WorldWideScience

Sample records for evacuated tube solar

  1. Performance analysis of double basin solar still with evacuated tubes

    International Nuclear Information System (INIS)

    Hitesh N Panchal; Shah, P. K.

    2013-01-01

    Solar still is a very simple device, which is used for solar distillation process. In this research work, double basin solar still is made from locally available materials. Double basin solar still is made in such a way that, outer basin is exposed to sun and lower side of inner basin is directly connected with evacuated tubes to increase distillate output and reducing heat losses of a solar still. The overall size of the lower basin is about 1006 mm x 325 mm x 380 mm, the outer basin is about 1006 mm x 536 mm x 100 mm Black granite gravel is used to increase distillate output by reducing quantity of brackish or saline water in the both basins. Several experiments have conducted to determine the performance of a solar still in climate conditions of Mehsana (latitude of 23 degree 59' and longitude of 72 degree 38'), Gujarat, like a double basin solar still alone, double basin solar still with different size black granite gravel, double basin solar still with evacuated tubes and double basin solar still with evacuated tubes and different size black granite gravel. Experimental results show that, connecting evacuated tubes with the lower side of the inner basin increases daily distillate output of 56% and is increased by 60%, 63% and 67% with average 10 mm, 20 mm and 30 mm size black granite gravel. Economic analysis of present double basin solar still is 195 days. (authors)

  2. A Study on Thermal Performance of a Novel All-Glass Evacuated Tube Solar Collector Manifold Header with an Inserted Tube

    Directory of Open Access Journals (Sweden)

    Jichun Yang

    2015-01-01

    Full Text Available A novel all-glass evacuated tube collector manifold header with an inserted tube is proposed in this paper which makes water in all-glass evacuated solar collector tube be forced circulated to improve the performance of solar collector. And a dynamic numerical model was presented for the novel all-glass evacuated tube collector manifold header water heater system. Also, a test rig was built for model validation and comparison with traditional all-glass evacuated tube collector. The experiment results show that the efficiency of solar water heater with a novel collector manifold header is higher than traditional all-glass evacuated tube collector by about 5% and the heat transfer model of water heater system is valid. Based on the model, the relationship between the average temperature of water tank and inserted tube diameter (water mass flow has been studied. The results show that the optimized diameter of inserted tube is 32 mm for the inner glass with the diameter of 47 mm and the water flow mass should be less than 1.6 Kg/s.

  3. Low-cost evacuated-tube solar collector appendices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beecher, D.T.

    1980-05-31

    A low cost solar heat energy collector module and array has been designed using the evacuated tube, selective absorber, air cooled concept. Glass tubing as used in fluorescent lamps with automatic sealing methods is a key feature of the evacuated tube design. A molded fiber glass concentrating reflector panel and sheet metal header assembly are proposed. Major design problems involved included the cost of materials and labor, thermal expansion and distortion problems, high stagnation and operating temperatures, isolation, thermal efficiency, sealing, joining, air pressure drop, and weight of the preassembled module. A cost of less than $5 per active square foot of collecting surface has been estimated for materials and labor of the module and its mounting frame.

  4. Collecting performance of an evacuated tubular solar high-temperature air heater with concentric tube heat exchanger

    International Nuclear Information System (INIS)

    Wang, Ping-Yang; Li, Shuang-Fei; Liu, Zhen-Hua

    2015-01-01

    Highlights: • A novel evacuated tube solar high temperature air heater is designed. • The solar air heater system consists of 30 linked collecting units. • Every unit consisted of a evacuated tube, a simplified CPC and concentric tube. • The flow air is heated over temperature of 200 °C. - Abstract: A set of evacuated tube solar high temperature air heaters with simplified CPC (compound parabolic concentrator) and concentric tube heat exchanger is designed to provide flow air with a temperature of 150–230 °C for industrial production. The solar air heater system consists of 30 linked collecting units. Each unit includes a simplified CPC and an all-glass evacuated tube absorber with a concentric copper tube heat exchanger installed inside. A stainless steel mesh layer with high thermal conductivity is filled between the evacuated tube and the concentric copper tube. Air passes through each collecting unit, and its temperature increases progressively. An experimental investigation of the thermal performance of the air heater is performed, and the experimental results demonstrate the presented high-temperature solar air heater has excellent collecting performance and large output power, even in the winter. The measured thermal efficiency corresponding to the air temperature of 70 °C reaches 0.52. With the increase of air temperature, thermal efficiency reaches 0.35 at an air temperature of 150 °C, and 0.21 at an air temperature of 220 °C.

  5. Nocturnal reverse flow in water-in-glass evacuated tube solar water heaters

    International Nuclear Information System (INIS)

    Tang, Runsheng; Yang, Yuqin

    2014-01-01

    Highlights: • Performance of water-in-glass evacuated tube solar water heaters (SWH) at night was studied. • Experimental measurements showed that reverse flow occurred in SWHs at night. • Reverse flow in SWHs was very high but the heat loss due to reverse flow was very low. • Reverse flow seemed not sensitive to atmospheric clearness but sensitive to collector tilt-angle. - Abstract: In this work, the thermal performance of water-in-glass evacuated tube solar water heaters (SWH) at nights was experimentally investigated. Measurements at nights showed that the water temperature in solar tubes was always lower than that in the water tank but higher than the ambient air temperature and T exp , the temperature of water inside tubes predicted in the case of the water in tubes being naturally cooled without reverse flow. This signified that the reverse flow in the system occurred at nights, making the water in solar tubes higher than T exp . It is found that the reverse flow rate in the SWH, estimated based on temperature measurements of water in solar tubes, seemed not sensitive to the atmospheric clearness but sensitive to the collector tilt-angle, the larger the tilt-angle of the collector, the higher the reverse flow rate. Experimental results also showed that, the reverse flow in the SWH was much higher as compared to that in a thermosyphonic domestic solar water heater with flat-plate collectors, but the heat loss from collectors to the air due to reverse flow in SWHs was very small and only took about 8–10% of total heat loss of systems

  6. Thermal performance of evacuated tube heat pipe solar collector

    Science.gov (United States)

    Putra, Nandy; Kristian, M. R.; David, R.; Haliansyah, K.; Ariantara, Bambang

    2016-06-01

    The high fossil energy consumption not only causes the scarcity of energy but also raises problems of global warming. Increasing needs of fossil fuel could be reduced through the utilization of solar energy by using solar collectors. Indonesia has the abundant potential for solar energy, but non-renewable energy sources still dominate energy consumption. With heat pipe as passive heat transfer device, evacuated tube solar collector is expected to heat up water for industrial and home usage without external power supply needed to circulate water inside the solar collector. This research was conducted to determine the performance of heat pipe-based evacuated tube solar collector as solar water heater experimentally. The experiments were carried out using stainless steel screen mesh as a wick material, and water and Al2O3-water 0.1% nanofluid as working fluid, and applying inclination angles of 0°, 15°, 30°, and 45°. To analyze the heat absorbed and transferred by the prototype, water at 30°C was circulated through the condenser. A 150 Watt halogen lamp was used as sun simulator, and the prototype was covered by an insulation box to obtain a steady state condition with a minimum affection of ambient changes. Experimental results show that the usage of Al2O3-water 0.1% nanofluid at 30° inclination angle provides the highest thermal performance, which gives efficiency as high as 0.196 and thermal resistance as low as 5.32 °C/W. The use of nanofluid as working fluid enhances thermal performance due to high thermal conductivity of the working fluid. The increase of the inclination angle plays a role in the drainage of the condensate to the evaporator that leads to higher thermal performance until the optimal inclination angle is reached.

  7. CFD Study of Fluid Flow in an All-glass Evacuated Tube Solar Water Heater

    DEFF Research Database (Denmark)

    Ai, Ning; Fan, Jianhua; Li, Yumin

    2008-01-01

    Abstract: The all-glass evacuated tube solar water heater is one of the most widely used solar thermal technologies. The aim of the paper is to investigate fluid flow in the solar water heater by means of computational fluid dynamics (CFD). The investigation was carried out with a focus on the co...... for future system optimization....

  8. Estimation and optimization of thermal performance of evacuated tube solar collector system

    Science.gov (United States)

    Dikmen, Erkan; Ayaz, Mahir; Ezen, H. Hüseyin; Küçüksille, Ecir U.; Şahin, Arzu Şencan

    2014-05-01

    In this study, artificial neural networks (ANNs) and adaptive neuro-fuzzy (ANFIS) in order to predict the thermal performance of evacuated tube solar collector system have been used. The experimental data for the training and testing of the networks were used. The results of ANN are compared with ANFIS in which the same data sets are used. The R2-value for the thermal performance values of collector is 0.811914 which can be considered as satisfactory. The results obtained when unknown data were presented to the networks are satisfactory and indicate that the proposed method can successfully be used for the prediction of the thermal performance of evacuated tube solar collectors. In addition, new formulations obtained from ANN are presented for the calculation of the thermal performance. The advantages of this approaches compared to the conventional methods are speed, simplicity, and the capacity of the network to learn from examples. In addition, genetic algorithm (GA) was used to maximize the thermal performance of the system. The optimum working conditions of the system were determined by the GA.

  9. Performance analysis of a solar still coupled with evacuated heat pipes

    Science.gov (United States)

    Pramod, B. V. N.; Prudhvi Raj, J.; Krishnan, S. S. Hari; Kotebavi, Vinod

    2018-02-01

    In developing countries the need for better quality drinking water is increasing steadily. We can overcome this need by using solar energy for desalination purpose. This process includes fabrication and analysis of a pyramid type solar still coupled with evacuated heat pipes. This experiment using evacuated heat pipes are carried in mainly three modes namely 1) Still alone 2) Using heat pipe with evacuated tubes 3)Using evacuated heat pipe. For this work single basin pyramid type solar still with 1m2 basin area is fabricated. Black stones and Black paint are utilised in solar still to increase evaporation rate of water in basin. The heat pipe’s evaporator section is placed inside evacuated tube and the heat pipe’s condenser section is connected directly to the pyramid type solar still’s lower portion. The output of distillate water from still with evacuated heat pipe is found to be 40% more than the still using only evacuated tubes.

  10. Techno-economıc Analysıs of Evacuated Tube Solar Water Heater usıng F-chart Method

    Science.gov (United States)

    Fayaz, H.; Rahim, N. A.; Saidur, R.; Hasanuzzaman, M.

    2018-05-01

    Solar thermal utilization, especially the application of solar water heater technology, has developed rapidly in recent decades. Solar water heating systems based on thermal collector alone or connected with photovoltaic called as photovoltaic-thermal (PVT) are practical applications to replace the use of electrical water heaters but weather dependent performance of these systems is not linear. Therefore on the basis of short term or average weather conditions, accurate analysis of performance is quite difficult. The objective of this paper is to show thermal and economic analysis of evacuated tube collector solar water heaters. Analysis done by F-Chart shows that evacuated tube solar water heater achieves fraction value of 1 to fulfil hot water demand of 150liters and above per day for a family without any auxiliary energy usage. Evacuated tube solar water heater show life cycle savings of RM 5200. At water set temperature of 100°C, RM 12000 is achieved and highest life cycle savings of RM 6100 at the environmental temperature of 18°C are achieved. Best thermal and economic performance is obtained which results in reduction of household greenhouse gas emissions, reduction of energy consumption and saves money on energy bills.

  11. Performance optimization of evacuated tube collector for solar cooling of a house in hot climate

    Science.gov (United States)

    Ghoneim, Adel A.

    2018-02-01

    Evacuating the space connecting cover and absorber significantly improves evacuated tube collector (ETC) performance. So, ETCs are progressively utilised all over the world. The main goal of current study is to explore ETC thermal efficiency in hot and severe climate like Kuwait weather conditions. A collector test facility was installed to record ETC thermal performance for one-year period. An extensively developed model for ETCs is presented, employing complete optical and thermal assessment. This study analyses separately optics and heat transfer in the evacuated tubes, allowing the analysis to be extended to different configurations. The predictions obtained are in agreement with experimental. The optimum collector parameters (collector tube length and diameter, mass flow rate and collector tilt angle) are determined. The present results indicate that the optimum tube length is 1.5 m, as at this length a significant improvement is achieved in efficiency for different tube diameters studied. Finally, the heat generated from ETCs is used for solar cooling of a house. Results of the simulation of cooling system indicate that an ETC of area 54 m2, tilt angle of 25° and storage tank volume of 2.1 m3 provides 80% of air-conditioning demand in a house located in Kuwait.

  12. Comparative Experimental Analysis of the Thermal Performance of Evacuated Tube Solar Water Heater Systems With and Without a Mini-Compound Parabolic Concentrating (CPC Reflector(C < 1

    Directory of Open Access Journals (Sweden)

    Yuehong Su

    2012-04-01

    Full Text Available Evacuated tube solar water heater systems are widely used in China due to their high thermal efficiency, simple construction requirements, and low manufacturing costs. CPC evacuated tube solar water heaters with a geometrical concentration ratio C of less than one are rare. A comparison of the experimental rig of evacuated tube solar water heater systems with and without a mini-CPC reflector was set up, with a series of experiments done in Hefei (31°53'N, 117°15'E, China. The first and second laws of thermodynamics were used to analyze and contrast their thermal performance. The water in the tank was heated from 26.9 to 55, 65, 75, 85, and 95 °C. Two types of solar water heater systems were used, and the data gathered for two days were compared. The results show that when attaining low temperature water, the evacuated tube solar water heater system without a mini-CPC reflector has higher thermal and exergy efficiencies than the system with a mini-CPC reflector, including the average and immediate values. On the other hand, when attaining high temperature water, the system with a mini-CPC reflector has higher thermal and exergy efficiencies than the other one. The comparison presents the advantages of evacuated tube solar water heater systems with and without a mini-CPC reflector, which can be offered as a reference when choosing which solar water system to use for actual applications.

  13. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  14. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  15. Experimental investigation of the higher coefficient of thermal performance for water-in-glass evacuated tube solar water heaters in China

    International Nuclear Information System (INIS)

    Zhang, Xinyu; You, Shijun; Xu, Wei; Wang, Min; He, Tao; Zheng, Xuejing

    2014-01-01

    Highlights: • The energy grades system for solar water heater (SWH) in China was introduced. • Heat loss and capacity of heat collection mainly affected SWH thermal performance. • Optimum ratio of tank volume to collector area for solar water heater is 57 to 72 L/m 2 . • The recommendation polyurethane insulation layer should be around 50 mm thick. • SWH with shorter tube has a better thermal performance. - Abstract: Solar water heaters (SWHs), now widely used in China, represent an environmentally friendly way to heat water. We tested the performance of more than 1000 water-in-glass evacuated tube SWHs according to Chinese standards and found that the heat loss from the storage tank and capacity of the solar collector affected their thermal performance. The optimum parameters to maximize the performance of water-in-glass evacuated tube SWHs included a ratio of tank volume to collector area of 57–72 L/m 2 , which should give a system efficiency of 0.49–0.57, meaning that the temperature of water in the tank will exceed 45 °C after one day of heat collection. In addition, the polyurethane insulation layer should be around 50 mm thick with a free foaming density of about 35 kg/m 3 , and the evacuated tube should be short. The tilt angle did not affect the performance of the SWHs. These results should aid in the design of highly efficient SWHs

  16. SOLAR REFRIGERATING UNIT WITH AN ADSORPTION REACTOR AND EVACUATED TUBE COLLECTORS

    Directory of Open Access Journals (Sweden)

    M.E. Vieira

    1997-09-01

    Full Text Available This work presents the principles of operation of a solar refrigerator with the following basic components: a reactor, a set of evacuated tube solar collectors, a condenser, a heat exchanger, and an evaporator. During the heating phase, solar radiation is collected and transferred to the reactor for desorption by a vapor thermal siphon loop. During the cooling phase, heat from the reactor is released to the ambient by a second water vapor loop. Ambient data collected daily during a period of 18 years were divided into hourly values and used to simulate the temperatures of the reactor, which uses salt impregnated with graphite and ammonia, during the adsorption / desorption processes. The results show that the refrigerator operates well in Fortaleza and that better results are expected for the countryside of the state of Ceara. It is concluded that only a high efficiency collector set can be used in the system

  17. High temperature collecting performance of a new all-glass evacuated tubular solar air heater with U-shaped tube heat exchanger

    International Nuclear Information System (INIS)

    Wang, Pin-Yang; Guan, Hong-Yang; Liu, Zhen-Hua; Wang, Guo-San; Zhao, Feng; Xiao, Hong-Sheng

    2014-01-01

    Highlights: • A novel solar air heater with simplified CPC and U-type heat exchanger is designed and tested. • The system is made up of 10 linked collecting panels. • Simplified CPC has a much lower cost at the expense of slight efficiency loss. • The air heater can propose the heated air exceeding 200 °C with great air flow rate. - Abstract: Experiment and simulation are conducted on a new-type all-glass evacuated tubular solar air heater with simplified compound parabolic concentrator (CPC). The system is made up of 10 linked collecting panels and each panel includes a simplified CPC and an all-glass evacuated tube with a U-shaped copper tube heat exchanger installed inside. Air is gradually heated when passing through each U-shaped copper tube. The heat transfer model of the solar air heater is established and the outlet air temperature, the heat power and heat efficiency are calculated. Calculated and experimental results show that the present experimental system can provide the heated air exceeding 200 °C. The whole system has an outstanding high-temperature collecting performance and the present heat transfer model can meet the general requirements of engineering calculations

  18. Exergy Analyses of Fabricated Compound Parabolic Solar Collector with Evacuated Tubes at Different Operating Conditions: Indore (India)

    Science.gov (United States)

    Geete, Ankur; Dubey, Akash; Sharma, Ankush; Dubey, Anshul

    2018-05-01

    In this research work, compound parabolic solar collector (CPC) with evacuated tubes is fabricated. Main benefit of CPC is that there is no requirement of solar tracking system. With fabricated CPC; outlet temperatures of flowing fluid, instantaneous efficiencies, useful heat gain rates and inlet exergies (with and without considering Sun's cone angle) are experimentally found. Observations are taken at different time intervals (1200, 1230, 1300, 1330 and 1400 h), mass flow rates (1.15, 0.78, 0.76, 0.86 and 0.89 g/s), ambient temperatures and with various dimensions of solar collector. This research work is concluded as; maximum instantaneous efficiency is 69.87% which was obtained with 0.76 g/s flow rate of water at 1300 h and 42°C is the maximum temperature difference which was also found at same time. Maximum inlet exergies are 139.733 and 139.532 kW with and without considering Sun's cone angle at 1300 h, respectively. Best thermal performance from the fabricated CPC with evacuated tubes is found at 1300 h. Maximum inlet exergy is 141.365 kW which was found at 1300 h with 0.31 m aperture width and 1.72 m absorber pipe length.

  19. Simulation of Evacuated Tube Collector and Storage of Hybrid Air-conditioning System

    Directory of Open Access Journals (Sweden)

    Mustafa Ahmed Abdulhussain

    2018-02-01

    Full Text Available The CFD transient simulation of superheating the refrigerant R410 through the heat exchange with the evacuated tube water heating system of the hybrid split air conditioner that is subjected to solar radiation of constant intensity with the contribution of fan accelerated air is performed by the ANSYS-CFX code. The comparison with experimental work showed a minimum percentage error 8% of the predicted refrigerant evaporative heat transfer with storage tank horizontal tubing. In addition, the results denoted high absorption rate for the evacuated tubes, reducing highly reversed heat transmission for the circulated water. 

  20. A new desalination system using a combination of heat pipe, evacuated tube and parabolic trough collector

    International Nuclear Information System (INIS)

    Jafari Mosleh, H.; Jahangiri Mamouri, S.; Shafii, M.B.; Hakim Sima, A.

    2015-01-01

    Highlights: • A new desalination uses a combination of heat pipe and parabolic trough collector. • A twin-glass evacuated tube is used to decrease the thermal losses from heat pipe. • Adding oil into the space between heat pipe and tube collector enhances the yield. • The yield and efficiency reach up to 0.933 kg/(m 2 h) and 65.2%, respectively. - Abstract: The solar collectors have been commonly used in desalination systems. Recent investigations show that the use of a linear parabolic trough collector in solar stills can improve the efficiency of a desalination system. In this work, a combination of a heat pipe and a twin-glass evacuated tube collector is utilized with a parabolic trough collector. Results show that the rate of production and efficiency can reach to 0.27 kg/(m 2 h) and 22.1% when aluminum conducting foils are used in the space between the heat pipe and the twin-glass evacuated tube collector to transfer heat from the tube collector to the heat pipe. When oil is used as a medium for the transfer of heat, filling the space between heat pipe and twin-glass evacuated tube collector, the production and efficiency can increase to 0.933 kg/(m 2 h) and 65.2%, respectively

  1. Low-cost evacuated-tube solar collector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beecher, D. T.

    1981-02-10

    A prototype design for an evacuated tube air cooled solar collector module has been completed. A product cost study, based on the production of 60,000 of the prototype modules per year (approx. 1,000,000 square feet annually), estimates that the module as shipped would have a cost at inventory of $7.09 to $7.40 per square foot of aperture. Computer programs were developed to predict the optical and thermal performance of the module. Antireflective coatings (porous aluminum oxide) which could be formed by spraying or dipping were demonstrated but degraded more rapidly when exposed to a high humidity ambient than acid etched films. A selective black chromium oxide multi-layered graded film was vapor deposited which had an absorptivity of about 0.9 and an emissivity of 0.03. When the film was heated to temperatures of 400/sup 0/C in a gettered vacuum for as little as 24 hours, however, irreversible changes took place both between and within coating layers which resulted in ..cap alpha.. decreasing to about 0.73 and epsilon increasing to 0.14. The product cost studies indicate that module design changes are warranted to reduce product cost prior to tooling for production.

  2. Design and Optical Performance of Compound Parabolic Solar Concentrators with Evacuated Tube as Receivers

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2016-10-01

    Full Text Available In the present article, six symmetric compound parabolic solar concentrators (CPCs with all-glass evacuated solar tubes (EST as the receiver are designed, and a comparative study on their optical performance is performed based on theoretical analysis and ray-tracing simulations. In terms of optical loss through gaps of CPCs and optical efficiency averaged for radiation over the acceptance angle, CPC-6, designed based on a fictitious “hat”-shaped absorber with a “V” groove at the bottom, is the optimal design, and CPC-1, designed based on the cover tube, is the worst solution, whereas from the point of view of the annual collectible radiation on the EST, it is found that CPC-4, designed based on a fictitious “ice-cream” absorber, is the optimal design and CPC-1 is the worst solution. CPC-6, commonly regarded as the best design in the past, is not an optimal design in terms of annual collectible radiation after truncation. Results also indicate that, for high temperature applications, CPC-6 and CPC-4 are advisable due to the high solar flux on the EST resulting from the high optical efficiency for radiation within the acceptance angle.

  3. Performance study on evacuated tube solar collector using therminol D-12 as heat transfer fluid coupled with parabolic trough

    International Nuclear Information System (INIS)

    Selvakumar, P.; Somasundaram, P.; Thangavel, P.

    2014-01-01

    Highlights: • Instant hot water at temperatures between 40 °C and 68 °C in the low solar radiation range of 240–540 W/m 2 . • Usage of therminol D-12 and parabolic trough in low temperature application. • Stability of thermal and flow properties of therminol D-12 are studied. - Abstract: Fossil fuels and electrical energy are widely used for instant hot water generation in rural and urban areas. Also, conventional solar water heaters do not support instant hot water generation because of various problems. A new system with evacuated tube collector using synthetic oil as heat transfer fluid coupled with parabolic trough is developed and studied experimentally for instant hot water generation in the presence of low solar irradiance. Among the different grades of therminol, therminol D-12 is chosen for the study because of its thermal stability. Parabolic trough is coupled to evacuated tube to enhance the flow as well as heating characteristics of therminol. Heating efficiency and temperature characteristics are determined for the newly developed system under low solar irradiance conditions. Instant hot water can be produced by the new system at a temperature of 60 °C in the presence of low solar radiation. This newly developed system has the ability to check the fossil fuel consumption and electrical energy consumption for instant hot water generation in household applications. The stability of the heat transfer fluid is also ensured by repeated experiments

  4. A Study on the Development of Nonglass Solar Vacuum Tube Collector

    International Nuclear Information System (INIS)

    Oh, Seung Jin

    2008-02-01

    Nature has been providing us energy from the beginning of the world. However human has hardly used it wisely. Solar energy is a kind of renewable energy from the nature. This study has been carried out to study the use of solar energy as it is harnessed in the form of thermal energy. Solar energy is one of the most promising energy resources such as hydrogen, biomass, wind and geothermal energy, because it is clean and inexhaustible. Space heating in buildings can be provided from solar energy by systems that are similar in many respects to water heater systems. By tapping into solar energy, we can not only solve the problem of energy shortage, but also can protect the environment and benefit the human beings. There are currently two types of evacuated tube; a single glass tube and a double glass tube. The former consists of a single glass tube which contains a flat or curved aluminium plate attached to a copper heat pipe or water flow pipe. The latter consists of rows of parallel transparent glass tubes, each of which contains an absorber tube. Evacuated tube collectors introduced above, however, pose some problems as they break rather easily under mechanical stresses. This paper introduces some preliminary results in design and fabrication of a non-glass solar vacuum tube collector in which the thermosyphon(heat pipe)made of copper is used as a heat transfer device. A series of tests have been performed to assess the ability of a non-glass solar vacuum tube collector. The series of experiments are as follows: 1)Vacuum level inside a vacuum tube. 2)Effects of the air remaining inside a vacuum tube on the temperature on the absorber plate. 3)Comparison of a non-glass vacuum solar collector with a single glass evacuated tube(SEIDO 5). Different vacuum levels inside non-glass vacuum tubes were applied to check any leakage or unexpected physical or chemical developments with time. The vacuum level changed from 10 -2 torr to 5torr in 5 days due to air infiltration from

  5. Optimal nonimaging integrated evacuated solar collector

    Science.gov (United States)

    Garrison, John D.; Duff, W. S.; O'Gallagher, Joseph J.; Winston, Roland

    1993-11-01

    A non imaging integrated evacuated solar collector for solar thermal energy collection is discussed which has the lower portion of the tubular glass vacuum enveloped shaped and inside surface mirrored to optimally concentrate sunlight onto an absorber tube in the vacuum. This design uses vacuum to eliminate heat loss from the absorber surface by conduction and convection of air, soda lime glass for the vacuum envelope material to lower cost, optimal non imaging concentration integrated with the glass vacuum envelope to lower cost and improve solar energy collection, and a selective absorber for the absorbing surface which has high absorptance and low emittance to lower heat loss by radiation and improve energy collection efficiency. This leads to a very low heat loss collector with high optical collection efficiency, which can operate at temperatures up to the order of 250 degree(s)C with good efficiency while being lower in cost than current evacuated solar collectors. Cost estimates are presented which indicate a cost for this solar collector system which can be competitive with the cost of fossil fuel heat energy sources when the collector system is produced in sufficient volume. Non imaging concentration, which reduces cost while improving performance, and which allows efficient solar energy collection without tracking the sun, is a key element in this solar collector design.

  6. Solar Heating Systems with Evacuated Tubular Solar Collector

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1998-01-01

    Recently different designed evacuated tubular solar collectors were introduced on the market by different Chinese companies. In the present study, investigations on the performance of four different Chinese evacuated tubular collectors and of solar heating systems using these collectors were...... carried out, employing both laboratory test and theoretical calculations. The collectors were tested in a small solar domestic hot water (SDHW) system in a laboratory test facility under realistic conditions. The yearly thermal performance of solar heating systems with these evacuated tubular collectors......, as well as with normal flat-plate collectors was calculated under Danish weather conditions. It is found that, for small SDHW systems with a combi tank design, an increase of 25% -55% net utilized solar energy can be achieved by using these evacuated tubular collectors instead of normal flat...

  7. Design of Pumping Station for the Solar Evacuated Collector Tubes%太阳能真空集热管排气台的设计

    Institute of Scientific and Technical Information of China (English)

    任家生; 毛福明; 赵正中; 刘兆斌

    2001-01-01

    In this paper, the design requirements and constructure speciality of pumping station for the solar evacuated collector tubes are reported.%本文介绍了太阳能真空集热管排气台的设计要求与结构特点.

  8. Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector

    International Nuclear Information System (INIS)

    Lamnatou, Chr.; Papanicolaou, E.; Belessiotis, V.; Kyriakis, N.

    2012-01-01

    Highlights: ► We evaluate an evacuated-tube solar air collector and use it to develop a novel dryer. ► Apple, carrot and apricot thin-layer drying experiments are conducted. ► Best overall fitting among several available thin-layer drying models is pursued. ► Thermodynamic analysis yields optimal collector area, energy utilization/exergy loss. ► The proposed dryer has a capacity for drying larger quantities of products. -- Abstract: The present work presents a thermodynamic performance analysis of a solar dryer with an evacuated-tube collector. Drying experiments for apples, carrots and apricots were conducted, after a preliminary stage of the investigation which included measurements for the determination of the collector efficiency. These results showed that the warm outlet air of the collector attains temperature levels suitable for drying of agricultural products without the need of preheating. Thus, the present collector was used as the heat source for a drying chamber in the frame of the development of a novel, convective, indirect solar dryer; given the fact that in the literature there are only a few studies about this type of collectors in conjunction with solar drying applications. Thin-layer drying models were fitted to the experimental drying curves, including the recent model of Diamante et al. which showed good correlation coefficients for all the tested products. Drying parameters such as moisture ratio and drying rates were calculated. Furthermore, an energetic/exergetic analysis of the dryer was also conducted and performance coefficients such as pick-up and exergy efficiencies, energy utilization ratio, exergy losses were determined for several configurations such as single and double-trays and several drying air velocities. On the other hand, an optimal collector surface area study was conducted, based on laws for minimum entropy generation. Design parameters such as optimum collector area were determined based on the minimum entropy

  9. Direct solar steam generation inside evacuated tube absorber

    Directory of Open Access Journals (Sweden)

    Khaled M. Bataineh

    2016-12-01

    Full Text Available Direct steam generation by solar radiation falling on absorber tube is studied in this paper. A system of single pipe covered by glass material in which the subcooled undergoes heating and evaporation process is analyzed. Mathematical equations are derived based on energy, momentum and mass balances for system components. A Matlab code is built to simulate the flow of water inside the absorber tube and determine properties of water along the pipe. Widely accepted empirical correlations and mathematical models of turbulent flow, pressure drop for single and multiphase flow, and heat transfer are used in the simulation. The influences of major parameters on the system performance are investigated. The pressure profiles obtained by present numerical solution for each operation condition (3 and 10 MPa matches very well experimental data from the DISS system of Plataforma Solar de Almería. Furthermore, results obtained by simulation model for pressure profiles are closer to the experimental data than those predicted by already existed other numerical model.

  10. Extreme learning machine: a new alternative for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters.

    Science.gov (United States)

    Liu, Zhijian; Li, Hao; Tang, Xindong; Zhang, Xinyu; Lin, Fan; Cheng, Kewei

    2016-01-01

    Heat collection rate and heat loss coefficient are crucial indicators for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, wasting too much time and manpower. To address this problem, we previously used artificial neural networks and support vector machine to develop precise knowledge-based models for predicting the heat collection rates and heat loss coefficients of water-in-glass evacuated tube solar water heaters, setting the properties measured by "portable test instruments" as the independent variables. A robust software for determination was also developed. However, in previous results, the prediction accuracy of heat loss coefficients can still be improved compared to those of heat collection rates. Also, in practical applications, even a small reduction in root mean square errors (RMSEs) can sometimes significantly improve the evaluation and business processes. As a further study, in this short report, we show that using a novel and fast machine learning algorithm-extreme learning machine can generate better predicted results for heat loss coefficient, which reduces the average RMSEs to 0.67 in testing.

  11. Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector

    International Nuclear Information System (INIS)

    Liu, Zhen-Hua; Hu, Ren-Lin; Lu, Lin; Zhao, Feng; Xiao, Hong-shen

    2013-01-01

    Highlights: • A novel solar air collector with simplified CPC and open thermosyphon is designed and tested. • Simplified CPC has a much lower cost at the expense of slight efficiency loss. • Nanofluid effectively improves thermal performance of the above solar air collector. • Solar air collector with open thermosyphon is better than that with concentric tube. - Abstract: A novel evacuated tubular solar air collector integrated with simplified CPC (compound parabolic concentrator) and special open thermosyphon using water based CuO nanofluid as the working fluid is designed to provide air with high and moderate temperature. The experimental system has two linked panels and each panel includes an evacuated tube, a simplified CPC and an open thermosyphon. Outdoor experimental study has been carried out to investigate the actual solar collecting performance of the designed system. Experimental results show that air outlet temperature and system collecting efficiency of the solar air collector using nanofluid as the open thermosyphon’s working fluid are both higher than that using water. Its maximum air outlet temperature exceeds 170 °C at the air volume rate of 7.6 m 3 /h in winter, even though the experimental system consists of only two collecting panels. The solar collecting performance of the solar collector integrated with open thermosyphon is also compared with that integrated with common concentric tube. Experimental results show that the solar collector integrated with open thermosyphon has a much better collecting performance

  12. Advanced evacuated tube collectors

    Science.gov (United States)

    Schertz, W. W.; Hull, J. R.; Winston, R.; Ogallagher, J.

    1985-04-01

    The essence of the design concept for these new collectors is the integration of moderate levels of nonimaging concentration inside the evacuated tube itself. This permanently protects the reflection surfaces and allows the use of highly reflecting front surface mirrors with reflectances greater than 95%. Previous fabrication and long term testing of a proof-of-concept prototype has established the technical success of the concept. Present work is directed toward the development of a manufacturable unit that will be suitable for the widest possible range of applications. Design alternatives include scaling up the original prototype's tube diameter from 5 cm to 10 cm, using an internal shaped metal concentrating reflector, using a variety of profile shapes to minimize so-called gap losses and accommodate both single ended and double-ended flow geometries, and allowing the use of heat pipes for the absorber tube.

  13. PERFORMANCE OF EVACUATED TUBE SOLAR COLLECTOR USING WATER-BASED TITANIUM OXIDE NANOFLUID

    Directory of Open Access Journals (Sweden)

    M. Mahendran

    2012-12-01

    Full Text Available Experiments are undertaken to determine the efficiency of an evacuated tube solar collector using water-based Titanium Oxide (TiO2 nanofluid at the Pekan Campus (3˚32’ N, 103˚25’ E, Faculty of Mechanical Engineering, University Malaysia Pahang, for the conversion of solar thermal energy. Malaysia lies in the equatorial zone with an average daily solar insolation of more than 900 W/m², which can reach a maximum of 1200 W/m² for most of the year. Traditionally water is pumped through the collector at an optimum flow rate, for the extraction of solar thermal energy. If the outlet temperature of the water is high, further circulation of the water through the collector is useless. This is due to the low thermal conductivity of water of 0.6 W/m.K compared to metals which is many orders higher. Hence it is necessary to reduce the surface temperature either by pumping water at a higher flow rate or by enhancing the fluid’s properties by the dispersion of nanoparticles. Pumping water at higher flow rates is not advantageous as the overall efficiency of the system is lowered. Liquids in which nanosized particles of metal or their oxides are dispersed in a base liquid such as water are known as 'Nanofluids'. This results in higher values of thermal conductivity compared to the base liquid. The thermal conductivity increases with the concentration and temperature of the nanofluid. The increase in thermal conductivity with temperature is advantageous for application in collectors as the solar insolation varies throughout the day, with a minimum in the morning reaching a maximum at 2.00p.m and reducing thereafter. The efficiency of the collector estimated using a TiO2 nanofluid of 0.3% concentration is about 0.73, compared to water which is about 0.58. The efficiency is enhanced by 16.7% maximum with 30–50nm sized TiO2 nanoparticles dispersed in the water, compared to the system working solely with water. The flow rate is fixed at 2.7 liters per

  14. Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2015-08-01

    Full Text Available The determinations of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, which also wastes too much time and manpower. To address this problem, we propose machine learning models including artificial neural networks (ANNs and support vector machines (SVM to predict the heat collection rate and heat loss coefficient without a direct determination. Parameters that can be easily obtained by “portable test instruments” were set as independent variables, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, final temperature and angle between tubes and ground, while the heat collection rate and heat loss coefficient determined by the detection device were set as dependent variables respectively. Nine hundred fifteen samples from in-service water-in-glass evacuated tube solar water heaters were used for training and testing the models. Results show that the multilayer feed-forward neural network (MLFN with 3 nodes is the best model for the prediction of heat collection rate and the general regression neural network (GRNN is the best model for the prediction of heat loss coefficient due to their low root mean square (RMS errors, short training times, and high prediction accuracies (under the tolerances of 30%, 20%, and 10%, respectively.

  15. Theoretical model of an evacuated tube heat pipe solar collector integrated with phase change material

    International Nuclear Information System (INIS)

    Naghavi, M.S.; Ong, K.S.; Badruddin, I.A.; Mehrali, M.; Silakhori, M.; Metselaar, H.S.C.

    2015-01-01

    The purpose of this paper is to model theoretically a solar hot water system consisting of an array of ETHPSC (evacuated tube heat pipe solar collectors) connected to a common manifold filled with phase change material and acting as a LHTES (latent heat thermal energy storage) tank. Solar energy incident on the ETHPSC is collected and stored in the LHTES tank. The stored heat is then transferred to the domestic hot water supply via a finned heat exchanger pipe placed inside the tank. A combination of mathematical algorithms is used to model a complete process of the heat absorption, storage and release modes of the proposed system. The results show that for a large range of flow rates, the thermal performance of the ETHPSC-LHTES system is higher than that of a similar system without latent heat storage. Furthermore, the analysis shows that the efficiency of the introduced system is less sensitive to the draw off water flowrate than a conventional system. Analysis indicates that this system could be applicable as a complementary part to conventional ETHPSC systems to be able to produce hot water at night time or at times with weak radiation. - Highlights: • The ETHPSC is integrated with PCM at manifold side for night hot water demands. • The thermal performance of the ETHPSC-PCM is often higher than the baseline model. • The efficiency of the proposed model is stable for different flow rates. • Using PCM as thermal storage increases reliability on the performance of the system.

  16. Experimental analysis of solar thermal integrated MD system for cogeneration of drinking water and hot water for single family villa in dubai using flat plate and evacuated tube solar collectors

    DEFF Research Database (Denmark)

    Asim, Muhammad; Imran, Muhammad; Leung, Michael K.H.

    2017-01-01

    This paper presents the experimental analysis performed on solar thermal integrated membrane distillation (MD) system using flat plate and evacuated tube collectors. The system will be utilized for cogeneration of drinking water and domestic hot water for single family in Dubai comprising of four...... to five members. Experiments have been performed in Ras Al Khaimah Research and Innovation Centre (RAKRIC) facility. The experimental setup has been installed to achieve the required production of 15–25 L/d of drinking water and 250 L/d of hot water for domestic purposes. Experiments have been performed...

  17. Influence of the receiver’s back surface radiative characteristics on the performance of a heat-pipe evacuated-tube solar collector

    International Nuclear Information System (INIS)

    Zheng, Hongfei; Xiong, Jianying; Su, Yuehong; Zhang, Haiyin

    2014-01-01

    Highlights: • A model for describing the heat transfer characteristics of the ETSC is derived. • A method by performing roughness treatment is proposed to change the emissivity. • Increasing the receiver’s back surface emissivity can greatly affect the heat loss. • Real weather test verifies the proposed method in controlling overheat phenomenon. - Abstract: The receiver’s back surface radiative characteristics of a heat-pipe evacuated-tube solar collector (ETSC) may have a significant influence on its performance. This influence is generally related to the back surface emissivity and temperature; however it has been not studied previously. This paper firstly presents a heat transfer model for the ETSC, which is then derived to characterize the relationship between the heat loss and the back surface emissivity of the ETSC. A steady state experiment has been also performed to measure the heat loss of ETSC with different back surface emissivity values. The experimental results indicate that the heat loss of the ETSC increases with the increase of the back surface emissivity, but the rate of increase differs for different operation temperatures. When the back surface emissivity increases from 0.03 to 0.12, the heat loss of ETSC only increases by 31% when the operation temperature is below 100 °C, but the heat loss will increase to 96% when the operation temperature is over 200 °C. This means that the change of back surface emissivity can significantly affect the performance of the ETSC at higher temperature but affect little at lower temperature. Based on this, a novel method by performing roughness treatment on the receiver’s back surface is proposed to solve the overheating problem of ETSC in summer. Two solar water heaters including 6 ETSCs with standard and roughness-treated tubes were tested under real weather condition. Experiment reveals that when the water temperature in tank is below 60 °C, the two solar water heaters own similar temperature

  18. Feasibility Study on the Use of a Solar Thermoelectric Cogenerator Comprising a Thermoelectric Module and Evacuated Tubular Collector with Parabolic Trough Concentrator

    Science.gov (United States)

    Miao, L.; Zhang, M.; Tanemura, S.; Tanaka, T.; Kang, Y. P.; Xu, G.

    2012-06-01

    We have designed a new solar thermoelectric cogeneration system consisting of an evacuated tubular solar collector (ETSC) with a parabolic trough concentrator (PTC) and thermoelectric modules (TEMs) to supply both thermal energy and electricity. The main design concepts are (1) the hot side of the TEM is bonded to the solar selective absorber installed in an evacuated glass tube, (2) the cold side of the TEM is also bonded to the heat sink, and (3) the outer circulated water is heated by residual solar energy after TEM generation. We present an example solar thermal simulation based on energy balance and heat transfer as used in solar engineering to predict the electrical conversion efficiency and solar thermal conversion efficiency for different values of parameters such as the solar insolation, concentration ratio, and TEM ZT values.

  19. Participation in multilateral effort to develop high performance integrated CPC evacuated collectors

    Science.gov (United States)

    Winston, R.; Ogallagher, J. J.

    1992-05-01

    The University of Chicago Solar Energy Group has had a continuing program and commitment to develop an advanced evacuated solar collector integrating nonimaging concentration into its design. During the period from 1985-1987, some of our efforts were directed toward designing and prototyping a manufacturable version of an Integrated Compound Parabolic Concentrator (ICPC) evacuated collector tube as part of an international cooperative effort involving six organizations in four different countries. This 'multilateral' project made considerable progress towards a commercially practical collector. One of two basic designs considered employed a heat pipe and an internal metal reflector CPC. We fabricated and tested two large diameter (125 mm) borosilicate glass collector tubes to explore this concept. The other design also used a large diameter (125 mm) glass tube but with a specially configured internal shaped mirror CPC coupled to a U-tube absorber. Performance projections in a variety of systems applications using the computer design tools developed by the International Energy Agency (IEA) task on evacuated collectors were used to optimize the optical and thermal design. The long-term goal of this work continues to be the development of a high efficiency, low cost solar collector to supply solar thermal energy at temperatures up to 250 C. Some experience and perspectives based on our work are presented and reviewed. Despite substantial progress, the stability of research support and the market for commercial solar thermal collectors were such that the project could not be continued. A cooperative path involving university, government, and industrial collaboration remains the most attractive near term option for developing a commercial ICPC.

  20. Effect of Tube Diameter on The Design of Heat Exchanger in Solar Drying system

    Science.gov (United States)

    Husham Abdulmalek, Shaymaa; Khalaji Assadi, Morteza; Al-Kayiem, Hussain H.; Gitan, Ali Ahmed

    2018-03-01

    The drying of agriculture product consumes a huge fossil fuel rates that demand to find an alternative source of sustainable environmental friendly energy such as solar energy. This work presents the difference between using solar heat source and electrical heater in terms of design aspect. A circular-finned tube bank heat exchanger is considered against an electrical heater used as a heat generator to regenerate silica gel in solar assisted desiccant drying system. The impact of tube diameter on the heat transfer area was investigated for both the heat exchanger and the electrical heater. The fin performance was investigated by determining fin effectiveness and fin efficiency. A mathematical model was developed using MATLAB to describe the forced convection heat transfer between hot water supplied by evacuated solar collector with 70 °C and ambient air flow over heat exchanger finned tubes. The results revealed that the increasing of tube diameter augments the heat transfer area of both heat exchanger and electrical heater. The highest of fin efficiency was around 0.745 and the lowest was around 0.687 while the fin effectiveness was found to be around 0.998.

  1. Feasibility of active solar water heating systems with evacuated tube collector at different operational water temperatures

    International Nuclear Information System (INIS)

    Mazarrón, Fernando R.; Porras-Prieto, Carlos Javier; García, José Luis; Benavente, Rosa María

    2016-01-01

    Highlights: • Analysis of the feasibility of an active solar water-heating system. • Profitability decreases as the required water temperature increases. • The number of collectors that maximizes profitability depends on the required temperature. • Investment in a properly sized system generates savings between 23% and 15%. • Fuel consumption can be reduced by 70%. - Abstract: With rapid advancements in society, higher water temperatures are needed in a number of applications. The demand for hot water presents a great variability with water required at different temperatures. In this study, the design, installation, and evaluation of a solar water heating system with evacuated tube collector and active circulation has been carried out. The main objective is to analyze how the required tank water temperature affects the useful energy that the system is capable of delivering, and consequently its profitability. The results show how the energy that is collected and delivered to the tank decreases with increasing the required temperature due to a lower performance of the collector and losses in the pipes. The annual system efficiency reaches average values of 66%, 64%, 61%, 56%, and 55% for required temperatures of 40 °C, 50 °C, 60 °C, 70 °C, and 80 °C. As a result, profitability decreases as temperature increases. The useful energy, and therefore the profitability, will decrease if the demand is not distributed throughout the day or focused on the end of the day. The system’s profitability was determined in two cases: considering maximum profitability of the system, assuming 100% utilization of useful energy (scenario 1); assuming a particular demand, considering that on many days all the useful energy the system can supply is not used (scenario 2). The analysis shows that through proper sizing of the system, optimizing the number of solar collectors, the investment in the solar system can be profitable with similar profitability values in the two

  2. In Vitro Evaluation of Evacuated Blood Collection Tubes as a Closed-Suction Surgical Drain Reservoir.

    Science.gov (United States)

    Heiser, Brian; Okrasinski, E B; Murray, Rebecca; McCord, Kelly

    The initial negative pressures of evacuated blood collection tubes (EBCT) and their in vitro performance as a rigid closed-suction surgical drain (CSSD) reservoir has not been evaluated in the scientific literature despite being described in both human and veterinary texts and journals. The initial negative pressures of EBCT sized 3, 6, 10, and 15 mL were measured and the stability of the system monitored. The pressure-to-volume curve as either air or water was added and maximal filling volumes were measured. Evacuated blood collection tubes beyond the manufacture's expiration date were evaluated for initial negative pressures and maximal filling volumes. Initial negative pressure ranged from -214 mm Hg to -528 mm Hg for EBCT within the manufacturer's expiration date. Different pressure-to-volume curves were found for air versus water. Optimal negative pressures of CSSD are debated in the literature. Drain purpose and type of exudates are factors that should be considered when deciding which EBCT size to implement. Evacuated blood collection tubes have a range of negative pressures and pressure-to-volume curves similar to previously evaluated CSSD rigid reservoirs. Proper drain management and using EBCT within labeled expiration date are important to ensure that expected negative pressures are generated.

  3. The sizes of Flat Plate and Evacuated Tube Collectors with Heat Pipe area as a function of the share of solar system in the heat demand

    Directory of Open Access Journals (Sweden)

    Olek Małgorzata

    2016-01-01

    Full Text Available The popularity of solar collectors in Poland is still increasing. The correct location of the collectors and a relatively high density of solar radiation allow delivering heat even in spite of relatively low ambient temperature. Moreover, solar systems used for heating domestic heat water (DHW in summer allow nearly complete elimination of conventional energy sources (e.g. gas, coal. That is why more and more house owners in Poland decide to install solar system installations. In Poland the most common types of solar collectors are flat plate collectors (FPC and evacuated tube collectors with heat pipe (ETCHP; both were selected for the analysis. The heat demand related to the preparation of hot water, connected with the size of solar collectors’ area, has been determined. The analysis includes FPC and ETCHP and heat demand of less than 10 000 kWh/year. Simulations were performed with the Matlab software and using data from a typical meteorological year (TMY. In addition, a 126–year period of measurements of insolation for Krakow has been taken into account. The HDKR model (Hay, Davis, Klucher, Reindl was used for the calculation of solar radiation on the absorber surface. The monthly medium temperature of the absorber depends on the amount of solar system heat and on the heat demand. All the previously mentioned data were used to determine solar efficiency. Due to the fact that solar efficiency and solar system heat are connected, the calculations were made with the use of an iterative method. Additionally, the upper limit for monthly useful solar system heat is resulted from the heat demand and thus the authors prepared a model of statistical solar system heat deviations based on the Monte Carlo method. It has been found that an increase in the useful solar system heat in reference to the heat demand is associated with more than proportional increase in the sizes of the analyzed surfaces of solar collector types.

  4. A simple method for preparing superconducting FeSe pellets without sealing in evacuated silica tubes

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2017-01-01

    Superconducting tetragonal FeSe pellets were made by reacting mixtures of elemental Fe and Se powders in argon atmosphere without sealing in evacuated silica tubes. A simple tube furnace has been used. Although the tube's material consisted of quartz, an alumina tube could be used as well. X......-ray pure samples with onset of superconducting transition between 8.0K and 8.5K were obtained under specific heat treatment conditions. Residual, unreacted Fe particles could be virtually eliminated through prolonged annealing. A key factor for the synthesis of good samples consists in using processing...

  5. Evacuated aerogel glazings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev

    2008-01-01

    This paper describes the main characteristics of monolithic silica aerogel and its application in evacuated superinsulating aerogel glazing including the evacuation and assembling process. Furthermore, the energetic benefit of aerogel glazing is quantified. In evacuated aerogel glazing the space ......) combined with a solar energy transmittance above 0.75.......This paper describes the main characteristics of monolithic silica aerogel and its application in evacuated superinsulating aerogel glazing including the evacuation and assembling process. Furthermore, the energetic benefit of aerogel glazing is quantified. In evacuated aerogel glazing the space...... between the glass panes is filled with monolithic silica aerogel evacuated to a rough vacuum of approximately 1-10 hPa. The aerogel glazing does not depend on use of low emissive coatings that have the drawback of absorbing a relatively large part of the solar radiation that otherwise could reduce...

  6. Integrated function nonimaging concentrating collector tubes for solar thermal energy

    Science.gov (United States)

    Winston, R.; Ogallagher, J. J.

    1982-09-01

    A substantial improvement in optical efficiency over contemporary external reflector evacuated tube collectors has been achieved by integrating the reflector surface into the outer glass envelope. Described are the design fabrication and test results for a prototype collector based on this concept. A comprehensive test program to measure performance and operational characteristics of a 2 sq m panel (45 tubes) has been completed. Efficiencies above 50% relative to beam at 200 C have been repeatedly demonstrated. Both the instantaneous and long term average performance of this totally stationary solar collector are comparable to those for tracking line focus parabolic troughs. The yield, reliability and stability of performance achieved have been excellent. Subcomponent assemblies and fabrication procedures have been used which are expected to be compatible with high volume production. The collector has a wide variety of applications in the 100 to 300 C range including industrial progress heat, air conditioning and Rankine engine operation.

  7. Nonimaging concentrators for solar thermal energy

    Science.gov (United States)

    Winston, R.; Gallagher, J. J.

    1980-03-01

    A small experimental solar collector test facility was used to explore applications of nonimaging optics for solar thermal concentration in three substantially different configurations: a single stage system with moderate concentration on an evacuated absorber (a 5.25X evacuated tube Compound Parabolic Concentrator or CPC), a two stage system with high concentration and a non-evacuated absorber (a 16X Fresnel lens/CPC type mirror) and moderate concentration single stage systems with non-evacuated absorbers for lower temperature (a 3X and a 6.5X CPC). Prototypes of each of these systems were designed, built and tested. The performance characteristics are presented.

  8. Using Three-Dimensional Printing to Fabricate a Tubing Connector for Dilation and Evacuation.

    Science.gov (United States)

    Stitely, Michael L; Paterson, Helen

    2016-02-01

    This is a proof-of-concept study to show that simple instrumentation problems encountered in surgery can be solved by fabricating devices using a three-dimensional printer. The device used in the study is a simple tubing connector fashioned to connect two segments of suction tubing used in a surgical procedure where no commercially available product for this use is available through our usual suppliers in New Zealand. A cylindrical tubing connector was designed using three-dimensional printing design software. The tubing connector was fabricated using the Makerbot Replicator 2X three-dimensional printer. The connector was used in 15 second-trimester dilation and evacuation procedures. Data forms were completed by the primary operating surgeon. Descriptive statistics were used with the expectation that the device would function as intended in all cases. The three-dimensional printed tubing connector functioned as intended in all 15 instances. Commercially available three-dimensional printing technology can be used to overcome simple instrumentation problems encountered during gynecologic surgical procedures.

  9. Two Fixed, Evacuated, Glass, Solar Collectors Using Nonimaging Concentration

    Science.gov (United States)

    Garrison, John D.; Winston, Roland; O'Gallagher, Joseph; Ford, Gary

    1984-01-01

    Two fixed, evacuated, glass solar thermal collectors have been designed. The incorporation of nonimaging concentration, selective absorption and vacuum insulation into their design is essential for obtaining high efficiency through low heat loss, while operating at high temperatures. Nonimaging, approximately ideal concentration with wide acceptance angle permits solar radiation collection without tracking the sun, and insures collection of much of the diffuse radiation. It also minimizes the area of the absorbing surface, thereby reducing the radiation heat loss. Functional integration, where different parts of these two collectors serve more than one function, is also important in achieving high efficiency, and it reduces cost.

  10. Comparative Study on Solar Collector’s Configuration for an Ejector-Refrigeration Cycle

    Directory of Open Access Journals (Sweden)

    Raffles Senjaya

    2008-05-01

    Full Text Available Solar collector’s configuration plays important role on solar-powered refrigeration systems to work as heat source for generator. Three types of solar collector consisting of flat plate, evacuated tube, and compound parabolic solar collectors are compared to investigate their performances. The performances consist of the behavior of heat which can be absorbed by the collectors, heat loss from the collectors and outlet temperature of working fluid at several slopes of the solar collectors. The new accurate analysis method of heat transfer is conducted to predict the performance of the solar collectors. The analysis is based on several assumptions, i.e. sky condition at Bandung is clear and not raining from 08.00 until 17.00 and thermal resistance at cover and absorber plate is negligible. The numerical calculation results confirm that performance of the evacuated tubes solar collector at the same operating conditions is higher than the others. For the case of an evacuated-tubes solar collector system with aperture area of 3.5 m2, the maximum heat which can be absorbed is 3992 W for the highest solar intensity of 970 W/m2 at 12.00 and horizontal position of the solar collector. At this condition, the highest outlet temperature of water is 347.15 K with mass flow rate 0.02 kg/s and inlet temperature 298 K.

  11. Economic analysis of solar assisted absorption chiller for a commercial building

    Science.gov (United States)

    Antonyraj, Gnananesan

    Dwindling fossil fuels coupled with changes in global climate intensified the drive to make use of renewable energy resources that have negligible impact on the environment. In this attempt, the industrial community produced various devices and systems to make use of solar energy for heating and cooling of building space as well as generate electric power. The most common components employed for collection of solar energy are the flat plate and evacuated tube collectors that produce hot water that can be employed for heating the building space. In order to cool the building, the absorption chiller is commonly employed that requires hot water at high temperatures for its operation. This thesis deals with economic analysis of solar collector and absorption cooling system to meet the building loads of a commercial building located in Chattanooga, Tennessee. Computer simulations are employed to predict the hourly building loads and performance of the flat plate and evacuated tube solar collectors using the hourly weather data. The key variables affecting the economic evaluation of such system are identified and the influence of these parameters is presented. The results of this investigation show that the flat plate solar collectors yield lower payback period compared to the evacuated tube collectors and economic incentives offered by the local and federal agencies play a major role in lowering the payback period.

  12. Performance of the second generation solar heating system in the solar house of the Eindhoven University of Technology

    NARCIS (Netherlands)

    Bisschops, R.W.G.; van Koppen, C.W.J.; Veltkamp, W.B.; Ouden, den C.

    1984-01-01

    Summer 1981 a new solar heating system has been installed in the Solar House at the E.U.T. The principal features of the system are Philips VTR 261 evacuated tube collectors, integration of the auxiliary heater with the (stratified water) storage and application of the new, balanced flow control

  13. On the addition of heat to solar pond from external sources

    NARCIS (Netherlands)

    Ganguly, S.; Jain, Ravi; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-01-01

    This brief note addresses the method of adding heat to a solar pond from an external source which is used to enhance the performance of a solar pond. Heat energy collected by Evacuated Tube Solar Collectors (ETSC) is transferred by circulating fluid from the Lower Convective Zone (LCZ) of a solar

  14. Experimental Study on Solar Cooling Tube Using Thermal/Vacuum Emptying Method

    Directory of Open Access Journals (Sweden)

    Huizhong Zhao

    2012-01-01

    Full Text Available A solar cooling tube using thermal/vacuum emptying method was experimentally studied in this paper. The coefficient of performance (COP of the solar cooling tube was mostly affected by the vacuum degree of the system. In past research, the thermal vacuum method, using an electric oven and iodine-tungsten lamp to heat up the adsorbent bed and H2O vapor to expel the air from the solar cooling tube, was used to manufacture solar cooling tubes. This paper presents a novel thermal vacuum combined with vacuum pump method allowing an increased vacuum state for producing solar cooling tubes. The following conclusions are reached: the adsorbent bed temperature of solar cooling tube could reaches up to 233°C, and this temperature is sufficient to meet desorption demand; the refrigerator power of a single solar cooling tube varies from 1 W to 12 W; the total supply refrigerating capacity is about 287 kJ; and the COP of this solar cooling tube is about 0.215.

  15. Experimental Validation and Model Verification for a Novel Geometry ICPC Solar Collector

    DEFF Research Database (Denmark)

    Perers, Bengt; Duff, William S.; Daosukho, Jirachote

    A novel geometry ICPC solar collector was developed at the University of Chicago and Colorado State University. A ray tracing model has been designed to investigate the optical performance of both the horizontal and vertical fin versions of this collector. Solar radiation is modeled as discrete...... to the desired incident angle of the sun’s rays, performance of the novel ICPC solar collector at various specified angles along the transverse and longitudinal evacuated tube directions were experimentally determined. To validate the ray tracing model, transverse and longitudinal performance predictions...... at the corresponding specified incident angles are compared to the Sandia results. A 100 m2 336 Novel ICPC evacuated tube solar collector array has been in continuous operation at a demonstration project in Sacramento California since 1998. Data from the initial operation of the array are used to further validate...

  16. Performance evaluation for solar liquid desiccant air dehumidification system

    Directory of Open Access Journals (Sweden)

    Mohamed Elhelw

    2016-06-01

    In addition, the maximum solar thermal energy was determined to meet the regeneration demand according to the hourly average solar radiation data. For 220 m2 evacuated tube collector area, the maximum required heat energy is obtained as 38,286 kW h on December, while using solar energy, will save energy by 30.28% annual value.

  17. Tube collector with integrated tracking parabolic concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Grass, C.; Benz, N.; Hacker, Z.; Timinger, A. [ZAE Bayern, Bavarian Centre for Applied Energy Research, Muenchen (Germany)

    2000-07-01

    Low concentrating CPC collectors usually do not track the sun and are mounted in east-west direction with a latitude dependent slope angle. They are most suitable for maximum working temperatures up to 200 250 deg. C. We present a novel evacuated tube-collector with a trough-like concentrating mirror. Single-axis tracking of the mirror is realized with a magnetic mechanism. The mirror is mounted inside the evacuated tube and hence protected from environmental influences. One axis tracking in combination with a small acceptance angle allows for higher concentration as compared to non-tracking concentrating collectors. Ray-tracing analysis shows a half acceptance angle of about 5 deg. at a geometrical concentration ratio of 3.2. The losses of evacuated tube collectors are dominated by the radiation losses of the absorber. Hence, reducing the absorber size can lead to higher efficiencies at high operating temperature levels. With the presented collector we aim for operating temperatures up to 400 deg. C. At temperatures of 300 deg. C we expect efficiencies of 65 %. This allows for application in industrial process heat generation, high efficient solar cooling and power generation. A first prototype was tested at the ZAE Bayern. The optical efficiency was measured to be 75 %. (au)

  18. Modelisation, conception et simulation des performances d'un collecteur solaire aeraulique a tubes sous vide en milieu nordique

    Science.gov (United States)

    Paradis, Pierre-Luc

    The global energy consumption is still increasing year after year even if different initiatives are set up to decrease fossil fuel dependency. In Canada 80% of the energy is used for space heating and domestic hot water heating in residential sector. This heat could be provided by solar thermal technologies despite few difficulties originating from the cold climate. The aim of this project is to design a solar evacuated tube thermal collector using air as the working fluid. Firstly, needs and specifications of the product are established in a clear way. Then, three concepts of collector are presented. The first one relies on the standard evacuated tube. The second one uses a new technology of tubes; both sides are open. The third one uses heat pipe to extract the heat from the tubes. Based on the needs and specification as criteria, the concept involving tubes with both sides open has been selected as the best idea. In order to simulate the performances of the collector, a model of the heat exchanges in an evacuated tube was developed in 4 steps. The first step is a model in steady state intended to calculate the stagnation temperature of the tube for a fixed solar radiation, outside temperature and wind speed. As a second step, the model is generalised to transient condition in order to validate it with an experimental setup. A root mean square error of 2% is then calculated. The two remainder steps are intended to calculate the temperature of airflow leaving the tube. In the same way, a first model in steady state is developed and then generalised to the transient mode. Then, the validation with an experimental setup gave a difference of 0.2% for the root mean square error. Finally, a preindustrial prototype intended to work in open loop for preheating of fresh air is presented. During the project, explosion of the both sides open evacuated tube in overheating condition blocked the construction of a real prototype for the test. Different path for further work are

  19. A hybrid desalination system using humidification-dehumidification and solar stills integrated with evacuated solar water heater

    International Nuclear Information System (INIS)

    Sharshir, S.W.; Peng, Guilong; Yang, Nuo; Eltawil, Mohamed A.; Ali, Mohamed Kamal Ahmed; Kabeel, A.E.

    2016-01-01

    Highlights: • Evacuated solar water heater integrated with humidification-dehumidification system. • Reuse of warm water drained from humidification-dehumidification to feed solar stills. • The thermal performance of hybrid system is increased by 50% and maximum yield is 63.3 kg/day. • The estimated price of the freshwater produced from the hybrid system is $0.034/L. - Abstract: This paper offers a hybrid solar desalination system comprising a humidification-dehumidification and four solar stills. The developed hybrid desalination system reuses the drain warm water from humidification-dehumidification to feed solar stills to stop the massive warm water loss during desalination. Reusing the drain warm water increases the gain output ratio of the system by 50% and also increased the efficiency of single solar still to about 90%. Furthermore, the production of a single solar still as a part of the hybrid system was more than that of the conventional one by approximately 200%. The daily water production of the conventional one, single solar still, four solar still, humidification- dehumidification and hybrid system were 3.2, 10.5, 42, 24.3 and 66.3 kg/day, respectively. Furthermore, the cost per unit liter of distillate from conventional one, humidification- dehumidification and hybrid system were around $0.049, $0.058 and $0.034, respectively.

  20. A multidimensonal Examination of Prefomences of the Future advanced Transport Systems: The ETT (Evacuated Tube Transport) TRM (Transrapid MAGLEV) System

    NARCIS (Netherlands)

    Janic, M.

    2016-01-01

    Multidimensional examination of performances of the future advanced ETT Evacuated Tube Transport) system operated by TRM (TransRapidMaglev); assessment of the ETT TRM system contribution to sustainability of the future transport sector through its completion with APT (Air Passenger Transport) system

  1. Performance of solar collectors under low temperature conditions

    DEFF Research Database (Denmark)

    Bunea, Mircea; Eicher, Sara; Hildbrand, Catherine

    The performance of four solar thermal collectors (flat plate, evacuated tube, unglazed with rear insulation and unglazed without rear insulation) was experimentally measured and simulated for temperatures below ambient. The influence of several parameters (e.g. collector inlet temperature, air...... evaluated and results compared to experimental measurements. A mathematical model is also under development to include, in addition to the condensation phenomena, the frost, the rain and the long-wave radiation gains/losses on the rear of the solar collector. While the potential gain from rain was estimated...... to be around 2%, frost heat gains were measured to be up to 40% per day, under specific conditions. Overall, results have shown that unglazed collectors are more efficient than flat plate or evacuated tube collectors at low operation temperatures or for night conditions, making them more suitable for heat pump...

  2. The solar kettle-thermos flask (SK-TF) and solar vacuum tube oven

    Energy Technology Data Exchange (ETDEWEB)

    Yak, Alex Kee Koo [AkayConsult Enterprise, Johor Bahru (Malaysia)

    2008-07-01

    The Solar Kettle-Thermos Flask (SK-TF) and Solar Vacuum Tube Oven (SaVeTao): A Cost Effective, Sustainable and Renewable Water Pasteurization and Food Processing System For The Developing World. Based on the perfect solar thermal energy harvesting paradigm of maximum solar radiation absorption and minimum loss of stored converted solar thermal energy, Solar Vacuum Glass Tubes (SVGT) indefinitely delivers solar pasteurized safe drinking water, powered solely by free solar energy. The SVGT is the heart of the SK-TF. Being vacuum insulated, the SK-TF doubles up as a vacuum flask, delivering stored solar heated water in the morning before the Sun is up. With a high stagnation temperature of more than 200 C, the SK-TF can also be used for other heating purposes e.g. an oven or autoclave. Powered solely by free solar energy, the SK-TF and SaVeTaO could very well be the answer in providing safe solar pasteurized drinking water and cooking to the global poor and needy in a sustainable and renewable way. (orig.)

  3. HYBRID INDIRECT SOLAR COOKER WITH LATENT HEAT STORAGE

    OpenAIRE

    Benazeer Hassan K. Ibrahim *, Victor Jose

    2016-01-01

    Solar cooking is the simplest, safest, most convenient way to cook food without consuming fuels or heating up the kitchen. All the conventional solar cooker designs have the disadvantage of inability to cook during off-shine and night hours.This disadvantage can be eliminated if the solar cooker is designed with thermal storage arrangement. In this paper, a hybrid solar cooker with evacuated tube collector and latent thermal storage unit and alternate electric heatingsource is simulated. The...

  4. A comparative Thermal Analysis of conventional parabolic receiver tube and Cavity model tube in a Solar Parabolic Concentrator

    Science.gov (United States)

    Arumugam, S.; Ramakrishna, P.; Sangavi, S.

    2018-02-01

    Improvements in heating technology with solar energy is gaining focus, especially solar parabolic collectors. Solar heating in conventional parabolic collectors is done with the help of radiation concentration on receiver tubes. Conventional receiver tubes are open to atmosphere and loose heat by ambient air currents. In order to reduce the convection losses and also to improve the aperture area, we designed a tube with cavity. This study is a comparative performance behaviour of conventional tube and cavity model tube. The performance formulae were derived for the cavity model based on conventional model. Reduction in overall heat loss coefficient was observed for cavity model, though collector heat removal factor and collector efficiency were nearly same for both models. Improvement in efficiency was also observed in the cavity model’s performance. The approach towards the design of a cavity model tube as the receiver tube in solar parabolic collectors gave improved results and proved as a good consideration.

  5. Test bench HEATREC for heat loss measurement on solar receiver tubes

    Science.gov (United States)

    Márquez, José M.; López-Martín, Rafael; Valenzuela, Loreto; Zarza, Eduardo

    2016-05-01

    In Solar Thermal Electricity (STE) plants the thermal energy of solar radiation is absorbed by solar receiver tubes (HCEs) and it is transferred to a heat transfer fluid. Therefore, heat losses of receiver tubes have a direct influence on STE plants efficiency. A new test bench called HEATREC has been developed by Plataforma Solar de Almería (PSA) in order to determinate the heat losses of receiver tubes under laboratory conditions. The innovation of this test bench consists in the possibility to determine heat losses under controlled vacuum.

  6. Fluid Line Evacuation and Freezing Experiments for Digital Radiator Concept

    Science.gov (United States)

    Berisford, Daniel F.; Birur, Gajanana C.; Miller, Jennifer R.; Sunada, Eric T.; Ganapathi, Gani B.; Stephan, Ryan; Johnson, Mark

    2011-01-01

    The digital radiator technology is one of three variable heat rejection technologies being investigated for future human-rated NASA missions. The digital radiator concept is based on a mechanically pumped fluid loop with parallel tubes carrying coolant to reject heat from the radiator surface. A series of valves actuate to start and stop fluid flow to di erent combinations of tubes, in order to vary the heat rejection capability of the radiator by a factor of 10 or more. When the flow in a particular leg is stopped, the fluid temperature drops and the fluid can freeze, causing damage or preventing flow from restarting. For this reason, the liquid in a stopped leg must be partially or fully evacuated upon shutdown. One of the challenges facing fluid evacuation from closed tubes arises from the vapor generated during pumping to low pressure, which can cause pump cavitation and incomplete evacuation. Here we present a series of laboratory experiments demonstrating fluid evacuation techniques to overcome these challenges by applying heat and pumping to partial vacuum. Also presented are results from qualitative testing of the freezing characteristics of several different candidate fluids, which demonstrate significant di erences in freezing properties, and give insight to the evacuation process.

  7. Solar heating and cooling demonstration project at the Florida solar energy center

    Science.gov (United States)

    1980-01-01

    The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. The system was designed to supply approximately 70 percent of the annual cooling and 100 percent of the heating load. The project provides unique high temperature, nonimaging, nontracking, evacuated tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection. Information is provided on the system's acceptance test results operation, controls, hardware and installation, including detailed drawings.

  8. DETECTION OF VORTEX TUBES IN SOLAR GRANULATION FROM OBSERVATIONS WITH SUNRISE

    International Nuclear Information System (INIS)

    Steiner, O.; Franz, M.; Bello Gonzalez, N.; Nutto, Ch.; Rezaei, R.; Schmidt, W.; Martinez Pillet, V.; Bonet Navarro, J. A.; Del Toro Iniesta, J. C.; Domingo, V.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Knoelker, M.

    2010-01-01

    We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory SUNRISE. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. From cross sections through the computational domain of the simulation, we conclude that these granular lanes are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. We propose that the observed vortex tubes may represent only the large-scale end of a hierarchy of vortex tubes existing near the solar surface.

  9. Cost-effective and reliable design of a solar thermal power plant

    International Nuclear Information System (INIS)

    Aliabadi, A.A.; Wallace, J.S.

    2009-01-01

    A design study was conducted to evaluate the cost-effectiveness of solar thermal power generation in a 50 kWe power plant that could be used in a remote location. The system combines a solar collector-thermal storage system utilizing a heat transfer fluid and a simple Rankine cycle power generator utilizing R123 refrigerant. Evacuated tube solar collectors heat mineral oil and supply it to a thermal storage tank. A mineral oil to refrigerant heat exchanger generates superheated refrigerant vapor, which drives a radial turbogenerator. Supplemental natural gas firing maintains a constant thermal storage temperature irregardless of solar conditions enabling the system to produce a constant 50 kWe output. A simulation was carried out to predict the performance of the system in the hottest summer day and the coldest winter day for southern California solar conditions. A rigorous economic analysis was conducted. The system offers advantages over advanced solar thermal power plants by implementing simple fixed evacuated tube collectors, which are less prone to damage in harsh desert environment. Also, backed up by fossil fuel power generation, it is possible to obtain continued operation even during low insolation sky conditions and at night, a feature that stand-alone PV systems do not offer. (author)

  10. Research on temperature control and influence of the vacuum tubes with inserted tubes solar heater

    Science.gov (United States)

    Xiao, L. X.; He, Y. T.; Hua, J. Q.

    2017-11-01

    A novel snake-shape vacuum tube with inserted tubes solar collector is designed in this paper, the heat transfer characteristics of the collector are analyzed according to its structural characteristics, and the influence of different working temperature on thermal characteristics of the collector is studied. The solar water heater prototype consisting of 14 vacuum tubes with inserted tubes is prepared, and the hot water storage control subsystem is designed by hysteresis comparison algorithm. The heat characteristic of the prototype was experimentally studied under hot water output temperature of 40-45°C, 50-55°C and 60-65°C. The daily thermal efficiency was 64%, 50% and 46%, respectively. The experimental results are basically consistent with the theoretical analysis.

  11. Design and simulation of a prototype of a small-scale solar CHP system based on evacuated flat-plate solar collectors and Organic Rankine Cycle

    International Nuclear Information System (INIS)

    Calise, Francesco; D’Accadia, Massimo Dentice; Vicidomini, Maria; Scarpellino, Marco

    2015-01-01

    Highlights: • A novel small scale solar power plant was designed and simulated. • The system is based on evacuated solar thermal collectors and an ORC system. • An average electric efficiency of 10% was found for the ORC. • The efficiency of solar collectors was found to be high in summer (>50%). • Pay-back periods lower than 5 years were estimated, in case of public funding. - Abstract: This paper presents a dynamic simulation model of a novel prototype of a 6 kW e solar power plant. The system is based on the coupling of innovative solar thermal collectors with a small Organic Rankine Cycle (ORC), simultaneously producing electric energy and low temperature heat. The novelty of the proposed system lies in the solar collector field, which is based on stationary evacuated flat-plate solar thermal collectors capable to achieve the operating temperatures typical of the concentrating solar thermal collectors. The solar field consists of about 73.5 m 2 of flat-plate evacuated solar collectors, heating a diathermic oil up to a maximum temperature of 230 °C. A diathermic oil storage tank is employed in order to mitigate the fluctuations due to the variability of solar energy availability. The hot diathermic oil exiting from the tank passes through an auxiliary gas-fired burner which provides eventual additional thermal energy. The inlet temperature of the diathermic oil entering the ORC system varies as a function of the availability of solar energy, also determining an oscillating response of the ORC. The ORC was simulated in Engineering Equation Solver (EES), using zero-dimensional energy and mass balances. The ORC model was subsequently implemented in a more general TRNSYS model, including all the remaining components of the system. The model was used to evaluate the energy and economic performance of the solar CHP system under analysis, in different climatic conditions. The results show that the efficiency of the ORC does not significantly vary during the

  12. Numerical simulation of solar-assisted multi-effect distillation (SMED) desalination systems

    KAUST Repository

    Kim, Youngdeuk

    2013-01-01

    We present a simulation model for the transient behavior of solar-assisted seawater desalination plant that employs the evacuated-tube collectors in conjunction with a multieffect distillation plant of nominal water production capacity of 16m3/day. This configuration has been selected due to merits in terms of environment-friendliness and energy efficiency. The solar-assisted multi-effect distillation system comprises 849 m2 of evacuated-tube collectors, 280 m3 water storage tanks, auxiliary heater, and six effects and a condenser. The present analysis employs a baseline configuration, namely; (i) the local solar insolation input (Jeddah, Saudi Arabia), (ii) a coolant flow rate through the headers of collector based on ASHRAE standards, (iii) a heating water demand, and (iv) the augmentation of water temperature by auxiliary when the supply temperature from the solar tank drops below the set point. It is observed that the annual collector efficiency and solar fraction decrease from 57.3 to 54.8% and from 49.4 to 36.7%, respectively, with an increase in the heating water temperature from 80 to 90 °C. The overall water production rate and the performance ratio increase slightly from 0.18 to 0.21 kg/s and from 4.11 to 4.13, respectively. © 2013 Desalination Publications.

  13. Technical Analysis of Combined Solar Water Heating Systems for Cold Climate Regions

    OpenAIRE

    Hossein Lotfizadeh; André McDonald; Amit Kumar

    2016-01-01

    Renewable energy resources, which can supplement space and water heating for residential buildings, can have a noticeable impact on natural gas consumption and air pollution. This study considers a technical analysis of a combined solar water heating system with evacuated tube solar collectors for different solar coverage, ranging from 20% to 100% of the total roof area of a typical residential building located in Edmonton, Alberta, Canada. The alternative heating systems were conventional (n...

  14. Evaluation of solar thermal driven cooling system in office buildings in Saudi Arabia

    Science.gov (United States)

    Linjawi, Majid T.; Talal, Qazi; Al-Sulaiman, Fahad A.

    2017-11-01

    In this study solar driven absorption chiller is used to reduce the peak cooling load in office buildings in Saudi Arabia for different selected cities. The study is conducted for six cities of Abha, Dhahran, Hail, Jeddah, Nejran and Riyadh under three operating durations of 4, 6, and 8 hours using flat plate or evacuated tube collectors. The energy analysis concluded that flat plate collectors are better than evacuated tube collectors. However, the results from economic analysis suggest that while proposing a gas fired absorption chiller will reduce running costs, further reduction by using solar collectors is not feasible because of its high initial cost. At the best case scenario the Net Present Value of a 10 Ton Absorption chiller operated by natural gas boiler and two large flat plate collectors (12m2 each) running for 8 hours/day, 5days/week has a value of 117,000 and Internal Rate of Return (IRR) of 12%. Solar driven absorption chiller could be more feasible if the gas prices increases or the solar collector prices decreases significantly. Finally, government economic incentives and taxes are recommended to provide a boost for the feasibility of such projects.

  15. Packaged solar water heating technology: twenty years of progress

    International Nuclear Information System (INIS)

    Morrison, Graham; Wood, Byard

    2000-01-01

    The world market for packaged solar water heaters is reviewed, and descriptions are given of the different types of solar domestic water heaters (SDWH), design concepts for packaged SDWH, thermosyphon SDWH, evacuated insulation and excavated tube collectors, seasonally biased solar collectors, heat pump water heaters, and photovoltaic water heaters. The consumer market value for SDWHs is explained, and the results of a survey of solar water heating are summarised covering advantages, perceived disadvantages, the relative importance of purchase decision factors, experience with system components, and the most frequent maintenance problems. The durability, reliability, and performance of SDWHs are discussed

  16. Comparison of the optics of non-tracking and novel types of tracking solar thermal collectors for process heat applications up to 300{sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Grass, C.; Schoelkopf, W.; Staudacher, L.; Hacker, Z. [Bavarian Centre for Applied Energy Research, ZAE Bayern Division 4, Garching (Germany)

    2004-03-01

    Evacuated CPC (compound parabolic concentrator) collectors with non-tracking reflectors are compared with two novel tracking collectors: a parabolic trough and an evacuated tube collector with integrated tracking reflector. Non-tracking low concentrating CPC collectors are mostly mounted in east-west direction with a latitude dependent slope angle. They are suitable at most for working temperatures up to 200-250 {sup o}C. We present a tracking evacuated tube-collector with a trough-like concentrating mirror. Single-axis tracking of the mirror is realized with a magnetic mechanism. The mirror is mounted inside the evacuated tube and hence protected from environmental influences. One axis tracking in combination with a small acceptance angle allows for higher concentration as compared to non-tracking concentrating collectors. Ray-tracing analysis shows a half acceptance angle of about 5.7{sup o} at geometrical concentration ratio of 3.2. Losses of well constructed evacuated tube collectors (heat conductivity through the manifolds inside the thermally insulated terminating housing are low) are dominated by radiation losses of the absorber. Hence, reducing the absorber size can lead to higher efficiencies at high operating temperature levels. With the presented collector we aim for operating temperatures up to 350 {sup o}C. At temperatures of 300 {sup o}C we expect with anti-reflective coating of the glass tube and a selective absorber coating efficiencies of 0.65. This allows for application in industrial process heat generation, high efficient solar cooling and power generation. A first prototype, equipped with a standard glass tube and a black paint absorber coating, was tested at ZAE Bayern. The optical efficiency was measured to be 0.71. This tube-collector is compared by ray-tracing with non-tracking market available tube-collectors with geometrical concentration ratios up to 1.1 and with a low cost parabolic trough collector of Industrial Solar Technology (IST

  17. Solar heating and cooling demonstration project at the Florida Solar Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Hankins, J.D.

    1980-02-01

    The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. Information is provided on the system's test, operation, controls, hardware and installation, including detailed drawings. The Center's office building, approximately 5000 square feet of space, with solar air conditioning and heating as a demonstration of the technical feasibility is located just north of Port Canaveral, Florida. The system was designed to supply approximately 70% of the annual cooling and 100% of the heating load. The project provides unique high-temperature, non-imaging, non-tracking, evacuated-tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection.

  18. Combined solar collector and storage systems

    International Nuclear Information System (INIS)

    Norton, B.; Smyth, M.; Eames, P.; Lo, S.N.G.

    2000-01-01

    The article discusses reasons why fossil-fuelled water heating systems are included in new houses but solar systems are not. The technology and market potential for evacuated tube systems and integral collector storage systems (ICSS) are explained. The challenge for the designers of ICSSWH has been how to reduce heat loss without compromising solar energy collection. A new concept for enhanced energy storage is described in detail and input/output data are given for two versions of ICSSWH units. A table compares the costs of ICSSWH in houses compared with other (i.e. fossil fuel) water heating systems

  19. A stationary evacuated collector with integrated concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Snail, K.A.; O' Gallagher, J.J.; Winston, R.

    1984-01-01

    A comprehensive set of experimental tests and detailed optical and thermal models are presented for a newly developed solar thermal collector. The new collector has an optical efficiency of 65 per cent and achieves thermal efficiencies of better than 50 per cent at fluid temperatures of 200/sup 0/C without tracking the sun. The simultaneous features of high temperature operation and a fully stationary mount are made possible by combining vacuum insulation, spectrally selective coatings, and nonimaging concentration in a novel way. These 3 design elements are ''integrated'' together in a self containe unit by shaping the outer glass envelope of a conventional evacuated tube into the profile of a nonimaging CPC-type concentrator. This permits the use of a first surface mirror and eliminates the need for second cover glazing. The new collector has been given the name ''Integrated Stationary Evacuated Concentrator'', or ISEC collector. Not only is the peak thermal efficiency of the ISEC comparable to that of commercial tracking parabolic troughs, but projections of the average yearly energy delivery also show competitive performance with a net gain for temperatures below 200/sup 0/C. In addition, the ISEC is less subject to exposure induced degradation and could be mass produced with assembly methods similar to those used with fluorescent lamps. Since no tracking or tilt adjustments are ever required and because its sensitive optical surfaces are protected from the environment, the ISEC collector provides a simple, easily maintained solar thermal collector for the range 100-300/sup 0/C which is suitable for most climates and atmospheric conditions. Potential applications include space heating, air conditioning, and industrial process heat.

  20. Solar Thermal Energy; Energia Solar Termica

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Martinez, M; Cuesta-Santianes, M J; Cabrera Jimenez, J A

    2008-07-01

    Approximately, 50 % of worldwide primary energy consumption is done in the form of heat in applications with a temperature lower than 250 degree centigree (low-medium temperature heat). These data clearly demonstrate the great potential of solar thermal energy to substitute conventional fossil fuels, which are becoming more expensive and are responsible for global warming. Low-medium temperature solar thermal energy is mainly used to obtain domestic hot water and provide space heating. Active solar thermal systems are those related to the use of solar thermal collectors. This study is dealing with low temperature solar thermal applications, mainly focusing on active solar thermal systems. This kind of systems has been extensively growing worldwide during the last years. At the end of 2006, the collector capacity in operation worldwide equalled 127.8 GWth. The technology is considered to be already developed and actions should be aimed at favouring a greater market penetration: diffusion, financial support, regulations establishment, etc. China and USA are the leading countries with a technology based on evacuated tube collectors and unglazed collectors, respectively. The rest of the world markets are dominated by the flat glazed collectors technology. (Author) 15 refs.

  1. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    OpenAIRE

    Cisneros, Jesus

    2010-01-01

    The objective of this thesis is to perform a preliminary optical assessment of the external compound parabolic concentrator (XCPC) component in three concentrating solar thermal units. Each solar thermal unit consists an optical element (the non-imaging concentrating reflector) and a thermal element (the evacuated glass tube solar absorber). The three concentrating solar thermal units discussed in this work are DEWAR 58, a direct flow all-glass dewar, DEWAR 47 an indirect flow ...

  2. Formation and dynamics of a solar eruptive flux tube

    Science.gov (United States)

    Inoue, Satoshi; Kusano, Kanya; Büchner, Jörg; Skála, Jan

    2018-01-01

    Solar eruptions are well-known drivers of extreme space weather, which can greatly disturb the Earth's magnetosphere and ionosphere. The triggering process and initial dynamics of these eruptions are still an area of intense study. Here we perform a magnetohydrodynamic simulation taking into account the observed photospheric magnetic field to reveal the dynamics of a solar eruption in a real magnetic environment. In our simulation, we confirmed that tether-cutting reconnection occurring locally above the polarity inversion line creates a twisted flux tube, which is lifted into a toroidal unstable area where it loses equilibrium, destroying the force-free state, and driving the eruption. Consequently, a more highly twisted flux tube is built up during this initial phase, which can be further accelerated even when it returns to a stable area. We suggest that a nonlinear positive feedback process between the flux tube evolution and reconnection is the key to ensure this extra acceleration.

  3. A twisted flux-tube model for solar prominences. I. General properties

    International Nuclear Information System (INIS)

    Priest, E.R.; Hood, A.W.; Anzer, U.

    1989-01-01

    It is proposed that a solar prominence consists of cool plasma supported in a large-scale curved and twisted magnetic flux tube. As long as the flux tube is untwisted, its curvature is concave toward the solar surface, and so it cannot support dense plasma against gravity. However, when it is twisted sufficiently, individual field lines may acquire a convex curvature near their summits and so provide support. Cool plasma then naturally tends to accumulate in such field line dips either by injection from below or by thermal condensation. As the tube is twisted up further or reconnection takes place below the prominence, one finds a transition from normal to inverse polarity. When the flux tube becomes too long or is twisted too much, it loses stability and its true magnetic geometry as an erupting prominence is revealed more clearly. 56 refs

  4. CST receiver tube qualification, Phase 1, Investigation - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mack, I.; Rossy, J.-P.

    2010-05-15

    In this report the different application possibilities for concentrated solar thermal (CST) systems are studied. Further, the possible measuring methods for characterising and qualifying the receivers with their embedded absorber tubes are investigated. The investigations show that CST systems can be used as an environmentally friendly alternative to fossil fuels in many applications. The best known one is the generation of electrical power, but concentrated solar energy can also be used for desalination, industrial process heat, and for cooling of buildings. Industrial process heat is a large potential area with temperature in the range of 120 {sup o}C to over 400 {sup o}C. Heat below 400 {sup o}C can be provided by various parabolic trough and Fresnel systems, which are optimised for the temperature required. In order to further increase the usage of CST systems, it is of great importance to provide standards for the qualification and characterisation of the different components of the CST systems. Huge efforts are currently made to define a standard for evacuated receiver tubes. For the characterisation of the black absorber tubes the development is still at the beginning, although the need here is also given. (authors)

  5. Solar thermal electric power generation - an attractive option for Pakistan

    International Nuclear Information System (INIS)

    Khan, N.A

    1999-01-01

    Solar Thermal Energy is being successfully used for production of electricity in few developed countries for more than 10 years. In solar Electric Generating Systems high temperature is generated by concentrating solar energy on black absorber pipe in evacuated glass tubes. This heat is absorbed and transported with the help of high temperature oil in to highly insulated heat exchanger storage tanks. They are subsequently used to produce steam that generates power through steam turbines as in standard thermal power plants. Various components involved in Solar thermal field have been developed at the Solar Systems Laboratory of College of EME, NUST Rawalpindi. It is considered as a cost effective alternate for power generation. The research has been partially sponsored by Ministry of Science and Technology under its Public Sector Development Program (PSDP) in (1996-1998). Parabolic mirror design, fabrication, polishing, installation, solar tracking, absorber pipe, glass tubes, steam generation al have been developed. This paper will cover the details of indigenous technological break through made in this direction. (author)

  6. Design of a nonimaging Fresnel lens for solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Leutz, R.; Akisawa, Atushi; Kashiwagi, Takao [Tokyo University of Agriculture and Technology (Japan). Dept. of Mechanical Systems Engineering; Suzuki, Akio [UNESCO, Paris (France)

    1999-04-01

    An optimum convex shaped nonimaging Fresnel lens is designed following the edge ray principle. The lens is evaluated by tracing rays and calculating a projective optical concentration ratio. This Fresnel lens is intended for use in evacuated tube type solar concentrators, generating mid-temperature heat to drive sorption cycles, or provide industrial process heat. It can also be used along with a secondary concentrator in photovoltaic applications. (author)

  7. High temperature solar selective coatings

    Science.gov (United States)

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  8. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    Science.gov (United States)

    1980-01-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  9. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  10. Performance and cost assessment of solar driven humidification dehumidification desalination system

    International Nuclear Information System (INIS)

    Zubair, M. Ifras; Al-Sulaiman, Fahad A.; Antar, M.A.; Al-Dini, Salem A.; Ibrahim, Nasiru I.

    2017-01-01

    Highlights: • Optimization of a new HDH system integrated solar evacuated tubes collectors was conducted. • The mathematical models developed for the collector and the HDH system were validated. • A multi-location analysis was then performed for six locations in Saudi Arabia. • Sharurah was found to have the highest annual output and Dhahran the lowest at 19,445 and 16,430 L. • The cost per liter of water produced varies from $0.032 to $0.038, depends on the location. - Abstract: A humidification-dehumidification (HDH) desalination system integrated with solar evacuated tubes was optimized. Then, the optimized system was assessed for the operation in different geographical locations, and the rate of freshwater production and cost per liter were determined in each location. The system design proposed in this paper uses a heat pipe design evacuated tube collector, which performs significantly better based on cost. An HDH desalination system with a closed-air/open-water loop, connected to the collector, was evaluated to determine the optimum operating parameters and the system performance during daytime (from 8 am to 3 pm), as well as the average day of each month for an entire year. The impact of the effectiveness of the humidifier and the dehumidifier, as well as, the number of collectors, were also studied. The analyses were performed for Dhahran, Jeddah, Riyadh, Sharurah, Qassim, and Tabuk to determine the effects of varying the geographical location. Sharurah has the highest calculated productivity of freshwater and Dhahran has the lowest at 19,445 and 16,430 L, respectively. To have a comprehensive study of the system proposed, a cost analysis was also performed to determine the feasibility of the system and the cost of water production. Results show that the price varied from $0.032 to $0.038 per liter for the locations evaluated.

  11. CT-guided stereotactic evacuation of hypertensive intracerebral hematomas

    International Nuclear Information System (INIS)

    Hondo, Hideki

    1983-01-01

    Computerized tomography (CT) is now effective not only for definite diagnosis and location of intracerebral hematomas but also for coordination of the center of a hematoma. CT-guided stereotactic evacuation of hypertensive intracerebral hematoma was performed in 51 cases: 34 of basal ganglionic hematoma with or without ventricular perforation, 11 of subcortical hematoma, 3 of thalamic hematoma and 3 of cerebellar hematoma. Three dimensional CT images or biplane CT images were taken to determine the coordinates of the target point, which was the center of the hematoma. Then, a silicon tube (O.D. 3.5 phi, I.D. 2.1 phi) was inserted into the center of the hematoma through a burr-hole under local anesthesia, and the liquid or solid hematoma was aspirated as completely as possible with a syringe. Urokinase (6,000 I.U./5 ml saline) was administered through this silicon tube every 6 or 12 hours for several days until the hematoma had drained out competely. The silicon tube was taken out when repeated CT scanning revealed no hematoma. The results of clinical follow-ups indicated that this procedure is as good as, or rather better than conventional microsurgery with evacuation of hematoma under direct vision. Moreover this CT-guided stereotactic approach for evacuation of the hematoma has the following advantages: 1) the procedure is simple and safe, 2) operation can be performed under local anesthesia, and 3) the hematoma is drained out completely with the aid of urokinase. This surgery seems indicated as an emergency treatment for high-age or high risk patients and also as a routine surgery for intracerebral hematomas in patients showing no herination signs. (author)

  12. Cooling with solar energy - Tests in practice passed

    International Nuclear Information System (INIS)

    Lainsecq de, M.

    2004-01-01

    This article discusses the use of solar energy to provide summer cooling. Starting with centuries-old methods of adiabatic cooling used in the southern valleys of the Grisons in Switzerland, various methods of using solar energy to generate cold are examined. The article mentions the increasing load being placed on electricity supplies by conventional cooling systems and describes two real-life installations that use solar energy to generate cold. The first installation described uses evacuated tube collectors to provide around 45,000 kilowatt-hours of energy for an office complex, of which one third is used in summer to generate cold. The second installation features flat-plate collectors and two absorption refrigeration machines. Financial and environmental balances are presented and discussed

  13. Performance modelling and simulation of an absorption solar cooling system for Malaysia

    International Nuclear Information System (INIS)

    Assilzadeh, F.; Ali, Y.; Kamaruzzaman Sopian

    2006-01-01

    Solar radiation contains huge amounts of energy and is required for almost all the natural processes on earth. Solar-powered air-conditioning has many advantages when compared to normal electricity system. This paper presents a solar cooling system that has been designed for Malaysia and other tropical regions using evacuated tube solar collector and LiBr absorption system. A modelling and simulation of absorption solar cooling system is modeled in Transient System Simulation (TRNSYS) environment. The typical meteorological year file containing the weather parameters is used to simulate the system. Then a system optimization is carried out in order to select the appropriate type of collector, the optimum size of storage tank, the optimum collector slope and area and the optimum thermostat setting of the auxiliary boiler

  14. Solar-energy-system performance evaluation: Irvine School (El Camino Real Elementary School) Irvine, California, October 1978-March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.T.

    1979-01-01

    The Irvine School in California has a solar heating and cooling system consisting of evacuated tube collectors, two absorption chillers, a heat rejector, and heat exchanger. The system and its operation are briefly described, and its performance is analyzed using a system energy balance technique. The performance of major subsystems is also presented. (LEW)

  15. Solar heating and hot water system installed at Cherry Hill, New Jersey

    Science.gov (United States)

    1979-01-01

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  16. Flow tube used to cool solar-pumped laser

    Science.gov (United States)

    1968-01-01

    A flow tube has been designed and constructed to provide two major functions in the application of a laser beam for transmission of both sound and video. It maintains the YAG laser at the proper operating temperature of 300 degrees K under solar pumping conditions, and it serves as a pump cavity for the laser crystal.

  17. Innovating a solar concentrator of static reflector and movable center for heat processes; Un concentrador solar innovador de reflector estatico y foco movil para procesos de calor

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, V.; Pujol, R.; Moia, A.

    2008-07-01

    The development of a solar thermal collector with fixed reflector and tracking absorber, especially designed for supplying process heat in industrial processes and solar cooling is described. the final solution consists in a mesh of 32 Sydney evacuates tubes with a total aperture of 24 m{sup 2} and maximum focus length of about 800 mm. With this design it is expected to reach about 40% annual averaged efficiency (referred to beam radiation at latitude of 39 degree centigrade) with temperatures in the range from 120 to 150 degree centigrade. At moment the first prototype is starting operation. (Author)

  18. Design optimization studies for nonimaging concentrating solar collector tubes

    Science.gov (United States)

    Winston, R.; Ogallagher, J. J.

    1983-09-01

    The Integrated Stationary Evacuated Concentrator or ISEC solar collector panel which achieved the best high temperature performance ever measured with a stationary collector was examined. A development effort review and optimize the initial proof of concept design was completed. Changes in the optical design to improve the angular response function and increase the optical efficiency were determined. A recommended profile design with a concentration ratio of 1.55x and an acceptance angle of + - 35(0) was identified. Two alternative panel/module configurations are recommended based on the preferred double ended flow through design. Parasitic thermal and pumping losses show to be reducible to acceptable levels, and two passive approaches to the problem of ensuring stagnation survival are identified.

  19. Optimum selection of solar collectors for a solar-driven ejector air conditioning system by experimental and simulation study

    International Nuclear Information System (INIS)

    Zhang Wei; Ma Xiaoli; Omer, S.A.; Riffat, S.B.

    2012-01-01

    Highlights: ► Three solar collectors have been compared to drive ejector air conditioning system. ► A simulation program was constructed to study the effect parameters. ► The outdoor test were conducted to validate the solar collector modeling. ► Simulation program was found to predict solar collector performance accurately. ► The optimal design of solar collector system was carried out. - Abstract: In this paper, three different solar collectors are selected to drive the solar ejector air conditioning system for Mediterranean climate. The performance of the three selected solar collector are evaluated by computer simulation and lab test. Computer model is incorporated with a set of heat balance equations being able to analyze heat transfer process occurring in separate regions of the collector. It is found simulation and test has a good agreement. By the analysis of the computer simulation and test result, the solar ejector cooling system using the evacuated tube collector with selective surface and high performance heat pipe can be most economical when operated at the optimum generating temperature of the ejector cooling machine.

  20. TEMPERATURE GRADIENTS IN THE SOLAR ATMOSPHERE AND THE ORIGIN OF CUTOFF FREQUENCY FOR TORSIONAL TUBE WAVES

    International Nuclear Information System (INIS)

    Routh, S.; Musielak, Z. E.; Hammer, R.

    2010-01-01

    Fundamental modes supported by a thin magnetic flux tube embedded in the solar atmosphere are typically classified as longitudinal, transverse, and torsional waves. If the tube is isothermal, then the propagation of longitudinal and transverse tube waves is restricted to frequencies that are higher than the corresponding global cutoff frequency for each wave. However, no such global cutoff frequency exists for torsional tube waves, which means that a thin and isothermal flux tube supports torsional tube waves of any frequency. In this paper, we consider a thin and non-isothermal magnetic flux tube and demonstrate that temperature gradients inside this tube are responsible for the origin of a cutoff frequency for torsional tube waves. The cutoff frequency is used to determine conditions for the wave propagation in the solar atmosphere, and the obtained results are compared to the recent observational data that support the existence of torsional tube waves in the Sun.

  1. Engineering development studies for integrated evacuated CPC arrays

    Science.gov (United States)

    Winston, R.

    1982-04-01

    An evacuated tube concentrator which achieves respectable high temperature performance (100 C to 300 C) was developed. The design concept utilizes nonimaging CPC type concentration integrated into each tube by shaping the outer glass vacuum envelope. The detailed design, prototype fabrication and preliminary test measurements are reviewed. In addition the results of this first study specifically devoted to engineering development questions related to practical applications of this collector concept are summarized. Questions having to do with the deployment of medium to large area arrays, optimizations of the manifolding of individual tube panels, selected near term applications (with an emphasis on residential cooling based on Rankine driven chillers) and long term performance projections are addressed.

  2. VALIDATION OF SIMULATION MODELS FOR DIFFERENTLY DESIGNED HEAT-PIPE EVACUATED TUBULAR COLLECTORS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Dragsted, Janne; Furbo, Simon

    2007-01-01

    Differently designed heat-pipe evacuated tubular collectors have been investigated theoretically and experimentally. The theoretical work has included development of two TRNSYS [1] simulation models for heat-pipe evacuated tubular collectors utilizing solar radiation from all directions. One model...... coating on both sides. The input to the models is thus not a simple collector efficiency expression but the actual collector geometry. In this study, the TRNSYS models are validated with measurements for four differently designed heat-pipe evacuated tubular collectors. The collectors are produced...

  3. Application of solar energy to the supply of hot water for textile dyeing. Final report, CDRL/PA 10

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-09-01

    The design plan for a solar process hot water system for a textile dye beck at Riegel Textile Corporation's LaFrance, South Carolina, facilities is presented. The solar system consists of 396 GE model TC 100 evacuated tube collector modules arranged in a ground mounted array with a total collector area of 6680 square feet. The system includes an 8000-gallon hot water storage tank. Systems analyses, specification sheets, performance data, and an economic evaluation of the proposed system are presented. (WHK)

  4. Mechanical and experimental study on freeze proof solar powered adsorption cooling tube using active carbon/methanol working pair

    International Nuclear Information System (INIS)

    Zhao Huizhong; Zhang Min; Liu Zhenyan; Liu Yanling; Ma Xiaodong

    2008-01-01

    The freeze proof solar cooling tube, which can produce cooling capacity with the refrigerant temperature below 0 deg. C using solar light as energy and active carbon-methanol as working pair, was firstly designed and made in this research. This paper focused on mechanical and experimental study on a freeze proof solar powered adsorption cooling tube. The following experimental results could be concluded: at the solar radiation value between 15.3 and 17.1 MJ m -2 , the highest adsorbent bed temperature is below 110 deg. C. The freeze proof solar cooling tube's cooling capacity was about 87-99 kJ, and the coefficient of performance (COP) was more than 0.11 when the evaporation temperature was about -4 deg. C

  5. Pathways toward a low cost evacuated collector system

    Science.gov (United States)

    Hull, J. R.; Schertz, W. W.; Allen, J. W.; Ogallagher, J. J.; Winston, R.

    The goal of widespread use of solar thermal collectors will only be achieved when they are proven to be economically superior to competing energy sources. Evacuated tubular collectors appear to have the potential to achieve this goal. An advanced evacuated collector using nonimaging concentration under development at the University of Chicago and Argonne can achieve a 50% seasonal efficiency at heat delivery temperatures in excess of 170C. The same collector has an optical efficiency so that low temperature performance is also excellent. In this advanced collector design all of the critical components are enclosed in the vacuum, and the collector has an inherently long lifetime. The current cost of evacuated systems is too high, mainly because the volume of production has been too low to realize economies of mass production. It appears that certain design features of evacuated collectors can be changed (e.g., use of heat pipe absorbers) so as to introduce new system design and market strategy options that can reduce the balance of system cost.

  6. 3D Anisotropy of Solar Wind Turbulence, Tubes, or Ribbons?

    Science.gov (United States)

    Verdini, Andrea; Grappin, Roland; Alexandrova, Olga; Lion, Sonny

    2018-01-01

    We study the anisotropy with respect to the local magnetic field of turbulent magnetic fluctuations at magnetofluid scales in the solar wind. Previous measurements in the fast solar wind obtained axisymmetric anisotropy, despite that the analysis method allows nonaxisymmetric structures. These results are probably contaminated by the wind expansion that introduces another symmetry axis, namely, the radial direction, as indicated by recent numerical simulations. These simulations also show that while the expansion is strong, the principal fluctuations are in the plane perpendicular to the radial direction. Using this property, we separate 11 yr of Wind spacecraft data into two subsets characterized by strong and weak expansion and determine the corresponding turbulence anisotropy. Under strong expansion, the small-scale anisotropy is consistent with the Goldreich & Sridhar critical balance. As in previous works, when the radial symmetry axis is not eliminated, the turbulent structures are field-aligned tubes. Under weak expansion, we find 3D anisotropy predicted by the Boldyrev model, that is, turbulent structures are ribbons and not tubes. However, the very basis of the Boldyrev phenomenology, namely, a cross-helicity increasing at small scales, is not observed in the solar wind: the origin of the ribbon formation is unknown.

  7. Exploring the Flux Tube Paradigm in Solar-like Convection Zones

    Science.gov (United States)

    Weber, Maria A.; Nelson, Nicholas; Browning, Matthew

    2017-08-01

    In the solar context, important insight into the flux emergence process has been obtained by assuming the magnetism giving rise to sunspots consists partly of idealized flux tubes. Global-scale dynamo models are only now beginning to capture some aspects of flux emergence. In certain regimes, these simulations self-consistently generate magnetic flux structures that rise buoyantly through the computational domain. How similar are these dynamo-generated, rising flux structures to traditional flux tube models? The work we present here is a step toward addressing this question. We utilize the thin flux tube (TFT) approximation to simply model the evolution of flux tubes in a global, three-dimensional geometry. The TFTs are embedded in convective flows taken from a global dynamo simulation of a rapidly rotating Sun within which buoyant flux structures arise naturally from wreaths of magnetism. The initial conditions of the TFTs are informed by rising flux structures identified in the dynamo simulation. We compare the trajectories of the dynamo-generated flux loops with those computed through the TFT approach. We also assess the nature of the relevant forces acting on both sets of flux structures, such as buoyancy, the Coriolis force, and external forces imparted by the surrounding convection. To achieve the fast <15 day rise of the buoyant flux structures, we must suppress the large retrograde flow established inside the TFTs which occurs due to a strong conservation of angular momentum as they move outward. This tendency is common in flux tube models in solar-like convection zones, but is not present to the same degree in the dynamo-generated flux loops. We discuss the mechanisms that may be responsible for suppressing the axial flow inside the flux tube, and consider the implications this has regarding the role of the Coriolis force in explaining sunspot latitudes and the observed Joy’s Law trend of active regions. Our work aims to provide constraints, and possible

  8. Parabolic Trough Solar Collector Initial Trials

    Directory of Open Access Journals (Sweden)

    Ghalya Pikra

    2012-03-01

    Full Text Available This paper discusses initial trials of parabolic trough solar collector (PTSC in Bandung. PTSC model consists of concentrator, absorber and tracking system. Concentrator designs are made with 2m aperture width, 6m length and 0.75m focal distance. The design is equipped with an automatic tracking system which is driven using 12V and 24Watt DC motor with 0.0125rpm rotational speed. Absorber/receiver is designed with evacuated tube type, with 1 inch core diameter and tube made of AISI304 and coated with black oxide, the outer tube is borosilicate glass with a 70 mm diameter and 1.5 m length. Working fluid stored in single type of thermal storage tank, a single phase with 37.7 liter volume. PTSC model testing carried out for 2 hours and 10 minutes produces heat output and input of 11.5 kW and 0.64 kW respectively. 

  9. Multiple-effect diffusion solar still coupled with a vacuum-tube collector and heat pipe

    KAUST Repository

    Chong, Tze-Ling; Huang, Bin-Juine; Wu, Po-Hsien; Kao, Yeong-Chuan

    2014-01-01

    The present study develops a multiple-effect diffusion solar still (MEDS) with a bended-plate design in multiple-effect diffusion unit (MDU) to solve the peel-off problem of wick material. The MDU is coupled with a vacuum-tube solar collector

  10. An evaluation of sharp safety blood evacuation devices.

    Science.gov (United States)

    Ford, Joanna; Phillips, Peter

    This article describes an evaluation of three sharp safety blood evacuation devices in seven Welsh NHS boards and the Welsh Blood Service. Products consisted of two phlebotomy needles possessing safety shields and one phlebotomy device with wings, tubing and a retractable needle. The device companies provided the devices and appropriate training. Participating healthcare workers used the safety device instead of the conventional device to sample blood during the evaluation period and each type of device was evaluated in random order. Participants filled in a questionnaire for each type of device and then a further questionnaire comparing the two shielded evacuation needles with each other Results showed that responses to all three products were fairly positive, although each device was not liked by everyone who used it. When the two shielded evacuation devices were compared with each other, most users preferred the device with the shield positioned directly above the needle to the device with the shield at the side. However, in laboratory tests, the preferred device produced more fluid splatter than the other shielded device on activation.

  11. A Case of Re-Expansion Pulmonary Edema after Rapid Pleural Evacuation

    Directory of Open Access Journals (Sweden)

    SH Shahbazi

    2007-07-01

    Full Text Available Introduction & Objective: Pulmonary edema after chest tube insertion is a rare complication and is associated with high mortality. The cause of this phenomenon is not clear, although causes such as decrease in surfactant and inflammatory process have been defined. Early diagnosis and treatment decrease the mortality. This study introduces a case of re-expansion pulmonary edema after rapid pleural evacuation. Case: The case is a 4.5 y/o boy, a case of Tetralogy of Fallot, who developed respiratory distress after surgery (Total Correction in ICU of Namazi Hospital in 1385. Chest X ray showed pneumothorax of left lung. For the patient, chest tube was inserted and the symptoms improved. After few hours the patient developed tachypnea, tachycardia, and CXR showed pulmonary edema of left lung. Appropriate treatment was done for the patient and his condition improved. Conclusion: Pulmonary edema after sudden evacuation of pleura is a rare phenomenon and early diagnosis decreases the mortality.

  12. Evacuation exercise

    CERN Multimedia

    AUTHOR|(CDS)2094367

    2017-01-01

    In the event of an emergency, it is important that staff and visitors are evacuated safely and efficiently. Hence CERN organises regularly emergency response and evacuation exercise (also known as an ‘evacuation drill’) in different buildings across the sites.

  13. Energetic, exergetic and financial evaluation of a solar driven absorption chiller – A dynamic approach

    International Nuclear Information System (INIS)

    Bellos, Evangelos; Tzivanidis, Christos; Symeou, Christoforos; Antonopoulos, Kimon A.

    2017-01-01

    Highlights: • A solar cooling system with ETC and a single effect absorption chiller is analyzed. • The analysis is dynamic and it is made for the city of Athens, Greece. • The analysis is energetic, exergetic and financial for all the summer period. • Firstly the system is optimized exergetically and after it is analyzed financially. • The optimum case is 450 m"2 of solar collectors coupled with a storage tank of 14 m"3. - Abstract: In this study, a solar cooling system of 100 kW is analyzed parametrically in dynamic basis for the city of Athens, Greece. The objective of this study is the design of a sustainable system, using energetic, exergetic and financial criteria. The examined system includes evacuated tube collectors, storage tank and a single stage absorption chiller operating with LiBr-H_2O working pair. Different combinations of collecting areas and storage tank volumes are tested in order to determine the most suitable cases exergetically. These optimum cases are evaluated financially and finally the system with the higher financial indexes is selected as the most suitable. More specifically, the collecting area is analyzed from 150 m"2 to 600 m"2 and the storage tank from 6 m"3 to 16 m"3. Finally, 450 m"2 of evacuated tube collectors with a 14 m"3 storage tank was proved to be the optimum solution financially with 15 years payback period and 67 k€ net present value.

  14. Theoretical flow investigations of an all glass evacuated tubular collector

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    Heat transfer and flow structures inside all glass evacuated tubular collectors for different operating conditions are investigated by means of computational fluid dynamics. The investigations are based on a collector design with horizontal tubes connected to a vertical 14 manifold channel. Three...... the highest efficiency, the optimal inlet flow rate was around 0.4-1 kg/min, the flow structures in the glass tubes were relatively uninfluenced by the inlet flow rate, Generally, the results showed only small variations in the efficiencies. This indicates that the collector design is well working for most...

  15. Spiral multiple-effect diffusion solar still coupled with vacuum-tube collector and heat pipe

    KAUST Repository

    Huang, Bin-Juine; Chong, Tze-Ling; Wu, Po-Hsien; Dai, Han-Yi; Kao, Yeong-Chuan

    2015-01-01

    © 2015 Elsevier B.V. A novel solar still with spiral-shape multiple-effect diffusion unit is developed in the present study. The test results of a 14-effect unit coupled with vacuum-tube solar collector (absorber area 1.08m2) show that the highest

  16. Solar heating and hot water system installed at Cherry Hill, New Jersey. [Hotels

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-16

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system went into operation November 8, 1978 and is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are General Electric Company liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  17. Development of a tube receiver for a solar-hybrid microturbine system

    OpenAIRE

    Amsbeck, Lars; Buck, Reiner; Heller, Peter; Jedamski, Jens; Uhlig, Ralf

    2008-01-01

    Solar-hybrid microturbine systems with cogeneration offer new possibilities for the generation of electricity and heat or air conditioning. The solar receiver is an important component of such a system. For a prototype system demo project a tube receiver for a 100kWe microturbine system is currently under development. The receiver is designed for air preheating up to 800°C at a pressure of 4.5 barabs. The challenge of the design is to find the right compromise between high efficiency, low pre...

  18. Performance Assessment of a Solar-Assisted Desiccant-Based Air Handling Unit Considering Different Scenarios

    Directory of Open Access Journals (Sweden)

    Giovanni Angrisani

    2016-09-01

    Full Text Available In this paper, three alternative layouts (scenarios of an innovative solar-assisted hybrid desiccant-based air handling unit (AHU are investigated through dynamic simulations. Performance is evaluated with respect to a reference system and compared to those of the innovative plant without modifications. For each scenario, different collector types, surfaces and tilt angles are considered. The effect of the solar thermal energy surplus exploitation for other low-temperature uses is also investigated. The first alternative scenario consists of the recovery of the heat rejected by the condenser of the chiller to pre-heat the regeneration air. The second scenario considers the pre-heating of regeneration air with the warmer regeneration air exiting the desiccant wheel (DW. The last scenario provides pre-cooling of the process air before entering the DW. Results reveal that the plants with evacuated solar collectors (SC can ensure primary energy savings (15%–24% and avoid equivalent CO2 emissions (14%–22%, about 10 percentage points more than those with flat-plate collectors, when the solar thermal energy is used only for air conditioning and the collectors have the best tilt angle. If all of the solar thermal energy is considered, the best results with evacuated tube collectors are approximately 73% in terms of primary energy saving, 71% in terms of avoided equivalent CO2 emissions and a payback period of six years.

  19. Dynamo generation of magnetic fields in three-dimensional space: Solar cycle main flux tube formation and reversals

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1983-01-01

    Dynamo processes as a magnetic field generation mechanism in astrophysics can be described essentially by movement and deformation of magnetic field lines due to plasma fluid motions. A basic element of the processes is a kinematic problem. As an important prototype of these processes, we investigate the case of the solar magnetic cycle. To follow the movement and deformation, we solve magnetohydrodynamic (MHD) equations by a numerical method with a prescribed velocity field. A simple combination of differential rotation and global convection, given by a linear analysis of fluid dynamics in a rotating sphere, can perpetually create and reverse great magnetic flux tubes encircling the Sun. We call them the main flux tubes of the solar cycle. They are progenitors of small-scale flux ropes of the solar activity. This shows that magnetic field generation by fluid motions is, in fact, possible and that MHD equations have a new type of oscillatory solution. The solar cycle can be identified with one of such oscillatory solutions. This means that we can follow detailed stages of the field generation and reversal processes of the dynamo by continuously observing the Sun. It is proposed that the magnetic flux tube formation by streaming plasma flows exemplified here could be a universal mechanism of flux tube formation in astrophysics

  20. Evacuation of Children

    DEFF Research Database (Denmark)

    Larusdottir, Aldis Run

    is to provide new data and information on children’s evacuation, which is a step towards including children in evacuation models and calculations. Little is known about children’s evacuation characteristics in fire compared to other parts of the population. In recent years there has been more focus on children’s...... evacuation which is reflected in a rising number of publications on the topic. This thesis comprises evacuation experiments in daycares for children 0-6 years old and elementary schools for children aged 6-15 years. Full scale evacuations were filmed allowing detailed data analysis. Findings and results...... to isolate single factors and findings. Although an engineering approach fits best to the measurable parameters, the other areas are at least equally important when investigating or predicting children’s evacuation. The key findings of the thesis are: Children are very dependent on adults for initiating...

  1. Parabolic solar cooker: Cooking with heat pipe vs direct spiral copper tubes

    Science.gov (United States)

    Craig, Omotoyosi O.; Dobson, Robert T.

    2016-05-01

    Cooking with solar energy has been seen by many researchers as a solution to the challenges of poverty and hunger in the world. This is no exception in Africa, as solar coking is viewed as an avenue to eliminate the problem of food insecurity, insufficient energy supply for household and industrial cooking. There are several types of solar cookers that have been manufactured and highlighted in literature. The parabolic types of solar cookers are known to reach higher temperatures and therefore cook faster. These cookers are currently being developed for indoor cooking. This technology has however suffered low cooking efficiency and thus leads to underutilization of the high heat energy captured from the sun in the cooking. This has made parabolic solar cookers unable to compete with other conventional types of cookers. Several methods to maximize heat from the sun for indirect cooking has been developed, and the need to improve on them of utmost urgency. This paper investigates how to optimize the heat collected from the concentrating types of cookers by proposing and comparing two types of cooking sections: the spiral hot plate copper tube and the heat pipe plate. The system uses the concentrating solar parabolic dish technology to focus the sun on a conical cavity of copper tubes and the heat is stored inside an insulated tank which acts both as storage and cooking plate. The use of heat pipes to transfer heat between the oil storage and the cooking pot was compared to the use of a direct natural syphon principle which is achieved using copper tubes in spiral form like electric stove. An accurate theoretical analysis for the heat pipe cooker was achieved by solving the boiling and vaporization in the evaporator side and then balancing it with the condensation and liquid-vapour interaction in the condenser part while correct heat transfer, pressure and height balancing was calculated in the second experiment. The results show and compare the cooking time, boiling

  2. Indoor guided evacuation: TIN for graph generation and crowd evacuation

    Directory of Open Access Journals (Sweden)

    Mengchao Xu

    2016-05-01

    Full Text Available This paper presents two complementary methods: an approach to compute a network data-set for indoor space of a building by using its two-dimensional (2D floor plans and limited semantic information, combined with an optimal crowd evacuation method. The approach includes three steps: (1 generate critical points in the space, (2 connect neighbour points to build up the network, and then (3 run the optimal algorithm for optimal crowd evacuation from a room to the exit gates of the building. Triangulated Irregular Network (TIN is used in the first two steps. The optimal evacuation crowd is not based on the nearest evacuation gate for a person but relies on optimal sorting of the waiting lists at each gate of the room to be evacuated. As an example case, a rectangular room with 52 persons with two gates is evacuated in 102 elementary interval times (one interval corresponds to the time for one step for normal velocity walking, whereas it would have been evacuated in not less than 167 elementary steps. The procedure for generating the customized network involves the use of 2D floor plans of a building and some common Geographic Information System (GIS functions. This method combined with the optimal sorting lists will be helpful for guiding crowd evacuation during any emergency.

  3. The performance of solar collector CPC (compound parabolic concentrator) type with three pipes covered by glass tubes

    Science.gov (United States)

    Gaos, Yogi Sirodz; Yulianto, Muhamad; Juarsa, Mulya; Nurrohman, Marzuki, Edi; Yuliaji, Dwi; Budiono, Kabul

    2017-03-01

    Indonesia is a tropical country that has potential energy of solar radiation worth of 4.5 until 4.8 kWh/m2. However, this potential has not been utilized regularly. This paper will discuss the performance of solar collector compound parabolic concentrator (CPC) type with water as the working fluid. This CPC solar collector utilized three pipes covered by glass tubes. This paper has contribution to provide the temperature achievement between three pipes covered by glass tubes with and without glass cover of solar collector CPC type. The research conducted by varying the water flow rate of 1 l/m up to 6 l/m with three pipes arranged in series and parallel. From the results, the used of solar collector CPC type in the current study shows that the decrease of solar radiation, which was caused by climate change, did not influence the heat absorbance by water in the pipe. Therefore, the design of the solar collector in this research has potential to be used in future when solar radiation are used as the energy source.

  4. Experimental investigation of forced-convection in a finned rhombic tube of the flat-plate solar collectors

    DEFF Research Database (Denmark)

    Taherian, Hessam; Yazdanshenas, Eshagh

    2006-01-01

    Due to scarcity of literature on forced-convection heat transfer in a solar collector with rhombic cross-section absorbing tubes, a series of experiments was arranged and conducted to determine heat transfer coefficient. In this study, a typical rhombic cross-section finned tube of flat...

  5. Solar-energy-system performance evaluation. San Anselmo School, San Jose, California, April 1981-March 1982

    Energy Technology Data Exchange (ETDEWEB)

    Pakkala, P.A.

    1982-01-01

    The San Anselmo School is a one-story brick elementary school building in San Jose, California. The active solar energy system is designed to supply 70% of the space heating and 72% of the cooling load. It is equipped with 3740 square feet of evacuated tube collectors, a 2175-gallon tank for heat storage, a solar-supplied absorption chiller, and four auxiliary gas-fired absorption chillers/heaters. The measured solar fraction of 19% is far below the expected values and is attributed to severe system control and HVAC problems. Other performance data given for the year include the solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance. Also tabulated are monthly performance data for the overall solar energy system, collector subsystem, space heating and cooling subsystems. Typical hourly operation data for a day are tabulated, including hourly isolation, collector array temperatures (inlet and outlet), and storage fluid temperatures. The solar energy use and percentage of losses are also graphed. (LEW)

  6. Solar-energy system performance evaluation. San Anselmo School, San Jose, California, July 1980-March 1981

    Energy Technology Data Exchange (ETDEWEB)

    Pakkala, P.A.

    1981-01-01

    The San Anselmo School is a one-story, brick elementary school building located in San Jose, California. The active solar energy system is designed to supply 70% of the heating load and 72% of the cooling load. It is equipped with 3.740 square feet of evacuated tube collectors, 2175-gallon tank for storage, four auxiliary gas-fired absorption chiller/heaters, and a solar-supplied absorption chiller. The measured heating and cooling solar fractions were 9% and 19%, respectively, for an overall solar fraction of 16%, the lowered performance being attributed to severe system control problems. Performance data include the solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance. Performance data are presented for the overall system and for each subsystem. System operation and solar energy utilization data are included. Also included are a description of the system, performance evaluation techniques, sensor technology, and typical performance data for a month. Weather data are also tabulated. (LEW)

  7. Energy efficiency of a solar domestic hot water system

    Science.gov (United States)

    Zukowski, Miroslaw

    2017-11-01

    The solar domestic hot water (SDHW) system located on the campus of Bialystok University of Technology is the object of the research described in the current paper. The solar thermal system is composed of 35 flat plate collectors, 21 evacuated tube collectors and eight hot water tanks with the capacity of 1 m3 of each. Solar facility is equipped with hardware for automatic data collection. Additionally, the weather station located on the roof of the building provides measurements of basic parameters of ambient air and solar radiation. The main objective of Regional Operational Program was the assessment of the effectiveness of this solar energy technology in the climatic conditions of the north-eastern Poland. Energy efficiency of SDHW system was defined in this research as the ratio between the useful heat energy supplied to the domestic hot water system and solar energy incident on the surface of solar panels. Heat loss from water storage tanks, and from the pipe network to the surrounding air, as well as the electrical energy consumed by the pumps have been included in the calculations. The paper presents the detailed results and conclusions obtained from this energy analysis.

  8. A novel small dynamic solar thermal desalination plant with a fluid piston converter

    International Nuclear Information System (INIS)

    Mahkamov, Khamid; Orda, Eugene; Belgasim, Basim; Makhkamova, Irina

    2015-01-01

    Highlights: • A dynamic solar desalination plant was developed which works cyclically. • It integrates an evacuated tube solar collector and fluid piston converter. • Pressure during desalination process varies with frequency of 2–4 Hz. • The system has a small increase in fresh water yield and provides pumping capacity. • Mathematical modelling provides accurate description of experimental performance. - Abstract: An innovative small dynamic water desalination plant was developed and tested under laboratory conditions. The system is a combination of a heat pipe evacuated tube solar collector, conventional condenser and novel fluid piston converter. Saline water is boiled and turned into vapour in the manifold of the solar collector. A small fraction of the solar energy supplied to the plant is used to drive the fluid piston converter. Oscillations of the fluid piston periodically change the volume and pressure in the plant. For the duration of approximately half of the periodic cycle the pressure in the plant drops below the atmospheric level causing flash boiling of saline water in the manifold of the solar collector. Generated vapour is turned into fresh water in the condenser which is surrounded by a cooling jacket with saline water. The flash boiling effect improves the fresh water production capacity of the plant. Additionally, the fluid piston converter drives a pump which provides lifting of saline water from a well and pumps this through the cooling jacket of the condenser to a saline water storage tank. This tank replenishes saline water in the manifold of the solar collector. Experimental investigations demonstrated the saline water self-circulation capability of the plant and increase in the fresh water production compared to the static mode of operation. Experimental data was also used to calibrate the mathematical model of the plant. Comparison of theoretical and experimental information demonstrates that the model accurately predicts the

  9. Formation of field-twisting flux tubes on the magnetopause and solar wind particle entry into the magnetosphere

    International Nuclear Information System (INIS)

    Sato, T.; Shimada, T.; Tanaka, M.; Hayashi, T.; Watanabe, K.

    1986-01-01

    A global interaction between the solar wind with a southward interplanetary magnetic field (IMF) and the magnetosphere is studied using a semi-global simulation model. A magnetic flux tube in which field lines are twisted is created as a result of repeated reconnection between the IMF and the outermost earth-rooted magnetic field near the equatorial plane and propagates to higher latitudes. When crossing the polar cusp, the flux tube penetrates into the magnetosphere reiterating reconnection with the earth-rooted higher latitude magnetic field, whereby solar wind particles are freely brought inside the magnetosphere. The flux tube structure has similarities in many aspects to the flux transfer events (FTEs) observed near the dayside magnetopause

  10. Nuclear criticality evacuation with telemonitoring and microprocessors

    International Nuclear Information System (INIS)

    Fergus, R.W.; Moe, H.J. Sr.

    1979-01-01

    At Argonne National Laboratory, criticality alarms are required at widely separated locations to evacuate personnel in case of accident while emergency teams or maintenance personnel respond from a central location. The system functions have been divided in a similar manner. The alarm site hardware can independently detect a criticality and sound the evacuation signal while general monitoring and routine tests are handled by a communication link to a central monitoring station. The radiation detectors and evacuation sounders at each site are interconnected by a common two conductor cable in a unique telemonitoring format. This format allows both control and data information to be received or transmitted at any point on the cable which can be up to 3000 meters total length. The site microprocessor maintains a current data table, detects several faults, drives a printer, and communicates with the central telemonitoring station. The radiation detectors are made with plastic scintillators and photomultiplier tubes operated in a constant current mode with a 4 decade measurement range. The detectors also respond within microseconds to the criticality radiation burst. These characteristics can be tested with an internal light emitting diode either completely with a manual procedure or routinely with a system test initiated by the central monitoring station. Although the system was developed for a criticality alarm which requires reliable and redundant features, the basic techniques are useable for other monitoring and instrumentation applications

  11. Performance evaluation of a flow-down collecting solar system; Ryuka shunetsushiki solar system no seino hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Kanayama, K; Li, X; Baba, H; Endo, N [Kitami Institute of Technology, (Japan)

    1997-11-25

    The paper evaluated performance of a flow-down collecting solar system. The solar heat pump PV system is composed of a solar system, heat pump and PV, of which the heat collecting portion is a water-use horizontal evacuated double glass tube solar collector. As a result of the performance measurement, the necessity of fundamental improvement arose. Under an idea of disproving common sense of the original forced circulation solar system, a system was designed in which heat is collected by making the heat media reversely circulate and flow down in accordance with gravity. When the flow rate was 2m{sup 3}/h, the collecting rate reached a maximum, approximately 54% (36.9% before improvement). When the flow rate was 1.3-1.5m{sup 3}/h, the system can realize the maximum merit, and the collecting efficiency became approximately 50%. Helped by reduction in consumed power, the average system performance coefficient reached more than 85% (28.9% before improvement). The obtainable energy rate rapidly increased to 2.9 times more than before improvement. Further, the consumed power of pump was decreased 65% from before improvement when the flow rate was 2.4m{sup 3}/h. 2 refs., 5 figs.

  12. Predictive Power of Machine Learning for Optimizing Solar Water Heater Performance: The Potential Application of High-Throughput Screening

    Directory of Open Access Journals (Sweden)

    Hao Li

    2017-01-01

    Full Text Available Predicting the performance of solar water heater (SWH is challenging due to the complexity of the system. Fortunately, knowledge-based machine learning can provide a fast and precise prediction method for SWH performance. With the predictive power of machine learning models, we can further solve a more challenging question: how to cost-effectively design a high-performance SWH? Here, we summarize our recent studies and propose a general framework of SWH design using a machine learning-based high-throughput screening (HTS method. Design of water-in-glass evacuated tube solar water heater (WGET-SWH is selected as a case study to show the potential application of machine learning-based HTS to the design and optimization of solar energy systems.

  13. Fatigue life prediction of Ni-base thermal solar receiver tubes

    Energy Technology Data Exchange (ETDEWEB)

    Hartrott, Philipp von; Schlesinger, Michael [Fraunhofer-Institut fuer Werkstoffmechanik (IWM), Freiburg im Breisgau (Germany); Uhlig, Ralf; Jedamski, Jens [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany)

    2010-07-01

    Solar receivers for tower type Solar Thermal Power Plants are subjected to complex thermo-mechanical loads including fast and severe thermo-mechanical cycles. The material temperatures can reach more than 800 C and fall to room temperature very quickly. In order to predict the fatigue life of a receiver design, receiver tubes made of Alloy 625 with a wall thickness of 0.5 mm were tested in isothermal and thermo-cyclic experiments. The number of cycles to failure was in the range of 100 to 100,000. A thermo-mechanical fatigue life prediction model was set up. The model is based on the cyclic deformation of the material and the damage caused by the growth of fatigue micro cracks. The model reasonably predicts the experimental results. (orig.)

  14. Routine ultrasound guided evacuation of first trimester missed abortion versus blind evacuation

    OpenAIRE

    Mostafa Abdulla Elsayed

    2014-01-01

    Background: The clinical management of miscarriage has changed little over the years and many women undergo surgical uterine evacuation. Surgical evacuation of the uterine contents in missed abortion is a challenge to the obstetrician as it is done blindly. The current study recommends the use of ultrasound guided surgical evacuation. It serves two important advantages; the first is to complete evacuation without the need of additional step. The second is to protect against uterine perforatio...

  15. Managing a chest tube and drainage system.

    Science.gov (United States)

    Durai, Rajaraman; Hoque, Happy; Davies, Tony W

    2010-02-01

    Intercostal drainage tubes (ie, chest tubes) are inserted to drain the pleural cavity of air, blood, pus, or lymph. The water-seal container connected to the chest tube allows one-way movement of air and liquid from the pleural cavity. The container should not be changed unless it is full, and the chest tube should not be clamped unnecessarily. After a chest tube is inserted, a nurse trained in chest-tube management is responsible for managing the chest tube and drainage system. This entails monitoring the chest-tube position, controlling fluid evacuation, identifying when to change or empty the containers, and caring for the tube and drainage system during patient transport. This article provides an overview of indications, insertion techniques, and management of chest tubes. Copyright 2010 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  16. Trial manufacture of simple integrated tube-type pyranometer by phycoerythrin and measurements of transmittance of solar radiation in crop canopies

    International Nuclear Information System (INIS)

    Yamamoto, H.; Honjo, H.; Kamota, F.; Suzuki, Y.; Hayakawa, S.

    1998-01-01

    We tried to construct a simple integrated tube-type pyranometer using phycoerythrin from seaweed pigment. The maximum sensitive wavehand of phycoerythrin was 550 nm - 560 nm, and this waveband was in the photosynthetically active radiation range. The acrylic tubes (outside diameter, 22 mm, length, 100 cm) were spread with white paints except for a strip 15 mm in width, and phycoerythrin was put into the acrylic tube. In the results from the outdoor measurements, the tube-type pyranometer showed a positive correlation between the transmittance of phycoerythrin (%) and the measured accumulated solar radiation (MJ n(-2)), but the slope of the linear equation was different in summer and winter. In an artificial climate room, the relationship between the transmissions of phycoerythrin and the accumulated solar radiation could be approximated by a quadratic equation at every temperature. In the measurements made outdoors, the accumulated solar radiation could be estimated using the transmittance of phycoerythrin and the mean air temperature during measurements

  17. Feasibility of evacuation

    International Nuclear Information System (INIS)

    1988-01-01

    The main question is whether evacuation of people is feasible in case of accidents with a nuclear power plant. The limiting conditions of this question are extracted from other studies. This study is therefore focused on a postulated accident in a newly built nuclear power plant with an electric capacity of 1000 Megawatt and a source term of one percent. In this particular case an evacuation should take place within the period between the accident and the emission of nuclear materials. Initial focus is on the administrative-organizational aspects of evacuation. Then bottlenecks in the technical implementation of evacuation are determined. An analysis is made for each potential Dutch location (Borssele, Eemshaven, Maasvlakte, Moerdijk and Westelijke Noordoostpolderdijk) of a nuclear power plant. By means of a model the following question is examined: can the population leave the danger area or be evacuated on time, under certain circumstances. It is concluded that preventive evacuation of the population from the planned locations is feasible, but at Moerdijk complications may occur because of the presence of some homes for the elderly and a nursing home. 18 refs.; 7 figs.; 2 tabs

  18. Behavior-based evacuation planning

    KAUST Repository

    Rodriguez, Samuel

    2010-05-01

    In this work, we present a formulation of an evacuation planning problem that is inspired by motion planning and describe an integrated behavioral agent-based and roadmap-based motion planning approach to solve it. Our formulation allows users to test the effect on evacuation of a number of different environmental factors. One of our main focuses is to provide a mechanism to investigate how the interaction between agents influences the resulting evacuation plans. Specifically, we explore how various types of control provided by a set of directing agents effects the overall evacuation planning strategies of the evacuating agents. ©2010 IEEE.

  19. Behavior-based evacuation planning

    KAUST Repository

    Rodriguez, Samuel; Amato, Nancy M

    2010-01-01

    In this work, we present a formulation of an evacuation planning problem that is inspired by motion planning and describe an integrated behavioral agent-based and roadmap-based motion planning approach to solve it. Our formulation allows users to test the effect on evacuation of a number of different environmental factors. One of our main focuses is to provide a mechanism to investigate how the interaction between agents influences the resulting evacuation plans. Specifically, we explore how various types of control provided by a set of directing agents effects the overall evacuation planning strategies of the evacuating agents. ©2010 IEEE.

  20. Carbon dioxide as working fluid for medium and high-temperature concentrated solar thermal systems

    Directory of Open Access Journals (Sweden)

    Van Duong

    2014-03-01

    Full Text Available This paper explores the benefits and drawbacks of using carbon dioxide in solar thermal systems at medium and high operating temperatures. For medium temperatures, application of CO2 in non-imaging-optics based compound parabolic concentrators (CPC combined with evacuated-tube collectors is studied. These collectors have been shown to obtain efficiencies higher than 40% operating at around 200℃ without the need of tracking. Validated numerical models of external compound parabolic concentrators (XCPCs are used to simulate their performance using CO2 as working fluid. For higher temperatures, a mathematical model is implemented to analyze the operating performance of a parabolic trough solar collector (PTC using CO2 at temperatures between 100℃ and 600℃.

  1. Structure optimization and performance experiments of a solar-powered finned-tube adsorption refrigeration system

    International Nuclear Information System (INIS)

    Ji, Xu; Li, Ming; Fan, Jieqing; Zhang, Peng; Luo, Bin; Wang, Liuling

    2014-01-01

    Highlights: • New-structure finned-tube adsorption bed for enhancing heat and mass transfer. • Temperatures on different parts of the adsorption tubes differ little. • Maximum COP of 0.122 and maximum daily ice-making of 6.5 kg are achieved by experiments. • Cooling efficiency of system with valve control higher than that without valve control. - Abstract: A large-diameter aluminum-alloy finned-tube absorbent bed collector was designed and optimized by enhancing the heat and mass transfer in the collector. The collection efficiency of the adsorbent bed collector was between 31.64% and 42.7%, and the temperature distribution in the absorbent bed was relatively uniform, beneficial to adsorption/desorption of the adsorbate in the absorbent bed. A solar-powered solid adsorption refrigeration system with the finned-tube absorbent bed collector was built. Some experiments corresponding to the adsorption/desorption process with and without a valve control were conducted in four typical weather conditions: sunny with clear sky, sunny with partly cloudy sky, cloudy sky and overcast sky. Activated carbon–methanol was utilized as the working pair for adsorption refrigeration in the experiments. The experiments achieved the maximum COP of 0.122 and the maximum daily ice-making of 6.5 kg. Under the weather conditions of sunny with clear sky, sunny with partly cloudy sky, and cloudy sky, ice-making phenomenon were observed. Even in the overcast-sky weather condition, the cooling efficiency of the system still reached 0.039 when the total solar radiation was 11.51 MJ. The cooling efficiency of the solar-powered adsorption refrigeration system with a valve control in the adsorption/desorption process was significantly higher than that without a valve control

  2. Cellular automaton model of crowd evacuation inspired by slime mould

    Science.gov (United States)

    Kalogeiton, V. S.; Papadopoulos, D. P.; Georgilas, I. P.; Sirakoulis, G. Ch.; Adamatzky, A. I.

    2015-04-01

    In all the living organisms, the self-preservation behaviour is almost universal. Even the most simple of living organisms, like slime mould, is typically under intense selective pressure to evolve a response to ensure their evolution and safety in the best possible way. On the other hand, evacuation of a place can be easily characterized as one of the most stressful situations for the individuals taking part on it. Taking inspiration from the slime mould behaviour, we are introducing a computational bio-inspired model crowd evacuation model. Cellular Automata (CA) were selected as a fully parallel advanced computation tool able to mimic the Physarum's behaviour. In particular, the proposed CA model takes into account while mimicking the Physarum foraging process, the food diffusion, the organism's growth, the creation of tubes for each organism, the selection of optimum tube for each human in correspondence to the crowd evacuation under study and finally, the movement of all humans at each time step towards near exit. To test the model's efficiency and robustness, several simulation scenarios were proposed both in virtual and real-life indoor environments (namely, the first floor of office building B of the Department of Electrical and Computer Engineering of Democritus University of Thrace). The proposed model is further evaluated in a purely quantitative way by comparing the simulation results with the corresponding ones from the bibliography taken by real data. The examined fundamental diagrams of velocity-density and flow-density are found in full agreement with many of the already published corresponding results proving the adequacy, the fitness and the resulting dynamics of the model. Finally, several real Physarum experiments were conducted in an archetype of the aforementioned real-life environment proving at last that the proposed model succeeded in reproducing sufficiently the Physarum's recorded behaviour derived from observation of the aforementioned

  3. Suction forces generated by passive bile bag drainage on a model of post-subdural hematoma evacuation.

    Science.gov (United States)

    Tenny, Steven O; Thorell, William E

    2018-05-05

    Passive drainage systems are commonly used after subdural hematoma evacuation but there is a dearth of published data regarding the suction forces created. We set out to quantify the suction forces generated by a passive drainage system. We created a model of passive drainage after subdural hematoma evacuation. We measured the maximum suction force generated with a bile bag drain for both empty drain tubing and fluid-filled drain tube causing a siphoning effect. We took measurements at varying heights of the bile bag to analyze if bile bag height changed suction forces generated. An empty bile bag with no fluid in the drainage tube connected to a rigid, fluid-filled model creates minimal suction force of 0.9 mmHg (95% CI 0.64-1.16 mmHg). When fluid fills the drain tubing, a siphoning effect is created and can generate suction forces ranging from 18.7 to 30.6 mmHg depending on the relative position of the bile bag and filled amount of the bile bag. The suction forces generated are statistically different if the bile bag is 50 cm below, level with or 50 cm above the experimental model. Passive bile bag drainage does not generate significant suction on a fluid-filled rigid model if the drain tubing is empty. If fluid fills the drain tubing then siphoning occurs and can increase the suction force of a passive bile bag drainage system to levels comparable to partially filled Jackson-Pratt bulb drainage.

  4. Hurricane Evacuation Routes

    Data.gov (United States)

    Department of Homeland Security — Hurricane Evacuation Routes in the United States A hurricane evacuation route is a designated route used to direct traffic inland in case of a hurricane threat. This...

  5. Are the dynamics of gastric evacuation of natural prey in a piscivorous flatfish different from what is going on in a gadoid?

    DEFF Research Database (Denmark)

    Krog, C.; Andersen, Niels Gerner

    2009-01-01

    Despite the fact that the stomach of turbot Psetta maxima is a curved tube that forms a half circle, it was demonstrated that gastric evacuation in this predatory flatfish fed natural prey closely followed the surface-dependent cylinder model developed from studies on gadoids with a straight...... stomach. Evacuation experiments were performed on two size groups of P. maxima fed sandeel Ammodytes tobianus as well as on P. maxima fed brown shrimp Crangon crangon at three different temperatures. This enabled the provision of a gastric evacuation model for studies on P. maxima, which takes...... with the conclusion of a previous study on P. maxima that evacuation of A. tobianus is essentially linear with time. Use of the cylinder model to the values of the explanatory variables presented in the latter study, however, gave accurate predictions of the actually acquired evacuation data, which points...

  6. Solar thermal

    International Nuclear Information System (INIS)

    Jones, J.

    2006-01-01

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m 3 - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as

  7. Solar thermal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.

    2006-07-15

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m{sup 3} - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become

  8. Solar Cooker Study under Oman Conditions for Late Evening Cooking Using Stearic Acid and Acetanilide as PCM Materials

    Directory of Open Access Journals (Sweden)

    Nagaraj Nayak

    2016-01-01

    Full Text Available Solar energy is an alternative source of nonrenewable energy in Oman. Sultanate of Oman government showed initiation into utilization of solar energy for domestic applications. Conversion of solar radiation into useful heat is the simplest application of solar energy, in which it can be used for late evening cooking. In this context, present work highlighted the design and development of solar cooker for Oman climatic conditions. The current work signifies usage of solar cooker for late evening cooking using stearic acid and acetanilide as phase change materials (PCM. Solar cooker parts are developed in-house and connected to water heating system compounded with evacuated tubes solar collector and storage tank. The circumference of cooker unit is incorporated with spiral stainless steel heat exchanger and annulus area of the pot is filled with PCM material. PCM releases heat at late evening and effective cooking up to 7:30 PM is noticed. The experimental results indicated the cooker efficiency of 30% and collector efficiency of 60–65% during the study. Overall, experiments showed satisfactory performance on the developed cooker.

  9. Factors associated with high-rise evacuation: qualitative results from the World Trade Center Evacuation Study.

    Science.gov (United States)

    Gershon, Robyn R M; Qureshi, Kristine A; Rubin, Marcie S; Raveis, Victoria H

    2007-01-01

    Due to the fact that most high-rise structures (i.e., >75 feet high, or eight to ten stories) are constructed with extensive and redundant fire safety features, current fire safety procedures typically only involve limited evacuation during minor to moderate fire emergencies. Therefore, full-scale evacuation of high-rise buildings is highly unusual and consequently, little is known about how readily and rapidly high-rise structures can be evacuated fully. Factors that either facilitate or inhibit the evacuation process remain under-studied. This paper presents results from the qualitative phase of the World Trade Center Evacuation Study, a three-year, five-phase study designed to improve our understanding of the individual, organizational, and environmental factors that helped or hindered evacuation from the World Trade Center (WTC) Towers 1 and 2, on 11 September 2001. Qualitative data from semi-structured, in-depth interviews and focus groups involving WTC evacuees were collected and analyzed. On the individual level, factors that affected evacuation included perception of risk (formed largely by sensory cues), preparedness training, degree of familiarity with the building, physical condition, health status, and footwear. Individual behavior also was affected by group behavior and leadership. At the organizational level, evacuation was affected by worksite preparedness planning, including the training and education of building occupants, and risk communication. The environmental conditions affecting evacuation included smoke, flames, debris, general condition and degree of crowdedness on staircases, and communication infrastructure systems (e.g., public address, landline, cellular and fire warden's telephones). Various factors at the individual, organizational, and environmental levels were identified that affected evacuation. Interventions that address the barriers to evacuation may improve the full-scale evacuation of other high-rise buildings under extreme

  10. Development of a tube-type solar still equipped with heat accumulation for irrigation

    International Nuclear Information System (INIS)

    Murase, Kazuo; Yamagishi, Yusuke; Iwashita, Yusuke; Sugino, Keita

    2008-01-01

    A tube-type solar still is found to be suitable for use in desert irrigation. The effectiveness of a heat accumulator with regard to distillate productivity is experimentally and numerically verified. The heat accumulator consists of tube bundles immersed in wax in order to utilize the latent heat of wax. The dynamic response to stepwise variation of irradiative intensity verified the contribution of wax to an increase of productivity only when the phase change of wax occurred. The effective distillate productivity was found to be 294.3 g/m 2 during the cyclic stepwise change of irradiative intensity, from 200 to 600 W/m 2 and back. Velocity vectors driven by natural convection and temperature contours estimated by numerical simulation verified the effectiveness of the heat accumulator especially after peak solar intensity. The latent heat of wax effectively contributed to a 15% increase in total distillate productivity per day. The still can feasibly meet irrigation water supply demands above an irrigative threshold of 17 MJ/m 2 d

  11. Direct conversion of light to radio frequency energy. [using photoklystrons for solar power satellites

    Science.gov (United States)

    Freeman, J. W.; Simons, S.

    1981-01-01

    A description is presented of the test results obtained with the latest models of the phototron. The phototron was conceived as a replacement for the high voltage solar cell-high power klystron combination for the solar power satellite concept. Physically, the phototron is a cylindrical evacuated glass tube with a photocathode, two grids, and a reflector electrode in a planar configuration. The phototron can be operated either in a biased mode where a low voltage is used to accelerate the electron beam produced by the photocathode or in an unbiased mode referred to as self-oscillation. The device is easily modulated by light input or voltage to broadcast in AM or FM. The range of operation of the present test model phototrons is from 2 to 200 MHz.

  12. EPDM Based Double Slope Triangular Enclosure Solar Collector: A Novel Approach

    Directory of Open Access Journals (Sweden)

    Shafiq R. Qureshi

    2014-01-01

    Full Text Available Solar heating is one of the important utilities of solar energy both in domestic and industrial sectors. Evacuated tube heaters are a commonly used technology for domestic water heating. However, increasing cost of copper and nickel has resulted in huge initial cost for these types of heaters. Utilizing solar energy more economically for domestic use requires new concept which has low initial and operating costs together with ease of maintainability. As domestic heating requires only nominal heating temperature to the range of 60–90°C, therefore replacing nickel coated copper pipes with any cheap alternate can drastically reduce the cost of solar heater. We have proposed a new concept which utilizes double slope triangular chamber with EPDM based synthetic rubber pipes. This has reduced the initial and operating costs substantially. A detailed analytical study was carried out to design a novel solar heater. On the basis of analytical design, a prototype was manufactured. Results obtained from the experiments were found to be in good agreement with the analytical study. A maximum error of 10% was recorded at noon. However, results show that error is less than 5% in early and late hours.

  13. EPDM based double slope triangular enclosure solar collector: a novel approach.

    Science.gov (United States)

    Qureshi, Shafiq R; Khan, Waqar A; Sarwar, Waqas

    2014-01-01

    Solar heating is one of the important utilities of solar energy both in domestic and industrial sectors. Evacuated tube heaters are a commonly used technology for domestic water heating. However, increasing cost of copper and nickel has resulted in huge initial cost for these types of heaters. Utilizing solar energy more economically for domestic use requires new concept which has low initial and operating costs together with ease of maintainability. As domestic heating requires only nominal heating temperature to the range of 60-90 °C, therefore replacing nickel coated copper pipes with any cheap alternate can drastically reduce the cost of solar heater. We have proposed a new concept which utilizes double slope triangular chamber with EPDM based synthetic rubber pipes. This has reduced the initial and operating costs substantially. A detailed analytical study was carried out to design a novel solar heater. On the basis of analytical design, a prototype was manufactured. Results obtained from the experiments were found to be in good agreement with the analytical study. A maximum error of 10% was recorded at noon. However, results show that error is less than 5% in early and late hours.

  14. Pedestrian evacuation modeling to reduce vehicle use for distant tsunami evacuations in Hawaiʻi

    Science.gov (United States)

    Wood, Nathan J.; Jones, Jamie; Peters, Jeff; Richards, Kevin

    2018-01-01

    Tsunami waves that arrive hours after generation elsewhere pose logistical challenges to emergency managers due to the perceived abundance of time and inclination of evacuees to use vehicles. We use coastal communities on the island of Oʻahu (Hawaiʻi, USA) to demonstrate regional evacuation modeling that can identify where successful pedestrian-based evacuations are plausible and where vehicle use could be discouraged. The island of Oʻahu has two tsunami-evacuation zones (standard and extreme), which provides the opportunity to examine if recommended travel modes vary based on zone. Geospatial path distance models are applied to estimate population exposure as a function of pedestrian travel time and speed out of evacuation zones. The use of the extreme zone triples the number of residents, employees, and facilities serving at-risk populations that would be encouraged to evacuate and slightly reduces the percentage of residents (98–76%) that could evacuate in less than 15 min at a plausible speed (with similar percentages for employees). Areas with lengthy evacuations are concentrated in the North Shore region for the standard zone but found all around the Oʻahu coastline for the extreme zone. The use of the extreme zone results in a 26% increase in the number of hotel visitors that would be encouraged to evacuate, and a 76% increase in the number of them that may require more than 15 min. Modeling can identify where pedestrian evacuations are plausible; however, there are logistical and behavioral issues that warrant attention before localized evacuation procedures may be realistic.

  15. Solar thermal energy conversion to electrical power

    International Nuclear Information System (INIS)

    Trinh, Anh-Khoi; González, Ivan; Fournier, Luc; Pelletier, Rémi; Sandoval V, Juan C.; Lesage, Frédéric J.

    2014-01-01

    The conversion of solar energy to electricity currently relies primarily on the photovoltaic effect in which photon bombardment of photovoltaic cells drives an electromotive force within the material. Alternatively, recent studies have investigated the potential of converting solar radiation to electricity by way of the Seebeck effect in which charge carrier mobility is generated by an asymmetric thermal differential. The present study builds upon these latest advancements in the state-of-the-art of thermoelectric system management by combining solar evacuated tube technology with commercially available Bismuth Telluride semiconductor modules. The target heat source is solar radiation and the target heat sink is thermal convection into the ambient air relying on wind aided forced convection. These sources of energy are reproduced in a laboratory controlled environment in order to maintain a thermal dipole across a thermoelectric module. The apparatus is then tested in a natural environment. The novelty of the present work lies in a net thermoelectric power gain for ambient environment applications and an experimental validation of theoretical electrical characteristics relative to a varying electrical load. - Highlights: • Solar radiation maintains a thermal tension which drives an electromotive force. • Voltage, current and electric power are reported and discussed. • Theoretical optimal thermoelectric conversion predictions are presented. • Theory is validated with experimentally measured data

  16. Auditory evacuation beacons

    NARCIS (Netherlands)

    Wijngaarden, S.J. van; Bronkhorst, A.W.; Boer, L.C.

    2005-01-01

    Auditory evacuation beacons can be used to guide people to safe exits, even when vision is totally obscured by smoke. Conventional beacons make use of modulated noise signals. Controlled evacuation experiments show that such signals require explicit instructions and are often misunderstood. A new

  17. Spiral multiple-effect diffusion solar still coupled with vacuum-tube collector and heat pipe

    KAUST Repository

    Huang, Bin-Juine

    2015-04-01

    © 2015 Elsevier B.V. A novel solar still with spiral-shape multiple-effect diffusion unit is developed in the present study. The test results of a 14-effect unit coupled with vacuum-tube solar collector (absorber area 1.08m2) show that the highest daily pure water production is 40.6kgd-1. The measured highest productivity based on the area of glass cover, solar absorber, and evaporating surface is 34.7, 40.6, and 7.96kgm-2d-1, respectively, which are much higher than the published results. The measured solar distillation efficiency is 2.0-3.5. The performance enhancement results mainly from the lateral diffusion process in the spiraled still cell. The vapor flow generated by heat input can flow freely and laterally through the spiral channel down to the end when solar heat input is high. Besides, the larger evaporating and condensing area at the outer cell may increase heat and mass transfer at the outer cell.

  18. Transient simulation of a solar heating system for a small-scale ethanol-water distillation plant: Thermal, environmental and economic performance

    International Nuclear Information System (INIS)

    Vargas-Bautista, Juan Pablo; García-Cuéllar, Alejandro Javier; Pérez-García, Santiago L.; Rivera-Solorio, Carlos I.

    2017-01-01

    Highlights: • Thermal simulation of a small solar ethanol distillation plant is performed. • The optimum collector area is obtained for two different thermal collectors types. • Higher solar fraction was found for parabolic trough collectors. • Economic analysis is performed for different scenarios to evaluate feasibility. - Abstract: The thermal, environmental and economic performance of a small-scale ethanol distillation system, where solar energy is used as primary energy source, was studied. Two different concentrations of ethanol at the feed stream (5 wt.% and 10 wt.%) were analysed to obtain a distillate product of 95 wt.% ethanol (hydrous ethanol). Evacuated tube solar collectors (ETC) and parabolic trough collectors (PTC) were considered for the solar heating system. A case of study for a specific geographical place (Monterrey, México) was developed herein to evaluate the solar ethanol distillation system; the results can be extended to other locations, weather conditions and operational parameters. The thermal results from the simulation showed that through an adequate selection of the solar collector area and an appropriate sizing of the different equipment of the solar distillation system, PTC represents a better option where energy savings of 80% and 71% can be achieved for 5 wt.% and 10 wt.% ethanol at the feed stream, respectively. However, the economic feasibility of the solar distillation system is achieved using ETC for a price of hydrous ethanol of 1.75 USD/L and a feed stream of 10 wt.% ethanol, reaching an internal rate of return (IRR) of 18.8% and payback period of 5.2 years. As an important technical result, selected ETC presented advantages over PTC where an average distillate product of 3.6 and 3.4 ml at 95 wt.% ethanol can be obtained per unit of solar energy (kW h) captured per area (m"2) of solar collector using 5 wt.% and 10 wt.% ethanol at the feed stream, respectively (36% more than PTC). The reduction of greenhouse gases (GHG

  19. Optimal crowd evacuation

    NARCIS (Netherlands)

    Hoogendoorn, S.P.; Daamen, W.; Duives, D.C.; Van Wageningen-Kessels, F.L.M.

    2013-01-01

    This paper deals with the optimal allocation of routes, destination, and departure times to members of a crowd, for instance in case of an evacuation or another hazardous situation in which the people need to leave the area as quickly as possible. The generic approach minimizes the evacuation times,

  20. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In this paper, an integrated solar heat pipe wall space heating system, employing double glazed heat pipe evacuated tube solar collector and forced convective heat transfer condenser, is introduced. Thermal performance of the heat pipe solar collector is studied and a numerical model is developed to investigate ...

  1. Routes to effective evacuation planning primer series : evacuating populations with special needs.

    Science.gov (United States)

    2009-04-01

    Evacuation operations are conducted under the authority of, and based on decisions by, local and state authorities. The purpose of this primer, Evacuating Populations with Special Needs, is to provide local and state emergency managers, government of...

  2. ON THE ANISOTROPY IN EXPANSION OF MAGNETIC FLUX TUBES IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Malanushenko, A. [Department of Physics, Montana State University, Bozeman, MT (United States); Schrijver, C. J. [Lockheed Martin Advanced Technology Center, Palo Alto, CA (United States)

    2013-10-01

    Most one-dimensional hydrodynamic models of plasma confined to magnetic flux tubes assume circular tube cross sections. We use potential field models to show that flux tubes in circumstances relevant to the solar corona do not, in general, maintain the same cross-sectional shape through their length and therefore the assumption of a circular cross section is rarely true. We support our hypothesis with mathematical reasoning and numerical experiments. We demonstrate that lifting this assumption in favor of realistic, non-circular loops makes the apparent expansion of magnetic flux tubes consistent with that of observed coronal loops. We propose that in a bundle of ribbon-like loops, those that are viewed along the wide direction would stand out against those that are viewed across the wide direction due to the difference in their column depths. That result would impose a bias toward selecting loops that appear not to be expanding, seen projected in the plane of sky. An implication of this selection bias is that the preferentially selected non-circular loops would appear to have increased pressure scale heights even if they are resolved by current instruments.

  3. TIME-DEPENDENT TURBULENT HEATING OF OPEN FLUX TUBES IN THE CHROMOSPHERE, CORONA, AND SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Woolsey, L. N.; Cranmer, S. R., E-mail: lwoolsey@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2015-10-01

    We investigate several key questions of plasma heating in open-field regions of the corona that connect to the solar wind. We present results for a model of Alfvén-wave-driven turbulence for three typical open magnetic field structures: a polar coronal hole, an open flux tube neighboring an equatorial streamer, and an open flux tube near a strong-field active region. We compare time-steady, one-dimensional turbulent heating models against fully time-dependent three-dimensional reduced-magnetohydrodynamic modeling of BRAID. We find that the time-steady results agree well with time-averaged results from BRAID. The time dependence allows us to investigate the variability of the magnetic fluctuations and of the heating in the corona. The high-frequency tail of the power spectrum of fluctuations forms a power law whose exponent varies with height, and we discuss the possible physical explanation for this behavior. The variability in the heating rate is bursty and nanoflare-like in nature, and we analyze the amount of energy lost via dissipative heating in transient events throughout the simulation. The average energy in these events is 10{sup 21.91} erg, within the “picoflare” range, and many events reach classical “nanoflare” energies. We also estimated the multithermal distribution of temperatures that would result from the heating-rate variability, and found good agreement with observed widths of coronal differential emission measure distributions. The results of the modeling presented in this paper provide compelling evidence that turbulent heating in the solar atmosphere by Alfvén waves accelerates the solar wind in open flux tubes.

  4. A novel design for a cheap high temperature solar collector: The rotating solar boiler

    NARCIS (Netherlands)

    Luijtelaer, van J.P.H.; Kroon, M.C.

    2009-01-01

    In this work a novel type of high temperature solar collector is designed: the rotating solar boiler. This rotating solar boiler consists of two concentric tubes. The inner tube, called absorber, absorbs sunlight and boils water. The outer transparent tube, called cover, is filled with air. The

  5. Experiment and CFD simulation of exhaust tube in highvoltage circuit breaker

    Directory of Open Access Journals (Sweden)

    Ye Xiangyang

    2018-01-01

    Full Text Available In a high-voltage circuit breaker, the exhaust tube connects the arc zone with the exhaust volume. During the arc interruption process, the exhaust tube transports the hot gas from the arc interruption zone to the exhaust volume through its distributed holes. The design of a high performance exhaust tube in the circuit breaker development aims for well controlled hot gas evacuation mass flow and pressure waves. In this paper, the exhaust tube behaviour is investigated using Computational Fluid Dynamics (CFD. To verify the CFD simulation, a basic experimental study with pressure measurements at different positions of the exhaust tube is performed. Further, the design parameters influencing the exhaust tube behaviour and circuit breaker performance are investigated and discussed.

  6. Evacuation dynamics of children

    DEFF Research Database (Denmark)

    Larusdottir, Aldis Run; Dederichs, Anne

    2010-01-01

    higher walking speeds in spiral stairs when the children are familiar with the evacuation path. Higher per-son densities and faster flow through doors were obtained among the children than found in literature on adults. Children in the younger age group are generally slower than the older children....... The children walk slower in horizontal plan than adults, however they are keen to run during evacuations, in the latter case their travel speed increases and exceeds the adults’. Since the evacuation characte-ristics of children differ in many ways from those of adults, nowadays models badly comprehend...

  7. Analysis of Medium-Scale Solar Thermal Systems and Their Potential in Lithuania

    Directory of Open Access Journals (Sweden)

    Rokas Valančius

    2015-06-01

    Full Text Available Medium-scale solar hot water systems with a total solar panel area varying from 60 to 166 m2 have been installed in Lithuania since 2002. However, the performance of these systems varies depending on the type of energy users, equipment and design of the systems, as well as their maintenance. The aim of this paper was to analyse operational SHW systems from the perspective of energy production and economic benefit as well as to outline the differences of their actual performance compared to the numerical simulation results. Three different medium-scale solar thermal systems in Lithuania were selected for the analysis varying in both equipment used (flat type solar collectors, evacuated tube collectors and type of energy user (swimming pool building, domestic hot water heating, district heating. The results of the analysis showed that in the analysed cases the gap between measured and modelled data of heat energy produced by SHW systems was approx. 11%. From the economical perspective, the system with flat type solar collectors used for domestic hot water production was proved to be most efficient. However, calculation of Internal Rate of Return showed that a grant of 35% is required for this project to be fully profitable.

  8. Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.

    Science.gov (United States)

    Sekhar, Y Raja; Sharma, K V; Kamal, Subhash

    2016-05-01

    The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.

  9. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    Directory of Open Access Journals (Sweden)

    Alexandre Hugo

    2012-10-01

    Full Text Available The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1 reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2 using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.

  10. Evacuation drill at CMS

    CERN Multimedia

    Niels Dupont-Sagorin and Christoph Schaefer

    2012-01-01

    Training personnel, including evacuation guides and shifters, checking procedures, improving collaboration with the CERN Fire Brigade: the first real-life evacuation drill at CMS took place on Friday 3 February from 12p.m. to 3p.m. in the two caverns located at Point 5 of the LHC.   CERN personnel during the evacuation drill at CMS. Evacuation drills are required by law and have to be organized periodically in all areas of CERN, both above and below ground. The last drill at CMS, which took place in June 2007, revealed some desiderata, most notably the need for a public address system. With this equipment in place, it is now possible to broadcast audio messages from the CMS control room to the underground areas.   The CMS Technical Coordination Team and the GLIMOS have focused particularly on preparing collaborators for emergency situations by providing training and organizing regular safety drills with the HSE Unit and the CERN Fire Brigade. This Friday, the practical traini...

  11. Evacuation decision-making: process and uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Mileti, D.; Sorensen, J.; Bogard, W.

    1985-09-01

    The purpose was to describe the processes of evacuation decision-making, identify and document uncertainties in that process and discuss implications for federal assumption of liability for precautionary evacuations at nuclear facilities under the Price-Anderson Act. Four major categories of uncertainty are identified concerning the interpretation of hazard, communication problems, perceived impacts of evacuation decisions and exogenous influences. Over 40 historical accounts are reviewed and cases of these uncertainties are documented. The major findings are that all levels of government, including federal agencies experience uncertainties in some evacuation situations. Second, private sector organizations are subject to uncertainties at a variety of decision points. Third, uncertainties documented in the historical record have provided the grounds for liability although few legal actions have ensued. Finally it is concluded that if liability for evacuations is assumed by the federal government, the concept of a ''precautionary'' evacuation is not useful in establishing criteria for that assumption. 55 refs., 1 fig., 4 tabs.

  12. Evacuation decision-making: process and uncertainty

    International Nuclear Information System (INIS)

    Mileti, D.; Sorensen, J.; Bogard, W.

    1985-09-01

    The purpose was to describe the processes of evacuation decision-making, identify and document uncertainties in that process and discuss implications for federal assumption of liability for precautionary evacuations at nuclear facilities under the Price-Anderson Act. Four major categories of uncertainty are identified concerning the interpretation of hazard, communication problems, perceived impacts of evacuation decisions and exogenous influences. Over 40 historical accounts are reviewed and cases of these uncertainties are documented. The major findings are that all levels of government, including federal agencies experience uncertainties in some evacuation situations. Second, private sector organizations are subject to uncertainties at a variety of decision points. Third, uncertainties documented in the historical record have provided the grounds for liability although few legal actions have ensued. Finally it is concluded that if liability for evacuations is assumed by the federal government, the concept of a ''precautionary'' evacuation is not useful in establishing criteria for that assumption. 55 refs., 1 fig., 4 tabs

  13. Evacuation Shelters - MDC_HurricaneShelter

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — A label feature class of Miami-Dade County Hurricane Evacuation Shelters (HEC) including Special Need Evacuation Centers (SNEC) and Medical Management Facilities...

  14. A Solar Heating and Cooling System in a Nearly Zero-Energy Building: A Case Study in China

    Directory of Open Access Journals (Sweden)

    Zhifeng Sun

    2017-01-01

    Full Text Available The building sector accounts for more than 40% of the global energy consumption. This consumption may be lowered by reducing building energy requirements and using renewable energy in building energy supply systems. Therefore, a nearly zero-energy building, incorporating a solar heating and cooling system, was designed and built in Beijing, China. The system included a 35.17 kW cooling (10-RT absorption chiller, an evacuated tube solar collector with an aperture area of 320.6 m2, two hot-water storage tanks (with capacities of 10 m3 and 30 m3, respectively, two cold-water storage tanks (both with a capacity of 10 m3, and a 281 kW cooling tower. Heat pump systems were used as a backup. At a value of 25.2%, the obtained solar fraction associated with the cooling load was close to the design target of 30%. In addition, the daily solar collector efficiency and the chiller coefficient of performance (COP varied from 0.327 to 0.507 and 0.49 to 0.70, respectively.

  15. A method of emotion contagion for crowd evacuation

    Science.gov (United States)

    Cao, Mengxiao; Zhang, Guijuan; Wang, Mengsi; Lu, Dianjie; Liu, Hong

    2017-10-01

    The current evacuation model does not consider the impact of emotion and personality on crowd evacuation. Thus, there is large difference between evacuation results and the real-life behavior of the crowd. In order to generate more realistic crowd evacuation results, we present a method of emotion contagion for crowd evacuation. First, we combine OCEAN (Openness, Extroversion, Agreeableness, Neuroticism, Conscientiousness) model and SIS (Susceptible Infected Susceptible) model to construct the P-SIS (Personalized SIS) emotional contagion model. The P-SIS model shows the diversity of individuals in crowd effectively. Second, we couple the P-SIS model with the social force model to simulate emotional contagion on crowd evacuation. Finally, the photo-realistic rendering method is employed to obtain the animation of crowd evacuation. Experimental results show that our method can simulate crowd evacuation realistically and has guiding significance for crowd evacuation in the emergency circumstances.

  16. Evacuation of Bed-bound Patients-STEPS Simulations

    DEFF Research Database (Denmark)

    Madsen, Anne; Dederichs, Anne Simone

    2016-01-01

    Fires in hospitals occur, and evacuation of bed-bound patients might be necessary in case of emergency. The current study concerns the evacuation of bed-bound patients from a fire section in a hospital using hospital porters. The simulations are performed using the STEPS program. The aim...... of the study is to investigate the evacuation time of bed-bound hospital patients using different walking speeds from the literature, and the influence of the number of hospital porters on the total evacuation times of bed-bound patients. Different scenarios were carried out with varying staff......-to-patient ratios that simulate the horizontal evacuation of 40 bed-bound patients into a different fire section. It was found that the staff-to-patient-ratio affects the total evacuation times. However, the total evacuation times do not decrease linearly and a saturation effect is seen at a staff-to-patient ratio...

  17. Water-storage-tube systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hemker, P.

    1981-12-24

    Passive solar collection/storage/distribution systems were surveyed, designed, fabricated, and mechanically and thermally tested. The types studied were clear and opaque fiberglass tubes, metal tubes with plastic liners, and thermosyphoning tubes. (MHR)

  18. Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere

    International Nuclear Information System (INIS)

    Gascoyne, A.; Jain, R.; Hindman, B. W.

    2014-01-01

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z 0 ).

  19. Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, A.; Jain, R. [Applied Mathematics Department, University of Sheffield, Sheffield S3 7RH (United Kingdom); Hindman, B. W., E-mail: a.d.gascoyne@sheffield.ac.uk, E-mail: r.jain@sheffield.ac.uk [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, Boulder, CO 80309-0440 (United States)

    2014-07-10

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z{sub 0}).

  20. Solar Thermal Utilization: Past, Present and Future

    Science.gov (United States)

    2010-09-01

    SO•C NON-FOCUSSING FLAT PLATE / (FPC) 100- 150•C For low temperature 50- 200•C COMPOUND applications PARABOLIC EVACUATED CONCENTRATOR ~ (ETC...2030 Ø 200GW BY 2050 Ø 20 MILLION SQ.METER SOLAR THERMAL COLLECTORS (20GW power) Ø 20 MILLION SOLAR LIGHTS LAUNCHING OF SOLAR INDIA SOLAR THERMAL...Temperature (20oC- 80oC) NALSUN ApplicationsThermal Conversion range SOLAR ENERGY COLLECTORS 40- GO•C UNGLAZED COLLECTORS 60- 90•C SOLAR POND 60

  1. Multiple-effect diffusion solar still coupled with a vacuum-tube collector and heat pipe

    KAUST Repository

    Chong, Tze-Ling

    2014-08-01

    The present study develops a multiple-effect diffusion solar still (MEDS) with a bended-plate design in multiple-effect diffusion unit (MDU) to solve the peel-off problem of wick material. The MDU is coupled with a vacuum-tube solar collector to produce a high temperature gradient for high productivity. A heat pipe is used to transfer the solar heat to the MDU. A prototype MEDS-1L was built and tested outdoors. Four performance indexes are proposed for the performance evaluation of MEDS, including daily pure water production per unit area of glass cover, solar absorber, and evaporating surface (Mcov, Msol, Mevp, respectively), and solar distillation efficiency Rcov. The outdoor test results of MEDS-1L show that the solar collector supply temperature Th reaches 100°C at solar radiation 800Wm-2. The highest Mcov is 23.9kgm-2d-1 which is about 29% higher than the basin-type MEDS [11]. The highest value is 25.9kgm-2d-1 for Msol and 2.79kgm-2d-1 for Mevp. The measured Rcov is 1.5-2.44, higher than the basin-type MEDS (1.45-1.88). The Mcov, Msol, Mevp and Rcov of MEDS-1L are all higher than the theoretical calculation of a MEDS with a flat-plate solar collector coupled with a heat pipe (MEDS-FHP) [17].© 2014 Elsevier B.V.

  2. THE BEHAVIOR OF TRANSVERSE WAVES IN NONUNIFORM SOLAR FLUX TUBES. I. COMPARISON OF IDEAL AND RESISTIVE RESULTS

    International Nuclear Information System (INIS)

    Soler, Roberto; Terradas, Jaume; Oliver, Ramón; Goossens, Marcel

    2013-01-01

    Magnetohydrodynamic (MHD) waves are ubiquitously observed in the solar atmosphere. Kink waves are a type of transverse MHD waves in magnetic flux tubes that are damped due to resonant absorption. The theoretical study of kink MHD waves in solar flux tubes is usually based on the simplification that the transverse variation of density is confined to a nonuniform layer much thinner than the radius of the tube, i.e., the so-called thin boundary approximation. Here, we develop a general analytic method to compute the dispersion relation and the eigenfunctions of ideal MHD waves in pressureless flux tubes with transversely nonuniform layers of arbitrary thickness. Results for kink waves are produced and compared with fully numerical resistive MHD eigenvalue computations in the limit of small resistivity. We find that the frequency and resonant damping rate are the same in both ideal and resistive cases. The actual results for thick nonuniform layers deviate from the behavior predicted in the thin boundary approximation and strongly depend on the shape of the nonuniform layer. The eigenfunctions in ideal MHD are very different from those in resistive MHD. The ideal eigenfunctions display a global character regardless of the thickness of the nonuniform layer, while the resistive eigenfunctions are localized around the resonance and are indistinguishable from those of ordinary resistive Alfvén modes. Consequently, the spatial distribution of wave energy in the ideal and resistive cases is dramatically different. This poses a fundamental theoretical problem with clear observational consequences

  3. Evacuate or Shelter-in-place? The Role of Corporate Memory and Political Environment in Hospital-evacuation Decision Making.

    Science.gov (United States)

    Ricci, Karen A; Griffin, Anne R; Heslin, Kevin C; Kranke, Derrick; Dobalian, Aram

    2015-06-01

    Hospital-evacuation decisions are rarely straightforward in protracted advance-warning events. Previous work provides little insight into the decision-making process around evacuation. This study was conducted to identify factors that most heavily influenced the decisions to evacuate the US Department of Veterans Affairs (VA) New York Harbor Healthcare System's (NYHHS; New York USA) Manhattan Campus before Hurricane Irene in 2011 and before Superstorm Sandy in 2012. Semi-structured interviews with 11 senior leaders were conducted on the processes and factors that influenced the evacuation decisions prior to each event. The most influential factor in the decision to evacuate the Manhattan Campus before Hurricane Irene was New York City's (NYC's) hospital-evacuation mandate. As a federal facility, the Manhattan VA medical center (VAMC) was exempt from the city's order, but decision makers felt compelled to comply. In the case of Superstorm Sandy, corporate memory of a similar 1992 storm that crippled the Manhattan facility drove the decision to evacuate before the storm hit. Results suggest that hospital-evacuation decisions are confounded by political considerations and are influenced by past disaster experience. Greater shared situational awareness among at-risk hospitals, along with a more coordinated approach to evacuation decision making, could reduce pressure on hospitals to make these high-stakes decisions. Systematic mechanisms for collecting, documenting, and sharing lessons learned from past disasters are sorely needed at the institutional, local, and national levels.

  4. ARKTOS full-scale evacuation tests

    Energy Technology Data Exchange (ETDEWEB)

    Seligman, B.; Hatfield, P. [ARKTOS Developments Ltd., Surrey, BC (Canada); Bercha, F. [Bercha Group, Calgary, AB (Canada)

    2008-09-15

    The ARKTOS amphibious vehicle can be used for evacuation operations in both open water and ice conditions. It is approved as an evacuation system by various regulators, such as the United States Coast Guard, and is operational in several marine cold regions as an escape, evacuation, and rescue (EER) system. An EER research project was performed in 2006 that provided a general reliability evaluation of the ARKTOS system. However, the project did not have the benefit of detailed full-scale tests in order to validate the associated computer model in drill or non-life threatening evacuation conditions. This paper described a follow-up set of full-scale evacuation tests designed to provide more detailed information and validation data for the reliability that the computer model described in the 2006 research project. A description and photographic illustrations of the ARKTOS system were presented. The tests and subsequent analyses were described. Specifically, the paper described the observations, and presented the statistical results from the data collected, and compared observed results with predicted results of a probabilistic EER simulation computer model. Conclusions and recommendations for reliability improvements were also provided. It was concluded that under the benign conditions, the drill performance was satisfactory in all aspects, both in the evacuation activities and the rescue or de-boarding activities. 3 refs., 1 tab., 17 figs.

  5. Analysis of a linear solar concentrated with stationary reflector and movable center for applications of average temperature; Analisis de un concetrador solar lineal con reflector estacionario y foco movil para aplicaciones de media temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Pujol, R.; Moia, A.; Martinez, V.

    2008-07-01

    Three different geometries of a fixed solar mirror concentrator and tracking absorber have been analyzed for medium temperature: FSMC flat mirrors, FSMC parabolic mirrors and only one parabolic mirror OPMSC. These designs can track the sun by moving the receiver around a static reflector in a circular path. A forward ray tracing procedure was implemented by the authors to analyze the influence of the collector parameters on optical efficiency. Various combinations of D/W ratios and geometric concentration ratios C were studied. The analysis showed that as D/W increases the efficiency increases well. Annual efficiencies of a 40% can be reached, in front of 35 % estimated with commercial evacuated tubes at 120 degree centigrade. (Author)

  6. A Comparison of the Thermodynamic Efficiency of Vacuum Tube and Flat Plate Solar Collector Systems

    Directory of Open Access Journals (Sweden)

    Juozas Bielskus

    2013-12-01

    Full Text Available The article presents simulation based exergy analysis used for comparing solar thermal systems applied for preparing domestic hot water. The simulation of flat and vacuum tube solar collector systems was performed in TRNSYS simulation environment. A period of one year under Lithuanian climate conditions was chosen. Simulation was performed on 6 min time step resolution by calculating energy and exergy flows and creating balance calculation. Assessment results at system and element levels have been presented as monthly variation in efficiency. The conducted analysis has revealed that the systems designed to cover equal heat energy demand operates in different exergetic efficiencies.Article in Lithuanian

  7. Evacuating populations with special needs

    Science.gov (United States)

    2009-04-01

    Evacuation operations are conducted under the authority of, and based on decisions by, local and state authorities. The purpose of this primer, Evacuating Populations with Special Needs, is to provide local and state emergency managers, government of...

  8. Solar thermal energy utilization in Brazil: a perspective; Utilizacao da energia solar termica no Brasil: uma perspectiva

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Francisco Mateus [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Although Brazil has a large insolation potential, utilization of solar thermal energy is still limited to few applications, like residential and commercial water heating and drying of grains. However, there are in other countries more intensive applications, like electricity generation, industrial heat and fresh water production. The present work describes which are the other ways of using solar thermal energy that have been developed in the world, approaches the main technical aspects that affect its utilization, the perspective of increasing it in Brazil and its possible barriers and, finally, PETROBRAS' studies in this area, positioning itself as an Energy Company. The main solar thermal technologies currently used in the world are evacuated collectors, that work efficiently at temperatures up to 130 deg C, and concentrating solar technologies, that can reach the temperature of 1200 deg C. Among the latter, solar trough is the technology that is already considered mature, and near to become economically viable. Brazil, at the moment, has two technological challenges: development of national technology to manufacture high performance solar collectors, like evacuated collectors and solar troughs, and the development of thermal equipment to operate at temperatures under 120 deg C, like adsorption and absorption chillers and desalination towers, that can be economically competitive. (author)

  9. Alternative evacuation strategies for nuclear power accidents

    International Nuclear Information System (INIS)

    Hammond, Gregory D.; Bier, Vicki M.

    2015-01-01

    In the U.S., current protective-action strategies to safeguard the public following a nuclear power accident have remained largely unchanged since their implementation in the early 1980s. In the past thirty years, new technologies have been introduced, allowing faster computations, better modeling of predicted radiological consequences, and improved accident mapping using geographic information systems (GIS). Utilizing these new technologies, we evaluate the efficacy of alternative strategies, called adaptive protective action zones (APAZs), that use site-specific and event-specific data to dynamically determine evacuation boundaries with simple heuristics in order to better inform protective action decisions (rather than relying on pre-event regulatory bright lines). Several candidate APAZs were developed and then compared to the Nuclear Regulatory Commission’s keyhole evacuation strategy (and full evacuation of the emergency planning zone). Two of the APAZs were better on average than existing NRC strategies at reducing either the radiological exposure, the population evacuated, or both. These APAZs are especially effective for larger radioactive plumes and at high population sites; one of them is better at reducing radiation exposure, while the other is better at reducing the size of the population evacuated. - Highlights: • Developed framework to compare nuclear power accident evacuation strategies. • Evacuation strategies were compared on basis of radiological and evacuation risk. • Current strategies are adequate for smaller scale nuclear power accidents. • New strategies reduced radiation exposure and evacuation size for larger accidents

  10. The Variable Scale Evacuation Model (VSEM: a new tool for simulating massive evacuation processes during volcanic crises

    Directory of Open Access Journals (Sweden)

    J. M. Marrero

    2010-04-01

    Full Text Available Volcanic eruptions are among the most awesome and powerful displays of nature's force, constituting a major natural hazard for society (a single eruption can claim thousands of lives in an instant. Consequently, assessment and management of volcanic risk have become critically important goals of modern volcanology. Over recent years, numerous tools have been developed to evaluate volcanic risk and support volcanic crisis management: probabilistic analysis of future eruptions, hazard and risk maps, event trees, etc. However, there has been little improvement in the tools that may help Civil Defense officials to prepare Emergency Plans. Here we present a new tool for simulating massive evacuation processes during volcanic crisis: the Variable Scale Evacuation Model (VSEM. The main objective of the VSEM software is to optimize the evacuation process of Emergency Plans during volcanic crisis. For this, the VSEM allows the simulation of an evacuation considering different strategies depending on diverse impact scenarios. VSEM is able to calculate the required time for the complete evacuation taking into account diverse evacuation scenarios (number and type of population, infrastructure, road network, etc. and to detect high-risk or "blackspots" of the road network. The program is versatile and can work at different scales, thus being capable of simulating the evacuation of small villages as well as huge cities.

  11. Accelerated aging tests on ENEA-ASE solar coating for receiver tube suitable to operate up to 550 °C

    Science.gov (United States)

    Antonaia, A.; D'Angelo, A.; Esposito, S.; Addonizio, M. L.; Castaldo, A.; Ferrara, M.; Guglielmo, A.; Maccari, A.

    2016-05-01

    A patented solar coating for evacuated receiver, based on innovative graded WN-AlN cermet layer, has been optically designed and optimized to operate at high temperature with high performance and high thermal stability. This solar coating, being designed to operate in solar field with molten salt as heat transfer fluid, has to be thermally stable up to the maximum temperature of 550 °C. With the aim of determining degradation behaviour and lifetime prediction of the solar coating, we chose to monitor the variation of the solar absorptance αs after each thermal annealing cycle carried out at accelerated temperatures under vacuum. This prediction method was coupled with a preliminary Differential Thermal Analysis (DTA) in order to give evidence for any chemical-physical coating modification in the temperature range of interest before performing accelerated aging tests. In the accelerated aging tests we assumed that the temperature dependence of the degradation processes could be described by Arrhenius behaviour and we hypothesized that a linear correlation occurs between optical parameter variation rate (specifically, Δαs/Δt) and degradation process rate. Starting from Δαs/Δt values evaluated at 650 and 690 °C, Arrhenius plot gave an activation energy of 325 kJ mol-1 for the degradation phenomenon, where the prediction on the coating degradation gave a solar absorptance decrease of only 1.65 % after 25 years at 550 °C. This very low αs decrease gave evidence for an excellent stability of our solar coating, also when employed at the maximum temperature (550 °C) of a solar field operating with molten salt as heat transfer fluid.

  12. 21 CFR 876.4370 - Gastroenterology-urology evacuator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gastroenterology-urology evacuator. 876.4370... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4370 Gastroenterology-urology evacuator. (a) Identification. A gastroenterology-urology evacuator is a device used to remove...

  13. Hospital evacuation; planning, assessment, performance and evaluation

    OpenAIRE

    Nero C Wabo; P Örtenwall; A Khorram-Manesh

    2012-01-01

    Objective: Malfunction in hospitals' complex internal systems, or extern threats, may result in a hospital evacuation. Factors contributing to such evacuation must be identified, analyzed and action plans should be prepared. Our aims in this study were 1) to evaluate the use of risk and vulnerability analysis as a basis for hospital evacuation plan, 2) to identify risks/hazards triggering an evacuation and evaluate the respond needed and 3) to propose a template with main key points for plann...

  14. Evacuation of bedridden occupants: experimental research outcomes

    OpenAIRE

    Strating, N.; van Herpen, R.; Zeiler, W.

    2017-01-01

    Bedridden building occupants in hospitals and nursing homes who are not able to rescue themselves in case of a fire emergency require assistance during an evacuation. A building emergency team usually fulfils this function and will have to remove the occupants from the room. The speed at which such an evacuation is conducted however is unknown. Experiments in practice were conducted in hospitals to obtain insight in the evacuation speed and absolute evacuation times required. Furthermore, a s...

  15. Solar Pump

    Science.gov (United States)

    Pique, Charles

    1987-01-01

    Proposed pump moves liquid by action of bubbles formed by heat of sun. Tube of liquid having boiling point of 100 to 200 degrees F placed at focal axis of cylindrical reflector. Concentrated sunlight boils liquid at focus, and bubbles of vapor rise in tube, carrying liquid along with them. Pressure difference in hot tube sufficient to produce flow in large loop. Used with conventional flat solar heating panel in completely solar-powered heat-storage system.

  16. Economical and environmental assessment of an optimized solar cooling system for a medium-sized benchmark office building in Los Angeles, California

    Energy Technology Data Exchange (ETDEWEB)

    Hang, Yin; Qu, Ming [School of Civil Engineering, Purdue University, CIVL G243, 550 Stadium Mall Drive, West Lafayette, IN 47907 (United States); Zhao, Fu [School of Mechanical Engineering, Purdue University (United States)

    2011-02-15

    This paper presents a systematic energetic, economical, and environmental assessment on a solar cooling system for a medium-sized office building in Los Angeles, California by means of system modeling. The studied solar cooling system primarily consists of evacuated tube solar collectors, a hot water storage tank, a single-effect LiBr-H{sub 2}O absorption chiller, and a gas-fired auxiliary heater. System performance optimization and sensitivity analysis were conducted by varying two major parameters (i.e. storage tank volume and collector area). The results suggest that a trade-off exists between economic performance indicated by the equivalent uniform annual cost (EUAC) and the energetic/environmental performance indicated by the solar fraction and CO{sub 2} reduction percentage, respectively. The cost of carbon footprint reduction was defined and served as an indicator for the overall system performance. Based on this indicator, the optimal system design could be found for a solar cooling system. The approach adapted in this study can be applied to other buildings located in different climate zones to reveal the cost and benefits of solar cooling technologies and facilitate decision-making. (author)

  17. Experimental study on occupant evacuation in narrow seat aisle

    Science.gov (United States)

    Huang, Shenshi; Lu, Shouxiang; Lo, Siuming; Li, Changhai; Guo, Yafei

    2018-07-01

    Narrow seat aisle is an important area in the train car interior due to the large passenger population, however evacuation therein has not gained enough concerns. In this experimental study, the occupant evacuation of the narrow seat aisle area is investigated, with the aisle width of 0.4-0.6 m and the evacuation direction of forward and backward. The evacuation behaviors are analyzed based on the video record, and the discussion is carried out in the aspect of evacuation time, crowdedness, evacuation order, and aisle conflicts. The result shows that with the increasing aisle width, total evacuation time and the average specific evacuation rate decrease. The aisle is crowded for some time, with a large linear occupant densities. The evacuation order of each occupant is mainly related to the seat position. Moreover, it is found that the aisle conflicts can be well described by Burstedde's model. This study gives a useful benchmark for evacuation simulation of narrow seat aisle, and provides reference to safety design of seat area in train cars.

  18. Stationary nonimaging concentrator as a second stage element in tracking systems

    Science.gov (United States)

    Kritchman, E. M.; Snail, K. A.; Ogallagher, J.; Winston, R.

    1983-01-01

    An increase in the concentration in line focus solar concentrators is shown to be available using an evacuated compound parabolic concentrator (CPC) tube as a second stage element. The absorber is integrated into an evacuated tube with a transparent upper section and a reflective lower section, with a selective coating on the absorber surface. The overall concentration is calculated in consideration of a parabolic mirror in a trough configuration, a flat Fresnel lens over the top, or a color and coma corrected Fresnel lens. The resulting apparatus is noted to also suppress thermal losses due to conduction, convection, and IR radiation.

  19. Getting passengers out : evacuation behaviours

    NARCIS (Netherlands)

    Boer, L.C.

    2003-01-01

    When disaster strikes, mass transportation means mass evacuation. The issue is especially urgent if, despite precautions, a train comes to a stop in a tunnel and there is a fire. Adequate behaviour of passengers is a major success factor of an evacuation. Passengers should replace their original

  20. Tsunami evacuation buildings and evacuation planning in Banda Aceh, Indonesia.

    Science.gov (United States)

    Yuzal, Hendri; Kim, Karl; Pant, Pradip; Yamashita, Eric

    Indonesia, a country of more than 17,000 islands, is exposed to many hazards. A magnitude 9.1 earthquake struck off the coast of Sumatra, Indonesia, on December 26, 2004. It triggered a series of tsunami waves that spread across the Indian Ocean causing damage in 11 countries. Banda Aceh, the capital city of Aceh Province, was among the most damaged. More than 31,000 people were killed. At the time, there were no early warning systems nor evacuation buildings that could provide safe refuge for residents. Since then, four tsunami evacuation buildings (TEBs) have been constructed in the Meuraxa subdistrict of Banda Aceh. Based on analysis of evacuation routes and travel times, the capacity of existing TEBs is examined. Existing TEBs would not be able to shelter all of the at-risk population. In this study, additional buildings and locations for TEBs are proposed and residents are assigned to the closest TEBs. While TEBs may be part of a larger system of tsunami mitigation efforts, other strategies and approaches need to be considered. In addition to TEBs, robust detection, warning and alert systems, land use planning, training, exercises, and other preparedness strategies are essential to tsunami risk reduction.

  1. Analysis of a Hybrid Solar-Assisted Trigeneration System

    Directory of Open Access Journals (Sweden)

    Elisa Marrasso

    2016-09-01

    Full Text Available A hybrid solar-assisted trigeneration system is analyzed in this paper. The system is composed of a 20 m2 solar field of evacuated tube collectors, a natural gas fired micro combined heat and power system delivering 12.5 kW of thermal power, an absorption heat pump (AHP with a nominal cooling power of 17.6 kW, two storage tanks (hot and cold and an electric auxiliary heater (AH. The plant satisfies the energy demand of an office building located in Naples (Southern Italy. The electric energy of the cogenerator is used to meet the load and auxiliaries electric demand; the interactions with the grid are considered in cases of excess or over requests. This hybrid solution is interesting for buildings located in cities or historical centers with limited usable roof surface to install a conventional solar heating and cooling (SHC system able to achieve high solar fraction (SF. The results of dynamic simulation show that a tilt angle of 30° maximizes the SF of the system on annual basis achieving about 53.5%. The influence on the performance of proposed system of the hot water storage tank (HST characteristics (volume, insulation is also studied. It is highlighted that the SF improves when better insulated and bigger HSTs are considered. A maximum SF of about 58.2% is obtained with a 2000 L storage, whereas the lower thermal losses take place with a better insulated 1000 L tank.

  2. Evacuation routes performances and fire safety of buildings

    Directory of Open Access Journals (Sweden)

    Laban Mirjana Đ.

    2015-01-01

    Full Text Available Residential buildings, public and business facilities with large number of occupants are particularly exposed to the risk of event with catastrophic consequences, especially in case of fire. Evacuation routes must be separated fire compartments with surfaces made of non-combustible materials. Safe evacuation of building occupants in case of fire is a crucial requirement for the preservation of human life in building. In our engineering practice, calculation model is usually applied in order to determine the time required for evacuation (SRPS TP 21. However, evacuation simulation models are more present in research papers, contributing to better assessment of flow of evacuation in the real time. These models could provide an efficient way of testing the safety of a building in the face of fire and indicate critical points at the evacuation paths. Computer models enable the development and analysis of multiple various scenarios during a fire event, contributing to defining the measures for improving the safety of the building in case of fire. This paper analyses the fulfilment of technical requirements for the safe evacuation and proposes improvement measures based on a comparative analysis of the time required for occupants' evacuation from the building (Department of Civil Engineering and Geodesy in Novi Sad, obtained by calculation model and by using evacuation simulation software.

  3. Research on evacuation planning as nuclear emergency preparedness

    International Nuclear Information System (INIS)

    Yamamoto, Kazuya

    2007-10-01

    The International Atomic Energy Agency (IAEA) has introduced new concepts of precautionary action zone (PAZ) and urgent protective action planning zone (UPZ) in 'Preparedness and Response for a Nuclear or Radiological Emergency' (GS-R-2 (2002)), in order to reduce substantially the risk of severe deterministic health effects. Open literature based research was made to reveal problems on evacuation planning and the preparedness for nuclear emergency arising from introduction of PAZ into Japan that has applied the emergency planning zone (EPZ) concept currently. In regard to application of PAZ, it should be noted that the requirements for preparedness and response for a nuclear or radiological emergency are not only dimensional but also timely. The principal issue is implementation of evacuation of precautionary decided area within several hours. The logic of evacuation planning for a nuclear emergency and the methods of advance public education and information in the U.S. is effective for even prompt evacuation to the outside of the EPZ. As concerns evacuation planning for a nuclear emergency in Japan, several important issues to be considered were found, that is, selection of public reception centers which are outside area of the EPZ, an unique reception center assigned to each emergency response planning area, public education and information of practical details about the evacuation plan in advance, and necessity of the evacuation time estimates. To establish a practical evacuation planning guide for nuclear emergencies, further researches on application of traffic simulation technology to evacuation time estimates and on knowledge of actual evacuation experience in natural disasters and chemical plant accidents are required. (author)

  4. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results.

    Science.gov (United States)

    Kim, Young-Deuk; Thu, Kyaw; Ng, Kim Choon; Amy, Gary L; Ghaffour, Noreddine

    2016-09-01

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m(2) of evacuated-tube collectors and 10 m(3) seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results

    KAUST Repository

    Kim, Youngdeuk

    2016-05-03

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m2 of evacuated-tube collectors and 10 m3 seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%.

  6. Study of the components of evacuation times

    International Nuclear Information System (INIS)

    Mills, G.S.; Neuhauser, K.S.; Smith, J.D.

    1997-11-01

    The magnitudes of accident dose risks calculated by the RADTRAN code depend directly on the time span between an accidental release and evacuation of the affected area surrounding potential radionuclide releases. In a previous study of truck and rail transportation accidents, and other incidents requiring evacuations, a lognormal distribution of evacuation times (time span from decision to evacuate until complete) was developed, which provided a better model for this parameter than the practice of using a highly conservative value of 24 hours. However, the distribution did not account for time required for responders to arrive on the scene, to evaluate the hazards to surrounding population and to initiate an evacuation. Data from US Department of Transportation (DOT) accident statistics have been collected and their distribution functions determined. The separate distribution functions were combined into a single, comprehensive distribution which may be sampled to supply values of the RADTRAN input parameter, EVACUATION. A sample RADTRAN calculation illustrating the effect on risks of using the distribution versus the original (24 hour), conservative point-estimate are also presented

  7. Study of the components of evacuation times

    International Nuclear Information System (INIS)

    Mills, G.S.; Neuhauser, K.S.; Smith, J.D.

    1998-01-01

    The magnitudes of accident dose-risks calculated by the RADTRAN code depend directly on the time span between an accidental release and evacuation of the affected area surrounding potential radionuclide releases. In a previous study of truck and rail transportation accidents, and other incidents requiring evacuations (Mills et al., 1995) a lognormal distribution of evacuation times (time span from decision to evacuate until complete) was developed, which provided a better model for this parameter than the practice of using a highly conservative value of 24 hours. However, the distribution did not account for time required for responders to arrive on the scene, to evaluate the hazards to surrounding population and to initiate an evacuation. Data from U.S. Department of Transportation (DOT) accident statistics have been collected and their distribution functions determined. The separate distribution functions were combined into a single, comprehensive distribution which may be sampled to supply values of the RADTRAN input parameter, EVACUATION. A sample RADTRAN calculation illustrating the effect on risks of using the distribution versus the original (24 hours), conservative point-estimate are also presented. (authors)

  8. CT-guided stereotaxic evacuation of cerebellar hematoma

    International Nuclear Information System (INIS)

    Niizuma, Hiroshi; Ohtsuki, Taisuke; Ohyama, Hideki; Suzuki, Jiro

    1985-01-01

    Stereotaxic lateral approach for cerebellar hematoma is presented using Leksell's CT-stereotaxic system. All of the procedures are performed in the CT room. Patient's head is turned to contralateral side of the hematoma 30 to 40 0 with slight flexion of the neck. Stereotaxic apparatus is secured to the head under local anesthesia. Hematoma is confirmed by computerized tomograms. Three dimensional coordinates of the target point (center of the hematoma) are measured from the vertical and diagonal rods of Leksell's system. Linear skin incision 4 cm in length is made on retromastoid area. Burr-hole is put on just lateral position of the target point, usually 5 to 6 cm posterior and 1 cm above from the external auditory meatus. Transverse or sigmoid sinus does not appeared through the burr-hole by this approach. Specially made Dandy's cannula (3.0 mm in diameter, 220 mm in length) is inserted into the target point, and manual evacuation of the hematoma is performed carefully using a syringe. Then Dandy's cannula is replaced by silastic drainage tube (3.5 mm in diameter), and 6,000 Units of Urokinase solved in 2 ml of saline is administered to the hematoma cavity. Dissolved hematoma is aspirated every 24 hours until the most of the hematoma is evacuated. We operated three cases of cerebellar hematoma by this method with favorable results. Advantages of this method are as follows: Operative invasion is minimal; The surgeon can cbeck the residual hematoma and position of the tip of cannula even at operation, if necessary. (author)

  9. Dual effects of guide-based guidance on pedestrian evacuation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yi, E-mail: yima23-c@my.cityu.edu.hk; Lee, Eric Wai Ming; Shi, Meng

    2017-06-15

    This study investigates the effects of guide-based guidance on the pedestrian evacuation under limited visibility via the simulations based on an extended social force model. The results show that the effects of guides on the pedestrian evacuation under limited visibility are dual, and related to the neighbor density within the visual field. On the one hand, in many cases, the effects of guides are positive, particularly when the neighbor density within the visual field is moderate; in this case, a few guides can already assist the evacuation effectively and efficiently. However, when the neighbor density within the visual field is particularly small or large, the effects of guides may be adverse and make the evacuation time longer. Our results not only provide a new insight into the effects of guides on the pedestrian evacuation under limited visibility, but also give some practical suggestions as to how to assign guides to assist the evacuation under different evacuation conditions. - Highlights: • Extended social force model is used to simulate guided pedestrian evacuation. • Effects of guides on pedestrian evacuation under limited visibility are dual. • Effects of guides on pedestrian evacuation under limited visibility are related to neighbor density within visual field.

  10. Study on rapid evacuation in high-rise buildings

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2017-06-01

    Full Text Available More and more high rising buildings emerged in modern cities, but emergency evacuation of tall buildings has been a worldwide difficult problem. In this paper, a new evacuation device for high rising buildings in fire accident was proposed and studied. This device mainly consisted of special spiral slideway and shunt valve. People in this device could fast slide down to the first floor under gravity without any electric power and physical strength, which is suitable for various emergency evacuation including mobility-impaired persons. The plane simulation test has shown that human being in alternative clockwise and counterclockwise movement will not become dizzy. The evacuated people should wear protection pad, which can prevent slider from being injured by surface friction with the slide, and eliminate the friction coefficient difference caused by different clothes and slide surface. The calculation results show that the evacuation speed of the new device is much faster than traditional staircases. Moreover, such new evacuation device can also be used as a means of vertical transportation in high-rise buildings partly. People can take it from any floor to ground floor directly, which not only save time for waiting for the lifts but also save the power. The new evacuation system is of simple structure, easy to use, and suitable for evacuation and partly used as vertical downwards traffic, which shows light on solving world-wide difficulties on fast evacuation in high-rise buildings.

  11. Research on Evacuation Based on Social Force Model

    Science.gov (United States)

    Liu, W.; Deng, Z.; Li, W.; Lin, J.

    2017-09-01

    Crowded centers always cause personnel casualties in evacuation operations. Stampede events often occur by hit, squeeze and crush due to panic. It is of vital important to alleviate such situation. With the deepening of personnel evacuation research, more and more researchers are committed to study individual behaviors and self-organization phenomenon in evacuation process. The study mainly includes: 1, enrich the social force model from different facets such as visual, psychological, external force to descript more realistic evacuation; 2, research on causes and effects of self - organization phenomenon. In this paper, we focus on disorder motion that occurs in the crowded indoor publics, especially the narrow channel and safety exits and other special arteries. We put forward the improved social force model to depict pedestrians' behaviors, an orderly speed-stratification evacuation method to solve disorder problem, and shape-changed export to alleviate congestion. The result of this work shows an improvement of evacuation efficiency by 19.5 %. Guiding pedestrians' direction to slow down the influence of social forces has a guidance function in improving the efficiency of indoor emergency evacuation.

  12. Study of a new solar adsorption refrigerator powered by a parabolic trough collector

    International Nuclear Information System (INIS)

    El Fadar, A.; Mimet, A.; Azzabakh, A.; Perez-Garcia, M.; Castaing, J.

    2009-01-01

    This paper presents the study of solar adsorption cooling machine, where the reactor is heated by a parabolic trough collector (PTC) and is coupled with a heat pipe (HP). This reactor contains a porous medium constituted of activated carbon, reacting by adsorption with ammonia. We have developed a model, based on the equilibrium equations of the refrigerant, adsorption isotherms, heat and mass transfer within the adsorbent bed and energy balance in the hybrid system components. From real climatic data, the model computes the performances of the machine. In comparison with other systems powered by flat plate or evacuated tube collectors, the predicted results, have illustrated the ability of the proposed system to achieve a high performance due to high efficiency of PTC, and high flux density of heat pipe

  13. Intelligent Transportation and Evacuation Planning A Modeling-Based Approach

    CERN Document Server

    Naser, Arab

    2012-01-01

    Intelligent Transportation and Evacuation Planning: A Modeling-Based Approach provides a new paradigm for evacuation planning strategies and techniques. Recently, evacuation planning and modeling have increasingly attracted interest among researchers as well as government officials. This interest stems from the recent catastrophic hurricanes and weather-related events that occurred in the southeastern United States (Hurricane Katrina and Rita). The evacuation methods that were in place before and during the hurricanes did not work well and resulted in thousands of deaths. This book offers insights into the methods and techniques that allow for implementing mathematical-based, simulation-based, and integrated optimization and simulation-based engineering approaches for evacuation planning. This book also: Comprehensively discusses the application of mathematical models for evacuation and intelligent transportation modeling Covers advanced methodologies in evacuation modeling and planning Discusses principles a...

  14. Simulation and optimization study on a solar space heating system combined with a low temperature ASHP for single family rural residential houses in Beijing

    DEFF Research Database (Denmark)

    Deng, Jie; Tian, Zhiyong; Fan, Jianhua

    2016-01-01

    A pilot project of the solar water heating system combined with a low temperature air source heat pump (ASHP) unit was established in 2014 in a detached residential house in the rural region of Beijing, in order to investigate the system application prospect for single family houses via system...... optimization design and economic analysis. The established system was comprised of the glass heat-pipe based evacuated tube solar collectors with a gross area of 18.8 m2 and an ASHP with a stated heating power of 8 kW for the space heating of a single family rural house of 81.4 m2. The dynamic thermal...... with good building insulation were undertaken to figure out the system economical efficiency in the rural regions of Beijing. The results show that the payback periods of the solar space heating system combined with the ASHP with the collector areas 15.04-22.56 m2 are 17.3-22.4 years for the established...

  15. Designs of solar voltaic cells based on carbon nano-tubes II

    Science.gov (United States)

    Shen, Yin-Lin; Dai, Jong-Horng; Ou, Kenneth; Reinhardt, Kit; Szu, Harold

    2009-04-01

    Inspired by Asian rice-paddy and Firefighter spiraling steps staircase, we employ a nano-manipulator augmented with CAD as a nano-robot water-buffalo, promised to improve by an order of the magnitude the pioneer work of GE Solar voltaic cell (SVC) made of one Carbon NanoTube (CNT) enjoyed QECNT~5%. Our CNT was made of the semiconductor at NIR wavelength EBG= 1.107 eV which can absorb any photon whose wavelength λ tiny diameter 0.66 nm. It allows us to construct 3D structure, called volume pixel, "voxel," in a much efficient spiraling steps staircase fashion to capture the solar spectral energy spreading naturally by a simple focusing lens without occlusion. For real-estate premium applications, in Space or Ocean, we designed a volume pixel (Voxel) housing a stack of 16 CNTs steps spiraling 22° each like the fire house staircase occupying the height of 16 x dCNT =16 x 0.66nm= 10.56 nm and covering over 360°. The total SVC had the size 2x2 meter2, consisting of 100×100 lenslet array. Each lens was made of Pb-Crown glass which was inexpensive simple spherical lens having the diameter of Dlens=2 cm and F#=0.7. It can focus the sunlight a millionth times stronger in a smallest possible focal spot size, λYellow=0.635 μm< λMax photons <λRed=0.73 μm, where the largest number of solar photons, 68%, according to the Plank radiation spectrum at 6000°K and the Lord Rayleigh diffraction limit. The solar panel seals individually such an array of 3D cavities of SVC enjoying theoretically from the UV 12% (wasted in passing through) visible 68% to the infrared 20% at a total of 16x5%~80% total QECNT per cell. The solar panel is made of light-weight carbon composite tolerating about 20% inactive fill factor and 10% dead pixels.

  16. Assessment of total evacuation systems for tall buildings

    CERN Document Server

    Ronchi, Enrico

    2014-01-01

    This SpringerBrief focuses on the use of egress models to assess the optimal strategy for total evacuation in high-rise buildings. It investigates occupant relocation and evacuation strategies involving the exit stairs, elevators, sky bridges and combinations thereof. Chapters review existing information on this topic and describe case study simulations of a multi-component exit strategy. This review provides the architectural design, regulatory and research communities with a thorough understanding of the current and emerging evacuation procedures and possible future options. A model case study simulates seven possible strategies for the total evacuation of two identical twin towers linked with two sky-bridges at different heights. The authors present the layout of the building and the available egress components including both vertical and horizontal egress components, namely stairs, occupant evacuation elevators (OEEs), service elevators, transfer floors and sky-bridges. The evacuation strategies employ a ...

  17. Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC)

    International Nuclear Information System (INIS)

    Delgado-Torres, Agustin M.; Garcia-Rodriguez, Lourdes

    2010-01-01

    Solar thermal driven reverse osmosis desalination is a promising renewable energy-driven desalination technology. A joint use of the solar thermal powered organic Rankine cycle (ORC) and the desalination technology of less energy consumption, reverse osmosis (RO), makes this combination interesting in some scarce water resource scenarios. However, prior to any practical experience with any new process, a comprehensive and rigorous theoretical study must be done in order to assess the performance of the new technology or combination of existing technologies. The main objective of the present paper is the expansion of the theoretical analysis done by the authors in previous works to the case in which the thermal energy required by a solar ORC is supplied by means of stationary solar collectors. Twelve substances are considered as working fluids of the ORC and four different models of stationary solar collectors (flat plate collectors, compound parabolic collectors and evacuated tube collectors) are also taken into account. Operating conditions of the solar ORC that minimizes the aperture area needed per unit of mechanical power output of the solar cycle are determined for every working fluid and every solar collector. The former is done considering a direct vapour generation configuration of the solar cycle and also the configuration with water as heat transfer fluid flowing inside the solar collector. This work is part of the theoretical analysis of the solar thermal driven seawater and brackish water reverse osmosis desalination technology. Nevertheless, the supplied information can be also used for the assessment of different applications of the solar ORC. In that case, results presented in this paper can be useful in techno-economic analysis, selection of working fluids of the Rankine cycle, sizing of systems and assessment of solar power cycle configuration.

  18. Predictive value of impaired evacuation at proctography in diagnosing anismus.

    Science.gov (United States)

    Halligan, S; Malouf, A; Bartram, C I; Marshall, M; Hollings, N; Kamm, M A

    2001-09-01

    We aimed to determine the positive predictive value of impaired evacuation during evacuation proctography for the subsequent diagnosis of anismus. Thirty-one adults with signs of impaired evacuation (defined as the inability to evacuate two thirds of a 120 mL contrast enema within 30 sec) during evacuation proctography underwent subsequent anorectal physiologic testing for anismus. A physiologic diagnosis of anismus was based on a typical clinical history of the condition combined with impaired rectal balloon expulsion or abnormal surface electromyogram. Twenty-eight (90%) of the 31 patients with impaired proctographic evacuation were found to have anismus at subsequent physiologic testing. Among the 28 were all 10 patients who evacuated no contrast medium and all 11 patients with inadequate pelvic floor descent, giving evacuation proctography a positive predictive value of 90% for the diagnosis of anismus. A prominent puborectal impression was seen in only three subjects during proctography, one of whom subsequently showed no physiologic sign of anismus. Impaired evacuation during evacuation proctography is highly predictive for diagnosis of anismus.

  19. Intrarectal pressures and balloon expulsion related to evacuation proctography.

    Science.gov (United States)

    Halligan, S; Thomas, J; Bartram, C

    1995-01-01

    Seventy four patients with constipation were examined by standard evacuation proctography and then attempted to expel a small, non-deformable rectal balloon, connected to a pressure transducer to measure intrarectal pressure. Simultaneous imaging related the intrarectal position of the balloon to rectal deformity. Inability to expel the balloon was associated proctographically with prolonged evacuation, incomplete evacuation, reduced anal canal diameter, and acute anorectal angulation during evacuation. The presence and size of rectocoele or intussusception was unrelated to voiding of paste or balloon. An independent linear combination of pelvic floor descent and evacuation time on proctography correctly predicted maximum intrarectal pressure in 74% of cases. No patient with both prolonged evacuation and reduced pelvic floor descent on proctography could void the balloon, as maximum intrarectal pressure was reduced in this group. A prolonged evacuation time on proctography, in combination with reduced pelvic floor descent, suggests defecatory disorder may be caused by inability to raise intrarectal pressure. A diagnosis of anismus should not be made on proctography solely on the basis of incomplete/prolonged evacuation, as this may simply reflect inadequate straining. PMID:7672656

  20. Performance investigation of a solar-assisted direct contact membrane distillation system

    KAUST Repository

    Kim, Youngdeuk

    2013-01-01

    This paper presents a solar-assisted direct contact membrane distillation (DCMD) system with novel energy recovery concepts for a continuous 24-h-a-day operation. A temperature modulating scheme is introduced to the solar-thermal system that supplies feed seawater to the DCMD modules. This scheme attenuates extreme temperature fluctuations of the feed water by storing the collected energy during solar-peak hours and reutilizing it throughout the day. Thus, the energy savings is realized yet the feed seawater temperature is maintained within the desired range. Additionally, the system employs heat recovery from the permeate and brine streams to the feed seawater. The simulations for such a system with a shell-and-tube type DCMD modules are carried out to examine the spatial property variations and the sensitivity of system performance (i.e., transmembrane pressure, permeate flux and performance ratio) to the operating conditions (inlet temperature and flow rate) and the fiber dimensions (fiber length and packing density). It is found that there are trade-offs between mean permeate flux and performance ratio with respect to permeate inlet temperature and flow rate and between total distillate production and performance ratio with respect to packing density. For the solar-assisted DCMD system having evacuated-tube collectors of 3360m2 with 160m3 seawater storage tanks and 50 DCMD modules, the annual solar fraction and the collector efficiency are found to be 77% and 53%, respectively, whilst the overall permeate production capacity is 31m3/day. The overall specific thermal energy consumption of the DCMD system with heat recovery is found to be 436kWh/m3 and it is about 43% lower as compared to the system without heat recovery. It is observed that the specific thermal energy consumption decreases significantly by 55% with increased collector area from 1983m2 to 3360m2 whereas the specific electrical energy consumption increases slightly by 16%. © 2012 Elsevier B.V.

  1. Optimization of Evacuation Warnings Prior to a Hurricane Disaster

    Directory of Open Access Journals (Sweden)

    Dian Sun

    2017-11-01

    Full Text Available The key purpose of this paper is to demonstrate that optimization of evacuation warnings by time period and impacted zone is crucial for efficient evacuation of an area impacted by a hurricane. We assume that people behave in a manner consistent with the warnings they receive. By optimizing the issuance of hurricane evacuation warnings, one can control the number of evacuees at different time intervals to avoid congestion in the process of evacuation. The warning optimization model is applied to a case study of Hurricane Sandy using the study region of Brooklyn. We first develop a model for shelter assignment and then use this outcome to model hurricane evacuation warning optimization, which prescribes an evacuation plan that maximizes the number of evacuees. A significant technical contribution is the development of an iterative greedy heuristic procedure for the nonlinear formulation, which is shown to be optimal for the case of a single evacuation zone with a single evacuee type case, while it does not guarantee optimality for multiple zones under unusual circumstances. A significant applied contribution is the demonstration of an interface of the evacuation warning method with a public transportation scheme to facilitate evacuation of a car-less population. This heuristic we employ can be readily adapted to the case where response rate is a function of evacuation number in prior periods and other variable factors. This element is also explored in the context of our experiment.

  2. Stationary nonimaging concentrator as a second stage element in tracking systems

    Energy Technology Data Exchange (ETDEWEB)

    Kritchman, E.M.; O' Gallagher, J.; Snail, K.A.; Winston, R.

    1983-06-01

    The University of Chicago solar energy group and GTE Research have developed an Integrated Stationary Evacuated Concentration (ISEC) collector tube. In this paper the increase in concentration of line focus concentrators that can be achieved using the evacuated CPC collector tube as a second stage element is examined. Three primary elements of the overall concentration are analyzed: a flat parabolic absorber trough, a flat Fresnel lens, and a color and coma corrected Fresnel lens. The three examples demonstrate that high concentration ratios may be achieved by using the already fabricated ISEC as a second stage element. The ISEC also suppresses thermal losses due to conduction, convection, and infrared radiation.

  3. An analysis of evacuation options for nuclear accidents

    Energy Technology Data Exchange (ETDEWEB)

    Tawil, J J; Strenge, D L; Schultz, R W

    1987-11-01

    The threat of release of a hazardous substance into the atmosphere will sometimes require that the population at risk be evacuated. If the substance is particularly hazardous or the release is exceptionally large, then an extensive area may have to be evacuated at substantial cost. In this report we consider the threat posed by the accidental release of radionuclides from a nuclear power plant. The report's objective is to establish relationships between radiation dose and the cost of evacuation under a wide variety of conditions. The dose can almost always be reduced by evacuating the population from a larger area. However, extending the evacuation zone outward will cause evacuation costs to increase. The purpose of this analysis was to provide the Environmental Protection Agency (EPA) a data base for evaluating whether implementation costs and risks averted could be used to justify evacuation at lower doses than would be required based on acceptable risk of health effects alone. The procedures used and results of these analyses are being made available as background information for use by others. In this report we develop cost/dose relationships for 54 scenarios that are based upon the severity of the reactor accident, meteorological conditions during the release of radionuclides into the environment, and the angular width of the evacuation zone. The 54 scenarios are derived from combinations of three accident severity levels, six meteorological conditions and evacuation zone widths of 70 deg, 90 deg, and 180 deg. Appendix tables are provided to allow acceptable evaluation of the cost/dose relationships for a wide variety of scenarios. Guidance and examples are provided in the text to show how these tables can be used.

  4. Evacuation decision-making at Three Mile Island

    International Nuclear Information System (INIS)

    Zeigler, D.J.; Johnson, J.H. Jr.

    1987-01-01

    During the emergency at the Three Mile Island generating station in the United States, evacuation became a common adaptive response among the local population. The planning for nuclear emergencies in the US has proceeded as if there were no significant differences between nuclear and other types of disasters requiring evacuation. In the United Kingdom, emergency planning for a new generation of pressurized water reactors, about which there is legitimate safety concern, has been influenced not at all by the experience with the Three Mile Island PWR in 1979. The TMI accident has been the US's most serious experience with a nuclear plant accident and therefore is an appropriate analogy for predicting the evacuation response to future nuclear emergencies. In this light, the authors accept the need to develop models that will enable them to predict the magnitude of the evacuation shadow phenomenon around other nuclear power sites and estimate its impact on our plans to remove the threatened population from the hazard zone in the minimum amount of time. Rather than depend on education and information control to stifle evacuation response, the authors believe that evacuation plans need to build on people's natural behavioural inclinations to protect themselves in response to the nuclear hazard

  5. Magnetic swirls and associated fast magnetoacoustic kink waves in a solar chromospheric flux tube

    Science.gov (United States)

    Murawski, K.; Kayshap, P.; Srivastava, A. K.; Pascoe, D. J.; Jelínek, P.; Kuźma, B.; Fedun, V.

    2018-02-01

    We perform numerical simulations of impulsively generated magnetic swirls in an isolated flux tube that is rooted in the solar photosphere. These swirls are triggered by an initial pulse in a horizontal component of the velocity. The initial pulse is launched either (a) centrally, within the localized magnetic flux tube or (b) off-central, in the ambient medium. The evolution and dynamics of the flux tube are described by three-dimensional, ideal magnetohydrodynamic equations. These equations are numerically solved to reveal that in case (a) dipole-like swirls associated with the fast magnetoacoustic kink and m = 1 Alfvén waves are generated. In case (b), the fast magnetoacoustic kink and m = 0 Alfvén modes are excited. In both these cases, the excited fast magnetoacoustic kink and Alfvén waves consist of a similar flow pattern and magnetic shells are also generated with clockwise and counter-clockwise rotating plasma within them, which can be the proxy of dipole-shaped chromospheric swirls. The complex dynamics of vortices and wave perturbations reveals the channelling of sufficient amount of energy to fulfil energy losses in the chromosphere (˜104 W m-1) and in the corona (˜102 W m-1). Some of these numerical findings are reminiscent of signatures in recent observational data.

  6. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...

  7. FIRE EVACUATION FROM HIGH-RISE BUILDINGS

    Directory of Open Access Journals (Sweden)

    Korol'chenko Aleksandr Yakovlevich

    2012-10-01

    Full Text Available The authors argue that no collapse of structures is likely in the event of a fire emergency in multistoried buildings, rather, other fire-related factors may endanger the lives of people inside high-rise buildings exposed to the fire emergency, including open fire, sparks, high ambient temperature, smoke and toxic combustion products, reduced concentration of oxygen, and combined influence of various factors. In case of fire, the temperature inside buildings reaches 1100 °С. It exceeds the temperature of the ambient air acceptable for humans by far (70 °С. The experiments demonstrate that combustion products contain hundreds of toxic chemical compounds. The most hazardous of them include carbon oxide, carbon dioxide, chloride and cyanic hydrogen, aldehydes and acrolein. The author provides the pattern of their influence on the human body. The smoke consists of unburned particles of carbon and aerosols. The size of particles fluctuates within 0.05-50 MMK. Smoke produces a physiological and psychological impact on human beings. It has been proven that dangerous fire factors emerge within the first five to ten minutes of the emergency situation. Evacuation is the principal method of safety assurance. However, the velocity of propagation of smoke and heat is so high that even if the fire prevention system is in operation, people may be blocked both on the floors that are exposed to the fire and those that escape its propagation. New evacuation and rescue methods are recommended by the author. Various ways and methods of use of life-saving facilities are also provided. Safe evacuation is feasible from buildings where the number of stories does not exceed 10- 12. During evacuation, high density human streams are formed inside buildings, therefore, the period of stay in a burning building is increased. The calculations have proven that a two-minute delay of evacuation converts into a safe evacuation of only 13-15% of people. Low reliability of

  8. [Delayed testing for the diagnosis of fungi in the urines. Evaluation of the BD Vacutainer C&S tubes for the storage of urine samples at room temperature].

    Science.gov (United States)

    Baixench, M T; Al-Sheikh, M; Paugam, A

    2005-01-01

    The study included 37 urine samples which have been artificially infected with low levels (10(3) CFU/mL) of various fungi strains. We compared the effects of sample storage, up to 48 hours, at room temperature, in a urine evacuated tube containing specific additives with storage at + 4 degrees C, for the same length of time, in a urine evacuated tube without any additives. There have been no differences of results (speed of growth and colony size) between the 2 modes of storage. However, the experience has shown that samples needed a careful mixing before seeding to avoid underdetection of the strains. Based on the study results, the BD Vacutainer C&S tubes are suitable for delayed testing for the diagnosis of urine fungal infection.

  9. Building Evacuation with Mobile Devices

    OpenAIRE

    Merkel, Sabrina

    2014-01-01

    The rapidly growing world population and increasingly dense settlements demand ever-larger and more complex buildings from today's engineers. In comparison to this technological progress, a building's equipment for emergency evacuation has been hardly developed further. This work presents a concept for a building evacuation system based on mobile devices. Furthermore, various algorithms for route planning with mobile devices and for indoor localization of mobile devices are addressed.

  10. Charging-discharging characteristics of macro-encapsulated phase change materials in an active thermal energy storage system for a solar drying kiln

    Directory of Open Access Journals (Sweden)

    Kumar Shailendra

    2017-01-01

    Full Text Available The present study explores suitability of two phase change materials (PCM for development of an active thermal storage system for a solar drying kiln by studying their melting and solidification behaviors. A double glass glazing prototype solar kiln was used in the study. The storage system consisted of a water storage tank with PCM placed inside the water in high density polyethylene containers. The water in the tank was heated with help of solar energy using an evacuated tube collector array. The melting and solidification temperature curves of PCM were obtained by charging and discharging the water tank. The study illustrated the utility of the PCM in using the stored thermal energy during their discharge to enhance the temperature inside the kiln. The rate of temperature reduction was found to be higher for paraffin wax as compared to a fatty acid based PCM. The water temperature during the discharge of the PCM showed dependence on the discharge characteristics of each PCM suggesting their suitability in designing active thermal storage systems.

  11. Transfer of hydrogen and helium through corrugated, flexible tubes

    International Nuclear Information System (INIS)

    Schippl, K.

    2001-01-01

    The transfer of liquid gas or cold gas through corrugated tubes is an alternative to rigid systems for the use in reactor technique. Advantages: flexibility for easy installation; these tubes together with their associated terminations and hardware are assembled, leak-tested and evacuated at the factory. This permits simple and cost saving installation on site. All tubes are helium leak-tested with a sensitivity of 10E -9 mbar 1/sec. Following the leak test, the vacuum space is pumped down to the operation vacuum level and properly sealed. The vacuum integrity is guaranteed as a result of the high degree of cleanliness observed during production and from the use of a specially selected better material inside the vacuum space. Disadvantage: pressure is limited to 20 bar. To fulfil all rules of the reactor safety, different tests have to be done. Because of the longitudinal weld of the corrugated tube, a bursting test of different sizes gives the best information of the liability of this kind of tube. It can be shown that the bursting pressure of such a tube is more than 5 times higher than the max. working pressure

  12. APPROXIMATION OF THE TIME TO INITIATE THE EVACUATION

    Directory of Open Access Journals (Sweden)

    Jiří POKORNÝ

    2016-06-01

    Full Text Available One of the basic prerequisites for securing the safety of people at large group events is to ensure their evacuation in case of emergencies. This article deals with the approximations of time to initiate the evacuation of persons in case of a fire at large group events organized in outdoor spaces. The solution is based on the principles of determining the period to initiate the evacuation of persons in terms of international ISO standards. Considering the specificities of the given outdoor space and possible related security measures, the article recommends the relevant sufficient amount of time to initiate an evacuation.

  13. Evacuation proctography - examination technique and method of evaluation

    International Nuclear Information System (INIS)

    Braunschweig, R.; Schott, U.; Starlinger, M.

    1993-01-01

    Evacuation proctography is the most important imaging technique to supplement findings of physical examination, manometry, and endoscopy in patients presenting with pathologies in anorectal morphology and function. Indications for evacuation proctography include obstructed defecation or incomplete evacuation, imaging of ileal pouches following excision of the rectum, and suspected anorectal fistulae. Evacuation proctography with thick barium sulfate is performed under fluoroscopy. Documentation of the study can either be done by single-shot X-rays, video recording, or imaging with a 100-mm spot-film camera. Evacuation proctography shows morphologic changes such as spastic pelvic floor, rectocele, enterocele, intussusception and anal prolapse. Measurements can be performed to obtain the anorectal angle, location and mobility of the pelvic floor, and size as well as importance of a rectocele. Qualitative and quantitative data can only be interpreted along with clinical and manometric data. (orig.) [de

  14. City evacuations an interdisciplinary approach

    CERN Document Server

    Binner, Jane; Branicki, Layla; Galla, Tobias; Jones, Nick; King, James; Kolokitha, Magdalini; Smyrnakis, Michalis

    2015-01-01

    Evacuating a city is a complex problem that involves issues of governance, preparedness education, warning, information sharing, population dynamics, resilience and recovery. As natural and anthropogenic threats to cities grow, it is an increasingly pressing problem for policy makers and practitioners.   The book is the result of a unique interdisciplinary collaboration between researchers in the physical and social sciences to consider how an interdisciplinary approach can help plan for large scale evacuations.  It draws on perspectives from physics, mathematics, organisation theory, economics, sociology and education.  Importantly it goes beyond disciplinary boundaries and considers how interdisciplinary methods are necessary to approach a complex problem involving human actors and increasingly complex communications and transportation infrastructures.   Using real world case studies and modelling the book considers new approaches to evacuation dynamics.  It addresses questions of complexity, not only ...

  15. Thermal and electrical performance of a hybrid design of a solar-thermoelectric system

    International Nuclear Information System (INIS)

    Ong, K.S.; Naghavi, M.S.; Lim, Christopher

    2017-01-01

    Highlights: • Hybrid solar-thermoelectric system studied under outdoor conditions. • Electrical output voltage and hot water temperatures peaked around 15.30. • Total electrical efficiency was very low, about 0.16% at around 15.30 h. - Abstract: An evacuated tube heat pipe solar collector was fitted with four thermoelectric modules and four water cooling jackets on the condenser side to produce electricity and hot water simultaneously. Each cooling jacket had six mini water-flow channels inside it. Solar heat was absorbed and collected by the evaporator section. Experiments were conducted under outdoor environment with various water coolant flow rates. Once-through coolant water flow was adopted as a first step. Further investigations would be conducted to incorporate an insulated hot water storage tank to evaluate the system economic viability as a power producer and hot water generator. Temperatures were recorded along the evaporator and condenser sections of the heat pipe, thermoelectric junction temperatures and inlet/outlet water channels. This paper presents the experimental results obtained. Typical daily experimental results showed that electrical output voltage and hot water temperatures peaked around 15.30 before decreasing towards the evening. Total electrical efficiency was very low, about 0.16% at around 15.30 h.

  16. Evacuation a serious game for preparation

    NARCIS (Netherlands)

    Kolen, B.; Thonus, B.; van Zuilekom, Kasper M.; de Romph, E.

    2011-01-01

    Mass evacuation is a measure to reduce possible loss of life in the case of potential disasters. Planning for mass evacuation is only useful if these plans are tested and evaluated by government and the public in reality or in simulated events. As a result, any prior experience is likely to be

  17. Comparison of calculation and simulation of evacuation in real buildings

    Science.gov (United States)

    Szénay, Martin; Lopušniak, Martin

    2018-03-01

    Each building must meet requirements for safe evacuation in order to prevent casualties. Therefore methods for evaluation of evacuation are used when designing buildings. In the paper, calculation methods were tested on three real buildings. The testing used methods of evacuation time calculation pursuant to Slovak standards and evacuation time calculation using the buildingExodus simulation software. If calculation methods have been suitably selected taking into account the nature of evacuation and at the same time if correct values of parameters were entered, we will be able to obtain almost identical times of evacuation in comparison with real results obtained from simulation. The difference can range from 1% to 27%.

  18. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Fan Yuhong

    2004-07-01

    Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.

  19. Novel Split Chest Tube Improves Post-Surgical Thoracic Drainage

    Science.gov (United States)

    Olivencia-Yurvati, Albert H; Cherry, Brandon H; Gurji, Hunaid A; White, Daniel W; Newton, J Tyler; Scott, Gary F; Hoxha, Besim; Gourlay, Terence; Mallet, Robert T

    2014-01-01

    Objective Conventional, separate mediastinal and pleural tubes are often inefficient at draining thoracic effusions. Description We developed a Y-shaped chest tube with split ends that divide within the thoracic cavity, permitting separate intrathoracic placement and requiring a single exit port. In this study, thoracic drainage by the split drain vs. that of separate drains was tested. Methods After sternotomy, pericardiotomy, and left pleurotomy, pigs were fitted with separate chest drains (n=10) or a split tube prototype (n=9) with internal openings positioned in the mediastinum and in the costo-diaphragmatic recess. Separate series of experiments were conducted to test drainage of D5W or 0.58 M sucrose, an aqueous solution with viscosity approximating that of plasma. One litre of fluid was infused into the thorax, and suction was applied at −20 cm H2O for 30 min. Results When D5W was infused, the split drain left a residual volume of 53 ± 99 ml (mean value ± SD) vs. 148 ± 120 for the separate drain (P=0.007), representing a drainage efficiency (i.e. drained vol/[drained + residual vol]) of 95 ± 10% vs. 86 ± 12% for the separate drains (P = 0.011). In the second series, the split drain evacuated more 0.58 M sucrose in the first minute (967 ± 129 ml) than the separate drains (680 ± 192 ml, Pdrain evacuated a similar volume of sucrose vs. the conventional drain (1089 ± 72 vs. 1056 ± 78 ml; P = 0.5). Residual volume tended to be lower (25 ± 10 vs. 62 ± 72 ml; P = 0.128) and drainage efficiency tended to be higher (98 ± 1 vs. 95 ± 6%; P = 0.111) with the split drain vs. conventional separate drains. Conclusion The split chest tube drained the thoracic cavity at least as effectively as conventional separate tubes. This new device could potentially alleviate postoperative complications. PMID:25478289

  20. Novel Split Chest Tube Improves Post-Surgical Thoracic Drainage.

    Science.gov (United States)

    Olivencia-Yurvati, Albert H; Cherry, Brandon H; Gurji, Hunaid A; White, Daniel W; Newton, J Tyler; Scott, Gary F; Hoxha, Besim; Gourlay, Terence; Mallet, Robert T

    2014-01-01

    Conventional, separate mediastinal and pleural tubes are often inefficient at draining thoracic effusions. We developed a Y-shaped chest tube with split ends that divide within the thoracic cavity, permitting separate intrathoracic placement and requiring a single exit port. In this study, thoracic drainage by the split drain vs. that of separate drains was tested. After sternotomy, pericardiotomy, and left pleurotomy, pigs were fitted with separate chest drains (n=10) or a split tube prototype (n=9) with internal openings positioned in the mediastinum and in the costo-diaphragmatic recess. Separate series of experiments were conducted to test drainage of D5W or 0.58 M sucrose, an aqueous solution with viscosity approximating that of plasma. One litre of fluid was infused into the thorax, and suction was applied at -20 cm H2O for 30 min. When D5W was infused, the split drain left a residual volume of 53 ± 99 ml (mean value ± SD) vs. 148 ± 120 for the separate drain (P=0.007), representing a drainage efficiency (i.e. drained vol/[drained + residual vol]) of 95 ± 10% vs. 86 ± 12% for the separate drains (P = 0.011). In the second series, the split drain evacuated more 0.58 M sucrose in the first minute (967 ± 129 ml) than the separate drains (680 ± 192 ml, Pdrain evacuated a similar volume of sucrose vs. the conventional drain (1089 ± 72 vs. 1056 ± 78 ml; P = 0.5). Residual volume tended to be lower (25 ± 10 vs. 62 ± 72 ml; P = 0.128) and drainage efficiency tended to be higher (98 ± 1 vs. 95 ± 6%; P = 0.111) with the split drain vs. conventional separate drains. The split chest tube drained the thoracic cavity at least as effectively as conventional separate tubes. This new device could potentially alleviate postoperative complications.

  1. Evaluating performance from spiral polyethylene tubes as solar collectors for heating swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Stefanelli, Anderson Thiago Pontes; Marchi Neto, Ismael de; Scalon, Vicente Luiz; Padilha, Alcides [UNESP, Universidade Estadual Paulista Julio de Mesquita Filho, Bauru, SP (Brazil). Dept. de Engenharia Mecanica], e-mails: scalon@feb.unesp.br, padilha@feb.unesp.br

    2010-07-01

    The solar energy is very common in the daily of citizens from different regions in world. Environmental questions and the consequent Development of renewable energy techniques were a decisive factor for expanding this market. Currently, the solar energy is present in many different devices: as direct conversion through photovoltaic panels as in solar domestic for hot water systems(SDHWS). Another common use is in the heating system for swimming pools, that could be utilized for therapeutic or comfort reasons. The main aspect that increments this use is the economy for operation of these systems. On the other hand, these systems need a high initial investment. Reducing this cost without reduction in collector efficiency using new materials and / or alternative projects is important target for new researches. Thus, this paper aims to analyze the efficiency of one of these alternative models for heating swimming pools. The conceptual device evaluated is a low cost model. It could be made from polyethylene tubes forming spiral heat exchangers. Analysis of the system is based on a dynamic model using differential equations system including solar collector and swimming pool. Experimental radiation and other environmental conditions in the region of Bauru-SP are used for analyse the dynamic behavior of the system. The simulations are based on analysis of three main parameters: number of collectors, the pump drive time and wall thickness of the collector of polyethylene. Based on these numerical tests one can conclude that this new model of solar collector for swimming pool has a better cost benefit ratio when superficial area is equal to 80% of pool area, pump operation is alternating with four minutes turned on and 28 turned off and the polyethylene wall thickness is 1.5 mm (author)

  2. CLEAR (Calculates Logical Evacuation And Response): A generic transportation network model for the calculation of evacuation time estimates

    International Nuclear Information System (INIS)

    Moeller, M.P.; Desrosiers, A.E.; Urbanik, T. II

    1982-03-01

    This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuation times for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies. (author)

  3. Resident perception of volcanic hazards and evacuation procedures

    Directory of Open Access Journals (Sweden)

    D. K. Bird

    2009-02-01

    Full Text Available Katla volcano, located beneath the Mýrdalsjökull ice cap in southern Iceland, is capable of producing catastrophic jökulhlaup. The Icelandic Civil Protection (ICP, in conjunction with scientists, local police and emergency managers, developed mitigation strategies for possible jökulhlaup produced during future Katla eruptions. These strategies were tested during a full-scale evacuation exercise in March 2006. A positive public response during a volcanic crisis not only depends upon the public's knowledge of the evacuation plan but also their knowledge and perception of the possible hazards. To improve the effectiveness of residents' compliance with warning and evacuation messages it is important that emergency management officials understand how the public interpret their situation in relation to volcanic hazards and their potential response during a crisis and apply this information to the ongoing development of risk mitigation strategies. We adopted a mixed methods approach in order to gain a broad understanding of residents' knowledge and perception of the Katla volcano in general, jökulhlaup hazards specifically and the regional emergency evacuation plan. This entailed field observations during the major evacuation exercise, interviews with key emergency management officials and questionnaire survey interviews with local residents. Our survey shows that despite living within the hazard zone, many residents do not perceive that their homes could be affected by a jökulhlaup, and many participants who perceive that their homes are safe, stated that they would not evacuate if an evacuation warning was issued. Alarmingly, most participants did not receive an evacuation message during the exercise. However, the majority of participants who took part in the exercise were positive about its implementation. This assessment of resident knowledge and perception of volcanic hazards and the evacuation plan is the first of its kind in

  4. Dose reduction in evacuation proctography

    International Nuclear Information System (INIS)

    Hare, C.; Halligan, S.; Bartram, C.I.; Gupta, R.; Walker, A.E.; Renfrew, I.

    2001-01-01

    The goal of this study was to reduce the patient radiation dose from evacuation proctography. Ninety-eight consecutive adult patients referred for proctography to investigate difficult rectal evacuation were studied using a digital imaging system with either a standard digital program for barium examinations, a reduced dose digital program (both with and without additional copper filtration), or Video fluoroscopy. Dose-area products were recorded for each examination and the groups were compared. All four protocols produced technically acceptable examinations. The low-dose program with copper filtration (median dose 382 cGy cm 2 ) and Video fluoroscopy (median dose 705 cGy cm 2 ) were associated with significantly less dose than other groups (p < 0.0001). Patient dose during evacuation proctography can be reduced significantly without compromising the diagnostic quality of the examination. A digital program with added copper filtration conveyed the lowest dose. (orig.)

  5. Evacuation transportation management : task five : operational concept.

    Science.gov (United States)

    2009-06-26

    Much of what is known about evacuations is based on preparations for incidents, such as hurricanes, for which there is advance warning. With advance warning, evacuations can be planned and managed using procedures and systems that have been developed...

  6. Evacuation transportation management. Task five, Operational concept

    Science.gov (United States)

    2006-01-01

    Much of what is known about evacuations is based on preparations for incidents, such as hurricanes, for which there is advance warning. With advance warning, evacuations can be planned and managed using procedures and systems that have been developed...

  7. Complex multimaterial insulating frames for windows with evacuated glazing

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yueping; Eames, Philip C.; Hyde, Trevor J. [Centre for Sustainable Technologies, School of the Built Environment, University of Ulster, Newtownabbey, N. Ireland BT37 0QB (United Kingdom); Norton, Brian [Dublin Institute of Technology, Aungier Street, Dublin 2 (Ireland)

    2005-09-01

    The thermal performance of a complex multimaterial frame consisting of an exoskeleton framework and cavities filled with insulant materials enclosing an evacuated glazing was simulated using a two-dimensional finite element model and the results were validated experimentally using a guarded hot box calorimeter. The analysed 0.5m by 0.5m evacuated glazing consisted of two low-emittance film coated glass panes supported by an array of 0.32mm diameter pillars spaced 25mm apart, contiguously sealed by a 10mm wide metal edge seal. Thermal performance of windows employing evacuated glazing set in various complex multimaterial frames were analysed in detail. Very good agreement was found between simulations and experimental measurements of surface temperatures of the evacuated glazing window system. The heat loss from a window with an evacuated glazing and a complex multimaterial frame is about 80% of that for a window comprised of an evacuated glazing set in a single material solid frame. (author)

  8. Complex multimaterial insulating frames for windows with evacuated glazing

    Energy Technology Data Exchange (ETDEWEB)

    Yueping Fang; Eames, P.C.; Hyde, T.J. [University of Ulster, Newtonabbey (United Kingdom). Centre for Sustainable Technologies; Norton, B. [Dublin Institute of Technology, Dublin (Ireland)

    2005-09-01

    The thermal performance of a complex multimaterial frame consisting of an exoskeleton framework and cavities filled with insulant materials enclosing an evacuated glazing was simulated using a two-dimensional finite element model and the results were validated experimentally using a guarded hot box calorimeter. The analysed 0.5 m by 0.5 m evacuated glazing consisted of two low-emittance film coated glass panes supported by an array of 0.32 mm diameter pillars spaced 25 mm apart, contiguously sealed by a 10 mm wide metal edge seal. Thermal performance of windows employing evacuated glazing set in various complex multimaterial frames were analysed in detail. Very good agreement was found between simulations and experimental measurements of surface temperatures of the evacuated glazing window system. The heat loss from a window with an evacuated glazing and a complex multimaterial frame is about 80% of that for a window comprised of an evacuated glazing set in a single material solid frame. (author)

  9. An Integrated Approach to Modeling Evacuation Behavior

    Science.gov (United States)

    2011-02-01

    A spate of recent hurricanes and other natural disasters have drawn a lot of attention to the evacuation decision of individuals. Here we focus on evacuation models that incorporate two economic phenomena that seem to be increasingly important in exp...

  10. A High Rated Solar Water Distillation Unit for Solar Homes

    Directory of Open Access Journals (Sweden)

    Abhishek Saxena

    2016-01-01

    Full Text Available India is presently focusing on complete utilization of solar energy and saving fossil fuels, which are limited. Various solar energy systems like solar cookers, solar water heaters, solar lanterns, solar PV lights, and solar lamps are continuously availing by the people of India at a low cost and on good subsidies. Apart from this, India is a solar energy promising country with a good number of solar homes (carrying solar energy systems in its various locations. The present paper focuses on a unique combination of solar dish cooker (SDC and solar water heater (SWH to produce distilled water with a high distillate and a high daily productivity. The procedure has been discussed on the basis of experimental testing to produce distilled water by combining an evacuated type SWH and a SDC. Experimentation has been carried out in MIT, Moradabad (longitude, 28.83°N, and latitude, 78.78°E by developing the same experimental setup on behalf of solar homes. The daily productivity of distilled water was found around 3.66 litres per day in full sunshine hours for an approximated pH value of 7.7 and a ppm value of 21. The payback period (PBP has been estimated around 1.16 years of the present system.

  11. Aircraft industry workers in evacuation: conditions of life of evacuated plants' workers in 1941-1945

    Directory of Open Access Journals (Sweden)

    Михаил Юрьевич Мухин

    2010-09-01

    Full Text Available The article is devoted to the work of the factories in 1941-1945 in the evacuation. The author analyzes the living conditions of workers in evacuated aviation plants, their daily life, maintenance, etc. The author concludes that in the early years of the War the conditions of life of the aviation industry's workers were very difficult, and the welfare and financial situation improved in 1944, the sure sign of fracture in the Second world war.

  12. The Vertical-Tube Solar Collector: A Low-Cost Design Suitable for Temperate High-Latitude Locations

    Directory of Open Access Journals (Sweden)

    Luis Juanicó

    2014-01-01

    Full Text Available A new low-cost solar collector based on thick (4.5′′ vertical tubes related to the previous design based on long 1.5′′ plastic hoses connected directly between water-grid supply and consumption is presented. This novel design could noticeably improve its performance for temperate locations mid and high latitudes, as was demonstrated by dynamic thermal modeling. This tool has been useful for understanding the particular characteristics of this kind of water-pond collector and besides, for noticeably improving its performance by optimizing its parameters, like tube diameter and number of glazing layers. By this way, the optimized design could fully satisfy the household demand up to midnight along the whole year for Buenos Aires (35°S and during summers (remaining as a useful preheater for the whole year for Ushuaia (55°S. Besides, its high simplicity makes it available for user’s own construction, costing down 50 dollars for a single-family unit.

  13. Evacuation decision-making at three mile island

    International Nuclear Information System (INIS)

    Zeigler, Donald. J.; Johnson, James. H.

    1987-01-01

    The accident at the Three Mile Island nuclear power plant in 1979 provoked an unanticipated and unprecedented spontaneous evacuation of people living in the area. Following the accident, revised and upgraded emergency preparedness and response regulations were issued by the Nuclear Regulatory Commission (NRC) and the Federal Emergency Management Agency. (FEMA). This includes the assumption that public education and awareness will minimise the tendency of people to evacuate spontaneously from the vicinity of an accident. This assumption is challenged. Results of an empirical test of a casual model of emergency evacuation decision-making are given. This test was devised to aid understanding of the public behaviour at the time of the Three Mile Island incident. The emergency plans for the Sizewell-B reactor are subject to brief critical consideration. It is concluded that evacuation plans need to reflect people's natural inclinations to move away from a nuclear hazard. (UK)

  14. Dual effects of pedestrian density on emergency evacuation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yi, E-mail: yima23-c@my.cityu.edu.hk [School of Transportation and Logistics, Southwest Jiaotong University, Chengdu (China); Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon (Hong Kong); Lee, Eric Wai Ming; Yuen, Richard Kwok Kit [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon (Hong Kong)

    2017-02-05

    This paper investigates the effect of the pedestrian density in building on the evacuation dynamic with simulation method. In the simulations, both the visibility in building and the exit limit of building are taken into account. The simulation results show that the effect of the pedestrian density in building on the evacuation dynamics is dual. On the one hand, when the visibility in building is very large, the increased pedestrian density plays a negative effect. On the other hand, when the visibility in building is very small, the increased pedestrian density can play a positive effect. The simulation results also show that when both the exit width and visibility are very small, the varying of evacuation time with regard to the pedestrian density is non-monotonous and presents a U-shaped tendency. That is, in this case, too large or too small pedestrian density in building is disadvantageous to the evacuation process. Our findings provide a new insight about the effect of the pedestrian density in building on the evacuation dynamic. - Highlights: • Pedestrian density inside buildings has dual effects on evacuation. • Increased pedestrian density has a negative effect in cases of increased visibility. • Increased pedestrian density has a positive effect in cases of decreased visibility.

  15. Dual effects of pedestrian density on emergency evacuation

    International Nuclear Information System (INIS)

    Ma, Yi; Lee, Eric Wai Ming; Yuen, Richard Kwok Kit

    2017-01-01

    This paper investigates the effect of the pedestrian density in building on the evacuation dynamic with simulation method. In the simulations, both the visibility in building and the exit limit of building are taken into account. The simulation results show that the effect of the pedestrian density in building on the evacuation dynamics is dual. On the one hand, when the visibility in building is very large, the increased pedestrian density plays a negative effect. On the other hand, when the visibility in building is very small, the increased pedestrian density can play a positive effect. The simulation results also show that when both the exit width and visibility are very small, the varying of evacuation time with regard to the pedestrian density is non-monotonous and presents a U-shaped tendency. That is, in this case, too large or too small pedestrian density in building is disadvantageous to the evacuation process. Our findings provide a new insight about the effect of the pedestrian density in building on the evacuation dynamic. - Highlights: • Pedestrian density inside buildings has dual effects on evacuation. • Increased pedestrian density has a negative effect in cases of increased visibility. • Increased pedestrian density has a positive effect in cases of decreased visibility.

  16. Staking solutions to tube vibration problems (developed by Technos et Compagnie - FRANCE)

    International Nuclear Information System (INIS)

    Hewitt, E.W.; Bizard, A.; Horn, M.J.

    1989-01-01

    Electric generating plant steam surface condensers have been prone to vibration induced tube failures. One common and effective method for stopping this vibration has been to insert stakes into the bundle to provide additional support. Stakes have been fabricated of a variety of rigid and semi-rigid materials of fixed dimensions. Installation difficulties and problems of incomplete tube support have been associated with this approach. New developments in the application of plastic technology has offered another approach. Stakes made of plastic tubes which are flattened, by evacuation, at the time of manufacture may now be easily inserted into the tube bundle. After insertion, the vacuum is released and the memory of the plastic causes the stakes to expand and assume their original form. The spring force of the plastic cradles the adjacent condenser tubes and stops the vibration. Developed for Electricite de France (EDF), the stakes are currently installed in 19 units of the French utility system, and two units in the United States

  17. Modelling and simulation of a hybrid solar heating system for greenhouse applications using Matlab/Simulink

    International Nuclear Information System (INIS)

    Kıyan, Metin; Bingöl, Ekin; Melikoğlu, Mehmet; Albostan, Ayhan

    2013-01-01

    Highlights: • Matlab/Simulink modelling of a solar hybrid greenhouse. • Estimation of greenhouse gas emission reductions. • Feasibility and cost analysis of the system. - Abstract: Solar energy is a major renewable energy source and hybrid solar systems are gaining increased academic and industrial attention due to the unique advantages they offer. In this paper, a mathematical model has been developed to investigate the thermal behavior of a greenhouse heated by a hybrid solar collector system. This hybrid system contains an evacuated tube solar heat collector unit, an auxiliary fossil fuel heating unit, a hot water storage unit, control and piping units. A Matlab/Simulink based model and software has been developed to predict the storage water temperature, greenhouse indoor temperature and the amount of auxiliary fuel, as a function of various design parameters of the greenhouse such as location, dimensions, and meteorological data of the region. As a case study, a greenhouse located in Şanlıurfa/Turkey has been simulated based on recent meteorological data and aforementioned hybrid system. The results of simulations performed on an annual basis indicate that revising the existing fossil fuel system with the proposed hybrid system, is economically feasible for most cases, however it requires a slightly longer payback period than expected. On the other hand, by reducing the greenhouse gas emissions significantly, it has a considerable positive environmental impact. The developed dynamic simulation method can be further used for designing heating systems for various solar greenhouses and optimizing the solar collector and thermal storage sizes

  18. The efficiency of an open-cavity tubular solar receiver for a small-scale solar thermal Brayton cycle

    International Nuclear Information System (INIS)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P.

    2014-01-01

    Highlights: • Results show efficiencies of a low-cost stainless steel tubular cavity receiver. • Optimum ratio of 0.0035 is found for receiver aperture area to concentrator area. • Smaller receiver tube and higher mass flow rate increase receiver efficiency. • Larger tube and smaller mass flow rate increase second law efficiency. • Large-tube receiver performs better in the small-scale solar thermal Brayton cycle. - Abstract: The first law and second law efficiencies are determined for a stainless steel closed-tube open rectangular cavity solar receiver. It is to be used in a small-scale solar thermal Brayton cycle using a micro-turbine with low compressor pressure ratios. There are many different variables at play to model the air temperature increase of the air running through such a receiver. These variables include concentrator shape, concentrator diameter, concentrator rim angle, concentrator reflectivity, concentrator optical error, solar tracking error, receiver aperture area, receiver material, effect of wind, receiver tube diameter, inlet temperature and mass flow rate through the receiver. All these variables are considered in this paper. The Brayton cycle requires very high receiver surface temperatures in order to be successful. These high temperatures, however, have many disadvantages in terms of heat loss from the receiver, especially radiation heat loss. With the help of ray-tracing software, SolTrace, and receiver modelling techniques, an optimum receiver-to-concentrator-area ratio of A′ ≈ 0.0035 was found for a concentrator with 45° rim angle, 10 mrad optical error and 1° tracking error. A method to determine the temperature profile and net heat transfer rate along the length of the receiver tube is presented. Receiver efficiencies are shown in terms of mass flow rate, receiver tube diameter, pressure drop, maximum receiver surface temperature and inlet temperature of the working fluid. For a 4.8 m diameter parabolic dish, the

  19. Long term mental health outcomes of Finnish children evacuated to Swedish families during the second world war and their non-evacuated siblings: cohort study.

    Science.gov (United States)

    Santavirta, Torsten; Santavirta, Nina; Betancourt, Theresa S; Gilman, Stephen E

    2015-01-05

    To compare the risks of admission to hospital for any type of psychiatric disorder and for four specific psychiatric disorders among adults who as children were evacuated to Swedish foster families during the second world war and their non-evacuated siblings, and to evaluate whether these risks differ between the sexes. Cohort study. National child evacuation scheme in Finland during the second world war. Children born in Finland between 1933 and 1944 who were later included in a 10% sample of the 1950 Finnish census ascertained in 1997 (n = 45,463; women: n = 22,021; men: n = 23,442). Evacuees in the sample were identified from war time government records. Adults admitted to hospital for psychiatric disorders recorded between 1971 and 2011 in the Finnish hospital discharge register. We used Cox proportional hazards models to estimate the association between evacuation to temporary foster care in Sweden during the second world war and admission to hospital for a psychiatric disorder between ages 38 and 78 years. Fixed effects methods were employed to control for all unobserved social and genetic characteristics shared among siblings. Among men and women combined, the risk of admission to hospital for a psychiatric disorder did not differ between Finnish adults evacuated to Swedish foster families and their non-evacuated siblings (hazard ratio 0.89, 95% confidence interval 0.64 to 1.26). Evidence suggested a lower risk of admission for any mental disorder (0.67, 0.44 to 1.03) among evacuated men, whereas for women there was no association between evacuation and the overall risk of admission for a psychiatric disorder (1.21, 0.80 to 1.83). When admissions for individual psychiatric disorders were analyzed, evacuated girls were significantly more likely than their non-evacuated sisters to be admitted to hospital for a mood disorder as an adult (2.19, 1.10 to 4.33). The Finnish evacuation policy was not associated with an increased overall risk of admission to hospital

  20. A pilot study of chest tube versus pigtail catheter drainage of acute hemothorax in swine.

    Science.gov (United States)

    Russo, Rachel M; Zakaluzny, Scott A; Neff, Lucas P; Grayson, J Kevin; Hight, Rachel A; Galante, Joseph M; Shatz, David V

    2015-12-01

    Evacuation of traumatic hemothorax (HTx) is typically accomplished with large-bore (28-40 Fr) chest tubes, often resulting in patient discomfort. Management of HTx with smaller (14 Fr) pigtail catheters has not been widely adopted because of concerns about tube occlusion and blood evacuation rates. We compared pigtail catheters with chest tubes for the drainage of acute HTx in a swine model. Six Yorkshire cross-bred swine (44-54 kg) were anesthetized, instrumented, and mechanically ventilated. A 32 Fr chest tube was placed in one randomly assigned hemithorax; a 14 Fr pigtail catheter was placed in the other. Each was connected to a chest drainage system at -20 cm H2O suction and clamped. Over 15 minutes, 1,500 mL of arterial blood was withdrawn via femoral artery catheters. Seven hundred fifty milliliters of the withdrawn blood was instilled into each pleural space, and fluid resuscitation with colloid was initiated. The chest drains were then unclamped. Output from each drain was measured every minute for 5 minutes and then every 5 minutes for 40 minutes. The swine were euthanized, and thoracotomies were performed to quantify the volume of blood remaining in each pleural space and to examine the position of each tube. Blood drainage was more rapid from the chest tube during the first 3 minutes compared with the pigtail catheter (348 ± 109 mL/min vs. 176 ± 53 mL/min), but this difference was not statistically significant (p = 0.19). Thereafter, the rates of drainage between the two tubes were not substantially different. The chest tube drained a higher total percentage of the blood from the chest (87.3% vs. 70.3%), but this difference did not reach statistical significance (p = 0.21). We found no statistically significant difference in the volume of blood drained by a 14 Fr pigtail catheter compared with a 32 Fr chest tube.

  1. Information of the Home Office for the planning of evacuations

    International Nuclear Information System (INIS)

    1983-01-01

    This information contains the legal basis, scope and jurisdiction for evacuations in cases of accident. The general evacuation plan must schedule the following: private and public transport, information equipment, supply and care services, evacuation routes and traffic control checkpoints, etc. Particular evacuation plans must be established e.g. for nuclear plants and barrages. The planning is based on a survey of measures represented by a flowchart or a checklist. (HSCH) [de

  2. Multi-objective evacuation routing optimization for toxic cloud releases

    International Nuclear Information System (INIS)

    Gai, Wen-mei; Deng, Yun-feng; Jiang, Zhong-an; Li, Jing; Du, Yan

    2017-01-01

    This paper develops a model for assessing the risks associated with the evacuation process in response to potential chemical accidents, based on which a multi-objective evacuation routing model for toxic cloud releases is proposed taking into account that the travel speed on each arc will be affected by disaster extension. The objectives of the evacuation routing model are to minimize travel time and individual evacuation risk along a path respectively. Two heuristic algorithms are proposed to solve the multi-objective evacuation routing model. Simulation results show the effectiveness and feasibility of the model and algorithms presented in this paper. And, the methodology with appropriate modification is suitable for supporting decisions in assessing emergency route selection in other cases (fires, nuclear accidents). - Highlights: • A model for assessing and visualizing the risks is developed. • A multi-objective evacuation routing model is proposed for toxic cloud releases. • A modified Dijkstra algorithm is designed to obtain an solution of the model. • Two heuristic algorithms have been developed as the optimization tool.

  3. Planning for spontaneous evacuation during a radiological emergency

    International Nuclear Information System (INIS)

    Johnson, J.H. Jr.

    1984-01-01

    The Federal Emergency Management Agency's (FEMA's) radiological emergency preparedness program ignores the potential problem of spontaneous evacuation during a nuclear reactor accident. To show the importance of incorporating the emergency spatial behaviors of the population at risk in radiological emergency preparedness and response plans, this article presents empirical evidence that demonstrates the potential magnitude and geographic extent of spontaneous evacuation in the event of an accident at the Long Island Lighting Company's Shoreham Nuclear Power Station. The results indicate that, on the average, 39% of the population of Long Island is likely to evacuate spontaneously and thus to cast an evacuation shadow extending at least 25 miles beyond the plant. On the basis of these findings, necessary revisions to FEMA's radiological emergency preparedness program are outlined

  4. Dual effects of pedestrian density on emergency evacuation

    Science.gov (United States)

    Ma, Yi; Lee, Eric Wai Ming; Yuen, Richard Kwok Kit

    2017-02-01

    This paper investigates the effect of the pedestrian density in building on the evacuation dynamic with simulation method. In the simulations, both the visibility in building and the exit limit of building are taken into account. The simulation results show that the effect of the pedestrian density in building on the evacuation dynamics is dual. On the one hand, when the visibility in building is very large, the increased pedestrian density plays a negative effect. On the other hand, when the visibility in building is very small, the increased pedestrian density can play a positive effect. The simulation results also show that when both the exit width and visibility are very small, the varying of evacuation time with regard to the pedestrian density is non-monotonous and presents a U-shaped tendency. That is, in this case, too large or too small pedestrian density in building is disadvantageous to the evacuation process. Our findings provide a new insight about the effect of the pedestrian density in building on the evacuation dynamic.

  5. Pedestrian evacuation at the subway station under fire

    Science.gov (United States)

    Xiao-Xia, Yang; Hai-Rong, Dong; Xiu-Ming, Yao; Xu-Bin, Sun

    2016-04-01

    With the development of urban rail transit, ensuring the safe evacuation of pedestrians at subway stations has become an important issue in the case of an emergency such as a fire. This paper chooses the platform of line 4 at the Beijing Xuanwumen subway station to study the emergency evacuation process under fire. Based on the established platform, effects of the fire dynamics, different initial pedestrian densities, and positions of fire on evacuation are investigated. According to simulation results, it is found that the fire increases the air temperature and the smoke density, and decreases pedestrians’ visibility and walking velocity. Also, there is a critical initial density at the platform if achieving a safe evacuation within the required 6 minutes. Furthermore, different positions of fire set in this paper have little difference on crowd evacuation if the fire is not large enough. The suggestions provided in this paper are helpful for the subway operators to prevent major casualties. Project supported by the National Natural Science Foundation of China (Grant Nos. 61322307 and 61233001).

  6. Mechanical strength evaluation of the glass base material in the JRR-3 neutron guide tube

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tetsuya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-02-01

    The lifetime of the thermal neutron guide tube installed JRR-3 was investigated after 6 years from their first installation. And it was confirmed that a crack had been piercing into the glass base material of the side plate of the neutron guide tube. The cause of the crack was estimated as a static fatigue of the guide tube where an inside of the tube had been evacuated and stressed as well as an embrittlement of the glass base material by gamma ray irradiation. In this report, we evaluate the mechanical strength of the glass base material and estimate the time when the base material gets fatigue fracture. Furthermore, we evaluate a lifetime of the neutron guide tube and confirm the validity of update timing in 2000 and 2001 when the thermal neutron guide tubes T1 and T2 were exchanged into those using the super mirror. (author)

  7. 14 CFR 121.570 - Airplane evacuation capability.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off, or...

  8. Characterization of selective solar absorber under high vacuum.

    Science.gov (United States)

    Russo, Roberto; Monti, Matteo; di Giamberardino, Francesco; Palmieri, Vittorio G

    2018-05-14

    Total absorption and emission coefficients of selective solar absorbers are measured under high vacuum conditions from room temperature up to stagnation temperature. The sample under investigation is illuminated under vacuum @1000W/m 2 and the sample temperature is recorded during heat up, equilibrium and cool down. During stagnation, the absorber temperature exceeds 300°C without concentration. Data analysis allows evaluating the solar absorptance and thermal emittance at different temperatures. These in turn are useful to predict evacuated solar panel performances at operating conditions.

  9. Patient-driven resource planning of a health care facility evacuation.

    Science.gov (United States)

    Petinaux, Bruno; Yadav, Kabir

    2013-04-01

    The evacuation of a health care facility is a complex undertaking, especially if done in an immediate fashion, ie, within minutes. Patient factors, such as continuous medical care needs, mobility, and comprehension, will affect the efficiency of the evacuation and translate into evacuation resource needs. Prior evacuation resource estimates are 30 years old. Utilizing a cross-sectional survey of charge nurses of the clinical units in an urban, academic, adult trauma health care facility (HCF), the evacuation needs of hospitalized patients were assessed periodically over a two-year period. Survey data were collected on 2,050 patients. Units with patients having low continuous medical care needs during an emergency evacuation were the postpartum, psychiatry, rehabilitation medicine, surgical, and preoperative anesthesia care units, the Emergency Department, and Labor and Delivery Department (with the exception of patients in Stage II labor). Units with patients having high continuous medical care needs during an evacuation included the neonatal and adult intensive care units, special procedures unit, and operating and post-anesthesia care units. With the exception of the neonate group, 908 (47%) of the patients would be able to walk out of the facility, 492 (25.5%) would require a wheelchair, and 530 (27.5%) would require a stretcher to exit the HCF. A total of 1,639 patients (84.9%) were deemed able to comprehend the need to evacuate and to follow directions; the remainder were sedated, blind, or deaf. The charge nurses also determined that 17 (6.9%) of the 248 adult intensive care unit patients were too ill to survive an evacuation, and that in 10 (16.4%) of the 61 ongoing surgery cases, stopping the case was not considered to be safe. Heath care facilities can utilize the results of this study to model their anticipated resource requirements for an emergency evacuation. This will permit the Incident Management Team to mobilize the necessary resources both within

  10. Dynamics-Based Stranded-Crowd Model for Evacuation in Building Bottlenecks

    Directory of Open Access Journals (Sweden)

    Lidi Huang

    2013-01-01

    Full Text Available In high-density public buildings, it is difficult to evacuate. So in this paper, we propose a novel quantitative evacuation model to insure people’s safety and reduce the risk of crowding. We analyze the mechanism of arch-like clogging phenomena during evacuation and the influencing factors in emergency situations at bottleneck passages; then we design a model based on crowd dynamics and apply the model to a stadium example. The example is used to compare evacuation results of crowd density with different egress widths in stranded zones. The results show this model proposed can guide the safe and dangerous egress widths in performance design and can help evacuation routes to be selected and optimized.

  11. Uncertainty in a spatial evacuation model

    Science.gov (United States)

    Mohd Ibrahim, Azhar; Venkat, Ibrahim; Wilde, Philippe De

    2017-08-01

    Pedestrian movements in crowd motion can be perceived in terms of agents who basically exhibit patient or impatient behavior. We model crowd motion subject to exit congestion under uncertainty conditions in a continuous space and compare the proposed model via simulations with the classical social force model. During a typical emergency evacuation scenario, agents might not be able to perceive with certainty the strategies of opponents (other agents) owing to the dynamic changes entailed by the neighborhood of opponents. In such uncertain scenarios, agents will try to update their strategy based on their own rules or their intrinsic behavior. We study risk seeking, risk averse and risk neutral behaviors of such agents via certain game theory notions. We found that risk averse agents tend to achieve faster evacuation time whenever the time delay in conflicts appears to be longer. The results of our simulations also comply with previous work and conform to the fact that evacuation time of agents becomes shorter once mutual cooperation among agents is achieved. Although the impatient strategy appears to be the rational strategy that might lead to faster evacuation times, our study scientifically shows that the more the agents are impatient, the slower is the egress time.

  12. Dynamical Processes in Flux Tubes and their Role in ...

    Indian Academy of Sciences (India)

    We model the dynamical interaction between magnetic flux tubes and granules in the solar photosphere which leads to the excitation of transverse (kink) and longitudinal (sausage) tube waves. The investigation is motivated by the interpretation of network oscillations in terms of flux tube waves. The calculations show that ...

  13. Evacuation exercise at the Kindergarten

    CERN Multimedia

    2001-01-01

    Every year fire evacuation exercises are organized through out CERN and our facility's Kindergarten is no exception. Just a few weeks ago, a fire simulation was carried out in the Kindergarten kitchen facility using synthetic smoke. The purpose of the exercise was to teach staff to react in a disciplined and professional manner when in the presence of danger. The simulation is always carried out at a random time so as to ensure that people in the area under the test are not aware of the exercise. For the Kindergarten the exercise was held early in the school year so as to train those who are new to the establishment. The evacuation was a complete success and all went as it was supposed to. When the children and teachers smelt smoke they followed the prescribed evacuation routes and left the building immediately. Once outside the situation was revealed as an exercise and everyone went back to business as usual, everyone that is, except the fire brigade and fire inspector.  The fire brigade checked t...

  14. Technical and economic analysis of integrating low-medium temperature solar energy into power plant

    International Nuclear Information System (INIS)

    Wang, Fu; Li, Hailong; Zhao, Jun; Deng, Shuai; Yan, Jinyue

    2016-01-01

    Highlights: • Seven configurations were studied regarding the integration of solar thermal energy. • Economic analysis was conducted on new built plants and retrofitted power plants. • Using solar thermal energy to preheat high pressure feedwater shows the best performance. - Abstract: In order to mitigate CO_2 emission and improve the efficiency of the utilization of solar thermal energy (STE), solar thermal energy is proposed to be integrated into a power plant. In this paper, seven configurations were studied regarding the integration of STE. A 300 MWe subcritical coal-fired plant was selected as the reference, chemical absorption using monoethanolamine solvent was employed for CO_2 ​capture, and parabolic trough collectors and evacuated tube collectors were used for STE collection. Both technical analysis and economic evaluation were conducted. Results show that integrating solar energy with post-combustion CO_2​ capture can effectively increase power generation and reduce the electrical efficiency penalty caused by CO_2 capture. Among the different configurations, Config-2 and Config-6, which use medium temperature STE to replace high pressure feedwater without and with CO_2 capture, show the highest net incremental solar efficiency. When building new plants, integrating solar energy can effectively reduce the levelized cost of electricity (LCOE). The lowest LCOE, 99.28 USD/MWh, results from Config-6, with a parabolic trough collector price of 185 USD/m"2. When retrofitting existing power plants, Config-6 also shows the highest net present value (NPV), while Config-2 has the shortest payback time at a carbon tax of 50 USD/ton CO_2. In addition, both LCOE and NPV/payback time are clearly affected by the relative solar load fraction, the price of solar thermal collectors and the carbon tax. Comparatively, the carbon tax can affect the configurations with CO_2 capture more clearly than those without CO_2 capture.

  15. Variable population exposure and distributed travel speeds in least-cost tsunami evacuation modelling

    Science.gov (United States)

    Fraser, Stuart A.; Wood, Nathan J.; Johnston, David A.; Leonard, Graham S.; Greening, Paul D.; Rossetto, Tiziana

    2014-01-01

    Evacuation of the population from a tsunami hazard zone is vital to reduce life-loss due to inundation. Geospatial least-cost distance modelling provides one approach to assessing tsunami evacuation potential. Previous models have generally used two static exposure scenarios and fixed travel speeds to represent population movement. Some analyses have assumed immediate departure or a common evacuation departure time for all exposed population. Here, a method is proposed to incorporate time-variable exposure, distributed travel speeds, and uncertain evacuation departure time into an existing anisotropic least-cost path distance framework. The method is demonstrated for hypothetical local-source tsunami evacuation in Napier City, Hawke's Bay, New Zealand. There is significant diurnal variation in pedestrian evacuation potential at the suburb level, although the total number of people unable to evacuate is stable across all scenarios. Whilst some fixed travel speeds approximate a distributed speed approach, others may overestimate evacuation potential. The impact of evacuation departure time is a significant contributor to total evacuation time. This method improves least-cost modelling of evacuation dynamics for evacuation planning, casualty modelling, and development of emergency response training scenarios. However, it requires detailed exposure data, which may preclude its use in many situations.

  16. Application of Catastrophe Risk Modelling to Evacuation Public Policy

    Science.gov (United States)

    Woo, G.

    2009-04-01

    The decision by civic authorities to evacuate an area threatened by a natural hazard is especially fraught when the population in harm's way is extremely large, and where there is considerable uncertainty in the spatial footprint, scale, and strike time of a hazard event. Traditionally viewed as a hazard forecasting issue, civil authorities turn to scientists for advice on a potentially imminent dangerous event. However, the level of scientific confidence varies enormously from one peril and crisis situation to another. With superior observational data, meteorological and hydrological hazards are generally better forecast than geological hazards. But even with Atlantic hurricanes, the track and intensity of a hurricane can change significantly within a few hours. This complicated and delayed the decision to call an evacuation of New Orleans when threatened by Hurricane Katrina, and would present a severe dilemma if a major hurricane were appearing to head for New York. Evacuation needs to be perceived as a risk issue, requiring the expertise of catastrophe risk modellers as well as geoscientists. Faced with evidence of a great earthquake in the Indian Ocean in December 2004, seismologists were reluctant to give a tsunami warning without more direct sea observations. Yet, from a risk perspective, the risk to coastal populations would have warranted attempts at tsunami warning, even though there was significant uncertainty in the hazard forecast, and chance of a false alarm. A systematic coherent risk-based framework for evacuation decision-making exists, which weighs the advantages of an evacuation call against the disadvantages. Implicitly and qualitatively, such a cost-benefit analysis is undertaken by civic authorities whenever an evacuation is considered. With the progress in catastrophe risk modelling, such an analysis can be made explicit and quantitative, providing a transparent audit trail for the decision process. A stochastic event set, the core of a

  17. Pedestrian collective motion in competitive room evacuation.

    Science.gov (United States)

    Garcimartín, A; Pastor, J M; Martín-Gómez, C; Parisi, D; Zuriguel, I

    2017-09-07

    When a sizable number of people evacuate a room, if the door is not large enough, an accumulation of pedestrians in front of the exit may take place. This is the cause of emerging collective phenomena where the density is believed to be the key variable determining the pedestrian dynamics. Here, we show that when sustained contact among the individuals exists, density is not enough to describe the evacuation, and propose that at least another variable -such as the kinetic stress- is required. We recorded evacuation drills with different degrees of competitiveness where the individuals are allowed to moderately push each other in their way out. We obtain the density, velocity and kinetic stress fields over time, showing that competitiveness strongly affects them and evidencing patterns which have been never observed in previous (low pressure) evacuation experiments. For the highest competitiveness scenario, we detect the development of sudden collective motions. These movements are related to a notable increase of the kinetic stress and a reduction of the velocity towards the door, but do not depend on the density.

  18. Modelling gastric evacuation in gadoids feeding on crustaceans

    DEFF Research Database (Denmark)

    Andersen, Niels Gerner; Chabot, Denis; Couturier, C. S.

    2016-01-01

    A mechanistic, prey surface-dependent model was expanded to describe the course and rate of gastric evacuation in predatory fishes feeding on crustacean prey with robust exoskeletons. This was accomplished by adding a layer of higher resistance to the digestive processes outside the inner softer...... parts of a prey cylinder abstraction and splitting up the prey evacuation into two stages: an initial stage where the exoskeleton is cracked and a second where the prey remains are digested and evacuated. The model was parameterized for crustaceans with different levels of armour fed to Atlantic cod...... and Chionoecetes opilio. In accordance with the apparent intraspecific isometric relationship between exoskeleton mass and total body mass, the model described stage duration and rate of evacuation of the crustacean prey independently of meal and prey sizes. The duration of the first stage increased (0-33 h...

  19. Analysis of community tsunami evacuation time: An overview

    Science.gov (United States)

    Yunarto, Y.; Sari, A. M.

    2018-02-01

    Tsunami in Indonesia is defined as local tsunami due to its occurrences which are within a distance of 200 km from the epicenter of the earthquake. A local tsunami can be caused by an earthquake, landslide, or volcanic eruption. Tsunami arrival time in Indonesia is generally between 10-60 minutes. As the estimated time of the tsunami waves to reach the coast is 30 minutes after the earthquake, the community should go to the vertical or horizontal evacuation in less than 30 minutes. In an evacuation, the city frequently does the evacuation after obtaining official directions from the authorities. Otherwise, they perform an independent evacuation without correct instructions from the authorities. Both of these ways have several strengths and limitations. This study analyzes these methods regarding time as well as the number of people expected to be saved.

  20. Computer simulation-based framework for transportation evacuation in major trip generator.

    Science.gov (United States)

    2009-01-01

    Since emergencies including both natural disasters and man-made incidents, are happening more and more : frequently, evacuation, especially transportation evacuation, is becoming a hot research focus in recent years. : Currently, transportation evacu...

  1. [PTSD-positive screening and factors influencing the mental state in victims evacuated/ not evacuated from Wenchuan earthquake area within 1 month].

    Science.gov (United States)

    Gao, Xueping; Luo, Xingwei

    2009-06-01

    To explore posttraumatic stress disorder (PTSD) positive screening and factors influencing the mental state in victims who were evacuated/were not evacuated from Wenchuan earthquake area within 1 month. The 3 groups included 235 victims who were not evacuated from Shifang territory (the incident scene, Group A), 44 victims who were evacuated to Second Xiangya Hospital (the wounded, Group B) and 36 relatives (the relatives, Group C). The mental state of all subjects was evaluated by Impact of Event Scale-Revised (IES-R) and other tools. (1) One month after the disaster, and the positive rate of PTSD screening in these survivors was 35.56%, the positive rate in women was significantly higher than that in men (chi(2)=16.27,PGender, place of residence and evacuating from the earthquake area or not were factors of PTSD symptoms. One month after the earthquake, the victims suffered psychologically. PTSD symptoms, anxiety and depression symptoms were their major mental problems, more attention to especially women victims. The protection factors include dispersing victims to the secure place as soon as possible, expanding and strengthening society support. Early psychological interventions will help victims to raise their psychological endurance and prevent PTSD effectively.

  2. Optimization-based decision support to assist in logistics planning for hospital evacuations.

    Science.gov (United States)

    Glick, Roger; Bish, Douglas R; Agca, Esra

    2013-01-01

    The evacuation of the hospital is a very complex process and evacuation planning is an important part of a hospital's emergency management plan. There are numerous factors that affect the evacuation plan including the nature of threat, availability of resources and staff the characteristics of the evacuee population, and risk to patients and staff. The safety and health of patients is of fundamental importance, but safely moving patients to alternative care facilities while under threat is a very challenging task. This article describes the logistical issues and complexities involved in planning and execution of hospital evacuations. Furthermore, this article provides examples of how optimization-based decision support tools can help evacuation planners to better plan for complex evacuations by providing real-world solutions to various evacuation scenarios.

  3. Simulated Evacuations Into Water

    National Research Council Canada - National Science Library

    McLean, Garnet

    2004-01-01

    .... Actual emergency data to support ditching certification are not available; there have been questions as to whether evacuation flow rates onto land are appropriate for use in ditching-related flotation time computations...

  4. October 1972 solar event: The third dimension in solar particle propagation

    International Nuclear Information System (INIS)

    Domingo, V.; Page, D.E.; Wenzel, K.

    1976-01-01

    From late on October 29 until November 3, 1972, our experiment on the European Space Research Organization satellite Heos 2 recorded the arrival of an enhanced interplanetary particle intensity. A dramatic 'slot' in count rate and other sudden anisotropy and flux changes (measured in and perpendicular to the ecliptic plane) were found to coincide with changes in the theta (north-south) ecliptic direction of the interplanetary magnetic field. However, reorientation of strongly field-aligned particle distributions relative to the detectors was insufficient to explain the intensity changes recorded, and the conclusion had to be drawn that the spacecraft was repeatedly crossing a boundary between one regime and a neighboring one with a different particle population. Since the switching from one regime to the other continued for several days, it would seem reasonable to suggest that the boundary between regimes was roughly parallel to the ecliptic plane. This idea was reinforced by the discovery that each time that the particle regime changed, not only did B/sub theta/ change, but the solar wind flow direction changed, the dip angle reversing sign. It would thus appear that when the solar wind blows three-dimensional snakelike tubes in interplanetary space, MeV particles obediently follow the field line bundles within such tubes and experience considerable difficulty in crossing from one tube to a neighboring tube which encloses a different regime. Because of the absence of cross-field particle movement, measurements made at higher solar latitudes, where most solar active regions occur, could reveal a somewhat different picture of the development of solar particle events

  5. Thermoeconomic analysis of storage systems for solar heating and cooling systems: A comparison between variable-volume and fixed-volume tanks

    International Nuclear Information System (INIS)

    Buonomano, Annamaria; Calise, Francesco; Ferruzzi, Gabriele

    2013-01-01

    variable-volume storage tanks system. - Highlights: • A SHC system based on evacuated tube solar collectors (ECT) coupled to a novel thermal storage system is investigated. • The novel thermal storage system consists in three variable volume storage tanks system. • A novel storage tank charging/discharging control strategy is presented. • Results show that significant savings of auxiliary energy are obtained only for high solar fraction

  6. The role of repairing lung lacerations during video-assisted thoracoscopic surgery evacuations for retained haemothorax caused by blunt chest trauma.

    Science.gov (United States)

    Chou, Yi-Pin; Kuo, Liang-Chi; Soo, Kwan-Ming; Tarng, Yih-Wen; Chiang, Hsin-I; Huang, Fong-Dee; Lin, Hsing-Lin

    2014-07-01

    Retained haemothorax and pneumothorax are the most common complications after blunt chest traumas. Lung lacerations derived from fractures of the ribs are usually found in these patients. Video-assisted thoracoscopic surgery (VATS) is usually used as a routine procedure in the treatment of retained pleural collections. The objective of this study was to find out if there is any advantage in adding the procedure for repairing lacerated lungs during VATS. Patients who were brought to our hospital with blunt chest trauma were enrolled into this prospective cohort study from January 2004 to December 2011. All enrolled patients had rib fractures with type III lung lacerations diagnosed by CT scans. They sustained retained pleural collections and surgical drainage was indicated. On one group, only evacuation procedure by VATS was performed. On the other group, not only evacuations but also repair of lung injuries were performed. Patients with penetrating injury or blunt injury with massive bleeding, that required emergency thoracotomy, were excluded from the study, in addition to those with cardiovascular or oesophageal injuries. During the study period, 88 patients who underwent thoracoscopy were enrolled. Among them, 43 patients undergoing the simple thoracoscopic evacuation method were stratified into Group 1. The remaining 45 patients who underwent thoracoscopic evacuation combined with resection of lung lacerations were stratified into Group 2. The rates of post-traumatic infection were higher in Group 1. The durations of chest-tube drainage and ventilator usage were shorter in Group 2, as were the lengths of patient intensive care unit stay and hospital stay. When compared with simple thoracoscopic evacuation methods, repair and resection of the injured lungs combined may result in better clinical outcomes in patients who sustained blunt chest injuries. © The Author 2013. Published by Oxford University Press on behalf of the European Association for Cardio

  7. Solar-Powered Desalination: A Modelling and Experimental Study

    Science.gov (United States)

    Leblanc, Jimmy; Andrews, John

    2007-10-01

    Water shortage is becoming one of the major problems worldwide. As such, desalination technologies have been implemented to meet growing demands for fresh water. Among the desalination technologies, thermal desalination, including multi stage flash (MSF) and multi effect evaporation (MEE), is the current leading desalination process. Reverse osmosis (RO) is also being increasingly used. Despite technological improvements, thermal desalination and reverse osmosis continue to be intensive fossil-fuel consumers and contribute to increased levels of greenhouse gases. As energy costs rise, thermal desalination by solar energy and/or low cost waste heat is likely to become increasingly attractive. As part of a project investigating the productive use of saline land and the development of sustainable desalination systems, the feasibility of producing potable water from seawater or brackish water using desalination systems powered by renewable energy in the form of low-temperature solar-thermal sources has been studied. A salinity-gradient solar pond and an evacuated tube solar collector system have been used as heat sources. Solar ponds combine solar energy collection with long-term storage and can provide reliable thermal energy at temperature ranges from 50 to 90 °C. A visual basic computer model of the different multi-stage flash desalination processes coupled with a salinity-gradient solar pond was developed to determine which process is preferable in regards to performance and greenhouse impact. The governing mathematical equations are derived from mass balances, heat energy balances, and heat transfer characteristics. Using the results from the modelling, a small-scale solar-powered desalination system, capable of producing up to 500 litres of fresh water per day, was designed and manufactured. This single-stage flash system consists of two main units: the heat supply and storage system and the flash desalination unit. Two different condenser heat exchanger

  8. Magnetic flux tubes and transport of heat in the convection zone of the sun

    International Nuclear Information System (INIS)

    Spruit, H.C.

    1977-01-01

    This thesis consists of five papers dealing with transport of heat in the solar convection zone on the one hand, and with the structure of magnetic flux tubes in the top of the convection zone on the other hand. These subjects are interrelated. For example, the heat flow in the convection zone is disturbed by the presence of magnetic flux tubes, while exchange of heat between a flux tube and the convection zone is important for the energy balance of such a tube. A major part of this thesis deals with the structure of small magnetic flux tubes. Such small tubes (diameters less than about 2'') carry most of the flux appearing at the solar surface. An attempt is made to construct models of the surface layers of such small tubes in sufficient detail to make a comparison with observations possible. Underlying these model calculations is the assumption that the magnetic elements at the solar surface are flux tubes in a roughly static equilibrium. The structure of such tubes is governed by their pressure equilibrium, exchange of heat with the surroundings, and transport of heat by some modified form of convection along the tube. The tube models calculated are compared with observations

  9. Development, testing, and certification of Calmac Mfg. Corp. solar collector and solar operated pump

    Science.gov (United States)

    Parker, J. C.

    1979-01-01

    Development of a rubber tube solar collector and solar operated pump for use with solar heating and cooling systems is discussed. The development hardware, problems encountered during fabrication and testing, and certification statements of performance are included.

  10. On the area expansion of magnetic flux tubes in solar active regions

    Energy Technology Data Exchange (ETDEWEB)

    Dudík, Jaroslav [DAMTP, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Dzifčáková, Elena [Astronomical Institute of the Academy of Sciences of the Czech Republic, Fričova 298, 251 65 Ondřejov (Czech Republic); Cirtain, Jonathan W., E-mail: J.Dudik@damtp.cam.ac.uk, E-mail: elena@asu.cas.cz [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States)

    2014-11-20

    We calculated the three-dimensional (3D) distribution of the area expansion factors in a potential magnetic field, extrapolated from the high-resolution Hinode/SOT magnetogram of the quiescent active region NOAA 11482. Retaining only closed loops within the computational box, we show that the distribution of area expansion factors show significant structure. Loop-like structures characterized by locally lower values of the expansion factor are embedded in a smooth background. These loop-like flux tubes have squashed cross-sections and expand with height. The distribution of the expansion factors show an overall increase with height, allowing an active region core characterized by low values of the expansion factor to be distinguished. The area expansion factors obtained from extrapolation of the Solar Optical Telescope magnetogram are compared to those obtained from an approximation of the observed magnetogram by a series of 134 submerged charges. This approximation retains the general flux distribution in the observed magnetogram, but removes the small-scale structure in both the approximated magnetogram and the 3D distribution of the area expansion factors. We argue that the structuring of the expansion factor can be a significant ingredient in producing the observed structuring of the solar corona. However, due to the potential approximation used, these results may not be applicable to loops exhibiting twist or to active regions producing significant flares.

  11. Self-efficacy and barriers to disaster evacuation in Hong Kong.

    Science.gov (United States)

    Newnham, Elizabeth A; Balsari, Satchit; Lam, Rex Pui Kin; Kashyap, Shraddha; Pham, Phuong; Chan, Emily Y Y; Patrick, Kaylie; Leaning, Jennifer

    2017-12-01

    To investigate specific challenges to Hong Kong's capacity for effective disaster response, we assessed perceived barriers to evacuation and citizens' self-efficacy. Global positioning system software was used to determine random sampling locations across Hong Kong, weighted by population density. The resulting sample of 1023 participants (46.5% female, mean age 40.74 years) were invited to complete questionnaires on emergency preparedness, barriers to evacuation and self-efficacy. Latent profile analysis and multinomial logistic regression were used to identify self-efficacy profiles and predictors of profile membership. Only 11% of the sample reported feeling prepared to respond to a disaster. If asked to evacuate in an emergency, 41.9% of the sample cited significant issues that would preclude them from doing so. Self-efficacy was negatively associated with barriers to disaster response so that participants reporting higher levels of self-efficacy cited fewer perceived barriers to evacuation. Hong Kong has established effective strategies for emergency response, but concerns regarding evacuation and mobilisation remain. The findings indicate that improving self-efficacy for disaster response has potential to increase evacuation readiness.

  12. A Geospatial Comparison of Distributed Solar Heat and Power in Europe and the US

    Science.gov (United States)

    Norwood, Zack; Nyholm, Emil; Otanicar, Todd; Johnsson, Filip

    2014-01-01

    The global trends for the rapid growth of distributed solar heat and power in the last decade will likely continue as the levelized cost of production for these technologies continues to decline. To be able to compare the economic potential of solar technologies one must first quantify the types and amount of solar resource that each technology can utilize; second, estimate the technological performance potential based on that resource; and third, compare the costs of each technology across regions. In this analysis, we have performed the first two steps in this process. We use physical and empirically validated models of a total of 8 representative solar system types: non-tracking photovoltaics, 2d-tracking photovoltaics, high concentration photovoltaics, flat-plate thermal, evacuated tube thermal, concentrating trough thermal, concentrating solar combined heat and power, and hybrid concentrating photovoltaic/thermal. These models are integrated into a simulation that uses typical meteorological year weather data to create a yearly time series of heat and electricity production for each system over 12,846 locations in Europe and 1,020 locations in the United States. Through this simulation, systems composed of various permutations of collector-types and technologies can be compared geospatially and temporally in terms of their typical production in each location. For example, we see that silicon solar cells show a significant advantage in yearly electricity production over thin-film cells in the colder climatic regions, but that advantage is lessened in regions that have high average irradiance. In general, the results lead to the conclusion that comparing solar technologies across technology classes simply on cost per peak watt, as is usually done, misses these often significant regional differences in annual performance. These results have implications for both solar power development and energy systems modeling of future pathways of the electricity system. PMID

  13. Sensitivity Analysis of Evacuation Speed in Hypothetical NPP Accident by Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-yeop; Lim, Ho-Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Effective emergency response in emergency situation of nuclear power plant (NPP) can make consequences be different therefore it is regarded important when establishing an emergency response plan and assessing the risk of hypothetical NPP accident. Situation of emergency response can be totally changed when NPP accident caused by earthquake or tsunami is considered due to the failure of roads and buildings by the disaster. In this study evacuation speed has been focused among above various factors and reasonable evacuation speed in earthquake scenario has been investigated. Finally, sensitivity analysis of evacuation speed in hypothetical NPP accident by earthquake has been performed in this study. Evacuation scenario can be entirely different in the situation of seismic hazard and the sensitivity analysis of evacuation speed in hypothetical NPP accident by earthquake has been performed in this study. Various references were investigated and earthquake evacuation model has been developed considering that evacuees may convert their evacuation method from using a vehicle to walking when they face the difficulty of using a vehicle due to intense traffic jam, failure of buildings and roads, and etc. The population dose within 5 km / 30 km have been found to be increased in earthquake situation due to decreased evacuation speed and become 1.5 - 2 times in the severest earthquake evacuation scenario set up in this study. It is not agreed that using same emergency response model which is used for normal evacuation situations when performing level 3 probabilistic safety assessment for earthquake and tsunami event. Investigation of data and sensitivity analysis for constructing differentiated emergency response model in the event of seismic hazard has been carried out in this study.

  14. Sensitivity Analysis of Evacuation Speed in Hypothetical NPP Accident by Earthquake

    International Nuclear Information System (INIS)

    Kim, Sung-yeop; Lim, Ho-Gon

    2016-01-01

    Effective emergency response in emergency situation of nuclear power plant (NPP) can make consequences be different therefore it is regarded important when establishing an emergency response plan and assessing the risk of hypothetical NPP accident. Situation of emergency response can be totally changed when NPP accident caused by earthquake or tsunami is considered due to the failure of roads and buildings by the disaster. In this study evacuation speed has been focused among above various factors and reasonable evacuation speed in earthquake scenario has been investigated. Finally, sensitivity analysis of evacuation speed in hypothetical NPP accident by earthquake has been performed in this study. Evacuation scenario can be entirely different in the situation of seismic hazard and the sensitivity analysis of evacuation speed in hypothetical NPP accident by earthquake has been performed in this study. Various references were investigated and earthquake evacuation model has been developed considering that evacuees may convert their evacuation method from using a vehicle to walking when they face the difficulty of using a vehicle due to intense traffic jam, failure of buildings and roads, and etc. The population dose within 5 km / 30 km have been found to be increased in earthquake situation due to decreased evacuation speed and become 1.5 - 2 times in the severest earthquake evacuation scenario set up in this study. It is not agreed that using same emergency response model which is used for normal evacuation situations when performing level 3 probabilistic safety assessment for earthquake and tsunami event. Investigation of data and sensitivity analysis for constructing differentiated emergency response model in the event of seismic hazard has been carried out in this study

  15. Sensitivity of tsunami evacuation modeling to direction and land cover assumptions

    Science.gov (United States)

    Schmidtlein, Mathew C.; Wood, Nathan J.

    2015-01-01

    Although anisotropic least-cost-distance (LCD) modeling is becoming a common tool for estimating pedestrian-evacuation travel times out of tsunami hazard zones, there has been insufficient attention paid to understanding model sensitivity behind the estimates. To support tsunami risk-reduction planning, we explore two aspects of LCD modeling as it applies to pedestrian evacuations and use the coastal community of Seward, Alaska, as our case study. First, we explore the sensitivity of modeling to the direction of movement by comparing standard safety-to-hazard evacuation times to hazard-to-safety evacuation times for a sample of 3985 points in Seward's tsunami-hazard zone. Safety-to-hazard evacuation times slightly overestimated hazard-to-safety evacuation times but the strong relationship to the hazard-to-safety evacuation times, slightly conservative bias, and shorter processing times of the safety-to-hazard approach make it the preferred approach. Second, we explore how variations in land cover speed conservation values (SCVs) influence model performance using a Monte Carlo approach with one thousand sets of land cover SCVs. The LCD model was relatively robust to changes in land cover SCVs with the magnitude of local model sensitivity greatest in areas with higher evacuation times or with wetland or shore land cover types, where model results may slightly underestimate travel times. This study demonstrates that emergency managers should be concerned not only with populations in locations with evacuation times greater than wave arrival times, but also with populations with evacuation times lower than but close to expected wave arrival times, particularly if they are required to cross wetlands or beaches.

  16. Bilevel Traffic Evacuation Model and Algorithm Design for Large-Scale Activities

    Directory of Open Access Journals (Sweden)

    Danwen Bao

    2017-01-01

    Full Text Available This paper establishes a bilevel planning model with one master and multiple slaves to solve traffic evacuation problems. The minimum evacuation network saturation and shortest evacuation time are used as the objective functions for the upper- and lower-level models, respectively. The optimizing conditions of this model are also analyzed. An improved particle swarm optimization (PSO method is proposed by introducing an electromagnetism-like mechanism to solve the bilevel model and enhance its convergence efficiency. A case study is carried out using the Nanjing Olympic Sports Center. The results indicate that, for large-scale activities, the average evacuation time of the classic model is shorter but the road saturation distribution is more uneven. Thus, the overall evacuation efficiency of the network is not high. For induced emergencies, the evacuation time of the bilevel planning model is shortened. When the audience arrival rate is increased from 50% to 100%, the evacuation time is shortened from 22% to 35%, indicating that the optimization effect of the bilevel planning model is more effective compared to the classic model. Therefore, the model and algorithm presented in this paper can provide a theoretical basis for the traffic-induced evacuation decision making of large-scale activities.

  17. Rapid health assessments of evacuation centres in areas affected by Typhoon Haiyan

    Directory of Open Access Journals (Sweden)

    Ruth Alma Ramos

    2015-11-01

    Full Text Available Introduction: Typhoon Haiyan caused thousands of deaths and catastrophic destruction, leaving many homeless in Region 8 of the Philippines. A team from the Philippine Field Epidemiology Training Program conducted a rapid health assessment survey of evacuation centres severely affected by Haiyan. Methods: A descriptive study was conducted whereby a convenience sample of evacuation centres were assessed on the number of toilets per evacuee, sanitation, drinking-water, food supply source and medical services. Results: Of the 20 evacuation centres assessed, none had a designated manager. Most were located in schools (70% with the estimated number of evacuees ranging from 15 to 5000 per centre. Only four (20% met the World Health Organization standard for number of toilets per evacuee; none of the large evacuation centres had even half the recommended number of toilets. All of the evacuation centres had available drinking-water. None of the evacuation centres had garbage collection, vector control activities or standby medical teams. Fourteen (70% evacuation centres had onsite vaccination activities for measles, tetanus and polio virus. Many evacuation centres were overcrowded. Conclusion: Evacuation centres are needed in almost every disaster. They should be safely located and equipped with the required amenities. In disaster-prone areas such as the Philippines, schools and community centres should not be designated as evacuation centres unless they are equipped with adequate sanitation services.

  18. Desalination with thermal solar systems: technology assessment and perspectives

    International Nuclear Information System (INIS)

    Ajona, J.I.

    1992-01-01

    Solar desalination is among the most promising alternatives to apply solar energy as solar availability and the load requirements use to be matched. Solar thermal energy offers a full set of alternatives to desalt water, being the main difference among them the temperature range at which the load has to be fed. Solar technologies for the low temperature range (solar stills, plastic collectors,...) are quite suited for small loads in isolated placed or whenever the main constrain is to indigenize technology and to perform the operation and maintenance work with low qualified local labor, such as in less developed countries. The main drawback of this low temperature use of solar energy is that it is not possible to recover neither the heat of condensation of the water vapor, nor from the reject brine, to warm up the feed saline water. Higher temperature collectors, such as flat plate collectors with transparent insulation material and evacuated tubes, allow to work with conventional desalination units fed at 60-90C, as Multiple Effect Units or Multistage Flash Units, which get a performance ratio (quotient between heat required without recovery and with heat recovery) between 5 and 10. To further increase the performance ratio it is necessary to work with vapor in the 200C range. To attain this temperature range the solar option is based on the Parabolic Trough collector. This has been the line we have followed in our STD project in the Plataforma Solar in Almeria (Spain) when we have run a Multiple Effect Unit with an Absorption Heat Pump able to attain a performance ratio of 20. In this report, included within the STD project activities, we assess the potential of the solar thermal technology to desalt water in all the above mentioned temperature ranges. Beside the technology description and some characteristics results, we present a set of tool that, as the final result is dramatically dependent on the technical and economical scenario selected, will allow to

  19. CLEAR (Calculates Logical Evacuation And Response): A Generic Transportation Network Model for the Calculation of Evacuation Time Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, M. P.; Urbanik, II, T.; Desrosiers, A. E.

    1982-03-01

    This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuatlon tlmes for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies.

  20. Exit selection strategy in pedestrian evacuation simulation with multi-exits

    International Nuclear Information System (INIS)

    Yue Hao; Zhang Bin-Ya; Shao Chun-Fu; Xing Yan

    2014-01-01

    A mixed strategy of the exit selection in a pedestrian evacuation simulation with multi-exits is constructed by fusing the distance-based and time-based strategies through a cognitive coefficient, in order to reduce the evacuation imbalance caused by the asymmetry of exits or pedestrian layout, to find a critical density to distinguish whether the strategy of exit selection takes effect or not, and to analyze the exit selection results with different cognitive coefficients. The strategy of exit selection is embedded in the computation of the shortest estimated distance in a dynamic parameter model, in which the concept of a jam area layer and the procedure of step-by-step expending are introduced. Simulation results indicate the characteristics of evacuation time gradually varying against cognitive coefficient and the effectiveness of reducing evacuation imbalance caused by the asymmetry of pedestrian or exit layout. It is found that there is a critical density to distinguish whether a pedestrian jam occurs in the evacuation and whether an exit selection strategy is in effect. It is also shown that the strategy of exit selection has no effect on the evacuation process in the no-effect phase with a low density, and that evacuation time and exit selection are dependent on the cognitive coefficient and pedestrian initial density in the in-effect phase with a high density. (general)

  1. Public assessment of the usefulness of "draft" tsunami evacuation maps from Sydney, Australia – implications for the establishment of formal evacuation plans

    Directory of Open Access Journals (Sweden)

    F. Dall'Osso

    2010-08-01

    Full Text Available Australia is at risk from tsunamis and recent work has identified the need for models to assess the vulnerability of exposed coastal areas – a fundamental element of the risk management process. Outputs of vulnerability assessment can be used as a baseline for the generation of tsunami prevention and mitigation measures, including evacuation maps. Having noted that no evacuation maps exist for Manly, Sydney (an area recently subjected to high resolution building vulnerability assessment by Dall'Osso et al., 2009b, we use the results of the analysis by Dall'Osso et al. (2009b to "draft" tsunami evacuation maps that could be used by the local emergency service organisations. We then interviewed 500 permanent residents of Manly in order to gain a rapid assessment on their views about the potential usefulness of the draft evacuation maps we generated. Results of the survey indicate that residents think the maps are useful and understandable, and include insights that should be considered by local government planners and emergency risk management specialists during the development of official evacuation maps (and plans in the future.

  2. Evacuation of the NET vacuum chamber

    International Nuclear Information System (INIS)

    Muller, R.A.

    1987-01-01

    Parametric calculations of the evacuation process were carried out for the NET-vacuum chamber involving two blanket designs. The results show that with an acceptable vacuum pumping capacity the required start vacuum conditions can be realized within reasonable time. The two blanket concepts do not differ remarkably in their evacuation behaviour. The remaining large pressure differences between the different locations of the vacuum chamber can be reduced if approximately 30% of the total gas flow is extracted from the heads of the blanket replacement ports

  3. Evacuation of the NET vacuum chamber

    International Nuclear Information System (INIS)

    Mueller, R.

    1986-01-01

    Parametric calculations of the evacuation process were carried out for the NET-vacuum chamber involving two blanket designs. The results show that with an acceptable vacuum pumping capacity the required start vacuum conditions can be realized within reasonable time. The two blanket concepts do not differ remarkably in their evacuation behaviour. The remaining large pressure differences between the different locations of the vacuum chamber can be reduced if approximately 30% of the total gas flow is extracted from the heads of the blanket replacement ports. (author)

  4. Performance Study of a Cylindrical Parabolic Concentrating Solar Water Heater with Nail Type Twisted Tape Inserts in the Copper Absorber Tube

    Directory of Open Access Journals (Sweden)

    Amit K. Bhakta

    2018-01-01

    Full Text Available This paper reports the overall thermal performance of a cylindrical parabolic concentrating solar water heater (CPCSWH with inserting nail type twisted tape (NTT in the copper absorber tube for the nail twist pitch ratios, 4.787, 6.914 and 9.042, respectively. The experiments are conducted for a constant volumetric water flow rate and during the time period 9:00 a.m. to 15:00 p.m. The useful heat gain, hourly solar energy collected and hourly solar energy stored in this solar water heater were found to be higher for the nail twist pitch ratio 4.787. The above said parameters were found to be at a peak at noon and observed to follow the path of variation of solar intensity. At the start of the experiment, the value of charging efficiency was observed to be maximum, whereas the maximum values of instantaneous efficiency and overall thermal efficiency were observed at noon. The key finding is that the nail twist pitch ratio enhances the overall thermal performance of the CPCSWH.

  5. Stand-Alone Solar Organic Rankine Cycle Water Pumping System and Its Economic Viability in Nepal

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-12-01

    Full Text Available The current study presents the concept of a stand-alone solar organic Rankine cycle (ORC water pumping system for rural Nepalese areas. Experimental results for this technology are presented based on a prototype. The economic viability of the system was assessed based on solar radiation data of different Nepalese geographic locations. The mechanical power produced by the solar ORC is coupled with a water pumping system for various applications, such as drinking and irrigation. The thermal efficiency of the system was found to be 8% with an operating temperature of 120 °C. The hot water produced by the unit has a temperature of 40 °C. Economic assessment was done for 1-kW and 5-kW solar ORC water pumping systems. These systems use different types of solar collectors: a parabolic trough collector (PTC and an evacuated tube collector (ETC. The economic analysis showed that the costs of water are $2.47/m3 (highest and $1.86/m3 (lowest for the 1-kW system and a 150-m pumping head. In addition, the cost of water is reduced when the size of the system is increased and the pumping head is reduced. The minimum volumes of water pumped are 2190 m3 and 11,100 m3 yearly for 1 kW and 5 kW, respectively. The payback period is eight years with a profitability index of 1.6. The system is highly feasible and promising in the context of Nepal.

  6. Empirical study on social groups in pedestrian evacuation dynamics

    Science.gov (United States)

    von Krüchten, Cornelia; Schadschneider, Andreas

    2017-06-01

    Pedestrian crowds often include social groups, i.e. pedestrians that walk together because of social relationships. They show characteristic configurations and influence the dynamics of the entire crowd. In order to investigate the impact of social groups on evacuations we performed an empirical study with pupils. Several evacuation runs with groups of different sizes and different interactions were performed. New group parameters are introduced which allow to describe the dynamics of the groups and the configuration of the group members quantitatively. The analysis shows a possible decrease of evacuation times for large groups due to self-ordering effects. Social groups can be approximated as ellipses that orientate along their direction of motion. Furthermore, explicitly cooperative behaviour among group members leads to a stronger aggregation of group members and an intermittent way of evacuation.

  7. Geometry of solar corona expansion and solar wind parameters

    International Nuclear Information System (INIS)

    Krajnev, M.B.

    1980-01-01

    The character of the parameter chanqe of solar wind plasma in the region of the Earth orbit is studied. The main regularities in the parametep behaviour of solar wind (plasma velocity and density) are qualitatively explained in the framework of a model according to which solar corona expansion stronqly differs from radial expansion, that is: the solar wind current lines are focused towards helioequator during the period of low solar activity with gradual transfer to radial expansion during the years of high solar activity. It is shown that the geometry of the solar wind current tubes and its change with the solar activity cycle can not serve an explanation of the observed change of the solar wind parameters

  8. Solar concentrator with integrated tracking and light delivery system with collimation

    Science.gov (United States)

    Maxey, Lonnie Curt

    2015-06-09

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector directs the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and distributes light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting, uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  9. Solar concentrator with integrated tracking and light delivery system with summation

    Science.gov (United States)

    Maxey, Lonnie Curt

    2015-05-05

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector redirects the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and provides light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting that uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  10. Experiment and modeling of paired effect on evacuation from a three-dimensional space

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Hu [MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044 (China); School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044 (China); Faculty of Computer Science, Chengdu Normal University, Chengdu 611130 (China); Huijun, Sun, E-mail: hjsun1@bjtu.edu.cn [MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044 (China); School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044 (China); Juan, Wei [Faculty of Computer Science, Chengdu Normal University, Chengdu 611130 (China); Xiaodan, Chen [College of Information Science and Technology, Chengdu University, Chengdu 610106 (China); Lei, You [Faculty of Computer Science, Chengdu Normal University, Chengdu 611130 (China); College of Information Science and Technology, Chengdu University, Chengdu 610106 (China); Musong, Gu [Faculty of Computer Science, Chengdu Normal University, Chengdu 611130 (China)

    2014-10-24

    A novel three-dimensional cellular automata evacuation model was proposed based on stairs factor for paired effect and variety velocities in pedestrian evacuation. In the model pedestrians' moving probability of target position at the next moment was defined based on distance profit and repulsive force profit, and evacuation strategy was elaborated in detail through analyzing variety velocities and repulsive phenomenon in moving process. At last, experiments with the simulation platform were conducted to study the relationships of evacuation time, average velocity and pedestrian velocity. The results showed that when the ratio of single pedestrian was higher in the system, the shortest route strategy was good for improving evacuation efficiency; in turn, if ratio of paired pedestrians was higher, it is good for improving evacuation efficiency to adopt strategy that avoided conflicts, and priority should be given to scattered evacuation. - Highlights: • A novel three-dimensional evacuation model was presented with stair factor. • The paired effect and variety velocities were considered in evacuation model. • The cellular automata model is improved by repulsive force.

  11. Experiment and modeling of paired effect on evacuation from a three-dimensional space

    International Nuclear Information System (INIS)

    Jun, Hu; Huijun, Sun; Juan, Wei; Xiaodan, Chen; Lei, You; Musong, Gu

    2014-01-01

    A novel three-dimensional cellular automata evacuation model was proposed based on stairs factor for paired effect and variety velocities in pedestrian evacuation. In the model pedestrians' moving probability of target position at the next moment was defined based on distance profit and repulsive force profit, and evacuation strategy was elaborated in detail through analyzing variety velocities and repulsive phenomenon in moving process. At last, experiments with the simulation platform were conducted to study the relationships of evacuation time, average velocity and pedestrian velocity. The results showed that when the ratio of single pedestrian was higher in the system, the shortest route strategy was good for improving evacuation efficiency; in turn, if ratio of paired pedestrians was higher, it is good for improving evacuation efficiency to adopt strategy that avoided conflicts, and priority should be given to scattered evacuation. - Highlights: • A novel three-dimensional evacuation model was presented with stair factor. • The paired effect and variety velocities were considered in evacuation model. • The cellular automata model is improved by repulsive force

  12. Dispositional and situational variables related to evacuation at Three Mile Island

    International Nuclear Information System (INIS)

    Miller, I.S.

    1981-01-01

    The purpose of this study was to explore some of the factors influential in local residents' evacuating or remaining in the Three Mile Island area during the nuclear power plant accident of March, 1979. Investigated variables included individuals' behavioral dispositions to attend or to avoid threatening stimuli as well as situational concerns related to demographic characteristics and subjective experience. Investigation of situational variables also probed respondents' concerns about accident-related fears. Two main relationships were investigated. The first hypothesized that positive relationships existed both between dispositional attention to threat and evacuation and between dispositional avoidance of threat and remaining. The second investigation task of the research explored evacuation-related situational variables in regard to individuals' awareness of potential danger at TMI. No support was found for the hypothesized relationships between evacuation and dispositions relative to threat. Situational variables significantly related to evacuation included: specific directives to evacuate the area; disruption of telephone service during the week of the accident; and household proximity to TMI

  13. Solar heating system installed at Jackson, Tennessee. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

  14. Small-Sized Parabolic Trough Collector System for Solar Dehumidification Application: Design, Development, and Potential Assessment

    Directory of Open Access Journals (Sweden)

    Ghulam Qadar Chaudhary

    2018-01-01

    Full Text Available The current study presents a numerical and real-time performance analysis of a parabolic trough collector (PTC system designed for solar air-conditioning applications. Initially, a thermodynamic model of PTC is developed using engineering equation solver (EES having a capacity of around 3 kW. Then, an experimental PTC system setup is established with a concentration ratio of 9.93 using evacuated tube receivers. The experimental study is conducted under the climate of Taxila, Pakistan in accordance with ASHRAE 93-1986 standard. Furthermore, PTC system is integrated with a solid desiccant dehumidifier (SDD to study the effect of various operating parameters such as direct solar radiation and inlet fluid temperature and its impact on dehumidification share. The experimental maximum temperature gain is around 5.2°C, with the peak efficiency of 62% on a sunny day. Similarly, maximum thermal energy gain on sunny and cloudy days is 3.07 kW and 2.33 kW, respectively. Afterwards, same comprehensive EES model of PTC with some modifications is used for annual transient analysis in TRNSYS for five different climates of Pakistan. Quetta revealed peak solar insolation of 656 W/m2 and peak thermal energy 1139 MJ with 46% efficiency. The comparison shows good agreement between simulated and experimental results with root mean square error of around 9%.

  15. Performance analysis of solar cogeneration system with different integration strategies for potable water and domestic hot water production

    International Nuclear Information System (INIS)

    Uday Kumar, N.T.; Mohan, Gowtham; Martin, Andrew

    2016-01-01

    Highlights: • Solar driven cogeneration system integrating membrane distillation technology is developed. • System utilizes solar thermal energy for the operations without auxiliary heaters. • Three different system integrations are experimentally investigated in UAE. • Economical benefits of solar cogeneration system is also reported. - Abstract: A novel solar thermal cogeneration system featuring the provision of potable water with membrane distillation in combination with domestic hot water supply has been developed and experimentally analyzed. The system integrates evacuated tube collectors, thermal storage, membrane distillation unit, and heat exchangers with the overall goals of maximizing the two outputs while minimizing costs for the given design conditions. Experiments were conducted during one month’s operation at AURAK’s facility in UAE, with average peak global irradiation levels of 650 W/m"2. System performance was determined for three integration strategies, all utilizing brackish water (typical conductivity of 20,000 μs/cm) as a feedstock: Thermal store integration (TSI), which resembles a conventional indirect solar domestic hot water system; Direct solar integration (DSI) connecting collectors directly to the membrane distillation unit without thermal storage; and Direct solar with thermal store integration (DSTSI), a combination of these two approaches. The DSTSI strategy offered the best performance given its operational flexibility. Here the maximum distillate productivity was 43 L/day for a total gross solar collector area of 96 m"2. In terms of simultaneous hot water production, 277 kWh/day was achieved with this configuration. An economic analysis shows that the DSTSI strategy has a payback period of 3.9 years with net cumulative savings of $325,000 during the 20 year system lifetime.

  16. Who evacuates when hurricanes approach? The role of risk, information, and location.

    Science.gov (United States)

    Stein, Robert M; Dueñas-Osorio, Leonardo; Subramanian, Devika

    2010-01-01

    This article offers an expanded perspective on evacuation decision making during severe weather. In particular, this work focuses on uncovering determinants of individual evacuation decisions. We draw on a survey conducted in 2005 of residents in the eight-county Houston metropolitan area after Hurricane Rita made landfall on September 24, 2005. We find that evacuation decisions are influenced by a heterogeneous set of parameters, including perceived risk from wind, influence of media and neighbors, and awareness of evacuation zone, that are often at variance with one of the primary measures of risk used by public officials to order or recommend an evacuation (i.e., storm surge). We further find that perceived risk and its influence on evacuation behavior is a local phenomenon more readily communicated by and among individuals who share the same geography, as is the case with residents living inside and outside official risk areas. Who evacuates and why is partially dependent on where one lives because perceptions of risk are not uniformly shared across the area threatened by an approaching hurricane and the same sources and content of information do not have the same effect on evacuation behavior. Hence, efforts to persuade residential populations about risk and when, where, and how to evacuate or shelter in place should originate in the neighborhood rather than emanating from blanket statements from the media or public officials. Our findings also raise important policy questions (included in the discussion section) that require further study and consideration by those responsible with organizing and implementing evacuation plans.

  17. Agent-based Modeling with MATSim for Hazards Evacuation Planning

    Science.gov (United States)

    Jones, J. M.; Ng, P.; Henry, K.; Peters, J.; Wood, N. J.

    2015-12-01

    Hazard evacuation planning requires robust modeling tools and techniques, such as least cost distance or agent-based modeling, to gain an understanding of a community's potential to reach safety before event (e.g. tsunami) arrival. Least cost distance modeling provides a static view of the evacuation landscape with an estimate of travel times to safety from each location in the hazard space. With this information, practitioners can assess a community's overall ability for timely evacuation. More information may be needed if evacuee congestion creates bottlenecks in the flow patterns. Dynamic movement patterns are best explored with agent-based models that simulate movement of and interaction between individual agents as evacuees through the hazard space, reacting to potential congestion areas along the evacuation route. The multi-agent transport simulation model MATSim is an agent-based modeling framework that can be applied to hazard evacuation planning. Developed jointly by universities in Switzerland and Germany, MATSim is open-source software written in Java and freely available for modification or enhancement. We successfully used MATSim to illustrate tsunami evacuation challenges in two island communities in California, USA, that are impacted by limited escape routes. However, working with MATSim's data preparation, simulation, and visualization modules in an integrated development environment requires a significant investment of time to develop the software expertise to link the modules and run a simulation. To facilitate our evacuation research, we packaged the MATSim modules into a single application tailored to the needs of the hazards community. By exposing the modeling parameters of interest to researchers in an intuitive user interface and hiding the software complexities, we bring agent-based modeling closer to practitioners and provide access to the powerful visual and analytic information that this modeling can provide.

  18. Tsunami evacuation mathematical model for the city of Padang

    International Nuclear Information System (INIS)

    Kusdiantara, R.; Hadianti, R.; Badri Kusuma, M. S.; Soewono, E.

    2012-01-01

    Tsunami is a series of wave trains which travels with high speed on the sea surface. This traveling wave is caused by the displacement of a large volume of water after the occurrence of an underwater earthquake or volcano eruptions. The speed of tsunami decreases when it reaches the sea shore along with the increase of its amplitudes. Two large tsunamis had occurred in the last decades in Indonesia with huge casualties and large damages. Indonesian Tsunami Early Warning System has been installed along the west coast of Sumatra. This early warning system will give about 10-15 minutes to evacuate people from high risk regions to the safe areas. Here in this paper, a mathematical model for Tsunami evacuation is presented with the city of Padang as a study case. In the model, the safe areas are chosen from the existing and selected high rise buildings, low risk region with relatively high altitude and (proposed to be built) a flyover ring road. Each gathering points are located in the radius of approximately 1 km from the ring road. The model is formulated as an optimization problem with the total normalized evacuation time as the objective function. The constraints consist of maximum allowable evacuation time in each route, maximum capacity of each safe area, and the number of people to be evacuated. The optimization problem is solved numerically using linear programming method with Matlab. Numerical results are shown for various evacuation scenarios for the city of Padang.

  19. Tsunami evacuation mathematical model for the city of Padang

    Energy Technology Data Exchange (ETDEWEB)

    Kusdiantara, R.; Hadianti, R.; Badri Kusuma, M. S.; Soewono, E. [Department of Mathematics Institut Teknologi Bandung, Bandung 40132 (Indonesia); Department of Civil Engineering Institut Teknologi Bandung, Bandung 40132 (Indonesia); Department of Mathematics Institut Teknologi Bandung, Bandung 40132 (Indonesia)

    2012-05-22

    Tsunami is a series of wave trains which travels with high speed on the sea surface. This traveling wave is caused by the displacement of a large volume of water after the occurrence of an underwater earthquake or volcano eruptions. The speed of tsunami decreases when it reaches the sea shore along with the increase of its amplitudes. Two large tsunamis had occurred in the last decades in Indonesia with huge casualties and large damages. Indonesian Tsunami Early Warning System has been installed along the west coast of Sumatra. This early warning system will give about 10-15 minutes to evacuate people from high risk regions to the safe areas. Here in this paper, a mathematical model for Tsunami evacuation is presented with the city of Padang as a study case. In the model, the safe areas are chosen from the existing and selected high rise buildings, low risk region with relatively high altitude and (proposed to be built) a flyover ring road. Each gathering points are located in the radius of approximately 1 km from the ring road. The model is formulated as an optimization problem with the total normalized evacuation time as the objective function. The constraints consist of maximum allowable evacuation time in each route, maximum capacity of each safe area, and the number of people to be evacuated. The optimization problem is solved numerically using linear programming method with Matlab. Numerical results are shown for various evacuation scenarios for the city of Padang.

  20. The photo-thermal industry. Why evacuated collectors are the most profitable solar application

    International Nuclear Information System (INIS)

    Mahdjuri, F.

    1994-01-01

    The reasons for the increasing popularity of using solar energy as one way of meeting the global energy demand are outlined. However, the solar energy industry needs to approach marketing its products rationally and carefully to assure future growth of its market share of power production. The need for clear marketing strategies alongside a good understanding of solar technology are emphasised. (UK)

  1. The validation of evacuation simulation models through the analysis of behavioural uncertainty

    International Nuclear Information System (INIS)

    Lovreglio, Ruggiero; Ronchi, Enrico; Borri, Dino

    2014-01-01

    Both experimental and simulation data on fire evacuation are influenced by a component of uncertainty caused by the impact of the unexplained variance in human behaviour, namely behavioural uncertainty (BU). Evacuation model validation studies should include the study of this type of uncertainty during the comparison of experiments and simulation results. An evacuation model validation procedure is introduced in this paper to study the impact of BU. This methodology is presented through a case study for the comparison between repeated experimental data and simulation results produced by FDS+Evac, an evacuation model for the simulation of human behaviour in fire, which makes use of distribution laws. - Highlights: • Validation of evacuation models is investigated. • Quantitative evaluation of behavioural uncertainty is performed. • A validation procedure is presented through an evacuation case study

  2. Techno-economic analysis of a concentrating solar collector with built-in shell and tube latent heat thermal energy storage

    International Nuclear Information System (INIS)

    Li, Qiyuan; Tehrani, S. Saeed Mostafavi; Taylor, Robert A.

    2017-01-01

    In this paper, the feasibility of a medium temperature, low profile concentrated solar thermal collector integrated with latent heat thermal energy storage (LHTES) is investigated. The proposed modular integrated collector storage (ICS) system consists of six solar receiver units and seven cylindrical shell and tube LHTES tanks. By implementing an innovative optical concentration assembly and an internal linear tracking mechanism, the collector can concentrate beam radiation to the tube receivers during the highest flux hours of a day without any external or rotational motion. The collector's efficiency correlations were obtained experimentally and its integrated performance – with the LHTES units – was evaluated numerically. To demonstrate the potential of this proposed ICS system, an annual analysis was carried out for a characteristic industrial application – a dairy dehydration process that requires a constant 50 kW th of heat in the 120–150 °C temperature range. It was found that adding the storage units will increase the capital costs by ∼10%, but it can increase the annual thermal output of the system by up to ∼20%. A solar fraction of 65% was achievable with some design alternatives, but the optimum techno-economic design had a solar fraction of ∼35% and an annual charging efficiency of nearly 100%. It was also found that if the capital cost of the ICS (collector and LHTES tank) system could be reduced by 50% from an estimated ∼1000 US$/m 2 to ∼500 US$/m 2 through mass production and/or further design optimizations, this system could provide industrial process heat with a levelized cost of heating (LCOH) of ∼0.065 US$/kWh th . - Highlights: • An innovative ICS system was proposed and analyzed for industrial heat applications. • The optimum design can achieve a ∼35% solar fraction with ∼100% charging efficiency. • A 0.12 US$/kWh LCOH was found, but further reductions could result in 0.065 US$/kWh. • Costs reductions of

  3. Simulation of the shopping center 'Zona I' evacuation

    Directory of Open Access Journals (Sweden)

    Jevtić Radoje B.

    2014-01-01

    Full Text Available One of the most important and the most complex tasks in human protection and human safety in objects is the projecting of the object evacuation. There are many factors that could effect on the opportune living of object such as object assignment, arrangement of rooms, arrangement of furniture, arrangement of exits, occupant speed and many other that human lives and material properties depend on. This is very important for objects with great number of humans, such as high residential objects, shopping centers, schools, hospitals etc. This paper has written to show the possible evacuation situations and calculate minimal time for evacuation in case of the shopping center 'Zona I' in Niš.

  4. Evacuation exercise at the CERN Kindergarten

    CERN Document Server

    2001-01-01

    Every year fire evacuation exercises are organized through out CERN and our facility's Kindergarten is no exception. Just a few weeks ago, a fire simulation was carried out in the Kindergarten kitchen facility using synthetic smoke. The purpose of the exercise was to teach staff to react in a disciplined and professional manner when in the presence of danger. The simulation is always carried out at a random time so as to ensure that people in the area under the test are not aware of the exercise. For the Kindergarten the exercise was held early in the school year so as to train those who are new to the establishment. The evacuation was a complete success and all went as it was supposed to. When the children and teachers smelt smoke they followed the prescribed evacuation routes and left the building immediately. Once outside the situation was revealed as an exercise and everyone went back to business as usual, everyone that is, except the fire brigade and fire inspector. The fire brigade checked that the buil...

  5. The Funnel Geometry of Open Flux Tubes in the Low Solar Corona Constrained by O VI and Ne VIII Outflow

    Science.gov (United States)

    Byhring, Hanne S.; Esser, Ruth; Lie-Svendsen, Oystein

    2008-01-01

    Model calculations show that observed outflow velocities of order 7-10 km/s of C IV and O VI ions, and 15-20 km/s of Ne VIII ions, are not only consistent with models of the solar wind from coronas holes, but also place unique constraints on the degree of flow tube expansion as well as the location of the expansion in the transition region/lower corona.

  6. A Simulation-Based Dynamic Stochastic Route Choice Model for Evacuation

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2012-01-01

    Full Text Available This paper establishes a dynamic stochastic route choice model for evacuation to simulate the propagation process of traffic flow and estimate the stochastic route choice under evacuation situations. The model contains a lane-group-based cell transmission model (CTM which sets different traffic capacities for links with different turning movements to flow out in an evacuation situation, an actual impedance model which is to obtain the impedance of each route in time units at each time interval and a stochastic route choice model according to the probit-based stochastic user equilibrium. In this model, vehicles loading at each origin at each time interval are assumed to choose an evacuation route under determinate road network, signal design, and OD demand. As a case study, the proposed model is validated on the network nearby Nanjing Olympic Center after the opening ceremony of the 10th National Games of the People's Republic of China. The traffic volumes and clearing time at five exit points of the evacuation zone are calculated by the model to compare with survey data. The results show that this model can appropriately simulate the dynamic route choice and evolution process of the traffic flow on the network in an evacuation situation.

  7. Method and apparatus for dispensing small quantities of mercury from evacuated and sealed glass capsules

    Science.gov (United States)

    Grossman, Mark W.; George, William A.; Pai, Robert Y.

    1985-01-01

    A technique for opening an evacuated and sealed glass capsule containing a material that is to be dispensed which has a relatively high vapor pressure such as mercury. The capsule is typically disposed in a discharge tube envelope. The technique involves the use of a first light source imaged along the capsule and a second light source imaged across the capsule substantially transversely to the imaging of the first light source. Means are provided for constraining a segment of the capsule along its length with the constraining means being positioned to correspond with the imaging of the second light source. These light sources are preferably incandescent projection lamps. The constraining means is preferably a multiple looped wire support.

  8. RESONANT ABSORPTION OF AXISYMMETRIC MODES IN TWISTED MAGNETIC FLUX TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Giagkiozis, I.; Verth, G. [Solar Plasma Physics Research Centre, School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield, S3 7RH (United Kingdom); Goossens, M.; Doorsselaere, T. Van [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Fedun, V. [Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, Amy Johnson Building, Sheffield, S1 3JD (United Kingdom)

    2016-06-01

    It has been shown recently that magnetic twist and axisymmetric MHD modes are ubiquitous in the solar atmosphere, and therefore the study of resonant absorption for these modes has become a pressing issue because it can have important consequences for heating magnetic flux tubes in the solar atmosphere and the observed damping. In this investigation, for the first time, we calculate the damping rate for axisymmetric MHD waves in weakly twisted magnetic flux tubes. Our aim is to investigate the impact of resonant damping of these modes for solar atmospheric conditions. This analytical study is based on an idealized configuration of a straight magnetic flux tube with a weak magnetic twist inside as well as outside the tube. By implementing the conservation laws derived by Sakurai et al. and the analytic solutions for weakly twisted flux tubes obtained recently by Giagkiozis et al. we derive a dispersion relation for resonantly damped axisymmetric modes in the spectrum of the Alfvén continuum. We also obtain an insightful analytical expression for the damping rate in the long wavelength limit. Furthermore, it is shown that both the longitudinal magnetic field and the density, which are allowed to vary continuously in the inhomogeneous layer, have a significant impact on the damping time. Given the conditions in the solar atmosphere, resonantly damped axisymmetric modes are highly likely to be ubiquitous and play an important role in energy dissipation. We also suggest that, given the character of these waves, it is likely that they have already been observed in the guise of Alfvén waves.

  9. Roof Integrated Solar Absorbers: The Measured Performance of ''Invisible'' Solar Collectors: Preprint

    International Nuclear Information System (INIS)

    Colon, C. J.; Merrigan, T.

    2001-01-01

    The Florida Solar Energy Center (FSEC), with the support of the National Renewable Energy Laboratory, has investigated the thermal performance of solar absorbers that are an integral, yet indistinguishable, part of a building's roof. The first roof-integrated solar absorber (RISA) system was retrofitted into FSEC's Flexible Roof Facility in Cocoa, Florida, in September 1998. This ''proof-of-concept'' system uses the asphalt shingle roof surface and the plywood decking under the shingles as an unglazed solar absorber. Data was gathered for a one-year period on the system performance. In Phase 2, two more RISA prototypes were constructed and submitted for testing. The first used the asphalt shingles on the roof surface with the tubing mounted on the underside of the plywood decking. The second prototype used metal roofing panels over a plywood substrate and placed the polymer tubing between the plywood decking and the metal roofing. This paper takes a first look at the thermal performance results for the ''invisible'' solar absorbers that use the actual roof surface of a building for solar heat collection

  10. A spatiotemporal optimization model for the evacuation of the population exposed to flood hazard

    Science.gov (United States)

    Alaeddine, H.; Serrhini, K.; Maizia, M.

    2015-03-01

    Managing the crisis caused by natural disasters, and especially by floods, requires the development of effective evacuation systems. An effective evacuation system must take into account certain constraints, including those related to traffic network, accessibility, human resources and material equipment (vehicles, collecting points, etc.). The main objective of this work is to provide assistance to technical services and rescue forces in terms of accessibility by offering itineraries relating to rescue and evacuation of people and property. We consider in this paper the evacuation of an urban area of medium size exposed to the hazard of flood. In case of inundation, most people will be evacuated using their own vehicles. Two evacuation types are addressed in this paper: (1) a preventive evacuation based on a flood forecasting system and (2) an evacuation during the disaster based on flooding scenarios. The two study sites on which the developed evacuation model is applied are the Tours valley (Fr, 37), which is protected by a set of dikes (preventive evacuation), and the Gien valley (Fr, 45), which benefits from a low rate of flooding (evacuation before and during the disaster). Our goal is to construct, for each of these two sites, a chronological evacuation plan, i.e., computing for each individual the departure date and the path to reach the assembly point (also called shelter) according to a priority list established for this purpose. The evacuation plan must avoid the congestion on the road network. Here we present a spatiotemporal optimization model (STOM) dedicated to the evacuation of the population exposed to natural disasters and more specifically to flood risk.

  11. A Study of Flood Evacuation Center Using GIS and Remote Sensing Technique

    Science.gov (United States)

    Mustaffa, A. A.; Rosli, M. F.; Abustan, M. S.; Adib, R.; Rosli, M. I.; Masiri, K.; Saifullizan, B.

    2016-07-01

    This research demonstrated the use of Remote Sensing technique and GIS to determine the suitability of an evacuation center. This study was conducted in Batu Pahat areas that always hit by a series of flood. The data of Digital Elevation Model (DEM) was obtained by ASTER database that has been used to delineate extract contour line and elevation. Landsat 8 image was used for classification purposes such as land use map. Remote Sensing incorporate with GIS techniques was used to determined the suitability location of the evacuation center from contour map of flood affected areas in Batu Pahat. GIS will calculate the elevation of the area and information about the country of the area, the road access and percentage of the affected area. The flood affected area map may provide the suitability of the flood evacuation center during the several levels of flood. The suitability of evacuation centers can be determined based on several criteria and the existing data of the evacuation center will be analysed. From the analysis among 16 evacuation center listed, there are only 8 evacuation center suitable for the usage during emergency situation. The suitability analysis was based on the location and the road access of the evacuation center toward the flood affected area. There are 10 new locations with suitable criteria of evacuation center proposed on the study area to facilitate the process of rescue and evacuating flood victims to much safer and suitable locations. The results of this study will help in decision making processes and indirectly will help organization such as fire-fighter and the Department of Social Welfare in their work. Thus, this study can contribute more towards the society.

  12. Initial management of hospital evacuations caused by Hurricane Rita: a systematic investigation.

    Science.gov (United States)

    Downey, Erin L; Andress, Knox; Schultz, Carl H

    2013-06-01

    Hurricanes remain a major threat to hospitals throughout the world. The authors attempted to identify the planning areas that impact hospital management of evacuations and the challenges faced when sheltering-in-place. This observational, retrospective cohort study examined acute care institutions from one hospital system impacted by Hurricane Rita in 2005. Investigators used a standardized survey instrument and interview process, previously used in the hospital evacuation context, to examine hospitals' initial internal situational awareness and subsequent decision making that resulted in evacuation due to Hurricane Rita. Participants from each hospital included representatives from senior leadership and clinical and nonclinical staff that comprised the Incident Management Team (IMT). The main measured outcomes were responses to 95 questions contained in the survey. Seven of ten eligible hospitals participated in the study. All facilities evacuated the sickest patients first. The most significant factors prompting evacuation were the issuing of mandatory evacuation orders, storm dynamics (category, projected path, storm surge), and loss of regional communications. Hospitals that sheltered-in-place experienced staff shortages, interruptions to electrical power, and loss of water supplies. Three fully-evacuated institutions experienced understaffing of 40%-60%, and four hospitals sustained depressed staffing levels for over four weeks. Five hospitals lost electricity for a mean of 4.8 days (range .5-11 days). All facilities continued to receive patients to their Emergency Departments (EDs) while conducting their own evacuation. Hospital EDs should plan for continuous patient arrival during evacuation. Emergency Operation Plans (EOPs) that anticipate challenges associated with evacuation will help to maximize initial decision making and management during a crisis situation. Hospitals that shelter-in-place face critical shortages and must provide independent patient

  13. Thermal efficiency of low cost solar collectors - CSBC; Eficiencia termica de coletores solares de baixo custo - CSBC

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Renato C.; Shiota, Robson T.; Mello, Samuel F.; Assis Junior, Valdir; Bartoli, Julio R. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica. Dept. de Tecnologia de Polimeros

    2006-07-01

    The thermal performance of a low cost flat panel solar collector was measured. This Low Cost Solar Collector is a novel concept for water heating using only thermoplastics materials, used on building: ceiling and tubes made of unplasticized PVC, but without transparent cover. The top side of the UPVC panel was black painted to be the solar radiation absorber surface. Prototypes were installed on two charity houses around Campinas and at the FEQ campus, being used without any trouble for one year. The thermal efficiency analysis followed ABNT NBR 10184 standard at the Green-Solar Laboratory, Brazilian Centre for Development of Solar Thermal Energy, PUC-Minas. It was measured a thermal efficiency of 67%, compared to the 75% usually found on conventional solar collectors made of copper tubes and with glass cover. (author)

  14. Simulating the effects of social networks on a population's hurricane evacuation participation

    Science.gov (United States)

    Widener, Michael J.; Horner, Mark W.; Metcalf, Sara S.

    2013-04-01

    Scientists have noted that recent shifts in the earth's climate have resulted in more extreme weather events, like stronger hurricanes. Such powerful storms disrupt societal function and result in a tremendous number of casualties, as demonstrated by recent hurricane experience in the US Planning for and facilitating evacuations of populations forecast to be impacted by hurricanes is perhaps the most effective strategy for reducing risk. A potentially important yet relatively unexplored facet of people's evacuation decision-making involves the interpersonal communication processes that affect whether at-risk residents decide to evacuate. While previous research has suggested that word-of-mouth effects are limited, data supporting these assertions were collected prior to the widespread adoption of digital social media technologies. This paper argues that the influence of social network effects on evacuation decisions should be revisited given the potential of new social media for impacting and augmenting information dispersion through real-time interpersonal communication. Using geographic data within an agent-based model of hurricane evacuation in Bay County, Florida, we examine how various types of social networks influence participation in evacuation. It is found that strategies for encouraging evacuation should consider the social networks influencing individuals during extreme events, as it can be used to increase the number of evacuating residents.

  15. A Method for Formulizing Disaster Evacuation Demand Curves Based on SI Model

    Directory of Open Access Journals (Sweden)

    Yulei Song

    2016-10-01

    Full Text Available The prediction of evacuation demand curves is a crucial step in the disaster evacuation plan making, which directly affects the performance of the disaster evacuation. In this paper, we discuss the factors influencing individual evacuation decision making (whether and when to leave and summarize them into four kinds: individual characteristics, social influence, geographic location, and warning degree. In the view of social contagion of decision making, a method based on Susceptible-Infective (SI model is proposed to formulize the disaster evacuation demand curves to address both social influence and other factors’ effects. The disaster event of the “Tianjin Explosions” is used as a case study to illustrate the modeling results influenced by the four factors and perform the sensitivity analyses of the key parameters of the model. Some interesting phenomena are found and discussed, which is meaningful for authorities to make specific evacuation plans. For example, due to the lower social influence in isolated communities, extra actions might be taken to accelerate evacuation process in those communities.

  16. Effluents treatment by solar photocatalysis; Tratamiento de efluentes con fotocatalisis solar

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J; Malato, S; Richter, C [Plataforma Solar de almeria, Almeria (Spain); Carmona, F; Martinez, F [Deretil, Almeria (Spain)

    1996-12-31

    A solar photocatalytic system is being developed at the Plataforma Solar De Almeria to destroy organic contaminants in water. Test with common water contaminants were conducted at the Solar Detoxification loop with real sun light and large quantities of water flowing through glass tubes were the solar UV light is concentrated. Experiments at this scale provide verification of laboratory studies and allow the design and operation of real preindustrial detoxification systems. (Author)

  17. Evacuation and Sheltering of Hospitals in Emergencies: A Review of International Experience

    OpenAIRE

    Bagaria, Jayshree; Heggie, Caroline; Abrahams, Jonathan; Murray, Virginia

    2017-01-01

    Abstract Objective: A scoping exercise to establish how common hospital evacuations are, identify hospital evacuation policies and review case studies to identify trig-gers, processes and challenges involved in the evacuation of hospitals globally. Design: A systematic search of PubMed and disaster agency online resources, search of grey literature and media reports. Results: This study showed that hospitals are vulnerable to both natural and man made disasters and that hospital evacuations d...

  18. Evacuation of Hospitals during Disaster, Establishment of a Field Hospital, and Communication

    OpenAIRE

    Tekin, Erdal; Bayramoglu, Atif; Uzkeser, Mustafa; Cakir, Zeynep

    2017-01-01

    The buildings, working personnel, and patients and their relatives may directly or indirectly be affected by the disasters. Here we will discuss evacuation, establishing a field hospital, communication, the role of the media in disasters, and defending against sabotage. The affected individuals should be evacuated and transferred to secure zones safely and rapidly. How the decision for evacuation should be made and how the evacuation triage should be performed are important issues. Field hosp...

  19. Water decontamination by solar photocatalysis. Descontaminacion de aguas residuales mediante fotocatalisis solar

    Energy Technology Data Exchange (ETDEWEB)

    Blanco Galvez, J; Malato Rodriguez, S

    1993-01-01

    A solar photocatalytic system is being developed at the Plataforma Solar de Almeria to destroy organic contaminants in water. Test with common water contaminants were conducted at the Solar Detoxification Loop with real sunlight and large quantities of water flowing through glass tubes were the solar UV light is concentrated. Experiments at this scale provide verification of laboratory studies and allow the design and operation of real preindustrial detoxification systems. (Author)

  20. EXPERIMENTAL RESEARCH OF THE INFLUENCE OF VARIOUS TYPES OF SOLAR COLLECTORS FOR PERFORMANCE SOLAR DESALINATION PLANT

    Directory of Open Access Journals (Sweden)

    Rakhmatulin I.R.

    2014-04-01

    Full Text Available The article discusses the possibility of using renewable energy for water purification. Results of analysis of a preferred energy source for a water purification using installed in places where fresh water shortages and a lack of electrical energy. The possibility of desalination of salt water using solar energy for regions with temperate climate. Presented desalination plant working on energy vacuum solar collectors, principles of action developed by the desalination plant. The experimental results of a constructed distiller when working with vacuum glass tubes and vacuum tubes with copper core inside. Conclusions about the possibility of using solar collectors for water desalination, are tips and tricks to improve the performance of solar desalination plant.

  1. Endoscopic burr hole evacuation of an acute subdural hematoma.

    Science.gov (United States)

    Codd, Patrick J; Venteicher, Andrew S; Agarwalla, Pankaj K; Kahle, Kristopher T; Jho, David H

    2013-12-01

    Acute subdural hematoma evacuations frequently necessitate large craniotomies with extended operative times and high relative blood loss, which can lead to additional morbidity for the patient. While endoscopic minimally invasive approaches to chronic subdural collections have been successfully demonstrated, this technique has not previously been applied to acute subdural hematomas. The authors report their experience with an 87-year-old patient presenting with a large acute right-sided subdural hematoma successfully evacuated via an endoscopic minimally invasive technique. The operative approach is outlined, and the literature on endoscopic subdural collection evacuation reviewed. Copyright © 2013. Published by Elsevier Ltd.

  2. Design optimization of a multi-temperature solar thermal heating system for an industrial process

    International Nuclear Information System (INIS)

    Allouhi, A.; Agrouaz, Y.; Benzakour Amine, Mohammed; Rehman, S.; Buker, M.S.; Kousksou, T.; Jamil, A.; Benbassou, A.

    2017-01-01

    Highlights: •Integration of solar thermal energy into an industrial activity is presented. •Hot water is required at four temperatures and load profiles. •Design optimization based on the LCC method is introduced. •Annual performance of centralized system is discussed. •Sensitivity analysis based on economic variables is investigated. -- Abstract: Presently, great challenges are being faced by the industrial sector in terms of energy management and environmental protection. Utilization of solar energy to meet a portion of heat demand in various industries constitutes tremendous economic opportunities for developing countries such as Morocco. Therefore, this paper introduces an optimization procedure and simulation of a centralized solar heating system providing hot water to four processes with different temperature levels and load profiles. As a case study, a Casablanca based Moroccan milk processing company is evaluated and the life cycle cost method is practiced to select the optimal size of the main design parameters for decision-making. It was found that 400 m 2 of evacuated tube collectors tilted at an angle of 30° and connected to a 2000 l storage tank can lead to a maximum life cycle saving cost of 179 kUSD for a total annual heat demand of 528.23 MWh. In this optimal configuration, the overall annual solar fraction is found to be 41% and the payback period of 12.27 years attained. The system has the potential to reduce around 77.23 tons of CO 2 equivalents of greenhouse gas emissions annually. The economic competitiveness of the solar thermal heating plant can be considerably improved with higher inflation rates and lower initial investments.

  3. War casualties: recent trends in evacuation, triage and the golden hour

    International Nuclear Information System (INIS)

    Safdar, C. A.

    2010-01-01

    Prompt medical treatment and early evacuation is the goal of military medicine in the battlefield. 'Triage' is a process of sorting the casualties according to the severity of injury and the prioritization of treatment. In trauma management 'Golden Hour' is the first sixty minutes or so after injury; this emphasizes that the chances of the victim's survival are the greatest if definitive care is given as early as possible. Our evacuation protocols follow the triage but the time to treatment is beyond sixty minutes. Many Armies have developed evacuation systems which allow the casualty to be seen within this specified time. This has been achieved by streamlining the evacuation chain, extensive incorporation of air transport and training of paramedics in advanced life support measures. In line with the modern trends we need to modernize our own system of casualty evacuation and treatment. (author)

  4. Effectiveness and risks associated with sheltering and evacuation

    International Nuclear Information System (INIS)

    Mohseni, A.; McKenna, T.

    1995-01-01

    The United States Nuclear Regulatory Commission (NRC) and the Environmental Protection Agency (EPA) have assessed the risks and benefits associated with evacuation and sheltering following a severe reactor accident. In the case of a severe accident and the associated uncertainties with the source term and containment behaviour, these assessments suggest that prompt evacuation of areas close to the plant offers the highest protection of the public against acute doses. Sheltering may be used as an alternative in special circumstances where evacuation may not be feasible. The source term associated with reactor accidents and containment failure mechanism affect the effectiveness of different protective measures. A comparison of different protective measures is made and results discussed. (Author). 9 refs., 4 figs., 2 tabs

  5. A Simple Evacuation Modeling and Simulation Tool for First Responders

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Daniel B [ORNL; Payne, Patricia W [ORNL

    2015-01-01

    Although modeling and simulation of mass evacuations during a natural or man-made disaster is an on-going and vigorous area of study, tool adoption by front-line first responders is uneven. Some of the factors that account for this situation include cost and complexity of the software. For several years, Oak Ridge National Laboratory has been actively developing the free Incident Management Preparedness and Coordination Toolkit (IMPACT) to address these issues. One of the components of IMPACT is a multi-agent simulation module for area-based and path-based evacuations. The user interface is designed so that anyone familiar with typical computer drawing tools can quickly author a geospatially-correct evacuation visualization suitable for table-top exercises. Since IMPACT is designed for use in the field where network communications may not be available, quick on-site evacuation alternatives can be evaluated to keep pace with a fluid threat situation. Realism is enhanced by incorporating collision avoidance into the simulation. Statistics are gathered as the simulation unfolds, including most importantly time-to-evacuate, to help first responders choose the best course of action.

  6. Evacuation Risks: a tentative approach for quantification

    International Nuclear Information System (INIS)

    Bastien, M.C.; Dumas, M.; Laporte, J; Parmentier, N.

    1985-01-01

    This study tries to assess the risk of deaths and injuries from motor vehicle accidents associated with an evacuation of population groups in case of nuclear plant accidents. The risk per person-km is evaluated using: (a) data from previous evacuation: information from Soufriere evacuation (Guadeloupe Island 1976) and Mississauga (1979), added to Hans and Sell's data: no road accident occurred for a sample of 1,500,000 persons; (b) national recording system for motor vehicle accident: the rates of 2.2 10 -8 deaths per person-km and 32 10 -8 injuries per person-km is calculated as an average. These last rates in France overestimate the number of casualties. A reasonable hypothesis is to assume that the probability of road accident occurrence follows a Poisson distribution, as these events are independent and unfrequent, as no accident was observed in a sample of 1,500,000 persons the probability is between 0 and an upper value of 0.24 10 -8 deaths per person-km and 3.29 10 -8 injuries per person-km. The average and maximum population involved within different radii around French and U.S. Nuclear power sites are taken as a sample size in order to study the total risk of deaths and injuries in the hypothesis of an evacuation being necessary to protect the populations

  7. Tsunami evacuation analysis, modelling and planning: application to the coastal area of El Salvador

    Science.gov (United States)

    Gonzalez-Riancho, Pino; Aguirre-Ayerbe, Ignacio; Aniel-Quiroga, Iñigo; Abad Herrero, Sheila; González Rodriguez, Mauricio; Larreynaga, Jeniffer; Gavidia, Francisco; Quetzalcoalt Gutiérrez, Omar; Álvarez-Gómez, Jose Antonio; Medina Santamaría, Raúl

    2014-05-01

    Advances in the understanding and prediction of tsunami impacts allow the development of risk reduction strategies for tsunami-prone areas. Conducting adequate tsunami risk assessments is essential, as the hazard, vulnerability and risk assessment results allow the identification of adequate, site-specific and vulnerability-oriented risk management options, with the formulation of a tsunami evacuation plan being one of the main expected results. An evacuation plan requires the analysis of the territory and an evaluation of the relevant elements (hazard, population, evacuation routes, and shelters), the modelling of the evacuation, and the proposal of alternatives for those communities located in areas with limited opportunities for evacuation. Evacuation plans, which are developed by the responsible authorities and decision makers, would benefit from a clear and straightforward connection between the scientific and technical information from tsunami risk assessments and the subsequent risk reduction options. Scientifically-based evacuation plans would translate into benefits for the society in terms of mortality reduction. This work presents a comprehensive framework for the formulation of tsunami evacuation plans based on tsunami vulnerability assessment and evacuation modelling. This framework considers (i) the hazard aspects (tsunami flooding characteristics and arrival time), (ii) the characteristics of the exposed area (people, shelters and road network), (iii) the current tsunami warning procedures and timing, (iv) the time needed to evacuate the population, and (v) the identification of measures to improve the evacuation process, such as the potential location for vertical evacuation shelters and alternative routes. The proposed methodological framework aims to bridge the gap between risk assessment and risk management in terms of tsunami evacuation, as it allows for an estimation of the degree of evacuation success of specific management options, as well as

  8. Prey exoskeletons influence the course of gastric evacuation in Atlantic cod Gadus morhua

    DEFF Research Database (Denmark)

    Couturier, C. S.; Andersen, N. G.; Audet, C.

    2013-01-01

    species, Pandalus borealis, Pandalus montagui and Eualus macilentus, and the crab Chionoecetes opilio, were evacuated from the stomach at different rates. The duration of all stages increased with increasing ash (and carbonate) content of the fresh prey. Thickness, chemical composition and morphology...... of the prey exoskeleton all affected gastric evacuation: duration of initial delay, overall evacuation rate and a decreased evacuation rate at the end of the process. The power exponential function (PEF), with its shape parameter, described the course of evacuation for these prey types well, especially...

  9. Study of evacuation times based on recent accident history

    International Nuclear Information System (INIS)

    Mills, G.S.; Neuhauser, K.S.

    1995-01-01

    A key parameter in the calculation of accident dose-risks by the RADTRAN 4 code is the time assigned for evacuation of the affected area surrounding the accident. Currently, in the interest of assured conservatism, this time is set at 24 hrs. Casual anecdotal evidence has indicated that this value is overly conservative and results in assignment of overly conservative estimates of accident dose-risk. Therefore, a survey of recent truck accidents involving various hazardous materials which required evacuation of surrounding populations reported in various news media was undertaken. Accounts of pertinent scenarios were gleaned from databases citing newspapers and other periodicals, and the local authorities involved in each were contacted to get details of the evacuation including time required. This paper presents the data obtained in the study and the resultant mean evacuation time plus limits and factors influencing specific results together with conclusions regarding the appropriate value to be used in the RADTRAN 4 code

  10. Efficiency and entropy generation in fined tube solar collectors systems; Eficiencia e geracao de entropia em sistemas de tubos aletados coletores de energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcio Bueno dos [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. de Integracao e Testes; Saboya, Sergio Mourao [Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, SP (Brazil). Dept. de Energia

    1998-07-01

    This paper studies the efficiency of a fined tube solar collector used in artificial satellites and the relation of this efficiency with the entropy generation in the fin. The mathematical modeling of heat transfer in the collector leads to a non-linear integrodifferential system of equations, which is solved numerically. The solution gives the efficiency, which is presented as function of geometrical and physical characteristics of the collector. It is also shown that a minimum entropy generation in the fins, in a collector, whose characteristics are subjected to constraints, corresponds to an optimum efficiency, that is, an efficiency value advantageous to collector performance. (author)

  11. Physics of magnetic flux tubes

    CERN Document Server

    Ryutova, Margarita

    2015-01-01

    This book is the first account of the physics of magnetic flux tubes from their fundamental properties to collective phenomena in an ensembles of flux tubes. The physics of magnetic flux tubes is absolutely vital for understanding fundamental physical processes in the solar atmosphere shaped and governed by magnetic fields. High-resolution and high cadence observations from recent space and  ground-based instruments taken simultaneously at different heights and temperatures not only show the ubiquity of filamentary structure formation but also allow to study how various events are interconnected by system of magnetic flux tubes. The book covers both theory and observations. Theoretical models presented in analytical and phenomenological forms are tailored for practical applications. These are welded with state-of-the-art observations from early decisive ones to the most recent data that open a new phase-space for exploring the Sun and sun-like stars. Concept of magnetic flux tubes is central to various magn...

  12. Social influence on evacuation behavior in real and virtual environments

    Directory of Open Access Journals (Sweden)

    Max Kinateder

    2016-07-01

    Full Text Available Virtual reality (VR is a promising tool to study evacuation behavior as it allows experimentally controlled, safe simulation of otherwise dangerous situations. However, validation studies comparing evacuation behavior in real and virtual environments are still scarce. We compare the decision to evacuate in response to a fire alarm in matched physical and virtual environments. 150 participants were tested individually in a one-trial experiment in one of three conditions. In the Control condition, the fire alarm sounded while the participant performed a bogus perceptual matching task. In the Passive bystander condition, the participant performed the task together with a confederate who ignored the fire alarm. In the Active bystander condition, the confederate left the room when the fire alarm went off. Half of the participants in each condition experienced the scenario in the real laboratory, and the other half in a matched virtual environment with a virtual bystander, presented in a head-mounted display. The active bystander group was more likely to evacuate, and the passive bystander group less likely to evacuate, than the control group. This pattern of social influence was observed in both the real and virtual environments, although the overall response to the virtual alarm was reduced; positive influence was comparable, whereas negative influence was weaker in VR. We found no reliable gender effects for the participant or the bystander. These findings extend the bystander effect to the decision to evacuate, revealing a positive as well as the previous negative social influence. The results support the ecological validity of VR as a research tool to study evacuation behavior in emergency situations, with the caveat that effect sizes may be smaller in VR.

  13. Theoretical simulation of small scale psychometric solar water desalination system in semi-arid region

    International Nuclear Information System (INIS)

    Shatat, Mahmoud; Omer, Siddig; Gillott, Mark; Riffat, Saffa

    2013-01-01

    Many countries around the world suffer from water scarcity. This is especially true in remote and semi-arid regions in the Middle East and North Africa (MENA) where per capita water supplies decline as populations increase. This paper presents the results of a theoretical simulation of an affordable small scale solar water desalination plant using the psychometric humidification and dehumidification process coupled with an evacuated tube solar collector with an area of about 2 m 2 . A mathematical model was developed to describe the system's operation. Then a computer program using Simulink Matlab software was developed to provide the governing equations for the theoretical calculations of the humidification and dehumidification processes. The experimental and theoretical values for the total daily distillate output were found to be closely correlated. After the experimental calibration of the mathematical model, a model simulating solar radiation under the climatic conditions in the Middle East region proved that the performance of the system could be improved to produce a considerably higher amount of fresh water, namely up to 17.5 kg/m 2 day. This work suggests that utilizing the concept of humidification and dehumidification, a compact water desalination unit coupled with solar collectors would significantly increase the potable water supply in remote area. It could be a unique solution of water shortages in such areas. -- Highlights: • An affordable small scale desalination system is proposed. • A mathematical model of the desalination system is developed and programmed using Matlab Simulink. • The model describes the psychometric process based on humidification and dehumidification. • The model is used in optimal selection of elements and operating conditions for solar desalination system. • The use of solar water desalination contributes significantly to reducing global warming

  14. The Effects of Magnetic-Field Geometry on Longitudinal Oscillations of Solar Prominences: Cross-Sectional Area Variation for Thin Tubes

    Science.gov (United States)

    Luna, M.; Diaz, A. J.; Oliver, R.; Terradas, J.; Karpen, J.

    2016-01-01

    Solar prominences are subject to both field-aligned (longitudinal) and transverse oscillatory motions, as evidenced by an increasing number of observations. Large-amplitude longitudinal motions provide valuable information on the geometry of the filament channel magnetic structure that supports the cool prominence plasma against gravity. Our pendulum model, in which the restoring force is the gravity projected along the dipped field lines of the magnetic structure, best explains these oscillations. However, several factors can influence the longitudinal oscillations, potentially invalidating the pendulum model. Aims. The aim of this work is to study the influence of large-scale variations in the magnetic field strength along the field lines, i.e., variations of the cross-sectional area along the flux tubes supporting prominence threads. Methods. We studied the normal modes of several flux tube configurations, using linear perturbation analysis, to assess the influence of different geometrical parameters on the oscillation properties. Results. We found that the influence of the symmetric and asymmetric expansion factors on longitudinal oscillations is small.Conclusions. We conclude that the longitudinal oscillations are not significantly influenced by variations of the cross-section of the flux tubes, validating the pendulum model in this context.

  15. Chemical Agents: Facts about Evacuation

    Science.gov (United States)

    ... What CDC is Doing Blog: Public Health Matters Chemical Agents: Facts About Evacuation Format: Select One PDF [ ... on Facebook Tweet Share Compartir Some kinds of chemical accidents or attacks, such as a train derailment ...

  16. Spatial memory enhances the evacuation efficiency of virtual pedestrians under poor visibility condition

    Science.gov (United States)

    Ma, Yi; Lee, Eric Wai Ming; Shi, Meng; Kwok Kit Yuen, Richard

    2018-03-01

    Spatial memory is a critical navigation support tool for disoriented evacuees during evacuation under adverse environmental conditions such as dark or smoky conditions. Owing to the complexity of memory, it is challenging to understand the effect of spatial memory on pedestrian evacuation quantitatively. In this study, we propose a simple method to quantitatively represent the evacueeʼs spatial memory about the emergency exit, model the evacuation of pedestrians under the guidance of the spatial memory, and investigate the effect of the evacueeʼs spatial memory on the evacuation from theoretical and physical perspectives. The result shows that (i) a good memory can significantly assist the evacuation of pedestrians under poor visibility conditions, and the evacuation can always succeed when the degree of the memory exceeds a threshold (\\varphi > 0.5); (ii) the effect of memory is superior to that of “follow-the-crowd” under the same environmental conditions; (iii) in the case of multiple exits, the difference in the degree of the memory between evacuees has a significant effect (the greater the difference, the faster the evacuation) for the evacuation under poor visibility conditions. Our study provides a new quantitative insight into the effect of spatial memory on crowd evacuation under poor visibility conditions. Project supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant No. 11203615).

  17. Direct solar-pumped iodine laser amplifier

    Science.gov (United States)

    Han, Kwang S.; Hwang, In Heon

    1990-01-01

    The optimum conditions of a solar pumped iodine laser are found in this research for the case of a continuous wave operation and a pulsed operation. The optimum product of the pressure(p) inside the laser tube and the tube diameter(d) was pd=40 approx. 50 torr-cm on the contrary to the case of a high intensity flashlamp pumped iodine laser where the optimum value of the product is known to be pd=150 torr-cm. The pressure-diameter product is less than 1/3 of that of the high power iodine laser. During the research period, various laser materials were also studied for solar pumping. Among the laser materials, Nd:YAG is found to have the lowest laser threshold pumping intensity of about 200 solar constant. The Rhodamine 6G was also tested as the solar pumped laser material. The threshold pumping power was measured to be about 20,000 solar constant. The amplification experiment for a continuously pumped iodine laser amplifier was performed using Vortek solar simulator and the amplification factors were measured for single pass amplification and triple pass amplification of the 15 cm long amplifier tube. The amplification of 5 was obtained for the triple pass amplification.

  18. Solar thermal power system

    Science.gov (United States)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  19. Aero-medical evacuation from the second Israel-Lebanon war: a descriptive study.

    Science.gov (United States)

    Schwartz, Dagan; Resheff, Avram; Geftler, Alex; Weiss, Aviram; Birenbaum, Erez; Lavon, Ophir

    2009-05-01

    The second Lebanon war started as a limited operation and progressed to a large-scale campaign. Most of the fighting took place in mountainous villages and small towns inhabited with civilians. The Israeli Defense Forces (IDF) Airborne rescue and evacuation unit is charged with air evacuation of soldiers and civilians in times of peace, limited conflict, and war. We describe this unit's activities in the second Lebanon war, analyzing injury, treatment, and evacuation characteristics Data were collected from flight medical reports, debriefings of aero-medical team members (usually immediately upon return from mission), ground units medical reports and debriefings, and hospital records. 725 IDF soldiers were injured and 117 killed either in Lebanon or near the Israeli-Lebanese border during the war. A total of 338 (46%) were evacuated in 95 airlifts (averaging 4.5 evacuees per airlift) from the fighting zones or the border. Air evacuation used dedicated helicopters with advanced care capacities, and most victims were evacuated straight from the battlefield, as the fighting was ensuing. Many wounded first received advanced medical care upon the arrival of the aero-medical teams. In military operations within civilian populated areas with threats to ground transport, air evacuation can sometimes be the only readily available option. Providing timely ground advanced medical care proved difficult in many instances. Thus, for many, the rescue helicopter was the first point of access to such care. Aero-medical aircrafts and personnel faced threats from gunfire and missiles, causing both delays in evacuation and a high average number of evacuees per airlift. This article proposes ways of coping with situations in which similar rescue and evacuation problems are likely.

  20. Leveraging Twitter to gauge evacuation compliance: Spatiotemporal analysis of Hurricane Matthew.

    Science.gov (United States)

    Martín, Yago; Li, Zhenlong; Cutter, Susan L

    2017-01-01

    Hurricane Matthew was the deadliest Atlantic storm since Katrina in 2005 and prompted one of the largest recent hurricane evacuations along the Southeastern coast of the United States. The storm and its projected landfall triggered a massive social media reaction. Using Twitter data, this paper examines the spatiotemporal variability in social media response and develops a novel approach to leverage geotagged tweets to assess the evacuation responses of residents. The approach involves the retrieval of tweets from the Twitter Stream, the creation and filtering of different datasets, and the statistical and spatial processing and treatment to extract, plot and map the results. As expected, peak Twitter response was reached during the pre-impact and preparedness phase, and decreased abruptly after the passage of the storm. A comparison between two time periods-pre-evacuation (October 2th-4th) and post-evacuation (October 7th-9th)-indicates that 54% of Twitter users moved away from the coast to a safer location, with observed differences by state on the timing of the evacuation. A specific sub-state analysis of South Carolina illustrated overall compliance with evacuation orders and detailed information on the timing of departure from the coast as well as the destination location. These findings advance the use of big data and citizen-as-sensor approaches for public safety issues, providing an effective and near real-time alternative for measuring compliance with evacuation orders.

  1. Leveraging Twitter to gauge evacuation compliance: Spatiotemporal analysis of Hurricane Matthew.

    Directory of Open Access Journals (Sweden)

    Yago Martín

    Full Text Available Hurricane Matthew was the deadliest Atlantic storm since Katrina in 2005 and prompted one of the largest recent hurricane evacuations along the Southeastern coast of the United States. The storm and its projected landfall triggered a massive social media reaction. Using Twitter data, this paper examines the spatiotemporal variability in social media response and develops a novel approach to leverage geotagged tweets to assess the evacuation responses of residents. The approach involves the retrieval of tweets from the Twitter Stream, the creation and filtering of different datasets, and the statistical and spatial processing and treatment to extract, plot and map the results. As expected, peak Twitter response was reached during the pre-impact and preparedness phase, and decreased abruptly after the passage of the storm. A comparison between two time periods-pre-evacuation (October 2th-4th and post-evacuation (October 7th-9th-indicates that 54% of Twitter users moved away from the coast to a safer location, with observed differences by state on the timing of the evacuation. A specific sub-state analysis of South Carolina illustrated overall compliance with evacuation orders and detailed information on the timing of departure from the coast as well as the destination location. These findings advance the use of big data and citizen-as-sensor approaches for public safety issues, providing an effective and near real-time alternative for measuring compliance with evacuation orders.

  2. The study of the application of crystalline silicone solar cell type for a temporary flood camp

    Science.gov (United States)

    Hendarti, R.; Katarina, W.; Wangidjaja, W.

    2017-12-01

    During flood period, most of temporary evacuation shelters in Jakarta are lack in electricity because the local electricity company turned the electricity off to avoid any electrical problem because of the high water level over the flooded area. Whereas, the local electricity or the grid is the main energy source for the lighting and water pump machine, therefore the energy source becomes a significant issue during this period. Currently, the local government has already provided diesel generators to substitute the local grid when it is off, however, the amount of the generators is still limited. This study, therefore, investigated an alternative energy for the electricity, particularly solar energy and this paper presents an analysis of the Jakarta duration of sunshine during rainy seasons in order to investigate which Crystalline Silicone solar cell type that can be implemented optimally for energy supply in the period of flood evacuation as well as for the shelter. A deep analysis on literature review was conducted on the three types of Crystalline Silicone solar cell, Jakarta local weather. Furthermore, the standard of International Federation of Red Cross and Red Crescent Societies (IFRC) was also studied for the shelter design. The results of this study could be used as a reference for the local authority in providing the substitute energy supply in the temporary evacuation area during flood period in which the solar energy source could be also attached on the shelter.

  3. An Evaluation of Infrastructure for Tsunami Evacuation in Padang, West Sumatra, Indonesia (Invited)

    Science.gov (United States)

    Cedillos, V.; Canney, N.; Deierlein, G.; Diposaptono, S.; Geist, E. L.; Henderson, S.; Ismail, F.; Jachowski, N.; McAdoo, B. G.; Muhari, A.; Natawidjaja, D. H.; Sieh, K. E.; Toth, J.; Tucker, B. E.; Wood, K.

    2009-12-01

    Padang has one of the world’s highest tsunami risks due to its high hazard, vulnerable terrain and population density. The current strategy to prepare for tsunamis in Padang is focused on developing early warning systems, planning evacuation routes, conducting evacuation drills, and raising local awareness. Although these are all necessary, they are insufficient. Padang’s proximity to the Sunda Trench and flat terrain make reaching safe ground impossible for much of the population. The natural warning in Padang - a strong earthquake that lasts over a minute - will be the first indicator of a potential tsunami. People will have about 30 minutes after the earthquake to reach safe ground. It is estimated that roughly 50,000 people in Padang will be unable to evacuate in that time. Given these conditions, other means to prepare for the expected tsunami must be developed. With this motivation, GeoHazards International and Stanford University’s Chapter of Engineers for a Sustainable World partnered with Indonesian organizations - Andalas University and Tsunami Alert Community in Padang, Laboratory for Earth Hazards, and the Ministry of Marine Affairs and Fisheries - in an effort to evaluate the need for and feasibility of tsunami evacuation infrastructure in Padang. Tsunami evacuation infrastructure can include earthquake-resistant bridges and evacuation structures that rise above the maximum tsunami water level, and can withstand the expected earthquake and tsunami forces. The choices for evacuation structures vary widely - new and existing buildings, evacuation towers, soil berms, elevated highways and pedestrian overpasses. This interdisciplinary project conducted a course at Stanford University, undertook several field investigations, and concluded that: (1) tsunami evacuation structures and bridges are essential to protect the people in Padang, (2) there is a need for a more thorough engineering-based evaluation than conducted to-date of the suitability of

  4. External factors impacting hospital evacuations caused by Hurricane Rita: the role of situational awareness.

    Science.gov (United States)

    Downey, Erin L; Andress, Knox; Schultz, Carl H

    2013-06-01

    The 2005 Gulf Coast hurricane season was one of the most costly and deadly in US history. Hurricane Rita stressed hospitals and led to multiple, simultaneous evacuations. This study systematically identified community factors associated with patient movement out of seven hospitals evacuated during Hurricane Rita. This study represents the second of two systematic, observational, and retrospective investigations of seven acute care hospitals that reported off-site evacuations due to Hurricane Rita. Participants from each hospital included decision makers that comprised the Incident Management Team (IMT). Investigators applied a standardized interview process designed to assess evacuation factors related to external situational awareness of community activities during facility evacuation due to hurricanes. The measured outcomes were responses to 95 questions within six sections of the survey instrument. Investigators identified two factors that significantly impacted hospital IMT decision making: (1) incident characteristics affecting a facility's internal resources and challenges; and (2) incident characteristics affecting a facility's external evacuation activities. This article summarizes the latter and reports the following critical decision making points: (1) Emergency Operations Plans (EOP) were activated an average of 85 hours (3 days, 13 hours) prior to Hurricane Rita's landfall; (2) the decision to evacuate the hospital was made an average of 30 hours (1 day, 6 hours) from activation of the EOP; and (3) the implementation of the evacuation process took an average of 22 hours. Coordination of patient evacuations was most complicated by transportation deficits (the most significant of the 11 identified problem areas) and a lack of situational awareness of community response activities. All evacuation activities and subsequent evacuation times were negatively impacted by an overall lack of understanding on the part of hospital staff and the IMT regarding how to

  5. A spatio-temporel optimization model for the evacuation of the population exposed to natural disasters

    Science.gov (United States)

    Alaeddine, H.; Serrhini, K.; Maïzia, M.; Néron, E.

    2015-01-01

    The importance of managing the crisis caused by natural disasters, and especially by flood, requires the development of an effective evacuation systems. An effective evacuation system must take into account certain constraints, including those related to network traffic, accessibility, human resources and material equipment (vehicles, collecting points, etc.). The main objective of this work is to provide assistance to technical services and rescue forces in terms of accessibility by offering itineraries relating to rescue and evacuation of people and property. We consider in this paper the evacuation of an urban area of medium size exposed to the hazard of flood. In case of inundation, most people will be evacuated using their own vehicles. Two evacuation types are addressed in this paper, (1) a preventive evacuation based on a flood forecasting system and (2) an evacuation during the disaster based on flooding scenarios. The two study sites on which the evacuation model developed is applied are the valley of Tours (Fr, 37) which is protected by a set of dikes (preventive evacuation) and the valley of Gien (Fr, 45) which benefits of a low rate of flooding (evacuation before and during the disaster). Our goal is to construct, for each of these two sites, a chronological evacuation plan i.e. computing for each individual the departure date and the path to reach the assembly point (also called shelter) associated according to a priorities list established for this purpose. Evacuation plan must avoid the congestion on the road network. Here we present a Spatio-Temporal Optimization Model (STOM) dedicated to the evacuation of the population exposed to natural disasters and more specifically to flood risk.

  6. Development of compound parabolic concentrators for solar energy

    Energy Technology Data Exchange (ETDEWEB)

    O' Gallagher, J.; Winston, R.

    1983-10-01

    The compound parabolic concentrator (CPC) is not a specific collector, but a family of collectors based on a general design principle for maximizing the geometric concentration, C, for radiation within a given acceptance half angle = thetac. This maximum limit exceeds by a factor of 2 to 4 that attainable by systems using focussing optics. The wide acceptance angles permitted using these techniques have several unique advantages for solar concentrators including the elimination of the diurnal tracking requirement at intermediate concentrations (up to about 10x), collection of circumsolar and some diffuse radiation and relaxed tolerances. Because of these advantages, CPC type concentrators have applications in solar energy wherever concentration is desired, e.g., for a wide variety of both thermal and photovoltaic uses. The basic principles of nonimaging optical design are reviewed. Selected configurations for both non-evacuated and evacuated thermal collector applications are discussed with particular emphasis on the most recent advances. The use of CPC type elements as secondary concentrators is illustrated in the context of higher concentration photovoltaic applications.

  7. Direct transformation of solar energy into three-phase current for technical uses

    Energy Technology Data Exchange (ETDEWEB)

    von Hacht, G [Ingenieurbuero Opto-Sensor-Technik, Frankfurt am Main (Germany, F.R.)

    1977-08-01

    The author proposes a method which may increase the 15% efficiency of present solar plants. In principle, the device consists of an optical waveguide tube containing a chain of solar elements. The tube serves as conductive wire for the primary coil of an a.c. or three-phase current transformer. The 50 Hz cycle of the a.c. or three-phase current is generated by rotor or cylindrical diaphragms and/or electronic pilot/thyristor control. The solar energy is focussed axially and/or vertically to the axis of the optical waveguide tube. The light going through the optical waveguide tube makes it possible for solar elements to be equipped with light-sensitive layers on both sides instead of just on one side, as until now. This means a higher efficiency than for conventional solar elements exposed to light only on one side. In addition, the optical waveguide tube is designed in its length as Fabry-Perot resonator. This way, it may also be used as a gas laser. The light generated in this gas laser would multiply the luminous intensity which again acts on the two light-sensitive sides of the solar elements, thus again increasing their efficiency.

  8. Making Multi-Level Tsunami Evacuation Playbooks Operational in California and Hawaii

    Science.gov (United States)

    Wilson, R. I.; Peterson, D.; Fryer, G. J.; Miller, K.; Nicolini, T.; Popham, C.; Richards, K.; Whitmore, P.; Wood, N. J.

    2016-12-01

    In the aftermath of the 2010 Chile, 2011 Japan, and 2012 Haida Gwaii tsunamis in California and Hawaii, coastal emergency managers requested that state and federal tsunami programs investigate providing more detailed information about the flood potential and recommended evacuation for distant-source tsunamis well ahead of their arrival time. Evacuation "Playbooks" for tsunamis of variable sizes and source locations have been developed for some communities in the two states, providing secondary options to an all or nothing approach for evacuation. Playbooks have been finalized for nearly 70% of the coastal communities in California, and have been drafted for evaluation by the communities of Honolulu and Hilo in Hawaii. A key component to determining a recommended level of evacuation during a distant-source tsunami and making the Playbooks operational has been the development of the "FASTER" approach, an acronym for factors that influence the tsunami flood hazard for a community: Forecast Amplitude, Storm, Tides, Error in forecast, and the Run-up potential. Within the first couple hours after a tsunami is generated, the FASTER flood elevation value will be computed and used to select the appropriate minimum tsunami phase evacuation "Playbook" for use by the coastal communities. The states of California and Hawaii, the tsunami warning centers, and local weather service offices are working together to deliver recommendations on the appropriate evacuation Playbook plans for communities to use prior to the arrival of a distant-source tsunami. These partners are working closely with individual communities on developing conservative and consistent protocols on the use of the Playbooks. Playbooks help provide a scientifically-based, minimum response for small- to moderate-size tsunamis which could reduce the potential for over-evacuation of hundreds of thousands of people and save hundreds of millions of dollars in evacuation costs for communities and businesses.

  9. Clarifying evacuation options through fire behavior and traffic modeling

    Science.gov (United States)

    Carol L. Rice; Ronny J. Coleman; Mike. Price

    2011-01-01

    Communities are becoming increasingly concerned with the variety of choices related to wildfire evacuation. We used ArcView with Network Analyst to evaluate the different options for evacuations during wildfire in a case study community. We tested overlaying fire growth patterns with the road network and population characteristics to determine recommendations for...

  10. Transit-Based Emergency Evacuation with Transit Signal Priority in Sudden-Onset Disaster

    Directory of Open Access Journals (Sweden)

    Ciyun Lin

    2016-01-01

    Full Text Available This study presents methods of transit signal priority without transit-only lanes for a transit-based emergency evacuation in a sudden-onset disaster. Arterial priority signal coordination is optimized when a traffic signal control system provides priority signals for transit vehicles along an evacuation route. Transit signal priority is determined by “transit vehicle arrival time estimation,” “queuing vehicle dissipation time estimation,” “traffic signal status estimation,” “transit signal optimization,” and “arterial traffic signal coordination for transit vehicle in evacuation route.” It takes advantage of the large capacities of transit vehicles, reduces the evacuation time, and evacuates as many evacuees as possible. The proposed methods were tested on a simulation platform with Paramics V6.0. To evaluate and compare the performance of transit signal priority, three scenarios were simulated in the simulator. The results indicate that the methods of this study can reduce the travel times of transit vehicles along an evacuation route by 13% and 10%, improve the standard deviation of travel time by 16% and 46%, and decrease the average person delay at a signalized intersection by 22% and 17% when the traffic flow saturation along an evacuation route is 0.81.0, respectively.

  11. A Global System for Transportation Simulation and Visualization in Emergency Evacuation Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei [ORNL; Liu, Cheng [ORNL; Thomas, Neil [ORNL; Bhaduri, Budhendra L [ORNL; Han, Lee [University of Tennessee, Knoxville (UTK)

    2015-01-01

    Simulation-based studies are frequently used for evacuation planning and decision making processes. Given the transportation systems complexity and data availability, most evacuation simulation models focus on certain geographic areas. With routine improvement of OpenStreetMap road networks and LandScanTM global population distribution data, we present WWEE, a uniform system for world-wide emergency evacuation simulations. WWEE uses unified data structure for simulation inputs. It also integrates a super-node trip distribution model as the default simulation parameter to improve the system computational performance. Two levels of visualization tools are implemented for evacuation performance analysis, including link-based macroscopic visualization and vehicle-based microscopic visualization. For left-hand and right-hand traffic patterns in different countries, the authors propose a mirror technique to experiment with both scenarios without significantly changing traffic simulation models. Ten cities in US, Europe, Middle East, and Asia are modeled for demonstration. With default traffic simulation models for fast and easy-to-use evacuation estimation and visualization, WWEE also retains the capability of interactive operation for users to adopt customized traffic simulation models. For the first time, WWEE provides a unified platform for global evacuation researchers to estimate and visualize their strategies performance of transportation systems under evacuation scenarios.

  12. Evacuation emergency response model coupling atmospheric release advisory capability output

    International Nuclear Information System (INIS)

    Rosen, L.C.; Lawver, B.S.; Buckley, D.W.; Finn, S.P.; Swenson, J.B.

    1983-01-01

    A Federal Emergency Management Agency (FEMA) sponsored project to develop a coupled set of models between those of the Lawrence Livermore National Laboratory (LLNL) Atmospheric Release Advisory Capability (ARAC) system and candidate evacuation models is discussed herein. This report describes the ARAC system and discusses the rapid computer code developed and the coupling with ARAC output. The computer code is adapted to the use of color graphics as a means to display and convey the dynamics of an emergency evacuation. The model is applied to a specific case of an emergency evacuation of individuals surrounding the Rancho Seco Nuclear Power Plant, located approximately 25 miles southeast of Sacramento, California. The graphics available to the model user for the Rancho Seco example are displayed and noted in detail. Suggestions for future, potential improvements to the emergency evacuation model are presented

  13. Evacuation of children - movement on stairs and on Horizontal Plane

    DEFF Research Database (Denmark)

    Larusdottir, Aldis Run; Dederichs, Anne

    2012-01-01

    in full scale evacuation experiments where two age groups 0-2 years and 3-6 years were analyzed separately. It was found that flow through doors, walking speeds and densities were age-dependent and differed strongly from the data in existing literature. The results showed higher walking speeds in spiral...... slower in horizontal plane than adults, however they were keen to run during the evacuations, in the latter case their travel speed increased and exceeded the adults’. Since the evacuation characteristics of children differ in many ways from those of adults, nowadays models badly comprehend...

  14. Elementary students' evacuation route choice in a classroom: A questionnaire-based method

    Science.gov (United States)

    Chen, Liang; Tang, Tie-Qiao; Huang, Hai-Jun; Song, Ziqi

    2018-02-01

    Children evacuation is a critical but challenging issue. Unfortunately, existing researches fail to effectively describe children evacuation, which is likely due to the lack of experimental and empirical data. In this paper, a questionnaire-based experiment was conducted with children aged 8-12 years to study children route choice behavior during evacuation from in a classroom with two exits. 173 effective questionnaires were collected and the corresponding data were analyzed. From the statistical results, we obtained the following findings: (1) position, congestion, group behavior, and backtracking behavior have significant effects on children route choice during evacuation; (2) age only affects children backtracking behavior, and (3) no prominent effects based on gender and guidance were observed. The above findings may help engineers design some effective evacuation strategies for children.

  15. A heterogeneous lattice gas model for simulating pedestrian evacuation

    Science.gov (United States)

    Guo, Xiwei; Chen, Jianqiao; Zheng, Yaochen; Wei, Junhong

    2012-02-01

    Based on the cellular automata method (CA model) and the mobile lattice gas model (MLG model), we have developed a heterogeneous lattice gas model for simulating pedestrian evacuation processes in an emergency. A local population density concept is introduced first. The update rule in the new model depends on the local population density and the exit crowded degree factor. The drift D, which is one of the key parameters influencing the evacuation process, is allowed to change according to the local population density of the pedestrians. Interactions including attraction, repulsion, and friction between every two pedestrians and those between a pedestrian and the building wall are described by a nonlinear function of the corresponding distance, and the repulsion forces increase sharply as the distances get small. A critical force of injury is introduced into the model, and its effects on the evacuation process are investigated. The model proposed has heterogeneous features as compared to the MLG model or the basic CA model. Numerical examples show that the model proposed can capture the basic features of pedestrian evacuation, such as clogging and arching phenomena.

  16. A new method for the evacuation of aqueous humor in uncontrolled glaucoma. The vitreo-tenonian tube.

    Science.gov (United States)

    Haut, J; Larricart, P; Le Mer, Y; Abboud, E

    1987-02-01

    The vitreo-tenonian tube is a new procedure, used in uncontrolled glaucoma, for the drainage of aqueous humor. It presents three original characteristics: it is made of a stainless metal, it is implanted in the posterior segment after vitrectomy and it drains the aqueous humor in the subtenonian space. We will describe first the surgical technique for the implantation of the tube, and then we will present the results of the first eight cases treated by this method. The advantages and drawbacks of this type of drainage are discussed: they are compared with the other surgical techniques used in cases of glaucoma which is uncontrolled by the classical methods.

  17. Community disruptions and business costs for distant tsunami evacuations using maximum versus scenario-based zones

    Science.gov (United States)

    Wood, Nathan J.; Wilson, Rick I.; Ratliff, Jamie L.; Peters, Jeff; MacMullan, Ed; Krebs, Tessa; Shoaf, Kimberley; Miller, Kevin

    2017-01-01

    Well-executed evacuations are key to minimizing loss of life from tsunamis, yet they also disrupt communities and business productivity in the process. Most coastal communities implement evacuations based on a previously delineated maximum-inundation zone that integrates zones from multiple tsunami sources. To support consistent evacuation planning that protects lives but attempts to minimize community disruptions, we explore the implications of scenario-based evacuation procedures and use the California (USA) coastline as our case study. We focus on the land in coastal communities that is in maximum-evacuation zones, but is not expected to be flooded by a tsunami generated by a Chilean earthquake scenario. Results suggest that a scenario-based evacuation could greatly reduce the number of residents and employees that would be advised to evacuate for 24–36 h (178,646 and 159,271 fewer individuals, respectively) and these reductions are concentrated primarily in three counties for this scenario. Private evacuation spending is estimated to be greater than public expenditures for operating shelters in the area of potential over-evacuations ($13 million compared to $1 million for a 1.5-day evacuation). Short-term disruption costs for businesses in the area of potential over-evacuation are approximately $122 million for a 1.5-day evacuation, with one-third of this cost associated with manufacturing, suggesting that some disruption costs may be recouped over time with increased short-term production. There are many businesses and organizations in this area that contain individuals with limited mobility or access and functional needs that may have substantial evacuation challenges. This study demonstrates and discusses the difficulties of tsunami-evacuation decision-making for relatively small to moderate events faced by emergency managers, not only in California but in coastal communities throughout the world.

  18. Hybrid friction diffusion bonding of 316L stainless steel tube-to-tube sheet joints for coil-wound heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Haneklaus, Nils; Cionea, Cristian; Reuven, Rony; Frazer, David; Hosemann, Peter; Peterson, Per F. [Dept of Nuclear Engineering, University of California, Berkeley (United States)

    2016-11-15

    Hybrid friction diffusion bonding (HFDB) is a solid-state bonding process first introduced by Helmholtz-Zentrum Geesthacht to join aluminum tube-to-tube sheet joints of Coil-wound heat exchangers (CWHE). This study describes how HFDB was successfully used to manufacture 316L test samples simulating tube-to-tube sheet joints of stainless steel CWHE for molten salt coolants as foreseen in several advanced nuclear- and thermal solar power plants. Engineering parameters of the test sample fabrication are presented and results from subsequent non-destructive vacuum decay leak testing and destructive tensile pull-out testing are discussed. The bonded areas of successfully fabricated samples as characterized by tube rupture during pull-out tensile testing, were further investigated using optical microscopy and scanning electron microscopy including electron backscatter diffraction.

  19. Solar thermal power: the seamless solar link to the conventional power world

    International Nuclear Information System (INIS)

    Geyer, Michael; Quaschning, Volker

    2000-01-01

    This article focuses on solar thermal power generation and describes two solar thermal power concepts, namely, the parabolic trough or solar farm, and the solar central receiver or power tower. Details are given of grid-connected parabolic trough power plants in California and recent developments in collector design and absorber tubes, and the operation of power tower plants with different heat transfer media. Market issues are discussed, and solar thermal power projects under development, and application for support for solar thermal power projects under the Global Environment Facility's Operational Programme by Egypt, India, Iran, Mexico and Morocco are reported

  20. A study on evacuation time from lecture halls in Faculty of Engineering, Universiti Putra Malaysia

    Science.gov (United States)

    Othman, W. N. A. W.; Tohir, M. Z. M.

    2018-04-01

    An evacuation situation in any building involves many risks. The geometry of building and high potential of occupant load may affect the efficiency of evacuation process. Although fire safety rules and regulations exist, they remain insufficient to guarantee the safety of all building occupants and do not prevent the dramatic events to be repeated. The main objective of this project is to investigate the relationship between the movement time, travel speed and occupant density during a series of evacuation drills specifically for lecture halls. Generally, this study emphasizes on the movement of crowd within a limited space and includes the aspects of human behaviour. A series of trial evacuations were conducted in selected lecture halls at Faculty of Engineering, Universiti Putra Malaysia with the aim of collecting actual data for numerical analysis. The numerical data obtained during trial evacuations were used to determine the evacuation time, crowd movement and behaviour during evacuation process particularly for lecture halls. The evacuation time and number of occupants exiting from each exit were recorded. Video camera was used to record and observe the movement behaviour of occupants during evacuations. EvacuatioNZ was used to simulate the trials evacuations of DK 5 and the results predicted were compared with experimental data. EvacuatioNZ was also used to predict the evacuation time and the flow of occupants exiting from each door for DK 4 and DK 8.

  1. Simulating crowd evacuation with socio-cultural, cognitive, and emotional elements

    NARCIS (Netherlands)

    van der Wal, C. Natalie; Formolo, Daniel; Robinson, Mark A.; Minkov, Michael; Bosse, Tibor

    2017-01-01

    In this research, the effects of culture, cognitions, and emotions on crisis management and prevention are analysed. An agent-based crowd evacuation simulation model was created, named IMPACT, to study the evacuation process from a transport hub. To extend previous research, various socio-cultural,

  2. CT guided stereotactic evacuation for hypertensive intracerebral hematoma

    International Nuclear Information System (INIS)

    Nakajima, Hideo

    1990-01-01

    Sixty-one cases of hypertensive intracerebral hematoma were evacuated by CT guided stereotactic method. The operation was performed in the CT room under general anesthesia using the KOMAI-NAKAJIMA STEREOTACTIC DEVICE. This instrument has a micromanipulater that can be used for various kinds of stereotactic procedures. Three dimensional position of the target point (aspiration point of the hematoma) was determined on the film obtained from CT scanning of the patient in the stereotactic system. If the hematoma was small, the target point was enough to be one point at the center of the hematoma, but in case of the large hematoma, several target points were given according to the shape of hematoma. The probe, ordinarily a steel tube 4 mm in outer diameter, was inserted through brain to the target point and the hematoma was aspirated through a silicon tube connected to a vacuum system. Among 61 cases examined, 30 cases of thalamic hemorrhage were operated upon and 36 cases were not operated. They were classified according to the volume of hematoma into 3 groups as follows: A=less than 10 ml, B=11-25 ml, C=more than 25 ml. The operated cases were compared with the non operated cases on the improvement of consciousness in each group. In the A group, the operated patients in the level I recovered more slowly than the non operated patients, but in the level II patients, this was reversed. In the B group, the operated patients improved more quickly except the level I patients. In the C group, almost all of non operated patients died. Thus, this operation was very useful in improving consciousness of level II or III patients independent of hematoma volume. It accelerated the recovery of motor function in the level I. This non inversive technique is considered effective for the removal of deep intracerebral hematoma. (author)

  3. Effect of form of obstacle on speed of crowd evacuation

    Science.gov (United States)

    Yano, Ryosuke

    2018-03-01

    This paper investigates the effect of the form of an obstacle on the time that a crowd takes to evacuate a room, using a toy model. Pedestrians are modeled as active soft matter moving toward a point with intended velocities. An obstacle is placed in front of the exit, and it has one of four shapes: a cylindrical column, a triangular prism, a quadratic prism, or a diamond prism. Numerical results indicate that the evacuation-completion time depends on the shape of the obstacle. Obstacles with a circular cylinder (C.C.) shape yield the shortest evacuation-completion time in the proposed model.

  4. Injuries in air transport emergency evacuations.

    Science.gov (United States)

    1979-02-01

    Twelve air transport evacuations are reviewed. Injuries are discussed with emphasis on configurational and procedural contributing factors. Recommendations and information about possible methods of reducing injuries are provided.

  5. Stoma management in a tropical country: colostomy irrigation versus natural evacuation.

    Science.gov (United States)

    Leong, A F; Yunos, A B

    1999-11-01

    People with ostomies in Singapore were initially resistant to colostomy irrigation. This study, a prospective crossover study of 26 patients who underwent abdominoperineal resection, compared colostomy irrigation with the natural evacuation method. During the colostomy-irrigation phase of the study, all 26 patients reported an improvement in continence and fewer problems with sleep, sex, and skin complications compared to the natural-evacuation phase. The study also found a reduction in monthly expenses with colostomy irrigation compared to natural evacuation. Patient satisfaction scores were also superior during the colostomy-irrigation phase. This difference in satisfaction scores was less marked in those who were more than 1-year postsurgery than in those who were less than 1-year postsurgery. The difference in satisfaction between colostomy irrigation and natural evacuation scores was statistically significant in the group that was less than 1-year postsurgery, but not in the group that was more than 1-year postsurgery. The study concluded that colostomy irrigation after abdominoperineal resection is superior to natural evacuation in terms of cost and patient satisfaction and should be introduced soon after surgery.

  6. People's Risk Recognition Preceding Evacuation and Its Role in Demand Modeling and Planning.

    Science.gov (United States)

    Urata, Junji; Pel, Adam J

    2018-05-01

    Evacuation planning and management involves estimating the travel demand in the event that such action is required. This is usually done as a function of people's decision to evacuate, which we show is strongly linked to their risk awareness. We use an empirical data set, which shows tsunami evacuation behavior, to demonstrate that risk recognition is not synonymous with objective risk, but is instead determined by a combination of factors including risk education, information, and sociodemographics, and that it changes dynamically over time. Based on these findings, we formulate an ordered logit model to describe risk recognition combined with a latent class model to describe evacuation choices. Our proposed evacuation choice model along with a risk recognition class can evaluate quantitatively the influence of disaster mitigation measures, risk education, and risk information. The results obtained from the risk recognition model show that risk information has a greater impact in the sense that people recognize their high risk. The results of the evacuation choice model show that people who are unaware of their risk take a longer time to evacuate. © 2017 Society for Risk Analysis.

  7. Application of fire and evacuation models in evaluation of fire safety in railway tunnels

    Science.gov (United States)

    Cábová, Kamila; Apeltauer, Tomáš; Okřinová, Petra; Wald, František

    2017-09-01

    The paper describes an application of numerical simulation of fire dynamics and evacuation of people in a tunnel. The software tool Fire Dynamics Simulator is used to simulate temperature resolution and development of smoke in a railway tunnel. Comparing to temperature curves which are usually used in the design stage results of the model show that the numerical model gives lower temperature of hot smoke layer. Outputs of the numerical simulation of fire also enable to improve models of evacuation of people during fires in tunnels. In the presented study the calculated high of smoke layer in the tunnel is in 10 min after the fire ignition lower than the level of 2.2 m which is considered as the maximal limit for safe evacuation. Simulation of the evacuation process in bigger scale together with fire dynamics can provide very valuable information about important security conditions like Available Safe Evacuation Time (ASET) vs Required Safe Evacuation Time (RSET). On given example in software EXODUS the paper summarizes selected results of evacuation model which should be in mind of a designer when preparing an evacuation plan.

  8. Performance Study of Solar Heat Pipe with Different Working Fluids and Fill Ratios

    Science.gov (United States)

    Harikrishnan, S. S.; Kotebavi, Vinod

    2016-09-01

    This paper elaborates on the testing of solar heat pipes using different working fluids, fill ratios and tilt angles. Methanol, Acetone and water are used as working fluids, with fill ratios 25%, 50%, 75% and 100%. Experiments were carried out at 600 and 350 inclinations. Heat pipe condenser section is placed inside a water basin containing 200ml of water. The evaporator section is exposed to sunlight where the working fluid gets heated and it becomes vapour and moves towards the condenser section. In the condenser section the heat is given to the water in the basin and the vapour becomes liquid and comes back to the evaporator section due to gravitational force. Two modes of experiments are carried out: 1) using a parabolic collector and 2) using heat pipe with evacuated tubes. On comparative study, optimum fill ratio is been found to be 25% in every case and acetone exhibited slightly more efficiency than methanol and water. As far as the heat pipe orientation is concerned, 600 inclination of the heat pipe showed better performance than 350

  9. An indoor augmented reality mobile application for simulation of building evacuation

    Science.gov (United States)

    Sharma, Sharad; Jerripothula, Shanmukha

    2015-03-01

    Augmented Reality enables people to remain connected with the physical environment they are in, and invites them to look at the world from new and alternative perspectives. There has been an increasing interest in emergency evacuation applications for mobile devices. Nearly all the smart phones these days are Wi-Fi and GPS enabled. In this paper, we propose a novel emergency evacuation system that will help people to safely evacuate a building in case of an emergency situation. It will further enhance knowledge and understanding of where the exits are in the building and safety evacuation procedures. We have applied mobile augmented reality (mobile AR) to create an application with Unity 3D gaming engine. We show how the mobile AR application is able to display a 3D model of the building and animation of people evacuation using markers and web camera. The system gives a visual representation of a building in 3D space, allowing people to see where exits are in the building through the use of a smart phone or tablets. Pilot studies were conducted with the system showing its partial success and demonstrated the effectiveness of the application in emergency evacuation. Our computer vision methods give good results when the markers are closer to the camera, but accuracy decreases when the markers are far away from the camera.

  10. Evacuation of mixed populations from trains on bridges

    DEFF Research Database (Denmark)

    Kindler, C.; Sørensen, J.G.; Dederichs, A.S.

    2012-01-01

    An understanding of human evacuation dynamics and performance are important when designing complex buildings such as bridges and when applying performance-based codes in order to reduce the risk of exposing occupants to critical conditions in case of fire. The majority of previous studies deal....... The discussion of "equal access" is only followed slowly by the demand on "equal egress". However, the passengers on trains on bridges are rarely homogeneous mixture. At the same time equal egress is far from assured today. In this paper the evacuation of mixed populations from trains on bridges are considered....... The populations applied in the experiment are mixed according to a composition corresponding to the population of Denmark. The study has the following findings: the total evacuation times increase with a factor 1.5 when accounting for a mixed population comprehending a variety of age and impairments. The seating...

  11. Assessment of Energy, Environmental and Economic Performance of a Solar Desiccant Cooling System with Different Collector Types

    Directory of Open Access Journals (Sweden)

    Giovanni Angrisani

    2014-10-01

    Full Text Available Desiccant-based air handling units can achieve reductions in greenhouse gas emissions and energy savings with respect to conventional air conditioning systems. Benefits are maximized when they interact with renewable energy technologies, such as solar collectors. In this work, experimental tests and data derived from scientific and technical literature are used to implement a model of a solar desiccant cooling system, considering three different collector technologies (air, flat-plate and evacuated collectors. Simulations were then performed to compare the energy, environmental and economic performance of the system with those of a desiccant-based unit where regeneration thermal energy is supplied by a natural gas boiler, and with those of a conventional air-handling unit. The only solution that allows achieving the economic feasibility of the solar desiccant cooling unit consists of 16 m2 of evacuated solar collectors. This is able to obtain, with respect to the reference system, a reduction of primary energy consumption and of the equivalent CO2 emissions of 50.2% and 49.8%, respectively, but with a payback time of 20 years.

  12. Household evacuation characteristics in American Samoa during the 2009 Samoa Islands tsunami

    Science.gov (United States)

    Apatu, Emma J. I.; Gregg, Chris E.; Wood, Nathan J.; Wang, Liang

    2016-01-01

    Tsunamis represent significant threats to human life and development in coastal communities. This quantitative study examines the influence of household characteristics on evacuation actions taken by 211 respondents in American Samoa who were at their homes during the 29 September 2009 Mw 8.1 Samoa Islands earthquake and tsunami disaster. Multiple logistic regression analysis of survey data was used to examine the association between evacuation and various household factors. Findings show that increases in distance to shoreline were associated with a slightly decreased likelihood of evacuation, whereas households reporting higher income had an increased probability of evacuation. The response in American Samoa was an effective one, with only 34 fatalities in a tsunami that reached shore in as little as 15 minutes. Consequently, future research should implement more qualitative study designs to identify event and cultural specific determinants of household evacuation behaviour to local tsunamis.

  13. Virtual environment simulation as a tool to support evacuation planning

    International Nuclear Information System (INIS)

    Mol, Antonio C.; Grecco, Claudio H.S.; Santos, Isaac J.A.L.; Carvalho, Paulo V.R.; Jorge, Carlos A.F.; Sales, Douglas S.; Couto, Pedro M.; Botelho, Felipe M.; Bastos, Felipe R.

    2007-01-01

    This work is a preliminary study of the use of a free game-engine as a tool to build and to navigate in virtual environments, with a good degree of realism, for virtual simulations of evacuation from building and risk zones. To achieve this goal, some adjustments in the game engine have been implemented. A real building with four floors, consisting of some rooms with furniture and people, has been virtually implemented. Simulations of simple different evacuation scenarios have been performed, measuring the total time spent in each case. The measured times have been compared with their corresponding real evacuation times, measured in the real building. The first results have demonstrated that the virtual environment building with the free game engine is capable to reproduce the real situation with a satisfactory level. However, it is important to emphasize that such virtual simulations serve only as an aid in the planning of real evacuation simulations, and as such must never substitute the later. (author)

  14. Effect of Installation of Solar Collector on Performance of Balcony Split Type Solar Water Heaters

    Directory of Open Access Journals (Sweden)

    Xu Ji

    2015-01-01

    Full Text Available The influences of surface orientation and slope of solar collectors on solar radiation collection of balcony split type solar water heaters for six cities in China were analyzed by employing software TRNSYS. The surface azimuth had greater effect on solar radiation collection in high latitude regions. For deviation of the surface slope angle within ±20° around the optimized angle, the variation of the total annual collecting solar radiation was less than 5%. However, with deviation of 70° to 90°, the variation was up to 20%. The effects of water cycle mode, reverse slope placement of solar collector, and water tank installation height on system efficiency were experimentally studied. The thermal efficiencies of solar water heater with single row horizontal arrangement all-glass evacuated tubular collector were higher than those with vertical arrangement at the fixed surface slope angle of 90°. Compared with solar water heaters with flat-plate collector under natural circulation, the system thermal efficiency was raised up to 63% under forced circulation. For collector at reverse slope placement, the temperature-based water stratification in water tank deteriorated, and thus the thermal efficiency became low. For improving the system efficiency, an appropriate installation height of the water tank was suggested.

  15. The Group Evacuation Behavior Based on Fire Effect in the Complicated Three-Dimensional Space

    Directory of Open Access Journals (Sweden)

    Jun Hu

    2014-01-01

    Full Text Available In order to effectively depict the group evacuation behavior in the complicated three-dimensional space, a novel pedestrian flow model is proposed with three-dimensional cellular automata. In this model the calculation methods of floor field and fire gain are elaborated at first, and the transition gain of target position at the next moment is defined. Then, in consideration of pedestrian intimacy and velocity change, the group evacuation strategy and evolution rules are given. Finally, the experiments were conducted with the simulation platform to study the relationships of evacuation time, pedestrian density, average system velocity, and smoke spreading velocity. The results had shown that large-scale group evacuation should be avoided, and in case of large pedestrian density, the shortest route of evacuation strategy would extend system evacuation time.

  16. Radiant absorption characteristics of corrugated curved tubes

    Directory of Open Access Journals (Sweden)

    Đorđević Milan Lj.

    2017-01-01

    Full Text Available The utilization of modern paraboloidal concentrators for conversion of solar radiation into heat energy requires the development and implementation of compact and efficient heat absorbers. Accurate estimation of geometry influence on absorption characteristics of receiver tubes is an important step in this process. This paper deals with absorption characteristics of heat absorber made of spirally coiled tubes with transverse circular corrugations. Detailed 3-D surface-to-surface Hemicube method was applied to compare radiation performances of corrugated and smooth curved tubes. The numerical results were obtained by varying the tube curvature ratio and incident radiant heat flux intensity. The details of absorption efficiency of corrugated tubes and the effect of curvature on absorption properties for both corrugated and smooth tubes were presented. The results may have significance to further analysis of highly efficient heat absorbers exposed to concentrated radiant heating. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 42006

  17. Advanced evacuation model managed through fuzzy logic during an accident in LNG terminal

    Energy Technology Data Exchange (ETDEWEB)

    Stankovicj, Goran; Petelin, Stojan [Faculty for Maritime Studies and Transport, University of Ljubljana, Portorozh (Sierra Leone); others, and

    2014-07-01

    Evacuation of people located inside the enclosed area of an LNG terminal is a complex problem, especially considering that accidents involving LNG are potentially very hazardous. In order to create an evacuation model managed through fuzzy logic, extensive influence must be generated from safety analyses. A very important moment in the optimal functioning of an evacuation model is the creation of a database which incorporates all input indicators. The output result is the creation of a safety evacuation route which is active at the moment of the accident. (Author)

  18. SCALING AN URBAN EMERGENCY EVACUATION FRAMEWORK: CHALLENGES AND PRACTICES

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, Rajasekar [ORNL; Lu, Wei [ORNL

    2014-01-01

    Critical infrastructure disruption, caused by severe weather events, natural disasters, terrorist attacks, etc., has significant impacts on urban transportation systems. We built a computational framework to simulate urban transportation systems under critical infrastructure disruption in order to aid real-time emergency evacuation. This framework will use large scale datasets to provide a scalable tool for emergency planning and management. Our framework, World-Wide Emergency Evacuation (WWEE), integrates population distribution and urban infrastructure networks to model travel demand in emergency situations at global level. Also, a computational model of agent-based traffic simulation is used to provide an optimal evacuation plan for traffic operation purpose [1]. In addition, our framework provides a web-based high resolution visualization tool for emergency evacuation modelers and practitioners. We have successfully tested our framework with scenarios in both United States (Alexandria, VA) and Europe (Berlin, Germany) [2]. However, there are still some major drawbacks for scaling this framework to handle big data workloads in real time. On our back-end, lack of proper infrastructure limits us in ability to process large amounts of data, run the simulation efficiently and quickly, and provide fast retrieval and serving of data. On the front-end, the visualization performance of microscopic evacuation results is still not efficient enough due to high volume data communication between server and client. We are addressing these drawbacks by using cloud computing and next-generation web technologies, namely Node.js, NoSQL, WebGL, Open Layers 3 and HTML5 technologies. We will describe briefly about each one and how we are using and leveraging these technologies to provide an efficient tool for emergency management organizations. Our early experimentation demonstrates that using above technologies is a promising approach to build a scalable and high performance urban

  19. Analysis of sheltering and evacuation strategies for an urban nuclear detonation scenario.

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Ann S.; Brandt, Larry D.

    2009-05-01

    Development of an effective strategy for shelter and evacuation is among the most important planning tasks in preparation for response to a low yield, nuclear detonation in an urban area. This study examines shelter-evacuate policies and effectiveness focusing on a 10 kt scenario in Los Angeles. The goal is to provide technical insights that can support development of urban response plans. Results indicate that extended shelter-in-place can offer the most robust protection when high quality shelter exists. Where less effective shelter is available and the fallout radiation intensity level is high, informed evacuation at the appropriate time can substantially reduce the overall dose to personnel. However, uncertainties in the characteristics of the fallout region and in the exit route can make evacuation a risky strategy. Analyses indicate that only a relatively small fraction of the total urban population may experience significant dose reduction benefits from even a well-informed evacuation plan.

  20. An interval-parameter mixed integer multi-objective programming for environment-oriented evacuation management

    Science.gov (United States)

    Wu, C. Z.; Huang, G. H.; Yan, X. P.; Cai, Y. P.; Li, Y. P.

    2010-05-01

    Large crowds are increasingly common at political, social, economic, cultural and sports events in urban areas. This has led to attention on the management of evacuations under such situations. In this study, we optimise an approximation method for vehicle allocation and route planning in case of an evacuation. This method, based on an interval-parameter multi-objective optimisation model, has potential for use in a flexible decision support system for evacuation management. The modeling solutions are obtained by sequentially solving two sub-models corresponding to lower- and upper-bounds for the desired objective function value. The interval solutions are feasible and stable in the given decision space, and this may reduce the negative effects of uncertainty, thereby improving decision makers' estimates under different conditions. The resulting model can be used for a systematic analysis of the complex relationships among evacuation time, cost and environmental considerations. The results of a case study used to validate the proposed model show that the model does generate useful solutions for planning evacuation management and practices. Furthermore, these results are useful for evacuation planners, not only in making vehicle allocation decisions but also for providing insight into the tradeoffs among evacuation time, environmental considerations and economic objectives.

  1. Fundamentals and techniques of nonimaging optics for solar energy concentration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Winston, R.

    1980-05-20

    Nonimaging optics is a new discipline with techniques, formalism and objectives quite distinct from the traditional methods of focusing optics. These new systems achieve or closely approach the maximum concentration permitted by the Second Law of Thermodynamics for a given angular acceptance and are often called ideal. Application of these new principles to solar energy over the past seven years has led to the invention of a new class of solar concentrators, the most well known version of which is the Compound Parabolic Concentrator or CPC. A new formalism for analyzing nonimaging systems in terms of a quantity called the geometrical vector flux has been developed. This has led not only to a better understanding of the properties of ideal concentrators but to the discovery of several new concentrator designs. One of these new designs referred to as the trumpet concentrator has several advantageous features when used as a secondary concentrator for a point focusing dish concentrator. A new concentrator solution for absorbers which must be separated from the reflector by a gap has been invented. The properties of a variety of new and previously known nonimaging optical configurations have been investigated: for example, Compound Elliptical Concentrators (CEC's) as secondary concentrators and asymmetric ideal concentrators. A thermodynamic model which explains quantitatively the enhancement of effective absorptance of gray body receivers through cavity effects has been developed. The classic method of Liu and Jordan, which allows one to predict the diffuse sunlight levels through correlation with the total and direct fraction was revised and updated and applied to predict the performance of nonimaging solar collectors. The conceptual design for an optimized solar collector which integrates the techniques of nonimaging concentration with evacuated tube collector technology was carried out.

  2. RE-INTERPRETATION OF SUPRA-ARCADE DOWNFLOWS IN SOLAR FLARES

    International Nuclear Information System (INIS)

    Savage, Sabrina L.; McKenzie, David E.; Reeves, Katharine K.

    2012-01-01

    Following the eruption of a filament from a flaring active region, sunward-flowing voids are often seen above developing post-eruption arcades. First discovered using the soft X-ray telescope aboard Yohkoh, these supra-arcade downflows (SADs) are now an expected observation of extreme ultra-violet and soft X-ray coronal imagers and spectrographs (e.g, TRACE, SOHO/SUMER, Hinode/XRT, SDO/AIA). Observations made prior to the operation of AIA suggested that these plasma voids (which are seen in contrast to bright, high-temperature plasma associated with current sheets) are the cross-sections of evacuated flux tubes retracting from reconnection sites high in the corona. The high temperature imaging afforded by AIA's 131, 94, and 193 Å channels coupled with the fast temporal cadence allows for unprecedented scrutiny of the voids. For a flare occurring on 2011 October 22, we provide evidence suggesting that SADs, instead of being the cross-sections of relatively large, evacuated flux tubes, are actually wakes (i.e., trailing regions of low density) created by the retraction of much thinner tubes. This re-interpretation is a significant shift in the fundamental understanding of SADs, as the features once thought to be identifiable as the shrinking loops themselves now appear to be 'side effects' of the passage of the loops through the supra-arcade plasma. In light of the fact that previous measurements have attributed to the shrinking loops characteristics that may instead belong to their wakes, we discuss the implications of this new interpretation on previous parameter estimations and on reconnection theory.

  3. RE-INTERPRETATION OF SUPRA-ARCADE DOWNFLOWS IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Savage, Sabrina L. [NASA/Goddard Space Flight Center (Oak Ridge Associated Universities), 8800 Greenbelt Rd Code 671, Greenbelt, MD 20771 (United States); McKenzie, David E. [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717-3840 (United States); Reeves, Katharine K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS 58, Cambridge, MA 02138 (United States)

    2012-03-10

    Following the eruption of a filament from a flaring active region, sunward-flowing voids are often seen above developing post-eruption arcades. First discovered using the soft X-ray telescope aboard Yohkoh, these supra-arcade downflows (SADs) are now an expected observation of extreme ultra-violet and soft X-ray coronal imagers and spectrographs (e.g, TRACE, SOHO/SUMER, Hinode/XRT, SDO/AIA). Observations made prior to the operation of AIA suggested that these plasma voids (which are seen in contrast to bright, high-temperature plasma associated with current sheets) are the cross-sections of evacuated flux tubes retracting from reconnection sites high in the corona. The high temperature imaging afforded by AIA's 131, 94, and 193 Angstrom-Sign channels coupled with the fast temporal cadence allows for unprecedented scrutiny of the voids. For a flare occurring on 2011 October 22, we provide evidence suggesting that SADs, instead of being the cross-sections of relatively large, evacuated flux tubes, are actually wakes (i.e., trailing regions of low density) created by the retraction of much thinner tubes. This re-interpretation is a significant shift in the fundamental understanding of SADs, as the features once thought to be identifiable as the shrinking loops themselves now appear to be 'side effects' of the passage of the loops through the supra-arcade plasma. In light of the fact that previous measurements have attributed to the shrinking loops characteristics that may instead belong to their wakes, we discuss the implications of this new interpretation on previous parameter estimations and on reconnection theory.

  4. Early waning and evacuation from Tsunami, volcano, flood and other hazards

    Science.gov (United States)

    Sugimoto, M.

    2012-12-01

    In reconsideration of the great sacrifice among the people, evacuation calls for evacuation through Japan Meteorological Agency (JMA), local governments and Medias have been drastically changed after the 2011 Tohoku tsunami in Japan. One of example is that JMA changed from forecasted concrete figure of tsunami height to one of 3 levels of tsunami height. A data shows the border between life and death is just 2 minutes of earlier evacuation in case of the 2011 tsunami. It shows how importance for communities to prompt early evacuation for survivals. However, the 2011 Tohoku tsunami revealed there is no reliable trigger to prompt early evacuation to people in case of blackout under disasters, excluding effective education. The warning call was still complicated situations in Japan in July 2012. The 2012 Northern Kyusyu downpours was at worst around 110 millimeters an hour and casualties 30 in Japan. JMA learned from the last tsunami. In this time JMA informed to local governments as a waning call "Unexpected severe rains" to local governments. However, local governments did not notice the call from JMA in the same as usual informed way. One of the local government said "We were very busy for preparing for staffs. We looked at the necessary information of the water levels of rivers and flood prevention under emergent situation" (NHK 2012). This case shows JMA's evacuation calls from upstream to midstream of local government and downstream of communities started, however upstream calls have not engaged with midstream and communities yet. Calls of early warning from upstream is still a self-centered idea for both midstream and downstream. Finally JMA could not convey a crisis mentality to local government. The head of Oarai town independently decided to use the different warning call "Order townspersons to evacuate immediately" in Ibaraki prefecture, Japan from the other municipalities in 2011 though there was not such a manuals calls in Japan. This risk communication

  5. Reflection on Lessons Learned: An Analysis of the Adverse Outcomes Observed During the Hurricane Rita Evacuation.

    Science.gov (United States)

    Baker, Karen

    2018-02-01

    In September 2005, nearly 3.7 million people evacuated the Texas coastline in advance of Hurricane Rita's landfall, making the event the largest emergency evacuation in US history. The Rita evacuation underscored the importance of planning for domestic mass-evacuation events, as the evacuation itself led to over 100 of the at least 119 deaths attributed to the storm. In the days preceding Rita's landfall, several cascading, interrelated circumstances precipitated such adverse outcomes. This article explores the series of events leading up to the evacuation's poor outcomes, the response following Rita to amend evacuation plans, and how Texas successfully implemented these changes during later storms to achieve better outcomes. (Disaster Med Public Health Preparedness. 2018;12:115-120).

  6. A Dynamic Optimization Method of Indoor Fire Evacuation Route Based on Real-time Situation Awareness

    Directory of Open Access Journals (Sweden)

    DING Yulin

    2016-12-01

    Full Text Available How to provide safe and effective evacuation routes is an important safeguard to correctly guide evacuation and reduce the casualties during the fire situation rapidly evolving in complex indoor environment. The traditional static path finding method is difficult to adjust the path adaptively according to the changing fire situation, which lead to the evacuation decision-making blindness and hysteresis. This paper proposes a dynamic method which can dynamically optimize the indoor evacuation routes based on the real-time situation awareness. According to the real-time perception of fire situation parameters and the changing indoor environment information, the evacuation route is optimized dynamically. The integrated representation of multisource indoor fire monitoring sensor observations oriented fire emergency evacuation is presented at first, real-time fire threat situation information inside building is then extracted from the observation data of multi-source sensors, which is used to constrain the dynamical optimization of the topology of the evacuation route. Finally, the simulation experiments prove that this method can improve the accuracy and efficiency of indoor evacuation routing.

  7. A dynamic model of an innovative high-temperature solar heating and cooling system

    Directory of Open Access Journals (Sweden)

    Buonomano Annamaria

    2016-01-01

    Full Text Available In this paper a new simulation model of a novel solar heating and cooling system based on innovative high temperature flat plate evacuated solar thermal collector is presented. The system configuration includes: flat-plate evacuated solar collectors, a double-stage LiBr-H2O absorption chiller, gas-fired auxiliary heater, a closed loop cooling tower, pumps, heat exchangers, storage tanks, valves, mixers and controllers. The novelty of this study lies in the utilization of flat-plate stationary solar collectors, manufactured by TVP Solar, rather than concentrating ones (typically adopted for driving double-stage absorption chillers. Such devices show ultra-high thermal efficiencies, even at very high (about 200°C operating temperatures, thanks to the high vacuum insulation. Aim of the paper is to analyse the energy and economic feasibility of such novel technology, by including it in a prototypal solar heating and cooling system. For this purpose, the solar heating and cooling system design and performance were analysed by means of a purposely developed dynamic simulation model, implemented in TRNSYS. A suitable case study is also presented. Here, the simulated plant is conceived for the space heating and cooling and the domestic hot water production of a small building, whose energy needs are fulfilled through a real installation (settled also for experimental purposes built up close to Naples (South Italy. Simulation results show that the investigated system is able to reach high thermal efficiencies and very good energy performance. Finally, the economic analysis shows results comparable to those achieved through similar renewable energy systems.

  8. Analysis of solar water heater with parabolic dish concentrator and conical absorber

    Science.gov (United States)

    Rajamohan, G.; Kumar, P.; Anwar, M.; Mohanraj, T.

    2017-06-01

    This research focuses on developing novel technique for a solar water heating system. The novel solar system comprises a parabolic dish concentrator, conical absorber and water heater. In this system, the conical absorber tube directly absorbs solar radiation from the sun and the parabolic dish concentrator reflects the solar radiations towards the conical absorber tube from all directions, therefore both radiations would significantly improve the thermal collector efficiency. The working fluid water is stored at the bottom of the absorber tubes. The absorber tubes get heated and increases the temperature of the working fluid inside of the absorber tube and causes the working fluid to partially evaporate. The partially vaporized working fluid moves in the upward direction due to buoyancy effect and enters the heat exchanger. When fresh water passes through the heat exchanger, temperature of the vapour decreases through heat exchange. This leads to condensation of the vapour and forms liquid phase. The working fluid returns to the bottom of the collector absorber tube by gravity. Hence, this will continue as a cyclic process inside the system. The proposed investigation shows an improvement of collector efficiency, enhanced heat transfer and a quality water heating system.

  9. Pedestrian and Evacuation Dynamics 2005

    CERN Document Server

    Gattermann, Peter; Knoflacher, Hermann; Schreckenberg, Michael

    2007-01-01

    Due to an increasing number of reported catastrophes all over the world, the safety especially of pedestrians today, is a dramatically growing field of interest, both for practitioners as well as scientists from various disciplines. The questions arising mainly address the dynamics of evacuating people and possible optimisations of the process by changing the architecture and /or the procedure. This concerns not only the case of ships, stadiums or buildings, all with restricted geometries, but also the evacuation of complete geographical regions due to natural disasters. Furthermore, also ‘simple’ crowd motion in ‘relaxed’ situations poses new questions with respect to higher comfort and efficiency since the number of involved persons at large events is as high as never before. In addition, as a new research topic in this field, collective animal behaviour is attracting increasing attention. All this was in the scope of the conference held in Vienna, September 28–30, 2005, the third one in a series ...

  10. Evacuation Route: Restoring the Railway Transportation of People During the Great Patriotic War

    Directory of Open Access Journals (Sweden)

    Potemkina Marina Nikolaevna

    2015-11-01

    Full Text Available The paper is devoted to the role of the railway transport in migration from the frontline to the Soviet rear during the Great Patriotic War. The research is based on the analysis of the published and archival documents, personal diaries, letters, memoirs, texts of interview with the people who lived through the evacuation. The methodological foundation of the research was based on the theoretical principles made by the Everyday History. Surge attack of the German troops and cruel occupational policy caused the necessity of evacuation of civilians to the Eastern regions of the country. The evacuation was both spontaneous and organized and helped to save millions of human lives. The lack of evacuation plans in case of a war, incompleteness of the railway transport renovation, transport routes destroyed by the enemy and the stream of refugees were among the main factors which complicated evacuation process. The conditions of transportation differed according to the time and the circumstances of the evacuation and a person’s position in social hierarchy. There were some problems during the evacuation, such as regulation of the rail service, sanitation of the carriages, nutrition system, psychological shock. People had to spend weeks in the carriages suffering from cold, hunger and diseases. During the evacuation a new alternative reality appeared with its rules and regulations which changed the concepts of tangible assets and moral values. The priority for any person was to survive, which meant to be independent and to do everything possible.

  11. A study of solar magnetic fields below the surface, at the surface, and in the solar atmosphere - understanding the cause of major solar activity

    Science.gov (United States)

    Chintzoglou, Georgios

    2016-04-01

    magnetic flux tubes while forming ARs on the surface. Using advanced 3D visualization tools and applying this technique on a complex flare and CME productive AR, we found that the magnetic flux tubes involved in forming the complex AR may originate from a single progenitor flux tube in the SCZ. The complexity can be explained as a result of vertical and horizontal bifurcations that occurred on the progenitor flux tube. Third, this dissertation proposes a new scenario on the origin of major solar activity. When more than one flux tubes are in close proximity to each other while they break through the photospheric surface, collision and shearing may occur as they emerge. Once this collisional shearing occurs between nonconjugated sunspots (opposite polarities not belonging to the same bipole), major solar activity is triggered. The collision and the shearing occur due to the natural separation of polarities in emerging bipoles. This is forcing changes in the connectivity close to the photosphere (up to a few local pressure scale heights above the surface) by means of photospheric reconnection and subsequent submergence of small bipoles at the collision interface (polarity inversion line; PIL). In this continuous collision, more poloidal flux is added to the system effectively creating an expanding MFR into the corona, explaining the observation of filament formation above the PIL together with flare activity and CMEs. Our results reject two popular scenarios on the possible cause of solar eruptions (1) eruption occurs due to shearing motion between conjugate polarities, and, (2) bodily emergence of an MFR.

  12. Optimal control of diarrhea transmission in a flood evacuation zone

    Science.gov (United States)

    Erwina, N.; Aldila, D.; Soewono, E.

    2014-03-01

    Evacuation of residents and diarrhea disease outbreak in evacuation zone have become serious problem that frequently happened during flood periods. Limited clean water supply and infrastructure in evacuation zone contribute to a critical spread of diarrhea. Transmission of diarrhea disease can be reduced by controlling clean water supply and treating diarrhea patients properly. These treatments require significant amount of budget, which may not be fulfilled in the fields. In his paper, transmission of diarrhea disease in evacuation zone using SIRS model is presented as control optimum problem with clean water supply and rate of treated patients as input controls. Existence and stability of equilibrium points and sensitivity analysis are investigated analytically for constant input controls. Optimum clean water supply and rate of treatment are found using optimum control technique. Optimal results for transmission of diarrhea and the corresponding controls during the period of observation are simulated numerically. The optimum result shows that transmission of diarrhea disease can be controlled with proper combination of water supply and rate of treatment within allowable budget.

  13. Integrating Decentralized Indoor Evacuation with Information Depositories in the Field

    Directory of Open Access Journals (Sweden)

    Haifeng Zhao

    2017-07-01

    Full Text Available The lonelier evacuees find themselves, the riskier become their wayfinding decisions. This research supports single evacuees in a dynamically changing environment with risk-aware guidance. It deploys the concept of decentralized evacuation, where evacuees are guided by smartphones acquiring environmental knowledge and risk information via exploration and knowledge sharing by peer-to-peer communication. Peer-to-peer communication, however, relies on the chance that people come into communication range with each other. This chance can be low. To bridge between people being not at the same time at the same places, this paper suggests information depositories at strategic locations to improve information sharing. Information depositories collect the knowledge acquired by the smartphones of evacuees passing by, maintain this information, and convey it to other passing-by evacuees. Multi-agent simulation implementing these depositories in an indoor environment shows that integrating depositories improves evacuation performance: It enhances the risk awareness and consequently increases the chance that people survive and reduces their evacuation time. For evacuating dynamic events, deploying depositories at staircases has been shown more effective than deploying them in corridors.

  14. Solar-energy-system performance evaluation update: San Anselmo School, San Jose, California, April 1982-June 1982

    Energy Technology Data Exchange (ETDEWEB)

    Kendall, P.W.

    1982-01-01

    The solar collector array at the San Anselmo School is located on the roof of the structure, and consists of 3740 square feet of General Electric evacuated tube solar collectors, Model TC-100. Performance of the array during the three-month period was very similar to the overall performance during the previous reporting periods. During the three-month period from April 1982 through June 1982, the solar system at the San Anselmo School performed below expectations despite continued attempts to alleviate several long-standing system problems. Space heating performance appears to be meeting design goals; however, this load was trivial during the three-month period. The retrofitted solar system was designed to provide 70% of the space heating load and 72% of the space cooling load at this 34,000-square-foot brick structure. In all of the previous months of evaluation, the design values of 70% and above have not been achieved for the system as a whole, although one subsystem did achieve high solar contributions during periods of lower building loads, specifically the space heating subsystem. Solar contribution during the three-month period of April 1982 through June 1982 averaged 19% of the total load of 117.4 million Btu, and was, at best, equal to previous performance. Space heating loads were small, and the space cooling load was relatively high over the test period. The solar savings ratio was 14%. The system performance factor is a measure of the equivalent fossil fuel consumption at the site (with operating energy multiplied by 3.33 times to simulate fossil fuel use at the power plant) relative to the actual load, and was 0.15. This value is 0.03 points less than the previous year's value of 0.18. Solar System Coefficient of Performance (COP) increased to 11.0 vs. the previous year's value of 7.6. Apparently, the efficiency of energy transfer in the system has improved, although performance was not really any better.

  15. An assessment of problems experienced with operating solar systems in Canada and the northern United States. Une evaluation des difficultes rencontrees avec les systemes solaires installes au Canada et au nord des Etats-Unis

    Energy Technology Data Exchange (ETDEWEB)

    Lorriman, D

    1978-01-01

    As part of a study examining the performance of materials and components used in solar heating systems, this report addresses the actual experience with operational systems. It intends to identify factors which tend to shorten the service life of solar components, and deals with the potential problems of various components and actual problems encountered in Canada and the USA. The first part of this report considers flat plate collectors, the dominant type of solar collector in use. Specific problems are discussed in the areas of condensation, dust and dirt; breakage, cracking, chemical degradation, and loss of transmissivity of cover plates; leakage and structural failure of glazings; corrosion, erosion, impact damage, joint/bond failure, and other problems with absorber plates; degradation, discoloration, and application deficiencies of absorber coatings; and outgassing, degradation, and instability of insulation material. The second part deals with general problems of solar systems: freezing, boiling, corrosion, and inflammability of heat transfer fluids; heat transfer fluid transport, connections, storage, and control; installation-related problems such as excess snow collection, ice dam formation, leakage, and movement of components; maintenance and repair; and other considerations including safety, standards, and aesthetics. An appendix gives a brief discussion of some problems encountered with evacuated tube collectors found at two sites. 87 refs., 75 figs., 10 tabs.

  16. A novel grid-based mesoscopic model for evacuation dynamics

    Science.gov (United States)

    Shi, Meng; Lee, Eric Wai Ming; Ma, Yi

    2018-05-01

    This study presents a novel grid-based mesoscopic model for evacuation dynamics. In this model, the evacuation space is discretised into larger cells than those used in microscopic models. This approach directly computes the dynamic changes crowd densities in cells over the course of an evacuation. The density flow is driven by the density-speed correlation. The computation is faster than in traditional cellular automata evacuation models which determine density by computing the movements of each pedestrian. To demonstrate the feasibility of this model, we apply it to a series of practical scenarios and conduct a parameter sensitivity study of the effect of changes in time step δ. The simulation results show that within the valid range of δ, changing δ has only a minor impact on the simulation. The model also makes it possible to directly acquire key information such as bottleneck areas from a time-varied dynamic density map, even when a relatively large time step is adopted. We use the commercial software AnyLogic to evaluate the model. The result shows that the mesoscopic model is more efficient than the microscopic model and provides more in-situ details (e.g., pedestrian movement pattern) than the macroscopic models.

  17. Evacuation of a mental health center during a forest fire in Israel.

    Science.gov (United States)

    Kreinin, Anatoly; Shakera, Tatiana; Sheinkman, Ayala; Levi, Tamar; Tal, Vered; Polakiewicz, Jacob

    2014-08-01

    Tirat Carmel Mental Health Center was successfully evacuated in December 2010 during a ravaging forest fire in the nearby Carmel Mountains. A total of 228 patients were successfully evacuated from the center within 45 minutes. No fatalities or injuries associated with the evacuation occurred. We believe that the efficient functioning of the administrative and medical staff provides a replicable model that can contribute to the level of awareness and readiness of hospital staff members for natural and manmade disasters.

  18. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Larrain, Diego; Favrat, Daniel

    2001-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The wast...

  19. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Favrat, Daniel; Larrain, Diego; Allani, Yassine

    2003-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The waste heat from both...

  20. Enhancing Evacuation Plans with a Situation Awareness System Based on End-User Knowledge Provision

    Directory of Open Access Journals (Sweden)

    Augusto Morales

    2014-06-01

    Full Text Available Recent disasters have shown that having clearly defined preventive procedures and decisions is a critical component that minimizes evacuation hazards and ensures a rapid and successful evolution of evacuation plans. In this context, we present our Situation-Aware System for enhancing Evacuation Plans (SASEP system, which allows creating end-user business rules that technically support the specific events, conditions and actions related to evacuation plans. An experimental validation was carried out where 32 people faced a simulated emergency situation, 16 of them using SASEP and the other 16 using a legacy system based on static signs. From the results obtained, we compare both techniques and discuss in which situations SASEP offers a better evacuation route option, confirming that it is highly valuable when there is a threat in the evacuation route. In addition, a study about user satisfaction using both systems is presented showing in which cases the systems are assessed as satisfactory, relevant and not frustrating.

  1. Visitors’ awareness of the tsunami evacuation plan in Pasar Raya Padang, Indonesia

    Science.gov (United States)

    Kemal, B. M.; Yosritzal; Purnawan; Putra, H.

    2018-04-01

    This paper presents an investigation into the visitors’ awareness of the tsunami evacuation plan at Pasar Raya Padang, a traditional market at the central business district of Padang City, Indonesia. This study has been motivated by the fact that Pasar Raya Padang is the largest traditional market in West Sumatera and visited by many visitors from various origins. Pasar Raya Padang is chosen because it is located at a tsunami prone area, but local government managed to keep businesses in the area running and attract visitors. The awareness of the people in the market would be crucial to increase the possibility to safe their life during an evacuation. As much as 500 respondents were interviewed during daytime in the market. The study found that most of the visitors are not aware of the tsunami evacuation plan in the area. Local government is suggested to develop standard procedure for the evacuation, to place more sign and make it more visible for most of the visitors and do evacuation simulations periodically.

  2. Prediction of evacuation time for emergency planning zone of Uljin nuclear site

    International Nuclear Information System (INIS)

    Jeon, In Young; Lee, Jai Ki

    2002-01-01

    The time for evacuation of residents in Emergency Planning Zone (EPZ) of Uljin nuclear site in case of a radiological emergency was estimated with traffic analysis. Evacuees were classified into 4 groups by considering population density, local jurisdictions, and whether they are residents or transients. The survey to investigate the behavioral characteristics of the residents was made for 200 households and included a hypothetical scenario explaining the accident situation and questions such as dwelling place, time demand for evacuation preparation, transportation means for evacuation, sheltering place, and evacuation direction. The microscopic traffic simulation model, CORSIM, was used to simulate the behavior of evacuating vehicles on networks. The results showed that the evacuation time required for total vehicles to move out from EPZ took longer in the daytime than at night in spite that the delay times at intersections were longer at night than in the daytime. This was analyzed due to the differences of the trip generation time distribution. To validate whether the CORSIM model can appropriately simulate the congested traffic phenomena assumable in case of emergency, a benchmark study was conducted at an intersection without an actuated traffic signal near Uljin site during the traffic peak-time in the morning. This study indicated that the predicted output by the CORSIM model was in good agreement with the observed data, satisfying the purpose of this study

  3. Characteristics of evacuated tubular solar thermal collector as input energy for cooling system at Universitas Indonesia

    Science.gov (United States)

    Alhamid, M. Idrus; Nasruddin, Aisyah, Nyayu; Sholahudin

    2017-03-01

    This paper discussed the use of solar thermal collector as an input energy for cooling system. The experimental investigation was undertaken to characterize solar collectors that have been integrated with an absorption chiller. About 62 modules of solar collectors connected in series and parallel are placed on the roof top of MRC building. Thermistors were used to measure the fluid temperature at inlet, inside and outlet of each collector, inside the water tank and ambient temperature. Water flow that circulated from the storage was measured by flow meter, while solar radiation was measured by a pyranometer that was mounted parallel to the collector. Experimental data for a data set was collected in March 2016, during the day time hours of 08:00 - 17:00. This data set was used to calculate solar collector efficiency. The results showed that in the maximum solar radiation, the outlet temperature that can be reached is about 78°C, the utilized energy is about 70 kW and solar collector has an efficiency of 64%. While in the minimum solar radiation, the outlet temperature that can be reached is about 53°C, the utilized energy is about 28 kW and solar collector has an efficiency of 43%.

  4. The effects of meal size, body size and temperature on gastric evacuation in pikeperch

    DEFF Research Database (Denmark)

    Koed, Anders

    2001-01-01

    Prey size had no effect on the gastric evacuation rate of pikeperch Stizostedion lucioperca. The gastric evacuation was adequately described applying an exponent of 0.5 in the power model. Applying length instead of weight of pikeperch in the gastric evacuation model resulted in a change of estim...

  5. Rising hopes for vacuum tube collectors

    Energy Technology Data Exchange (ETDEWEB)

    Godolphin, D.

    1982-06-01

    The performance, feasibility and use of vacuum tube solar collectors for domestic hot water (DHW) systems are discussed. An introduction to the design of vacuum tube collectors is presented and comparisons are made with flat plate collectors in terms of effectiveness in DHW applications and cost. The use of vacuum tube collectors is well established for high temperature use such as process heat and absorption cooling applications; there is considerable debate concerning their use in DHW and these arguments are presented. It is pointed out that the accepted standardized comparison test (ASHRAE 93-77) is apparently biased towards the flat plate collectors in direct comparisons of collector efficiencies. Recent developments among manufacturers with regard to vacuum tube collectors and their thinking (pro and con) are discussed in some detail. Breakage and other problems are pointed out although advocates look ahead to lower costs, higher efficiencies, and broader markets (particularly in DHW). It is concluded by some that flat plate collector technology has reached its peak and that vacuum tube collectors will be very prominent in the future. (MJJ)

  6. Self-calibrating solar position sensor

    Science.gov (United States)

    Maxey, Lonnie Curt

    2018-01-30

    A sun positioning sensor and method of accurately tracking the sun are disclosed. The sensor includes a position sensing diode and a disk having a body defining an aperture for accepting solar light. An extension tube having a body that defines a duct spaces the position sensing diode from the disk such that the solar light enters the aperture in the disk, travels through the duct in the extension tube and strikes the position sensing diode. The extension tube has a known length that is fixed. Voltage signals indicative of the location and intensity of the sun are generated by the position sensing diode. If it is determined that the intensity values are unreliable, then historical position values are used from a table. If the intensity values are deemed reliable, then actual position values are used from the position sensing diode.

  7. Canada's evacuation policy for pregnant First Nations women: Resignation, resilience, and resistance.

    Science.gov (United States)

    Lawford, Karen M; Giles, Audrey R; Bourgeault, Ivy L

    2018-02-10

    Aboriginal peoples in Canada are comprised of First Nations, Métis, and Inuit. Health care services for First Nations who live on rural and remote reserves are mostly provided by the Government of Canada through the federal department, Health Canada. One Health Canada policy, the evacuation policy, requires all First Nations women living on rural and remote reserves to leave their communities between 36 and 38 weeks gestational age and travel to urban centres to await labour and birth. Although there are a few First Nations communities in Canada that have re-established community birthing and Aboriginal midwifery is growing, most First Nations communities are still reliant on the evacuation policy for labour and birthing services. In one Canadian province, Manitoba, First Nations women are evacuated to The Pas, Thompson, or Winnipeg but most - including all women with high-risk pregnancies - go to Winnipeg. To contribute scholarship that describes First Nations women's and community members' experiences and perspectives of Health Canada's evacuation policy in Manitoba. Applying intersectional theory to data collected through 12 semi-structured interviews with seven women and five community members (four females, one male) in Manitoba who had experienced the evacuation policy. The data were analyzed thematically, which revealed three themes: resignation, resilience, and resistance. The theme of resignation was epitomized by the quote, "Nobody has a choice." The ability to withstand and endure the evacuation policy despite poor or absent communication and loneliness informed of resilience. Resistance was demonstrated by women who questioned the necessity and requirement of evacuation for labour and birth. In one instance, resistance took the form of a planned homebirth with Aboriginal registered midwives. There is a pressing need to improve the maternity care services that First Nations women receive when they are evacuated out of their communities, particularly

  8. The effect of a natural food based tube feeding in minimizing diarrhea in critically ill neurological patients.

    Science.gov (United States)

    Schmidt, Simone B; Kulig, Willibald; Winter, Ralph; Vasold, Antje S; Knoll, Anette E; Rollnik, Jens D

    2018-01-09

    Diarrhea has negative consequences for patients, health care staff and health care costs when neurological patients are fed enterally over long periods. We examined the effect of tube feeding with natural foods in reducing the number of fluid stool evacuations and diarrhea in critically ill neurological patients. A multicenter, prospective, open-label and randomized controlled trial (RCT) was conducted at facilities in Germany specializing in early rehabilitation after neurological damage. Patients of the INTERVENTION group were fed by tube using a commercially available product based on real foods such as milk, meat, carrots, whereas CONTROL patients received a standard tube-feed made of powdered raw materials. All received enteral nutrition over a maximum of 30 days. The number of defecations and the consistency of each stool according to the Bristol Stool Chart (BSC) were monitored. In addition, daily calories, liquids and antibiotic-use were recorded. 118 Patients who had suffered ischemic stroke, intracerebral hemorrhage, traumatic brain injury or hypoxic brain damage and requiring enteral nutrition were enrolled; 59 were randomized to receive the intervention and 59 control feed. There were no significant differences in clinical screening data, age, sex, observation period or days under enteral nutrition between the groups. Patients in both groups received equivalent amount of calories and fluids. In both groups antibiotics were frequently prescribed (69.5% in the INTERVENTION group and 75.7% in the CONTROL group) for 10-11 days on average. In comparison to the CONTROL group, patients in the INTERVENTION group had a significant reduction of the number of watery stool evacuations (type 7 BSC) (minus 61%, IRR = 0.39, p natural based food was effective in reducing the number of watery defecations and diarrhea in long term tube-fed critically ill neurological patients, compared to those fed with standard tube feeding. Copyright © 2018 The Authors. Published

  9. Vertical motions in an intense magnetic flux tube

    International Nuclear Information System (INIS)

    Roberts, B.; Webb, A.R.

    1978-01-01

    The recent discovery of localised intense magnetic fields in the solar photosphere is one of the major surprises of the past few years. Here the theoretical nature of small amplitude motions in such an intense magnetic flux tube, within which the field strength may reach 2 kG is considered. A systematic derivation of the governing 'expansion' equations is given for a vertical slender tube, taking into account the dependence upon height of the buoyancy, compressibility and magnetic forces. Several special cases (e.g. the isothermal atmosphere) are considered as well as a more realistic, non-isothermal, solar atmosphere. The expansion procedure is shown to give good results in the special case of a uniform basic-state (in which gravity is negligible) and for which a more exact treatment is possible. (Auth.)

  10. A generic method to optimize instructions for the control of evacuations

    NARCIS (Netherlands)

    Huibregtse, O.L.; Hoogendoorn, S.P.; Pel, A.J.; Bliemer, M.C.J.

    2010-01-01

    A method is described to develop a set of optimal instructions to evacuate by car the population of a region threatened by a hazard. By giving these instructions to the evacuees, traffic conditions and therefore the evacuation efficiency can be optimized. The instructions, containing a departure

  11. Pedestrians’ behavior in emergency evacuation: Modeling and simulation

    Science.gov (United States)

    Wang, Lei; Zheng, Jie-Hui; Zhang, Xiao-Shuang; Zhang, Jian-Lin; Wang, Qiu-Zhen; Zhang, Qian

    2016-11-01

    The social force model has been widely used to simulate pedestrian evacuation by analyzing attractive, repulsive, driving, and fluctuating forces among pedestrians. Many researchers have improved its limitations in simulating behaviors of large-scale population. This study modifies the well-accepted social force model by considering the impacts of interaction among companions and further develops a comprehensive model by combining that with a multi-exit utility function. Then numerical simulations of evacuations based on the comprehensive model are implemented in the waiting hall of the Wulin Square Subway Station in Hangzhou, China. The results provide safety thresholds of pedestrian density and panic levels in different operation situations. In spite of the operation situation and the panic level, a larger friend-group size results in lower evacuation efficiency. Our study makes important contributions to building a comprehensive multi-exit social force model and to applying it to actual scenarios, which produces data to facilitate decision making in contingency plans and emergency treatment. Project supported by the National Natural Science Foundation of China (Grant No. 71471163).

  12. A systematic parametric study and feasibility assessment of solar-assisted single-effect, double-effect, and triple-effect absorption chillers for heating and cooling applications

    International Nuclear Information System (INIS)

    Shirazi, Ali; Taylor, Robert A.; White, Stephen D.; Morrison, Graham L.

    2016-01-01

    Highlights: • TRNSYS simulations of SHC single/multi-effect absorption chillers were conducted. • A detailed parametric study was conducted to find the optimal size of the tank. • The effect of tank heat loss on the performance of the configurations was analyzed. • The effect of beam and diffuse radiation on the solar field size was investigated. • Energy performance and economics of each plant were analyzed in various climates. - Abstract: The present work investigates the feasibility of solar heating and cooling (SHC) absorption systems based on combining three types of LiBr–H_2O absorption chillers (single-, double-, and triple-effect) with common solar thermal collectors available on the market. A single-effect chiller is coupled with evacuated tube collectors (ETCs) – SHC1. A double-effect chiller is integrated with parabolic trough collectors (PTCs), linear Fresnel micro-concentrating collectors (MCTs) and evacuated flat plate collectors (EFPCs) respectively – SHC2, SHC3, and SHC4. PTCs are employed to provide high-temperature heat to a triple-effect absorption chiller (SHC5). Although triple-effect chillers have been around for a while, this paper represents the first system-level analysis of these chillers coupled with high-temperature solar concentrating collectors for air-conditioning applications. A simulation model for each configuration is developed in a transient system simulation environment (TRNSYS 17). Furthermore, a unique, comprehensive perspective is given by investigating the impact of characteristic solar beam radiation to global radiation ratios on the techno-economic performance of the proposed SHC plants for a wide variety of climatic regions worldwide. The results of parametric study suggest that a storage volume of around 70 L/m"2 is a good choice for SHC1, while 40–50 L/m"2 storage capacity is sufficient for the other configurations (SHC2 to SHC5). The simulation results reveal that when the fraction of direct normal

  13. Mortality risk amongst nursing home residents evacuated after the Fukushima nuclear accident: a retrospective cohort study.

    Directory of Open Access Journals (Sweden)

    Shuhei Nomura

    Full Text Available BACKGROUND: Safety of evacuation is of paramount importance in disaster planning for elderly people; however, little effort has been made to investigate evacuation-related mortality risks. After the Fukushima Daiichi Nuclear Plant accident we conducted a retrospective cohort survival survey of elderly evacuees. METHODS: A total of 715 residents admitted to five nursing homes in Minamisoma city, Fukushima Prefecture in the five years before 11th March 2011 joined this retrospective cohort study. Demographic and clinical characteristics were drawn from facility medical records. Evacuation histories were tracked until the end of 2011. The evacuation's impact on mortality was assessed using mortality incidence density and hazard ratios in Cox proportional hazards regression. RESULTS: Overall relative mortality risk before and after the earthquake was 2.68 (95% CI: 2.04-3.49. There was a substantial variation in mortality risks across the facilities ranging from 0.77 (95% CI: 0.34-1.76 to 2.88 (95% CI: 1.74-4.76. No meaningful influence of evacuation distance on mortality was observed although the first evacuation from the original facility caused significantly higher mortality than subsequent evacuations, with a hazard ratio of 1.94 (95% CI: 1.07-3.49. CONCLUSION: High mortality, due to initial evacuation, suggests that evacuation of the elderly was not the best life-saving strategy for the Fukushima nuclear disaster. Careful consideration of the relative risks of radiation exposure and the risks and benefits of evacuation is essential. Facility-specific disaster response strategies, including in-site relief and care, may have a strong influence on survival. Where evacuation is necessary, careful planning and coordination with other nursing homes, evacuation sites and government disaster agencies is essential to reduce the risk of mortality.

  14. Way finding during fire evacuation; an analysis of unannounced fire drills

    NARCIS (Netherlands)

    Kobes, M.; Helsloot, I.; Vries, de B.; Post, J.G.; Oberije, N.; Groenewegen, K.

    2010-01-01

    Findings in earlier studies on fire evacuation and way finding suggest that building features have influence on evacuation behaviour. For example, way finding is believed to be strongly dependent on the lay-out of the building and seems to be hardly dependent on (escape) route signs. Though some

  15. Game-Based Evacuation Drill Using Augmented Reality and Head-Mounted Display

    Science.gov (United States)

    Kawai, Junya; Mitsuhara, Hiroyuki; Shishibori, Masami

    2016-01-01

    Purpose: Evacuation drills should be more realistic and interactive. Focusing on situational and audio-visual realities and scenario-based interactivity, the authors have developed a game-based evacuation drill (GBED) system that presents augmented reality (AR) materials on tablet computers. The paper's current research purpose is to improve…

  16. Thermal analysis and performance optimization of a solar hot water plant with economic evaluation

    KAUST Repository

    Kim, Youngdeuk

    2012-05-01

    The main objective of this study is to optimize the long-term performance of an existing active-indirect solar hot water plant (SHWP), which supplies hot water at 65 °C for use in a flight kitchen, using a micro genetic algorithm in conjunction with a relatively detailed model of each component in the plant and solar radiation model based on the measured data. The performance of SHWP at Changi International Airport Services (CIASs), Singapore, is studied for better payback period using the monthly average hourly diffuse and beam radiations and ambient temperature data. The data input for solar radiation model is obtained from the Singapore Meteorological Service (SMS), and these data have been compared with long-term average data of NASA (surface meteorology and solar energy or SSE). The comparison shows a good agreement between the predicted and measured hourly-averaged, horizontal global radiation. The SHWP at CIAS, which comprises 1200m 2 of evacuated-tube collectors, 50m 3 water storage tanks and a gas-fired auxiliary boiler, is first analyzed using a baseline configuration, i.e., (i) the local solar insolation input, (ii) a coolant flow rate through the headers of collector based on ASHRAE standards, (iii) a thermal load demand pattern amounting to 100m 3/day, and (iv) the augmentation of water temperature by auxiliary when the supply temperature from solar tank drops below the set point. A comparison between the baseline configuration and the measured performance of CIAS plant gives reasonably good validation of the simulation code. Optimization is further carried out for the following parameters, namely; (i) total collector area of the plant, (ii) storage volume, and (iii) three daily thermal demands. These studies are performed for both the CIAS plant and a slightly modified plant where the hot water supply to the load is adjusted constant at times when the water temperature from tank may exceed the set temperature. It is found that the latter

  17. Thermal analysis and performance optimization of a solar hot water plant with economic evaluation

    KAUST Repository

    Kim, Youngdeuk; Thu, Kyaw; Bhatia, Hitasha Kaur; Bhatia, Charanjit Singh; Ng, K. C.

    2012-01-01

    The main objective of this study is to optimize the long-term performance of an existing active-indirect solar hot water plant (SHWP), which supplies hot water at 65 °C for use in a flight kitchen, using a micro genetic algorithm in conjunction with a relatively detailed model of each component in the plant and solar radiation model based on the measured data. The performance of SHWP at Changi International Airport Services (CIASs), Singapore, is studied for better payback period using the monthly average hourly diffuse and beam radiations and ambient temperature data. The data input for solar radiation model is obtained from the Singapore Meteorological Service (SMS), and these data have been compared with long-term average data of NASA (surface meteorology and solar energy or SSE). The comparison shows a good agreement between the predicted and measured hourly-averaged, horizontal global radiation. The SHWP at CIAS, which comprises 1200m 2 of evacuated-tube collectors, 50m 3 water storage tanks and a gas-fired auxiliary boiler, is first analyzed using a baseline configuration, i.e., (i) the local solar insolation input, (ii) a coolant flow rate through the headers of collector based on ASHRAE standards, (iii) a thermal load demand pattern amounting to 100m 3/day, and (iv) the augmentation of water temperature by auxiliary when the supply temperature from solar tank drops below the set point. A comparison between the baseline configuration and the measured performance of CIAS plant gives reasonably good validation of the simulation code. Optimization is further carried out for the following parameters, namely; (i) total collector area of the plant, (ii) storage volume, and (iii) three daily thermal demands. These studies are performed for both the CIAS plant and a slightly modified plant where the hot water supply to the load is adjusted constant at times when the water temperature from tank may exceed the set temperature. It is found that the latter

  18. Tsunami evacuation plans for future megathrust earthquakes in Padang, Indonesia, considering stochastic earthquake scenarios

    Directory of Open Access Journals (Sweden)

    A. Muhammad

    2017-12-01

    Full Text Available This study develops tsunami evacuation plans in Padang, Indonesia, using a stochastic tsunami simulation method. The stochastic results are based on multiple earthquake scenarios for different magnitudes (Mw 8.5, 8.75, and 9.0 that reflect asperity characteristics of the 1797 historical event in the same region. The generation of the earthquake scenarios involves probabilistic models of earthquake source parameters and stochastic synthesis of earthquake slip distributions. In total, 300 source models are generated to produce comprehensive tsunami evacuation plans in Padang. The tsunami hazard assessment results show that Padang may face significant tsunamis causing the maximum tsunami inundation height and depth of 15 and 10 m, respectively. A comprehensive tsunami evacuation plan – including horizontal evacuation area maps, assessment of temporary shelters considering the impact due to ground shaking and tsunami, and integrated horizontal–vertical evacuation time maps – has been developed based on the stochastic tsunami simulation results. The developed evacuation plans highlight that comprehensive mitigation policies can be produced from the stochastic tsunami simulation for future tsunamigenic events.

  19. How to simulate pedestrian behaviors in seismic evacuation for vulnerability reduction of existing buildings

    Science.gov (United States)

    Quagliarini, Enrico; Bernardini, Gabriele; D'Orazio, Marco

    2017-07-01

    Understanding and representing how individuals behave in earthquake emergencies would be essentially to assess the impact of vulnerability reduction strategies on existing buildings in seismic areas. In fact, interactions between individuals and the scenario (modified by the earthquake occurrence) are really important in order to understand the possible additional risks for people, especially during the evacuation phase. The current approach is based on "qualitative" aspects, in order to define best practice guidelines for Civil Protection and populations. On the contrary, a "quantitative" description of human response and evacuation motion in similar conditions is urgently needed. Hence, this work defines the rules for pedestrians' earthquake evacuation in urban scenarios, by taking advantages of previous results of real-world evacuation analyses. In particular, motion laws for pedestrians is defined by modifying the Social Force model equation. The proposed model could be used for evaluating individuals' evacuation process and so for defining operative strategies for interferences reduction in critical urban fabric parts (e.g.: interventions on particular buildings, evacuation strategies definition, city parts projects).

  20. An Evacuation Model for Passenger Ships That Includes the Influence of Obstacles in Cabins

    Directory of Open Access Journals (Sweden)

    Baocheng Ni

    2017-01-01

    Full Text Available Passenger behavior and ship environment are the key factors affecting evacuation efficiency. However, current studies ignore the interior layout of passenger ship cabins and treat the cabins as empty rooms. To investigate the influence of obstacles (e.g., tables and stools on cabin evacuation, we propose an agent-based social force model for advanced evacuation analysis of passenger ships; this model uses a goal-driven submodel to determine a plan and an extended social force submodel to govern the movement of passengers. The extended social force submodel considers the interaction forces between the passengers, crew, and obstacles and minimises the range of these forces to improve computational efficiency. We drew the following conclusions based on a series of evacuation simulations conducted in this study: (1 the proposed model endows the passenger with the behaviors of bypassing and crossing obstacles, (2 funnel-shaped exits from cabins can improve evacuation efficiency, and (3 as the exit angle increases, the evacuation time also increases. These findings offer ship designers some insight towards increasing the safety of large passenger ships.

  1. 5 CFR 550.409 - Evacuation payments during a pandemic health crisis.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Evacuation payments during a pandemic... during a pandemic health crisis. (a) An agency may order one or more employees to evacuate from their... the employee) during a pandemic health crisis without regard to whether the agency and the employee...

  2. Integrating supply and demand aspects of transportation for mass evacuation under disasters.

    Science.gov (United States)

    2009-10-15

    This study seeks to address real-time operational needs in the context of the evacuation response problem by providing a capability to dynamically route vehicles under evacuation, thereby being responsive to the actual conditions unfolding in real-ti...

  3. Evacuation of the ICU: care of the critically ill and injured during pandemics and disasters: CHEST consensus statement.

    Science.gov (United States)

    King, Mary A; Niven, Alexander S; Beninati, William; Fang, Ray; Einav, Sharon; Rubinson, Lewis; Kissoon, Niranjan; Devereaux, Asha V; Christian, Michael D; Grissom, Colin K

    2014-10-01

    Despite the high risk for patient harm during unanticipated ICU evacuations, critical care providers receive little to no training on how to perform safe and effective ICU evacuations. We reviewed the pertinent published literature and offer suggestions for the critical care provider regarding ICU evacuation. The suggestions in this article are important for all who are involved in pandemics or disasters with multiple critically ill or injured patients, including front-line clinicians, hospital administrators, and public health or government officials. The Evacuation and Mobilization topic panel used the American College of Chest Physicians (CHEST) Guidelines Oversight Committee's methodology to develop seven key questions for which specific literature searches were conducted to identify studies upon which evidence-based recommendations could be made. No studies of sufficient quality were identified. Therefore, the panel developed expert opinion-based suggestions using a modified Delphi process. Based on current best evidence, we provide 13 suggestions outlining a systematic approach to prepare for and execute an effective ICU evacuation during a disaster. Interhospital and intrahospital collaboration and functional ICU communication are critical for success. Pre-event planning and preparation are required for a no-notice evacuation. A Critical Care Team Leader must be designated within the Hospital Incident Command System. A three-stage ICU Evacuation Timeline, including (1) no immediate threat, (2) evacuation threat, and (3) evacuation implementation, should be used. Detailed suggestions on ICU evacuation, including regional planning, evacuation drills, patient transport preparation and equipment, patient prioritization and distribution for evacuation, patient information and tracking, and federal and international evacuation assistance systems, are also provided. Successful ICU evacuation during a disaster requires active preparation, participation

  4. Analysis of evacuation procedure after the accident of the Fukushima Daiichi Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, T.; Iizuka, F.; El-Asaad, H. [Tokyo Inst. of Tech., Tokyo (Japan)

    2014-07-01

    After the Great East Japan Earthquake of March 2011 struck the coast of Eastern Japan, evacuation procedures were undermined due to the unexpected magnitude and severity of the disaster. Also, communications between local and national government were weakened, leading to dismemberment between society and government. Consequently this left the affected people without sufficient information or updates regarding evacuation procedures. This paper will concentrate on evacuation procedures led by locating residents with the help of media outlets (local newspapers and news reports). Analyzing movements of evacuees will help improve the evacuation method both for local residents and government bodies. (author)

  5. Analysis of evacuation procedure after the accident of the Fukushima Daiichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Murayama, T.; Iizuka, F.; El-Asaad, H.

    2014-01-01

    After the Great East Japan Earthquake of March 2011 struck the coast of Eastern Japan, evacuation procedures were undermined due to the unexpected magnitude and severity of the disaster. Also, communications between local and national government were weakened, leading to dismemberment between society and government. Consequently this left the affected people without sufficient information or updates regarding evacuation procedures. This paper will concentrate on evacuation procedures led by locating residents with the help of media outlets (local newspapers and news reports). Analyzing movements of evacuees will help improve the evacuation method both for local residents and government bodies. (author)

  6. Emergency evacuation models in subway service systems: An application on Izmir (Turkey subway system

    Directory of Open Access Journals (Sweden)

    Gökçe Baysal Türkölmez

    2016-08-01

    Full Text Available Increasing population in crowded cities causes transportation problems. Public transportation is an effective solution for the crowded traffic. Subway is a fast and productive alternative for public transportation so it is a highly preferable choice in others. It is hard to evacuate people in subway station during a disaster in carriages, on subway line or in subway stations because subway systems are often located underground, a lot people use it at the same time and enter-exit gates are controlled by turnstiles. It is crucially important to know the evacuation time of people from subway. In this paper, Konak station, one of the most crowded stations of Izmir Subway System is analyzed by emergency evacuation models. The evacuation process is simulated by Simulex software. The emergency evacuation problem is modeled in three different scenarios. Solution offers are developed for them.

  7. Stop Smoking—Tube-In-Tube Helical System for Flameless Calcination of Minerals

    Directory of Open Access Journals (Sweden)

    Nils Haneklaus

    2017-11-01

    Full Text Available Mineral calcination worldwide accounts for some 5–10% of all anthropogenic carbon dioxide (CO2 emissions per year. Roughly half of the CO2 released results from burning fossil fuels for heat generation, while the other half is a product of the calcination reaction itself. Traditionally, the fuel combustion process and the calcination reaction take place together to enhance heat transfer. Systems have been proposed that separate fuel combustion and calcination to allow for the sequestration of pure CO2 from the calcination reaction for later storage/use and capture of the combustion gases. This work presents a new tube-in-tube helical system for the calcination of minerals that can use different heat transfer fluids (HTFs, employed or foreseen in concentrated solar power (CSP plants. The system is labeled ‘flameless’ since the HTF can be heated by other means than burning fossil fuels. If CSP or high-temperature nuclear reactors are used, direct CO2 emissions can be divided in half. The technical feasibility of the system has been accessed with a brief parametric study here. The results suggest that the introduced system is technically feasible given the parameters (total heat transfer coefficients, mass- and volume flows, outer tube friction factors, and –Nusselt numbers that are examined. Further experimental work will be required to better understand the performance of the tube-in-tube helical system for the flameless calcination of minerals.

  8. Prototype Tsunami Evacuation Park in Padang, West Sumatra, Indonesia

    Science.gov (United States)

    Tucker, B. E.; Cedillos, V.; Deierlein, G.; Di Mauro, M.; Kornberg, K.

    2012-12-01

    Padang, Indonesia, a city of some 900,000 people, half of whom live close to the coast and within a five-meter elevation above sea level, has one of the highest tsunami risks in the world due to its close offshore thrust-fault seismic hazard, flat terrain and dense population. There is a high probability that a tsunami will strike the shores of Padang, flooding half of the area of the city, within the next 30 years. If that tsunami occurred today, it is estimated that several hundred thousand people would die, as they could not reach safe ground in the ~30 minute interval between the earthquake's occurrence and the tsunami's arrival. Padang's needs have been amply demonstrated: after earthquakes in 2007, 2009, 2011 and 2012, citizens, thinking that those earthquakes might cause a tsunami, tried to evacuate in cars and motorbikes, which created traffic jams, and most could not reach safe ground in 30 minutes. Since 2008, GeoHazards International (GHI) and Stanford University have studied a range of options for improving this situation, including ways to accelerate evacuation to high ground with pedestrian bridges and widened roads, and means of "vertical" evacuation in multi-story buildings, mosques, pedestrian overpasses, and Tsunami Evacuation Parks (TEPs), which are man-made hills with recreation facilities on top. TEPs proved most practical and cost-effective for Padang, given the available budget, technology and time. The Earth Observatory Singapore (EOS) developed an agent-based model that simulates pedestrian and vehicular evacuation to assess tsunami risk and risk reduction interventions in Southeast Asia. EOS applied this model to analyze the effectiveness in Padang of TEPs over other tsunami risk management approaches in terms of evacuation times and the number of people saved. The model shows that only ~24,000 people (20% of the total population) in the northern part of Padang can reach safe ground within 30 minutes, if people evacuate using cars and

  9. Incorporating emergency evacuation planning, through human reliability analysis, in the risk management of industrial installation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac J.A. Luquetti; Carvalho, Paulo V.R.; Grecco, Claudio H.S. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], Email: luquetti@ien.gov.br

    2009-07-01

    An industrial installation presents many risks in the form of the process hazards, such as fire, explosion, gas and radiation release. In these situations, workers may need to evacuate from the work environment as soon as possible. In this case, the emergency evacuation planning is a key element that involves an iterative process to identify the best evacuation routes and to estimate the time required to evacuate the area at risk. The mean aspects for a successful emergency evacuation are influenced by the type of human error and the severity of the initiator event. The aim of this paper is to present a methodological framework for the identification of the performance shaping factors and prediction of human error probabilities of the responsible by the emergency evacuation of the workers in an industrial installation, providing a proactive approach for the allocation of the human factors in the risk assessment of the industrial installation. (author)

  10. Why Don't People Evacuate When Nature Threatens?

    Science.gov (United States)

    Thompson, K. J.; Broad, K.; Meyer, R.; Orlove, B. S.

    2011-12-01

    Why do so many Southern Californians fail to evacuate when warned that winter storms have critically raised the risk of a debris flow in their neighborhoods? Have they perhaps not seen or heeded news coverage of past debris flow events? Are they unaware that recent fires made the hillsides above them more prone to gravity-driven processes? Do they think they can wait to start their cars until they can actually see the flow coming? Or have they merely experienced too many "false alarms" in past years, and no longer put much stock in the judgment of public officials or the ability of scientists to judge debris flow risk? In preparation for a simulation study that will place decision makers in a virtual house in the California foothills during a winter storm event, we explore the reasons that people do and do not evacuate in the face of potential debris flows. Working in collaboration with the USGS Multi-Hazards Demonstration Project for Southern California, we are surveying hundreds of local residents, from debris-flow prone areas and from elsewhere in the state, to establish their baseline knowledge (and misconceptions) about, attitudes toward, information use regarding, and experience with debris flows. Initial interviews with residents of recently hit neighborhoods give qualitative data suggesting that false-alarm effects and underestimation of risk are driving factors; these surveys will provide quantitative evidence to extend those findings. We will discuss the results of this survey in the context of a comprehensive body of psychology research that seeks to explain why people frequently appear to ignore or discount hazard warnings: neglecting to insure their homes and crops (Kunreuther, 1984), failing to evacuate in the face of storms and fires (Baker, 1991; Packham, 1995), and (barring a recent, vivid event) showing little support for measures that would manage or mitigate future hazards (Kunreuther, 2006a, 2006b; Weber, 2006). We will also consider the

  11. Perturbation of the solar wind in a model terrestrial foreshock

    International Nuclear Information System (INIS)

    Skadron, G.; Holdaway, R.D.; Scholer, M.

    1986-01-01

    We analyze the perturbation of the solar wind in the earth's foreshock. The foreshock is modulated as a planar magnetic flux tube having a 15 R/sub E/ half width. Within the flux tube the upstream energetic particle pressure is assumed to fall monotonically to zero at the flux tube boundary and decline in the upstream direction with a scale length of 8 R/sub E/. The incident solar wind is assumed to flow uniformly with a velocity of 400 km s -1 , a density of 8 cm -3 , a pressure of 50 eV cm -3 , and a magnetic field of 4γ directed parallel to the flow. The solar wind density, velocity, and magnetic field within the foreshock are described by the steady state ideal MHD equations. We find that (1) the vector solar wind velocity perturbation rotates from the sunward to the transverse direction with increasing distance from the axis of the flux tube, (2) the peak solar wind deflection is located --3R/sub E/ within the flux tube boundary, (3) a central upstream pressure of 200 eV cm -3 produces a maxium deceleration of 6 km s -1 and a maximum deflection of 1.3 0 , (4) a central upstream pressure of 600 eV cm -3 produces a maximum deceleration of 19 km s -1 and a maximum deflection of 3.6 0 , and (5) the deflection and deceleration are accompanied by perturbations of the solar wind density and magnetic field. These perturbations are largest near the flux tube boundary where both form spikes having a width of --2R/sub E/. For a 600 eV cm -3 central pressure those spikes have amplitudes of 2 cm -3 and lγ, respectively. We have analyzed the linearized flow problem analytically and reduced the solutions to quadrature. These solutions are found to be good approximations to the numerical nonlinear solutions for moderate values of the upstream particle pressure

  12. Experiment study of a quartz tube falling particle receiver

    Institute of Scientific and Technical Information of China (English)

    Tianjian WANG; Fengwu BAI; Shunzhou CHU; Xiliang ZHANG; Zhifeng WANG

    2017-01-01

    This paper presents an experimental evaluation of a specially designed falling particle receiver.A quartz tube was used in the design,with which the particles would not be blown away by wind.Concentrated solar radiation was absorbed and converted into thermal energy by the solid particles flowed inside the quartz tube.Several experiments were conducted to test the dynamic thermal performance of the receiver on solar furnace system.During the experiments,the maximum particle temperature rise is 212℃,with an efficiency of 61.2%,which shows a good thermal performance with a falling distance of 0.2 m in a small scale particle receiver.The average outlet particle temperature is affected by direct normal irradiance (DNI) and other factors such as wind speed.The solid particles obtain a larger viscosity with a higher temperature while smaller solid particles are easier to get stuck in the helix quartz tube.The heat capacity of the silicon carbide gets larger with the rise of particle temperature,because as the temperature of solid particles increases,the temperature rise of the silicon carbide decreases.

  13. Short-time home coming project in evacuation zone

    International Nuclear Information System (INIS)

    Tatsuzaki, Hideo

    2011-01-01

    Accident at Fukushima Daiichi Nuclear Power Plants (NPPs) forced neighboring residents to evacuate, and evacuation zone (20 km radius from NPPs) was defined as highly contaminated and designated as no-entry zones. Residents had been obliged to live a refugee life for a longer period than expected. Short-time home coming project was initiated according to their requests. They came to the meeting place called transfer place (20 - 30 km radius from NPPs), wore protective clothing and personal dosimeter with having drinking water and came home in evacuation zone with staffs by bus. Their healthcare management professionals were fully prepared for emergency. After collecting necessary articles at home within two hours, they returned to the meeting place by bus for screening and dressing, and went back to refuge house. If screening data were greater than 13 kcpm using GM counters, partial body decontamination had been conducted by wiping and if greater than 100 kcpm, whole body decontamination was requested but not conducted. Dose rate of residents and staffs was controlled less than 1 mSv, which was alarm level of personal dosimeter. Stable iodine was prepared but actually not used. (T. Tanaka)

  14. Civilians under fire: evacuation behaviour in north Israel during the Second Lebanon War.

    Science.gov (United States)

    Gidron, David; Peleg, Kobi; Jaffe, Dena; Shenhar, Gili

    2010-10-01

    This paper seeks to understand evacuation behaviour in a case of spontaneous evacuation. During the Second Lebanon War of 2006, more than one-third of residents in north Israel spontaneously evacuated--the remainder stayed in situ. Using a telephone survey of 665 respondents residing in north Israel, we were able to characterise the behaviour of evacuees and non-evacuees. The main reasons cited for evacuating were fear of injury to self or family, the effect on children, inability to remain in a protective space, and family pressure. The main reasons cited for remaining at home were no suitable alternative, did not perceive a high level of danger, had to go to work, and there is no place like home. There were no significant differences with regard to most socio-demographic characteristics of the population. These findings should aid emergency managers in preparing the population for a future emergency and in engaging in effective dialogue with the population during an emergency on the evacuation option. © 2010 The Author(s). Journal compilation © Overseas Development Institute, 2010.

  15. EVACUATION ROUTE MAPPING AGAINST SLAMET VOLCANO DISASTER AT GUNUNGSARI VILLAGE, PULOSARI SUB DISTRICT, PEMALANG DISTRICT

    Directory of Open Access Journals (Sweden)

    Misdiyanto Misdiyanto

    2014-01-01

    Full Text Available Villages inside the hazard zone of Slamet Volcano should have an evacuation map, as an anticipation and guidance to guide people evacuate when volcanic activity on the area arise to dangerous level. The experience which occurred at 2009 and 2010 indicate the necessity of the development of evacuation map for 7 villages inside the hazard zone in the Pemalang residential district, such as village of Gunung Sari. The main purpose of the developing an evacuation map is to make the village of Gunung sari becoming more vigilant to anticipate the danger of Slamet Mount eruption. Qualitative methods were used in this study, by handing out preliminary questionnaire to investigate the characteristic of the residents. The development of evacuation map also relies on the participation of the residents, then the resulted map were evaluated by assessing how far people can understand and comprehend any information provided on the map. The result of the investigation shows that Gunungsari’s resident wants an evacuation map, shown by high enthusiasm on the questions of the necessity of an evacuation map and disaster preparedness team that is equal to 97% of the residents on Dusun Sipendil, 83% on dusun Sibedil, 67% on Dusun Silegok, and 63% on Dusun Krajan. The residents also understand and comprehend the information provided on the map nicely, especially about the timing and rendezvous location for the evacuation. It is indicated by high proportion of residents that answer the questions asked accurately, which is 100% on Dusun Sipendil, 97% on Dusun Sibedil, and 80% for both Dusun Silegok and Dusun Krajan. Keywords: disaster prone area, evacuation map, society characteristic

  16. Getting out of harm's way - evacuation from tsunamis

    Science.gov (United States)

    Jones, Jeanne M.; Wood, Nathan J.; Gordon, Leslie C.

    2015-01-01

    Scientists at the U.S. Geological Survey (USGS) have developed a new mapping tool, the Pedestrian Evacuation Analyst, for use by researchers and emergency managers to estimate how long it would take for someone to travel on foot out of a tsunami-hazard zone. The ArcGIS software extension, released in September 2014, allows the user to create maps showing travel times out of hazard zones and to determine the number of people that may or may not have enough time to evacuate. The maps take into account the elevation changes and the different types of land cover that a person would encounter along the way.

  17. A Participatory Agent-Based Simulation for Indoor Evacuation Supported by Google Glass

    Directory of Open Access Journals (Sweden)

    Jesús M. Sánchez

    2016-08-01

    Full Text Available Indoor evacuation systems are needed for rescue and safety management. One of the challenges is to provide users with personalized evacuation routes in real time. To this end, this project aims at exploring the possibilities of Google Glass technology for participatory multiagent indoor evacuation simulations. Participatory multiagent simulation combines scenario-guided agents and humans equipped with Google Glass that coexist in a shared virtual space and jointly perform simulations. The paper proposes an architecture for participatory multiagent simulation in order to combine devices (Google Glass and/or smartphones with an agent-based social simulator and indoor tracking services.

  18. Two new methods used to simulate the circumferential solar flux density concentrated on the absorber of a parabolic trough solar collector

    Science.gov (United States)

    Guo, Minghuan; Wang, Zhifeng; Sun, Feihu

    2016-05-01

    The optical efficiencies of a solar trough concentrator are important to the whole thermal performance of the solar collector, and the outer surface of the tube absorber is a key interface of energy flux. So it is necessary to simulate and analyze the concentrated solar flux density distributions on the tube absorber of a parabolic trough solar collector for various sun beam incident angles, with main optical errors considered. Since the solar trough concentrators are linear focusing, it is much of interest to investigate the solar flux density distribution on the cross-section profile of the tube absorber, rather than the flux density distribution along the focal line direction. Although a few integral approaches based on the "solar cone" concept were developed to compute the concentrated flux density for some simple trough concentrator geometries, all those integral approaches needed special integration routines, meanwhile, the optical parameters and geometrical properties of collectors also couldn't be changed conveniently. Flexible Monte Carlo ray trace (MCRT) methods are widely used to simulate the more accurate concentrated flux density distribution for compound parabolic solar trough concentrators, while generally they are quite time consuming. In this paper, we first mainly introduce a new backward ray tracing (BRT) method combined with the lumped effective solar cone, to simulate the cross-section flux density on the region of interest of the tube absorber. For BRT, bundles of rays are launched at absorber-surface points of interest, directly go through the glass cover of the absorber, strike on the uniformly sampled mirror segment centers in the close-related surface region of the parabolic reflector, and then direct to the effective solar cone around the incident sun beam direction after the virtual backward reflection. All the optical errors are convoluted into the effective solar cone. The brightness distribution of the effective solar cone is supposed

  19. A comparison of the nursing home evacuation experience between hurricanes katrina (2005) and gustav (2008).

    Science.gov (United States)

    Blanchard, Gary; Dosa, David

    2009-11-01

    One of the tragic legacies of Hurricane Katrina was the loss of life among Louisiana (LA) nursing home (NH) residents. Katrina revealed a staggering lack of emergency preparation and understanding of how to safely evacuate frail populations. Three years later, LA braced for Hurricane Gustav, a storm heralded to rival Katrina's power. Although its magnitude of destruction ultimately paled to Katrina, the warnings and predicted path preceding Gustav yielded a process of NH evacuations similar to Katrina. The goal of this article was to ascertain whether NH administrative directors (ADs) felt more prepared to evacuate before Gustav. In 2006, Dosa et al(5) (J Am Med Dir Assoc, 3/07), interviewed 20 NH ADs by qualitative telephone survey to evaluate their lessons learned from Katrina. Administrators at these 20 participating nursing homes were contacted and asked to participate in a follow-up survey to compare hurricane preparedness between 2005 and 2008. Specifically, ADs were asked if they evacuated before Gustav, their destination, and about logistical issues with evacuation (eg, transportation, injuries). ADs were asked to rate their confidence with state assistance, hurricane transportation, and evacuation preparedness on a 10-point scale (10=most confident) and compare their preparedness to Katrina. Sixteen of the 20 NHs that participated in 2006 agreed to be surveyed-11 of whom held the same position before Katrina. Unlike Katrina, when only 45% evacuated before the storm, all 16 NHs evacuated before Gustav (56% to another NH and 46% to a church, gym, college, or other facility). Overall, ADs rated their confidence in preparedness for Gustav as a mean of 8.3 (range 5 to 10) compared with a mean of 5.4 (range 3 to 8) for Katrina, a 54% improvement. Of the 11 ADs employed pre-Katrina, 73% reported improved collaboration with the state and 55% noted improved transportation. Nevertheless, 7 ADs noted significant logistical problems during evacuation (mostly

  20. Solar water disinfecting system using compound parabolic concentrating collector

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghetany, H.H.; Saitoh, T.S. [Tohoku Univ., Sendai (Japan)

    2000-05-31

    Solar water disinfection is an alternative technology using solar radiation and thermal treatment to inactivate and destroy pathogenic microorganisms present in water. The Compound Parabolic Concentrating, (CPC) collector can be used as an efficient key component for solar disinfectanting system. Two types of the CPC collectors are studied, namely the transparent-tube and the Copper-tube CPC collector. It is found that after 30 minutes of exposing the water sample to solar radiation or heating it up to 65 degree C for a few minuets all the coliform bacterial present in the contaminated water sample were completely eliminated. In this article, the effect of water temperature on the disinfecting process was presented. Thermal and micro-biological measurements were also made to evaluate the system performance. (author)

  1. Study of Evacuation Behavior of Coastal Gulf of Mexico Residents

    OpenAIRE

    Bhattacharjee, Sanjoy; Petrolia, Daniel R.; Hanson, Terrill R.

    2009-01-01

    In this study, we investigate the link between hurricane characteristics, demographics of the Coastal Gulf of Mexico residents, including their household location, and their respective evacuation behavior. Our study is significantly different from the previously made studies on hurricane evacuation behavior in two ways. At first, the research data is collected through recording responses to a series of hypothetical situations which are quite identical to the set of information that people are...

  2. The long-term impact of war experiences and evacuation on people who were children during World War Two.

    Science.gov (United States)

    Waugh, Melinda J; Robbins, Ian; Davies, Stephen; Feigenbaum, Janet

    2007-03-01

    During World War Two 1.9 million people were evacuated from British cities where the risk of bombing was perceived to be highest. 1.5 million of these were children who, often unaccompanied, were sent to live with strangers. Two hundred and forty-five people who were evacuated as children were compared with 96 of similar age who did not experience evacuation. Within this self-selected sample, significant numbers of the evacuees were found to have experienced abuse and neglect. Pre-evacuation abuse made continued abuse likely during evacuation, while abuse during evacuation led to children being more likely to continue to be abused on their return home. Abuse during evacuation led to increased scores on the Impact of Event Scale and General Health Questionnaire, and to insecure attachment patterns. The role of evacuation and abuse in the maintenance of long-term psychological problems is discussed.

  3. Solar advanced internal film receiver

    International Nuclear Information System (INIS)

    Torre Cabezas, M. de la

    1990-01-01

    In a Solar Central Internal Film Receiver, the heat absorbing fluid (a molten nitrate salt) flows in a thin film down over the non illuminated side of an absorber panel. Since the molten salt working fluid is not contained in complicated tube manifolds, the receiver design is simples than a conventional tube type-receiver resulting in a lower cost and a more reliable receiver. The Internal Film Receiver can be considered as an alternative to the Direct Absorption Receiver, in the event that the current problems of the last one can not be solved. It also describes here the test facility which will be used for its solar test, and the test plans foreseen. (Author) 17 refs

  4. [The property and applications of the photovoltaic solar panel in the region of diagnostic X-ray].

    Science.gov (United States)

    Hirota, Jun'ichi; Tarusawa, Kohetsu; Kudo, Kohsei

    2010-10-20

    In this study, the sensitivity in the diagnostic X-ray region of the single crystalline Si photovoltaic solar panel, which is expected to grow further, was measured by using an X-ray tube. The output voltage of the solar panel was clearly proportional to the tube voltage and a good time response in the irradiation time setting of the tube was measured. The factor which converts measured voltage to irradiation dose was extracted experimentally using a correction filter to investigate the ability of the solar panel as a dose monitor. The obtained conversion factors were N(S) = 13 ± 1[µV/µSv/s] for the serial and N(P) = 58 ± 2[µV/µSv/s] for the parallel connected solar panels, both with the Al 1 mm + Cu 0.1 mm correction filter, respectively. Therefore, a good dose dependence of the conversion factor was confirmed by varying the distance between the X-ray tube and the solar panel with that filter. In conclusion, a simple extension of our results pointed out the potential of a new concept of measurements using, for example, the photovoltaic solar panel, the direct dose measurement from X-ray tube and real time estimation of the exposed dose in IVR.

  5. Support system development for evacuation plan decision in nuclear plant disaster

    International Nuclear Information System (INIS)

    Fujita, Masahiko; Takayama, Jun-ichi; Nakayama, Sho-ichiro; Ushiba, Takashi

    2011-01-01

    These days, our interest in nuclear plant accidents has increased, and civic actions for them have also been activated. Therefore, improvement of the disaster prevention planning to nuclear plant accidents is requested. In this study, we developed a microscopic traffic simulation system for evacuation plan near the nuclear plant as a system which supports to examine the disaster prevention planning, and applied the system to Kashiwazaki-Kariwa nuclear plant area. Furthermore, the risk of each region near the nuclear plant disaster from the viewpoint of wind direction and the population was considered, the importance of each evacuation simulation was examined. As a result, we found that the present plan Kashiwazaki-Kariwa made has the problem on evacuation routes and others. (author)

  6. ABM and GIS-based multi-scenarios volcanic evacuation modelling of Merapi

    Science.gov (United States)

    Jumadi, Carver, Steve; Quincey, Duncan

    2016-05-01

    Conducting effective evacuation is one of the successful keys to deal with such crisis. Therefore, a plan that considers the probability of the spatial extent of the hazard occurrences is needed. Likewise, the evacuation plan in Merapi is already prepared before the eruption on 2010. However, the plan could not be performed because the eruption magnitude was bigger than it was predicted. In this condition, the extent of the hazardous area was increased larger than the prepared hazard model. Managing such unpredicted situation need adequate information that flexible and adaptable to the current situation. Therefore, we applied an Agent-based Model (ABM) and Geographic Information System (GIS) using multi-scenarios hazard model to support the evacuation management. The methodology and the case study in Merapi is provided.

  7. Evacuating the Area of a Hurricane

    Centers for Disease Control (CDC) Podcasts

    2006-08-10

    If a hurricane warning is issued for your area, or authorities tell you to evacuate, take only essential items. If you have time, turn off gas, electricity, and water and disconnect appliances.  Created: 8/10/2006 by Emergency Communications System.   Date Released: 10/10/2007.

  8. Experimental Analysis of the Thermo-Hydraulic Performance on a Cylindrical Parabolic Concentrating Solar Water Heater with Twisted Tape Inserts in an Absorber Tube

    Science.gov (United States)

    Kumar, Birendra; Nayak, Rajen Kumar; Singh, S. N.

    2018-05-01

    A twisted tape inserted in an absorber tube may be an excellent option to enhance the performance of a cylindrical parabolic concentrating solar collector (CPC). The present work is an experimental study of the flow and heat transfer with and without twisted tape inserts in the absorber tube of a CPC. Results are presented for mass flow rates of water, ṁ=0.0198-0.0525 kg/s, twist ratio, y=5-10 and Reynolds number, Re=2577.46-6785.55. In the present study, we found that the outlet water temperature, collector efficiency and Nusselt number (Nu) are higher in the twisted tapes as compared to those without the twisted tape inserts in the absorber tube of the CPC. For fixed mass flow rate of water ṁ, the To and η increased with the decrease in twist ratio, y, and is higher in lower twist ratio, y=5, of the twisted tapes. The whole experiment was performed at the Indian Institute of Technology (ISM) in Dhanbad, India during the months of March-April 2017. Based on the experimental data, the correlations for the Nu and friction factor were also developed.

  9. Variations in disaster evacuation behavior: public responses versus private sector executive decision-making processes.

    Science.gov (United States)

    Drabek, T E

    1992-06-01

    Data obtained from 65 executives working for tourism firms in three sample communities permitted comparison with the public warning response literature regarding three topics: disaster evacuation planning, initial warning responses, and disaster evacuation behavior. Disaster evacuation planning was reported by nearly all of these business executives, although it was highly variable in content, completeness, and formality. Managerial responses to post-disaster warnings paralleled the type of complex social processes that have been documented within the public response literature, except that warning sources and confirmation behavior were significantly affected by contact with authorities. Five key areas of difference were discovered in disaster evacuation behavior pertaining to: influence of planning, firm versus family priorities, shelter selection, looting concerns, and media contacts.

  10. Exploring the Role of Social Media and Individual Behaviors in Flood Evacuation Processes: An Agent-Based Modeling Approach

    Science.gov (United States)

    Du, Erhu; Cai, Ximing; Sun, Zhiyong; Minsker, Barbara

    2017-11-01

    Flood warnings from various information sources are important for individuals to make evacuation decisions during a flood event. In this study, we develop a general opinion dynamics model to simulate how individuals update their flood hazard awareness when exposed to multiple information sources, including global broadcast, social media, and observations of neighbors' actions. The opinion dynamics model is coupled with a traffic model to simulate the evacuation processes of a residential community with a given transportation network. Through various scenarios, we investigate how social media affect the opinion dynamics and evacuation processes. We find that stronger social media can make evacuation processes more sensitive to the change of global broadcast and neighbor observations, and thus, impose larger uncertainty on evacuation rates (i.e., a large range of evacuation rates corresponding to sources of information). For instance, evacuation rates are lower when social media become more influential and individuals have less trust in global broadcast. Stubborn individuals can significantly affect the opinion dynamics and reduce evacuation rates. In addition, evacuation rates respond to the percentage of stubborn agents in a nonlinear manner, i.e., above a threshold, the impact of stubborn agents will be intensified by stronger social media. These results highlight the role of social media in flood evacuation processes and the need to monitor social media so that misinformation can be corrected in a timely manner. The joint impacts of social media, quality of flood warnings, and transportation capacity on evacuation rates are also discussed.

  11. Indoor solar thermal energy saving time with phase change material in a horizontal shell and finned-tube heat exchanger.

    Science.gov (United States)

    Paria, S; Sarhan, A A D; Goodarzi, M S; Baradaran, S; Rahmanian, B; Yarmand, H; Alavi, M A; Kazi, S N; Metselaar, H S C

    2015-01-01

    An experimental as well as numerical investigation was conducted on the melting/solidification processes of a stationary phase change material (PCM) in a shell around a finned-tube heat exchanger system. The PCM was stored in the horizontal annular space between a shell and finned-tube where distilled water was employed as the heat transfer fluid (HTF). The focus of this study was on the behavior of PCM for storage (charging or melting) and removal (discharging or solidification), as well as the effect of flow rate on the charged and discharged solar thermal energy. The impact of the Reynolds number was determined and the results were compared with each other to reveal the changes in amount of stored thermal energy with the variation of heat transfer fluid flow rates. The results showed that, by increasing the Reynolds number from 1000 to 2000, the total melting time decreases by 58%. The process of solidification also will speed up with increasing Reynolds number in the discharging process. The results also indicated that the fluctuation of gradient temperature decreased and became smooth with increasing Reynolds number. As a result, by increasing the Reynolds number in the charging process, the theoretical efficiency rises.

  12. 76 FR 28064 - Notice of Availability of the Final Environmental Impact Statement for Palen Solar I, LLC's Palen...

    Science.gov (United States)

    2011-05-13

    ... suitable for solar energy production. In addition to the proposed action, the BLM is analyzing the... of rows of parabolic mirrors focusing solar energy on collector tubes. The tubes would carry heated...) Designate the project area as available to future solar energy power generation projects; or (2) designate...

  13. 76 FR 43265 - Proposed Information Collection; Comment Request; Evacuation Movement and Behavior Questionnaire

    Science.gov (United States)

    2011-07-20

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Proposed Information Collection; Comment Request; Evacuation Movement and Behavior Questionnaire AGENCY: National Institute of... collecting data on evacuation behavior and movement of occupants from approximately 50 high-rise building...

  14. Integration of social vulnerability into emergency management plans: designing of evacuation routes against flood disasters

    Science.gov (United States)

    Aroca-Jimenez, Estefanía; Bodoque, Jose Maria; Garcia, Juan Antonio; Diez-Herrero, Andres

    2017-04-01

    Flash floods are highly spatio-temporal localized flood events characterized by reaching a high peak flow in a very short period of time, i.e., generally with times of concentration lower than six hours. Its short duration, which limits or even voids any warning time, means that flash floods are considered to be one of the most destructive natural hazards with the greatest capacity to generate risk, either in terms of the number of people affected globally or the proportion of individual fatalities. The above highlights the importance of a realistic and appropriate design of evacuation strategies in order to reduce flood-related losses, being evacuation planning considered of critical importance for disaster management. Traditionally, evacuation maps have been based on flood-prone areas, shelters or emergency residences location and evacuation routes information. However, evacuation plans rarely consider the spatial distribution of vulnerable population (i.e., people with special needs, mobility constraints or economic difficulties), which usually require assistance from emergency responders. The goal of this research is to elaborate an evacuation map against the occurrence of flash floods by combining geographic information (e.g. roads, health facilities location, sanitary helicopters) and social vulnerability patterns, which are previously obtained from socioeconomic variables (e.g. population, unemployment, dwelling characteristics). To do this, ArcGis Network Analyst tool is used, which allows to calculate the optimal evacuation routes. The methodology proposed here is implemented in the region of Castilla y León (94,230 km2). Urban areas prone to flash flooding are identified taking into account the following requirements: i) city centers are crossed by rivers or streams with a longitudinal slope higher than 0.01 m m-1; ii) city centers are potentially affected by flash floods; and iii) city centers are affected by an area with low or exceptional probability

  15. ALFIL: A Crowd Simulation Serious Game for Massive Evacuation Training and Awareness

    Science.gov (United States)

    García-García, César; Fernández-Robles, José Luis; Larios-Rosillo, Victor; Luga, Hervé

    2012-01-01

    This article presents the current development of a serious game for the simulation of massive evacuations. The purpose of this project is to promote self-protection through awareness of the procedures and different possible scenarios during the evacuation of a massive event. Sophisticated behaviors require massive computational power and it has…

  16. Influence of road network and population demand assumptions in evacuation modeling for distant tsunamis

    Science.gov (United States)

    Henry, Kevin; Wood, Nathan J.; Frazier, Tim G.

    2017-01-01

    Tsunami evacuation planning in coastal communities is typically focused on local events where at-risk individuals must move on foot in a matter of minutes to safety. Less attention has been placed on distant tsunamis, where evacuations unfold over several hours, are often dominated by vehicle use and are managed by public safety officials. Traditional traffic simulation models focus on estimating clearance times but often overlook the influence of varying population demand, alternative modes, background traffic, shadow evacuation, and traffic management alternatives. These factors are especially important for island communities with limited egress options to safety. We use the coastal community of Balboa Island, California (USA), as a case study to explore the range of potential clearance times prior to wave arrival for a distant tsunami scenario. We use a first-in–first-out queuing simulation environment to estimate variations in clearance times, given varying assumptions of the evacuating population (demand) and the road network over which they evacuate (supply). Results suggest clearance times are less than wave arrival times for a distant tsunami, except when we assume maximum vehicle usage for residents, employees, and tourists for a weekend scenario. A two-lane bridge to the mainland was the primary traffic bottleneck, thereby minimizing the effect of departure times, shadow evacuations, background traffic, boat-based evacuations, and traffic light timing on overall community clearance time. Reducing vehicular demand generally reduced clearance time, whereas improvements to road capacity had mixed results. Finally, failure to recognize non-residential employee and tourist populations in the vehicle demand substantially underestimated clearance time.

  17. A risk-based method for planning of bus–subway corridor evacuation under hybrid uncertainties

    International Nuclear Information System (INIS)

    Lv, Y.; Yan, X.D.; Sun, W.; Gao, Z.Y.

    2015-01-01

    Emergencies involved in a bus–subway corridor system are associated with many processes and factors with social and economic implications. These processes and factors and their interactions are related to a variety of uncertainties. In this study, an interval chance-constrained integer programming (EICI) method is developed in response to such challenges for bus–subway corridor based evacuation planning. The method couples a chance-constrained programming with an interval integer programming model framework. It can thus deal with interval uncertainties that cannot be quantified with specified probability distribution functions. Meanwhile, it can also reflect stochastic features of traffic flow capacity, and thereby help examine the related violation risk of constraint. The EICI method is applied to a subway incident based evacuation case study. It is solved through an interactive algorithm that does not lead to more complicated intermediate submodels and has a relatively low computational requirement. A number of decision alternatives could be directly generated based on results from the EICI method. It is indicated that the solutions cannot only help decision makers identify desired population evacuation and vehicle dispatch schemes under hybrid uncertainties, but also provide bases for in-depth analyses of tradeoffs among evacuation plans, total evacuation time, and constraint-violation risks. - Highlights: • An inexact model is developed for the bus–subway corridor evacuation management. • It tackles stochastic and interval uncertainties in an integer programming problem. • It can examine violation risk of the roadway flow capacity related constraint. • It will help identify evacuation schemes under hybrid uncertainties

  18. Teen Dating Violence and Substance Use Following a Natural Disaster: Does Evacuation Status Matter?

    Science.gov (United States)

    Temple, Jeff R.; van den Berg, Patricia; Thomas, John F. “Fred”; Northcutt, James; Thomas, Christopher; Freeman, Daniel H.

    2012-01-01

    Objectives In September of 2008 the Texas coast was directly hit by Hurricane Ike. Galveston was flooded by 14 feet of storm surge, affecting most of the Island’s housing and infrastructure. The purpose of the present study is to examine whether youth who did not evacuate (11%), and subsequently were exposed to Hurricane Ike, exhibit higher rates of substance use and physical and sexual teen dating violence (both perpetration and victimization), relative to adolescents who did evacuate. Setting Public high school in southeast Texas that was in the direct path of Hurricane Ike. Participants An anonymous survey was administered in March 2009 to 1,048 high-school students who returned to Galveston post-storm (41% Hispanic, 23% African-American, 27% White). Main Outcome Measures Teen dating violence and substance use. Results Mantel-Haenszel odds ratios, adjusting for age and ethnicity, were computed. Compared to boys who evacuated, non-evacuating boys were more likely to perpetrate physical dating violence and sexual assault, and to be a victim of sexual assault. Non-evacuating boys and girls were more likely than those who did evacuate to report recent use of excessive alcohol, marijuana, and cocaine. Conclusions School personnel, medical personnel, and mental health service providers should consider screening for evacuation status in seeking to identify those adolescents who most need services after a natural disaster. Further, in addition to addressing internalized emotions and psychological symptoms associated with experiencing trauma, intervention programs should focus on reducing externalized behavior such as substance use and teen dating violence. PMID:22010597

  19. Survey of active solar thermal collectors, industry and markets in Canada : final report

    International Nuclear Information System (INIS)

    2005-08-01

    A survey of the solar thermal industry in Canada was presented. The aim of the survey was to determine the size of the Canadian solar thermal industry and market. Data were used to derive thermal energy output as well as avoided greenhouse gas (GHG) emissions from solar thermal systems. The questionnaire was distributed to 268 representatives. Results revealed annual sales of 24.2, 26.4 and 37.5 MW TH in 2002, 2003, and 2004 respectively, which represented over 50 per cent growth in the operating base during the 3 year survey period. Sales of all collector types grew substantially during the 3 year period, and survey respondents anticipated 20 per cent growth in both 2005 and 2006. Approximately 10 per cent of all sales were exported during 2002-2004. Unglazed liquid collectors constituted the majority of collector types sold in Canada, almost all of which were sold into the residential sector for swimming pool heating. The majority of air collectors were sold into the industrial/commercial and institutional (I/CI) sectors for use in space heating. Sales of liquid glazed and evacuated tube collectors were split between the residential and I/CI sectors. Residential sales were primarily for domestic water heating. In 2004, 23 per cent of sales in the residential sector were for combination domestic hot water and space heating applications, an indication of strong growth. Results of the survey indicated that the solar thermal market in Quebec differed from other regions, with more than double the annual per capita revenue of any other region as a result of greater market penetration of unglazed air collectors. Calculations of the GHG emissions avoided due to active solar thermal systems were made based on historical estimates of solar thermal installations. A model was developed to calculate an operating base by collector type from 1979 to the present. The model showed that many of the systems installed during the 1980s were decommissioned during the 1990s, and that

  20. Huge opportunity for solar cooling

    International Nuclear Information System (INIS)

    Rowe, Daniel

    2014-01-01

    's Charlestown Square Shopping Centre and Echuca Hospital. These systems join a number of others already in operation at the large commercial and industrial scale, as well as a smaller number of systems providing cooling to cafes and offices. The development in this area is being supported by CSIRO's Solar Cooling research team which provides development, modelling and design expertise across the spectrum of solar cooling variants, sizes and applications - from remote community food preservation in India, to large commercial and residential systems in Australia. The group also has industry test facilities to support the development and testing of solar air conditioning systems as well as conventional air conditioning technologies. The Australian Institute of Refrigeration Air Conditioning and Heating (AIRAH's) Solar Cooling Special Technical Group is also involved in developing the solar cooling industry in Australia with the aim of combating climate change by reducing greenhouse emissions from the residential and commercial building sectors. The group coordinates industry and research efforts and organises information exchange, educational and training events for interested technical and business representatives. Fact file- Solar cooling systems are essentially comprised of two parts - solar thermal collectors and a sorption chiller which convert the heat into useful cooling. Though a number of collector and chiller combinations exist, no one single approach has yet dominated. Corresponding with the type of chiller used, solar cooling systems are often grouped into three categories: absorption, adsorption and desiccant. During design, an appropriate collector technology will be chosen, typically either a parabolic, flat plate or evacuated tube collector. The optimal configuration is also determined in design, to align equipment characteristics with the conditions, environment and requirements presented by each application. Thus solar cooling has a number of variants

  1. CT guided stereotactic evacuation of hypertensive and traumatic intracerebral hematomas

    International Nuclear Information System (INIS)

    Hondo, Hideki; Matsumoto, Keizo

    1983-01-01

    Recent advancement of CT system provides not only definite diagnosis and location of intracerebral hematoma but also coordinates of the center of the hematoma. Trials of stereotactic evacuation of the hematoma have been reported by some authors in the cases of subacute or chronic stages of hypertensive intracerebral hemorrhage. In this series, similar surgery has been performed in 33 cases of hypertensive intracerebral hematoma including 22 cases in acute stage, and 2 cases of traumatic hematoma. Clinical outcomes were investigated and the results were considered to be equivalent or rather better in the conventional microsurgery with evacuation of hematoma under direct vision. However, there still remained controversial problems in the cases of threatened herniation signs, because in these cases regular surgery with total evacuation of the hematoma at one time might have been preferable. The benefits of this CT guided stereotactic approach for the evacuation of the hematoma were thought to be as follow: 1) the procedure is simple and safe, 2) operation is readily performed under local anesthesia, and 3) the hematoma was drained out totally by means of urokinase activity. It is our impression that this surgery not only is indicated as emergency treatment for the patients of high-age or in high risk, but also can institute as a routine surgery for the intracerebral hematomas in patients showing no herniation sign. (J.P.N.)

  2. Prediction of the performance of a compact-evacuated solar still

    International Nuclear Information System (INIS)

    Abu Bakar, Y.A.; Jubran, B.A.; Ismail, A.F.; Ahmed, M.I.

    2000-01-01

    This paper reports the development of a mathematical model to predict the productivity and the thermal characteristics of a compact two-stage solar still with a heat recovery. A simple cost analysis is carried out to shed some lights on the potential of utilizing the proposed still for the production of drinking water. It was found that by creating a vacuum in the still as well as using the heat recovery from the condensation of the first stage into the evaporation in the second stage could result in a maximum distillation efficiency of 60%. The predicted yield of the still is 1.6 kg/h. (Author)

  3. Pedestrian flow-path modeling to support tsunami evacuation and disaster relief planning in the U.S. Pacific Northwest

    Science.gov (United States)

    Wood, Nathan J.; Jones, Jeanne M.; Schmidtlein, Mathew; Schelling, John; Frazier, T.

    2016-01-01

    Successful evacuations are critical to saving lives from future tsunamis. Pedestrian-evacuation modeling related to tsunami hazards primarily has focused on identifying areas and the number of people in these areas where successful evacuations are unlikely. Less attention has been paid to identifying evacuation pathways and population demand at assembly areas for at-risk individuals that may have sufficient time to evacuate. We use the neighboring coastal communities of Hoquiam, Aberdeen, and Cosmopolis (Washington, USA) and the local tsunami threat posed by Cascadia subduction zone earthquakes as a case study to explore the use of geospatial, least-cost-distance evacuation modeling for supporting evacuation outreach, response, and relief planning. We demonstrate an approach that uses geospatial evacuation modeling to (a) map the minimum pedestrian travel speeds to safety, the most efficient paths, and collective evacuation basins, (b) estimate the total number and demographic description of evacuees at predetermined assembly areas, and (c) determine which paths may be compromised due to earthquake-induced ground failure. Results suggest a wide range in the magnitude and type of evacuees at predetermined assembly areas and highlight parts of the communities with no readily accessible assembly area. Earthquake-induced ground failures could obstruct access to some assembly areas, cause evacuees to reroute to get to other assembly areas, and isolate some evacuees from relief personnel. Evacuation-modeling methods and results discussed here have implications and application to tsunami-evacuation outreach, training, response procedures, mitigation, and long-term land use planning to increase community resilience.

  4. Real-Time Traffic Information for Emergency Evacuation Operations: Phase A Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Franzese, Oscar [ORNL; Zhang, Li [Mississippi State University (MSU); Mahmoud, Anas M. [Mississippi State University (MSU); Lascurain, Mary Beth [ORNL; Wen, Yi [Mississippi State University (MSU)

    2010-05-01

    There are many instances in which it is possible to plan ahead for an emergency evacuation (e.g., an explosion at a chemical processing facility). For those cases, if an accident (or an attack) were to happen, then the best evacuation plan for the prevailing network and weather conditions would be deployed. In other cases (e.g., the derailment of a train transporting hazardous materials), there may not be any previously developed plan to be implemented and decisions must be made ad-hoc on how to proceed with an emergency evacuation. In both situations, the availability of real-time traffic information plays a critical role in the management of the evacuation operations. To improve public safety during a vehicular emergency evacuation it is necessary to detect losses of road capacity (due to incidents, for example) as early as possible. Once these bottlenecks are identified, re-routing strategies must be determined in real-time and deployed in the field to help dissipate the congestion and increase the efficiency of the evacuation. Due to cost constraints, only large urban areas have traffic sensor deployments that permit access to some sort of real-time traffic information; any evacuation taking place in any other areas of the country would have to proceed without real-time traffic information. The latter was the focus of this SERRI/DHS (Southeast Region Research Initiative/Department of Homeland Security) sponsored project. That is, the main objective on the project was to improve the operations during a vehicular emergency evacuation anywhere by using newly developed real-time traffic-information-gathering technologies to assess traffic conditions and therefore to potentially detect incidents on the main evacuation routes. Phase A of the project consisted in the development and testing of a prototype system composed of sensors that are engineered in such a way that they can be rapidly deployed in the field where and when they are needed. Each one of these sensors

  5. The Impact of Transport Time on Outcomes Following Evacuation from Point of Injury

    Science.gov (United States)

    2017-06-16

    reasonable in relation to anticipated benefits and the importance of the knowledge that may reasonably be expected to result. The subject selection is...patients with traumatic injuries require urgent medical attention and expeditious evacuation to improve survival. Aeromedical evacuation platforms such as

  6. Modified two-layer social force model for emergency earthquake evacuation

    Science.gov (United States)

    Zhang, Hao; Liu, Hong; Qin, Xin; Liu, Baoxi

    2018-02-01

    Studies of crowd behavior with related research on computer simulation provide an effective basis for architectural design and effective crowd management. Based on low-density group organization patterns, a modified two-layer social force model is proposed in this paper to simulate and reproduce a group gathering process. First, this paper studies evacuation videos from the Luan'xian earthquake in 2012, and extends the study of group organization patterns to a higher density. Furthermore, taking full advantage of the strength in crowd gathering simulations, a new method on grouping and guidance is proposed while using crowd dynamics. Second, a real-life grouping situation in earthquake evacuation is simulated and reproduced. Comparing with the fundamental social force model and existing guided crowd model, the modified model reduces congestion time and truly reflects group behaviors. Furthermore, the experiment result also shows that a stable group pattern and a suitable leader could decrease collision and allow a safer evacuation process.

  7. Rhode Island Hurricane Evacuation Study Technical Data Report

    National Research Council Canada - National Science Library

    1995-01-01

    ... evacuation decision-making. To accomplish this, the study provides information on the extent and severity of potential flooding from hurricanes, the associated vulnerable population, capacities of existing public shelters...

  8. Lessons learned from the total evacuation of a hospital after the 2016 Kumamoto Earthquake.

    Science.gov (United States)

    Yanagawa, Youichi; Kondo, Hisayoshi; Okawa, Takashi; Ochi, Fumio

    The 2016 Kumamoto Earthquakes were a series of earthquakes that included a foreshock earthquake (magnitude 6.2) on April 14 and a main shock (magnitude 7.0) on April 16, 2016. A number of hospitals in Kumamoto were severely damaged by the two major earthquakes and required total evacuation. The authors retrospectively analyzed the activity data of the Disaster Medical Assistance Teams using the Emergency Medical Information System records to investigate the cases in which the total evacuation of a hospital was attempted following the 2016 Kumamoto Earthquake. Total evacuation was attempted at 17 hospitals. The evacuation of one of these hospitals was canceled. Most of the hospital buildings were more than 20 years old. The danger of collapse was the most frequent reason for evacuation. Various transportation methods were employed, some of which involved the Japan Ground Self-Defense Force; no preventable deaths occurred during transportation. The hospitals must now be renovated to improve their earthquake resistance. The coordinated and combined use of military and civilian resources is beneficial and can significantly reduce human suffering in large-scale disasters.

  9. K-Shortest-Path-Based Evacuation Routing with Police Resource Allocation in City Transportation Networks.

    Directory of Open Access Journals (Sweden)

    Yunyue He

    Full Text Available Emergency evacuation aims to transport people from dangerous places to safe shelters as quickly as possible. Police play an important role in the evacuation process, as they can handle traffic accidents immediately and help people move smoothly on roads. This paper investigates an evacuation routing problem that involves police resource allocation. We propose a novel k-th-shortest-path-based technique that uses explicit congestion control to optimize evacuation routing and police resource allocation. A nonlinear mixed-integer programming model is presented to formulate the problem. The model's objective is to minimize the overall evacuation clearance time. Two algorithms are given to solve the problem. The first one linearizes the original model and solves the linearized problem with CPLEX. The second one is a heuristic algorithm that uses a police resource utilization efficiency index to directly solve the original model. This police resource utilization efficiency index significantly aids in the evaluation of road links from an evacuation throughput perspective. The proposed algorithms are tested with a number of examples based on real data from cities of different sizes. The computational results show that the police resource utilization efficiency index is very helpful in finding near-optimal solutions. Additionally, comparing the performance of the heuristic algorithm and the linearization method by using randomly generated examples indicates that the efficiency of the heuristic algorithm is superior.

  10. 全玻璃真空管太阳能阵列供暖系统性能试验%Experiment on performance of all-glass vacuum tube solar array heating system

    Institute of Scientific and Technical Information of China (English)

    李金平; 孔莹; 许哲; 司泽田

    2017-01-01

    As a kind of conversion device of solar energy, the solar collector is the most important part of the solar heating system. Among various solar collectors, all-glass vacuum tube solar collector is regarded as more favourable than other collectors in both technical and economic perspectives, so domestic and foreign experts have studied several aspects of it. But the current studies usually focus on the heating performance of the solar system during the whole heating season and the influence factors of the collecting efficiency of the all-glass vacuum tube solar collector, and there is barely research on the hourly and dynamic heating performance of solar heating system in a monomer building under different operating ways. With the purpose of studying the above problems, an all-glass tube solar heating system is fabricated on a monomer building, combined with a low-temperature floor radiation heating. The system is composed of 6 groups of standpipe all-glass vacuum tube solar collectors which have uniform structure parameters, a low-temperature floor radiation heating device, a circulating pump, a valve, a conductor and other accessories. Every group of solar collector comprises 40 all-glass vacuum tubes with the external diameter of 58 mm and the length of 1800 mm, and a storage tank with the volume of 400 L, which is installed on a rack with an angle of 45° facing south. The contour aperture area of solar collector is about 3.85 m2, so the total contour aperture area of the array is about 23.1 m2. The monomer building locates in Minqin County, Gansu Province, China. Its building area is 117 m2 and actual heating area is 87 m2. The operation mode of system is as follows: Daily 17:30-23:00 is set to be heating time; during this period, the controller controls the water pump to circulate hot water at a constant flow rate, stop for 5 min every operating for 8 min. In the experiment, the values of various parameters, such as the solar irradiance, the inlet and outlet

  11. Modeling hurricane evacuation traffic : testing the gravity and intervening opportunity models as models of destination choice in hurricane evacuation.

    Science.gov (United States)

    2006-09-01

    The test was conducted by estimating the models on a portion of evacuation data from South Carolina following Hurricane Floyd, and then observing how well the models reproduced destination choice at the county level on the remaining data. The tests s...

  12. CLEAR: a model for the calculation of evacuation-time estimates in Emergency Planning Zones

    International Nuclear Information System (INIS)

    McLean, M.A.; Moeller, M.P.; Desrosiers, A.E.

    1983-01-01

    This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffice flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffice queues. The program also models the distribution of times required by individuals to prepare for an evacuation. CLEAR can calculate realistic evacuation time estimates using site specific data and can identify troublesome areas within an Emergency Planning Zone

  13. Assessing the vulnerability of the evacuation emergency plan: the case of the El Hierro, Canary Island, Spain

    Science.gov (United States)

    Marrero, J. M.; Garcia, A.; Llinares, A.; Lopez, P.; Ortinz, R.

    2012-04-01

    On July 17, 2011 an unrest was detected in the El Hierro island. A serretian submarine eruption started on October 10th in the southern area of the island, two miles away from La Restinga village. The analysis and interpretation of seismic and deformation data show a large volume of intruded magma. These data also show a high probability of a new vent opening. One of the most complex volcanic hazard scenarios is a new open vent in the El Golfo Valley, in the north slope of the island, where more than 5,000 people live. In this area there are only two possible terrestrial evacuation routes: 1) HI-1 road NE direction, the fastest but most vulnerable one, very near a 1,000 meters height cliff and through a 2 km tunnel with a structural deficiency that had to be closed during high energy periods of seismic activity; and 2) HI-1 road SW direction, a mountain road with many curves, frequent small landslides and fog. The Emergency Plan of the island takes into account the entire evacuation of El Golfo Valley in case of eruption. This process will be carried out by means of an assisted evacuation. The evacuees will be transported to a temporally regrouping shelter outside the valley to organize the transport to Tenerife Island. Only those people who have a second residence or relatives outside the affected area will be able to remain in the island. The evacuation time estimated by authorities for the entire evacuation of El Golfo Valley is of about 4 hours. This is extremely low considering: the complexity of the area; the number of evacuees; the lack of preparedness by the population; and adverse weather conditions. To evaluate the Evacuation Plan vulnerability, a series of evacuation scenarios have been simulated: self-evacuation; assisted evacuation; both terrestrial evacuation routes. The warning time, the response time by the population and the evacuation time have been taken into account.

  14. A Case Study on the Impacts of Connected Vehicle Technology on No-Notice Evacuation Clearance Time

    Directory of Open Access Journals (Sweden)

    Karzan Bahaaldin

    2017-01-01

    Full Text Available No-notice evacuations of metropolitan areas can place significant demands on transportation infrastructure. Connected vehicle (CV technology, with real-time vehicle to vehicle and vehicle to infrastructure communications, can help emergency managers to develop efficient and cost-effective traffic management plans for such events. The objectives of this research were to evaluate the impacts of CVs on no-notice evacuations using a case study of a downtown metropolitan area. The microsimulation software VISSIM was used to model the roadway network and the evacuation traffic. The model was built, calibrated, and validated for studying the performance of traffic during the evacuation. The researchers evaluated system performance with different CV penetration rates (from 0 to 30 percent CVs and measured average speed, average delays, and total delays. The findings suggest significant reductions in total delays when CVs reached a penetration rate of 30 percent, albeit increases in delays during the beginning of the evacuation. Additionally, the benefits could be greater for evacuations that last longer and with higher proportions of CVs in the vehicle stream.

  15. Conversion of solar radiation using parabolic mirrors

    Directory of Open Access Journals (Sweden)

    Jolanta Fieducik

    2017-08-01

    Full Text Available The use of solar energy is a promising source of renewable energy to cover the energy needs of our society. The aim of the study will be to analyze the possibility of converting solar energy using parabolic reflectors to the heat energy needed to meet the needs of hot water for a family of 4 people. This study presents simulations of the use of solar radiation using radiant concentration systems. The parabolic mirror directs the concentrated beam of sunlight onto a tube located in the focal plane, which is filled with water that under the influence of solar radiation heats up. This article assumes constant mirror geometry and tube cross section, while simulation is performed for different coefficients. For calculations it was assumed that the reflection coefficient of sunlight from the mirror r is variable and an analysis of its effect on the amount of heated liquid is made. The radiation absorption coefficient across the tube surface was determined by a, the thermal surface emissivity coefficient was determined as e and the simulations were performed at variable values for the amount of heated liquid. The calculations and their analysis show that, with appropriately chosen coefficients, it is possible to meet the needs of a 4-person family in warm water using the proposed installation in Poland.

  16. Low-temperature operating regime of the tokamak evacuating limiter

    International Nuclear Information System (INIS)

    Tokar', M.Z.

    1987-01-01

    The conditions for realizing the regime of strong recycling of a cold dense plasma of an evacuating limiter were determined based on a previously proposed model for describing the limiter layer of a tokamak. The scaling for the dependence of the gas pressure in the evacuation system on the average plasma density in the limiter layer was found, and agreed quantitatively with the results of measurements on the Alcator and ISX-B tokamaks. For the tokamak reactor of the INTOR scale the calculations show that the low-temperature operating regime of the evacuating limiter can be realized with a quite low pumping rate. It has the advantages of reduced erosion of the limiter and small fluxes of impurities into the working volume of the reactor. In addition, the relative concentration of the helium ash in the limiter layer does not exceed 2-3%, but the density of the main plasma is comparable to the proposed average density in the reactor. The concept of a stochastic limiter is of interest for lowering the plasma density in the limiter layer and lowering the thermal loads on the limiter

  17. Comparison of three systems of solar water heating by thermosiphon

    Science.gov (United States)

    Hernández, E.; Guzmán, R. E.

    2016-02-01

    The main purpose of this project was to elaborate a comparison between three water heating systems; using two plane water heating solar collector and another using a vacuum tube heater, all of them are on top of the cafeteria's roof on building of the “Universidad Pontificia Bolivariana” in Bucaramanga, Colombia. Through testing was determined each type of water heating systems' performance, where the Stainless Steel tube collector reached a maximum efficiency of 71.58%, the Copper Tubing Collector a maximum value of 76.31% and for the Vacuum Tube Heater Collector a maximum efficiency of 72.33%. The collector with copper coil was the system more efficient. So, taking into account the Performance and Temperature Curves, along with the weather conditions at the time of the testing we determined that the most efficient Solar Heating System is the one using a Vacuum Tube Heater Collector. Reaching a maximum efficiency of 72.33% and a maximum temperature of 62.6°C.

  18. Solar wind acceleration in a prescribed flow geometry

    International Nuclear Information System (INIS)

    Biernat, H.; Koemle, N.; Lichtenegger, H.

    1985-01-01

    It is known that the flow tubes above coronal holes diverge stronger than radial and that the magnetic field lines may be considerably curved near the border of the holes. The authors investigate the consequences of such a magnetic field geometry on the flow of the solar wind plasma in the vicinity of the Sun. For this purpose the one-dimensional conservation equations are solved along prescribed flow tubes. A temperature profile based on observational data (EUV rocket-observations) is used in the calculations. In an alternative approach the temperature is determined by a polytropic index, which is assumed to be variable. The authors study how both curvature and non-radial divergence of the flow tubes modify the velocity, the density, and the energy balance of the solar wind plasma. (Auth.)

  19. Conceptualizing intragroup and intergroup dynamics within a controlled crowd evacuation.

    Science.gov (United States)

    Elzie, Terra; Frydenlund, Erika; Collins, Andrew J; Robinson, R Michael

    2015-01-01

    Social dynamics play a critical role in successful pedestrian evacuations. Crowd modeling research has made progress in capturing the way individual and group dynamics affect evacuations; however, few studies have simultaneously examined how individuals and groups interact with one another during egress. To address this gap, the researchers present a conceptual agent-based model (ABM) designed to study the ways in which autonomous, heterogeneous, decision-making individuals negotiate intragroup and intergroup behavior while exiting a large venue. A key feature of this proposed model is the examination of the dynamics among and between various groupings, where heterogeneity at the individual level dynamically affects group behavior and subsequently group/group interactions. ABM provides a means of representing the important social factors that affect decision making among diverse social groups. Expanding on the 2013 work of Vizzari et al., the researchers focus specifically on social factors and decision making at the individual/group and group/group levels to more realistically portray dynamic crowd systems during a pedestrian evacuation. By developing a model with individual, intragroup, and intergroup interactions, the ABM provides a more representative approximation of real-world crowd egress. The simulation will enable more informed planning by disaster managers, emergency planners, and other decision makers. This pedestrian behavioral concept is one piece of a larger simulation model. Future research will build toward an integrated model capturing decision-making interactions between pedestrians and vehicles that affect evacuation outcomes.

  20. [Aeromedical evacuation of critically ill patients in developing countries A retrospective study on 244 patients in Djibouti].

    Science.gov (United States)

    Bordes, J; Loheas, D; Benois, A

    2015-01-01

    The pratice of intensive care in Africa is marked by a wide variety of health care delivery. Only a few centers offer specialized intensive care units, as cardiac or neurological units. That may explain the need for aeromedical evacuations for patients whose condition exceeds local capacity. Our objective was to assess whether the proportion of patients admitted to intensive care and evacuated had increased between 1997 and 2013 in a developing country, Djibouti. We examined the activity register of Bouffard Hospital intensive care unit in Djibouti to determine the number and characteristics of patients evacuated by air ambulance during a 16 years period. From January 1997 to December 2013, a total of 244 patients were evacuated. The evacuation rate was 5.74ù of the patients admitted to the entire duration of the study. The rate of patients evacuated was not different between 1997 and 2013 (5,69ù versus 8,33ù respectively, p = 0,269). However, the rate of djiboutian evacuated patients was statistically different between 1997 and 2013 (0,96ù versus 4,46ù, p = 0,02). The main causes were severe trauma injuries, cardiovascular diseases and neurological diseases. The aeromedical evacuation of a critically ill patient in a developing country is a process requiring heavy logistics and depending on the medical skills available in the area, and financial resources that can be implemented for the patient. Our study shows that medical evacuations in favor of Djiboutian patients are marginal but are increasing over the past decade.