gov (United States)

    Staudt, K.; Leifeld, J.; Bretscher, D.; Fuhrer, J.

    2012-04-01

    The Swiss inventory submission under the United Nations Framework Convention on Climate Change (UNFCCC) reports on changes in soil organic carbon stocks under different land-uses and land-use changes. The approach currently employed for cropland and grassland soils combines Tier 1 and Tier 2 methods and is considered overly simplistic. As the UNFCC encourages countries to develop Tier 3 methods for national greenhouse gas reporting, we aim to build up a model-based inventory of soil organic carbon in agricultural soils in Switzerland. We conducted a literature research on currently employed higher-tier methods using process-based models in four countries: Denmark, Sweden, Finland and the USA. The applied models stem from two major groups differing in complexity - those belonging to the group of general ecosystem models that include a plant-growth submodel, e.g. Century, and those that simulate soil organic matter turnover but not plant-growth, e.g. ICBM. For the latter group, carbon inputs to the soil from plant residues and roots have to be determined separately. We will present some aspects of the development of a model-based inventory of soil organic carbon in agricultural soils in Switzerland. Criteria for model evaluation are, among others, modeled land-use classes and land-use changes, spatial and temporal resolution, and coverage of relevant processes. For model parameterization and model evaluation at the field scale, data from several long-term agricultural experiments and monitoring sites in Switzerland is available. A subsequent regional application of a model requires the preparation of regional input data for the whole country - among others spatio-temporal meteorological data, agricultural and soil data. Following the evaluation of possible models and of available data, preference for application in the Swiss inventory will be given to simpler model structures, i.e. models without a plant-growth module. Thus, we compared different allometric relations

  10. Scientific Opinion on the safety evaluation of the active substances, sodium carbonate peroxyhydrate coated with sodium carbonate and sodium silicate, bentonite, sodium chloride, sodium carbonate for use in active food contact materials

    OpenAIRE

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF)

    2013-01-01

    This scientific opinion of the Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety evaluation of the powder mixture of the active substances sodium carbonate peroxyhydrate coated with sodium carbonate and sodium silicate (FCM substance No 1009), bentonite (CAS No 1302-78-9, FCM No 393), sodium chloride (CAS No 7647-14-5, FCM No 985), sodium carbonate (CAS No 497-19-8, FCM No 1008) which are intended to be used as combined oxygen generator and carbon...

  11. Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans

    DEFF Research Database (Denmark)

    Kuempel, Eileen D.; Jaurand, Marie-Claude; Møller, Peter

    2017-01-01

    In an evaluation of carbon nanotubes (CNTs) for the IARC Monograph 111, the Mechanisms Subgroup was tasked with assessing the strength of evidence on the potential carcinogenicity of CNTs in humans. The mechanistic evidence was considered to be not strong enough to alter the evaluations based...... on the animal data. In this paper, we provide an extended, in-depth examination of the in vivo and in vitro experimental studies according to current hypotheses on the carcinogenicity of inhaled particles and fibers. We cite additional studies of CNTs that were not available at the time of the IARC meeting...... in October 2014, and extend our evaluation to include carbon nanofibers (CNFs). Finally, we identify key data gaps and suggest research needs to reduce uncertainty. The focus of this review is on the cancer risk to workers exposed to airborne CNT or CNF during the production and use of these materials...

  12. Recent advances in molecular electronics based on carbon nanotubes.

    Science.gov (United States)

    Bourgoin, Jean-Philippe; Campidelli, Stéphane; Chenevier, Pascale; Derycke, Vincent; Filoramo, Arianna; Goffman, Marcelo F

    2010-01-01

    Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: (i) the combination of some of their complementary physical properties, such as combining their electrical and mechanical properties, (ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes, and (iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination of several devices into functional arrays or circuits. In this article, we outline the main issues concerning the development of carbon nanotubes based electronics applications and review our recent results in the field.

  13. Metal–carbon nanocomposites based on pyrolysed polyacrylonitrile

    Directory of Open Access Journals (Sweden)

    Irina A. Zaporotskova

    2015-06-01

    Full Text Available The electronic structure and geometry of metal−carbon nanocomposites based on pyrolyzed polyacrylonitrile (PPAN with Cu, Si, Fe, Co and Ni atoms using the DFT method have been theoretically studied. The effect of nitrogen on the stability of PPAN and its conductivity has been determined. The electrophysical properties and structure of metal nanocomposites have been studied using the XFA method. The composites have been produced by IR heating. We suggest that metal−carbon nanocomposites form due to the special processing of the (PAN−MeR samples. Metal nanoparticles are regularly dispersed in the nanocrystalline matrix of PPAN. The conductivity of these metal−carbon nanocomposites has an activation character and varies from 10−1 to 103 Om/cm depending on synthesis temperature (T=600–900 °С. The results of theoretical and experimental research are in a good agreement.

  14. Upstream-Downstream Joint Carbon Reduction Strategies Based on Low-Carbon Promotion

    Directory of Open Access Journals (Sweden)

    Xiqiang Xia

    2018-06-01

    Full Text Available A differential game model is established to analyze the impact of emissions reduction efforts and low-carbon product promotion on the reduction strategies of low-carbon product manufacturers (subsequently referred to as manufacturers and the retailers of such products in a dynamic environment. Based on this model, changes in emissions reduction efforts and promotional efforts are comparatively analyzed under three scenarios (retailers bearing the promotional cost, manufacturers bearing the promotional cost, and centralized decision-making. The results are as follows: (1 the trajectory of carbon emissions reduction per product unit is the highest when the supply chain is under centralized decision-making, followed by when manufacturers bear the promotional cost, and lastly when retailers bear the cost; (2 when manufacturers bear the promotional cost, the market demand, emissions reduction effort, and promotional effort are higher, although the unit retail price is higher than when retailers bear the promotional cost; and (3 under centralized decision-making, the unit retail price is the lowest; however, sales volume, the emissions reduction effort, and the promotional effort are all higher than those in the other scenarios.

  15. Carbon-nanotube-based liquids: a new class of nanomaterials and their applications

    International Nuclear Information System (INIS)

    Phan, Ngoc Minh; Nguyen, Manh Hong; Phan, Hong Khoi; Bui, Hung Thang

    2014-01-01

    Carbon-nanotube-based liquids—a new class of nanomaterials—have shown many interesting properties and distinctive features offering unprecedented potential for many applications. This paper summarizes the recent progress on the study of the preparation, characterization and properties of carbon-nanotube-based liquids including so-called nanofluids, nanolubricants and different kinds of nanosolutions containing multi-walled carbon nanotubes/single-walled carbon nanotubes/graphene. A broad range of current and future applications of these nanomaterials in the fields of energy saving, power electronic and optoelectronic devices, biotechnology and agriculture are presented. The paper also identifies challenges and opportunities for future research. (paper)

  16. Chitin based heteroatom-doped porous carbon as electrode materials for supercapacitors.

    Science.gov (United States)

    Zhou, Jie; Bao, Li; Wu, Shengji; Yang, Wei; Wang, Hui

    2017-10-01

    Chitin biomass has received much attention as an amino-functional polysaccharide precursor for synthesis of carbon materials. Rich nitrogen and oxygen dual-doped porous carbon derived from cicada slough (CS), a renewable biomass mainly composed of chitin, was synthesized and employed as electrode materials for electrochemical capacitors, for the first time ever. The cicada slough-derived carbon (CSC) was prepared by a facile process via pre-carbonization in air, followed by KOH activation. The weight ratio of KOH and char plays an important role in fabricating the microporous structure and tuning the surface chemistry of CSC. The obtained CSC had a large specific surface area (1243-2217m 2 g -1 ), fairly high oxygen content (28.95-33.78 at%) and moderate nitrogen content (1.47-4.35 at%). The electrochemical performance of the CS char and CSC as electrodes for capacitors was evaluated in a three-electrode cell configuration with 6M KOH as the electrolyte. Electrochemical studies showed that the as-prepared CSC activated at the KOH-to-char weight ratio of 2 exhibited the highest specific capacitance (266.5Fg -1 at a current density of 0.5Ag -1 ) and excellent rate capability (196.2Fg -1 remained at 20Ag -1 ) and cycle durability. In addition, the CSC-2-based symmetrical device possessed the desirable energy density and power density of about 15.97Whkg -1 and 5000Wkg -1 at 5Ag -1 , respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Carbon ion radiotherapy for chordomas and low-grade chondrosarcomas of the skull base. Results in 67 patients

    Energy Technology Data Exchange (ETDEWEB)

    Schulz-Ertner, D.; Wannenmacher, M. [Dept. of Clinical Radiology, Univ. of Heidelberg (Germany); Nikoghosyan, A.; Thilmann, C.; Jaekel, O.; Karger, C. [German Cancer Research Center (dkfz), Heidelberg (Germany); Haberer, T.; Scholz, M.; Kraft, G. [Dept. of Biophysics, German Ion Research Center (GSI), Darmstadt (Germany); Debus, J. [Dept. of Clinical Radiology, Univ. of Heidelberg (Germany); German Cancer Research Center (dkfz), Heidelberg (Germany)

    2003-09-01

    Purpose: To prospectively evaluate outcome and toxicity after carbon ion radiotherapy (RT) in chordomas and low-grade chondrosarcomas. Patients and Methods: Between September 1998 and December 2001, 74 patients were treated for chordomas and chondrosarcomas with carbon ion RT at the ''Gesellschaft fuer Schwerionenforschung'' (GSI). Seven patients reirradiated with reduced carbon ion doses after conventional RT were excluded from the analysis, leaving 67 evaluable patients (44 chordomas and 23 chondrosarcomas) who received a full course of carbon ion therapy. Tumor-conform application of carbon ion beams was realized by intensity-controlled raster scanning with active energy variation. Three-dimensional treatment planning included intensity modulation and biological plan optimization. A median dose of 60 GyE was applied to the target volume within 20 consecutive days at a dose of 3.0 GyE per fraction. Results: Median follow-up was 15 months (range 3-46 months). At 3 years, actuarial local control was 100% for chondrosarcomas and 87% for chordomas, respectively. Partial tumor remission was observed in 14/44 (31%) chordoma patients and in 4/23 (17%) chondrosarcoma patients. At 3 years, actuarial overall survival was 100% for chondrosarcomas and 89% for chordomas, respectively. No severe side effects > CTC III have been observed. Conclusions: These data demonstrate the clinical efficiency and safety of scanning beam delivery of carbon ion beams in patients with skull base chordomas and chondrosarcomas. The observation of tumor regressions at a dose level of 60 GyE may indicate that the biological effectiveness of carbon ions in chordomas and chondrosarcomas is higher than initially estimated. (orig.)

  18. PROPERTIES OF NR AND NR/ENR BASED RUBBER COMPOUNDS REINFORCED WITH CHOPPED AND SIZED CARBON FIBER

    Directory of Open Access Journals (Sweden)

    Bağdagül Karaağaç

    2016-12-01

    Full Text Available High elasticity, mechanical resistance and antivibration characteristics of natural rubber (NR are essential issue in the main area of vehicle tyres and high modulus demanding bearing applications. In this study, especially in bearing applications, where natural rubber modulus properties are limited, natural rubber has been reinforced with chopped and hydrocarbon sized carbon fiber to get improved tensile modulus. Besides, epoxidized natural rubber (ENR, which was produced by chemical modification of natural rubber, blended with NR and the compounds have been reinforced with epoxy sized carbon fiber. NR and NR/ENR based rubber compounds’ rheological, mechanical, and aging properties have been systematically investigated and evaluated.

  19. Fluorescently labeled bionanotransporters of nucleic acid based on carbon nanotubes

    International Nuclear Information System (INIS)

    Novopashina, D.S.; Apartsin, E.K.; Venyaminova, A.G.

    2012-01-01

    We propose an approach to the design of a new type of hybrids of oligonucleotides with fluorescein-functionalized single-walled carbon nanotubes. The approach is based on stacking interactions of functionalized nanotubes with pyrene residues in conjugates of oligonucleotides. The amino- and fluorescein-modified single walled carbon nanotubes are obtained, and their physico-chemical properties are investigated. The effect of the functionalization type of carbon nanotubes on the efficacy of the sorption of pyrene conjugates of oligonucleotides was examined. The proposed noncovalent hybrids of fluorescein-labeled carbon nanotubes with oligonucleotides may be used for the intracellular transport of functional nucleic acids.

  20. Batch kinetics, isotherm and thermodynamic studies of adsorption of strontium from aqueous solutions onto low cost rice-straw based carbons.

    Directory of Open Access Journals (Sweden)

    S. M. Yakout

    2010-09-01

    Full Text Available Present study explored the feasibility of using waste rice-straw based carbons as adsorbent for the removal of strontium under different experimental conditions. The batch sorption is studied with respect to solute concentration (2.8 - 110 mg/L, contact time, adsorbent dose (2.5 - 20 g/L and solution temperature (25 - 55oC. The Langmuir and Dubinin-Radushkevich adsorption models were applied to experimental equilibrium data and isotherm constants were calculated using linear regression analysis. A comparison of kinetic models applied to the adsorption of strontium on rice-straw carbon was evaluated for the pseudo-second-order, Elovich, intraparticle diffusion and Bangham’s kinetics models. The experimental data fitted very well the pseudosecond-order kinetic model and also followed by intra-particle diffusion model, whereas diffusion is not only the rate-controlling step. The results show that the sorption capacity increases with an increase in solution temperature from 25 to 55 oC. The thermodynamics parameters were evaluated. The positive value of ΔH (40.93 kJ indicated that the adsorption of strontium onto RS1 carbon was endothermic, which result was supported by the increasing adsorption of strontium with temperature. The positive value of ΔS (121.8 kJ/mol reflects good affinity of strontium ions towards the rice-straw based carbons. The results have establishedgood potentiality for the carbons particles to be used as a sorbent for the removal of strontium from wastewater.

  1. Titanium-based zeolitic imidazolate framework for chemical fixation of carbon dioxide

    Science.gov (United States)

    A titanium-based zeolitic imidazolate framework (Ti-ZIF) with high surface area and porous morphology was synthesized and itsefficacy was demonstrated in the synthesis of cyclic carbonates from epoxides and carbon dioxide.

  2. Current and future carbon budget at Takayama site, Japan, evaluated by a regional climate model and a process-based terrestrial ecosystem model.

    Science.gov (United States)

    Kuribayashi, Masatoshi; Noh, Nam-Jin; Saitoh, Taku M; Ito, Akihiko; Wakazuki, Yasutaka; Muraoka, Hiroyuki

    2017-06-01

    Accurate projection of carbon budget in forest ecosystems under future climate and atmospheric carbon dioxide (CO 2 ) concentration is important to evaluate the function of terrestrial ecosystems, which serve as a major sink of atmospheric CO 2 . In this study, we examined the effects of spatial resolution of meteorological data on the accuracies of ecosystem model simulation for canopy phenology and carbon budget such as gross primary production (GPP), ecosystem respiration (ER), and net ecosystem production (NEP) of a deciduous forest in Japan. Then, we simulated the future (around 2085) changes in canopy phenology and carbon budget of the forest by incorporating high-resolution meteorological data downscaled by a regional climate model. The ecosystem model overestimated GPP and ER when we inputted low-resolution data, which have warming biases over mountainous landscape. But, it reproduced canopy phenology and carbon budget well, when we inputted high-resolution data. Under the future climate, earlier leaf expansion and delayed leaf fall by about 10 days compared with the present state was simulated, and also, GPP, ER and NEP were estimated to increase by 25.2%, 23.7% and 35.4%, respectively. Sensitivity analysis showed that the increase of NEP in June and October would be mainly caused by rising temperature, whereas that in July and August would be largely attributable to CO 2 fertilization. This study suggests that the downscaling of future climate data enable us to project more reliable carbon budget of forest ecosystem in mountainous landscape than the low-resolution simulation due to the better predictions of leaf expansion and shedding.

  3. Cost evaluation of CO2 sequestration by aqueous mineral carbonation

    International Nuclear Information System (INIS)

    Huijgen, Wouter J.J.; Comans, Rob N.J.; Witkamp, Geert-Jan

    2007-01-01

    A cost evaluation of CO 2 sequestration by aqueous mineral carbonation has been made using either wollastonite (CaSiO 3 ) or steel slag as feedstock. First, the process was simulated to determine the properties of the streams as well as the power and heat consumption of the process equipment. Second, a basic design was made for the major process equipment, and total investment costs were estimated with the help of the publicly available literature and a factorial cost estimation method. Finally, the sequestration costs were determined on the basis of the depreciation of investments and variable and fixed operating costs. Estimated costs are 102 and 77 EUR/ton CO 2 net avoided for wollastonite and steel slag, respectively. For wollastonite, the major costs are associated with the feedstock and the electricity consumption for grinding and compression (54 and 26 EUR/ton CO 2 avoided, respectively). A sensitivity analysis showed that additional influential parameters in the sequestration costs include the liquid-to-solid ratio in the carbonation reactor and the possible value of the carbonated product. The sequestration costs for steel slag are significantly lower due to the absence of costs for the feedstock. Although various options for potential cost reduction have been identified, CO 2 sequestration by current aqueous carbonation processes seems expensive relative to other CO 2 storage technologies. The permanent and inherently safe sequestration of CO 2 by mineral carbonation may justify higher costs, but further cost reductions are required, particularly in view of (current) prices of CO 2 emission rights. Niche applications of mineral carbonation with a solid residue such as steel slag as feedstock and/or a useful carbonated product hold the best prospects for an economically feasible CO 2 sequestration process. (author)

  4. EVALUATION OF PROPYLENE CARBONATE IN AIR LOGISTICS CENTER (ALC) DEPAINTING OPERATIONS

    Science.gov (United States)

    This report summarizes a two-phase, laboratory-scale screening study that evaluated solvent blends containing propylene carbonate (PC) as a potential replacement for methyl ethyl ketone (MEK) in aircraft radome depainting operations. The study was conducted at Oklahoma City Air L...

  5. Fabrication and Characterization of a Pressure Sensor using a Pitch-based Carbon Fiber

    International Nuclear Information System (INIS)

    Park, Chang Sin; Kang, Bo Seon; Lee, Dong Weon

    2007-01-01

    This paper reports fabrication and characterization of a pressure sensor using a pitch-based carbon fiber. Pitch-based carbon fibers have been shown to exhibit the piezoresistive effect, in which the electric resistance of the carbon fiber changes under mechanical deformation. The main structure of pressure sensors was built by performing backside etching on a SOI wafer and creating a suspended square membrane on the front side. An AC electric field which causes dielectrophoresis was used for the alignment and deposition of a carbon fiber across the microscale gap between two electrodes on the membrane. The fabricated pressure sensors were tested by applying static pressure to the membrane and measuring the resistance change of the carbon fiber. The resistance change of carbon fibers clearly shows linear response to the applied pressure and the calculated sensitivities of pressure sensors are 0.25∼0.35 and 61.8 Ω/kΩ·bar for thicker and thinner membrane, respectively. All these observations demonstrated the possibilities of carbon fiber-based pressure sensors

  6. Cost Evaluation of CO2 Sequestration by Aqueous Mineral Carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2007-01-01

    A cost evaluation of CO2 sequestration by aqueous mineral carbonation has been made using either wollastonite (CaSiO3) or steel slag as feedstock. First, the process was simulated to determine the properties of the streams as well as the power and heat consumption of the process equipment. Second, a

  7. Characterization of silicon- and carbon-based composite anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Khomenko, Volodymyr G.; Barsukov, Viacheslav Z.

    2007-01-01

    In recent years development of active materials for negative electrodes has been of great interest. Special attention has been focused on the active materials possessing higher reversible capacity than that of conventional graphite. In the present work the electrochemical performance of some carbon/silicon-based materials has been analyzed. For this purpose various silicon-based composites were prepared using such carbon materials as graphite, hard carbon and graphitized carbon black. An analysis of charging-discharging processes at electrodes based on different carbon materials has shown that graphite modified with silicon is the most promising anode material. It has also been revealed that the irreversible capacity mainly depends on the content of Si. An optimum content of Si has been determined with taking into account that high irreversible capacity is not suitable for practical application in lithium-ion batteries. This content falls within the range of 8-10 wt%. The reversible capacity of graphite modified with 8 wt% carbon-coated Si was as high as 604 mAh g -1 . The irreversible capacity loss with this material was as low as 8.1%. The small irreversible capacity of the material allowed developing full lithium-ion rechargeable cells in the 2016 coin cell configuration. Lithium-ion batteries based on graphite modified with silicon show gravimetric and volumetric specific energy densities which are higher by approximately 20% than those for a lithium-ion battery based on natural graphite

  8. From Carbon-Based Nanotubes to Nanocages for Advanced Energy Conversion and Storage.

    Science.gov (United States)

    Wu, Qiang; Yang, Lijun; Wang, Xizhang; Hu, Zheng

    2017-02-21

    Carbon-based nanomaterials have been the focus of research interests in the past 30 years due to their abundant microstructures and morphologies, excellent properties, and wide potential applications, as landmarked by 0D fullerene, 1D nanotubes, and 2D graphene. With the availability of high specific surface area (SSA), well-balanced pore distribution, high conductivity, and tunable wettability, carbon-based nanomaterials are highly expected as advanced materials for energy conversion and storage to meet the increasing demands for clean and renewable energies. In this context, attention is usually attracted by the star material of graphene in recent years. In this Account, we overview our studies on carbon-based nanotubes to nanocages for energy conversion and storage, including their synthesis, performances, and related mechanisms. The two carbon nanostructures have the common features of interior cavity, high conductivity, and easy doping but much different SSAs and pore distributions, leading to different performances. We demonstrated a six-membered-ring-based growth mechanism of carbon nanotubes (CNTs) with benzene precursor based on the structural similarity of the benzene ring to the building unit of CNTs. By this mechanism, nitrogen-doped CNTs (NCNTs) with homogeneous N distribution and predominant pyridinic N were obtained with pyridine precursor, providing a new kind of support for convenient surface functionalization via N-participation. Accordingly, various transition-metal nanoparticles were directly immobilized onto NCNTs without premodification. The so-constructed catalysts featured high dispersion, narrow size distribution and tunable composition, which presented superior catalytic performances for energy conversions, for example, the oxygen reduction reaction (ORR) and methanol oxidation in fuel cells. With the advent of the new field of carbon-based metal-free electrocatalysts, we first extended ORR catalysts from the electron-rich N-doped to the

  9. A stochastic analysis of the impact of input parameters on profit of Australian pasture-based dairy farms under variable carbon price scenarios

    International Nuclear Information System (INIS)

    Özkan, Şeyda; Farquharson, Robert J.; Hill, Julian; Malcolm, Bill

    2015-01-01

    Highlights: • Two different pasture-based dairy feeding systems were evaluated. • The home-grown forage system outperformed the traditional pasture-based system. • Probability of achieving $200,000 income was reduced by imposition of a carbon tax. • Different farming systems will respond to change differently. • The ‘best choice’ for each individual farm is subjective. - Abstract: The imposition of a carbon tax in the economy will have indirect impacts on dairy farmers in Australia. Although there is a great deal of information available regarding mitigation strategies both in Australia and internationally, there seems to be a lack of research investigating the variable prices of carbon-based emissions on dairy farm operating profits in Australia. In this study, a stochastic analysis comparing the uncertainty in income in response to different prices on carbon-based emissions was conducted. The impact of variability in pasture consumption and variable prices of concentrates and hay on farm profitability was also investigated. The two different feeding systems examined were a ryegrass pasture-based system (RM) and a complementary forage-based system (CF). Imposing a carbon price ($20–$60) and not changing the systems reduced the farm operating profits by 28.4% and 25.6% in the RM and CF systems, respectively compared to a scenario where no carbon price was imposed. Different farming businesses will respond to variability in the rapidly changing operating environment such as fluctuations in pasture availability, price of purchased feeds and price of milk or carbon emissions differently. Further, in case there is a carbon price imposed for GHG emissions emanated from dairy farming systems, changing from pasture-based to more complex feeding systems incorporating home-grown double crops may reduce the reductions in farm operating profits. There is opportunity for future studies to focus on the impacts of different mitigation strategies and policy

  10. Carbon materials for H{sub 2} storage

    Energy Technology Data Exchange (ETDEWEB)

    Zubizarreta, L.; Arenillas, A.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2009-05-15

    In this work a series of carbons with different structural and textural properties were characterised and evaluated for their application in hydrogen storage. The materials used were different types of commercial carbons: carbon fibers, carbon cloths, nanotubes, superactivated carbons, and synthetic carbons (carbon nanospheres and carbon xerogels). Their textural properties (i.e., surface area, pore size distribution, etc.) were related to their hydrogen adsorption capacities. These H{sub 2} storage capacities were evaluated by various methods (i.e., volumetric and gravimetric) at different temperatures and pressures. The differences between both methods at various operating conditions were evaluated and related to the textural properties of the carbon-based adsorbents. The results showed that temperature has a greater influence on the storage capacity of carbons than pressure. Furthermore, hydrogen storage capacity seems to be proportional to surface area, especially at 77 K. The micropore size distribution and the presence of narrow micropores also notably influence the H{sub 2} storage capacity of carbons. In contrast, morphological or structural characteristics have no influence on gravimetric storage capacity. If synthetic materials are used, the textural properties of carbon materials can be tailored for hydrogen storage. However, a larger pore volume would be needed in order to increase storage capacity. It seems very difficult approach to attain the DOE and EU targets only by physical adsorption on carbon materials. Chemical modification of carbons would seem to be a promising alternative approach in order to increase the capacities. (author)

  11. Evaluation of carbon fiber composites modified by in situ incorporation of carbon nanofibers

    Directory of Open Access Journals (Sweden)

    André Navarro de Miranda

    2011-12-01

    Full Text Available Nano-carbon materials, such as carbon nanotubes and carbon nanofibers, are being thought to be used as multifunctional reinforcement in composites. The growing of carbon nanofiber at the carbon fiber/epoxy interface results in composites having better electrical properties than conventional carbon fiber/epoxy composites. In this work, carbon nanofibers were grown in situ over the surface of a carbon fiber fabric by chemical vapor deposition. Specimens of carbon fiber/nanofiber/epoxy (CF/CNF/epoxy composites were molded and electrical conductivity was measured. Also, the CF/CNF/epoxy composites were tested under flexure and interlaminar shear. The results showed an overall reduction in mechanical properties as a function of added nanofiber, although electrical conductivity increased up to 74% with the addition of nanofibers. Thus CF/CNF/epoxy composites can be used as electrical dissipation discharge materials.

  12. Performance Evaluation Report for Soil Vapor Extraction Operations at the Carbon Tetrachloride Site, February 1992 - September 1998

    International Nuclear Information System (INIS)

    Rohay, V. J.

    1999-01-01

    Soil vapor extraction (SVE) is being used to remove carbon tetrachloride from the vadose zone at the 200-ZP-2 Operable Unit. The purpose of this report is to evaluate both the SVE system operating data and the effectiveness of SVE in remediating the carbon tetrachloride contamination. This report has been revised to cover the operating period from February 25, 1992 through September 30, 1998. The scope of the report includes the history of SVE operations at 200-ZP-2, the efficiency of those operations over time, the volume of vapor processed per extraction system, the change in carbon tetrachloride concentrations with time, the mass of carbon tetrachloride removed per site, and recommendations for future operations and evaluations. This revision includes an update to the carbon tetrachloride conceptual model

  13. Catalytic and peroxidase-like activity of carbon based-AuPd bimetallic nanocomposite produced using carbon dots as the reductant

    International Nuclear Information System (INIS)

    Yang, Liuqing; Liu, Xiaoying; Lu, Qiujun; Huang, Na; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo

    2016-01-01

    In this report, carbon-based AuPd bimetallic nanocomposite (AuPd/C NC) was synthesized using carbon dots (C-dots) as the reducing agent and stabilizer by a simple green sequential reduction strategy, without adding other agents. The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like property. The structure and morphology of these nanoparticles were clearly characterized by UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The AuPd/C NC catalyst exhibits noticeably higher catalytic activity than Pd and Au nanoparticles in catalysis reduction of 4-nitrophenol (4-NP). Moreover, based on the high peroxidase-like property of AuPd/C NC, a new colorimetric detection method for hydrogen peroxide (H 2 O 2 ) has been designed using 3,3′,5,5′-tetramethyl-benzidine (TMB) as the substrate, which provides a simple and sensitive means to detect H 2 O 2 in wide linear range of 5 μM–500 μM and 500 μM–4 mM with low detection limit of 1.6 μM (S/N = 3). Therefore, the facile synthesis strategy for bimetallic nanoparticles by the mild reductant of carbon dot will provide some new thoughts for preparing of carbon-based metal nanomaterials and expand their application in catalysis and analytical chemistry areas. - Highlights: • Carbon-based AuPd bimetallic nanocomposite was synthesized using carbon dots. • The green sequential reduction strategy synthesis method is simple, green, convenient and effective. • The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like activity. • The AuPd/C NC exhibits noticeably higher catalytic activity in reduction of 4-nitrophenol. • A new colorimetric detection method for hydrogen peroxide based on AuPd/C NC was proposed.

  14. Catalytic and peroxidase-like activity of carbon based-AuPd bimetallic nanocomposite produced using carbon dots as the reductant

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liuqing [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Liu, Xiaoying [College of Science, Science and Technological Innovation Platform, Hunan Agricultural University, Hunan, Changsha 410128 (China); Lu, Qiujun; Huang, Na [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Liu, Meiling, E-mail: liumeilingww@126.com [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Zhang, Youyu; Yao, Shouzhuo [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China)

    2016-08-03

    In this report, carbon-based AuPd bimetallic nanocomposite (AuPd/C NC) was synthesized using carbon dots (C-dots) as the reducing agent and stabilizer by a simple green sequential reduction strategy, without adding other agents. The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like property. The structure and morphology of these nanoparticles were clearly characterized by UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The AuPd/C NC catalyst exhibits noticeably higher catalytic activity than Pd and Au nanoparticles in catalysis reduction of 4-nitrophenol (4-NP). Moreover, based on the high peroxidase-like property of AuPd/C NC, a new colorimetric detection method for hydrogen peroxide (H{sub 2}O{sub 2}) has been designed using 3,3′,5,5′-tetramethyl-benzidine (TMB) as the substrate, which provides a simple and sensitive means to detect H{sub 2}O{sub 2} in wide linear range of 5 μM–500 μM and 500 μM–4 mM with low detection limit of 1.6 μM (S/N = 3). Therefore, the facile synthesis strategy for bimetallic nanoparticles by the mild reductant of carbon dot will provide some new thoughts for preparing of carbon-based metal nanomaterials and expand their application in catalysis and analytical chemistry areas. - Highlights: • Carbon-based AuPd bimetallic nanocomposite was synthesized using carbon dots. • The green sequential reduction strategy synthesis method is simple, green, convenient and effective. • The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like activity. • The AuPd/C NC exhibits noticeably higher catalytic activity in reduction of 4-nitrophenol. • A new colorimetric detection method for hydrogen peroxide based on AuPd/C NC was proposed.

  15. Simple electrochemical sensor for caffeine based on carbon and Nafion-modified carbon electrodes.

    Science.gov (United States)

    Torres, A Carolina; Barsan, Madalina M; Brett, Christopher M A

    2014-04-15

    A simple, economic, highly sensitive and highly selective method for the detection of caffeine has been developed at bare and Nafion-modified glassy carbon electrodes (GCE). The electrochemical behaviour of caffeine was examined in electrolyte solutions of phosphate buffer saline, sodium perchlorate, and in choline chloride plus oxalic acid, using analytical determinations by fixed potential amperometry, phosphate buffer saline being the best. Modifications of the GCE surface with poly(3,4-ethylenedioxythiophene) (PEDOT), Nafion, and multi-walled carbon nanotubes were tested in order to evaluate possible sensor performance enhancements, Nafion giving the most satisfactory results. The effect of interfering compounds usually found in samples containing caffeine was examined at GCE without and with Nafion coating, to exclude interferences, and the sensors were successfully applied to determine the caffeine content in commercial beverages and drugs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Evaluation of the DayCent model to predict carbon fluxes in French crop sites

    Science.gov (United States)

    Fujisaki, Kenji; Martin, Manuel P.; Zhang, Yao; Bernoux, Martial; Chapuis-Lardy, Lydie

    2017-04-01

    Croplands in temperate regions are an important component of the carbon balance and can act as a sink or a source of carbon, depending on pedoclimatic conditions and management practices. Therefore the evaluation of carbon fluxes in croplands by modelling approach is relevant in the context of global change. This study was part of the Comete-Global project funded by the multi-Partner call FACCE JPI. Carbon fluxes, net ecosystem exchange (NEE), leaf area index (LAI), biomass, and grain production were simulated at the site level in three French crop experiments from the CarboEurope project. Several crops were studied, like winter wheat, rapeseed, barley, maize, and sunflower. Daily NEE was measured with eddy covariance and could be partitioned between gross primary production (GPP) and total ecosystem respiration (TER). Measurements were compared to DayCent simulations, a process-based model predicting plant production and soil organic matter turnover at daily time step. We compared two versions of the model: the original one with a simplified plant module and a newer version that simulates LAI. Input data for modelling were soil properties, climate, and management practices. Simulations of grain yields and biomass production were acceptable when using optimized crop parameters. Simulation of NEE was also acceptable. GPP predictions were improved with the newer version of the model, eliminating temporal shifts that could be observed with the original model. TER was underestimated by the model. Predicted NEE was more sensitive to soil tillage and nitrogen applications than measured NEE. DayCent was therefore a relevant tool to predict carbon fluxes in French crops at the site level. The introduction of LAI in the model improved its performance.

  17. Scenario-based potential effects of carbon trading in China: An integrated approach

    International Nuclear Information System (INIS)

    Zhang, Cheng; Wang, Qunwei; Shi, Dan; Li, Pengfei; Cai, Wanhuan

    2016-01-01

    Highlights: • Carbon dioxide shadow price shows a negative asymmetrical correlation with carbon dioxide emissions in China. • The implements of carbon trading can bring Porter Hypothesis effect significantly. • Provincial carbon trading can reduce carbon intensity by 19.79–25.24% in China. - Abstract: Using China’s provincial panel data and national panel data of OECD (Organization for Economic Co-operation and Development) and BRICS (Five major emerging national economies: Brazil, Russia, India, China and South Africa), this paper simulates the scenario-based potential effect of carbon trading in China. Analysis methods included Stochastic Frontier Analysis, Difference-in-differences Model, and Nonlinear Programming Technique. Results indicated that in a theory-based view of carbon trading, the shadow price of carbon dioxide generally rises, with a non-linear negative correlation with carbon dioxide emissions. In different regions, the shadow price of carbon dioxide presents a digressive tendency among eastern, central, and western areas, with divergent gaps between and within areas. When the greatest goal is assumed to reduce national carbon intensity as much as possible at the given national GDP (Gross Domestic Product) (Scenario I), carbon trading has the effect of reducing carbon intensity by 19.79%, with the consideration of Porter Hypothesis effect. If the rigid constraint of national GDP is relaxed, and the dual constraint of both economic growth and environment protection in each region is introduced (Scenario II), the resulting effect is a reduced carbon intensity of 25.24%. China’s general carbon intensity in 2012 was higher than goals set at the Copenhagen Conference, but lagged behind the goal of Twelfth Five-Year Plan for National Economy. This study provides realistic and significant technical support for the government to use in designing and deploying a national carbon trading market.

  18. Supercapacitors based on ordered mesoporous carbon derived from furfuryl alcohol: effect of the carbonized temperature.

    Science.gov (United States)

    Li, Na; Xu, Jianxiong; Chen, Han; Wang, Xianyou

    2014-07-01

    Supercapacitors are successfully prepared from ordered mesoporous carbon (OMC) synthesized by employing the mesoporous silica, SBA-15 as template and furfuryl alcohol as carbon source. It is found that the carbonized temperature greatly influences the physical properties of the synthesized mesoporous carbon materials. The optimal carbonized temperature is measured to be 600 degrees C under which OMC with the specific surface area of 1219 m2/g and pore volume of 1.31 cm3/g and average pore diameter of - 3 nm are synthesized. The OMC materials synthesized under different carbonized temperature are used as electrode material of supercapacitors and the electrochemical properties of the OMC materials are compared by using cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic charge-discharge and self-discharge tests. The results show that the electrochemical properties of the OMC materials are directly related to the specific surface area and pore volume of the mesoporous carbon and the electrode prepared from the OMC synthesized under the carbonized temperature of 600 degrees C (OMC-600) exhibits the most excellent electrochemical performance with the specific capacitance of 207.08 F/g obtained from cyclic voltammetry at the scan rate of 1 mV/s, small resistance and low self-discharge rate. Moreover, the supercapacitor based on the OMC-600 material exhibits good capacitance properties and stable cycle behavior with the specific capacitance of 105 F/g at the current density of 700 mA/g, and keeps a specific capacitance of 98 F/g after 20000 consecutive charge/discharge cycles.

  19. Carbon nanotubes as nanotexturing agents for high power supercapacitors based on seaweed carbons.

    Science.gov (United States)

    Raymundo-Piñero, Encarnación; Cadek, Martin; Wachtler, Mario; Béguin, François

    2011-07-18

    The advantages provided by multiwalled carbon nanotubes (CNTs) as backbones for composite supercapacitor electrodes are discussed. This paper particularly highlights the electrochemical properties of carbon composites obtained by pyrolysis of seaweed/CNTs blends. Due to the nanotexturing effect of CNTs, supercapacitors fabricated with electrodes from these composites exhibit enhanced electrochemical performances compared with CNT-free carbons. The cell resistance is dramatically reduced by the excellent conductivity of CNTs and by the good propagation of ions favored by the presence of opened mesopores. As a consequence, the specific power of supercapacitors based on these nanocomposites is very high. Another advantage related to the presence of CNTs is a better life cycle of the systems. The composite electrodes are resilient during the charge/discharge of capacitors; these are able to perfectly accommodate the dimensional changes appearing in the active material without mechanical damages. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Pecan shell-based granular activated carbon for treatment of chemical oxygen demand (COD) in municipal wastewater.

    Science.gov (United States)

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2004-09-01

    The present investigation was undertaken to compare the adsorption efficiency of pecan shell-based granular activated carbon with the adsorption efficiency of the commercial carbon Filtrasorb 200 with respect to uptake of the organic components responsible for the chemical oxygen demand (COD) of municipal wastewater. Adsorption efficiencies for these two sets of carbons (experimental and commercial) were analyzed by the Freundlich adsorption model. The results indicate that steam-activated and acid-activated pecan shell-based carbons had higher adsorption for organic matter measured as COD, than carbon dioxide-activated pecan shell-based carbon or Filtrasorb 200 at all the carbon dosages used during the experiment. The higher adsorption may be related to surface area as the two carbons with the highest surface area also had the highest organic matter adsorption. These results show that granular activated carbons made from agricultural waste (pecan shells) can be used with greater effectiveness for organic matter removal from municipal wastewater than a coal-based commercial carbon. Copyright 2004 Elsevier Ltd.

  1. Performance of carbon-based hot frit substrates: I, Low pressure helium and hydrogen testing

    International Nuclear Information System (INIS)

    Barletta, R.; Adams, J.; Svandrlik, J.; Powell, J.R.

    1993-07-01

    The performance of various carbon-based materials in flowing, high-temperature helium and hydrogen is described. These materials which are candidate hot frit substrates for possible application in a PBR include various grades of graphite, carbon-carbon and vitreous carbon. Vitreous carbon showed extremely good performance in helium, while that of the various graphite grades was quite variable and, in some cases, poor. Purified grades performed better than unpurified grades, but in all cases large sample-to-sample variations in weight loss were observed. For carbon-carbon samples, the performance was intermediate. Since the weight loss in these samples was in large measure due to the loss of the densification media, improvements in the performance of carbon-carbon may be possible. With respect to the performance in hydrogen, high weight losses were observed, re-enforcing the need for coating carbon-based materials for service in a flowing hydrogen environment

  2. Application of a systematic methodology for sustainable carbon dioxide utilization process design

    DEFF Research Database (Denmark)

    Plaza, Cristina Calvera; Frauzem, Rebecca; Gani, Rafiqul

    than carbon capture and storage. To achieve this a methodology is developed to design sustainable carbon dioxide utilization processes. First, the information on the possible utilization alternatives is collected, including the economic potential of the process and the carbon dioxide emissions...... emission are desired in order to reduce the carbon dioxide emissions. Using this estimated preliminary evaluation, the top processes, with the most negative carbon dioxide emission are investigated by rigorous detailed simulation to evaluate the net carbon dioxide emissions. Once the base case design...

  3. Fabrication and electrochemical behavior of single-walled carbon nanotube/graphite-based electrode

    International Nuclear Information System (INIS)

    Moghaddam, Abdolmajid Bayandori; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Razavi, Taherehsadat; Riahi, Siavash; Rezaei-Zarchi, Saeed; Norouzi, Parviz

    2009-01-01

    An electrochemical method for determining the dihydroxybenzene derivatives on glassy carbon (GC) has been developed. In this method, the performance of a single-walled carbon nanotube (SWCNT)/graphite-based electrode, prepared by mixing SWCNTs and graphite powder, was described. The resulting electrode shows an excellent behavior for redox of 3,4-dihydroxybenzoic acid (DBA). SWCNT/graphite-based electrode presents a significant decrease in the overvoltage for DBA oxidation as well as a dramatic improvement in the reversibility of DBA redox behavior in comparison with graphite-based and glassy carbon (GC) electrodes. In addition, scanning electron microscopy (SEM) and atomic force microscopy (AFM) procedures performed for used SWCNTs

  4. Estimating Large Area Forest Carbon Stocks—A Pragmatic Design Based Strategy

    Directory of Open Access Journals (Sweden)

    Andrew Haywood

    2017-03-01

    Full Text Available Reducing uncertainty in forest carbon estimates at local and regional scales has become increasingly important due to the centrality of the terrestrial carbon cycle in issues of climate change. In Victoria, Australia, public natural forests extend over 7.2 M ha and constitute a significant and important carbon stock. Recently, a wide range of approaches to estimate carbon stocks within these forests have been developed and applied. However, there are a number of data and estimation limitations associated with these studies. In response, over the last five years, the State of Victoria has implemented a pragmatic plot-based design consisting of pre-stratified permanent observational units located on a state-wide grid. Using the ground sampling grid, we estimated aboveground and belowground carbon stocks (including soil to 0.3 m depth in both National Parks and State Forests, across a wide range of bioregions. Estimates of carbon stocks and associated uncertainty were conducted using simple design based estimators. We detected significantly more carbon in total aboveground and belowground components in State Forests (408.9 t ha−1, 95% confidence interval 388.8–428.9 t ha−1 than National Parks (267.6 t ha−1, 251.9–283.3 t ha−1. We were also able to estimate forest carbon stocks (and associated uncertainty for 21 strata that represent all of Victoria’s bioregions and public tenures. It is anticipated that the lessons learnt from this study may support the discussion on planning and implementing low cost large area forest carbon stock sampling in other jurisdictions.

  5. Carbon Based Transistors and Nanoelectronic Devices

    Science.gov (United States)

    Rouhi, Nima

    Carbon based materials (carbon nanotube and graphene) has been extensively researched during the past decade as one of the promising materials to be used in high performance device technology. In long term it is thought that they may replace digital and/or analog electronic devices, due to their size, near-ballistic transport, and high stability. However, a more realistic point of insertion into market may be the printed nanoelectronic circuits and sensors. These applications include printed circuits for flexible electronics and displays, large-scale bendable electrical contacts, bio-membranes and bio sensors, RFID tags, etc. In order to obtain high performance thin film transistors (as the basic building block of electronic circuits) one should be able to manufacture dense arrays of all semiconducting nanotubes. Besides, graphene synthesize and transfer technology is in its infancy and there is plenty of room to improve the current techniques. To realize the performance of nanotube and graphene films in such systems, we need to economically fabricate large-scale devices based on these materials. Following that the performance control over such devices should also be considered for future design variations for broad range of applications. Here we have first investigated carbon nanotube ink as the base material for our devices. The primary ink used consisted of both metallic and semiconducting nanotubes which resulted in networks suitable for moderate-resistivity electrical connections (such as interconnects) and rfmatching circuits. Next, purified all-semiconducting nanotube ink was used to fabricate waferscale, high performance (high mobility, and high on/off ratio) thin film transistors for printed electronic applications. The parameters affecting device performance were studied in detail to establish a roadmap for the future of purified nanotube ink printed thin film transistors. The trade of between mobility and on/off ratio of such devices was studied and the

  6. Towards a carbon-negative sustainable bio-based economy.

    Science.gov (United States)

    Vanholme, Bartel; Desmet, Tom; Ronsse, Frederik; Rabaey, Korneel; Van Breusegem, Frank; De Mey, Marjan; Soetaert, Wim; Boerjan, Wout

    2013-01-01

    The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy.

  7. Towards a carbon-negative sustainable bio-based economy

    Directory of Open Access Journals (Sweden)

    Bartel eVanholme

    2013-06-01

    Full Text Available The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy towards sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green and industrial (white biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy.

  8. Towards a carbon-negative sustainable bio-based economy

    Science.gov (United States)

    Vanholme, Bartel; Desmet, Tom; Ronsse, Frederik; Rabaey, Korneel; Breusegem, Frank Van; Mey, Marjan De; Soetaert, Wim; Boerjan, Wout

    2013-01-01

    The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy. PMID:23761802

  9. ADSORPTION PROPERTIES OF NICKEL-BASED MAGNETIC ACTIVATED CARBON PREPARED BY PD-FREE ELECTROLESS PLATING

    Directory of Open Access Journals (Sweden)

    Boyang Jia

    2011-02-01

    Full Text Available Nickel-based magnetic activated carbon was synthesized from coconut shell activated carbon by electroless plating with palladium-free activation. The effect of plating solution volume on metallic ratio and adsorption capacity were evaluated. The effect of metallic ratio on specific area, pore volume, and magnetic properties were investigated. The morphologies of activated carbon before and after plating were observed by SEM, and the composition of the layer was analyzed by EDS analysis. The results showed that the metallic ratio was increased with the increase of the plating solution volume. The magnetic activated carbon showed high adsorption capacity for methylene blue and a high iodine number. Those values reached 142.5 mg/g and 1035 mg/g, respectively. The specific area and pore volume decreased from 943 m2/g to 859 m2/g and 0.462 ml/g to 0.417 ml/g, respectively. And the layer was more compact and continuous when the metallic ratio reached 16.37 wt.%. In the layer, there was about 97 wt.% nickel and 3 wt.% phosphorus, which indicates that the layer was a low-phosphorus one. At the same time, magnetism was enhanced, making the product suitable for some special applications.

  10. Carbon microspheres as ball bearings in aqueous-based lubrication.

    Science.gov (United States)

    St Dennis, J E; Jin, Kejia; John, Vijay T; Pesika, Noshir S

    2011-07-01

    We present an exploratory study on a suspension of uniform carbon microspheres as a new class of aqueous-based lubricants. The surfactant-functionalized carbon microspheres (∼0.1 wt %) employ a rolling mechanism similar to ball bearings to provide low friction coefficients (μ ≈ 0.03) and minimize surface wear in shear experiments between various surfaces, even at high loads and high contact pressures. The size range, high monodispersity, and large yield stress of the C(μsphere), as well as the minimal environmental impact, are all desirable characteristics for the use of a C(μsphere)-SDS suspension as an alternative to oil-based lubricants in compatible devices and machinery.

  11. Evaluation of Site and Continental Terrestrial Carbon Cycle Simulations with North American Flux Tower Observations

    Science.gov (United States)

    Raczka, B. M.; Davis, K. J.; Regional-Interim Synthesis Participants, N.; Site Level Interim Synthesis, N.; Regional/Continental Interim Synthesis Team

    2010-12-01

    Terrestrial carbon models are widely used to diagnose past ecosystem-atmosphere carbon flux responses to climate variability, and are a critical component of coupled climate-carbon model used to predict global climate change. The North American Carbon Program (NACP) Interim Regional and Site Interim Synthesis activities collected a broad sampling of terrestrial carbon model results run at both regional and site level. The Regional Interim Synthesis Activity aims to determine our current knowledge of the carbon balance of North America by comparing the flux estimates provided by the various terrestrial carbon cycle models. Moving beyond model-model comparison is challenging, however, because no continental-scale reference values exist to validate modeled fluxes. This paper presents an effort to evaluate the continental-scale flux estimates of these models using North American flux tower observations brought together by the Site Interim Synthesis Activity. Flux towers present a standard for evaluation of the modeled fluxes, though this evaluation is challenging because of the mismatch in spatial scales between the spatial resolution of continental-scale model runs and the size of a flux tower footprint. We compare model performance with flux tower observations at monthly and annual integrals using the statistical criteria of normalized standard deviation, correlation coefficient, centered root mean square deviation and chi-squared. Models are evaluated individually and according to common model characteristics including spatial resolution, photosynthesis, soil carbon decomposition and phenology. In general all regional models are positively biased for GPP, Re and NEE at both annual and monthly time scales. Further analysis links this result to a positive bias in many solar radiation reanalyses. Positively biased carbon fluxes are also observed for enzyme-kinetic models and models using no nitrogen limitation for soil carbon decomposition. While the former result is

  12. Development and validation of a dissolution test for lodenafil carbonate based on in vivo data.

    Science.gov (United States)

    Codevilla, Cristiane Franco; Castilhos, Tamara dos Santos; Cirne, Carolina Araújo; Froehlich, Pedro Eduardo; Bergold, Ana Maria

    2014-04-01

    Lodenafil carbonate is a phosphodiesterase type 5 inhibitor used for the treatment of erectile dysfunction. Currently, there is no dissolution test reported for lodenafil carbonate and this drug is not listed in any pharmacopoeia. The present study focused on the development and validation of a dissolution test for lodenafil carbonate tablets, using a simulated absorption profile based on in vivo data. The appropriate conditions were determined after testing sink conditions. Different conditions as medium, surfactant concentration and rotation speed were evaluated. The percentage of dose absorbed was calculated by deconvolution, using the Wagner-Nelson method. According to the obtained results, the use of 0.1 M HCl + 1.5% SLS (900 mL, at 37 + 0.5 °C) as the dissolution medium, paddles at 25 rpm were considered adequate. The samples were quantified by UV spectroscopy at 295 nm and the validation was performed according to international guidelines. The method showed specificity, linearity, accuracy and precision, within the acceptable range. Kinetics of drug release was better described by the first-order model. The proposed dissolution test can be used for the routine quality control of lodenafil carbonate in tablets.

  13. High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yu; Che, Yuchi; Zhou, Chongwu, E-mail: chongwuz@usc.edu [Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States); Seo, Jung-Woo T.; Hersam, Mark C. [Department of Materials Science and Engineering and Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Gui, Hui [Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 (United States)

    2016-06-06

    In this paper, we report the high-performance radio-frequency transistors based on the single-walled semiconducting carbon nanotubes with a refined average diameter of ∼1.6 nm. These diameter-separated carbon nanotube transistors show excellent transconductance of 55 μS/μm and desirable drain current saturation with an output resistance of ∼100 KΩ μm. An exceptional radio-frequency performance is also achieved with current gain and power gain cut-off frequencies of 23 GHz and 20 GHz (extrinsic) and 65 GHz and 35 GHz (intrinsic), respectively. These radio-frequency metrics are among the highest reported for the carbon nanotube thin-film transistors. This study provides demonstration of radio frequency transistors based on carbon nanotubes with tailored diameter distributions, which will guide the future application of carbon nanotubes in radio-frequency electronics.

  14. Carbon nanotube transistor based high-frequency electronics

    Science.gov (United States)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  15. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models

    Directory of Open Access Journals (Sweden)

    S. E. Chadburn

    2017-11-01

    Full Text Available It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France. We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI, the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our

  16. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models

    Science.gov (United States)

    Chadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp; Bartsch, Annett; Beer, Christian; Belelli Marchesini, Luca; Boike, Julia; Ekici, Altug; Elberling, Bo; Friborg, Thomas; Hugelius, Gustaf; Johansson, Margareta; Kuhry, Peter; Kutzbach, Lars; Langer, Moritz; Lund, Magnus; Parmentier, Frans-Jan W.; Peng, Shushi; Van Huissteden, Ko; Wang, Tao; Westermann, Sebastian; Zhu, Dan; Burke, Eleanor J.

    2017-11-01

    It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that

  17. Carbon flows and economic evaluation of mitigation options in Tanzania's forest sector

    International Nuclear Information System (INIS)

    Makundi, W.; Okiting'ati, Aku

    1995-01-01

    This paper presents estimates of the rate of forest use, deforestation and forest degradation, as well as the corresponding carbon flows, in the Tanzanian forest sector. It is estimated that the country lost 525,000 ha of forests in 1990, with associated committed emissions of 31.5 Mt carbon (MtC), and 7.05 MtC of committed carbon sequestration. The paper then describes the possible response options in the forest sector to mitigate GHG emissions, and evaluates the most stable subset of these - i.e. forest conservation, woodfuel plantations and agroforestry. The conservation options were found to cost an average of US$1.27 per tonne of carbon (tC) conserved. Five options for fuelwood plantations and agroforestry, with two different ownership regimes were evaluated. Each one of the options gives a positive net present value at low rates of discount, ranging from U.S.$1.06 to 3.4/tC of avoided emissions at 0% discount rate. At 10% discount, the eucalyptus and maize option has a highest PNV of U.S.$1.73/tC, and the government plantation gives a negative PNV (loss) of U.S.$ 0.13 tC sequestered. The options with a private/community type of ownership scheme fared better than government run options. This conclusion also held true when ranking the options by the BRAC indicator, with the government fuelwood plantation ranked the lowest, and the private agroforestry option of eucalyptus and corn performing best. The mitigation options evaluated here show that the forest sector in Tanzania has one of the most cost-effective GHG mitigation opportunities in the world, and they are within the development aspirations of the country. (Author)

  18. Large Differences in Global and Regional Total Soil Carbon Stock Estimates Based on SoilGrids, HWSD, and NCSCD: Intercomparison and Evaluation Based on Field Data From USA, England, Wales, and France

    Science.gov (United States)

    Tifafi, Marwa; Guenet, Bertrand; Hatté, Christine

    2018-01-01

    Soils are the major component of the terrestrial ecosystem and the largest organic carbon reservoir on Earth. However, they are a nonrenewable natural resource and especially reactive to human disturbance and climate change. Despite its importance, soil carbon dynamics is an important source of uncertainty for future climate predictions and there is a growing need for more precise information to better understand the mechanisms controlling soil carbon dynamics and better constrain Earth system models. The aim of our work is to compare soil organic carbon stocks given by different global and regional databases that already exist. We calculated global and regional soil carbon stocks at 1 m depth given by three existing databases (SoilGrids, the Harmonized World Soil Database, and the Northern Circumpolar Soil Carbon Database). We observed that total stocks predicted by each product differ greatly: it is estimated to be around 3,400 Pg by SoilGrids and is about 2,500 Pg according to Harmonized World Soil Database. This difference is marked in particular for boreal regions where differences can be related to high disparities in soil organic carbon concentration. Differences in other regions are more limited and may be related to differences in bulk density estimates. Finally, evaluation of the three data sets versus ground truth data shows that (i) there is a significant difference in spatial patterns between ground truth data and compared data sets and that (ii) data sets underestimate by more than 40% the soil organic carbon stock compared to field data.

  19. Phenol-Formaldehyde Resin-Based Carbons for CO2 Separation at Sub-Atmospheric Pressures

    Directory of Open Access Journals (Sweden)

    Noelia Álvarez-Gutiérrez

    2016-03-01

    Full Text Available The challenge of developing effective separation and purification technologies that leave much smaller energy footprints is greater for carbon dioxide (CO2 than for other gases. In addition to its involvement in climate change, CO2 is present as an impurity in biogas and bio-hydrogen (biological production by dark fermentation, in post-combustion processes (flue gas, CO2-N2 and many other gas streams. Selected phenol-formaldehyde resin-based activated carbons prepared in our laboratory have been evaluated under static conditions (adsorption isotherms as potential adsorbents for CO2 separation at sub-atmospheric pressures, i.e., in post-combustion processes or from biogas and bio-hydrogen streams. CO2, H2, N2, and CH4 adsorption isotherms at 25 °C and up to 100 kPa were obtained using a volumetric equipment and were correlated by applying the Sips model. Adsorption equilibrium was then predicted for multicomponent gas mixtures by extending the multicomponent Sips model and the Ideal Adsorbed Solution Theory (IAST in conjunction with the Sips model. The CO2 uptakes of the resin-derived carbons from CO2-CH4, CO2-H2, and CO2-N2 at atmospheric pressure were greater than those of the reference commercial carbon (Calgon BPL. The performance of the resin-derived carbons in terms of equilibrium of adsorption seems therefore relevant to CO2 separation in post-combustion (flue gas, CO2-N2 and in hydrogen fermentation (CO2-H2, CO2-CH4.

  20. Diketopyrrolopyrrole-based carbon dots for photodynamic therapy.

    Science.gov (United States)

    He, Haozhe; Zheng, Xiaohua; Liu, Shi; Zheng, Min; Xie, Zhigang; Wang, Yong; Yu, Meng; Shuai, Xintao

    2018-06-01

    The development of a simple and straightforward strategy to synthesize multifunctional carbon dots for photodynamic therapy (PDT) has been an emerging focus. In this work, diketopyrrolopyrrole-based fluorescent carbon dots (DPP CDs) were designed and synthesized through a facile one-pot hydrothermal method by using diketopyrrolopyrrole (DPP) and chitosan (CTS) as raw materials. DPP CDs not only maintained the ability of DPP to generate singlet oxygen (1O2) but also have excellent hydrophilic properties and outstanding biocompatibility. In vitro and in vivo experiments demonstrated that DPP CDs greatly inhibited the growth of tumor cells under laser irradiation (540 nm). This study highlights the potential of the rational design of CDs for efficient cancer therapy.

  1. Vision Issues and Space Flight: Evaluation of One-Carbon Metabolism Polymorphisms

    Science.gov (United States)

    Smith, Scott M.; Gregory, Jesse F.; Zeisel, Steven; Ueland, Per; Gibson, C. R.; Mader, Thomas; Kinchen, Jason; Ploutz-Snyder, Robert; Zwart, Sara R.

    2015-01-01

    Intermediates of the one-carbon metabolic pathway are altered in astronauts who experience vision-related issues during and after space flight. Serum concentrations of homocysteine, cystathionine, 2-methylcitric acid, and methylmalonic acid were higher in astronauts with ophthalmic changes than in those without (Zwart et al., J Nutr, 2012). These differences existed before, during, and after flight. Potential confounding factors did not explain the differences. Genetic polymorphisms could contribute to these differences, and could help explain why crewmembers on the same mission do not all have ophthalmic issues, despite the same environmental factors (e.g., microgravity, exercise, diet). A follow-up study was conducted to evaluate 5 polymorphisms of enzymes in the one-carbon pathway, and to evaluate how these relate to vision and other ophthalmic changes after flight. Preliminary evaluations of the genetic data indicate that all of the crewmembers with the MTRR GG genotype had vision issues to one degree or another. However, not everyone who had vision issues had this genetic polymorphism, so the situation is more complex than the involvement of this single polymorphism. Metabolomic and further data analyses are underway to clarify these findings, but the preliminary assessments are promising.

  2. Asymmetric devices based on carbon nanotubes for terahertz-range radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, G. E., E-mail: gefedorov@mail.ru; Stepanova, T. S.; Gazaliev, A. Sh.; Gaiduchenko, I. A.; Kaurova, N. S.; Voronov, B. M.; Goltzman, G. N. [Moscow State Pedagogical University (Russian Federation)

    2016-12-15

    Various asymmetric detecting devices based on carbon nanotubes (CNTs) are studied. The asymmetry is understood as inhomogeneous properties along the conducting channel. In the first type of devices, an inhomogeneous morphology of the CNT grid is used. In the second type of devices, metals with highly varying work functions are used as the contact material. The relation between the sensitivity and detector configuration is analyzed. Based on the data obtained, approaches to the development of an efficient detector of terahertz radiation, based on carbon nanotubes are proposed.

  3. On the cost-effectiveness of Carbon ion radiation therapy for skull base chordoma

    International Nuclear Information System (INIS)

    Jaekel, Oliver; Land, Beate; Combs, Stephanie Elisabeth; Schulz-Ertner, Daniela; Debus, Juergen

    2007-01-01

    Aim: The cost-effectiveness of Carbon ion radiotherapy (RT) for patients with skull base chordoma is analyzed. Materials and Methods: Primary treatment costs and costs for recurrent tumors are estimated. The costs for treatment of recurrent tumors were estimated using a sample of 10 patients presenting with recurrent chordoma at the base of skull at DKFZ. Using various scenarios for the local control rate and reimbursements of Carbon ion therapy the cost-effectiveness of ion therapy for these tumors is analyzed. Results: If local control rate for skull base chordoma achieved with carbon ion therapy exceeds 70.3%, the overall treatment costs for carbon RT are lower than for conventional RTI. The cost-effectiveness ratio for carbon RT is 2539 Euro per 1% increase in survival, or 7692 Euro per additional life year. Conclusion: Current results support the thesis that Carbon ion RT, although more expensive, is at least as cost-effective as advanced photon therapies for these patients. Ion RT, however, offers substantial benefits for the patients such as improved control rates and less severe side effects

  4. Hydrogen storage evaluation based on investigations of the catalytic properties of metal/metal oxides in electrospun carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ji Sun; Lee, Young-Seak [Department of Fine Chemical Engineering and Chemistry, Chungnam National University, Daejeon 305-764 (Korea); Park, Soo-Jin [Department of Chemistry, Inha University, Incheon 402-751 (Korea); Kim, Taejin [Core Technology Research Center for Fuel Cell, Jeollabuk-do 561-844 (Korea)

    2009-05-15

    In order to investigate the catalytic capacity of metals and metal oxides based on electrospun carbon fibers for improving hydrogen storage, electrospinning and heat treatments were carried out to obtain metal/metal oxide-embedded carbon fibers. Although the fibers were treated with the same activation procedure, they had different pore structures, due to the nature of the metal oxide. When comparing the catalytic capacity of metal and metal oxide, metal exhibits better performance as a catalyst for the improvement of hydrogen storage, when considering the hydrogen storage system. When a metal oxide with an m.p. lower than the temperature of heat treatment was used, the metal oxide was changed to metal during the heat treatment, developing a micropore structure. The activation process produced a high specific surface area of up to 2900 m{sup 2}/g and a pore volume of up to 2.5 cc/g. The amount of hydrogen adsorption reached approximately 3 wt% at 100 bar and room temperature. (author)

  5. Phenolic resin-based porous carbons for adsorption and energy storage applications

    Science.gov (United States)

    Wickramaratne, Nilantha P.

    The main objective of this dissertation research is to develop phenolic resin based carbon materials for range of applications by soft-templating and Stober-like synthesis strategies. Applications Studied in this dissertation are adsorption of CO2, bio-molecular and heavy metal ions, and energy storage devices. Based on that, our goal is to design carbon materials with desired pore structure, high surface area, graphitic domains, incorporated metal nanoparticles, and specific organic groups and heteroatoms. In this dissertation the organic-organic self-assembly of phenolic resins and triblock copolymers under acidic conditions will be used to obtain mesoporous carbons/carbon composites and Stober-like synthesis involving phenolic resins under basic condition will be used to prepare polymer/carbon particles and their composites. The structure of this dissertation consists of an introductory chapter (Chapter 1) discussing the general synthesis of carbon materials, particularly the soft-templating strategy and Stober-like carbon synthesis. Also, Chapter 1 includes a brief outline of applications namely adsorption of CO2, biomolecule and heavy metal ions, and supercapacitors. Chapter 2 discusses the techniques used for characterization of the carbon materials studied. This chapter starts with nitrogen adsorption analysis, which is used to measure the specific surface area, pore volume, distribution of pore sizes, and pore width. In addition to nitrogen adsorption, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution thermogravimetric analysis (HR-TGA), cyclic voltammetry (CV) and CHNS elemental analysis (EA) are mentioned too. Chapter 3 is focused on carbon materials for CO2 adsorption. There are different types of porous solid materials such as silicate, MOFs, carbons, and zeolites studied for CO2 adsorption. However, the carbon based materials are considered to be the best candidates for CO 2 adsorption to the industrial point of

  6. Laboratory Experiments to Evaluate Diffusion of 14C into Nevada Test Site Carbonate Aquifer Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Hershey; William Howcroft; Paul W. Reimus

    2003-03-01

    Determination of groundwater flow velocities at the Nevada Test Site is important since groundwater is the principal transport medium of underground radionuclides. However, 14C-based groundwater velocities in the carbonate aquifers of the Nevada Test Site are several orders of magnitude slower than velocities derived from the Underground Test Area regional numerical model. This discrepancy has been attributed to the loss or retardation of 14C from groundwater into the surrounding aquifer matrix making 14C-based groundwater ages appear much older. Laboratory experiments were used to investigate the retardation of 14C in the carbonate aquifers at the Nevada Test Site. Three sets of experiments were conducted evaluating the diffusion of 14C into the carbonate aquifer matrix, adsorption and/or isotopic exchange onto the pore surfaces of the carbonate matrix, and adsorption and/or isotopic exchange onto the fracture surfaces of the carbonate aquifer. Experimental results a nd published aquifer matrix and fracture porosities from the Lower Carbonate Aquifer were applied to a 14C retardation model. The model produced an extremely wide range of retardation factors because of the wide range of published aquifer matrix and fracture porosities (over three orders of magnitude). Large retardation factors suggest that groundwater with very little measured 14C activity may actually be very young if matrix porosity is large relative to the fracture porosity. Groundwater samples collected from highly fractured aquifers with large effective fracture porosities may have relatively small correction factors, while samples from aquifers with a few widely spaced fractures may have very large correction factors. These retardation factors were then used to calculate groundwater velocities from a proposed flow path at the Nevada Test Site. The upper end of the range of 14C correction factors estimated groundwater velocities that appear to be at least an order of magnitude too high compared

  7. Carbon Nanotube based Nanotechnolgy

    Science.gov (United States)

    Meyyappan, M.

    2000-10-01

    Carbon nanotube(CNT) was discovered in the early 1990s and is an off-spring of C60(the fullerene or buckyball). CNT, depending on chirality and diameter, can be metallic or semiconductor and thus allows formation of metal-semiconductor and semiconductor-semiconductor junctions. CNT exhibits extraordinary electrical and mechanical properties and offers remarkable potential for revolutionary applications in electronics devices, computing and data storage technology, sensors, composites, storage of hydrogen or lithium for battery development, nanoelectromechanical systems(NEMS), and as tip in scanning probe microscopy(SPM) for imaging and nanolithography. Thus the CNT synthesis, characterization and applications touch upon all disciplines of science and engineering. A common growth method now is based on CVD though surface catalysis is key to synthesis, in contrast to many CVD applications common in microelectronics. A plasma based variation is gaining some attention. This talk will provide an overview of CNT properties, growth methods, applications, and research challenges and opportunities ahead.

  8. Poly(ethylene terephthalate)-based carbons as electrode material in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Domingo-Garcia, M.; Almazan-Almazan, M.C.; Lopez-Garzon, F.J. [Dpto de Quimica Inorganica, Facultad de Ciencias, 18071 Granada (Spain); Fernandez, J.A.; Centeno, T.A. [Instituto Nacional del Carbon-CSIC, Apartado 73, 33080 Oviedo (Spain); Stoeckli, F. [Physics Department, University of Neuchatel, Rue Emile Argand 11, CH-2009 Neuchatel (Switzerland)

    2010-06-15

    A systematic study by complementary techniques shows that PET-waste from plastic vessels is a competitive precursor of carbon electrodes for supercapacitors. PET derived-activated carbons follow the general trends observed for highly porous carbons and display specific capacitances at low current density as high as 197 F g{sup -1} in 2 M H{sub 2}SO{sub 4} aqueous electrolyte and 98 F g{sup -1} in the aprotic medium 1 M (C{sub 2}H{sub 5}){sub 4}NBF{sub 4}/acetonitrile. Additionally, high performance has also been achieved at high current densities, which confirms the potential of this type of materials for electrical energy storage. A new method based on the basic solvolysis of PET-waste and the subsequent carbonization seems to be an interesting alternative to obtain porous carbons with enhanced properties for supercapacitors. (author)

  9. Evaluation of residual iron in carbon nanotubes purified by acid treatments

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, E.R., E-mail: eliltonedwards@hotmail.com [Sao Paulo State University - UNESP, Av. Dr. Ariberto Pereira da Cunha, 333, CEP: 12.516-410 CP:20, Guaratingueta, SP (Brazil); Antunes, E.F. [National Institute for Space Research - INPE, Av. dos Astronautas, 1758, CEP: 12.254-97, Sao Jose dos Campos-SP (Brazil); Aeronautical Institute of Technology - ITA, Praca Marechal Eduardo Gomes, 50, CEP: 12.228-900, Sao Jose dos Campos-SP (Brazil); Botelho, E.C. [Sao Paulo State University - UNESP, Av. Dr. Ariberto Pereira da Cunha, 333, CEP: 12.516-410 CP:20, Guaratingueta, SP (Brazil); Baldan, M.R.; Corat, E.J. [National Institute for Space Research - INPE, Av. dos Astronautas, 1758, CEP: 12.254-97, Sao Jose dos Campos-SP (Brazil)

    2011-11-01

    A detailed analysis by X-ray photoelectron spectroscopy was carried out on multi-walled carbon nanotube (MWCNT) surfaces after non-oxidative and oxidative purification treatments in liquid-phase. The MWCNT were produced by pyrolysis of camphor and ferrocene, that provides a high yield but with high iron contamination ({approx}15% wt). The elimination and/or oxidation of iron nanoparticles were monitored by Fe2p and O1s core level. Oxygen-based functional groups attachment was also investigated by C1s fitting. The effectiveness of each treatment in iron removal was evaluated by thermogravimetric analysis (TGA) and atomic absorption spectroscopy (AAS). The integrity of the MWCNT structure was verified by Raman spectroscopy (RS) and transmission electron microscopy (TEM). A purity degree higher than 98% was achieved only with non-oxidative treatments using sonification process.

  10. Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications

    Science.gov (United States)

    Zainal, Zulkarnain; Yusof, Nor Azah

    2018-01-01

    Carbon in its single entity and various forms has been used in technology and human life for many centuries. Since prehistoric times, carbon-based materials such as graphite, charcoal and carbon black have been used as writing and drawing materials. In the past two and a half decades or so, conjugated carbon nanomaterials, especially carbon nanotubes, fullerenes, activated carbon and graphite have been used as energy materials due to their exclusive properties. Due to their outstanding chemical, mechanical, electrical and thermal properties, carbon nanostructures have recently found application in many diverse areas; including drug delivery, electronics, composite materials, sensors, field emission devices, energy storage and conversion, etc. Following the global energy outlook, it is forecasted that the world energy demand will double by 2050. This calls for a new and efficient means to double the energy supply in order to meet the challenges that forge ahead. Carbon nanomaterials are believed to be appropriate and promising (when used as energy materials) to cushion the threat. Consequently, the amazing properties of these materials and greatest potentials towards greener and environment friendly synthesis methods and industrial scale production of carbon nanostructured materials is undoubtedly necessary and can therefore be glimpsed as the focal point of many researchers in science and technology in the 21st century. This is based on the incredible future that lies ahead with these smart carbon-based materials. This review is determined to give a synopsis of new advances towards their synthesis, properties, and some applications as reported in the existing literatures. PMID:29438327

  11. Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications

    Directory of Open Access Journals (Sweden)

    Salisu Nasir

    2018-02-01

    Full Text Available Carbon in its single entity and various forms has been used in technology and human life for many centuries. Since prehistoric times, carbon-based materials such as graphite, charcoal and carbon black have been used as writing and drawing materials. In the past two and a half decades or so, conjugated carbon nanomaterials, especially carbon nanotubes, fullerenes, activated carbon and graphite have been used as energy materials due to their exclusive properties. Due to their outstanding chemical, mechanical, electrical and thermal properties, carbon nanostructures have recently found application in many diverse areas; including drug delivery, electronics, composite materials, sensors, field emission devices, energy storage and conversion, etc. Following the global energy outlook, it is forecasted that the world energy demand will double by 2050. This calls for a new and efficient means to double the energy supply in order to meet the challenges that forge ahead. Carbon nanomaterials are believed to be appropriate and promising (when used as energy materials to cushion the threat. Consequently, the amazing properties of these materials and greatest potentials towards greener and environment friendly synthesis methods and industrial scale production of carbon nanostructured materials is undoubtedly necessary and can therefore be glimpsed as the focal point of many researchers in science and technology in the 21st century. This is based on the incredible future that lies ahead with these smart carbon-based materials. This review is determined to give a synopsis of new advances towards their synthesis, properties, and some applications as reported in the existing literatures.

  12. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes.

    Science.gov (United States)

    Yoon, Yeoheung; Lee, Keunsik; Lee, Hyoyoung

    2016-04-29

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp(2)-bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications.

  13. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes

    International Nuclear Information System (INIS)

    Yoon, Yeoheung; Lee, Hyoyoung; Lee, Keunsik

    2016-01-01

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp 2 -bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications. (topical review)

  14. Solubility Products of M(II) - Carbonates

    International Nuclear Information System (INIS)

    Grauer, Rolf; Berner, Urs

    1999-01-01

    Many solubility data for M(II) carbonates commonly compiled in tables are contradictory and sometimes obviously wrong. The quality of such data has been evaluated based on the original publications and reliable solubility constants have been selected for the carbonates of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb with the help of cross-comparisons. (author)

  15. EUD-based biological optimization for carbon ion therapy

    International Nuclear Information System (INIS)

    Brüningk, Sarah C.; Kamp, Florian; Wilkens, Jan J.

    2015-01-01

    Purpose: Treatment planning for carbon ion therapy requires an accurate modeling of the biological response of each tissue to estimate the clinical outcome of a treatment. The relative biological effectiveness (RBE) accounts for this biological response on a cellular level but does not refer to the actual impact on the organ as a whole. For photon therapy, the concept of equivalent uniform dose (EUD) represents a simple model to take the organ response into account, yet so far no formulation of EUD has been reported that is suitable to carbon ion therapy. The authors introduce the concept of an equivalent uniform effect (EUE) that is directly applicable to both ion and photon therapies and exemplarily implemented it as a basis for biological treatment plan optimization for carbon ion therapy. Methods: In addition to a classical EUD concept, which calculates a generalized mean over the RBE-weighted dose distribution, the authors propose the EUE to simplify the optimization process of carbon ion therapy plans. The EUE is defined as the biologically equivalent uniform effect that yields the same probability of injury as the inhomogeneous effect distribution in an organ. Its mathematical formulation is based on the generalized mean effect using an effect-volume parameter to account for different organ architectures and is thus independent of a reference radiation. For both EUD concepts, quadratic and logistic objective functions are implemented into a research treatment planning system. A flexible implementation allows choosing for each structure between biological effect constraints per voxel and EUD constraints per structure. Exemplary treatment plans are calculated for a head-and-neck patient for multiple combinations of objective functions and optimization parameters. Results: Treatment plans optimized using an EUE-based objective function were comparable to those optimized with an RBE-weighted EUD-based approach. In agreement with previous results from photon

  16. Fiber Optic Chemical Nanosensors Based on Engineered Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    M. Consales

    2008-01-01

    Full Text Available In this contribution, a review of the development of high-performance optochemical nanosensors based on the integration of carbon nanotubes with the optical fiber technology is presented. The paper first provide an overview of the amazing features of carbon nanotubes and their exploitation as highly adsorbent nanoscale materials for gas sensing applications. Successively, the attention is focused on the operating principle, fabrication, and characterization of fiber optic chemosensors in the Fabry-Perot type reflectometric configuration, realized by means of the deposition of a thin layer of single-walled carbon nanotubes (SWCNTs upon the distal end of standard silica optical fibers. This is followed by an extensive review of the excellent sensing capabilities of the realized SWCNTs-based chemical nanosensors against volatile organic compounds and other pollutants in different environments (air and water and operating conditions (room temperature and cryogenic temperatures. The experimental results reported here reveal that ppm and sub-ppm chemical detection limits, low response times, as well as fast and complete recovery of the sensor responses have been obtained in most of the investigated cases. This evidences the great potentialities of the proposed photonic nanosensors based on SWCNTs to be successfully employed for practical environmental monitoring applications both in liquid and vapor phase as well as for space. Furthermore, the use of novel SWCNTs-based composites as sensitive fiber coatings is proposed to enhance the sensing performance and to improve the adhesion of carbon nanotubes to the fiber surface. Finally, new advanced sensing configurations based on the use of hollow-core optical fibers coated and partially filled by carbon nanotubes are also presented.

  17. Atomic layer deposition of dielectrics for carbon-based electronics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J., E-mail: jiyoung.kim@utdallas.edu; Jandhyala, S.

    2013-11-01

    Carbon based nanomaterials like nanotubes and graphene have emerged as future generation electronic materials for device applications because of their interesting properties such as high-mobility and ability to carry high-current densities compared to conventional semiconductor materials like silicon. Therefore, there is a need to develop techniques to integrate robust gate dielectrics with high-quality interfaces for these materials in order to attain maximum performance. To date, a variety of methods including physical vapor deposition, atomic layer deposition (ALD), physical assembly among others have been employed in order to integrate dielectrics for carbon nanotube and graphene based field-effect transistors. Owing to the difficulty in wetting pristine surfaces of nanotubes and graphene, most of the ALD methods require a seeding technique involving non-covalent functionalization of their surfaces in order to nucleate dielectric growth while maintaining their intrinsic properties. A comprehensive review regarding the various dielectric integration schemes for emerging devices and their limitations with respect to ALD based methods along with a future outlook is provided. - Highlights: • We introduce various dielectric integration schemes for carbon-based devices. • Physical vapor deposition methods tend to degrade device performance. • Atomic layer deposition on pristine surfaces of graphene and nanotube is difficult. • We review different seeding techniques for atomic layer deposition of dielectrics. • Compare the performance of graphene top-gate devices with different dielectrics.

  18. Atomic layer deposition of dielectrics for carbon-based electronics

    International Nuclear Information System (INIS)

    Kim, J.; Jandhyala, S.

    2013-01-01

    Carbon based nanomaterials like nanotubes and graphene have emerged as future generation electronic materials for device applications because of their interesting properties such as high-mobility and ability to carry high-current densities compared to conventional semiconductor materials like silicon. Therefore, there is a need to develop techniques to integrate robust gate dielectrics with high-quality interfaces for these materials in order to attain maximum performance. To date, a variety of methods including physical vapor deposition, atomic layer deposition (ALD), physical assembly among others have been employed in order to integrate dielectrics for carbon nanotube and graphene based field-effect transistors. Owing to the difficulty in wetting pristine surfaces of nanotubes and graphene, most of the ALD methods require a seeding technique involving non-covalent functionalization of their surfaces in order to nucleate dielectric growth while maintaining their intrinsic properties. A comprehensive review regarding the various dielectric integration schemes for emerging devices and their limitations with respect to ALD based methods along with a future outlook is provided. - Highlights: • We introduce various dielectric integration schemes for carbon-based devices. • Physical vapor deposition methods tend to degrade device performance. • Atomic layer deposition on pristine surfaces of graphene and nanotube is difficult. • We review different seeding techniques for atomic layer deposition of dielectrics. • Compare the performance of graphene top-gate devices with different dielectrics

  19. Rotational actuator of motor based on carbon nanotubes

    Science.gov (United States)

    Zettl, Alexander K.; Fennimore, Adam M.; Yuzvinsky, Thomas D.

    2008-11-18

    A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.

  20. Equilibrium and kinetic study for the adsorption of p-nitrophenol from wastewater using olive cake based activated carbon

    International Nuclear Information System (INIS)

    Abdel-Ghani, N. T.; Rawash, E. S. A.; El-Chaghaby, G. A.

    2016-01-01

    The present work was carried out to evaluate the removal of p-nitrophenol by adsorption onto olive cake based activated carbon having a BET surface area of 672 m²/g. The batch adsorption experimental results indicated that the equilibrium time for nitrophenol adsorption by olive cake-based activated carbon was 120 minutes. The adsorption data was modeled by equilibrium and kinetic models. The pseudo- first and second order as well as the Elovichkinetic models were applied to fit the experimental data and the intra particle diffusion model was assessed for describing the mechanism of adsorption. The data were found to be best fitted to the pseudo-second order model with a correlation coefficient (R2=0.986). The intra particle diffusion mechanism also showed a good fit to the experimental data, showing two distinct linear parts assuming that more than one step could be involved in the adsorption of nitrophenol by the activated carbon. The equilibrium study was performed using three models including Langmuir, Freundlich and Temkin. The results revealed that the Temkin equilibrium model is the best model fitting the experimental data (R2=0.944). The results of the present study proved the efficiency of using olive cake based activated carbon as a novel adsorbent for the removal of nitrophenol from aqueous solution.

  1. Evaluation of single-walled carbon nanohorns as sorbent in dispersive micro solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Soto, Juan Manuel; Cardenas, Soledad [Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building, Campus de Rabanales, University of Cordoba, 14071 Cordoba (Spain); Valcarcel, Miguel, E-mail: qa1meobj@uco.es [Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building, Campus de Rabanales, University of Cordoba, 14071 Cordoba (Spain)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer The potential of single walled carbon nanohorns in dispersive solid phase microextraction has been evaluated. Black-Right-Pointing-Pointer The method was characterized for the extraction of PAHs from waters. Black-Right-Pointing-Pointer Single walled carbon nanohorns were better extractant than carbon nanotubes and carbon nanocones. Black-Right-Pointing-Pointer The limits of detection were adequate for the target analytes in environmental waters. - Abstract: A new dispersive micro solid-phase extraction method which uses single-walled carbon nanohorns (SWNHs) as sorbent is proposed. The procedure combines the excellent sorbent properties of the nanoparticles with the efficiency of the dispersion of the material in the sample matrix. Under these conditions, the interaction with the analytes is maximized. The determination of polycyclic aromatic hydrocarbons was selected as model analytical problem. Two dispersion strategies were evaluated, being the functionalization via microwave irradiation better than the use of a surfactant. The extraction was accomplished by adding 1 mL of oxidized SWHNs (o-SWNHs) dispersion to 10 mL of water sample. After extraction, the mixture was passed through a disposable Nylon filter were the nanoparticles enriched with the PAHs were retained. The elution was carried out with 100 {mu}L of hexane. The limits of detection achieved were between 30 and 60 ng L{sup -1} with a precision (as repeatability) better than 12.5%. The recoveries obtained for the analytes in three different water samples were acceptable in all instances. The performance of o-SWNHs was favourably compared with that provided by carboxylated single-walled carbon nanotubes and thermally treated carbon nanocones.

  2. A conceptual framework for the evaluation of cost-effectiveness of projects to reduce GHG emissions and sequester carbon

    International Nuclear Information System (INIS)

    Sathaye, J.; Norgaard, R.; Makundi, W.

    1993-07-01

    This paper proposes a conceptual framework for evaluating the cost of projects to reduce atmospheric greenhouse gases (GHGs). The evaluation of cost-effectiveness should account for both the timing of carbon emissions and the damage caused by the atmospheric stock of carbon. We develop a conceptual basis to estimate the cost-effectiveness of projects in terms of the cost of reducing atmospheric carbon (CRAC) and other GHGs. CRAC accounts for the economic discount rate, alternative functional forms of the shadow price, the residence period of carbon in the atmosphere, and the multiple monetary benefits of projects. The last item is of particular importance to the developing countries

  3. Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy.

    Science.gov (United States)

    Grevillot, L; Stock, M; Vatnitsky, S

    2015-10-21

    This study aims at selecting and evaluating a ripple filter design compatible with non-isocentric proton and carbon ion scanning beam treatment delivery for a compact nozzle. The use of non-isocentric treatments when the patient is shifted as close as possible towards the nozzle exit allows for a reduction in the air gap and thus an improvement in the quality of scanning proton beam treatment delivery. Reducing the air gap is less important for scanning carbon ions, but ripple filters are still necessary for scanning carbon ion beams to reduce the number of energy steps required to deliver homogeneous SOBP. The proper selection of ripple filters also allows a reduction in the possible transverse and depth-dose inhomogeneities that could appear in non-isocentric conditions in particular. A thorough review of existing ripple filter designs over the past 16 years is performed and a design for non-isocentric treatment delivery is presented. A unique ripple filter quality index (QIRiFi) independent of the particle type and energy and representative of the ratio between energy modulation and induced scattering is proposed. The Bragg peak width evaluated at the 80% dose level (BPW80) is proposed to relate the energy modulation of the delivered Bragg peaks and the energy layer step size allowing the production of homogeneous SOBP. Gate/Geant4 Monte Carlo simulations have been validated for carbon ion and ripple filter simulations based on measurements performed at CNAO and subsequently used for a detailed analysis of the proposed ripple filter design. A combination of two ripple filters in a series has been validated for non-isocentric delivery and did not show significant transverse and depth-dose inhomogeneities. Non-isocentric conditions allow a significant reduction in the spot size at the patient entrance (up to 350% and 200% for protons and carbon ions with range shifter, respectively), and therefore in the lateral penumbra in the patients.

  4. Carbon pricing in the EU: Evaluation of different EU ETS reform options

    International Nuclear Information System (INIS)

    Brink, Corjan; Vollebergh, Herman R.J.; Werf, Edwin van der

    2016-01-01

    This paper studies various options to support allowance prices in the EU Emissions Trading System (ETS), such as adjusting the cap, an auction reserve price, and fixed and variable carbon taxes in addition to the EU ETS. We use a dynamic computable general equilibrium model that explicitly allows for allowance banking and for a detailed cost-effectiveness analysis at the EU Member State level. We find that tightening the cap provides an ad hoc solution to the fundamental issue of the robustness of the effective carbon price, while introducing a price component to the ETS brings structural carbon price support in times of negative demand shocks for emission allowances. These price-based policies still benefit from the intertemporal flexibility through the banking provision in the EU ETS by re-allocating emissions over time with stronger emission reductions in early years and emission increases in later years. A higher emission price has a larger negative impact on the new Member States' economies than on other Member States. Furthermore, introducing a carbon tax in addition to the EU ETS decreases the price of allowances, resulting in welfare gains for net buyers of allowances while net sellers are worse off. - Highlights: • We analyse reform options for European Union Emission Trading System (EU ETS) with a CGE model. • Variable carbon tax and auction reserve price support carbon price at least cost. • Price-based reforms decrease early emissions but increase later emissions through banking. • New Member States' economies are affected more than others by higher CO_2 prices. • Lower allowance prices due to a carbon tax are unfavourable to net sellers of allowances.

  5. An alternative policy evaluation of the British Columbia carbon tax: broadening the application of Elinor Ostrom's design principles for managing common-pool resources

    Directory of Open Access Journals (Sweden)

    Karine Lacroix

    2015-06-01

    Full Text Available Climate change is putting infrastructure, food supply, water resources, ecosystems, and human health at risk. These risks will be exacerbated depending on the degree of additional greenhouse gas emissions. Urgent action is needed to limit the severity of impacts associated with further warming. British Columbia (BC has taken action to reduce greenhouse gas emissions from carbon-based fuels by introducing a carbon tax in 2008. As an innovative approach to climate change mitigation, especially in North America, studies evaluating its effectiveness are valuable. We assessed the long-term viability potential of the BC carbon tax using common pool resource design principles, a novel application of the design principles to environmental policy. We found that the design principles can be applied productively to environmental policy and larger scale air pollution problems. With regard to the BC carbon tax, our findings suggest that closer monitoring of user behavior, further increases of the tax over time, and pursuing efforts for a more elaborate system of nested enterprises and interjurisdictional cooperation could increase the long-term success of the BC carbon tax. We also found that the design principles allowed us to more comprehensively reach conclusions regarding the broader effectiveness of the tax when compared to existing policy analysis. Traditionally, climate policy evaluation has focused on the end goal without considering broader constraints and issues of resource allocation. We suggest that common pool resource theory, which is based on strong theoretical principles and encourages reflexivity, will be able to address those limitations.

  6. Influence of temperature and humidity on carbon based printed flexible sensors

    KAUST Repository

    Nag, Anindya

    2018-03-02

    This paper presents the response of two different types of novel printed sensors towards the change in temperature and humidity. The electrodes of all the sensors were based on carbon materials. Followed by the design and fabrication of the sensors, the responses of the sensors were analyzed for different temperature and humidity conditions in an incubator. These results provide a podium to enhance the alternation of the fabrication procedure of carbon-based printed sensors.

  7. Influence of temperature and humidity on carbon based printed flexible sensors

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas; Kosel, Jü rgen

    2018-01-01

    This paper presents the response of two different types of novel printed sensors towards the change in temperature and humidity. The electrodes of all the sensors were based on carbon materials. Followed by the design and fabrication of the sensors, the responses of the sensors were analyzed for different temperature and humidity conditions in an incubator. These results provide a podium to enhance the alternation of the fabrication procedure of carbon-based printed sensors.

  8. Using a laser-based CO2 carbon isotope analyser to investigate gas transfer in geological media

    International Nuclear Information System (INIS)

    Guillon, S.; Pili, E.; Agrinier, P.

    2012-01-01

    CO 2 stable carbon isotopes are very attractive in environmental research to investigate both natural and anthropogenic carbon sources. Laser-based CO 2 carbon isotope analysis provides continuous measurement at high temporal resolution and is a promising alternative to isotope ratio mass spectrometry (IRMS). We performed a thorough assessment of a commercially available CO 2 Carbon Isotope Analyser (CCIA DLT-100, Los Gatos Research) that allows in situ measurement of C-13 in CO 2 . Using a set of reference gases of known CO 2 concentration and carbon isotopic composition, we evaluated the precision, long-term stability, temperature sensitivity and concentration dependence of the analyser. Despite good precision calculated from Allan variance (5.0 ppm for CO 2 concentration, and 0.05 per thousand for δC-13 at 60 s averaging), real performances are altered by two main sources of error: temperature sensitivity and dependence of C-13 on CO 2 concentration. Data processing is required to correct for these errors. Following application of these corrections, we achieve an accuracy of 8.7 ppm for CO 2 concentration and 1.3 per thousand for δC-13, which is worse compared to mass spectrometry performance, but still allowing field applications. With this portable analyser we measured CO 2 flux degassed from rock in an underground tunnel. The obtained carbon isotopic composition agrees with IRMS measurement, and can be used to identify the carbon source. (authors)

  9. Human-Finger Electronics Based on Opposing Humidity-Resistance Responses in Carbon Nanofilms

    KAUST Repository

    Tai, Yanlong; Lubineau, Gilles

    2017-01-01

    Carbon nanomaterials have excellent humidity sensing properties. Here, it is demonstrated that multiwalled carbon-nanotube (MWCNT)- and reduced-graphene-oxide (rGO)-based conductive films have opposite humidity/electrical resistance responses

  10. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    Science.gov (United States)

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  11. Evaluating the Carbonation Resistance of Self Compacting Concrete made with Recycled Concrete Aggregates

    Directory of Open Access Journals (Sweden)

    S P Singh

    2016-07-01

    Full Text Available The paper presents the results of an investigation conducted to examine carbonation resistance of Self Compacting Concrete (SCC made with coarse Recycled Concrete Aggregates (RCA. In total, five SCC mixes were prepared by systematically replacing coarse Natural Aggregates (NA by RCA at 0, 25, 50, 75 and 100%. In order to measure the carbonation resistance of SCC made with RCA, accelerated carbonation tests were performed for 4 and 12 weeks of exposure to carbon dioxide. The carbonation resistance has been evaluated after curing periods of 28 and 90 days. In addition to this, the compressive strength of all the mixes was also obtained after 7, 28 and 90 days of curing and ultra-sonic pulse velocity tests (UPV were also conducted. The results indicate that with the increase in the content of RCA as replacement of NA, decrease in the carbonation resistance, compressive strength and UPV was observed for all SCC mixes. It has been observed that the SCC mixes containing low percentages of RCA (i.e. 25% as replacement of NA do not impart detrimental behaviour in the overall performance but higher replacement levels (>50% have been found to deteriorate the performance in terms of carbonation resistance, compressive strength and UPV.

  12. Optimisation of the microporous layer for a polybenzimidazole-based high temperature PEMFC - effect of carbon content

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, J.; Canizares, P.; Rodrigo, M.A.; Ubeda, D.; Pinar, F.J.; Linares, J.J. [Department of Chemical Engineering, University of Castilla-La Mancha, Av. Camilo Jose Cela, n 12. 13071, Ciudad Real (Spain)

    2010-10-15

    This work aims at studying the role of the microporous layer (MPL) in electrodes prepared for high temperature PBI-based PEMFC. The two main components of this layer are carbon black and a polymeric binder (Teflon). This work addresses the effect of the MPL carbon amount on the performance of a high temperature PEMFC. Thus, gas diffusion layers (GDLs) containing MPL with different carbon contents (from 0.5 to 4 mg cm{sup -2}) were prepared. Firstly, they were physically characterised by Hg-porosimetry measuring pore size distribution, porosity, tortuosity and mean pore size. Permeability measurements were also performed. The higher the carbon content was the lower both porosity and permeability were. Afterwards, electrodes were prepared with these GDLs and were electrochemically characterised. Electrochemical surface area (ESA) was determined and fuel cell performance was evaluated under different fuel and comburent stoichiometries, supporting these results with impedance spectra. This made it possible to see the benefits of the MPL inclusion in the electrode structure, with a significant increase in the fuel cell performance and ESA. Once the goodness of the MPL was confirmed, result analysis led to an optimum MPL composition of 2 mg cm{sup -2} of carbon for both electrodes, anode and cathode. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Performance Evaluation Of Africa Elemi Melon And Africa Locust Bean Oil As Potential Quenchants For Medium Carbon Steel

    Directory of Open Access Journals (Sweden)

    C. S. Ibeh

    2017-06-01

    Full Text Available A qualitative and comparative study was carried out on some locally sourced oils melon oil Africa elemi oil and Africa locust bean oil to evaluate suitability as substitute quenching media to mineral-based oil. The cooling ability of the oils was investigated using AISI 1034 medium carbon steel. The effect of heat transfer coefficient on quench severity mechanical properties of the quenched specimens were investigated in the course of the study. Results showed that the peak rate of heat extraction of melon oil Africa locust bean and Africa elemi oil were higher than that of mineral oil. Higher heat transfer coefficient of 1463 1023 Wm2k were obtained for melon oil and Africa locust bean Africa elemi and SAE 40 oil have heat transfer coefficient of 982 and 469 Wm2k respectively. The selected oils can be used as quenchants for medium carbon steel since the oils exhibits better cooling properties and mechanical properties than mineral-based oil.

  14. One-step liquid phase chemical method to prepare carbon-based amorphous molybdenum sulfides: As the effective hydrogen evolution reaction catalysts

    International Nuclear Information System (INIS)

    Guo, Mengmeng; Wu, Qikang; Yu, Miaomiao; Wang, Yinling; Li, Maoguo

    2017-01-01

    Two different kinds of carbon-based amorphous molybdenum sulfide composite catalysts (activated carbon supported amorphous molybdenum sulfide and acetylene black supported amorphous molybdenum sulfide) had been prepared in a facile and scalable one-step liquid phase chemical method. The morphological and structural information of catalysts was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and it’s electro-catalytic HER activity were evaluated by linear sweep voltammetry(LSV), amperometric i-t technology and AC impedance technology. The as-prepared carbon-based amorphous molybdenum sulfides showed greatly enhanced electro-catalytic activity for HER compared with pure amorphous molybdenum sulfides. Especially, the nano-sized acetylene black supported molybdenum sulfide exhibited excellent electro-catalytic HER performances with a low onset potential of −116 mV versus reverse hydrogen electrode (RHE) and a small Tafel slope of 51 mV per decade.

  15. Simple approach for the fabrication of screen-printed carbon-based electrode for amperometric detection on microchip electrophoresis.

    Science.gov (United States)

    Petroni, Jacqueline Marques; Lucca, Bruno Gabriel; Ferreira, Valdir Souza

    2017-02-15

    This paper describes a simple method for the fabrication of screen-printed based electrodes for amperometric detection on microchip electrophoresis (ME) devices. The procedure developed is quite simple and does not require expensive instrumentation or sophisticated protocols commonly employed on the production of amperometric sensors, such as photolithography or sputtering steps. The electrodes were fabricated through manual deposition of home-made conductive carbon ink over patterned acrylic substrate. Morphological structure and electrochemical behavior of the carbon electrodes were investigated by scanning electron microscopy and cyclic voltammetry. The produced amperometric sensors were coupled to polydimethylsiloxane (PDMS) microchips at end-channel configuration in order to evaluate their analytical performance. For this purpose, electrophoretic experiments were carried out using nitrite and ascorbic acid as model analytes. Separation of these substances was successfully performed within 50s with good resolution (R = 1.2) and sensitivities (713.5 pA/μM for nitrite and 255.4 pA/μM for ascorbate). The reproducibility of the fabrication method was evaluated and revealed good values concerning the peak currents obtained (8.7% for nitrite and 9.3% for ascorbate). The electrodes obtained through this method exhibited satisfactory lifetime (ca. 400 runs) over low fabrication cost (less than $1 per piece). The feasibility of the proposed device for real analysis was demonstrated through the determination of nitrite concentration levels in drinking water samples. Based on the results achieved, the approach proposed here shows itself as an interesting alternative for simple fabrication of carbon-based electrodes. Furthermore, the devices indicate great promise for other kind of analytical applications involving ME devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Bayesian Evaluation of Dynamical Soil Carbon Models Using Soil Carbon Flux Data

    Science.gov (United States)

    Xie, H. W.; Romero-Olivares, A.; Guindani, M.; Allison, S. D.

    2017-12-01

    2016 was Earth's hottest year in the modern temperature record and the third consecutive record-breaking year. As the planet continues to warm, temperature-induced changes in respiration rates of soil microbes could reduce the amount of carbon sequestered in the soil organic carbon (SOC) pool, one of the largest terrestrial stores of carbon. This would accelerate temperature increases. In order to predict the future size of the SOC pool, mathematical soil carbon models (SCMs) describing interactions between the biosphere and atmosphere are needed. SCMs must be validated before they can be chosen for predictive use. In this study, we check two SCMs called CON and AWB for consistency with observed data using Bayesian goodness of fit testing that can be used in the future to compare other models. We compare the fit of the models to longitudinal soil respiration data from a meta-analysis of soil heating experiments using a family of Bayesian goodness of fit metrics called information criteria (IC), including the Widely Applicable Information Criterion (WAIC), the Leave-One-Out Information Criterion (LOOIC), and the Log Pseudo Marginal Likelihood (LPML). These IC's take the entire posterior distribution into account, rather than just one outputted model fit line. A lower WAIC and LOOIC and larger LPML indicate a better fit. We compare AWB and CON with fixed steady state model pool sizes. At equivalent SOC, dissolved organic carbon, and microbial pool sizes, CON always outperforms AWB quantitatively by all three IC's used. AWB monotonically improves in fit as we reduce the SOC steady state pool size while fixing all other pool sizes, and the same is almost true for CON. The AWB model with the lowest SOC is the best performing AWB model, while the CON model with the second lowest SOC is the best performing model. We observe that AWB displays more changes in slope sign and qualitatively displays more adaptive dynamics, which prevents AWB from being fully ruled out for

  17. Application of ion beams for polymeric carbon based biomaterials

    International Nuclear Information System (INIS)

    Evelyn, A.L.

    2001-01-01

    Ion beams have been shown to be quite suitable for the modification and analysis of carbon based biomaterials. Glassy polymeric carbon (GPC), made from cured phenolic resins, has a high chemical inertness that makes it useful as a biomaterial in medicine for drug delivery systems and for the manufacture of heart valves and other prosthetic devices. Low and high-energy ion beams have been used, with both partially and fully cured phenolic resins, to enhance biological cell/tissue growth on, and to increase tissue adhesion to GPC surfaces. Samples bombarded with energetic ion beams in the keV to MeV range exhibited increased surface roughness, measured using optical microscopy and atomic force microscopy. Ion beams were also used to perform nuclear reaction analyses of GPC encapsulated drugs for use in internal drug delivery systems. The results from the high energy bombardment were more dramatic and are shown in this paper. The interaction of energetic ions has demonstrated the useful application of ion beams to enhance the properties of carbon-based biomaterials

  18. Measurement of the single 100 diffraction line and evaluation of the average crystallite sizes along the fiber axis for mesophase-pitch-based carbon fiber P100

    International Nuclear Information System (INIS)

    Yoshida, Akira; Kaburagi, Yutaka; Hishiyama, Yoshihiro

    2007-01-01

    Mesophase-pitch-based carbon fiber P100 is known as a well-oriented carbon fiber in which the partially graphitized crystallites align along the fiber axis. The X-ray powder diffraction pattern for P100 measured by the X-ray diffractometer reveals the 100 diffraction line as a composite peak with the 101 diffraction line. The composite peak is usually not easy to separate into the component peaks of 100 and 101 lines. In the present article, a method to measure the single 100 diffraction line with the X-ray diffractometer using fiber samples of P100 has been developed. It has been found that there exist two types of crystallites oriented to their basal planes along the fiber axis in each of the P100 fibers; the Z-type crystallite with the zigzag boundary planes and the A-type crystallite with the armchair boundary planes, both of the boundary planes are perpendicular to the fiber axis. The average crystallite sizes along the fiber axis evaluated are 53 nm for the Z-type crystallites and 800 nm for the armchair crystallites. The average crystallite thickness for both types is about 120 nm. (author)

  19. The Effect of CO2 Activation on the Electrochemical Performance of Coke-Based Activated Carbons for Supercapacitors.

    Science.gov (United States)

    Lee, Hye-Min; Kim, Hong-Gun; An, Kay-Hyeok; Kim, Byung-Joo

    2015-11-01

    The present study developed electrode materials for supercapacitors by activating coke-based activated carbons with CO2. For the activation reaction, after setting the temperature at 1,000 degrees C, four types of activated carbons were produced, over an activation time of 0-90 minutes and with an interval of 30 minutes as the unit. The electrochemical performance of the activated carbons produced was evaluated to examine the effect of CO2 activation. The surface structure of the porous carbons activated through CO2 activation was observed using a scanning electron microscope (SEM). To determine the N2/77 K isothermal adsorption characteristics, the Brunauer-Emmett-Teller (BET) equation and the Barrett-Joyner-Halenda (BJH) equation were used to analyze the pore characteristics. In addition, charge and discharge tests and cyclic voltammetry (CV) were used to analyze the electrochemical characteristics of the changed pore structure. According to the results of the experiments, the N2 adsorption isotherm curves of the porous carbons produced belonged to Type IV in the International Union of Pore and Applied Chemistry (IUPAC) classification and consisted of micropores and mesopores, and, as the activation of CO2 progressed, micropores decreased and mesopores developed. The specific surface area of the porous carbons activated by CO2 was 1,090-1,180 m2/g and thus showed little change, but those of mesopores were 0.43-0.85 cm3/g, thus increasing considerably. In addition, when the electrochemical characteristics were analyzed, the specific capacity was confirmed to have increased from 13.9 F/g to 18.3 F/g. From these results, the pore characteristics of coke-based activated carbons changed considerably because of CO2 activation, and it was therefore possible to increase the electrochemical characteristics.

  20. Study on the dynamic evaluation of the regional green low-carbon transformation in China evidence from Qingdao, Yantai and Weihai

    International Nuclear Information System (INIS)

    Wang, Chongmei

    2016-01-01

    Green low-carbon transformation is necessary to achieve sustainable development in “the eighteenth”. Based on the literature review of regional green low-carbon transformation, regional green low-carbon transformation and evaluation framework are defined as the process of building regional green low-carbon transformation. We think that the system innovation is a complex system. By establishing collaborative model of the green transformation of the system innovation, we evaluate dynamically the regional green transformation capacity with data envelopment analysis from changing and developing of the two systems. Which react the efficiency of resource allocation of two systems in-depth analysis of the interaction between the two development of the internal mechanism, and clearing the mechanism between system innovation and transformation capacity. Be corroborated in the case of the practice green transformation of the Jiaodong Peninsula (Qingdao, Yantai and Weihai), strengthening the quantitative study of the depth of the theory and practice in transition. We concluded that: the overall coordination between system innovation and green transformation in Jiaodong Peninsula is good during 2010–2013. System innovation capacity cannot be fully translated into green transformation capacity, and lag weakens the supporting role of other developments in the field innovation for the transition. The situation has become better since 2010. Finally, it focus that the value of research applications and future research direction.

  1. Carbon-based strong solid acid for cornstarch hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nata, Iryanti Fatyasari, E-mail: yanti_tkunlam@yahoo.com [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Irawan, Chairul; Mardina, Primata [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Lee, Cheng-Kang, E-mail: cklee@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec.4, Taipei 106, Taiwan (China)

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  2. Carbon-based strong solid acid for cornstarch hydrolysis

    International Nuclear Information System (INIS)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-01-01

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO 3 H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO 3 H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use

  3. A computational analysis of the carbon-nanotube-based resonant-circuit sensors

    International Nuclear Information System (INIS)

    Grujicic, M.; Cao, G.; Roy, W.N.

    2004-01-01

    Available values for the molecular polarizability and the dipole moment and the computed adsorption energies to single walled carbon nanotubes (SWCNTs) for a couple of polar (NH 3 and CO) and several non-polar (He, Ar, N 2 and O 2 ) gases are used to help establish a correlation between the adsorbed gas-induced changes in the dielectric constant of the SWCNTs (the sensing material) and the resulting reduction in the resonant frequency of the resonant circuit-based chemical gas sensors. It is found that simple weighting methods which neglect the effect of changes in the electronic structure of the carbon nanotubes during adsorption are generally incapable of predicting correctly the changes in the effective dielectric constant of the carbon nanotubes. Conversely, the use of adsorption-induced changes in the band gap of the carbon nanotubes and a relationship between the band gap and the dielectric constant is found to be a promising approach for assessing the adsorption-induced changes in the effective dielectric constant of the carbon nanotubes and for establishment of their effect on the resonant frequency of resonator-based chemical gas sensors

  4. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Steven; Palo, Daniel; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-01

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, an Environmental Health and Safety (EH&S) Assessment was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment addressed air and particulate emissions as well as solid and liquid waste streams. The magnitude of the emissions and waste streams was estimated for evaluation purposes. EH&S characteristics of materials used in the system are also described. This document contains data based on the mass balances from both the 40 kJ/mol CO2 and 80 kJ/mol CO2 desorption energy cases evaluated in the Final Technical and Economic Feasibility study also conducted by Barr Engineering.

  5. Evaluation of the performance of SiBcrop model in predicting carbon fluxes and crop yields in the croplands of the US mid continental region

    Science.gov (United States)

    Lokupitiya, E.; Denning, S.; Paustian, K.; Corbin, K.; Baker, I.; Schaefer, K.

    2008-12-01

    The accurate representation of phenology, physiology, and major crop variables is important in the land- atmosphere carbon models being used to predict carbon and other exchanges of the man-made cropland ecosystems. We evaluated the performance of SiBcrop model (which is the Simple Biosphere model (SiB) with a new scheme for crop phenology and physiology) in predicting carbon exchanges of the US mid continental region which has several major crops. The use of the new phenology scheme within SiB remarkably improved the prediction of LAI and carbon fluxes for corn, soybean, and wheat crops as compared with the observed data at several Ameriflux eddy covariance flux tower sites with those crops. SiBcrop better predicted the onset and end of the growing season, harvest, interannual variability associated with crop rotation, day time carbon draw down, and day to day variability in the carbon exchanges. The model has been coupled with RAMS, the regional Atmospheric Modeling System (developed at Colorado State University), and the coupled SiBcrop-RAMS has predicted better carbon and other fluxes compared to the original SiB-RAMS. SiBcrop also predicted daily variation in biomass in different plant pools (i.e. roots, leaves, stems, and products). In this study, we further evaluated the performance of SiBcrop by comparing the yield estimates based on the grain/seed biomass at harvest predicted by SiBcrop for relevant major crops, against the county-level crop yields reported by the US National Agricultural Statistics Service (NASS). Initially, the model runs were based on crop maps scaled at 40 km resolution; the maps were used to derive the fraction of corn, soybean, and wheat at each grid cell across the US Mid Continental Intensive (MCI) region under the North American Carbon Program (NACP). The yield biomass carbon values (at harvest) predicted for each grid cell by SiBcrop were extrapolated to derive the county-level yield biomass carbon values, which were then

  6. Comparison Between Elemental Carbon Measured Using Thermal-Optical Analysis and Black Carbon Measurements Using A Novel Cellphone-Based System

    Science.gov (United States)

    Ramanathan, N.; Khan, B.; Leong, I.; Lukac, M.

    2011-12-01

    Black carbon (BC) is produced through the incomplete combustion of fossil and solid fuels. Current BC emissions inventories have large uncertainties of factors of 2 or more due to sparse measurements and because BC is often emitted by local sources that vary over time and space (Bond et al, 2004). Those uncertainties are major sources of error in air pollution models. Emissions from a variety of improved cookstove/fuel/combustion conditions were collected on pre-conditioned 47 mm quartz-fiber filters and analyzed for organic carbon (OC) and elemental carbon (EC) using thermal-optical analysis (TOA). The samples were then analyzed for BC concentration by using cellphone-based instrumentation developed by Ramanathan et al., 2011. The cellphone-based monitoring system (CBMS) is a wireless, low-cost, low-power system that monitors BC emissions. The CBMS is comprised of an aerosol filter sampler containing a battery-powered air pump and a 25mm filter holder that draws air in through a quartz-fiber filter. As black carbon deposits increase, the filter darkens--the darkest color representing the highest loading. A cellphone photograph of the filter with the black carbon deposit is taken and relayed to an analytics unit for comparison to a reference scale to estimate airborne BC concentration. The BC concentration can then be compared to the thermally derived EC concentration. TOA was conducted on a Sunset Laboratory Dual Optics Carbon Analyzer using a modified version of the Birch and Cary (1996) NIOSH 5040 protocol. The dual-optical instrument permitted simultaneous monitoring of the transmission (TOT) and reflectance (TOR). 619 samples were collected; EC was obtained using NIOSH TOT and NIOSH TOR methods, and BC was obtained using the CBMS analytics unit. The mean BC value reported by the CBMS agrees within 20% of the reference values for EC, confirming the findings in Ramanathan et al. (2011) based on samples from India. Given this accuracy, we conclude that the CBMS

  7. Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells.

    Science.gov (United States)

    Zhang, Yan; Xiao, Jian; Sun, Yimin; Wang, Lu; Dong, Xulin; Ren, Jinghua; He, Wenshan; Xiao, Fei

    2018-02-15

    The rapidly growing demand for in situ real-time monitoring of chemical information in vitro and in vivo has attracted tremendous research efforts into the design and construction of high-performance biosensor devices. Herein, we develop a new type of flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen-doped carbon nanotube arrays, and explore its practical application in in situ electrochemical detection of cancer biomarker H 2 O 2 secreted from live cancer cells. Our results demonstrate that carbon fiber material with microscale size and fascinating mechanical properties can be used as a robust and flexible microelectrode substrate in the electrochemical biosensor system. And the highly ordered nitrogen-doped carbon nanotube arrays that grown on carbon fiber possess high surface area-to-volume ratio and abundant active sites, which facilitate the loading of high-density and uniformly dispersed gold nanoparticles on it. Benefited from the unique microstructure and excellent electrocatalytic properties of different components in the nanohybrid fiber microelectrode, an effective electrochemical sensing platform based on it has been built up for the sensitive and selective detection of H 2 O 2 , the detection limit is calculated to be 50nM when the signal-to-noise ratio is 3:1, and the linear dynamic range is up to 4.3mM, with a high sensitivity of 142µAcm -2 mM -1 . These good sensing performances, coupled with its intrinsic mechanical flexibility and biocompatibility, allow for its use in in situ real-time tracking H 2 O 2 secreted from breast cancer cell lines MCF-7 and MBA-MD-231, and evaluating the sensitivity of different cancer cells to chemotherapy or radiotherapy treatments, which hold great promise for clinic application in cancer diagnose and management. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. An evaluation model for low carbon island policy: The case of Taiwan's green transportation policy

    International Nuclear Information System (INIS)

    Trappey, Amy J.C.; Trappey, Charles; Hsiao, C.T.; Ou, Jerry J.R.; Li, S.J.; Chen, Kevin W.P.

    2012-01-01

    Conserving energy and reducing carbon emissions have become the common responsibility of the international community. During the year 2010, the Taiwan government planned a four-year project budgeted at 300 million US dollars, called “The Penghu Low Carbon Island Development Project.” The policy objective is to use Penghu Island (population 85,000) as a test platform to evaluate new ways to conserve energy and reduce carbon emissions before attempting to replicate the policies on Taiwan Island. For Taiwan, a zero carbon island green transportation policy will regulate the total number of electric scooters, the total number of gasoline motorcycles, influence government subsidy incentives, and create the need for new motorcycle license issuing and control. These factors interact with each other to form a complex and dynamic system that impacts policy as well as the current way of life. In this study, a system dynamics approach is designed to construct a model for evaluating the green transportation policy on Penghu Island. Simulations are conducted to model green transportation system behavior and related policy effects in a smaller, controlled environment before creating policies for Taiwan Island that will impact the lives of over 23 million people. - Highlights: ► Provides an overview of Taiwan's Penghu Low Carbon Island Development Project. ► Develops a systems dynamics approach for green transportation policy assessment. ► Provides causal analysis of social, economic, and environmental factors. ► Demonstrates that the proposed policy cannot meet the CO 2 reduction goals. ► Alternative policies can be evaluated using the proposed approach.

  9. Combining Old and New Stable Isotope Techniques to Evaluate the Impact of Conservation Tillage on Soil Organic Carbon Dynamics and Stability

    International Nuclear Information System (INIS)

    De Clercq, T.; Xu, H.; Mercklx, R.; Heiling, M.; Dercon, G.; Resch, C.

    2016-01-01

    Soil organic matter (SOM) is a major carbon pool. It is a crucial factor for soil quality including several soil physical properties and a major nutrient source for crops. It also plays a significant role in the global carbon cycle. Soils can act as a carbon sink or source depending on land use and agricultural management practices. Some practices such as conservation tillage or no-tillage could increase SOM stocks, particularly in the topsoil, but in the long term it remains to be seen if and how this SOM is stabilized (De Clercq et al., 2015; Govaerts et al., 2009). In order to evaluate the sustainability and efficiency of soil carbon sequestration measures and the impact of different management and environmental factors, information on SOM stability and mean residence time (MRT) is required. However, this information on SOM stability and MRT is expensive to determine via radiocarbon dating, precluding a wide spread use of stability measurements in soil science. But alternative methods based on stable carbon and nitrogen isotopes, can provide this information at a fraction of the cost

  10. SiC-Based Composite Materials Obtained by Siliconizing Carbon Matrices

    Science.gov (United States)

    Shikunov, S. L.; Kurlov, V. N.

    2017-12-01

    We have developed a method for fabrication of parts of complicated configuration from composite materials based on SiC ceramics, which employs the interaction of silicon melt with the carbon matrix having a certain composition and porosity. For elevating the operating temperatures of ceramic components, we have developed a method for depositing protective silicon-carbide coatings that is based on the interaction of the silicon melt and vapor with carbon obtained during thermal splitting of hydrocarbon molecules. The new structural ceramics are characterized by higher operating temperatures; chemical stability; mechanical strength; thermal shock, wear and radiation resistance; and parameters stability.

  11. Vertically Aligned Carbon Nanofiber based Biosensor Platform for Glucose Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Al Mamun, Khandaker A.; Tulip, Fahmida S.; MacArthur, Kimberly; McFarlane, Nicole; Islam, Syed K.; Hensley, Dale

    2014-03-01

    Vertically aligned carbon nanofibers (VACNFs) have recently become an important tool for biosensor design. Carbon nanofibers (CNF) have excellent conductive and structural properties with many irregularities and defect sites in addition to exposed carboxyl groups throughout their surfaces. These properties allow a better immobilization matrix compared to carbon nanotubes and offer better resolution when compared with the FET-based biosensors. VACNFs can be deterministically grown on silicon substrates allowing optimization of the structures for various biosensor applications. Two VACNF electrode architectures have been employed in this study and a comparison of their performances has been made in terms of sensitivity, sensing limitations, dynamic range, and response time. The usage of VACNF platform as a glucose sensor has been verified in this study by selecting an optimum architecture based on the VACNF forest density. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0129156414500062

  12. Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China.

    Science.gov (United States)

    Xiong, Chuanhe; Yang, Degang; Xia, Fuqiang; Huo, Jinwei

    2016-11-10

    Xinjiang's agricultural carbon emissions showed three stages of change, i.e., continued to rise, declined and continued to rise, during 1991-2014. The agriculture belonged to the "low emissions and high efficiency" agriculture category, with a lower agricultural carbon emission intensity. By using the logarithmic mean divisia index decomposition method, agricultural carbon emissions were decomposed into an efficiency factor, a structure factor, an economy factor, and a labour factor. We divided the study period into five stages based on the changes in efficiency factor and economy factor. Xinjiang showed different agricultural carbon emission characteristics at different stages. The degree of impact on agricultural carbon emissions at these stages depended on the combined effect of planting-animal husbandry carbon intensity and agricultural labour productivity. The economy factor was the critical factor to promote the increase in agricultural carbon emissions, while the main inhibiting factor for agricultural carbon emissions was the efficiency factor. The labour factor became more and more obvious in increasing agricultural carbon emissions. Finally, we discuss policy recommendations in terms of the main factors, including the development of agricultural science and technology (S&T), the establishment of three major mechanisms and transfer of rural labour in ethnic areas.

  13. Evaluation of a carbon fibre powder scraper used in metal additive manufacturing

    CSIR Research Space (South Africa)

    Bester, Duwan C

    2017-11-01

    Full Text Available was designed which would be flexible, work for extended periods of time and have the ability to operate at high temperatures. In this study, the process of development toward carbon fibre scrapers and the evaluation for comparison to commercially available...

  14. Facilitating Low-Carbon Living? A Comparison of Intervention Measures in Different Community-Based Initiatives

    Directory of Open Access Journals (Sweden)

    Martina Schäfer

    2018-04-01

    Full Text Available The challenge of facilitating a shift towards sustainable housing, food and mobility has been taken up by diverse community-based initiatives ranging from “top-down” approaches in low-carbon municipalities to “bottom-up” approaches in intentional communities. This paper compares intervention measures in four case study areas belonging to these two types, focusing on their potential of re-configuring daily housing, food, and mobility practices. Taking up critics on dominant intervention framings of diffusing low-carbon technical innovations and changing individual behavior, we draw on social practice theory for the empirical analysis of four case studies. Framing interventions in relation to re-configuring daily practices, the paper reveals differences and weaknesses of current low-carbon measures of community-based initiatives in Germany and Austria. Low-carbon municipalities mainly focus on introducing technologies and offering additional infrastructure and information to promote low-carbon practices. They avoid interfering into residents’ daily lives and do not restrict carbon-intensive practices. In contrast, intentional communities base their interventions on the collective creation of shared visions, decisions, and rules and thus provide social and material structures, which foster everyday low-carbon practices and discourage carbon-intensive ones. The paper discusses the relevance of organizational and governance structures for implementing different types of low-carbon measures and points to opportunities for broadening current policy strategies.

  15. Evaluation of optical properties of the amorphous carbon film on fused silica

    International Nuclear Information System (INIS)

    Baydogan, Nilguen Dogan

    2004-01-01

    Deposition was done using a pulsed filtered cathodic arc with a graphite cathode. The carbon plasma is fully ionised and condenses on the substrate, forming diamond-like material but with amorphous structure. Optical properties of amorphous carbon films on fused-silica glass were investigated and the curves of optical density have a characteristic band at approximately 950 nm. Changes of the colourimetric quantities were evaluated and compared to uncoated fused silica glass. These changes were investigated as a function of the applied substrate bias voltage using the CIE and CIELAB colour systems. It is suggested that the mechanism of absorption is related to an allowed direct transition at the amorphous carbon films on fused silica glass. The optical energy gap of the amorphous carbon film depends on the bias voltage applied to the substrate holder. The optical colour parameters and optical band gap indicated that there is a relation between the dominant wavelength of the reflectance in the visible range and the wavelength of the optical band gap

  16. Establishment of the carbon label mechanism of coal chemical products based oncarbon footprint

    Directory of Open Access Journals (Sweden)

    Wu Bishan

    Full Text Available ABSTRACT After redefining the carbon footprint and carbon label, the paper analyzesthe significance of the carbon labels under the background of the low carbon economy development, and establishes the concept of model of the carbon labels mechanism to chemical products. At the same time, the paper quantitatively studies carbon label data sourceof three kinds of coal chemical industry power products, which are fromhaving not CCS technologies of supercritical boiler of coal, using CCS technologies of supercritical boiler of coal and adopting CCS and IGCC technologies to power generation in CCI. Based on the three kinds of differences, the paper puts forward of establishing the carbon labels mechanism of chemical products under the low carbon consumption.

  17. Characterization and observation of water-based nanofluids quench medium with carbon particle content variation

    Science.gov (United States)

    Yahya, S. S.; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Kresnodrianto, Mahiswara, E. P.

    2018-05-01

    Recently, nanofluids have been widely used in heat treatment industries as quench medium with better quenching performance. The thermal conductivity of nanofluids is higher compared to conventional quench medium such as polymer, water, brine, and petroleum-based oil. This characteristic can be achieved by mixing high thermal conductivity particles in nanometer scale with a fluid as base. In this research, carbon powder and distilled water were used as nanoparticles and base respectively. The carbon source used in this research was laboratory grade carbon powder, and activated carbon as a cheaper alternative source. By adjusting the percentage of dispersed carbon particles, thermal conductivity of nanofluids could be controlled as needed. To obtain nanoscale carbon particles, planetary ball mill was used to grind laboratory-grade carbon and active carbon powder to further decrease its particle size. This milling method will provide nanoparticles with lower production cost. Milling speed and duration were set at 500 rpm and 15 hours. Scanning electron microscope (SEM) and Energy Dispersive X-Ray (EDX) were carried out respectively to determine the particle size, material identification, particle morphology. The carbon nanoparticle content in nanofluids quench mediums for this research were varied at 0.1, 0.3, and 0.5 % vol. Furthermore, these mediums were used to quench AISI 1045 carbon steel samples which had been annealed at 1000 °C. Hardness testing and metallography observation were then conducted to check the effect of different quench medium in steel samples. Preliminary characterizations showed that the carbon particle dimension after milling was hundreds of nanometers, or still in sub-micron range. Therefore, the milling process parameters are need to be optimized further. EDX observation in laboratory-grade carbon powder showed that the powder was pure carbon as expected for, but in activated carbon has some impurities. The nanofluid itself, however, was

  18. Carbon footprint evaluation at industrial park level: A hybrid life cycle assessment approach

    International Nuclear Information System (INIS)

    Dong, Huijuan; Geng, Yong; Xi, Fengming; Fujita, Tsuyoshi

    2013-01-01

    Industrial parks have become the effective strategies for government to promote sustainable economic development due to the following advantages: shared infrastructure and concentrated industrial activities within planned areas. However, due to intensive energy consumption and dependence on fossil fuels, industrial parks have become the main areas for greenhouse gas emissions. Therefore, it is critical to quantify their carbon footprints so that appropriate emission reduction policies can be raised. The objective of this paper is to seek an appropriate method on evaluating the carbon footprint of one industrial park. The tiered hybrid LCA method was selected due to its advantages over other methods. Shenyang Economic and Technological Development Zone (SETDZ), a typical comprehensive industrial park in China, was chosen as a case study park. The results show that the total life cycle carbon footprint of SETDZ was 15.29 Mt, including 6.81 Mt onsite (direct) carbon footprint, 8.47 Mt upstream carbon footprint, and only 3201 t downstream carbon footprint. Analysis from industrial sector perspectives shows that chemical industry and manufacture of general purpose machinery and special purposes machinery sector were the two largest sectors for life cycle carbon footprint. Such a sector analysis may be useful for investigation of appropriate emission reduction policies. - Highlights: ► A hybrid LCA model was employed to calculate industrial park carbon footprint. ► A case study on SETDZ is done. ► Life cycle carbon footprint of SETDZ is 15.29 Mt. ► Upstream and onsite carbon footprints account for 55.40% and 44.57%, respectively. ► Chemical industry and machinery manufacturing sectors are the two largest sectors

  19. Experimental Investigation on the Specific Heat of Carbonized Phenolic Resin-Based Ablative Materials

    Science.gov (United States)

    Zhao, Te; Ye, Hong; Zhang, Lisong; Cai, Qilin

    2017-10-01

    As typical phenolic resin-based ablative materials, the high silica/phenolic and carbon/phenolic composites are widely used in aerospace field. The specific heat of the carbonized ablators after ablation is an important thermophysical parameter in the process of heat transfer, but it is rarely reported. In this investigation, the carbonized samples of the high silica/phenolic and carbon/phenolic were obtained through carbonization experiments, and the specific heat of the carbonized samples was determined by a 3D DSC from 150 °C to 970 °C. Structural and compositional characterizations were performed to determine the mass fractions of the fiber and the carbonized product of phenolic which are the two constituents of the carbonized samples, while the specific heat of each constituent was also measured by 3D DSC. The masses of the carbonized samples were reduced when heated to a high temperature in the specific heat measurements, due to the thermal degradation of the carbonized product of phenolic resin in the carbonized samples. The raw experimental specific heat of the two carbonized samples and the carbonized product of phenolic resin was modified according to the quality changes of the carbonized samples presented by TGA results. Based on the mass fraction and the specific heat of each constituent, a weighted average method was adopted to obtain the calculated results of the carbonized samples. Due to the unconsolidated property of the fiber samples which impacts the reliability of the DSC measurement, there is a certain deviation between the experimental and calculated results of the carbonized samples. Considering the similarity of composition and structure, the data of quartz glass and graphite were used to substitute the specific heat of the high silica fiber and carbon fiber, respectively, resulting in better agreements with the experimental ones. Furthermore, the accurate specific heat of the high silica fiber and carbon fiber bundles was obtained by

  20. Low–Cost Bio-Based Carbon Fiber for High-Temperature Processing

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Akato, Kokouvi M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tran, Chau D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Paul, Ryan M. [GrafTech International Holdings, Inc., Brooklyn Heights, OH (United States); Dai, Xuliang [GrafTech International Holdings, Inc., Brooklyn Heights, OH (United States)

    2017-02-01

    GrafTech International Holdings Inc. (GTI), worked with Oak Ridge National Laboratory (ORNL) under CRADA No. NFE-15-05807 to develop lignin-based carbon fiber (LBCF) technology and to demonstrate LBCF performance in high-temperature products and applications. This work was unique and different from other reported LBCF work in that this study was application-focused and scalability-focused. Accordingly, the executed work was based on meeting criteria based on technology development, cost, and application suitability. The focus of this work was to demonstrate lab-scale LBCF from at least 4 different precursor feedstock sources that could meet the estimated production cost of $5.00/pound and have ash level of less than 500 ppm in the carbonized insulation-grade fiber. Accordingly, a preliminary cost model was developed based on publicly available information. The team demonstrated that 4 lignin samples met the cost criteria, as highlighted in Table 1. In addition, the ash level for the 4 carbonized lignin samples were below 500 ppm. Processing asreceived lignin to produce a high purity lignin fiber was a significant accomplishment in that most industrial lignin, prior to purification, had greater than 4X the ash level needed for this project, and prior to this work there was not a clear path of how to achieve the purity target. The lab scale development of LBCF was performed with a specific functional application in mind, specifically for high temperature rigid insulation. GTI is currently a consumer of foreignsourced pitch and rayon based carbon fibers for use in its high temperature insulation products, and the motivation was that LBCF had potential to decrease costs and increase product competitiveness in the marketplace through lowered raw material costs, lowered energy costs, and decreased environmental footprint. At the end of this project, the Technology Readiness Level (TRL) remained at 5 for LBCF in high temperature insulation.

  1. Adhesion property of epoxidized natural rubber (ENR-based adhesives containing calcium carbonate

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available The adhesion property (i.e. viscosity, loop tack and peel strength of epoxidized natural rubber (ENR 25 and ENR 50 grade-based pressure-sensitive adhesive was studied in the presence of calcium carbonate. The range of calcium carbonate loaded was from 10 to 50 parts per hundred parts of rubber (phr. Coumarone-indene resin was used as the tackifier and its concentration was fixed at 80 phr. Toluene was chosen as the solvent throughout the investigation. The substrates (PET film/paper were coated with the adhesive using a SHEEN hand coater at a coating thickness of 60 µm. Viscosity of the adhesive was measured by a HAAKE Rotary Viscometer whereas loop tack and peel strength were determined by a Llyod Adhesion Tester operating at 30 cm/min. Results show that viscosity of ENR-based adhesives increases gradually with increase in calcium carbonate loading due to the concentration effect of the filler. However, for loop tack and peel strength, it passes through a maximum at 30 phr calcium carbonate, an observation which is attributed to the optimum wettability of adhesive on the substrate at this adhesive composition. ENR 25-based adhesive consistently exhibits higher adhesion property than ENR 50 for all calcium carbonate loadings studied.

  2. Carbon emissions in China

    International Nuclear Information System (INIS)

    Liu, Zhu

    2016-01-01

    This study analyzes the spatial-temporal pattern and processes of China's energy-related carbon emissions. Based on extensive quantitative analysis, it outlines the character and trajectory of China's energy-related carbon emissions during the period 1995-2010, examining the distribution pattern of China's carbon emissions from regional and sectoral perspectives and revealing the driving factors of China's soaring emission increase. Further, the book investigates the supply chain carbon emissions (the carbon footprints) of China's industrial sectors. Anthropogenic climate change is one of the most serious challenges currently facing humankind. China is the world's largest developing country, top primary energy consumer and carbon emitter. Achieving both economic growth and environmental conservation is the country's twofold challenge. Understanding the status, features and driving forces of China's energy-related carbon emissions is a critical aspect of attaining global sustainability. This work, for the first time, presents both key findings on and a systematic evaluation of China's carbon emissions from energy consumption. The results have important implications for global carbon budgets and burden-sharing with regard to climate change mitigation. The book will be of great interest to readers around the world, as it addresses a topic of truly global significance.

  3. Divertor plate concept with carbon based armour for NET

    International Nuclear Information System (INIS)

    Moons, F.; Howard, R.; Kneringer, G.; Stickler, R.

    1989-01-01

    A series of tests has been performed on simulated divertor elements for NET at the JET neutral beam injector test bed. The test section consisted of a water cooled main structure, the surface of which was protected with a carbon based armour in the form of tiles. The scope of these was to study the thermal behaviour of mechanically attached tiles with the use of an intermediate soft carbon layer to improve the thermal contact under divertor relevant conditions. (author). 4 refs.; 4 figs.; 1 tab

  4. SVR-based prediction of carbon emissions from energy consumption in Henan Province

    Science.gov (United States)

    Gou, Guohua

    2018-02-01

    This paper analyzes the advantage of support vector regression (SVR) in the prediction of carbon emission and establishes the SVR-based carbon emission prediction model. The model is established using the data of Henan’s carbon emissions and influence factors from the 1991 to 2016 to train and test and then predict the carbon emissions from 2017 to 2021. The results show that: from the perspective of carbon emission from energy consumption, it raised 224.876 million tons of carbon dioxide from 1991 to 2016, and the predicted increment from 2017 to 2021 is 30.5563million tons with an average annual growth rate at 3%. From the perspective of growth rate among the six factors related to carbon emissions it is proved that population urbanization rate per capital GDP and energy consumption per unit of GDP influences the growth rate of carbon emissions less than the proportion of secondary industry and coal consumption ratio of carbon. Finally some suggestions are proposed for the carbon emission reduction of Henan Province.

  5. Highly Efficient Procedure for the Synthesis of Fructone Fragrance Using a Novel Carbon based Acid

    Directory of Open Access Journals (Sweden)

    Xuezheng Liang

    2010-08-01

    Full Text Available The novel carbon based acid has been synthesized via one-step hydrothermal carbonization of furaldehyde and hydroxyethylsulfonic acid. A highly efficient procedure for the synthesis of fructone has been developed using the novel carbon based acid. The results showed that the catalyst possessed high activity for the reaction, giving a yield of over 95%. The advantages of high activity, stability, reusability and low cost for a simple synthesis procedure and wide applicability to various diols and β-keto esters make this novel carbon based acid one of the best choices for the reaction.

  6. Carbon footprint of telemedicine solutions--unexplored opportunity for reducing carbon emissions in the health sector.

    Science.gov (United States)

    Holmner, Asa; Ebi, Kristie L; Lazuardi, Lutfan; Nilsson, Maria

    2014-01-01

    The healthcare sector is a significant contributor to global carbon emissions, in part due to extensive travelling by patients and health workers. To evaluate the potential of telemedicine services based on videoconferencing technology to reduce travelling and thus carbon emissions in the healthcare sector. A life cycle inventory was performed to evaluate the carbon reduction potential of telemedicine activities beyond a reduction in travel related emissions. The study included two rehabilitation units at Umeå University Hospital in Sweden. Carbon emissions generated during telemedicine appointments were compared with care-as-usual scenarios. Upper and lower bound emissions scenarios were created based on different teleconferencing solutions and thresholds for when telemedicine becomes favorable were estimated. Sensitivity analyses were performed to pinpoint the most important contributors to emissions for different set-ups and use cases. Replacing physical visits with telemedicine appointments resulted in a significant 40-70 times decrease in carbon emissions. Factors such as meeting duration, bandwidth and use rates influence emissions to various extents. According to the lower bound scenario, telemedicine becomes a greener choice at a distance of a few kilometers when the alternative is transport by car. Telemedicine is a potent carbon reduction strategy in the health sector. But to contribute significantly to climate change mitigation, a paradigm shift might be required where telemedicine is regarded as an essential component of ordinary health care activities and not only considered to be a service to the few who lack access to care due to geography, isolation or other constraints.

  7. Laser-Based Surface Modification of Microstructure for Carbon Fiber-Reinforced Plastics

    Science.gov (United States)

    Yang, Wenfeng; Sun, Ting; Cao, Yu; Li, Shaolong; Liu, Chang; Tang, Qingru

    2018-05-01

    Bonding repair is a powerful feature of carbon fiber-reinforced plastics (CFRP). Based on the theory of interface bonding, the interface adhesion strength and reliability of the CFRP structure will be directly affected by the microscopic features of the CFRP surface, including the microstructure, physical, and chemical characteristics. In this paper, laser-based surface modification was compared to Peel-ply, grinding, and polishing to comparatively evaluate the surface microstructure of CFRP. The surface microstructure, morphology, fiber damage, height and space parameters were investigated by scanning electron microscopy (SEM) and laser confocal microscopy (LCM). Relative to the conventional grinding process, laser modification of the CFRP surface can result in more uniform resin removal and better processing control and repeatability. This decreases the adverse impact of surface fiber fractures and secondary damage. The surface properties were significantly optimized, which has been reflected such things as the obvious improvement of surface roughness, microstructure uniformity, and actual area. The improved surface microstructure based on laser modification is more conducive to interface bonding of CFRP structure repair. This can enhance the interfacial adhesion strength and reliability of repair.

  8. Graphitic carbon nitride based nanocomposites: a review

    Science.gov (United States)

    Zhao, Zaiwang; Sun, Yanjuan; Dong, Fan

    2014-11-01

    Graphitic carbon nitride (g-C3N4), as an intriguing earth-abundant visible light photocatalyst, possesses a unique two-dimensional structure, excellent chemical stability and tunable electronic structure. Pure g-C3N4 suffers from rapid recombination of photo-generated electron-hole pairs resulting in low photocatalytic activity. Because of the unique electronic structure, the g-C3N4 could act as an eminent candidate for coupling with various functional materials to enhance the performance. According to the discrepancies in the photocatalytic mechanism and process, six primary systems of g-C3N4-based nanocomposites can be classified and summarized: namely, the g-C3N4 based metal-free heterojunction, the g-C3N4/single metal oxide (metal sulfide) heterojunction, g-C3N4/composite oxide, the g-C3N4/halide heterojunction, g-C3N4/noble metal heterostructures, and the g-C3N4 based complex system. Apart from the depiction of the fabrication methods, heterojunction structure and multifunctional application of the g-C3N4-based nanocomposites, we emphasize and elaborate on the underlying mechanisms in the photocatalytic activity enhancement of g-C3N4-based nanocomposites. The unique functions of the p-n junction (semiconductor/semiconductor heterostructures), the Schottky junction (metal/semiconductor heterostructures), the surface plasmon resonance (SPR) effect, photosensitization, superconductivity, etc. are utilized in the photocatalytic processes. Furthermore, the enhanced performance of g-C3N4-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors. This critical review ends with a summary and some perspectives on the challenges and new directions in exploring g-C3N4-based advanced nanomaterials.

  9. Study visit carbon sinks Peugeot. Evaluation after 5 years and perspectives; Visite d'etude Puits de Carbone Peugeot. Bilan a 5 ans et perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Grosso, M.; Sao Nicolau, F

    2005-07-01

    In the framework of its project of the climatic change control, PSA Peugeot Citroen, decided to involve in the decrease of the carbon dioxide emissions. In parallel to the vehicles consumption decrease and the biofuels utilization, the group developed since 5 years a pilot project of carbon sink. This project aims to study the impact of a trees plantation, at a big scale, on the atmospheric carbon dioxide fixation. This document is a first evaluation after the phase of trees plantation. (A.L.B.)

  10. Carbon-Based Regenerable Sorbents for the Combined Carbon Dioxide and Ammonia Removal for the Primary Life Support System (PLSS)

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Manthina, Venkata; Singh, Prabhakar; Chullen, Cinda

    2014-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs). Since ammonia is the most important TC to be captured, data on TC sorption presented in this paper are limited to ammonia, with results relevant to other TCs to be reported at a later time. The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. The objective of this study was to demonstrate the feasibility of using carbon sorbents for the reversible, concurrent sorption of carbon dioxide and ammonia. Several carbon sorbents were fabricated and tested, and multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also a carbon surface conditioning technique that enhances the combined carbon dioxide and ammonia sorption without impairing sorbent regeneration.

  11. Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications.

    Science.gov (United States)

    Roy, Soumyendu; David-Pur, Moshe; Hanein, Yael

    2017-10-11

    Wearable electronics offer new opportunities in a wide range of applications, especially sweat analysis using skin sensors. A fundamental challenge in these applications is the formation of sensitive and stable electrodes. In this article we report the development of a wearable sensor based on carbon nanotube (CNT) electrode arrays for sweat sensing. Solid-state ion selective electrodes (ISEs), sensitive to Na + ions, were prepared by drop coating plasticized poly(vinyl chloride) (PVC) doped with ionophore and ion exchanger on CNT electrodes. The ion selective membrane (ISM) filled the intertubular spaces of the highly porous CNT film and formed an attachment that was stronger than that achieved with flat Au, Pt, or carbon electrodes. Concentration of the ISM solution used influenced the attachment to the CNT film, the ISM surface morphology, and the overall performance of the sensor. Sensitivity of 56 ± 3 mV/decade to Na + ions was achieved. Optimized solid-state reference electrodes (REs), suitable for wearable applications, were prepared by coating CNT electrodes with colloidal dispersion of Ag/AgCl, agarose hydrogel with 0.5 M NaCl, and a passivation layer of PVC doped with NaCl. The CNT-based REs had low sensitivity (-1.7 ± 1.2 mV/decade) toward the NaCl solution and high repeatability and were superior to bare Ag/AgCl, metals, carbon, and CNT films, reported previously as REs. CNT-based ISEs were calibrated against CNT-based REs, and the short-term stability of the system was tested. We demonstrate that CNT-based devices implemented on a flexible support are a very attractive platform for future wearable technology devices.

  12. [Remote sensing estimation of urban forest carbon stocks based on QuickBird images].

    Science.gov (United States)

    Xu, Li-Hua; Zhang, Jie-Cun; Huang, Bo; Wang, Huan-Huan; Yue, Wen-Ze

    2014-10-01

    Urban forest is one of the positive factors that increase urban carbon sequestration, which makes great contribution to the global carbon cycle. Based on the high spatial resolution imagery of QuickBird in the study area within the ring road in Yiwu, Zhejiang, the forests in the area were divided into four types, i. e., park-forest, shelter-forest, company-forest and others. With the carbon stock from sample plot as dependent variable, at the significance level of 0.01, the stepwise linear regression method was used to select independent variables from 50 factors such as band grayscale values, vegetation index, texture information and so on. Finally, the remote sensing based forest carbon stock estimation models for the four types of forest were established. The estimation accuracies for all the models were around 70%, with the total carbon reserve of each forest type in the area being estimated as 3623. 80, 5245.78, 5284.84, 5343.65 t, respectively. From the carbon density map, it was found that the carbon reserves were mainly in the range of 25-35 t · hm(-2). In the future, urban forest planners could further improve the ability of forest carbon sequestration through afforestation and interplanting of trees and low shrubs.

  13. Impact of Carbon Quota Allocation Mechanism on Emissions Trading: An Agent-Based Simulation

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2016-08-01

    Full Text Available This paper establishes an agent-based simulation system of the carbon emissions trading in accordance with the complex feature of the trading process. This system analyzes the impact of the carbon quota allocation mechanism on emissions trading for three different aspects including the amount of emissions reduction, the economic effect on the emitters, and the emissions reduction cost. Based on the data of the carbon emissions of different industries in China, several simulations were made. The results indicate that the emissions trading policy can effectively reduce carbon emissions in a perfectly competitive market. Moreover, by comparing separate quota allocation mechanisms, we obtain the result that the scheme with a small extent quota decrease in a comprehensive allocation mechanism can minimize the unit carbon emission cost. Implementing this scheme can also achieve minimal effects of carbon emissions limitation on the economy on the basis that the environment is not destroyed. However, excessive quota decrease cannot promote the emitters to reduce emission. Taking into account that several developing countries have the dual task of limiting carbon emissions and developing the economy, it is necessary to adopt a comprehensive allocation mechanism of the carbon quota and increase the initial proportion of free allocation.

  14. A molecular-mechanics based finite element model for strength prediction of single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Meo, M.; Rossi, M.

    2007-01-01

    The aim of this work was to develop a finite element model based on molecular mechanics to predict the ultimate strength and strain of single wallet carbon nanotubes (SWCNT). The interactions between atoms was modelled by combining the use of non-linear elastic and torsional elastic spring. In particular, with this approach, it was tried to combine the molecular mechanics approach with finite element method without providing any not-physical data on the interactions between the carbon atoms, i.e. the CC-bond inertia moment or Young's modulus definition. Mechanical properties as Young's modulus, ultimate strength and strain for several CNTs were calculated. Further, a stress-strain curve for large deformation (up to 70%) is reported for a nanotube Zig-Zag (9,0). The results showed that good agreement with the experimental and numerical results of several authors was obtained. A comparison of the mechanical properties of nanotubes with same diameter and different chirality was carried out. Finally, the influence of the presence of defects on the strength and strain of a SWNT was also evaluated. In particular, the stress-strain curve a nanotube with one-vacancy defect was evaluated and compared with the curve of a pristine one, showing a reduction of the ultimate strength and strain for the defected nanotube. The FE model proposed demonstrate to be a reliable tool to simulate mechanical behaviour of carbon nanotubes both in the linear elastic field and the non-linear elastic field

  15. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach

    Science.gov (United States)

    Taylor, Lyla L.; Banwart, Steve A.; Valdes, Paul J.; Leake, Jonathan R.; Beerling, David J.

    2012-01-01

    Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO2) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean–atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal–geosphere interactions at the global scale, which constitutes a first step towards developing ‘next-generation’ geochemical models. PMID:22232768

  16. Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China

    Science.gov (United States)

    Xiong, Chuanhe; Yang, Degang; Xia, Fuqiang; Huo, Jinwei

    2016-01-01

    Xinjiang’s agricultural carbon emissions showed three stages of change, i.e., continued to rise, declined and continued to rise, during 1991–2014. The agriculture belonged to the “low emissions and high efficiency” agriculture category, with a lower agricultural carbon emission intensity. By using the logarithmic mean divisia index decomposition method, agricultural carbon emissions were decomposed into an efficiency factor, a structure factor, an economy factor, and a labour factor. We divided the study period into five stages based on the changes in efficiency factor and economy factor. Xinjiang showed different agricultural carbon emission characteristics at different stages. The degree of impact on agricultural carbon emissions at these stages depended on the combined effect of planting-animal husbandry carbon intensity and agricultural labour productivity. The economy factor was the critical factor to promote the increase in agricultural carbon emissions, while the main inhibiting factor for agricultural carbon emissions was the efficiency factor. The labour factor became more and more obvious in increasing agricultural carbon emissions. Finally, we discuss policy recommendations in terms of the main factors, including the development of agricultural science and technology (S&T), the establishment of three major mechanisms and transfer of rural labour in ethnic areas. PMID:27830739

  17. Evaluation of mechanical properties of four different carbon/epoxy composites used in aeronautical field

    Directory of Open Access Journals (Sweden)

    Jane Maria Faulstich de Paiva

    2005-03-01

    Full Text Available Four families of carbon fiber reinforced composites (CFRC used in aeronautical industry were evaluated by flexural and interlaminar shear tests. It is also characterized three families of non-conditioned and conditioned CFRC by compression test. The composites were obtained by hand lay-up process in autoclave by using prepregs based on epoxy matrices (F155 and F584 and carbon fiber fabric reinforcements (PW-"Plain Weave" and 8HS-"Eight Harness Satin". The F155-epoxy matrix was cured at 121 °C and the F584-epoxy type at 177 °C. After molding, the laminates were cut in specimens attending the ASTM D790 for the flexural test, the ASTM D2344 for the interlaminar shear test (ILSS and the ASTM D3410 for the compressive test. The compressive tests were performed for testing the specimens before and after hygrothermal conditioning. The results show that the F584-epoxy matrix laminates present higher mechanical properties when compared to the F155-epoxy ones. The shear-tested samples observed by scanning electron microscopy and that ones tested in flexural, analyzed by stereoscopy, revealed that the fractured surfaces present typical aspects. The compressive results show that the hygrothermal conditioning caused the decrease of the compressive strength in, approximately, 8-20% depending on the laminate type. The failure modes of the tested specimens were evaluated showing good agreement with the literature.

  18. A sensor tip based on carbon nanotube-ink printed electrode for the dengue virus NS1 protein.

    Science.gov (United States)

    Dias, Ana Carolina M S; Gomes-Filho, Sérgio L R; Silva, Mízia M S; Dutra, Rosa F

    2013-06-15

    An immunosensor for the non-structural protein 1 (NS1) of the dengue virus based on carbon nanotube-screen printed electrodes (CNT-SPE) was successfully developed. A homogeneous mixture containing carboxylated carbon nanotubes was dispersed in carbon ink to prepare a screen printed working electrode. Anti-NS1 antibodies were covalently linked to CNT-SPE by an ethylenediamine film strategy. Amperometrical responses were generated at -0.5 V vs. Ag/AgCl by hydrogen peroxide reaction with peroxidase (HRP) conjugated to the anti-NS1. An excellent detection limit (in the order of 12 ng mL(-1)) and a sensitivity of 85.59 μA mM(-1)cm(-2) were achieved permitting dengue diagnostic according to the clinical range required. The matrix effect, as well as the performance of the assays, was successfully evaluated using spiked blood serum sample obtaining excellent recovery values in the results. Carbon nanotubes incorporated to the carbon ink improved the reproducibility and sensitivity of the CNT-SPE immunosensor. This point-of-care approach represents a great potential value for use in epidemic situations and can facilitate the early screening of patients in acute phase of dengue virus. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Carbon dioxide quantified by the infrared in evaluation of respiratory activity of wheat seeds

    Directory of Open Access Journals (Sweden)

    João Alexandre Lopes Dranski

    Full Text Available ABSTRACT The objective of this study was to develop and validate the methodology of carbon dioxide concentration in the evaluation of vigor of Triticum aestivum L. seeds based on infrared spectroscopy. The proposed method quantifies CO2 content using a drag system and exhaustion to the gas released by the seeds. Samples of 50 seeds of six lots of cultivar CD 123 were incubated at temperatures of 15, 25 and 40 °C. The CO2 content released after 1, 3, 6, 9, 12 and 24 h of incubation were quantified. Additionally, the percentage of normal seedlings emerged in the field were evaluated. The simple correlation coefficients were evaluated among tests. After determining the reading conditions, the precision and accuracy of the proposed method were evaluated, using 15 lots of seeds. For the evaluation of the respiratory activity in Triticum aestivum seeds, a sample of 25 seeds, incubated at 25 °C for a minimum of 12 h is recommended since it allows to classify lots with different levels of vigor and predict the establishment of seedlings in the field, being the appropriate method for measuring CO2 as it externalizes precision between successive measurements and agreement with the reference method.

  20. Mixed Carbon Policies Based on Cooperation of Carbon Emission Reduction in Supply Chain

    Directory of Open Access Journals (Sweden)

    Yongwei Cheng

    2017-01-01

    Full Text Available This paper established cooperation decision model for a mixed carbon policy of carbon trading-carbon tax (environmental tax in a two-stage S-M supply chain. For three different cooperative abatement situations, we considered the supplier driven model, the manufacturer driven model, and the equilibrium game model. We investigated the influence of mixed carbon policy with constraint of reduction targets on supply chain price, productivity, profits, carbon emissions reduction rate, and so on. The results showed that (1 high-strength carbon policies do not necessarily encourage enterprises to effectively reduce emissions, and increasing market acceptance of low carbon products or raising the price of carbon quota can promote the benign reduction; (2 perfect competitive carbon market has a higher carbon reduction efficiency than oligarch carbon market, but their optimal level of cooperation is the same and the realized reduction rate is in line with the intensity of carbon policy; (3 the policy sensitivity of the carbon trading mechanism is stronger than the carbon tax; “paid quota mechanism” can subsidize the cost of abatement and improve reduction initiative. Finally, we use a numerical example to solve the optimal decisions under different market situations, validating the effectiveness of model and the conclusions.

  1. Copper-decorated carbon nanotubes-based composite electrodes for nonenzymatic detection of glucose

    NARCIS (Netherlands)

    Pop, A.; Manea, F.; Orha, C.; Motoc, S.; Llinoiu, E.; Vaszilcsin, N.; Schoonman, J.

    2012-01-01

    The aim of this study was to prepare three types of multiwall carbon nanotubes (CNT)-based composite electrodes and to modify their surface by copper electrodeposition for nonenzymatic oxidation and determination of glucose from aqueous solution. Copper-decorated multiwall carbon nanotubes composite

  2. Analytical modeling of glucose biosensors based on carbon nanotubes.

    Science.gov (United States)

    Pourasl, Ali H; Ahmadi, Mohammad Taghi; Rahmani, Meisam; Chin, Huei Chaeng; Lim, Cheng Siong; Ismail, Razali; Tan, Michael Loong Peng

    2014-01-15

    In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization of enzymes. The determination of glucose levels using biosensors, particularly in the medical diagnostics and food industries, is gaining mass appeal. Glucose biosensors detect the glucose molecule by catalyzing glucose to gluconic acid and hydrogen peroxide in the presence of oxygen. This action provides high accuracy and a quick detection rate. In this paper, a single-wall carbon nanotube field-effect transistor biosensor for glucose detection is analytically modeled. In the proposed model, the glucose concentration is presented as a function of gate voltage. Subsequently, the proposed model is compared with existing experimental data. A good consensus between the model and the experimental data is reported. The simulated data demonstrate that the analytical model can be employed with an electrochemical glucose sensor to predict the behavior of the sensing mechanism in biosensors.

  3. On the elastic properties of carbon nanotube-based composites: modelling and characterization

    CERN Document Server

    Thostenson, E T

    2003-01-01

    The exceptional mechanical and physical properties observed for carbon nanotubes has stimulated the development of nanotube-based composite materials, but critical challenges exist before we can exploit these extraordinary nanoscale properties in a macroscopic composite. At the nanoscale, the structure of the carbon nanotube strongly influences the overall properties of the composite. The focus of this research is to develop a fundamental understanding of the structure/size influence of carbon nanotubes on the elastic properties of nanotube-based composites. Towards this end, the nanoscale structure and elastic properties of a model composite system of aligned multi-walled carbon nanotubes embedded in a polystyrene matrix were characterized, and a micromechanical approach for modelling of short fibre composites was modified to account for the structure of the nanotube reinforcement to predict the elastic modulus of the nanocomposite as a function of the constituent properties, reinforcement geometry and nanot...

  4. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF6 electrolyte

    International Nuclear Information System (INIS)

    Azam, M.A.; Jantan, N.H.; Dorah, N.; Seman, R.N.A.R.; Manaf, N.S.A.; Kudin, T.I.T.; Yahya, M.Z.A.

    2015-01-01

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF 6 non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g −1 . - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, among others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g −1 at a scan rate of 1 mV s −1

  5. Long term estimation of carbon dynamic and sequestration for Iranian agro-ecosystem: I- Net primary productivity and annual carbon input for common agricultural crops

    Directory of Open Access Journals (Sweden)

    M Nassiri Mahalati

    2016-05-01

    Full Text Available Evaluation of carbon input is one of the most important factors for estimating soil carbon changes and potential for carbon sequestration. To evaluate the net primary productivity (NPP and soil carbon input in agricultural eco-systems of Iran, data for yield, cultivated area, harvest index (HI and shoot /root ratio in different crops including: wheat, barley, maize, cotton, rice, alfalfa and chickpea were obtained for different provinces. Then, allocated carbon to different organs of plant were calculated based on carbon allocation coefficients and finally, the net primary productivity based on carbon (NPPc was calculated. The ratio of NPPc that was annually returned to soil was considered as carbon annual input. The results showed that the maximum amount of NPPc for wheat, barely and alfalfa were obtained in Khazari climate for rice, chickpea and cotton was achieved in warm-wet climate and for maize was gained in warm-dry climate. In all regions of Iran, chickpea had the lowest effect on NPPc and consequently on carbon sequestration. The highest amount of carbon input per unit area among studied crops and different regions were observed in Khazari region for alfalfa whereas, the lowest carbon input per unit area was relation to chickpea in cold region. The lowest gap between actual and potential of carbon sequestration was observed in alfalfa whereas wheat, rice and cotton showed the most gap by 0.4, 0.38 and 0.37, respectively.

  6. Multiscale experimental mechanics of hierarchical carbon-based materials.

    Science.gov (United States)

    Espinosa, Horacio D; Filleter, Tobin; Naraghi, Mohammad

    2012-06-05

    Investigation of the mechanics of natural materials, such as spider silk, abalone shells, and bone, has provided great insight into the design of materials that can simultaneously achieve high specific strength and toughness. Research has shown that their emergent mechanical properties are owed in part to their specific self-organization in hierarchical molecular structures, from nanoscale to macroscale, as well as their mixing and bonding. To apply these findings to manmade materials, researchers have devoted significant efforts in developing a fundamental understanding of multiscale mechanics of materials and its application to the design of novel materials with superior mechanical performance. These efforts included the utilization of some of the most promising carbon-based nanomaterials, such as carbon nanotubes, carbon nanofibers, and graphene, together with a variety of matrix materials. At the core of these efforts lies the need to characterize material mechanical behavior across multiple length scales starting from nanoscale characterization of constituents and their interactions to emerging micro- and macroscale properties. In this report, progress made in experimental tools and methods currently used for material characterization across multiple length scales is reviewed, as well as a discussion of how they have impacted our current understanding of the mechanics of hierarchical carbon-based materials. In addition, insight is provided into strategies for bridging experiments across length scales, which are essential in establishing a multiscale characterization approach. While the focus of this progress report is in experimental methods, their concerted use with theoretical-computational approaches towards the establishment of a robust material by design methodology is also discussed, which can pave the way for the development of novel materials possessing unprecedented mechanical properties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes.

    Science.gov (United States)

    Liu, Dianyi; Zhao, Mingyan; Li, Yan; Bian, Zuqiang; Zhang, Luhui; Shang, Yuanyuan; Xia, Xinyuan; Zhang, Sen; Yun, Daqin; Liu, Zhiwei; Cao, Anyuan; Huang, Chunhui

    2012-12-21

    Most previous fiber-shaped solar cells were based on photoelectrochemical systems involving liquid electrolytes, which had issues such as device encapsulation and stability. Here, we deposited classical semiconducting polymer-based bulk heterojunction layers onto stainless steel wires to form primary electrodes and adopted carbon nanotube thin films or densified yarns to replace conventional metal counter electrodes. The polymer-based fiber cells with nanotube film or yarn electrodes showed power conversion efficiencies in the range 1.4% to 2.3%, with stable performance upon rotation and large-angle bending and during long-time storage without further encapsulation. Our fiber solar cells consisting of a polymeric active layer sandwiched between steel and carbon electrodes have potential in the manufacturing of low-cost, liquid-free, and flexible fiber-based photovoltaics.

  8. Mesoporous Carbon Design for Ionic Liquid-Based, Double-Layer Supercapacitors

    OpenAIRE

    2010-01-01

    Abstract The use of pyrrolidinium-based ionic liquids (ILs) in asymmetric electric double-layer capacitors (AEDLC) with positive and negative carbon electrodes of different weight is a powerful strategy for developing safe, high specific-energy supercapacitors operating at > 3.5 V. The preparation and characterization of ordered (OTC) and disordered (DTC) template carbons, the latter obtained by a fast and low-cost method, are reported. The porosity and capacitance features of the ...

  9. Mobile Carbon Monoxide Monitoring System Based on Arduino-Matlab for Environmental Monitoring Application

    Science.gov (United States)

    Azieda Mohd Bakri, Nur; Junid, Syed Abdul Mutalib Al; Razak, Abdul Hadi Abdul; Idros, Mohd Faizul Md; Karimi Halim, Abdul

    2015-11-01

    Nowadays, the increasing level of carbon monoxide globally has become a serious environmental issue which has been highlighted in most of the country globally. The monitoring of carbon monoxide content is one of the approaches to identify the level of carbon monoxide pollution towards providing the solution for control the level of carbon monoxide produced. Thus, this paper proposed a mobile carbon monoxide monitoring system for measuring the carbon monoxide content based on Arduino-Matlab General User Interface (GUI). The objective of this project is to design, develop and implement the real-time mobile carbon monoxide sensor system and interfacing for measuring the level of carbon monoxide contamination in real environment. Four phases or stages of work have been carried out for the accomplishment of the project, which classified as sensor development, controlling and integrating sensor, data collection and data analysis. As a result, a complete design and developed system has been verified with the handheld industrial standard carbon monoxide sensor for calibrating the sensor sensitivity and measurement in the laboratory. Moreover, the system has been tested in real environments by measuring the level of carbon monoxide in three different lands used location; industrial area; residential area and main road (commercial area). In this real environment test, the industrial area recorded the highest reading with 71.23 ppm and 82.59 ppm for sensor 1 and sensor 2 respectively. As a conclusion, the mobile realtime carbon monoxide system based on the Arduino-Matlab is the best approach to measure the carbon monoxide concentration in different land-used since it does not require a manual data collection and reduce the complexity of the existing carbon monoxide level concentration measurement practise at the same time with a complete data analysis facilities.

  10. Intense heavy ion beam-induced temperature effects in carbon-based stripper foils

    International Nuclear Information System (INIS)

    Kupka, K.; Tomut, M.; Simon, P.; Hubert, C.; Romanenko, A.; Lommel, B.; Trautmann, C.

    2015-01-01

    At the future FAIR facility, reliably working solid carbon stripper foils are desired for providing intermediate charge states to SIS18. With the expected high beam intensities, the foils experience enhanced degradation and limited lifetime due to severe radiation damage, stress waves, and thermal effects. This work presents systematic measurements of the temperature of different carbon-based stripper foils (amorphous, diamond-like, and carbon-nanotube based) exposed to 4.8 MeV/u U, Bi, and Au beams of different pulse intensities. Thermal and spectroscopic analyses were performed by means of infrared thermography and Fourier transform infrared spectroscopy. The resulting temperature depends on the foil thickness and strongly increases with increasing pulse intensity and repetition rate. (author)

  11. Study on adsorption performance of coal based activated carbon to radioactive iodine and stable iodine

    International Nuclear Information System (INIS)

    Zhou, Junbo; Hao, Shan; Gao, Liping; Zhang, Youchen

    2014-01-01

    Highlights: • The impregnated coal-based activated carbons as adsorbent for removing methyl iodide. • The coal-based activated carbons to remove stable iodine. • Iodine residues are under 0.5 μg/ml after adsorption treatment. • The decontamination factor is much higher than 1000. - Abstract: Nuclear power plant, nuclear reactors and nuclear powered ship exhaust contains a large amount of gaseous radioactive iodine, and can damage to the workplace and the surrounding environment. The quantitative test to remove methyl iodide and the qualitative test for removing stable iodine were investigated using the impregnated coal-based activated carbons and coal-based activated carbons as adsorbents. The research conducted in this work shows that iodine residues were under 0.5 μg/ml after adsorption treatment and the decontamination factor of the coal-based activated carbon for removing the stable iodine was more than 1000, which can achieve the purpose of removing harmful iodine, and satisfy the requirement of gaseous waste treatment of nuclear powered vessel and other nuclear plants

  12. TU-AB-BRC-02: Accuracy Evaluation of GPU-Based OpenCL Carbon Monte Carlo Package (goCMC) in Biological Dose and Microdosimetry in Comparison to FLUKA Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Taleei, R; Peeler, C; Qin, N; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: One of the most accurate methods for radiation transport is Monte Carlo (MC) simulation. Long computation time prevents its wide applications in clinic. We have recently developed a fast MC code for carbon ion therapy called GPU-based OpenCL Carbon Monte Carlo (goCMC) and its accuracy in physical dose has been established. Since radiobiology is an indispensible aspect of carbon ion therapy, this study evaluates accuracy of goCMC in biological dose and microdosimetry by benchmarking it with FLUKA. Methods: We performed simulations of a carbon pencil beam with 150, 300 and 450 MeV/u in a homogeneous water phantom using goCMC and FLUKA. Dose and energy spectra for primary and secondary ions on the central beam axis were recorded. Repair-misrepair-fixation model was employed to calculate Relative Biological Effectiveness (RBE). Monte Carlo Damage Simulation (MCDS) tool was used to calculate microdosimetry parameters. Results: Physical dose differences on the central axis were <1.6% of the maximum value. Before the Bragg peak, differences in RBE and RBE-weighted dose were <2% and <1%. At the Bragg peak, the differences were 12.5% caused by small range discrepancy and sensitivity of RBE to beam spectra. Consequently, RBE-weighted dose difference was 11%. Beyond the peak, RBE differences were <20% and primarily caused by differences in the Helium-4 spectrum. However, the RBE-weighted dose agreed within 1% due to the low physical dose. Differences in microdosimetric quantities were small except at the Bragg peak. The simulation time per source particle with FLUKA was 0.08 sec, while goCMC was approximately 1000 times faster. Conclusion: Physical doses computed by FLUKA and goCMC were in good agreement. Although relatively large RBE differences were observed at and beyond the Bragg peak, the RBE-weighted dose differences were considered to be acceptable.

  13. Carbon-Based Materials for Photo-Triggered Theranostic Applications

    Directory of Open Access Journals (Sweden)

    Karunya Albert

    2016-11-01

    Full Text Available Carbon-based nanomaterials serve as a type of smart material for photo-triggered disease theranostics. The inherent physicochemical properties of these nanomaterials facilitate their use for less invasive treatments. This review summarizes the properties and applications of materials including fullerene, nanotubes, nanohorns, nanodots and nanographenes for photodynamic nanomedicine in cancer and antimicrobial therapies. Carbon nanomaterials themselves do not usually act as photodynamic therapy (PDT agents owing to the high hydrophobicity, however, when the surface is passivated or functionalized, these materials become great vehicles for PDT. Moreover, conjugation of carbonaceous nanomaterials with the photosensitizer (PS and relevant targeting ligands enhances properties such as selectivity, stability, and high quantum yield, making them readily available for versatile biomedical applications.

  14. Developing low-cost carbon-based sorbents for Hg capture from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Perry, R.; Lakatos, J.; Snape, C.E.; Sun, C. [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre

    2005-07-01

    To help reduce the cost of Hg capture from flue gas a number of low-cost carbons are being investigated, including activated tyre char and PFA carbon, in conjunction with some of the pre-treatments that have been found to be effective for commercial actived carbons. Experimental conditions for screening the sorbents have been selected to determine breakthrough capacities rapidly. The unactivated carbons have low breakthrough capacities under the test conditions employed (around 0.1 mg g{sup -1}) but these improve upon steam activation (around 0.25 mg g{sup -1}) but are still lower than those of non-impregnated commercial activated carbons (around 0.4-0.7 mg g{sup -1}), due to their lower surface areas. Comparable improvements to the commercial carbons have been achieved for impregnation treatments, including sulfur and bromine. However, certain gasification chars do have much higher breakthrough capacities than commercial carbons used for flue gas injection. Manganese oxide impregnation with low concentration is particularly effective for the activated and unactivated carbons giving breakthrough capacities comparable to the commercial carbons. Pointers for further increasing breakthrough and equilibrium capacities for carbon-based sorbents are discussed. 7 refs., 1 fig., 3 tabs.

  15. Structural evolution of Eucalyptus tar pitch-based carbons during carbonization

    International Nuclear Information System (INIS)

    Prauchner, Marcos J.; Pasa, Vanya M.D.; Molhallem, Nelcy D.S.; Otani, Choyu; Otani, Satika; Pardini, Luiz C.

    2005-01-01

    Wood tar pitches are generated as by-products by the charcoal manufacturing industry. They have a macromolecular structure constituted mainly by phenolic, guaiacylic, and siringylic units common to lignin. Due to their characteristics, biopitches are been investigated as precursors of carbon materials such as carbon fibers, bioelectrodes and activated carbons. In the present work the structural evolution of Eucalyptus tar pitches under carbonization is investigated, which is important for the improvement of planning and control of pitch processing and end-product properties during carbon material production. The studies involve X-ray diffraction and infrared analyses, besides helium density, BET surface area and BJH pore volume measurements. The results showed that the conversion of pitch into carbon basically involves three steps: (1) Up to around 600 deg C the material has an highly disordered structure, being the release of aliphatic side chains and volatiles the main events taking place. (2) Between 600 deg C and 800 deg C, condensation of aromatic rings occurs to form bi-dimensional hexagonal networks so that micro- and mesoporosity are developed. The 800 deg C-coke is constituted by two phases: one highly disordered and another more crystalline. (3) Over 800 deg C, both phases are gradually ordered. As defects are gradually removed, surface area and porosity decrease, approaching zero for the 2100 deg C-coke

  16. Water flow in carbon-based nanoporous membranes impacted by interactions between hydrated ions and aromatic rings.

    Science.gov (United States)

    Liu, Jian; Shi, Guosheng; Fang, Haiping

    2017-02-24

    Carbon-based nanoporous membranes, such as carbon nanotubes (CNTs), graphene/graphene oxide and graphyne, have shown great potential in water desalination and purification, gas and ion separation, biosensors, and lithium-based batteries, etc. A deep understanding of the interaction between hydrated ions in an aqueous solution and the graphitic surface in systems composed of water, ions and a graphitic surface is essential for applications with carbon-based nanoporous membrane platforms. In this review, we describe the recent progress of the interaction between hydrated ions and aromatic ring structures on the carbon-based surface and its applications in the water flow in a carbon nanotube. We expect that these works can be extended to the understanding of water flow in other nanoporous membranes, such as nanoporous graphene, graphyne and stacked sheets of graphene oxide.

  17. EDITORIAL: Carbon-based nanoscience and nanotechnology: where are we, where are we heading? Carbon-based nanoscience and nanotechnology: where are we, where are we heading?

    Science.gov (United States)

    Soukiassian, Patrick G.; Ramachandra Rao, M. S.

    2010-09-01

    main challenges for future understanding include i) material growth, ii) fundamental properties, and iii) developing advanced applications. The reviews in this Cluster Issue of Journal of Physics D: Applied Physics cover carbon nanoparticles and nanotubes, graphene, nano-diamond and films. They address the most current aspects and issues related to their fundamental and outstanding properties, and describe various classes of high-tech applications based on these promising materials. Future prospects, difficulties and challenges are addressed. Important issues include growth, morphology, atomic and electronic structure, transport properties, superconductivity, doping, nanochemistry using hydrogen, chemical and bio-sensors, and bio-imaging, allowing readers to evaluate this very interesting topic and draw perspectives for the future.

  18. Graphitic Carbon-Based Nanostructures for Energy and Environmental Applications

    Science.gov (United States)

    Chan, Ka Long Donald

    This thesis focuses on the synthesis and characterization of graphitic carbonbased photocatalytic nanostructures for energy and environmental applications. The preparation of carbon- and oxygen-rich graphitic carbon nitride with enhanced photocatalytic hydrogen evolution property was investigated. Composite materials based on graphene quantum dots were also prepared. These composites were used for photocatalytic degradation of organic pollutants and photoelectrocatalytic disinfection. The first part of this thesis describes a facile method for the preparation of carbon- and oxygen-rich graphitic carbon nitride by thermal condensation. Incorporation of carbon and oxygen enhanced the photoresponse of carbon nitride in the visible-light region. After exfoliation, the product was c.a. 45 times more active than bulk graphitic carbon nitride in photocatalytic hydrogen evolution under visible-light irradiation. In the second part, a simple approach to enhance the photocatalytic activity of red phosphorus was developed. Mechanical ball milling was applied to reduce the size of red phosphorus and to deposit graphene quantum dots (GQDs) onto red phosphorus. The product exhibited high visible-light-driven photocatalytic performance in the photodegradation of Rhodamine B. The incorporation of GQDs in titanium dioxide could also extend the absorption spectrum of TiO2 into the visible-light range. The third part of this thesis reports on the fabrication of a visible-light-driven composite photocatalyst of TiO2 nanotube arrays (TNAs) and GQDs. Carboxyl-containing GQDs were covalently coupled to amine-modified TNAs. The product exhibited enhanced photocurrent and high photoelectrocatalytic performance in the inactivation of E. coli under visible-light irradiation. The role of various reactive species in the photoelectrocatalytic process was investigated.

  19. Evaluation of single-step steam pyrolysis-activated carbons

    African Journals Online (AJOL)

    Mgina

    Activated carbon has been widely used worldwide as an effective filtration or adsorption ... of producing activated carbon (AC) from local agroforestry residues by ..... impurities from waste water. .... Production of granular activated carbon.

  20. The aqueous electrochemistry of carbon-based surfaces-investigation by scanning tunneling microscopy

    Science.gov (United States)

    Mühl, T.; Myhra, S.

    2007-04-01

    Electro-oxidation of carbon-based materials will lead to conversion of the solid to CO2/CO at the anode, with H2 being produced at the cathode. Recent voltammetric investigations of carbon nano-tubes and single crystal graphite have shown that only edge sites and other defect sites are electrochemically active. Local oxidation of diamond-like carbon films (DLC) by an STM tip in moist air followed by imaging allows correlation of topographical change with electro-chemical conditions and surface reactivity. The results may have implications for lithographic processing of carbon surfaces, and may have relevance for electrochemical H2 production.

  1. Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts.

    Science.gov (United States)

    Krause, Andreas; Pugh, Thomas A M; Bayer, Anita D; Li, Wei; Leung, Felix; Bondeau, Alberte; Doelman, Jonathan C; Humpenöder, Florian; Anthoni, Peter; Bodirsky, Benjamin L; Ciais, Philippe; Müller, Christoph; Murray-Tortarolo, Guillermo; Olin, Stefan; Popp, Alexander; Sitch, Stephen; Stehfest, Elke; Arneth, Almut

    2018-07-01

    Most climate mitigation scenarios involve negative emissions, especially those that aim to limit global temperature increase to 2°C or less. However, the carbon uptake potential in land-based climate change mitigation efforts is highly uncertain. Here, we address this uncertainty by using two land-based mitigation scenarios from two land-use models (IMAGE and MAgPIE) as input to four dynamic global vegetation models (DGVMs; LPJ-GUESS, ORCHIDEE, JULES, LPJmL). Each of the four combinations of land-use models and mitigation scenarios aimed for a cumulative carbon uptake of ~130 GtC by the end of the century, achieved either via the cultivation of bioenergy crops combined with carbon capture and storage (BECCS) or avoided deforestation and afforestation (ADAFF). Results suggest large uncertainty in simulated future land demand and carbon uptake rates, depending on the assumptions related to land use and land management in the models. Total cumulative carbon uptake in the DGVMs is highly variable across mitigation scenarios, ranging between 19 and 130 GtC by year 2099. Only one out of the 16 combinations of mitigation scenarios and DGVMs achieves an equivalent or higher carbon uptake than achieved in the land-use models. The large differences in carbon uptake between the DGVMs and their discrepancy against the carbon uptake in IMAGE and MAgPIE are mainly due to different model assumptions regarding bioenergy crop yields and due to the simulation of soil carbon response to land-use change. Differences between land-use models and DGVMs regarding forest biomass and the rate of forest regrowth also have an impact, albeit smaller, on the results. Given the low confidence in simulated carbon uptake for a given land-based mitigation scenario, and that negative emissions simulated by the DGVMs are typically lower than assumed in scenarios consistent with the 2°C target, relying on negative emissions to mitigate climate change is a highly uncertain strategy. © 2018 John

  2. Ammonium uranyl carbonate (AUC) based process of simultaneous partitioning and reconversion for uranium and plutonium in fast breeder reactors (FBRs) fuel reprocessing

    International Nuclear Information System (INIS)

    Govindan, P.; Palamalai, A.; Vijayan, K.S.; Subba Rao, R.V.; Venkataraman, M.; Natarajan, R.

    2013-01-01

    Ammonium uranyl carbonate (AUC) based process of simultaneous partitioning and reconversion for uranium and plutonium is developed for the recovery of uranium and plutonium present in spent fuel of fast breeder reactors (FBRs). Effect of pH on the solubility of carbonates of uranium and plutonium in ammonium carbonate medium is studied. Effect of mole ratios of uranium and plutonium as a function of uranium and plutonium concentration at pH 8.0-8.5 for effective separation of uranium and plutonium to each other is studied. Feasibility of reconversion of plutonium in carbonate medium is also studied. The studies indicate that uranium is selectively precipitated as AUC at pH 8.0-8.5 by adding ammonium carbonate solution leaving plutonium in the filtrate. Plutonium in the filtrate after acidified with concentrated nitric acid could also be precipitated as carbonate at pH 6.5-7.0 by adding ammonium carbonate solution. A flow sheet is proposed and evaluated for partitioning and reconversion of uranium and plutonium simultaneously in the FBR fuel reprocessing. (author)

  3. Biosensor based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Ren, J.; Kang, T.F.; Xue, R.; Ge, C.N.; Cheng, S.Y.

    2011-01-01

    We describe a biosensor for phenolic compounds that is based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes (MWNTs). The MWNTs possess excellent inherent electrical conductivity which enhances the electron transfer rate and results in good electrochemical catalytic activity towards the reduction of benzoquinone produced by enzymatic reaction. The biosensor was characterized by cyclic voltammetry, and the experimental conditions were optimized. The cathodic current is linearly related to the concentration of the phenols between 0.4 μM and 10 μM, and the detection limit is 0.2 μM. The method was applied to the determination of phenol in water samples (author)

  4. City-based Carbon Budgets for Buildings

    DEFF Research Database (Denmark)

    Lütken, Søren; Wretlind, Per Harry

    The construction of buildings consumes about 50% of all materials produced globally measured by weight. Materials such as cement, ceramic tile and steel are among the most carbon intensive materials to manufacture, and come with a carbon footprint of their own. This is called embodied carbon...

  5. Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials.

    Science.gov (United States)

    Wu, Zhen-Yu; Liang, Hai-Wei; Chen, Li-Feng; Hu, Bi-Cheng; Yu, Shu-Hong

    2016-01-19

    Three dimensional (3D) carbon nanomaterials exhibit great application potential in environmental protection, electrochemical energy storage and conversion, catalysis, polymer science, and advanced sensors fields. Current methods for preparing 3D carbon nanomaterials, for example, carbonization of organogels, chemical vapor deposition, and self-assembly of nanocarbon building blocks, inevitably involve some drawbacks, such as expensive and toxic precursors, complex equipment and technological requirements, and low production ability. From the viewpoint of practical application, it is highly desirable to develop a simple, cheap, and environmentally friendly way for fabricating 3D carbon nanomaterials in large scale. On the other hand, in order to extend the application scope and improve the performance of 3D carbon nanomaterials, we should explore efficient strategies to prepare diverse functional nanomaterials based on their 3D carbon structure. Recently, many researchers tend to fabricate high-performance 3D carbon-based nanomaterials from biomass, which is low cost, easy to obtain, and nontoxic to humans. Bacterial cellulose (BC), a typical biomass material, has long been used as the raw material of nata-de-coco (an indigenous dessert food of the Philippines). It consists of a polysaccharide with a β-1,4-glycosidic linkage and has a interconnected 3D porous network structure. Interestingly, the network is made up of a random assembly of cellulose nanofibers, which have a high aspect ratio with a diameter of 20-100 nm. As a result, BC has a high specific surface area. Additionally, BC hydrogels can be produced on an industrial scale via a microbial fermentation process at a very low price. Thus, it can be an ideal platform for design of 3D carbon-based functional nanomaterials. Before our work, no systematic work and summary on this topic had been reported. This Account presents the concepts and strategies of our studies on BC in the past few years, that is

  6. DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes.

    Science.gov (United States)

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Ma, Juan Juan; Chen, Jian Rong; Feng, Hui

    2014-10-15

    An ultrasensitive nanosensor based on fluorescence resonance energy transfer (FRET) between biocompatible graphene quantum dots and carbon nanotubes for DNA detection was reported. We take advantage of good biocompatibility and strong fluorescence of graphene quantum dots, base pairing specificity of DNA and unique fluorescence resonance energy transfer between graphene quantum dots and carbon nanotubes to achieve the analysis of low concentrations of DNA. Graphene quantum dots with high quantum yield up to 0.20 were prepared and served as the fluorophore of DNA probe. FRET process between graphene quantum dots-labeled probe and oxidized carbon nanotubes is easily achieved due to their efficient self-assembly through specific π-π interaction. This nanosensor can distinguish complementary and mismatched nucleic acid sequences with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a broad linear span of up to 133.0 nM and ultralow detection limit of 0.4 nM. The constructed nanosensor is expected to be highly biocompatible because of all its components with excellent biocompatibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Thermionic Properties of Carbon Based Nanomaterials Produced by Microhollow Cathode PECVD

    Science.gov (United States)

    Haase, John R.; Wolinksy, Jason J.; Bailey, Paul S.; George, Jeffrey A.; Go, David B.

    2015-01-01

    Thermionic emission is the process in which materials at sufficiently high temperature spontaneously emit electrons. This process occurs when electrons in a material gain sufficient thermal energy from heating to overcome the material's potential barrier, referred to as the work function. For most bulk materials very high temperatures (greater than 1500 K) are needed to produce appreciable emission. Carbon-based nanomaterials have shown significant promise as emission materials because of their low work functions, nanoscale geometry, and negative electron affinity. One method of producing these materials is through the process known as microhollow cathode PECVD. In a microhollow cathode plasma, high energy electrons oscillate at very high energies through the Pendel effect. These high energy electrons create numerous radical species and the technique has been shown to be an effective method of growing carbon based nanomaterials. In this work, we explore the thermionic emission properties of carbon based nanomaterials produced by microhollow cathode PECVD under a variety of synthesis conditions. Initial studies demonstrate measureable current at low temperatures (approximately 800 K) and work functions (approximately 3.3 eV) for these materials.

  8. Influence of various Activated Carbon based Electrode Materials in the Performance of Super Capacitor

    Science.gov (United States)

    Ajay, K. M.; Dinesh, M. N.

    2018-02-01

    Various activated carbon based electrode materials with different surface areas was prepared on stainless steel based refillable super capacitor model using spin coating. Bio Synthesized Activated Carbon (BSAC), Activated Carbon (AC) and Graphite powder are chosen as electrode materials in this paper. Electrode materials prepared using binder solution which is 6% by wt. polyvinylidene difluoride, 94% by wt. dimethyl fluoride. 3M concentrated KOH solution is used as aqueous electrolyte with PVDF thin film as separator. It is tested for electrochemical characterizations and material characterizations. It is observed that the Specific capacitance of Graphite, Biosynthesized active carbon and Commercially available activated carbon are 16.1F g-1, 53.4F g-1 and 107.6F g-1 respectively at 5mV s-1 scan rate.

  9. Evaluating carbon dioxide emissions in international trade of China

    International Nuclear Information System (INIS)

    Lin Boqiang; Sun Chuanwang

    2010-01-01

    China is the world's largest emitter of carbon dioxide (CO 2 ). As exports account for about one-third of China's GDP, the CO 2 emissions are related to not only China's own consumption but also external demand. Using the input-output analysis (IOA), we analyze the embodied CO 2 emissions of China's import and export. Our results show that about 3357 million tons CO 2 emissions were embodied in the exports and the emissions avoided by imports (EAI) were 2333 million tons in 2005. The average contribution to embodied emission factors by electricity generation was over 35%. And that by cement production was about 20%. It implies that the production-based emissions of China are more than the consumption-based emissions, which is evidence that carbon leakage occurs under the current climate policies and international trade rules. In addition to the call for a new global framework to allocate emission responsibilities, China should make great efforts to improve its energy efficiency, carry out electricity pricing reforms and increase renewable energy. In particular, to use advanced technology in cement production will be helpful to China's CO 2 abatement.

  10. Monitoring carbon dioxide from space: Retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China

    Science.gov (United States)

    Yang, Dongxu; Zhang, Huifang; Liu, Yi; Chen, Baozhang; Cai, Zhaonan; Lü, Daren

    2017-08-01

    Monitoring atmospheric carbon dioxide (CO2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of climate projection. Here, we introduce a carbon flux inversion system for estimating carbon flux with satellite measurements under the support of "The Strategic Priority Research Program of the Chinese Academy of Sciences—Climate Change: Carbon Budget and Relevant Issues". The carbon flux inversion system is composed of two separate parts: the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing (IAPCAS), and CarbonTracker-China (CT-China), developed at the Chinese Academy of Sciences. The Greenhouse gases Observing SATellite (GOSAT) measurements are used in the carbon flux inversion experiment. To improve the quality of the IAPCAS-GOSAT retrieval, we have developed a post-screening and bias correction method, resulting in 25%-30% of the data remaining after quality control. Based on these data, the seasonal variation of XCO2 (column-averaged CO2 dry-air mole fraction) is studied, and a strong relation with vegetation cover and population is identified. Then, the IAPCAS-GOSAT XCO2 product is used in carbon flux estimation by CT-China. The net ecosystem CO2 exchange is -0.34 Pg C yr-1 (±0.08 Pg C yr-1), with a large error reduction of 84%, which is a significant improvement on the error reduction when compared with in situ-only inversion.

  11. Effect of carbon fiber dispersion on the mechanical properties of carbon fiber-reinforced cement-based composites

    International Nuclear Information System (INIS)

    Wang Chuang; Li Kezhi; Li Hejun; Jiao Gengsheng; Lu Jinhua; Hou Dangshe

    2008-01-01

    The preparation of carbon fiber-reinforced cement-based composites involved two-step dispersions of carbon fibers. Both steps affected greatly the mechanical properties of the composites. With the aid of ultrasonic wave, a new dispersant hydroxyethyl cellulose was used to help fiber dispersion in the first step. The fracture surface of the composites was observed by scanning electron microscopy. The distribution of major elements was analyzed by the energy dispersive spectroscopy and the composition was analyzed through X-ray diffraction. The flexural strength, tensile strength, modulus, and compression strength were measured. Results showed that the distribution of major elements varied with the variation of the fiber dispersion status. The compressive strength increased by 20%, the tensile strength was 2.4 times that of the material without carbon fibers, the modulus increased by 26.8%, whereas the flexure stress decreased by 12.9%

  12. Advances in electrospun carbon fiber-based electrochemical sensing platforms for bioanalytical applications.

    Science.gov (United States)

    Mao, Xianwen; Tian, Wenda; Hatton, T Alan; Rutledge, Gregory C

    2016-02-01

    Electrochemical sensing is an efficient and inexpensive method for detection of a range of chemicals of biological, clinical, and environmental interest. Carbon materials-based electrodes are commonly employed for the development of electrochemical sensors because of their low cost, biocompatibility, and facile electron transfer kinetics. Electrospun carbon fibers (ECFs), prepared by electrospinning of a polymeric precursor and subsequent thermal treatment, have emerged as promising carbon systems for biosensing applications since the electrochemical properties of these carbon fibers can be easily modified by processing conditions and post-treatment. This review addresses recent progress in the use of ECFs for sensor fabrication and analyte detection. We focus on the modification strategies of ECFs and identification of the key components that impart the bioelectroanalytical activities, and point out the future challenges that must be addressed in order to advance the fundamental understanding of the ECF electrochemistry and to realize the practical applications of ECF-based sensing devices.

  13. Asymmetric Electrodes Constructed with PAN-Based Activated Carbon Fiber in Capacitive Deionization

    Directory of Open Access Journals (Sweden)

    Mingzhe Li

    2014-01-01

    Full Text Available Capacitive deionization (CDI method has drawn much attention for its low energy consumption, low pollution, and convenient manipulation. Activated carbon fibers (ACFs possess high adsorption ability and can be used as CDI electrode material. Herein, two kinds of PAN-based ACFs with different specific surface area (SSA were used for the CDI electrodes. The CDI performance was investigated; especially asymmetric electrodes’ effect was evaluated. The results demonstrated that PAN-based ACFs showed a high electrosorption rate (complete electrosorption in less than half an hour and moderate electrosorption capacity (up to 0.2 mmol/g. CDI experiments with asymmetric electrodes displayed a variation in electrosorption capacity between forward voltage and reverse voltage. It can be attributed to the electrical double layer (EDL overlap effect and inner pore potential; thus the ions with smaller hydrated ionic radius can be adsorbed more easily.

  14. Development of gas diffusion layer using water based carbon slurry for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.F.; Liu, X.; Adame, A.; Villacorta, R. [Fuel Cell Research Laboratory, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road, West Groton, MA 01472 (United States); Ahmad, R.; Thommes, M. [Quantachrome Instruments, 1900 Corporate Drive, Boynton Beach, FL 33426 (United States); Kannan, A.M., E-mail: amk@asu.ed [Fuel Cell Research Laboratory, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States)

    2011-01-01

    The micro-porous layer of gas diffusion layers (GDLs) was fabricated with the carbon slurry dispersed in water containing sodium dodecyl sulfate (SDS), by wire rod coating process. The aqueous carbon slurry with micelle-encapsulation was highly consistent and stable without losing any homogeneity even after adding polytetrafluoroethylene (PTFE) binder for hundreds of hours. The surface morphology, contact angle and pore size distribution of the GDLs were examined using SEM, Goniometer and Hg Porosimeter, respectively. GDLs fabricated with various SDS concentrations were assembled into MEAs and evaluated in a single cell PEMFC under diverse operating relative humidity (RH) conditions using H{sub 2}/O{sub 2} and H{sub 2}/air as reactants. The peak power density of the single cell using the GDLs with optimum SDS concentration was 1400 and 500 mW cm{sup -2} with H{sub 2}/O{sub 2} and H{sub 2}/air at 90% RH, respectively. GDLs were also fabricated with isopropyl alcohol (IPA) based carbon slurry for fuel cell performance comparison. It was found that the composition of the carbon slurry, specifically SDS concentration played a critical role in controlling the pore diameter as well as the corresponding pore volumes of the GDLs.

  15. Carbon emissions in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhu [Harvard Univ., Cambridge, MA (United States). Sustainability Science Program

    2016-07-01

    This study analyzes the spatial-temporal pattern and processes of China's energy-related carbon emissions. Based on extensive quantitative analysis, it outlines the character and trajectory of China's energy-related carbon emissions during the period 1995-2010, examining the distribution pattern of China's carbon emissions from regional and sectoral perspectives and revealing the driving factors of China's soaring emission increase. Further, the book investigates the supply chain carbon emissions (the carbon footprints) of China's industrial sectors. Anthropogenic climate change is one of the most serious challenges currently facing humankind. China is the world's largest developing country, top primary energy consumer and carbon emitter. Achieving both economic growth and environmental conservation is the country's twofold challenge. Understanding the status, features and driving forces of China's energy-related carbon emissions is a critical aspect of attaining global sustainability. This work, for the first time, presents both key findings on and a systematic evaluation of China's carbon emissions from energy consumption. The results have important implications for global carbon budgets and burden-sharing with regard to climate change mitigation. The book will be of great interest to readers around the world, as it addresses a topic of truly global significance.

  16. Quantum size effect and thermal stability of carbon-nanotube-based quantum dot

    International Nuclear Information System (INIS)

    Huang, N.Y.; Peng, J.; Liang, S.D.; Li, Z.B.; Xu, N.S.

    2004-01-01

    Full text: Based on semi-experience quantum chemical calculation, we have investigated the quantum size effect and thermal stability of open-end carbon nanotube (5, 5) quantum dots of 20 to 400 atoms. It was found that there is a gap in the energy band of all carbon nanotube (5, 5) quantum dots although a (5, 5) carbon nanotube is metallic. The energy gap of quantum dots is much dependent of the number of atoms in a dot, as a result of the quantization rules imposed by the finite scales in both radial and axial directions of a carbon nanotube quantum dot. Also, the heat of formation of carbon nanotube quantum dots is dependent of the size of a quantum dot. (author)

  17. Reactivity between carbon cathode materials and electrolyte based on industrial and laboratory data

    CSIR Research Space (South Africa)

    Chauke, L

    2013-07-01

    Full Text Available Interaction between electrolyte and carbon cathodes during the electrolytic production of aluminium decreases cell life. This paper describes the interaction between carbon cathode materials and electrolyte, based on industrial and laboratory data...

  18. Carbon carry capacity and carbon sequestration potential in China based on an integrated analysis of mature forest biomass.

    Science.gov (United States)

    Liu, YingChun; Yu, GuiRui; Wang, QiuFeng; Zhang, YangJian; Xu, ZeHong

    2014-12-01

    Forests play an important role in acting as a carbon sink of terrestrial ecosystem. Although global forests have huge carbon carrying capacity (CCC) and carbon sequestration potential (CSP), there were few quantification reports on Chinese forests. We collected and compiled a forest biomass dataset of China, a total of 5841 sites, based on forest inventory and literature search results. From the dataset we extracted 338 sites with forests aged over 80 years, a threshold for defining mature forest, to establish the mature forest biomass dataset. After analyzing the spatial pattern of the carbon density of Chinese mature forests and its controlling factors, we used carbon density of mature forests as the reference level, and conservatively estimated the CCC of the forests in China by interpolation methods of Regression Kriging, Inverse Distance Weighted and Partial Thin Plate Smoothing Spline. Combining with the sixth National Forest Resources Inventory, we also estimated the forest CSP. The results revealed positive relationships between carbon density of mature forests and temperature, precipitation and stand age, and the horizontal and elevational patterns of carbon density of mature forests can be well predicted by temperature and precipitation. The total CCC and CSP of the existing forests are 19.87 and 13.86 Pg C, respectively. Subtropical forests would have more CCC and CSP than other biomes. Consequently, relying on forests to uptake carbon by decreasing disturbance on forests would be an alternative approach for mitigating greenhouse gas concentration effects besides afforestation and reforestation.

  19. Carbon based thirty six atom spheres

    Science.gov (United States)

    Piskoti, Charles R.; Zettl, Alex K.; Cohen, Marvin L.; Cote, Michel; Grossman, Jeffrey C.; Louie, Steven G.

    2005-09-06

    A solid phase or form of carbon is based on fullerenes with thirty six carbon atoms (C.sub.36). The C.sub.36 structure with D.sub.6h symmetry is one of the two most energetically favorable, and is conducive to forming a periodic system. The lowest energy crystal is a highly bonded network of hexagonal planes of C.sub.36 subunits with AB stacking. The C.sub.36 solid is not a purely van der Waals solid, but has covalent-like bonding, leading to a solid with enhanced structural rigidity. The solid C.sub.36 material is made by synthesizing and selecting out C.sub.36 fullerenes in relatively large quantities. A C.sub.36 rich fullerene soot is produced in a helium environment arc discharge chamber by operating at an optimum helium pressure (400 torr). The C.sub.36 is separated from the soot by a two step process. The soot is first treated with a first solvent, e.g. toluene, to remove the higher order fullerenes but leave the C.sub.36. The soot is then treated with a second solvent, e.g. pyridine, which is more polarizable than the first solvent used for the larger fullerenes. The second solvent extracts the C.sub.36 from the soot. Thin films and powders can then be produced from the extracted C.sub.36. Other materials are based on C.sub.36 fullerenes, providing for different properties.

  20. Adsorption of malachite green and iodine on rice husk-based porous carbon

    International Nuclear Information System (INIS)

    Guo Yupeng; Zhang Hui; Tao Nannan; Liu Yanhua; Qi Juirui; Wang Zichen; Xu Hongding

    2003-01-01

    Adsorption isotherms of I 2 and malachite green (MG) by rice husk-based porous carbons (RHCs) from aqueous medium have been studied. Three samples of carbons prepared by NaOH-activation, three samples prepared by KOH-activation and two samples of commercial carbons have been studied. And the adsorption isotherms have been determined after modifying the carbon surfaces by oxidation with nitric acid and hydrogen peroxide and after degassing at 800 deg. C. The results have been found to follow the Freundlich adsorption isotherm. Three samples of N series have larger capacity for removing I 2 and MG from solution compared to that of the tested commercial carbons. The adsorption capacity of I 2 is similar for K series and commercial carbons. And the capacity of commercial carbons for MG is larger than K series. The adsorption capacity of I 2 on oxidation carbons has increased for hydrogen peroxide treatment and decreased for nitric acid, and that of MG is decreased. But the adsorption capacities of I 2 and MG increase on degassing. On the other hand, the adsorption of I 2 increases after modifying the carbon surfaces by HCl without oxidation. Suitable mechanisms have been proposed

  1. Removal of lead (II) from metal plating effluents using sludge based activated carbon as adsorbent.

    Science.gov (United States)

    Raju, P; Saseetharan, M K

    2010-01-01

    A novel adsorbent was prepared from waste sludge obtained from a sugar mill for removing heavy metals from industrial wastewater. The adsorption studies were carried out in batch and continuous modes for both sugar mill sludge based carbon and commercial carbon. In batch studies, experiments were conducted at ambient temperature to assess the influence of the parameters such as pH, adsorbent dose, contact time and equilibrium concentration. Adsorption data for the prepared carbon was found to satisfy both the Freundlich and Langmuir isotherms. Column studies were carried out to delineate the effect of varying depth of carbon at constant flow rate. The breakthrough curves were drawn to establish the mechanism. The result shows that the sludge based activated carbon can be used as an alternative for commercial carbon.

  2. Investigations of carbon diffusion and carbide formation in nickel-based alloys

    International Nuclear Information System (INIS)

    Schulten, R.; Bongartz, K.; Quadakkers, W.J.; Schuster, H.; Nickel, H.

    1989-11-01

    The present thesis describes the carburization behaviour of nickel based alloys in heavily carburizing environments. The mechanisms of carbon diffusion and carbide precipitation in NiCr alloys with and without ternary additions of iron, cobalt or molybdenum have been investigated. Using the results of carburization experiments, a mathematical model which describes carbon diffusion and carbide formation, was developed. The simulation of the carburization process was carried out by an iterative calculation of the local thermodynamic equilibrium in the alloy. An accurate description of the carbon profiles as a function of time became possible by using a finite-difference calculation. (orig.) [de

  3. Low-carbon building assessment and multi-scale input-output analysis

    Science.gov (United States)

    Chen, G. Q.; Chen, H.; Chen, Z. M.; Zhang, Bo; Shao, L.; Guo, S.; Zhou, S. Y.; Jiang, M. M.

    2011-01-01

    Presented as a low-carbon building evaluation framework in this paper are detailed carbon emission account procedures for the life cycle of buildings in terms of nine stages as building construction, fitment, outdoor facility construction, transportation, operation, waste treatment, property management, demolition, and disposal for buildings, supported by integrated carbon intensity databases based on multi-scale input-output analysis, essential for low-carbon planning, procurement and supply chain design, and logistics management.

  4. Dual sensing-actuation artificial muscle based on polypyrrole-carbon nanotube composite

    Science.gov (United States)

    Schumacher, J.; Otero, Toribio F.; Pascual, Victor H.

    2017-04-01

    Dual sensing artificial muscles based on conducting polymer are faradaic motors driven by electrochemical reactions, which announce the development of proprioceptive devices. The applicability of different composites has been investigated with the aim to improve the performance. Addition of carbon nanotubes may reduce irreversible reactions. We present the testing of a dual sensing artificial muscle based on a conducting polymer and carbon nanotubes composite. Large bending motions (up to 127 degrees) in aqueous solution and simultaneously sensing abilities of the operation conditions are recorded. The sensing and actuation equations are derived for incorporation into a control system.

  5. Cathode spot movements along the carbon fibres in carbon/carbon composites

    International Nuclear Information System (INIS)

    Zhang Chengyu; Qiao Shengru; Yang Zhimao; Ding Bingjun

    2007-01-01

    The cathode spot movements on a polyacrilonitrile (PAN)-based carbon felt reinforced C/C composite and a three dimensional PAN-based carbon fibre reinforced C/C composite (3D-C/C) were investigated by a scanning electron microscope and a digital high-speed video camera. It was found that the carbon fibres have a higher ability to withstand the vacuum arc erosion than the carbon matrix. The cathode spot walks on the matrix, rather than on the carbon fibres. The cathode spot motion is controlled by the architecture of carbon fibres in C/C. The cathode spots move along the carbon fibres by a step-by-step manner rather than a random walk. The cathode spot tracks spread over a wide zone on the 3D-C/C surface parallel to the carbon fibre. The average arc spreading velocity is estimated to be about 0.9 m s -1 and the transient arc spreading velocity is in the range of 0.54-4.5 m s -1

  6. Thermodynamics of a post combustion hydrate-based carbon dioxide capture process

    International Nuclear Information System (INIS)

    Ben Attouche Sfaxi, I.

    2011-07-01

    Hydrates selectivity towards carbon dioxide is offering a promising route for carbon dioxide removal from flue gases. Hydrate-based CO 2 capture process could substitute amine facilities widely implemented in gas treatment plants but suffering from oxidative degradation problems and high energy demand. In the framework of this thesis, we focus on phase equilibria that are involved in such process. Experimental dissociation conditions for clathrate hydrates of carbon dioxide and nitrogen, in the presence of some promoting molecules (Tetrahydrofuran, Tetrabutyl ammonium bromide and Tetrabutyl ammonium Fluoride ) are reported in the experimental section of this work. The data generated in this work along with literature data are compared to the model predictions. The developed model is based on the Cubic Plus Association (CPA) equation of state (EoS) for fluid phases combined to the van der Waals and Platteeuw's theory for the hydrate phase. (author)

  7. Modelling of thermal shock experiments of carbon based materials in JUDITH

    Science.gov (United States)

    Ogorodnikova, O. V.; Pestchanyi, S.; Koza, Y.; Linke, J.

    2005-03-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments.

  8. Modelling of thermal shock experiments of carbon based materials in JUDITH

    International Nuclear Information System (INIS)

    Ogorodnikova, O.V.; Pestchanyi, S.; Koza, Y.; Linke, J.

    2005-01-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments

  9. Modelling of thermal shock experiments of carbon based materials in JUDITH

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikova, O.V. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany)]. E-mail: o.ogorodnikova@fz-juelich.de; Pestchanyi, S. [Forschungszentrum Karlsruhe, EURATOM-Associaton, IHM, 76021 Karlsruhe (Germany); Koza, Y. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany); Linke, J. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany)

    2005-03-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments.

  10. Controllable nanoscale rotating actuator system based on carbon nanotube and graphene

    International Nuclear Information System (INIS)

    Huang, Jianzhang; Han, Qiang

    2016-01-01

    A controllable nanoscale rotating actuator system consisting of a double carbon nanotube and graphene driven by a temperature gradient is proposed, and its rotating dynamics performance and driving mechanism are investigated through molecular dynamics simulations. The outer tube exhibits stable pure rotation with certain orientation under temperature gradient and the steady rotational speed rises as the temperature gradient increases. It reveals that the driving torque is caused by the difference of atomic van der Waals potentials due to the temperature gradient and geometrical features of carbon nanotube. A theoretical model for driving torque is established based on lattice dynamics theory and its predicted results agree well with molecular dynamics simulations. Further discussion is taken according to the theoretical model. The work in this study would be a guide for design and application of controllable nanoscale rotating devices based on carbon nanotubes and graphene. (paper)

  11. Evaluation of the attachment, proliferation, and differentiation of osteoblast on a calcium carbonate coating on titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yi; Jiang Tao; Zhou Yi; Zhang Zhen; Wang Zhejun [Key Laboratory for Oral Biomedical Engineering, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Tong Hua; Shen Xinyu [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Wang Yining, E-mail: wang.yn@whu.edu.cn [Key Laboratory for Oral Biomedical Engineering, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China)

    2011-07-20

    Titanium has been reported to have some limitations in dental and orthopaedic clinical application. This study described a coating process using a simple chemical method to prepare calcium carbonate coatings on smooth titanium (STi) and sandblasted and acid-etched titanium (SATi), and evaluated the biological response of the materials in vitro. The surfaces of STi, SATi, calcium carbonate coated STi (CC-STi) and calcium carbonate coated SATi (CC-SATi) were characterized for surface roughness, contact angles, surface morphology and surface chemistry. The morphology of MG63 cells cultured on the surfaces was observed by SEM and Immuno-fluorescence staining. Cell attachment/proliferation was assessed by MTT assay, and cell differentiation was evaluated by alkaline phosphatase (ALP) activity. MG63 was found to attach favorably to calcium carbonate crystals with longer cytoplasmic extensions on CC-STi and CC-SATi, resulting in lower cell proliferation but higher ALP activity when compared to STi and SATi respectively. Moreover, CC-SATi is more favorable than CC-STi in terms of biological response. In conclusion, the calcium carbonate coatings on titanium were supposed to improve the osteointegration process and stimulate osteoblast differentiation, especially in early stage. And this method could possibly be a feasible alternative option for future clinical application. Highlights: {yields} Calcium carbonate coatings were prepared on titanium substrates. {yields} The coating process is simple and cost-effective. {yields} Calcium carbonate coating could induce differentiation toward an osteoblastic phenotype. {yields} Calcium carbonate coating could enhance the osteointegration process especially in early stage.

  12. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

    Science.gov (United States)

    Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao

    2016-02-08

    The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nondestructive evaluation of braided carbon fiber composites with artificial defect using HTS-SQUID gradiometer

    International Nuclear Information System (INIS)

    Shinyama, Y.; Yamaji, T.; Hatsukade, Y.; Takai, Y.; Aly-Hassan, M.S.; Nakai, A.; Hamada, H.; Tanaka, S.

    2011-01-01

    We applied a current-injection-based NDE method using a HTS-SQUID gradiometer to a braided CFRP with artificial cracks. Current distributions in the braided CFRP were estimated from measured field gradient distributions. A small crack, in which a few carbon-fiber bundles were cut, was well detected from the current distributions. A cross-section of the CFRP showed that a density of the bundles at edges is higher than the other part. The experimental results demonstrated the capability of the method to detect sub-mm cracks. Braided carbon fiber reinforced plastics (CFRPs) are one of multifunctional materials with superior properties such as mechanical strength to normal CFRPs since the braided CFRPs have continuous fiber bundles. In this paper, we applied the current-injection-based nondestructive evaluation (NDE) method using a HTS-SQUID gradiometer to the braided CFRP for the detection of the breakage of the bundles. We prepared planar braided CFRP samples with and without artificial cracks of 1 and 2 mm lengths, and measured the current density distribution above the samples using the NDE method. In the measurement results, not only a few completely-cut bundles but also the additional partially-cut bundles were detected from decrease in the measured current density along the cut bundle around the cracks. From these results, we showed that it is possible to inspect a few partially-cut bundles in the braided CFRPs by the NDE method.

  14. Evaluation of the potentiality of the use of high-carbon microsilica as a pozzolanic material

    International Nuclear Information System (INIS)

    Ferreira, R.L.S.; Pederneiras, C.M.; Costa, T.C.S.; Silva, C.H.R.B.; Anjos, M.A.S.; Nobrega, A.K.

    2016-01-01

    Supplementary Cementitious Materials reduce the production of clinker, which minimizes the environmental impact of cement production and the generation of industrial waste, also improve mechanical behavior and durability. Thus, this article aims to evaluate the potential use of microsilica with high content of carbon as pozzolanic material, based on the requirements of ISO 12653 (ABNT, 2015). The techniques of X-ray fluorescence (XRF), X-ray diffraction (XRD) and compressive strength of mortar of lime and cement (at 7 and 28 days, respectively) were used to evaluate the pozzolanic of the microsilica as a mineral addition. The results indicated that the microsilica has a high amorphous silicon dioxide percentage structure. In the DRX could be possible to analyze the formation of CSH, justifying the good results of mechanical strength, especially with cement. Thus, the mineral admixture used in this research can be considered as a pozzolanic material. (author)

  15. Numerical studies of carbon paper-based vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Won, Seongyeon; Oh, Kyeongmin; Ju, Hyunchul

    2016-01-01

    ABSTRACT: This study analyzed theoretically the effects of a carbon paper (CP)-based electrode on the performance of a vanadium redox flow battery (VRFB). Compared to conventional carbon felt-based electrode materials, the CP-based electrode showed superior characteristics in facilitating the redox reactions of VO"2"+/VO_2"+ and V"2"+/V"3"+ couples, such as better electrochemical activity and higher electronic conductivity. A three-dimensional, non-isothermal VRFB model developed in a previous study was applied to a range of single cell structures equipped with CP-based electrodes and flow channels in the current collectors. The model was then validated using the experimental data measured under the CP- and channel-based VRFB geometries. The model successfully captured the experimental trend that showed a higher discharging performance with increasing number of CP layers used for each electrode. The simulation results clearly showed that the activation overpotentials in the electrodes were reduced significantly using more CP layers, which dominated over the effects of increased mass transport limitation of vanadium ions due to the thicker electrode.

  16. Novel Non-Carbonate Based Electrolytes for Silicon Anodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ye [Wildcat Discovery Technologies, San Diego, CA (United States); Yang, Johnny [Wildcat Discovery Technologies, San Diego, CA (United States); Cheng, Gang [Wildcat Discovery Technologies, San Diego, CA (United States); Carroll, Kyler [Wildcat Discovery Technologies, San Diego, CA (United States); Clemons, Owen [Wildcat Discovery Technologies, San Diego, CA (United States); Strand, Diedre [Wildcat Discovery Technologies, San Diego, CA (United States)

    2016-09-09

    Substantial improvement in the energy density of rechargeable lithium batteries is required to meet the future needs for electric and plug-in electric vehicles (EV and PHEV). Present day lithium ion battery technology is based on shuttling lithium between graphitic carbon and inorganic oxides. Non-graphitic anodes, such as silicon can provide significant improvements in energy density but are currently limited in cycle life due to reactivity with the electrolyte. Wildcat/3M proposes the development of non-carbonate electrolyte formulations tailored for silicon alloy anodes. Combining these electrolytes with 3M’s anode and an NMC cathode will enable up to a 20% increase in the volumetric cell energy density, while still meeting the PHEV/EV cell level cycle/calendar life goals.

  17. Heat Dissipation for Microprocessor Using Multiwalled Carbon Nanotubes Based Liquid

    OpenAIRE

    Hung Thang, Bui; Trinh, Pham Van; Chuc, Nguyen Van; Khoi, Phan Hong; Minh, Phan Ngoc

    2013-01-01

    Carbon nanotubes (CNTs) are one of the most valuable materials with high thermal conductivity (2000 W/m · K compared with thermal conductivity of Ag 419 W/m · K). This suggested an approach in applying the CNTs in thermal dissipation system for high power electronic devices, such as computer processor and high brightness light emitting diode (HB-LED). In this work, multiwalled carbon nanotubes (MWCNTs) based liquid was made by COOH functionalized MWCNTs dispersed in distilled water with conce...

  18. Thermal characteristics of carbon fiber reinforced epoxy containing multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Jin-woo Lee

    2018-06-01

    Full Text Available The material with irregular atomic structures such as polymer material exhibits low thermal conductivity because of the complex structural properties. Even materials with same atomic configurations, thermal conductivity may be different based on their structural properties. It is expected that nanoparticles with conductivity will change non-conductive polymer base materials to electrical conductors, and improve the thermal conductivity even with extremely small filling amount. Nano-composite materials contain nanoparticles with a higher surface ratio which makes the higher interface percentage to the total surface of nanoparticles. Therefore, thermal resistance of the interface becomes a dominating factor determines the effective thermal conductivity in nano-composite materials. Carbon fiber has characteristic of resistance or magnetic induction and Also, Carbon nanotube (CNT has electronic and thermal property. It can be applied for heating system. These characteristic are used as heating composite. In this research, the exothermic characteristics of Carbon fiber reinforced composite added CNT were evaluated depend on CNT length and particle size. It was found that the CNT dispersed in the resin reduces the resistance between the interfaces due to the decrease in the total resistance of the heating element due to the addition of CNTs. It is expected to improve the life and performance of the carbon fiber composite material as a result of the heating element resulting from this paper. Keywords: Carbon Nanotube (CNT, Carbon Fiber Reinforcement Plastic (CFRP, Heater, Exothermic characteristics

  19. Hierarchical activated mesoporous phenolic-resin-based carbons for supercapacitors.

    Science.gov (United States)

    Wang, Zhao; Zhou, Min; Chen, Hao; Jiang, Jingui; Guan, Shiyou

    2014-10-01

    A series of hierarchical activated mesoporous carbons (AMCs) were prepared by the activation of highly ordered, body-centered cubic mesoporous phenolic-resin-based carbon with KOH. The effect of the KOH/carbon-weight ratio on the textural properties and capacitive performance of the AMCs was investigated in detail. An AMC prepared with a KOH/carbon-weight ratio of 6:1 possessed the largest specific surface area (1118 m(2) g(-1)), with retention of the ordered mesoporous structure, and exhibited the highest specific capacitance of 260 F g(-1) at a current density of 0.1 A g(-1) in 1 M H2 SO4 aqueous electrolyte. This material also showed excellent rate capability (163 F g(-1) retained at 20 A g(-1)) and good long-term electrochemical stability. This superior capacitive performance could be attributed to a large specific surface area and an optimized micro-mesopore structure, which not only increased the effective specific surface area for charge storage but also provided a favorable pathway for efficient ion transport. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Bolometric-Effect-Based Wavelength-Selective Photodetectors Using Sorted Single Chirality Carbon Nanotubes

    Science.gov (United States)

    Zhang, Suoming; Cai, Le; Wang, Tongyu; Shi, Rongmei; Miao, Jinshui; Wei, Li; Chen, Yuan; Sepúlveda, Nelson; Wang, Chuan

    2015-01-01

    This paper exploits the chirality-dependent optical properties of single-wall carbon nanotubes for applications in wavelength-selective photodetectors. We demonstrate that thin-film transistors made with networks of carbon nanotubes work effectively as light sensors under laser illumination. Such photoresponse was attributed to photothermal effect instead of photogenerated carriers and the conclusion is further supported by temperature measurements. Additionally, by using different types of carbon nanotubes, including a single chirality (9,8) nanotube, the devices exhibit wavelength-selective response, which coincides well with the absorption spectra of the corresponding carbon nanotubes. This is one of the first reports of controllable and wavelength-selective bolometric photoresponse in macroscale assemblies of chirality-sorted carbon nanotubes. The results presented here provide a viable route for achieving bolometric-effect-based photodetectors with programmable response spanning from visible to near-infrared by using carbon nanotubes with pre-selected chiralities. PMID:26643777

  1. Porous carbon-coated ZnO nanoparticles derived from low carbon content formic acid-based Zn(II) metal-organic frameworks towards long cycle lithium-ion anode material

    International Nuclear Information System (INIS)

    Gao, Song; Fan, Ruiqing; Li, Bingjiang; Qiang, Liangsheng; Yang, Yulin

    2016-01-01

    Graphical abstract: The nanocomposites constructed from Zn-based MOFs exhibit low carbon content with super-high rate capability and long cycling life. - Highlights: • Novel ZnO@porous carbon matrix nanocomposites are constructed by pyrolysis of Zn-based MOFs. • The nanocomposites constructed with Zn-based MOFs show low carbon content. • The constructed nanocomposites exhibit high energy density, super-high rate capability and long cycling life. - Abstract: Single-C formic acid-based metal-organic frameworks (MOFs) are used to construct novel ZnO@porous carbon matrix nanocomposites by controlled pyrolysis. In the constructed nanocomposites, the porous carbon matrices act as a confined support to prevent agglomeration of the ZnO nanoparticles and create a rapid electron conductive network. Meanwhile, the well-defined, continuous porous structured MOFs provide a large specific surface area, which increases the contact of electrolyte-electrode and improves the penetration of electrolyte. Especially, the reasonable choice of formic acid-based MOFs construct the low carbon content composite, which contribute to the high energy density and long cycle life. The constructed nanocomposites show stable, ultrahigh rate lithium ion storage properties of 650 mAh g −1 at charge/discharge rate of 1 C even after 200 cycles.

  2. Thermal Dissipation Efficiency in a Micro-Processor Using Carbon Nanotubes Based Composite

    Science.gov (United States)

    Thang, Bui Hung; Van Quang, Cao; Nghia, Van Trong; Hong, Phan Ngoc; Van Chuc, Nguyen; Tam, Ngo Thi Thanh; Quang, Le Dinh; Khang, Dao Duc; Khoi, Phan Hong; Minh, Phan Ngoc

    2009-09-01

    Modern electronic and optoelectronic devices such as μ-processor, light emitting diode, semiconductor laser issued a challenge in the thermal dissipation problem. Finding an effective way for thermal dissipation therefore becomes a very important issue. It is known that carbon nanotubes (CNTs) is one of the most valuable materials with high thermal conductivity (2000 W/m.K compared to thermal conductivity of Ag 419 W/m.K). This suggested an approach in applying the CNTs as an essential component for thermal dissipation media to improve the performance of computer processor and other high power electronic devices. In this work multi walled carbon nanotubes (MWCNTs) based composites were utilized as the thermal dissipation media in a micro processor of a personal computer. The MWCNTs of different concentrations were added into polyaniline, commercial silicon thermal paste and commercial silver thermal paste by mechanical methods. A personal computer with configuration: Intel Pentium IV 3.066 GHz, 512 MB of RAM and Windows XP Service Pack 2 Operating System was employed. The thermal dissipation efficiency of the system was evaluated by directly measure the temperature of the μ-processor during the operation of the computer in different CPU speeds. The measured results showed that the CNTs based composite could reduce the temperature of the u-processor more than 5° C, and the time for increasing the temperature of the μ-processor was three times longer than that when using commercial thermal paste.

  3. Multiscale Hybrid Micro-Nanocomposites Based on Carbon Nanotubes and Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Fawad Inam

    2010-01-01

    Full Text Available Amino-modified double wall carbon nanotube (DWCNT-NH2/carbon fiber (CF/epoxy hybrid micro-nanocomposite laminates were prepared by a resin infusion technique. DWCNT-NH2/epoxy nanocomposites and carbon fiber/epoxy microcomposites were made for comparison. Morphological analysis of the hybrid composites was performed using field emission scanning electron microscope. A good dispersion at low loadings of carbon nanotubes (CNTs in epoxy matrix was achieved by a bath ultrasonication method. Mechanical characterization of the hybrid micro-nanocomposites manufactured by a resin infusion process included three-point bending, mode I interlaminar toughness, dynamic mechanical analysis, and drop-weight impact testing. The addition of small amounts of CNTs (0.025, 0.05, and 0.1 wt% to epoxy resins for the fabrication of multiscale carbon fiber composites resulted in a maximum enhancement in flexural modulus by 35%, a 5% improvement in flexural strength, a 6% improvement in absorbed impact energy, and 23% decrease in the mode I interlaminar toughness. Hybridization of carbon fiber-reinforced epoxy using CNTs resulted in a reduction in and dampening characteristics, presumably as a result of the presence of micron-sized agglomerates.

  4. The effect of neutron irradiation on the structure and properties of carbon-carbon composite materials

    International Nuclear Information System (INIS)

    Burchell, T.D.; Eatherly, W.P.; Robbins, J.M.; Strizak, J.P.

    1991-01-01

    Carbon-based materials are an attractive choice for fusion reactor plasma facing components (PFCs) because of their low atomic number, superior thermal shock resistance, and low neutron activation. Next generation plasma fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER), will require advanced carbon-carbon composite materials possessing extremely high thermal conductivity to manage the anticipated severe heat loads. Moreover, ignition machines such as ITER will produce high neutron fluxes. Consequently, the influence of neutron damage on the structure and properties of carbon-carbon composite materials must be evaluated. Data from an irradiation experiment are reported and discussed here. Fusion relevant graphite and carbon-carbon composites were irradiated in a target capsule in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). A peak damage dose of 1.59 dpa at 600 degrees C was attained. The carbon materials irradiated included nuclear graphite grade H-451 and one-, two-, and three-directional carbon-carbon composite materials. Dimensional changes, thermal conductivity and strength are reported for the materials examined. The influence of fiber type, architecture, and heat treatment temperature on properties and irradiation behavior are reported. Carbon-Carbon composite dimensional changes are interpreted in terms of simple microstructural models

  5. Perspective of Chinese Forest Carbon Absorption Trade Based on Low-Carbon Economy

    OpenAIRE

    Wang, Ming-gang

    2011-01-01

    The paper analyzes the basis of forest carbon trade including me feasibility of carbon absorption trade, main body, platform and standard. The purposes of capital of carbon absorption trade is introduced. Caron absorption trade capital can be used to resettle ecological migrants, absorb employment, build forest and increase fund, increase local income, enhance forest science and technology development and launch environmental proportion. The perspective of developing forest carbon absorption ...

  6. Carbonic anhydrase 5 regulates acid-base homeostasis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ruben Postel

    Full Text Available The regulation of the acid-base balance in cells is essential for proper cellular homeostasis. Disturbed acid-base balance directly affects cellular physiology, which often results in various pathological conditions. In every living organism, the protein family of carbonic anhydrases regulate a broad variety of homeostatic processes. Here we describe the identification, mapping and cloning of a zebrafish carbonic anhydrase 5 (ca5 mutation, collapse of fins (cof, which causes initially a collapse of the medial fins followed by necrosis and rapid degeneration of the embryo. These phenotypical characteristics can be mimicked in wild-type embryos by acetazolamide treatment, suggesting that CA5 activity in zebrafish is essential for a proper development. In addition we show that CA5 regulates acid-base balance during embryonic development, since lowering the pH can compensate for the loss of CA5 activity. Identification of selective modulators of CA5 activity could have a major impact on the development of new therapeutics involved in the treatment of a variety of disorders.

  7. Initial evaluation and comparison of plasma damage to atomic layer carbon materials using conventional and low T{sub e} plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Jagtiani, Ashish V.; Miyazoe, Hiroyuki; Chang, Josephine; Farmer, Damon B.; Engel, Michael; Neumayer, Deborah; Han, Shu-Jen; Engelmann, Sebastian U., E-mail: suengelm@us.ibm.com; Joseph, Eric A. [IBM, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Boris, David R.; Hernández, Sandra C.; Walton, Scott G. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Lock, Evgeniya H. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-01-15

    The ability to achieve atomic layer precision is the utmost goal in the implementation of atomic layer etch technology. Carbon-based materials such as carbon nanotubes (CNTs) and graphene are single atomic layers of carbon with unique properties and, as such, represent the ultimate candidates to study the ability to process with atomic layer precision and assess impact of plasma damage to atomic layer materials. In this work, the authors use these materials to evaluate the atomic layer processing capabilities of electron beam generated plasmas. First, the authors evaluate damage to semiconducting CNTs when exposed to beam-generated plasmas and compare these results against the results using typical plasma used in semiconductor processing. The authors find that the beam generated plasma resulted in significantly lower current degradation in comparison to typical plasmas. Next, the authors evaluated the use of electron beam generated plasmas to process graphene-based devices by functionalizing graphene with fluorine, nitrogen, or oxygen to facilitate atomic layer deposition (ALD). The authors found that all adsorbed species resulted in successful ALD with varying impact on the transconductance of the graphene. Furthermore, the authors compare the ability of both beam generated plasma as well as a conventional low ion energy inductively coupled plasma (ICP) to remove silicon nitride (SiN) deposited on top of the graphene films. Our results indicate that, while both systems can remove SiN, an increase in the D/G ratio from 0.08 for unprocessed graphene to 0.22 to 0.26 for the beam generated plasma, while the ICP yielded values from 0.52 to 1.78. Generally, while some plasma-induced damage was seen for both plasma sources, a much wider process window as well as far less damage to CNTs and graphene was observed when using electron beam generated plasmas.

  8. Evaluating Soil Carbon Sequestration in Central Iowa

    Science.gov (United States)

    Doraiswamy, P. C.; Hunt, E. R.; McCarty, G. W.; Daughtry, C. S.; Izaurralde, C.

    2005-12-01

    The potential for reducing atmospheric carbon dioxide (CO2) concentration through landuse and management of agricultural systems is of great interest worldwide. Agricultural soils can be a source of CO2 when not properly managed but can also be a sink for sequestering CO2 through proper soil and crop management. The EPIC-CENTURY biogeochemical model was used to simulate the baseline level of soil carbon from soil survey data and project changes in soil organic carbon (SOC) under different tillage and crop management practices for corn and soybean crops. The study was conducted in central Iowa (50 km x 100 km) to simulate changes in soil carbon over the next 50 years. The simulations were conducted in two phases; initially a 25-year period (1971-1995) was simulated using conventional tillage practices since there was a transition in new management after 1995. In the second 25-year period (1996-2020), four different modeling scenarios were applied namely; conventional tillage, mulch tillage, no-tillage and no-tillage with a rye cover crop over the winter. The model simulation results showed potential gains in soil carbon in the top layers of the soil for conservation tillage. The simulations were made at a spatial resolution of 1.6 km x 1.6 km and mapped for the study area. There was a mean reduction in soil organic carbon of 0.095 T/ha per year over the 25-year period starting with 1996 for the conventional tillage practice. However, for management practices of mulch tillage, no tillage and no tillage with cover crop there was an increase in soil organic carbon of 0.12, 0.202 and 0.263 T/ha respectively over the same 25-year period. These results are in general similar to studies conducted in this region.

  9. Carbon composite micro- and nano-tubes-based electrodes for detection of nucleic acids

    Directory of Open Access Journals (Sweden)

    Huska Dalibor

    2011-01-01

    Full Text Available Abstract The first aim of this study was to fabricate vertically aligned multiwalled carbon nanotubes (MWCNTs. MWCNTs were successfully prepared by using plasma enhanced chemical vapour deposition. Further, three carbon composite electrodes with different content of carbon particles with various shapes and sizes were prepared and tested on measuring of nucleic acids. The dependences of adenine peak height on the concentration of nucleic acid sample were measured. Carbon composite electrode prepared from a mixture of glassy and spherical carbon powder and MWCNTs had the highest sensitivity to nucleic acids. Other interesting result is the fact that we were able to distinguish signals for all bases using this electrode.

  10. Diagnostic Evaluation of Carbon Sources in CMAQ

    Science.gov (United States)

    Traditional monitoring networks measure only total elemental carbon (EC) and organic carbon (OC) routinely. Diagnosing model biases with such limited information is difficult. Measurements of organic tracer compounds have recently become available and allow for more detailed di...

  11. The effect of gamma ray irradiation on PAN-based intermediate modulus carbon fibers

    International Nuclear Information System (INIS)

    Li, Bin; Feng, Yi; Qian, Gang; Zhang, Jingcheng; Zhuang, Zhong; Wang, Xianping

    2013-01-01

    Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were conducted on PAN-based intermediate modulus carbon fibers to investigate the structure and surface hydrophilicity of the carbon fibers before and after gamma irradiation. Two methods were used to determine Young’s modulus of the carbon fibers. The results show that gamma ray irradiation improved the degree of graphitization and introduced compressive stress into carbon fiber surface. Gamma ray also improved the carbon fiber surface hydrophilicity through increasing the value of O/C and enhancing the quantity of oxygen functional groups on carbon fibers. No distinct morphology change was observed after gamma ray irradiation. The Young’s modulus of the fibers increased with increasing irradiation dose

  12. Correlation of NMR and refractometry to evaluate the stability constant on carbon tetrachloride

    International Nuclear Information System (INIS)

    Modarress, H.; Pouryazadanpanah, N.

    2004-01-01

    An equation has been suggested which correlate the NMR and refractometry results to evaluate the stability constant of electron donor complexes. Using this equation the stability constant of complexation between carbon tetrachloride and toluene in cyclohexane has been studied by refractometry and NMR spectroscopy

  13. Study of the potential of low carbon energy development and its contribution to realize the reduction target of carbon intensity in China

    International Nuclear Information System (INIS)

    Li Hongqiang; Wang Limao; Shen Lei; Chen Fengnan

    2012-01-01

    Appraising low carbon energy potential in China and studying its contribution to China's target of cutting CO 2 emissions by 40–45% per unit of GDP by 2020 is crucial for taking countermeasures against climate change and identifying low carbon energy development strategies. This paper presents two scenarios and evaluates the development potential for low carbon energy and its various sources. Based on the evaluation, we analyze how low carbon energy contributes to achieving China's national target of carbon intensity reduction. We draw several conclusions from the analysis. First, low carbon energy will contribute 9.74% (minimum) to 24.42% (maximum) toward the 2020 carbon intensity target under three economic development schemes. Second, the contribution will decrease when the GDP growth rate increases. Third, to maintain the same contribution with high GDP growth rates, China should not only strengthen its investment and policy stimulation for low carbon energy but also simultaneously optimize economic structures and improve carbon productivity. - Highlights: ► Low carbon energy can substitute at least 659.5 Mtce of fossil energy in 2020. ► Potential of hydropower ranks first among all low carbon energy sources in 2020. ► Low carbon energy will contribute at least 9.47% to reach carbon target in 2020. ► China should formulate and implement comprehensive measures to cut carbon emission.

  14. Use of Electrochemical Impedance Spectroscopy for the Evaluation of Performance of PEM Fuel Cells Based on Carbon Cloth Gas Diffusion Electrodes

    Directory of Open Access Journals (Sweden)

    Saverio Latorrata

    2018-01-01

    Full Text Available Polymer electrolyte membrane fuel cells (PEMFCs have attracted great attention in the last two decades as valuable alternative energy generators because of their high efficiencies and low or null pollutant emissions. In the present work, two gas diffusion electrodes (GDEs for PEMFCs were prepared by using an ink containing carbon-supported platinum in the catalytic phase which was sprayed onto a carbon cloth substrate. Two aerograph nozzles, with different sizes, were used. The prepared GDEs were assembled into a fuel cell lab prototype with commercial electrolyte and bipolar plates and tested alternately as anode and cathode. Polarization measurements and electrochemical impedance spectroscopy (EIS were performed on the running hydrogen-fed PEMFC from open circuit voltage to high current density. Experimental impedance spectra were fitted with an equivalent circuit model by using ZView software which allowed to get crucial parameters for the evaluation of fuel cell performance, such as ohmic resistance, charge transfer, and mass transfer resistance, whose trends have been studied as a function of the applied current density.

  15. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF{sub 6} electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Azam, M.A., E-mail: asyadi@utem.edu.my [Carbon Research Technology Research Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Jantan, N.H.; Dorah, N.; Seman, R.N.A.R.; Manaf, N.S.A. [Carbon Research Technology Research Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Kudin, T.I.T. [Ionics Materials & Devices Research Laboratory, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor (Malaysia); Yahya, M.Z.A. [Ionics Materials & Devices Research Laboratory, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor (Malaysia); National Defence University of Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur (Malaysia)

    2015-09-15

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF{sub 6} non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g{sup −1}. - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, among others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g{sup −1} at a scan rate of 1 mV s{sup −1}.

  16. Synthesis of polybenzoxazine based nitrogen-rich porous carbons for carbon dioxide capture

    Science.gov (United States)

    Wan, Liu; Wang, Jianlong; Feng, Chong; Sun, Yahui; Li, Kaixi

    2015-04-01

    Nitrogen-rich porous carbons (NPCs) were synthesized from 1,5-dihydroxynaphthalene, urea, and formaldehyde based on benzoxazine chemistry by a soft-templating method with KOH chemical activation. They possess high surface areas of 856.8-1257.8 m2 g-1, a large pore volume of 0.15-0.65 cm3 g-1, tunable pore structure, high nitrogen content (5.21-5.32 wt%), and high char yields. The amount of the soft-templating agent F127 has multiple influences on the textural and chemical properties of the carbons, affecting the surface area and pore structure, impacting the compositions of nitrogen species and resulting in an improvement of the CO2 capture performance. At 1 bar, high CO2 uptake of 4.02 and 6.35 mmol g-1 at 25 and 0 °C was achieved for the sample NPC-2 with a molar ratio of F127 : urea = 0.010 : 1. This can be attributed to its well-developed micropore structure and abundant pyridinic nitrogen, pyrrolic nitrogen and pyridonic nitrogen functionalities. The sample NPC-2 also exhibits a remarkable selectivity for CO2/N2 separation and a fast adsorption/desorption rate and can be easily regenerated. This suggests that the polybenzoxazine-based NPCs are desirable for CO2 capture because of possessing a high micropore surface area, a large micropore volume, appropriate pore size distribution, and a large number of basic nitrogen functionalities.Nitrogen-rich porous carbons (NPCs) were synthesized from 1,5-dihydroxynaphthalene, urea, and formaldehyde based on benzoxazine chemistry by a soft-templating method with KOH chemical activation. They possess high surface areas of 856.8-1257.8 m2 g-1, a large pore volume of 0.15-0.65 cm3 g-1, tunable pore structure, high nitrogen content (5.21-5.32 wt%), and high char yields. The amount of the soft-templating agent F127 has multiple influences on the textural and chemical properties of the carbons, affecting the surface area and pore structure, impacting the compositions of nitrogen species and resulting in an improvement of the

  17. Imperceptible and Ultraflexible p-Type Transistors and Macroelectronics Based on Carbon Nanotubes.

    Science.gov (United States)

    Cao, Xuan; Cao, Yu; Zhou, Chongwu

    2016-01-26

    Flexible thin-film transistors based on semiconducting single-wall carbon nanotubes are promising for flexible digital circuits, artificial skins, radio frequency devices, active-matrix-based displays, and sensors due to the outstanding electrical properties and intrinsic mechanical strength of carbon nanotubes. Nevertheless, previous research effort only led to nanotube thin-film transistors with the smallest bending radius down to 1 mm. In this paper, we have realized the full potential of carbon nanotubes by making ultraflexible and imperceptible p-type transistors and circuits with a bending radius down to 40 μm. In addition, the resulted transistors show mobility up to 12.04 cm(2) V(-1) S(-1), high on-off ratio (∼10(6)), ultralight weight (transistors and circuits have great potential to work as indispensable components for ultraflexible complementary electronics.

  18. Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle-component-based factor analysis

    OpenAIRE

    C. A. Stroud; M. D. Moran; P. A. Makar; S. Gong; W. Gong; J. Zhang; J. G. Slowik; J. P. D. Abbatt; G. Lu; J. R. Brook; C. Mihele; Q. Li; D. Sills; K. B. Strawbridge; M. L. McGuire

    2012-01-01

    Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007) in Southern Ontario, Canada, were used to evaluate predictions of primary organic aerosol (POA) and two other carbonaceous species, black carbon (BC) and carbon monoxide (CO), made for this summertime period by Environment Canada's AURAMS regional chemical transport model. Particle component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON) and two...

  19. Oxygen reduction activity of N-doped carbon-based films prepared by pulsed laser deposition

    Science.gov (United States)

    Hakoda, Teruyuki; Yamamoto, Shunya; Kawaguchi, Kazuhiro; Yamaki, Tetsuya; Kobayashi, Tomohiro; Yoshikawa, Masahito

    2010-12-01

    Carbon-based films with nitrogen species on their surface were prepared on a glassy carbon (GC) substrate for application as a non-platinum cathode catalyst for polymer electrolyte fuel cells. Cobalt and carbon were deposited in the presence of N 2 gas using a pulsed laser deposition method and then the metal Co was removed by HCl-washing treatment. Oxygen reduction reaction (ORR) activity was electrochemically determined using a rotating disk electrode system in which the film samples on the GC substrate were replaceable. The ORR activity increased with the temperature of the GC substrate during deposition. A carbon-based film prepared at 600 °C in the presence of N 2 at 66.7 Pa showed the highest ORR activity among the tested samples (0.66 V vs. NHE). This film was composed of amorphous carbons doped with pyridine type nitrogen atoms on its surface.

  20. Distinguishing feral and managed honeybees (Apis mellifera) using stable carbon isotopes

    OpenAIRE

    Anderson , Lucy; Dynes , Travis; Berry , Jennifer; Delaplane , Keith; McCormick , Lydia; Brosi , Berry

    2014-01-01

    International audience; The ability to distinguish feral and managed honeybees (Apis mellifera) has applications in studies of population genetics, parasite transmission, pollination, interspecific interactions, and bee breeding. We evaluated a diagnostic test based on theoretical differences in stable carbon isotope ratios generated by supplemental feeding. We evaluated (1) if carbon isotope ratios can distinguish feral and managed honeybees and (2) the temporal persistence of the signal aft...

  1. Carbon contributions from roots in cotton based rotations

    Science.gov (United States)

    Tan, D. K. Y.; Hulugalle, N. R.

    2012-04-01

    Most research on the decline in soil organic carbon (SOC) stocks in Australian cotton farming systems has focussed on the inputs from above-ground crop residues, with contribution from roots being less studied. This paper aims to outline the contribution of cotton roots and roots of other crops to soil carbon stocks in furrow-irrigated Vertisols in several cotton (Gossypium hirsutum L.)-based rotations. Data was collected from cotton-based rotation systems: cotton monoculture, cotton-vetch (Vicia benghalensis) Roth.), cotton-wheat (Triticum aestivum L.), cotton-wheat-vetch, cotton-corn, corn-corn, cotton-sorghum (Sorghum bicolor L.) and from BollgardTM II (Bt) and non-Bt cotton. Land management systems were permanent beds, with or without standing stubble, and conventional tillage. Root growth in the surface 0.10 m was measured with the core-break method, and that in the 0.10 to 1.0 m depth with a minirhizotron and I-CAP image capture system. These measurements were used to derive root C added to soil through intra-seasonal root death (Clost), C in roots remaining at the end of season (Croot), and total root C added to soil (Ctotal = Croot + Clost). Ctotal in non-Bt cotton (Sicot 80RRF, 0.9 t C/ha/year) was higher than in Bt cotton (Sicot 80RRF, 0.6 t C/ha/year). Overall, Ctotal from cotton roots ranges between 0.5 to 5 t C/ha/year, with Clost contributing 25-70%. Ctotal was greater with vetch than with wheat and was in the order of vetch in cotton-wheat-vetch (5.1 t C/ha/year) > vetch in cotton-vetch (1.9 t C/ha/year) > wheat in cotton-wheat (1.6 t C/ha/year) = wheat in cotton-wheat-vetch (1.7 t C/ha/year). Intra-seasonal root mortality accounted for 12% of total root carbon in vetch and 36% in wheat. Average corn Ctotal with monoculture was 9.3 t/ha and with cotton-corn 5.0 t/ha. Ctotal averaged between both treatments was, thus, of the order of 7.7 t C/ha/year and average Clost 0.04 t/ha/yr. Sorghum roots contributed less carbon with conventional tillage (8.2 t

  2. Evaluating land cover influences on model uncertainties—A case study of cropland carbon dynamics in the Mid-Continent Intensive Campaign region

    Science.gov (United States)

    Li, Zhengpeng; Liu, Shuguang; Zhang, Xuesong; West, Tristram O.; Ogle, Stephen M.; Zhou, Naijun

    2016-01-01

    Quantifying spatial and temporal patterns of carbon sources and sinks and their uncertainties across agriculture-dominated areas remains challenging for understanding regional carbon cycles. Characteristics of local land cover inputs could impact the regional carbon estimates but the effect has not been fully evaluated in the past. Within the North American Carbon Program Mid-Continent Intensive (MCI) Campaign, three models were developed to estimate carbon fluxes on croplands: an inventory-based model, the Environmental Policy Integrated Climate (EPIC) model, and the General Ensemble biogeochemical Modeling System (GEMS) model. They all provided estimates of three major carbon fluxes on cropland: net primary production (NPP), net ecosystem production (NEP), and soil organic carbon (SOC) change. Using data mining and spatial statistics, we studied the spatial distribution of the carbon fluxes uncertainties and the relationships between the uncertainties and the land cover characteristics. Results indicated that uncertainties for all three carbon fluxes were not randomly distributed, but instead formed multiple clusters within the MCI region. We investigated the impacts of three land cover characteristics on the fluxes uncertainties: cropland percentage, cropland richness and cropland diversity. The results indicated that cropland percentage significantly influenced the uncertainties of NPP and NEP, but not on the uncertainties of SOC change. Greater uncertainties of NPP and NEP were found in counties with small cropland percentage than the counties with large cropland percentage. Cropland species richness and diversity also showed negative correlations with the model uncertainties. Our study demonstrated that the land cover characteristics contributed to the uncertainties of regional carbon fluxes estimates. The approaches we used in this study can be applied to other ecosystem models to identify the areas with high uncertainties and where models can be improved to

  3. Transnational city carbon footprint networks – Exploring carbon links between Australian and Chinese cities

    International Nuclear Information System (INIS)

    Chen, Guangwu; Wiedmann, Thomas; Wang, Yafei; Hadjikakou, Michalis

    2016-01-01

    Highlights: • A trans-national, multi-region input-output analysis for cities is presented. • We examine the carbon footprint network of ten cities. • The balance of emissions embodied in trade discloses a hierarchy of responsibility. • We model how emissions reductions spread through the city carbon networks. • Implications on the Chinese and Australian carbon trading schemes are discussed. - Abstract: Cities are leading actions against climate change through global networks. More than 360 global cities announced during the 2015 Paris Climate Conference that the collective impact of their commitments will deliver over half of the world’s urban greenhouse gas emissions reductions by 2020. Previous studies on multi-city carbon footprint networks using sub-national, multi-region input-output (MRIO) modelling have identified additional opportunities for addressing the negative impacts of climate change through joint actions between cities within a country. However, similar links between city carbon footprints have not yet been studied across countries. In this study we focus on inter-city and inter-country carbon flows between two trading partners in a first attempt to address this gap. We construct a multi-scale, global MRIO model to describe a transnational city carbon footprint network among five Chinese megacities and the five largest Australian capital cities. First, we quantify city carbon footprints by sectors and regions. Based on the carbon map concept we show how local emissions reductions influence other regions’ carbon footprints. We then present a city emissions ’outsourcing hierarchy’ based on the balance of emissions embodied in intercity and international trade. The differences between cities and their position in the hierarchy emphasize the need for a bespoke treatment of their responsibilities towards climate change mitigation. Finally, we evaluate and discuss the potentially significant benefits of harmonising and aligning China

  4. Design rules and reality check for carbon-based ultracapacitors

    Science.gov (United States)

    Eisenmann, Erhard T.

    1995-04-01

    Design criteria for carbon-based Ultracapacitors have been determined for specified energy and power requirements, using the geometry of the components and such material properties as density, porosity and conductivity as parameters, while also considering chemical compatibility. This analysis shows that the weights of active and inactive components of the capacitor structure must be carefully balanced for maximum energy and power density. When applied to nonaqueous electrolytes, the design rules for a 5 Wh/kg device call for porous carbon with a specific capacitance of about 30 F/cu cm. This performance is not achievable with pure, electrostatic double layer capacitance. Double layer capacitance is only 5 to 30% of that observed in aqueous electrolyte. Tests also showed that nonaqueous electrolytes have a diminished capability to access micropores in activated carbon, in one case yielding a capacitance of less than 1 F/cu cm for carbon that had 100 F/cu cm in aqueous electrolyte. With negative results on nonaqueous electrolytes dominating the present study, the obvious conclusion is to concentrate on aqueous systems. Only aqueous double layer capacitors offer adequate electrostatic charging characteristics which is the basis for high power performance. There arc many opportunities for further advancing aqueous double layer capacitors, one being the use of highly activated carbon films, as opposed to powders, fibers and foams. While the manufacture of carbon films is still costly, and while the energy and power density of the resulting devices may not meet the optimistic goals that have been proposed, this technology could produce true double layer capacitors with significantly improved performance and large commercial potential.

  5. Electron spectroscopy of rubber and resin-based composites containing 2D carbon

    International Nuclear Information System (INIS)

    Kaciulis, S.; Mezzi, A.; Balijepalli, S.K.; Lavorgna, M.; Xia, H.S.

    2015-01-01

    Composite materials with 2D carbon (graphene and/or single wall carbon nanotubes) are very promising due to their extraordinary electrical and mechanical properties. Graphene and natural rubber composites, which may be used for the gaskets or sealants, were prepared by ultrasonically assisted latex-mixing exfoliation and in-situ reduction process, with two vulcanization approaches: roll-mixing and hot-pressing. Also the resin-based composites, filled with micro-particles of Ag and graphene or carbon nanotubes, have been studied. The standards for the compositional characterization of these materials still are not established. In addition to the mostly used techniques, such as Raman spectroscopy and electron microscopy, also Auger electron spectroscopy can be employed for the identification of graphene. In this study, the shape of C KVV peak, excited by electron beam and X-ray photons, has been investigated in different composite materials containing graphene and carbon nanotubes. A spectroscopic method for 2D carbon recognition, based on the D x parameter which is determined from C KVV signal excited by X-ray photons, was proposed and verified. Even a small content of graphene in different types of composites was sufficient for this recognition due to the dominating presence of graphene on the surface of composites. - Highlights: • Chemical composition of the rubber composites was determined by XPS. • Auger spectrum of carbon was used for graphene identification in composites. • Small content of graphene was sufficient for its recognition from the D parameter

  6. Electron spectroscopy of rubber and resin-based composites containing 2D carbon

    Energy Technology Data Exchange (ETDEWEB)

    Kaciulis, S., E-mail: saulius.kaciulis@ismn.cnr.it [Institute for the Study of Nanostructured Materials, ISMN-CNR, P.O. Box 10, Monterotondo Stazione, 00015 Roma (Italy); Mezzi, A.; Balijepalli, S.K. [Institute for the Study of Nanostructured Materials, ISMN-CNR, P.O. Box 10, Monterotondo Stazione, 00015 Roma (Italy); Lavorgna, M. [Institute of Polymers, Composites and Biomaterials, IPCB-CNR, P.le Fermi, 80055 Napoli (Italy); Xia, H.S. [State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 Sichuan (China)

    2015-04-30

    Composite materials with 2D carbon (graphene and/or single wall carbon nanotubes) are very promising due to their extraordinary electrical and mechanical properties. Graphene and natural rubber composites, which may be used for the gaskets or sealants, were prepared by ultrasonically assisted latex-mixing exfoliation and in-situ reduction process, with two vulcanization approaches: roll-mixing and hot-pressing. Also the resin-based composites, filled with micro-particles of Ag and graphene or carbon nanotubes, have been studied. The standards for the compositional characterization of these materials still are not established. In addition to the mostly used techniques, such as Raman spectroscopy and electron microscopy, also Auger electron spectroscopy can be employed for the identification of graphene. In this study, the shape of C KVV peak, excited by electron beam and X-ray photons, has been investigated in different composite materials containing graphene and carbon nanotubes. A spectroscopic method for 2D carbon recognition, based on the D{sub x} parameter which is determined from C KVV signal excited by X-ray photons, was proposed and verified. Even a small content of graphene in different types of composites was sufficient for this recognition due to the dominating presence of graphene on the surface of composites. - Highlights: • Chemical composition of the rubber composites was determined by XPS. • Auger spectrum of carbon was used for graphene identification in composites. • Small content of graphene was sufficient for its recognition from the D parameter.

  7. Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin-water system

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Chilton [Food and Drug Administration, Dept. of Health and Human Services, Lenexa, KS (United States); Losso, Jack N.; Rao, Ramu M. [Louisiana State Univ. Agricultural Center, Dept. of Food Science, Baton Rouge, LA (United States); Marshall, Wayne E. [USDA-ARS, Southern Regional Research Center, New Orleans, LA (United States)

    2002-11-01

    The present study was designed to model the adsorption of geosmin from water under laboratory conditions using the Freundlich isotherm model. This model was used to compare the efficiency of sugarcane bagasse and pecan shell-based powdered activated carbon to the efficiency of a coal-based commercial activated carbon (Calgon Filtrasorb 400). When data were generated from Freundlich isotherms, Calgon Filtrasorb 400 had greater geosmin adsorption at all geosmin concentrations studied than the laboratory produced steam-activated pecan shell carbon, steam-activated bagasse carbon, and the CO{sub 2}-activated pecan shell carbon. At geosmin concentrations <0.07 {sup {mu}}g/l for the phosphoric acid-activated pecan shell carbon and below 0.08 {sup {mu}}g/l for a commercially produced steam-activated pecan shell carbon obtained from Scientific Carbons, these two carbons had a higher calculated geosmin adsorption than Filtrasorb 400. While the commercial carbon was more efficient than some laboratory prepared carbons at most geosmin concentrations, the results indicate that when the amount of geosmin was below the threshold level of human taste (about 0.10 {sup {mu}}g/l), the phosphoric acid-activated pecan shell carbon and the Scientific Carbons sample were more efficient than Filtrasorb 400 at geosmin removal. (Author)

  8. Process based modelling of soil organic carbon redistribution on landscape scale

    Science.gov (United States)

    Schindewolf, Marcus; Seher, Wiebke; Amorim, Amorim S. S.; Maeso, Daniel L.; Jürgen, Schmidt

    2014-05-01

    Recent studies have pointed out the great importance of erosion processes in global carbon cycling. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon accumulated over long time in the soil humus fraction. Lal (2003) estimates that 20% of the organic carbon eroded with top soils is emitted into atmosphere, due to aggregate breakdown and carbon mineralization during transport by surface runoff. Furthermore soil erosion causes a progressive decrease of natural soil fertility, since cation exchange capacity is associated with organic colloids. As a consequence the ability of soils to accumulate organic carbon is reduced proportionately to the drop in soil productivity. The colluvial organic carbon might be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Some colluvial sites can act as long-term sinks for organic carbon. The erosional transport of organic carbon may have an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. These sediments might be deposited in the riparian zones of river networks. Erosional losses of organic carbon will not pass over into atmosphere for the most part. But soil erosion limits substantially the potential of soils to sequester atmospheric CO2 by generating humus. The present study refers to lateral carbon flux modelling on landscape scale using the process based EROSION 3D soil loss simulation model, using existing parameter values. The selective nature of soil erosion results in a preferentially transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. For this reason it is essential that EROSION 3D provides the

  9. Carbon profiles of remote Australian Indigenous communities: A base for opportunities

    International Nuclear Information System (INIS)

    Stewart, J.; Anda, M.; Harper, R.J.

    2016-01-01

    A decision-making model was constructed to assist remote Australian Indigenous communities select appropriate climate change mitigation programs. The Resilient Community and Livelihood Asset Integration Model (ReCLAIM) comprises six steps that focus on community assets and aspirations. The second of these steps is to determine the baseline carbon profiles of communities based on six sources of carbon emissions: materials, construction processes, stationary energy, transport, water systems and waste. The methodology employed an annualised lifecycle analysis of housing materials and construction, and an annual inventory of other emission sources. Profiles were calculated for two remote communities and compared to the Australian average and also average electricity consumption by remote communities in the Northern Territory. The results, expressed in tonnes of carbon dioxide equivalent (tCO_2-e), showed that average household carbon profiles of the two communities (6.3 and 4.1 tCO_2-e/capita/yr) were generally lower than the Australian average (7.3 tCO_2-e/capita/yr). The stationary energy results revealed that infrastructure and building design could raise fuel consumption and costs, and therefore carbon emissions, despite modest lifestyles. The carbon emission categories differed between the two communities highlighting the need for an individualised approach to understanding the drivers of carbon emissions and mitigation responses. - Highlights: •We model carbon profiles of two remote Aboriginal communities. •Community carbon profiles were lower than the Australian average. •We compare stationary energy with a 72-community sample average. •Low-carbon communities are possible with renewable energy systems. •Building design and energy source can impact significantly on emissions.

  10. Carbon nanotube-based sensing devices for human Arginase-1 detection

    Directory of Open Access Journals (Sweden)

    S. Baldo

    2016-03-01

    Full Text Available A new carbon nanotube-based device for detection of Arginase 1 (ARG-1 was produced. Multi-walled carbon nanotubes (MWCNTs were deposited between electrodes by dielectrophoresis (DEP in an accurate and reproducible way. This deposition method has the advantages of low cost and room temperature conditions and therefore, can be used on different kinds of substrates (silicon, glass, plastics allowing for large scale production of chemical or biological sensors. Scanning electrical microscope (SEM and electrical characterization have been performed on the biosensors before and after protein exposure. The devices were tested in the present work for the detection of ARG-1. They show high sensitivity and reproducibility, and can be easily and suitably modified to detect other proteins. Keywords: Carbon nanotube, Biosensor, Arginase, Dielectrophoresis, Biomarker, Protein

  11. Solubility Products of M(II) - Carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Grauer, Rolf; Berner, Urs [ed.

    1999-01-01

    Many solubility data for M(II) carbonates commonly compiled in tables are contradictory and sometimes obviously wrong. The quality of such data has been evaluated based on the original publications and reliable solubility constants have been selected for the carbonates of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb with the help of cross-comparisons. (author) translated from a PSI internal report written in German in 1994 (TM-44-94-05). 5 figs., 1 tab., 68 refs.

  12. Carbon allowance auction design of China's emissions trading scheme: A multi-agent-based approach

    International Nuclear Information System (INIS)

    Tang, Ling; Wu, Jiaqian; Yu, Lean; Bao, Qin

    2017-01-01

    In this paper, a multi-agent-based ETS simulation model is proposed for carbon allowance auction design in China. In the proposed model, two main agents, i.e., the government (the ETS implementer) and the firms in different sectors (the ETS targets), are considered. Under the ETS policy, all agents make various decisions individually according to their own goals, and interact with each other through three main markets: the commodity market, the primary carbon auction market and the secondary carbon trading market. Different popular auction designs are introduced into the ETS formulation to offer helpful insights into China's ETS design. (1) Generally, the ETS would lead to positive effects on China's carbon mitigation and energy structure improvement, but a negative impact on economy. (2) As for auction forms, the uniform-price design is relatively moderate, while the discriminative-price design is quite aggressive in both economic damage and emissions reduction. (3) As for carbon price, the uniform-price auction might generate a slightly higher market clearing price than the discriminative-price auction, and the prices under two auction rules fluctuate about RMB 40 per metric ton. (4) As for carbon cap, the total allowances in the carbon auction market should be carefully set to well balance economic growth and mitigation effect. - Highlights: • A multi-agent-based model is proposed for China's emissions trading scheme (ETS). • Two main economic agents are included: government and firms in different sectors. • Auction-based allocation for initial carbon allowances is especially investigated. • Economic and environmental impacts of different auction designs are analyzed. • Results confirm the validity of the model and give helpful insights into ETS design.

  13. Human-Finger Electronics Based on Opposing Humidity-Resistance Responses in Carbon Nanofilms

    KAUST Repository

    Tai, Yanlong

    2017-01-09

    Carbon nanomaterials have excellent humidity sensing properties. Here, it is demonstrated that multiwalled carbon-nanotube (MWCNT)- and reduced-graphene-oxide (rGO)-based conductive films have opposite humidity/electrical resistance responses: MWCNTs increase their electrical resistance (positive response) and rGOs decrease their electrical resistance (negative response). The authors propose a new phenomenology that describes a

  14. Field emitters with low turn on electric field based on carbon fibers

    International Nuclear Information System (INIS)

    Wang Qilong; Mu Hui; Zhang Xiaobing; Lei Wei; Wang Jinchan; Zhao Hongping

    2007-01-01

    Field emitters of vertical carbon fibers on a silicon substrate are fabricated by catalytic chemical vapor deposition. After an ageing process of 150 min, field emission measurement of the fibers is carried out in a vacuum chamber with a base pressure of 5.0 x 10 -4 Pa. The experimental results display that field emission performance of the carbon fibers depends strongly on the vacuum level during the experiments. After the field emission measurement, damage to the carbon fiber field emitters is observed from the scanning electron microscopic images

  15. Humidity effects on the electronic transport properties in carbon based nanoscale device

    International Nuclear Information System (INIS)

    He, Jun; Chen, Ke-Qiu

    2012-01-01

    By applying nonequilibrium Green's functions in combination with the density functional theory, we investigate the effect of humidity on the electronic transport properties in carbon based nanoscale device. The results show that different humidity may form varied localized potential barrier, which is a very important factor to affect the stability of electronic transport in the nanoscale system. A mechanism for the humidity effect is suggested. -- Highlights: ► Electronic transport in carbon based nanoscale device. ► Humidity affects the stability of electronic transport. ► Different humidity may form varied localized potential barrier.

  16. Impact of carbon nanotubes based nanofluid on oil recovery efficiency using core flooding

    Science.gov (United States)

    Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek

    2018-06-01

    This study aims to investigate the influence of carbon nanotubes based nanofluid on interfacial tension and oil recovery efficiency. Practically multi-walled carbon nanotubes were successfully synthesized using chemical vapour deposition technique and characterized using X-ray diffraction and Field Emission Scanning Electron microscope in order to understand its structure, shape, and morphology. Nanofluids are one of the interesting new agents for enhanced oil recovery (EOR) that can change the reservoir rock-fluid properties in terms of interfacial tension and wettability. In this work, different concentration of carbon nanotubes based fluids were prepared and the effect of each concentration on surface tension was determined using pendant drop method. After specifying the optimum concentration of carbon nanotubes based nanofluid, core flooding experiment was conducted by two pore volume of brine and two pore volume of nanofluid and then oil recovery factor was calculated. The results show that carbon nanotubes can bring in additional recovery factor of 18.57% in the glass bead sample. It has been observed that nanofluid with high surface tension value gives higher recovery. It was found that the optimum value of concentration is 0.3 wt% at which maximum surface tension of 33.46 mN/m and oil recovery factor of 18.57% was observed. This improvement in recovery factor can be recognized due to interfacial tension reduction and wettability alteration.

  17. Influence of updating global emission inventory of black carbon on evaluation of the climate and health impact

    Science.gov (United States)

    Wang, Rong; Tao, Shu; Balkanski, Yves; Ciais, Philippe

    2013-04-01

    Black carbon (BC) is an air component of particular concern in terms of air quality and climate change. Black carbon emissions are often estimated based on the fuel data and emission factors. However, large variations in emission factors reported in the literature have led to a high uncertainty in previous inventories. Here, we develop a new global 0.1°×0.1° BC emission inventory for 2007 with full uncertainty analysis based on updated source and emission factor databases. Two versions of LMDz-OR-INCA models, named as INCA and INCA-zA, are run to evaluate the new emission inventory. INCA is built up based on a regular grid system with a resolution of 1.27° in latitude and 2.50° in longitude, while INCA-zA is specially zoomed to 0.51°×0.66° (latitude×longitude) in Asia. By checking against field observations, we compare our inventory with ACCMIP, which is used by IPCC in the 5th assessment report, and also evaluate the influence of model resolutions. With the newly calculated BC air concentrations and the nested model, we estimate the direct radiative forcing of BC and the premature death and mortality rate induced by BC exposure with Asia emphasized. Global BC direct radiative forcing at TOA is estimated to be 0.41 W/m2 (0.2 - 0.8 as inter-quartile range), which is 17% higher than that derived from the inventory adopted by IPCC-AR5 (0.34 W/m2). The estimated premature deaths induced by inhalation exposure to anthropogenic BC (0.36 million in 2007) and the percentage of high risk population are higher than those previously estimated. Ninety percents of the global total anthropogenic PD occur in Asia with 0.18 and 0.08 million deaths in China and India, respectively.

  18. Ultrasensitive, Stretchable Strain Sensors Based on Fragmented Carbon Nanotube Papers

    KAUST Repository

    Zhou, Jian; Yu, Hu; Xu, Xuezhu; Han, Fei; Lubineau, Gilles

    2017-01-01

    The development of strain sensors featuring both ultra high sensitivity and high stretchability is still a challenge. We demonstrate that strain sensors based on fragmented single-walled carbon nanotube (SWCNT) paper embedded in poly

  19. Electroadsorption desalination with carbon nanotube/PAN-based carbon fiber felt composites as electrodes.

    Science.gov (United States)

    Liu, Yang; Zhou, Junbo

    2014-01-01

    The chemical vapor deposition method is used to prepare CNT (carbon nanotube)/PCF (PAN-based carbon fiber felt) composite electrodes in this paper, with the surface morphology of CNT/PCF composites and electroadsorption desalination performance being studied. Results show such electrode materials with three-dimensional network nanostructures having a larger specific surface area and narrower micropore distribution, with a huge number of reactive groups covering the surface. Compared with PCF electrodes, CNT/PCF can allow for a higher adsorption and desorption rate but lower energy consumption; meanwhile, under the condition of the same voltage change, the CNT/PCF electrodes are provided with a better desalination effect. The study also found that the higher the original concentration of the solution, the greater the adsorption capacity and the lower the adsorption rate. At the same time, the higher the solution's pH, the better the desalting; the smaller the ions' radius, the greater the amount of adsorption.

  20. Reducing carbon transaction costs in community based forest management

    NARCIS (Netherlands)

    Skutsch, Margaret

    The paper considers the potential for community based forest management (of existing forests) in developing countries, as a future CDM strategy, to sequester carbon and claim credits in future commitment periods. This kind of forestry is cost effective, and should bring many more benefits to local

  1. Straightforward synthesis of a triazine-based porous carbon with high gas-uptake capacities

    DEFF Research Database (Denmark)

    Hu, Xinming; Chen, Qi; Zhao, Yan Chao

    2014-01-01

    A triazine-based porous carbon material (TPC-1) was prepared directly from a fluorinated aromatic nitrile in molten zinc chloride. Trimerization of the nitrile and subsequent defluorination carbonization of the polymeric network result in the formation of TPC-1. The defluorination process is reve...

  2. Femtosecond laser ablation of single-wall carbon nanotube-based material

    International Nuclear Information System (INIS)

    Danilov, Pavel A; Ionin, Andrey A; Kudryashov, Sergey I; Makarov, Sergey V; Mel’nik, Nikolay N; Rudenko, Andrey A; Yurovskikh, Vladislav I; Zayarny, Dmitry V; Lednev, Vasily N; Obraztsova, Elena D; Pershin, Sergey M; Bunkin, Alexey F

    2014-01-01

    Single- and multi-shot femtosecond laser surface ablation of a single-wall carbon nanotube-based substrate at 515- and 1030 nm wavelengths was studied by scanning electron microscopy and micro-Raman spectroscopy. The laser ablation proceeds in two ways: as the low-fluence mesoscopic shallow disintegration of the surface nanotube packing, preserving the individual integrity and the semiconducting character of the nanotubes or as the high-fluence deep material removal apparently triggered by the strong intrinsic or impurity-mediated ablation of the individual carbon nanotubes on the substrate surface. (letter)

  3. Poly(lactic acid Composites Containing Carbon-Based Nanomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Carolina Gonçalves

    2017-07-01

    Full Text Available Poly(lactic acid (PLA is a green alternative to petrochemical commodity plastics, used in packaging, agricultural products, disposable materials, textiles, and automotive composites. It is also approved by regulatory authorities for several biomedical applications. However, for some uses it is required that some of its properties be improved, namely in terms of thermo-mechanical and electrical performance. The incorporation of nanofillers is a common approach to attain this goal. The outstanding properties of carbon-based nanomaterials (CBN have caused a surge in research works dealing with PLA/CBN composites. The available information is compiled and reviewed, focusing on PLA/CNT (carbon nanotubes and PLA/GBM (graphene-based materials composites. The production methods, and the effects of CBN loading on PLA properties, namely mechanical, thermal, electrical, and biological, are discussed.

  4. Bismuth Modified Carbon-Based Electrodes for the Determination of Selected Neonicotinoid Insecticides

    Directory of Open Access Journals (Sweden)

    Marko Rodić

    2011-05-01

    Full Text Available Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm−3 with a relative standard deviation (RSD not exceeding 1.5%. The tricresyl phosphate-based carbon paste electrodes (TCP-CPEs, bulk modified with 5 and 20 w/w% of bismuth, showed a different analytical performance in the determination of imidacloprid, regarding the peak shape, potential window, and noise level. The TCP-CPE with 5% Bi was advantageous, and the developed DPV method based on it allowed the determination in the concentration range from 1.7 to 60 μg cm−3 with an RSD of 2.4%. To get a deeper insight into the morphology of the bismuth-based sensor surfaces, scanning electron microscopic measurements were performed of both the surface film and the bulk modified electrodes.

  5. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black.

    Science.gov (United States)

    Ma-Hock, Lan; Strauss, Volker; Treumann, Silke; Küttler, Karin; Wohlleben, Wendel; Hofmann, Thomas; Gröters, Sibylle; Wiench, Karin; van Ravenzwaay, Bennard; Landsiedel, Robert

    2013-06-17

    Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in order to avoid unsafe applications or select

  6. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black

    Science.gov (United States)

    2013-01-01

    Background Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. Methods In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. Results No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. Conclusions The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in

  7. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae.

    Science.gov (United States)

    Mesarič, Tina; Gambardella, Chiara; Milivojević, Tamara; Faimali, Marco; Drobne, Damjana; Falugi, Carla; Makovec, Darko; Jemec, Anita; Sepčić, Kristina

    2015-06-01

    We investigated the effects of three different carbon-based nanomaterials on brine shrimp (Artemia salina) larvae. The larvae were exposed to different concentrations of carbon black, graphene oxide, and multiwall carbon nanotubes for 48 h, and observed using phase contrast and scanning electron microscopy. Acute (mortality) and behavioural (swimming speed alteration) responses and cholinesterase, glutathione-S-transferase and catalase enzyme activities were evaluated. These nanomaterials were ingested and concentrated in the gut, and attached onto the body surface of the A. salina larvae. This attachment was responsible for concentration-dependent inhibition of larval swimming, and partly for alterations in the enzyme activities, that differed according to the type of tested nanomaterials. No lethal effects were observed up to 0.5mg/mL carbon black and 0.1mg/mL multiwall carbon nanotubes, while graphene oxide showed a threshold whereby it had no effects at 0.6 mg/mL, and more than 90% mortality at 0.7 mg/mL. Risk quotients calculated on the basis of predicted environmental concentrations indicate that carbon black and multiwall carbon nanotubes currently do not pose a serious risk to the marine environment, however if uncontrolled release of nanomaterials continues, this scenario can rapidly change. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Carbon based nanostructures: diamond clusters structured with nanotubes

    Directory of Open Access Journals (Sweden)

    O.A. Shenderova

    2003-01-01

    Full Text Available Feasibility of designing composites from carbon nanotubes and nanodiamond clusters is discussed based on atomistic simulations. Depending on nanotube size and morphology, some types of open nanotubes can be chemically connected with different facets of diamond clusters. The geometrical relation between different types of nanotubes and different diamond facets for construction of mechanically stable composites with all bonds saturated is summarized. Potential applications of the suggested nanostructures are briefly discussed based on the calculations of their electronic properties using environment dependent self-consistent tight-binding approach.

  9. Research on Price of Railway Freight Based on Low-Carbon Economy

    Directory of Open Access Journals (Sweden)

    Fenling Feng

    2016-01-01

    Full Text Available Transportation is one of the major energy consumption and carbon emission industries. Railway transport is a typical low-carbon transport. To accelerate the green low-carbon transportation development and improve the railway market share, this paper defines the concept of carbon saving profit to study the price of railway freight after the government functions were separated from railway enterprise management. First, taking full account of market factors and on the principle of utility maximization and maximum likelihood method, the sharing ratio model of transportation modes is established. Then consideration is given to both the profit of railway enterprises and social benefits, and income maximization model of railway freight based on low-carbon economy is established. The model can scientifically guide the transportation users who prefer to use resource-saving and environmental-friendly transportation modes, optimize transportation structure, and comprehensively improve the efficiency of transportation system. Finally, case analysis is conducted to verify the rationality and validity of the model, and reference for the rail freight pricing is provided.

  10. Highly enhanced adsorption of Congo red by functionalized finger-citron-leaf-based porous carbon.

    Science.gov (United States)

    Zhao, Gui-Hua; Fang, Yao-Yao; Dai, Wei; Ma, Na

    2018-01-01

    A novel high-performance porous carbon material, lanthanum(III)-doped finger-citron-leaf-based porous carbon (La/FPC), has been synthesized and used as an adsorbent for anion dye Congo red (CR). The La/FPC was characterized by nitrogen adsorption and desorption isotherms, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The adsorption performance of CR by the FPC and La/FPC composites with different contents of lanthanum(III) were evaluated in fixed-bed breakthrough experiments and batch tests at room temperature (298 K). The La/FPC had a high CR uptake capacity, which was superior to those previously reported for other adsorbents. The La/FPC sorbents can be easily regenerated using an ethanol elution technique, and after five cycles the reused La/FPC maintained about 98% of its original CR adsorption capacity. The adsorption kinetics of CR onto the lanthanum(III)-doped FPCs followed a pseudo-second-order kinetic model and fitted well with a Langmuir adsorption isotherm. La/FPC is a promising adsorbent for the removal of the anionic dyes from wastewater.

  11. Embodied carbon dioxide flow in international trade: A comparative analysis based on China and Japan.

    Science.gov (United States)

    Long, Ruyin; Li, Jinqiu; Chen, Hong; Zhang, Linling; Li, Qianwen

    2018-03-01

    Carbon dioxide embodied flow in international trade has become an important factor in defining global carbon emission responsibility and climate policy. We conducted an empirical analysis for China and Japan for the years 2000-2014, using a multi-region input-output model and considering the rest of the world as a comparison group. We compared the two countries' direct and complete carbon dioxide emissions intensity and bilateral economic activities such as imports and exports, production and consumption to analyze the difference between China and Japan. The results showed that the intensities of carbon emissions in all sectors of China were higher than that in Japan and that China's annual production-based emissions were greater than consumption-based emissions, the opposite of these relationships in Japan. China was a typical net carbon export country, and carbon embodied in its imports and exports continued to increase throughout the study period. In contrast, Japan's volume and growth rate of embodied carbon emissions were far less than China's and Japan was a typical net carbon import country. Finally, the conclusions of this study support recommendations for the formulation of international carbon emission responsibility allocation, domestic abatement policy as well as China's trade policy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Simple approach for the fabrication of screen-printed carbon-based electrode for amperometric detection on microchip electrophoresis

    International Nuclear Information System (INIS)

    Petroni, Jacqueline Marques; Lucca, Bruno Gabriel; Ferreira, Valdir Souza

    2017-01-01

    This paper describes a simple method for the fabrication of screen-printed based electrodes for amperometric detection on microchip electrophoresis (ME) devices. The procedure developed is quite simple and does not require expensive instrumentation or sophisticated protocols commonly employed on the production of amperometric sensors, such as photolithography or sputtering steps. The electrodes were fabricated through manual deposition of home-made conductive carbon ink over patterned acrylic substrate. Morphological structure and electrochemical behavior of the carbon electrodes were investigated by scanning electron microscopy and cyclic voltammetry. The produced amperometric sensors were coupled to polydimethylsiloxane (PDMS) microchips at end-channel configuration in order to evaluate their analytical performance. For this purpose, electrophoretic experiments were carried out using nitrite and ascorbic acid as model analytes. Separation of these substances was successfully performed within 50s with good resolution (R = 1.2) and sensitivities (713.5 pA/μM for nitrite and 255.4 pA/μM for ascorbate). The reproducibility of the fabrication method was evaluated and revealed good values concerning the peak currents obtained (8.7% for nitrite and 9.3% for ascorbate). The electrodes obtained through this method exhibited satisfactory lifetime (ca. 400 runs) over low fabrication cost (less than $1 per piece). The feasibility of the proposed device for real analysis was demonstrated through the determination of nitrite concentration levels in drinking water samples. Based on the results achieved, the approach proposed here shows itself as an interesting alternative for simple fabrication of carbon-based electrodes. Furthermore, the devices indicate great promise for other kind of analytical applications involving ME devices. - Highlights: • A novel method to fabricate screen-printed electrodes for amperometric detection in ME is demonstrated. • No sophisticated

  13. Simple approach for the fabrication of screen-printed carbon-based electrode for amperometric detection on microchip electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Petroni, Jacqueline Marques [Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79074-460 (Brazil); Lucca, Bruno Gabriel, E-mail: bruno.lucca@ufes.br [Departamento de Ciências Naturais, Universidade Federal do Espírito Santo, São Mateus, ES, 29932-540 (Brazil); Ferreira, Valdir Souza [Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79074-460 (Brazil)

    2017-02-15

    This paper describes a simple method for the fabrication of screen-printed based electrodes for amperometric detection on microchip electrophoresis (ME) devices. The procedure developed is quite simple and does not require expensive instrumentation or sophisticated protocols commonly employed on the production of amperometric sensors, such as photolithography or sputtering steps. The electrodes were fabricated through manual deposition of home-made conductive carbon ink over patterned acrylic substrate. Morphological structure and electrochemical behavior of the carbon electrodes were investigated by scanning electron microscopy and cyclic voltammetry. The produced amperometric sensors were coupled to polydimethylsiloxane (PDMS) microchips at end-channel configuration in order to evaluate their analytical performance. For this purpose, electrophoretic experiments were carried out using nitrite and ascorbic acid as model analytes. Separation of these substances was successfully performed within 50s with good resolution (R = 1.2) and sensitivities (713.5 pA/μM for nitrite and 255.4 pA/μM for ascorbate). The reproducibility of the fabrication method was evaluated and revealed good values concerning the peak currents obtained (8.7% for nitrite and 9.3% for ascorbate). The electrodes obtained through this method exhibited satisfactory lifetime (ca. 400 runs) over low fabrication cost (less than $1 per piece). The feasibility of the proposed device for real analysis was demonstrated through the determination of nitrite concentration levels in drinking water samples. Based on the results achieved, the approach proposed here shows itself as an interesting alternative for simple fabrication of carbon-based electrodes. Furthermore, the devices indicate great promise for other kind of analytical applications involving ME devices. - Highlights: • A novel method to fabricate screen-printed electrodes for amperometric detection in ME is demonstrated. • No sophisticated

  14. Design, realization and testing of an adsorption refrigerator based on activated carbon/ethanol working pair

    International Nuclear Information System (INIS)

    Frazzica, A.; Palomba, V.; Dawoud, B.; Gullì, G.; Brancato, V.; Sapienza, A.; Vasta, S.; Freni, A.; Costa, F.; Restuccia, G.

    2016-01-01

    Highlights: • Development of a lab-scale adsorption refrigerator. • Optimization of working pair and adsorber configuration through experimental activity. • Experimental testing of the prototype under real working boundary conditions. - Abstract: In the present paper design, realization and testing of a novel small scale adsorption refrigerator prototype based on activated carbon/ethanol working pair is described. Firstly, experimental activity has been carried out for identification of the best performing activated carbon available on the market, through the evaluation of the achievable thermodynamic performance both under air conditioning and refrigeration conditions. Once identified the best performing activated carbon, the design of the adsorber was developed by experimental dynamic performance analysis, carried out by means of the Gravimetric-Large Temperature Jump (G-LTJ) apparatus available at CNR ITAE lab. Finally, the whole 0.5 kW refrigerator prototype was designed and built. First experimental results both under reference air conditioning and refrigeration cycles have been reported, to check the achievable performance. High Specific Cooling Powers (SCPs), 95 W/kg and 50 W/kg, for air conditioning and refrigeration respectively, were obtained, while the COP ranged between 0.09 and 0.11, thus showing an improvement of the current state of the art.

  15. Carbon Nanotube Based Molecular Electronics

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  16. Kinetic enhancement via passive deposition of carbon-based nanomaterials in vanadium redox flow batteries

    Science.gov (United States)

    Aaron, Doug; Yeom, Sinchul; Kihm, Kenneth D.; Ashraf Gandomi, Yasser; Ertugrul, Tugrul; Mench, Matthew M.

    2017-10-01

    Addition of carbon-based nanomaterials to operating flow batteries accomplishes vanadium redox flow battery performance improvement. Initial efforts focus on addition of both pristine graphene and vacuum-filtered reduced graphene oxide (rGO) film on carbon paper supporting electrodes. While the former is unable to withstand convective flow through the porous electrode, the latter shows measurable kinetic improvement, particularly when laid on the polymer electrolyte membrane (PEM) side of the electrode; in contrast to the kinetic performance gain, a deleterious impact on mass transport is observed. Based on this tradeoff, further improvement is realized using perforated rGO films placed on the PEM side of the electrodes. Poor mass transport in the dense rGO film prompts identification of a more uniform, passive deposition method. A suspension of rGO flakes or Vulcan carbon black (XC-72R), both boasting two orders-of-magnitude greater specific surface area than that of common carbon electrodes, is added to the electrolyte reservoirs and allowed to passively deposit on the carbon paper or carbon felt supporting electrodes. For common carbon felt electrodes, addition of rGO flakes or XC-72R enables a tripling of current density at the same 80% voltage efficiency.

  17. Metamodeling-based approach for risk assessment and cost estimation: Application to geological carbon sequestration planning

    Science.gov (United States)

    Sun, Alexander Y.; Jeong, Hoonyoung; González-Nicolás, Ana; Templeton, Thomas C.

    2018-04-01

    Carbon capture and storage (CCS) is being evaluated globally as a geoengineering measure for significantly reducing greenhouse emission. However, long-term liability associated with potential leakage from these geologic repositories is perceived as a main barrier of entry to site operators. Risk quantification and impact assessment help CCS operators to screen candidate sites for suitability of CO2 storage. Leakage risks are highly site dependent, and a quantitative understanding and categorization of these risks can only be made possible through broad participation and deliberation of stakeholders, with the use of site-specific, process-based models as the decision basis. Online decision making, however, requires that scenarios be run in real time. In this work, a Python based, Leakage Assessment and Cost Estimation (PyLACE) web application was developed for quantifying financial risks associated with potential leakage from geologic carbon sequestration sites. PyLACE aims to assist a collaborative, analytic-deliberative decision making processes by automating metamodel creation, knowledge sharing, and online collaboration. In PyLACE, metamodeling, which is a process of developing faster-to-run surrogates of process-level models, is enabled using a special stochastic response surface method and the Gaussian process regression. Both methods allow consideration of model parameter uncertainties and the use of that information to generate confidence intervals on model outputs. Training of the metamodels is delegated to a high performance computing cluster and is orchestrated by a set of asynchronous job scheduling tools for job submission and result retrieval. As a case study, workflow and main features of PyLACE are demonstrated using a multilayer, carbon storage model.

  18. Synthesis and Investigation of Carbon-Based Nanocomposites for Supercapacitors

    OpenAIRE

    LI WAN

    2018-01-01

    Carbon-based nanocomposites were synthesized for high-performance supercapacitors. The coalition between each of the constituent in the nanocomposites and the performance was investigated. Continuous efforts have been put to improve the supercapacitor assembly techniques from conventional supercapacitor to all-solid-state supercapacitor and to binder-free supercapacitor.

  19. Active raster scanning with carbon ions. Reirradiation in patients with recurrent skull base chordomas and chondrosarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Uhl, Matthias; Welzel, Thomas; Oelmann, Jan; Habl, Gregor; Hauswald, Henrik; Jensen, Alexandra; Debus, Juergen; Herfarth, Klaus [University of Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Ellerbrock, Malte [Heidelberg Ion Therapy Center (HIT), Heidelberg (Germany)

    2014-07-15

    To evaluate the safety and efficacy of reirradiation with carbon ions in patients with relapse of skull base chordoma and chondrosarcoma. Reirradiation with carbon ions was performed on 25 patients with locally recurrent skull base chordoma (n = 20) or chondrosarcoma (n = 5). The median time between the last radiation exposure and the reirradiation with carbon ions was 7 years. In the past, 23 patients had been irradiated once, two patients twice. Reirradiation was delivered using the active raster scanning method. The total median dose was 51.0 GyE carbon ions in a weekly regimen of five to six fractions of 3 GyE. Local progression-free survival (LPFS) was evaluated using the Kaplan-Meier method; toxicity was evaluated using the NCI Common Terminology Criteria for Adverse Events (CTCAE v.4.03). The treatment could be finished in all patients without interruption. In 80 % of patients, symptom control was achieved after therapy. The 2-year-LPFS probability was 79.3 %. A PTV volume of < 100 ml or a total dose of > 51 GyE was associated with a superior local control rate. The therapy was associated with low acute toxicity. One patient developed grade 2 mucositis during therapy. Furthermore, 12 % of patients had tympanic effusion with mild hypacusis (grade 2), while 20 % developed an asymptomatic temporal lobe reaction after treatment (grade 1). Only one patient showed a grade 3 osteoradionecrosis. Reirradiation with carbon ions is a safe and effective method in patients with relapsed chordoma and chondrosarcoma of the skull base. (orig.) [German] Evaluierung der Sicherheit und Wirksamkeit einer Re-Bestrahlung mittels Kohlenstoffionen bei Patienten mit Lokalrezidiv eines Chordoms und Chondrosarkoms der Schaedelbasis. Bei 25 Patienten mit einem Lokalrezidiv eines Chordoms (n = 20) oder Chondrosarkoms (n = 5) der Schaedelbasis erfolgte eine Re-Bestrahlung mittels Kohlenstoffionen. Die mediane Zeit zwischen letzter Bestrahlung und Re-Bestrahlung mit Kohlenstoffionen

  20. Carbon nanostructure-based field-effect transistors for label-free chemical/biological sensors.

    Science.gov (United States)

    Hu, PingAn; Zhang, Jia; Li, Le; Wang, Zhenlong; O'Neill, William; Estrela, Pedro

    2010-01-01

    Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structure, excellent electrical properties and high chemical stability, carbon nanotube and graphene based electrical devices have been widely developed for high performance label-free chemical/biological sensors. Here, we review the latest developments of carbon nanostructure-based transistor sensors in ultrasensitive detection of chemical/biological entities, such as poisonous gases, nucleic acids, proteins and cells.

  1. The NASA Carbon Monitoring System

    Science.gov (United States)

    Hurtt, G. C.

    2015-12-01

    Greenhouse gas emission inventories, forest carbon sequestration programs (e.g., Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+), cap-and-trade systems, self-reporting programs, and their associated monitoring, reporting and verification (MRV) frameworks depend upon data that are accurate, systematic, practical, and transparent. A sustained, observationally-driven carbon monitoring system using remote sensing data has the potential to significantly improve the relevant carbon cycle information base for the U.S. and world. Initiated in 2010, NASA's Carbon Monitoring System (CMS) project is prototyping and conducting pilot studies to evaluate technological approaches and methodologies to meet carbon monitoring and reporting requirements for multiple users and over multiple scales of interest. NASA's approach emphasizes exploitation of the satellite remote sensing resources, computational capabilities, scientific knowledge, airborne science capabilities, and end-to-end system expertise that are major strengths of the NASA Earth Science program. Through user engagement activities, the NASA CMS project is taking specific actions to be responsive to the needs of stakeholders working to improve carbon MRV frameworks. The first phase of NASA CMS projects focused on developing products for U.S. biomass/carbon stocks and global carbon fluxes, and on scoping studies to identify stakeholders and explore other potential carbon products. The second phase built upon these initial efforts, with a large expansion in prototyping activities across a diversity of systems, scales, and regions, including research focused on prototype MRV systems and utilization of COTS technologies. Priorities for the future include: 1) utilizing future satellite sensors, 2) prototyping with commercial off-the-shelf technology, 3) expanding the range of prototyping activities, 4) rigorous evaluation, uncertainty quantification, and error characterization, 5) stakeholder

  2. A novel conductivity mechanism of highly disordered carbon systems based on an investigation of graph zeta function

    Science.gov (United States)

    Matsutani, Shigeki; Sato, Iwao

    2017-09-01

    In the previous report (Matsutani and Suzuki, 2000 [21]), by proposing the mechanism under which electric conductivity is caused by the activational hopping conduction with the Wigner surmise of the level statistics, the temperature-dependent of electronic conductivity of a highly disordered carbon system was evaluated including apparent metal-insulator transition. Since the system consists of small pieces of graphite, it was assumed that the reason why the level statistics appears is due to the behavior of the quantum chaos in each granular graphite. In this article, we revise the assumption and show another origin of the Wigner surmise, which is more natural for the carbon system based on a recent investigation of graph zeta function in graph theory. Our method can be applied to the statistical treatment of the electronic properties of the randomized molecular system in general.

  3. Accounting for nanometer-thick adventitious carbon contamination in X-ray absorption spectra of carbon-based materials.

    Science.gov (United States)

    Mangolini, Filippo; McClimon, J Brandon; Rose, Franck; Carpick, Robert W

    2014-12-16

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is a powerful technique for characterizing the composition and bonding state of nanoscale materials and the top few nanometers of bulk and thin film specimens. When coupled with imaging methods like photoemission electron microscopy, it enables chemical imaging of materials with nanometer-scale lateral spatial resolution. However, analysis of NEXAFS spectra is often performed under the assumption of structural and compositional homogeneity within the nanometer-scale depth probed by this technique. This assumption can introduce large errors when analyzing the vast majority of solid surfaces due to the presence of complex surface and near-surface structures such as oxides and contamination layers. An analytical methodology is presented for removing the contribution of these nanoscale overlayers from NEXAFS spectra of two-layered systems to provide a corrected photoabsorption spectrum of the substrate. This method relies on the subtraction of the NEXAFS spectrum of the overlayer adsorbed on a reference surface from the spectrum of the two-layer system under investigation, where the thickness of the overlayer is independently determined by X-ray photoelectron spectroscopy (XPS). This approach is applied to NEXAFS data acquired for one of the most challenging cases: air-exposed hard carbon-based materials with adventitious carbon contamination from ambient exposure. The contribution of the adventitious carbon was removed from the as-acquired spectra of ultrananocrystalline diamond (UNCD) and hydrogenated amorphous carbon (a-C:H) to determine the intrinsic photoabsorption NEXAFS spectra of these materials. The method alters the calculated fraction of sp(2)-hybridized carbon from 5 to 20% and reveals that the adventitious contamination can be described as a layer containing carbon and oxygen ([O]/[C] = 0.11 ± 0.02) with a thickness of 0.6 ± 0.2 nm and a fraction of sp(2)-bonded carbon of 0.19 ± 0.03. This

  4. Synthesis of nickel-incorporated larch-based carbon membranes with controllable porous structure for gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin; Li, Wei; Huang, Zhanhua; Liu, Shouxin, E-mail: chemist@126.com, E-mail: liushouxin@126.com [Northeast Forestry University, College of Material Science and Engineering (China)

    2015-11-15

    Ni-incorporated larch-based carbon membranes have been synthesized by introducing the Ni(NO{sub 3}){sub 2} into the liquefied larch using liquefied larch sawdust as precursors and F127 as the soft template. The porous structure can be tailored by the amount of Ni(NO{sub 3}){sub 2}, and the Ni and NiO nanoparticles with a size of 10 nm incorporated in the carbon frameworks. The increase in Ni(NO{sub 3}){sub 2} content can lead to the formation of disordered porous structure and shrinkage of carbon frameworks. The Ni-incorporated carbon membranes with largest pores possess highest gas permeation for N{sub 2}, CO{sub 2}, and O{sub 2} of 37.5, 19.8, and 55.5 m{sup 3} cm/m{sup 2} h kPa, which is larger than that of the pure carbon membranes, respectively. However, the poor ordered porous structure caused by adding large amount of Ni(NO{sub 3}){sub 2} can reduce the gas separation performance, which is attributed to the weaken of the molecular sieve function. The results indicate that the incorporation of few nanoparticles into larch-based carbon membranes can improve molecular sieve function.Graphical abstractNi-incorporated larch-based carbon membranes have been synthesized by introducing the Ni(NO{sub 3}){sub 2} into the liquefied larch. The porous structure can be tailored by the amount of Ni(NO{sub 3}){sub 2}, and the Ni and NiO nanoparticles incorporated in the carbon frameworks. The Ni-incorporated carbon membranes with largest pores possess highest gas permeation and gas permseparation.

  5. PAN-based carbon fiber negative electrodes for structural lithium-ion batteries

    OpenAIRE

    Hellqvist Kjell, Maria; Jacques, Eric; Zenkert, Dan; Behm, Mårten; Lindbergh, Göran

    2011-01-01

    Several grades of commercially-available polyacrylonitrile (PAN)-based carbon fibers have been studied for structural lithium-ion batteries to understand how the sizing, different lithiation rates and number of fibers per tow affect the available reversible capacity, when used as both current collector and electrode, for use in structural batteries. The study shows that at moderate lithiation rates, 100 mA g-1, most of the carbon fibers display a reversible capacity close to or above 100 mAh ...

  6. Nanoengineered Carbon-Based Materials For Reactive Adsorption of Toxic Industrial Compounds

    Science.gov (United States)

    2015-01-13

    ABSTRACT 2. REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF PAGES 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 5c. PROGRAM ELEMENT...07 2013): 0. doi: 10.1016/j.carbon.2013.06.081 Camille Petit, Karifala Kante , Teresa J. Bandosz. The role of sulfur-containing groups in ammonia... Kante , Cesar Nieto-Delgado, J. Rene Rangel-Mendez, Teresa J. Bandosz. Spent coffee-based activated carbon: Specific surface features and their

  7. Surface modification of polyacrylonitrile-based carbon fiber and its interaction with imide

    International Nuclear Information System (INIS)

    Xu Bing; Wang Xiaoshu; Lu Yun

    2006-01-01

    In this work, sized polyacrylonitrile (PAN)-based carbon fibers were chemically modified with nitric acid and maleic anhydride (MA) in order to improve the interaction between carbon fiber surface and polyimide matrix. Bismaleimide (BMI) was selected as a model compound of polyimide to react with modified carbon fiber. The surface characteristic changing after modification and surface reaction was investigated by element analysis (EA), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and surface enhanced Raman scattering (SERS). The results indicated that the modification of carbon fiber surface with MA might follow the Diels Alder reaction mechanism. In the surface reaction between modified fibers and BMI, among the various surface functional groups, the hydroxyl group provided from phenolic hydroxyl group and bridged structure on carbon fiber may be the most effective group reacted with imide structure. The results may shed some light on the design of the appropriate surface structure, which could react with polyimide, and the manufacture of the carbon fiber-reinforced polyimide matrix composites

  8. Carbon-based strong solid acid for cornstarch hydrolysis

    Science.gov (United States)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  9. Modelling interactions of carbon dioxide, forests, and climate

    International Nuclear Information System (INIS)

    Luxmoore, R.J.; Baldocchi, D.D.

    1994-01-01

    Atmospheric carbon dioxide is rising and forests and climate is changing exclamation point This combination of fact and premise may be evaluated at a range of temporal and spatial scales with the aid of computer simulators describing the interrelationships between forest vegetation, litter and soil characteristics, and appropriate meteorological variables. Some insights on the effects of climate on the transfers of carbon and the converse effect of carbon transfer on climate are discussed as a basis for assessing the significance of feedbacks between vegetation and climate under conditions of rising atmospheric carbon dioxide. Three main classes of forest models are reviewed. These are physiologically-based models, forest succession simulators based on the JABOWA model, and ecosystem-carbon budget models that use compartment transfer rates with empirically estimated coefficients. Some regression modeling approaches are also outlined. Energy budget models applied to forests and grasslands are also reviewed. This review presents examples of forest models; a comprehensive discussion of all available models is not undertaken

  10. Evaluation of Soil Quality Using Labile Organic Carbon and Carbon Management Indices in Agricultural Lands of Neyriz, Fars Province

    Directory of Open Access Journals (Sweden)

    Anahid Salmanpour

    2017-02-01

    Full Text Available Introduction: Soil organic matter is considered as an indicator of soil quality, because of its role on the stability of soil structure, water holding capacity, microbial activity, storage and release of nutrients. Although changes and trends of organic matter are assessed on the basis of organic carbon, it responds slowly to changes of soil management. Therefore, identifying sensitive components of organic carbon such as carbon labile lead to better understanding of the effect of land use change and soil management on soil quality. The main components of sustainable agriculture in arid and semi-arid regions are the amount of water; and soil and water salinity. Water deficit and irrigation with saline water are important limiting factors for cropping and result in adverse effects on soil properties and soil quality. Soil carbon changes is a function of addition of plant debris and removal of it from soil by its decomposition. If the amount of organic carbon significantly reduced due to the degradation of the soil physical and chemical properties and soil quality, agricultural production will face serious problems. To this end, this study was done to evaluate soil quality using soil labile carbon and soil carbon management indices in some agricultural lands of Neyriz area, Fars province, Iran. Materials and Methods: Five fields were selected in two regions, Dehfazel and Tal-e-mahtabi, consisted of irrigated wheat and barley with different amount of irrigation water and water salinity levels. Three farms were located in Dehfazel and two farms in Tal-e-Mahtabi region. In each farm, three points were randomly selected and soil samples were collected from 0-40 cm of the surface layer. Plant samples were taken from a 1x1 square meter and grain crop yield was calculated per hectare. Water samples were obtained in each region from the wells at the last irrigation. Physical and chemical characteristics of the soil and water samples were determined. Soil

  11. Different rays of sunlight: Understanding information disclosure and carbon transparency

    International Nuclear Information System (INIS)

    Matisoff, Daniel C.

    2013-01-01

    This study assesses the effectiveness of two types information disclosure programs – state-based mandatory carbon reporting programs and the voluntary Carbon Disclosure Project, which uses investor pressure to push firms to disclose carbon emissions and carbon management strategies. I match firms in each program to control groups of firms that have not participated in each program. Using panel data methods and a difference in differences specification, I measure the impact of each program on plant-level carbon emissions, plant-level carbon intensity, and plant level output. I find that neither program has generated an impact on plant-level carbon emissions, emissions intensity, or output. Placing this study in contrast with others that demonstrate improvements from mandatory information disclosure, these results suggest that how information is reported to stakeholders has important implications for program effectiveness. - Highlights: ► This article evaluates the Carbon Disclosure Project and state carbon reporting requirements. ► Evaluation is conducted with propensity score matching and difference-in-differences. ► State Disclosure Programs fail to lead power plants to reduce carbon dioxide emissions. ► The Carbon Disclosure Project leads to decreases in carbon emissions and electricity output. ► Information disclosure and transparency may be important part of policy mix but have limitations

  12. Coal fly ash based carbons for SO2 removal from flue gases.

    Science.gov (United States)

    Rubio, B; Izquierdo, M T

    2010-07-01

    Two different coal fly ashes coming from the burning of two coals of different rank have been used as a precursor for the preparation of steam activated carbons. The performance of these activated carbons in the SO(2) removal was evaluated at flue gas conditions (100 degrees C, 1000 ppmv SO(2), 5% O(2), 6% H(2)O). Different techniques were used to determine the physical and chemical characteristics of the samples in order to explain the differences found in their behaviour. A superior SO(2) removal capacity was shown by the activated carbon obtained using the fly ash coming from a sub-bituminous-lignite blend. Experimental results indicated that the presence of higher amount of certain metallic oxides (Ca, Fe) in the carbon-rich fraction of this fly ash probably has promoted a deeper gasification in the activation with steam. A more suitable surface chemistry and textural properties have been obtained in this case which explains the higher efficiency shown by this sample in the SO(2) removal. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Carbon isotope fractionation of 1,1,1-trichloroethane during base-catalyzed persulfate treatment

    International Nuclear Information System (INIS)

    Marchesi, Massimo; Thomson, Neil R.; Aravena, Ramon; Sra, Kanwartej S.; Otero, Neus; Soler, Albert

    2013-01-01

    Highlights: • Treatability and C fractionation of 1,1,1-TCA by base-catalyzed S 2 O 8 2− was studied. • The rate of degradation of 1,1,1-TCA increased with a higher OH − :S 2 O 8 2− ratio. •Base-catalyzed S 2 O 8 2− can potentially treat recalcitrant compound like 1,1,1-TCA. • An enrichment factor of −7.0‰ independent of the OH − :S 2 O 8 2− ratio was obtained. • Carbon isotope can potentially be used to estimate the ISCO treatment efficacy. -- Abstract: The extent of carbon isotope fractionation during degradation of 1,1,1-trichloroethane (1,1,1-TCA) by a base-catalyzed persulfate (S 2 O 8 2− ) treatment system was investigated. Significant destruction of 1,1,1-TCA was observed at a pH of ∼12. An increase in the NaOH:S 2 O 8 2− molar ratio from 0.2:1 to 8:1 enhanced the reaction rate of 1,1,1-TCA by a factor of ∼5 to yield complete (>99.9%) destruction. An average carbon isotope enrichment fractionation factor which was independent of the NaOH:S 2 O 8 2− molar ratio of −7.0 ± 0.2‰ was obtained. This significant carbon isotope fractionation and the lack of dependence on changes in the NaOH:S 2 O 8 2− molar ratio demonstrates that carbon isotope analysis can potentially be used in situ as a performance assessment tool to estimate the degradation effectiveness of 1,1,1-TCA by a base-catalyzed persulfate system

  14. Evaluation and intercomparison of three-dimensional global marine carbon cycle models

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira, K., LLNL

    1998-07-01

    -Reimer, 1990; Sarmiento et al., 1992, Najjar et al., 1992). These twin needs for the development of marine carbon cycle models are expressed in two of the main elements of JGOFS SMP: (1) extrapolation and prediction, and (2) global and regional balances of carbon and related biologically-active substances. We propose to address these program elements through a coordinated, multi-investigator project to evaluate and intercompare several 3-D global marine carbon cycle models.

  15. Experiment-Based Sensitivity Analysis of Scaled Carbon-Fiber-Reinforced Elastomeric Isolators in Bonded Applications

    Directory of Open Access Journals (Sweden)

    Farshad Hedayati Dezfuli

    2016-01-01

    Full Text Available Fiber-reinforced elastomeric isolators (FREIs are a new type of elastomeric base isolation systems. Producing FREIs in the form of long laminated pads and cutting them to the required size significantly reduces the time and cost of the manufacturing process. Due to the lack of adequate information on the performance of FREIs in bonded applications, the goal of this study is to assess the performance sensitivity of 1/4-scale carbon-FREIs based on the experimental tests. The scaled carbon-FREIs are manufactured using a fast cold-vulcanization process. The effect of several factors including the vertical pressure, the lateral cyclic rate, the number of rubber layers, and the thickness of carbon fiber-reinforced layers are explored on the cyclic behavior of rubber bearings. Results show that the effect of vertical pressure on the lateral response of base isolators is negligible. However, decreasing the cyclic loading rate increases the lateral flexibility and the damping capacity. Additionally, carbon fiber-reinforced layers can be considered as a minor source of energy dissipation.

  16. Voltammetric sensor for electrochemical determination of the floral origin of honey based on a zinc oxide nanoparticle modified carbon paste electrode

    Directory of Open Access Journals (Sweden)

    K. Tiwari

    2018-04-01

    Full Text Available A new methodology based on cyclic voltammetry using a chemically modified electrode has been developed for the discrimination of the floral origin of honey. This method involves an electronic tongue with an electrochemical sensor made from a carbon paste (CPs electrode where zinc oxide (ZnO nanoparticles are used as an electroactive binder material. The bare CPs electrode is evaluated for comparison. The electrochemical response of the modified electrode in 50 samples of five different floral types of honey has been analysed by the cyclic voltammetric technique. The voltammograms of each floral variety of honey reflect the redox properties of the ZnO nanoparticles present inside the carbon paste matrix and are strongly influenced by the nectar source of honey. Thus, each type of honey provides a characteristic signal which is evaluated by using principal component analysis (PCA and an artificial neural network (ANN. The result of a PCA score plot of the transient responses obtained from the modified carbon paste electrode clearly shows discrimination among the different floral types of honey. The ANN model for floral classification of honey shows more than 90 % accuracy. These results indicate that the ZnO nanoparticles modified carbon paste (ZnO Nps modified CPs electrode can be a useful electrode for discrimination of honey samples from different floral origins.

  17. Detection of Individual Molecules and Ions by Carbon Nanotube-Based Differential Resistive Pulse Sensor.

    Science.gov (United States)

    Peng, Ran; Tang, Xiaowu Shirley; Li, Dongqing

    2018-04-01

    This paper presents a new method of sensing single molecules and cations by a carbon nanotube (CNT)-based differential resistive pulse sensing (RPS) technique on a nanofluidic chip. A mathematical model for multichannel RPS systems is developed to evaluate the CNT-based RPS signals. Individual cations, rhodamine B dye molecules, and ssDNAs are detected successfully with high resolution and high signal-to-noise ratio. Differentiating ssDNAs with 15 and 30 nucleotides are achieved. The experimental results also show that translocation of negatively charged ssDNAs through a CNT decreases the electrical resistance of the CNT channel, while translocation of positively charged cations and rhodamine B molecules increases the electrical resistance of the CNT. The CNT-based nanofluidic device developed in this work provides a new avenue for single-molecule/ion detection and offers a potential strategy for DNA sequencing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Carbon Nanotube-Based Chemical Sensors.

    Science.gov (United States)

    Meyyappan, M

    2016-04-27

    The need to sense gases and vapors arises in numerous scenarios in industrial, environmental, security and medical applications. Traditionally, this activity has utilized bulky instruments to obtain both qualitative and quantitative information on the constituents of the gas mixture. It is ideal to use sensors for this purpose since they are smaller in size and less expensive; however, their performance in the field must match that of established analytical instruments in order to gain acceptance. In this regard, nanomaterials as sensing media offer advantages in sensitivity, preparation of chip-based sensors and construction of electronic nose for selective detection of analytes of interest. This article provides a review of the use of carbon nanotubes in gas and vapor sensing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Comparison of unusual carbon-based working electrodes for electrochemiluminescence sensors.

    Science.gov (United States)

    Noman, Muhammad; Sanginario, Alessandro; Jagadale, Pravin; Demarchi, Danilo; Tagliaferro, Alberto

    2017-06-01

    In this work, unconventional carbon-based materials were investigated for use in electrochemiluminescence (ECL) working electrodes. Precursors such as bamboo, pistachio shells, kevlar ® fibers and camphor were differently treated and used as working electrodes in ECL experiments. After a proper process they were assembled as electrodes and tested in an electrochemical cell. Comparison among them and with a commercial glassy carbon electrode (GCE) shows a very good response for all of them thus demonstrating their potential use as disposable low-cost electrodes for early detection electrochemical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Preparation and evaluation of coal extracts as precursors for carbon and graphite products

    Energy Technology Data Exchange (ETDEWEB)

    Zondlo, J.W.; Stiller, A.W.; Stansberry, P.G. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1996-08-01

    A coal extraction process coupled with coal hydrotreatment has been shown capable of producing suitable precursors for a variety of commercially important carbon and graphite products. The N-methylpyrolidone (NMP) extracts of hydrotreated coals have been analytically and chemically characterized and shown to have properties acceptable for use as binder and impregnation pitch. Mesophase formation studies have demonstrated their capability for producing both needle and anode grade coke as well as precursors for mesophase pitch fibers. A graphite artifact has been produced using a coal extract as a binder and coke derived from the extract as a filler. Further evaluation of the extract materials is being carried out by industrial members of the Carbon Products Consortium.