WorldWideScience

Sample records for euv imaging spectrometer

  1. Multiple Component Outflows in an Active Region Observed with the EUV Imaging Spectrometer on Hinode

    Science.gov (United States)

    2010-04-28

    comprised of further components. 1. Introduction One of the most significant discoveries of the Extreme Ultraviolet Imaging Spectrom- eter (EIS) on...fundamental physical processes involved in production of the solar wind and mass flow into the corona . Emission line widths in excess of their thermal...it is seen to move along either open or highly extended field lines. This indicates significant mass flow into the corona and, in the case of open

  2. Highly Stable, Large Format EUV Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Higher detection efficiency and better radiation tolerance imagers are needed for the next generation of EUV instruments. Previously, CCD technology has demonstrated...

  3. EUV lithography imaging using novel pellicle membranes

    Science.gov (United States)

    Pollentier, Ivan; Vanpaemel, Johannes; Lee, Jae Uk; Adelmann, Christoph; Zahedmanesh, Houman; Huyghebaert, Cedric; Gallagher, Emily E.

    2016-03-01

    EUV mask protection against defects during use remains a challenge for EUV lithography. A stand-off protective membrane - a pellicle - is targeted to prevent yield losses in high volume manufacturing during handling and exposure, just as it is for 193nm lithography. The pellicle is thin enough to transmit EUV exposure light, yet strong enough to remain intact and hold any particles out of focus during exposure. The development of pellicles for EUV is much more challenging than for 193nm lithography for multiple reasons including: high absorption of most materials at EUV wavelength, pump-down sequences in the EUV vacuum system, and exposure to high intensity EUV light. To solve the problems of transmission and film durability, various options have been explored. In most cases a thin core film is considered, since the deposition process for this is well established and because it is the simplest option. The transmission specification typically dictates that membranes are very thin (~50nm or less), which makes both fabrication and film mechanical integrity difficult. As an alternative, low density films (e.g. including porosity) will allow thicker membranes for a given transmission specification, which is likely to improve film durability. The risk is that the porosity could influence the imaging. At imec, two cases of pellicle concepts based on reducing density have been assessed : (1) 3D-patterned SiN by directed self-assembly (DSA), and (2) carbon nanomaterials such as carbon nanotubes (CNT) and carbon nanosheets (CNS). The first case is based on SiN membranes that are 3D-patterned by Directed Self Assembly (DSA). The materials are tested relative to the primary specifications: EUV transmission and film durability. A risk assessment of printing performance is provided based on simulations of scattered energy. General conclusions on the efficacy of various approaches will provided.

  4. EUV Doppler Imaging for CubeSat Platforms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mature the design and fabricate the Flare Initiation Doppler Imager (FIDI) instrument to demonstrate low-spacecraft-resource EUV technology (most notably,...

  5. Transmission grating spectrometer for broadband characterization of EUV sources

    NARCIS (Netherlands)

    Bayraktar, Muharrem; Bastiaens, Hubertus M.J.; Bruineman, C.; Vratzov, B.; Bijkerk, Frederik

    2016-01-01

    Emission from extreme ultraviolet (EUV) light sources for lithography and metrology applications needs to be maximized in a narrow wavelength band. On the other hand, these sources also emit radiation outside this wavelength band, extending into the deep ultraviolet (DUV) and visible/IR range. To

  6. Classification and printability of EUV mask defects from SEM images

    Science.gov (United States)

    Cho, Wonil; Price, Daniel; Morgan, Paul A.; Rost, Daniel; Satake, Masaki; Tolani, Vikram L.

    2017-10-01

    Classification and Printability of EUV Mask Defects from SEM images EUV lithography is starting to show more promise for patterning some critical layers at 5nm technology node and beyond. However, there still are many key technical obstacles to overcome before bringing EUV Lithography into high volume manufacturing (HVM). One of the greatest obstacles is manufacturing defect-free masks. For pattern defect inspections in the mask-shop, cutting-edge 193nm optical inspection tools have been used so far due to lacking any e-beam mask inspection (EBMI) or EUV actinic pattern inspection (API) tools. The main issue with current 193nm inspection tools is the limited resolution for mask dimensions targeted for EUV patterning. The theoretical resolution limit for 193nm mask inspection tools is about 60nm HP on masks, which means that main feature sizes on EUV masks will be well beyond the practical resolution of 193nm inspection tools. Nevertheless, 193nm inspection tools with various illumination conditions that maximize defect sensitivity and/or main-pattern modulation are being explored for initial EUV defect detection. Due to the generally low signal-to-noise in the 193nm inspection imaging at EUV patterning dimensions, these inspections often result in hundreds and thousands of defects which then need to be accurately reviewed and dispositioned. Manually reviewing each defect is difficult due to poor resolution. In addition, the lack of a reliable aerial dispositioning system makes it very challenging to disposition for printability. In this paper, we present the use of SEM images of EUV masks for higher resolution review and disposition of defects. In this approach, most of the defects detected by the 193nm inspection tools are first imaged on a mask SEM tool. These images together with the corresponding post-OPC design clips are provided to KLA-Tencor's Reticle Decision Center (RDC) platform which provides ADC (Automated Defect Classification) and S2A (SEM

  7. Collecting EUV mask images through focus by wavelength tuning

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Mochi, Iacopo; Huh, Sungmin

    2009-02-23

    Using an extreme-ultraviolet (EUV) microscope to produce high-quality images of EUV reticles, we have developed a new wavelength tuning method to acquire through-focus data series with a higher level of stability and repeatability than was previously possible. We utilize the chromatic focal-length dependence of a diffractive Fresnel zoneplate objective lens, and while holding the mask sample mechanically still, we tune the wavelength through a narrow range, in small steps. In this paper, we demonstrate the method and discuss the relative advantages that this data collection technique affords.

  8. Electron-impact induced fluorescence for EUV spectrometer-detector calibration

    Energy Technology Data Exchange (ETDEWEB)

    Knie, Andre, E-mail: knie@physik.uni-kassel.de [University of Kassel, Center for Interdisciplinary Nanostructure Science and Technology - CINSaT Heinrich-Plett-Str. 40, 34132 Kassel (Germany); Burbank, Nils; Schmidt, Philipp; Ozga, Christian; Ehresmann, Arno [University of Kassel, Center for Interdisciplinary Nanostructure Science and Technology - CINSaT Heinrich-Plett-Str. 40, 34132 Kassel (Germany)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Introducing an easy-to-handle calibration method for UV-spectrometers (165-314 nm). Black-Right-Pointing-Pointer Complete electron impact induced UV fluorescence spectra of rare gas atoms. Black-Right-Pointing-Pointer Identification of 196 new fluorescence lines not observed before. Black-Right-Pointing-Pointer Additional line catalog of 1670 lines for calculation tests and comparison. Black-Right-Pointing-Pointer New challenge for theory - observation of 183 lines not yet identifiable. -- Abstract: EUV-Spectra of electron-impact induced fluorescence from rare gases were recorded for an impact energy of 3.5 keV intending their application in the first step for spectrometer wavelength scale calibrations. The spectra are in the investigated range of 165-314 nm in good agreement with previously measured and calculated spectra. Nearly all observed lines could be identified including 196 new lines. 183 lines mainly for krypton and xenon could not be identified. The spectra are presented and discussed. A compendium of 1670 lines and their identification is added as supplementary tables. The spectra show a number of strong lines which are well suited for spectrometer wavelength scale calibrations and once their intensity relation is deduced can be used for a sensitivity determination of a spectrometer-detector combination as described in the introductory and experimental sections of the paper.

  9. Study of the early phase of a Coronal Mass Ejection driven shock in EUV images

    Science.gov (United States)

    Frassati, Federica; Susino, Roberto; Mancuso, Salvatore; Bemporad, Alessandro

    2017-10-01

    The November 1st, 2014 prominence eruption (associated with a C2.7 class flare) resulted in a fast, partial-halo Coronal Mass Ejection (CME). During its early propagation, the CME produced a type II radio burst (seen by the Bruny Island Radio Spectrometer) starting around 04:57 UT when the front entered into the LASCO/C2 field of view (FOV) and the top of the CME front was at the heliocentric distance of about 2.5 R_{⊙}. In order to identify the source of the type II radio burst, we studied the kinematic of the eruption with EUV images acquired by SDO/AIA. Profiles of the observed EUV front speed have been compared with the Alfvén speed profiles derived by combining the plasma electron densities obtained from Emission Measure analysis and model magnetic fields extrapolated on the plane of the sky. Our results show that the northern half of the front became super-Alfvénic at approximately the same time when the type-II radio burst started. A comparison between the starting frequency of the type II emission and the frequencies corresponding to the coronal densities of the locations where the EUV front became super-Alfvénic suggests that the radio sources should be located in the northern flank of the front.

  10. TESIS experiment on EUV imaging spectroscopy of the Sun

    Science.gov (United States)

    Kuzin, S. V.; Bogachev, S. A.; Zhitnik, I. A.; Pertsov, A. A.; Ignatiev, A. P.; Mitrofanov, A. M.; Slemzin, V. A.; Shestov, S. V.; Sukhodrev, N. K.; Bugaenko, O. I.

    2009-03-01

    TESIS is a set of solar imaging instruments in development by the Lebedev Physical Institute of the Russian Academy of Science, to be launched aboard the Russian spacecraft CORONAS-PHOTON in December 2008. The main goal of TESIS is to provide complex observations of solar active phenomena from the transition region to the inner and outer solar corona with high spatial, spectral and temporal resolution in the EUV and Soft X-ray spectral bands. TESIS includes five unique space instruments: the MgXII Imaging Spectroheliometer (MISH) with spherical bent crystal mirror, for observations of the Sun in the monochromatic MgXII 8.42 Å line; the EUV Spectoheliometer (EUSH) with grazing incidence difraction grating, for the registration of the full solar disc in monochromatic lines of the spectral band 280-330 Å; two Full-disk EUV Telescopes (FET) with multilayer mirrors covering the band 130-136 and 290-320 Å; and the Solar EUV Coronagraph (SEC), based on the Ritchey-Chretien scheme, to observe the inner and outer solar corona from 0.2 to 4 solar radii in spectral band 290-320 Å. TESIS experiment will start at the rising phase of the 24th cycle of solar activity. With the advanced capabilities of its instruments, TESIS will help better understand the physics of solar flares and high-energy phenomena and provide new data on parameters of solar plasma in the temperature range 10-10K. This paper gives a brief description of the experiment, its equipment, and its scientific objectives.

  11. Adaptive Computed Tomography Imaging Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The present proposal describes the development of an adaptive Computed Tomography Imaging Spectrometer (CTIS), or "Snapshot" spectrometer which can "instantaneously"...

  12. Using aberration test patterns to optimize the performance of EUV aerial imaging microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Mochi, Iacopo; Goldberg, Kenneth A.; Miyakawa, Ryan; Naulleau, Patrick; Han, Hak-Seung; Huh, Sungmin

    2009-06-16

    The SEMATECH Berkeley Actinic Inspection Tool (AIT) is a prototype EUV-wavelength zoneplate microscope that provides high quality aerial image measurements of EUV reticles. To simplify and improve the alignment procedure we have created and tested arrays of aberration-sensitive patterns on EUV reticles and we have compared their images collected with the AIT to the expected shapes obtained by simulating the theoretical wavefront of the system. We obtained a consistent measure of coma and astigmatism in the center of the field of view using two different patterns, revealing a misalignment condition in the optics.

  13. Gadolinium EUV Multilayers for Solar Imaging Near 60 nm Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and commercialize a new class of extreme ultraviolet (EUV) multilayer coatings containing the rare-earth element gadolinium (Gd), designed as...

  14. SoFAST: Automated Flare Detection with the PROBA2/SWAP EUV Imager

    Science.gov (United States)

    Bonte, K.; Berghmans, D.; De Groof, A.; Steed, K.; Poedts, S.

    2013-08-01

    The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV imager onboard PROBA2 provides a non-stop stream of coronal extreme-ultraviolet (EUV) images at a cadence of typically 130 seconds. These images show the solar drivers of space-weather, such as flares and erupting filaments. We have developed a software tool that automatically processes the images and localises and identifies flares. On one hand, the output of this software tool is intended as a service to the Space Weather Segment of ESA's Space Situational Awareness (SSA) program. On the other hand, we consider the PROBA2/SWAP images as a model for the data from the Extreme Ultraviolet Imager (EUI) instrument prepared for the future Solar Orbiter mission, where onboard intelligence is required for prioritising data within the challenging telemetry quota. In this article we present the concept of the software, the first statistics on its effectiveness and the online display in real time of its results. Our results indicate that it is not only possible to detect EUV flares automatically in an acquired dataset, but that quantifying a range of EUV dynamics is also possible. The method is based on thresholding of macropixelled image sequences. The robustness and simplicity of the algorithm is a clear advantage for future onboard use.

  15. Novel EUV mask black border and its impact on wafer imaging

    Science.gov (United States)

    Kodera, Yutaka; Fukugami, Norihito; Komizo, Toru; Watanabe, Genta; Ito, Shin; Yoshida, Itaru; Maruyama, Shingo; Kotani, Jun; Konishi, Toshio; Haraguchi, Takashi

    2016-03-01

    EUV lithography is the most promising technology for semiconductor device manufacturing of the 10nm node and beyond. The EUV mask is a key element in the lithographic scanner optical path. The image border is a pattern free dark area around the die on the photomask serving as transition area between the parts of the mask that is shielded from the exposure light by the Reticle Masking (REMA) blades and the die. When printing a die at dense spacing on an EUV scanner, the EUV light reflection from the image border overlaps edges of neighboring dies, affecting CD and contrast in this area. To reduce this effect an etched multilayer type black border was developed, and it was demonstrated that CD impact at the edge of a die is strongly reduced with this type of the black border (BB). However, wafer printing result still showed some CD change influenced by the black border reflection. It was proven that the CD shift was caused by DUV Out of Band (OOB) light which is emitted from EUV light source. New types of a multilayer etched BB were evaluated and showed a good potential for DUV light suppression. In this study, a novel black border called Hybrid Black Border has been developed which allows to eliminate EUV and DUV OOB light reflection. Direct measurements of OOB light from HBB and Normal BB are performed on NXE:3300B ASML EUV scanner; it is shown that HBB OOB reflection is 3x lower than that of Normal BB. Finally, we state that HBB is a promising technology allowing for CD control at die edges.

  16. Reconstruction of the solar EUV irradiance from 1996 to 2010 based on SOHO/EIT images

    Directory of Open Access Journals (Sweden)

    Haberreiter Margit

    2014-01-01

    Full Text Available The solar Extreme UltraViolet (EUV spectrum has important effects on the Earth’s upper atmosphere. For a detailed investigation of these effects it is important to have a consistent data series of the EUV spectral irradiance available. We present a reconstruction of the solar EUV irradiance based on SOHO/EIT images, along with synthetic spectra calculated using different coronal features which represent the brightness variation of the solar atmosphere. The EIT images are segmented with the SPoCA2 tool which separates the features based on a fixed brightness classification scheme. With the SOLMOD code we then calculate intensity spectra for the 10–100 nm wavelength range and each of the coronal features. Weighting the intensity spectra with the area covered by each of the features yields the temporal variation of the EUV spectrum. The reconstructed spectrum is then validated against the spectral irradiance as observed with SOHO/SEM. Our approach leads to good agreement between the reconstructed and the observed spectral irradiance. This study is an important step toward understanding variations in the solar EUV spectrum and ultimately its effect on the Earth’s upper atmosphere.

  17. Portable Remote Imaging Spectrometer (PRISM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an UV-NIR (350nm to 1050 nm) portable remote imaging spectrometer (PRISM) for flight on a variety of airborne platforms with high SNR and response...

  18. High-space resolution imaging plate analysis of extreme ultraviolet (EUV) light from tin laser-produced plasmas.

    Science.gov (United States)

    Musgrave, Christopher S A; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji

    2017-03-01

    With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 1010 and 1011 W/cm2) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.

  19. Quantitative Chemically-Specific Coherent Diffractive Imaging of Buried Interfaces using a Tabletop EUV Nanoscope

    CERN Document Server

    Shanblatt, Elisabeth R; Gardner, Dennis F; Mancini, Giulia F; Karl, Robert M; Tanksalvala, Michael D; Bevis, Charles S; Vartanian, Victor H; Kapteyn, Henry C; Adams, Daniel E; Murnane, Margaret M

    2016-01-01

    Characterizing buried layers and interfaces is critical for a host of applications in nanoscience and nano-manufacturing. Here we demonstrate non-invasive, non-destructive imaging of buried interfaces using a tabletop, extreme ultraviolet (EUV), coherent diffractive imaging (CDI) nanoscope. Copper nanostructures inlaid in SiO2 are coated with 100 nm of aluminum, which is opaque to visible light and thick enough that neither optical microscopy nor atomic force microscopy can image the buried interfaces. Short wavelength (29 nm) high harmonic light can penetrate the aluminum layer, yielding high-contrast images of the buried structures. Moreover, differences in the absolute reflectivity of the interfaces before and after coating reveal the formation of interstitial diffusion and oxidation layers at the Al-Cu and Al-SiO2 boundaries. Finally, we show that EUV CDI provides a unique capability for quantitative, chemically-specific imaging of buried structures, and the material evolution that occurs at these buried ...

  20. Photon flux requirements for EUV reticle imaging microscopy in the 22 and 16 nm nodes

    Energy Technology Data Exchange (ETDEWEB)

    Wintz, D.; Goldberg, K. A.; Mochi, I.; Huh, S.

    2010-03-12

    EUV-wavelength actinic microscopy yields detailed information about EUV mask patterns, architectures, defects, and the performance of defect repair strategies, without the complications of photoresist imaging. The measured aerial image intensity profiles provide valuable feedback to improve mask and lithography system modeling methods. In order to understand the photon-flux-dependent pattern measurement limits of EUV mask-imaging microscopy, we have investigated the effects of shot noise on aerial image linewidth measurements for lines in the 22 and 16-nm generations. Using a simple model of image formation near the resolution limit, we probe the influence of photon shot noise on the measured, apparent line roughness. With this methodology, we arrive at general flux density requirements independent of the specific EUV microscope configurations. Analytical and statistical analysis of aerial image simulations in the 22 and 16-nm generations reveal the trade-offs between photon energy density (controllable with exposure time), effective pixel dimension on the CCO (controlled by the microscope's magnification ratio), and image log slope (ILS). We find that shot-noise-induced linewidth roughness (LWR) varies imersely with the square root of the photon energy density, and is proportional to the imaging magnification ratio. While high magnification is necessary for adequate spatial resolution, for a given flux density, higher magnification ratios have diminishing benefits. With practical imaging parameters, we find that in order to achieve an LWR (3{sigma}) value of 5% of linewidth for dense, 88-nm mask features with 80% aerial image contrast and 13.5-nm effective pixel width (1000x magnification ratio), a peak photon flux of approximately 1400 photons per pixel per exposure is required.

  1. Estimation of temporal evolution of the helium plasmasphere based on a sequence of IMAGE/EUV images

    Science.gov (United States)

    Nakano, S.; Fok, M.-C.; Brandt, P. C.; Higuchi, T.

    2014-05-01

    We have developed a technique for estimating the temporal evolution of the plasmaspheric helium ion density based on a sequence of extreme ultraviolet (EUV) data obtained from the IMAGE satellite. In the proposed technique, the estimation is obtained by incorporating EUV images from IMAGE into a two-dimensional fluid model of the plasmasphere using a data assimilation approach based on the ensemble transform Kalman filter. Since the motion and the spatial structure of the helium plasmasphere is strongly controlled by the electric field in the inner magnetosphere, the electric field around the plasmapause can also be estimated using the ensemble transform Kalman filter. We performed an experiment using synthetic images that were generated from the same numerical model under a certain condition. It was confirmed that the condition that generated the synthetic images was successfully reproduced. We also present some results obtained using real EUV imaging data. Finally, we discuss the possibility of estimating the density profile along a magnetic field line. Since each EUV image was taken from a different direction due to the motion of the IMAGE satellite, we could obtain the information on the density profile along a field line by combining multiple images.

  2. Compact Imaging Spectrometer Utilizing Immersed Gratings

    Energy Technology Data Exchange (ETDEWEB)

    Chrisp, Michael P. (Danville, CA); Lerner, Scott A. (Corvallis, OR); Kuzmenko, Paul J. (Livermore, CA); Bennett, Charles L. (Livermore, CA)

    2006-03-21

    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, a system for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through an optical element to the detector array.

  3. A solar type II radio burst from CME-coronal ray interaction: simultaneous radio and EUV imaging

    CERN Document Server

    Chen, Yao; Feng, Li; Feng, Shiwei; Kong, Xiangliang; Guo, Fan; Wang, Bing; Li, Gang

    2014-01-01

    Simultaneous radio and extreme ultraviolet (EUV)/white-light imaging data are examined for a solar type II radio burst occurring on 2010 March 18 to deduce its source location. Using a bow-shock model, we reconstruct the 3-dimensional EUV wave front (presumably the type-II emitting shock) based on the imaging data of the two STEREO spacecraft. It is then combined with the Nan\\c{c}ay radio imaging data to infer the 3-dimensional position of the type II source. It is found that the type II source coincides with the interface between the CME EUV wave front and a nearby coronal ray structure, providing evidence that the type II emission is physically related to the CME-ray interaction. This result, consistent with those of previous studies, is based on simultaneous radio and EUV imaging data for the first time.

  4. Landsat-Swath Imaging Spectrometer Design

    Science.gov (United States)

    Mouroulis, Pantazis; Green, Robert O.; Van Gorp, Byron; Moore, Lori; Wilson, Daniel W.; Bender, Holly A.

    2015-01-01

    We describe the design of a high-throughput pushbroom imaging spectrometer and telescope system that is capable of Landsat swath and resolution while providing better than 10 nm per pixel spectral resolution. The design is based on a 3200 x 480 element x 18 µm pixel size focal plane array, two of which are utilized to cover the full swath. At an optical speed of F/1.8, the system is the fastest proposed to date to our knowledge. The utilization of only two spectrometer modules fed from the same telescope reduces system complexity while providing a solution within achievable detector technology. Predictions of complete system response are shown. Also, it is shown that detailed ghost analysis is a requirement for this type of spectrometer and forms an essential part of a complete design.

  5. Compact imaging spectrometer utilizing immersed gratings

    Energy Technology Data Exchange (ETDEWEB)

    Chrisp, Michael P. (Danville, CA); Lerner, Scott A. (Corvallis, OR); Kuzmenko, Paul J. (Livermore, CA); Bennett, Charles L. (Livermore, CA)

    2007-07-03

    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, means for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the means for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the means for receiving the light and the means for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light to the means for receiving the light, and the means for receiving the light directs the light to the detector array.

  6. Progress Toward A Very High Angular Resolution Imaging Spectrometer (VERIS)

    Science.gov (United States)

    Korendyke, Clarence M.; Vourlidas, A.; Landi, E.; Seely, J.; Klimchuck, J.

    2007-07-01

    Recent imaging at arcsecond (TRACE) and sub-arcsecond (VAULT) spatial resolution clearly show that structures with fine spatial scales play a key role in the physics of the upper solar atmosphere. Both theoretical and observational considerations point to the importance of small spatial scales, impulsive energy release, strong dynamics, and extreme plasma nonuniformity. Fundamental questions regarding the nature, structure, properties and dynamics of loops and filamentary structures in the upper atmosphere have been raised. To address these questions, we are developing a next generation, VEry high angular Resolution Imaging Spectrometer (VERIS) as a sounding rocket instrument. VERIS will obtain the necessary high spatial resolution, high fidelity measurements of plasma temperatures, densities and velocities. With broad simultaneous temperature coverage, the VERIS observations will directly address unresolved issues relating to interconnections of various temperature solar plasmas. VERIS will provide the first ever subarcsecond spectra of transition region and coronal structures. It will do so with a sufficient spectral resolution of to allow centroided Doppler velocity determinations to better than 3 km/s. VERIS uses a novel two element, normal incidence optical design with highly reflective EUV coatings to access a spectral range with broad temperature coverage (0.03-15 MK) and density-sensitive line ratios. Finally, in addition to the spectra, VERIS will simultaneously obtain spectrally pure slot images (10x150 arcsec) in the +/-1 grating orders, which can be combined to make instantaneous line-of-sight velocity maps with 8km/s accuracy over an unprecedented field of view. The VERIS program is beginning the second year of its three year development cycle. All design activities and reviews are complete. Fabrication of all major components has begun. Brassboard electronics cards have been fabricated, assembled and tested. The paper presents the essential scientific

  7. Electro-optic imaging Fourier transform spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  8. MERTIS: a highly integrated IR imaging spectrometer

    Science.gov (United States)

    Walter, I.; Hirsch, H.; Jahn, H.; Knollenberg, J.; Venus, H.

    2006-08-01

    With a background of several instrument developments in the past the German Aerospace Center in Berlin proposed for ESA's deep space mission BepiColombo an imaging spectrometer which meets the challenges of limited technical resources and a very special operational environment. An 80-channel push broom-type spectrometer has been drafted and it s development has been started under the name MERTIS (MErcury Radiometer and Thermal Infrared Spectrometer). The instrument is dedicated to the mineralogy surface science and thermal characteristics studies of the innermost planet. It is based on modern un-cooled micro-bolometer technology and all-reflective optics design. The operation concept principle is characterised by intermediate scanning of the planet, deep space and black bodies as calibration targets. A miniaturised radiometer is included for low level temperature measurements. Altogether the system shall fit into a CD-package sized cube and weigh less than 3 kg. The paper will present the instrument architecture of MERTIS, its design status and will show the results of first components being built.

  9. EUV high resolution imager on-board solar orbiter: optical design and detector performances

    Science.gov (United States)

    Halain, J. P.; Mazzoli, A.; Rochus, P.; Renotte, E.; Stockman, Y.; Berghmans, D.; BenMoussa, A.; Auchère, F.

    2017-11-01

    The EUV high resolution imager (HRI) channel of the Extreme Ultraviolet Imager (EUI) on-board Solar Orbiter will observe the solar atmospheric layers at 17.4 nm wavelength with a 200 km resolution. The HRI channel is based on a compact two mirrors off-axis design. The spectral selection is obtained by a multilayer coating deposited on the mirrors and by redundant Aluminum filters rejecting the visible and infrared light. The detector is a 2k x 2k array back-thinned silicon CMOS-APS with 10 μm pixel pitch, sensitive in the EUV wavelength range. Due to the instrument compactness and the constraints on the optical design, the channel performance is very sensitive to the manufacturing, alignments and settling errors. A trade-off between two optical layouts was therefore performed to select the final optical design and to improve the mirror mounts. The effect of diffraction by the filter mesh support and by the mirror diffusion has been included in the overall error budget. Manufacturing of mirror and mounts has started and will result in thermo-mechanical validation on the EUI instrument structural and thermal model (STM). Because of the limited channel entrance aperture and consequently the low input flux, the channel performance also relies on the detector EUV sensitivity, readout noise and dynamic range. Based on the characterization of a CMOS-APS back-side detector prototype, showing promising results, the EUI detector has been specified and is under development. These detectors will undergo a qualification program before being tested and integrated on the EUI instrument.

  10. The Calibration Home Base for Imaging Spectrometers

    Directory of Open Access Journals (Sweden)

    Johannes Felix Simon Brachmann

    2016-08-01

    Full Text Available The Calibration Home Base (CHB is an optical laboratory designed for the calibration of imaging spectrometers for the VNIR/SWIR wavelength range. Radiometric, spectral and geometric calibration as well as the characterization of sensor signal dependency on polarization are realized in a precise and highly automated fashion. This allows to carry out a wide range of time consuming measurements in an ecient way. The implementation of ISO 9001 standards in all procedures ensures a traceable quality of results. Spectral measurements in the wavelength range 380–1000 nm are performed to a wavelength uncertainty of +- 0.1 nm, while an uncertainty of +-0.2 nm is reached in the wavelength range 1000 – 2500 nm. Geometric measurements are performed at increments of 1.7 µrad across track and 7.6 µrad along track. Radiometric measurements reach an absolute uncertainty of +-3% (k=1. Sensor artifacts, such as caused by stray light will be characterizable and correctable in the near future. For now, the CHB is suitable for the characterization of pushbroom sensors, spectrometers and cameras. However, it is planned to extend the CHBs capabilities in the near future such that snapshot hyperspectral imagers can be characterized as well. The calibration services of the CHB are open to third party customers from research institutes as well as industry.

  11. Experimental study on imaging spectrometer focusing formula in orbit

    Science.gov (United States)

    Ma, Hong-tao; Jin, Hui

    2015-02-01

    Experimental verification for a focusing mechanism of imaging spectrometer is studied. The mechanism uses stepper motor driven precision harmonic drive. Wave generator is composed of elliptical cam and a flexible bearing. The output end is connected with the ball screw rotary motion into linear motion, which drives the focusing lens linear guide reciprocating motion. In view of the practical application of the mechanism in the imaging spectrometer, the thermal optical experimental imaging spectrometer has been focusing the formula. Data show that the focus formula ensures linear relationship between the focal plane position and temperature. The linear relationship shows that the imaging spectrometer onboard the variation with temperature and automatic focusing is very important.

  12. The Polaris-H imaging spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Christopher G., E-mail: chris@h3dgamma.com; Kaye, Willy R.; Wang, Weiyi; Zhang, Feng; Jaworski, Jason M.; King, Alexis; Boucher, Y. Andy; He, Zhong

    2015-06-01

    Recently, H3D has designed and introduced a gamma-ray imaging spectrometer system named Polaris-H. Polaris-H was designed to perform gamma spectroscopy and imaging throughout nuclear power plants. It integrates a 3D-position-sensitive pixelated CZT detector (20 mm×20 mm×15 mm), associated readout electronics, an embedded computer, a 5-h battery, and an optical camera in a portable water-proof enclosure. The total mass is about 4 kg, and the system startup time is 2 min. Additionally, it has a connection for a tablet, which displays a gamma-ray spectrum and isotope-specific images of the gamma-ray distribution in all directions in real time. List-mode data is saved to an external USB memory stick. Based on pixelated depth-sensing technology, spectroscopy is routinely better than 1.1% FWHM at 662 keV, and imaging efficiency at 662 keV varies less than a factor of two for all directions, except through the battery. Measurements have been performed in contaminated environments, in high radiation fields, and in cramped quarters.

  13. Miniaturisation of imaging spectrometer for planetary exploration

    Science.gov (United States)

    Drossart, Pierre; Sémery, Alain; Réess, Jean-Michel; Combes, Michel

    2017-11-01

    Future planetary exploration on telluric or giant planets will need a new kind of instrumentation combining imaging and spectroscopy at high spectral resolution to achieve new scientific measurements, in particular for atmospheric studies in nadir configuration. We present here a study of a Fourier Transform heterodyne spectrometer, which can achieve these objectives, in the visible or infrared. The system is composed of a Michelson interferometer, whose mirrors have been replaced by gratings, a configuration studied in the early days of Fourier Transform spectroscopy, but only recently reused for space instrumentation, with the availability of large infrared mosaics. A complete study of an instrument is underway, with optical and electronic tests, as well as data processing analysis. This instrument will be proposed for future planetary missions, including ESA/Bepi Colombo Mercury Planetary Orbiter or Earth orbiting platforms.

  14. Extraction of Active Regions and Coronal Holes from EUV Images Using the Unsupervised Segmentation Method in the Bayesian Framework

    Science.gov (United States)

    Arish, S.; Javaherian, M.; Safari, H.; Amiri, A.

    2016-04-01

    The solar corona is the origin of very dynamic events that are mostly produced in active regions (AR) and coronal holes (CH). The exact location of these large-scale features can be determined by applying image-processing approaches to extreme-ultraviolet (EUV) data.

  15. Towards establishing compact imaging spectrometer standards

    Science.gov (United States)

    Slonecker, E. Terrence; Allen, David W.; Resmini, Ronald G.

    2016-01-01

    Remote sensing science is currently undergoing a tremendous expansion in the area of hyperspectral imaging (HSI) technology. Spurred largely by the explosive growth of Unmanned Aerial Vehicles (UAV), sometimes called Unmanned Aircraft Systems (UAS), or drones, HSI capabilities that once required access to one of only a handful of very specialized and expensive sensor systems are now miniaturized and widely available commercially. Small compact imaging spectrometers (CIS) now on the market offer a number of hyperspectral imaging capabilities in terms of spectral range and sampling. The potential uses of HSI/CIS on UAVs/UASs seem limitless. However, the rapid expansion of unmanned aircraft and small hyperspectral sensor capabilities has created a number of questions related to technological, legal, and operational capabilities. Lightweight sensor systems suitable for UAV platforms are being advertised in the trade literature at an ever-expanding rate with no standardization of system performance specifications or terms of reference. To address this issue, both the U.S. Geological Survey and the National Institute of Standards and Technology are eveloping draft standards to meet these issues. This paper presents the outline of a combined USGS/NIST cooperative strategy to develop and test a characterization methodology to meet the needs of a new and expanding UAV/CIS/HSI user community.

  16. Full-sun synchronic EUV and coronal hole mapping using multi-instrument images: Data and software made available

    Science.gov (United States)

    Caplan, R. M.; Downs, C.; Linker, J.

    2015-12-01

    A method for the automatic generation of EUV and coronal hole (CH) maps using simultaneous multi-instrument imaging data is described. Synchronized EUV images from STEREO/EUVI A&B 195Å and SDO/AIA 193Å undergo preprocessing steps that include PSF-deconvolution and the application of nonlinear data-derived intensity corrections that account for center-to-limb variations (limb-brightening) and inter-instrument intensity normalization. The latter two corrections are derived using a robust, systematic approach that takes advantage of unbiased long-term averages of data and serve to flatten the images by converting all pixel intensities to a unified disk center equivalent. While the number of applications are broad, we demonstrate how this technique is very useful for CH detection as it enables the use of a fast and simplified image segmentation algorithm to obtain consistent detection results. The multi-instrument nature of the technique also allows one to track evolving features consistently for longer periods than is possible with a single instrument, and preliminary results quantifying CH area and shape evolution are shown.Most importantly, several data and software products are made available to the community for use. For the ~4 year period of 6/10/2010 to 8/18/2014, we provide synchronic EUV and coronal hole maps at 6-hour cadence as well as the data-derived limb brightening and inter-instrument correction factors that we applied. We also make available a ready-to-use MATLAB script EUV2CHM used to generate the maps, which loads EUV images, applies our preprocessing steps, and then uses our GPU-accelerated/CPU-multithreaded segmentation algorithm EZSEG to detect coronal holes.

  17. Design and Test of Portable Hyperspectral Imaging Spectrometer

    Directory of Open Access Journals (Sweden)

    Chunbo Zou

    2017-01-01

    Full Text Available We design and implement a portable hyperspectral imaging spectrometer, which has high spectral resolution, high spatial resolution, small volume, and low weight. The flight test has been conducted, and the hyperspectral images are acquired successfully. To achieve high performance, small volume, and regular appearance, an improved Dyson structure is designed and used in the hyperspectral imaging spectrometer. The hyperspectral imaging spectrometer is suitable for the small platform such as CubeSat and UAV (unmanned aerial vehicle, and it is also convenient to use for hyperspectral imaging acquiring in the laboratory and the field.

  18. Artificial intelligence for geologic mapping with imaging spectrometers

    Science.gov (United States)

    Kruse, F. A.

    1993-01-01

    This project was a three year study at the Center for the Study of Earth from Space (CSES) within the Cooperative Institute for Research in Environmental Science (CIRES) at the University of Colorado, Boulder. The goal of this research was to develop an expert system to allow automated identification of geologic materials based on their spectral characteristics in imaging spectrometer data such as the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). This requirement was dictated by the volume of data produced by imaging spectrometers, which prohibits manual analysis. The research described is based on the development of automated techniques for analysis of imaging spectrometer data that emulate the analytical processes used by a human observer. The research tested the feasibility of such an approach, implemented an operational system, and tested the validity of the results for selected imaging spectrometer data sets.

  19. High-Resolution, Quantitative, and Three-Dimensional Coherent Diffractive Imaging with a Tabletop EUV Source

    Science.gov (United States)

    Shanblatt, Elisabeth Rose

    Imaging is a critical tool used across a broad range of applications in science, technology, medicine, and manufacturing. Microscopy, the type of imaging which allows us to access the elusive yet rich world of what is smaller than we can naturally see--makes it possible to observe and design the nano-world of biological, material, and nanofabricated systems. In this thesis, I describe the development of a new type of microscopy that combines two powerful tools: coherent extreme ultraviolet (EUV) light sources produced by high harmonic generation, and ptychographic coherent diffractive imaging. This microscope produces high-resolution, chemically-specific, phase- and amplitude-contrast images with large fields of view on the order of hundreds of microns, while preserving a high spatial resolution on the scale of tens of nanometers. Recently, we extended this new tabletop microscopy technique to image reflective samples, periodic samples, and to image dynamic nano-scale elastic and thermal processes. I will discuss these advances and in particular demonstrate two new capabilities: first, a new imaging technique with high compositionally- and morphologically-sensitive quantitative information, capable of imaging reactions and diffusion at a buried interface. This capability will open up a new, exquisitely sensitive layer-by-layer imaging that has many applications in nanoscience and nanotechnology, including surface and materials science and metrology. Secondly, I will demonstrate imaging of a thick sample in three dimensions. By accounting for diffraction within a thick sample, it is possible to obtain high-resolution three-dimensional images of biological and meta-material samples non-invasively, and without the use of staining or labeling.

  20. Snapshot imaging spectroscopy of the solar transition region: The Multi-Order Solar EUV Spectrograph (MOSES) sounding rocket mission

    Science.gov (United States)

    Fox, James Lewis

    We have developed a revolutionary spectroscopic technique for solar research in the extreme ultraviolet. This slitless spectrographic technique allows snapshot imaging spectroscopy with data exactly cotemporal and cospectral. I have contributed to the successful realization of an application of this technique in the Multi-Order Solar EUV Spectrograph, MOSES . This instrument launched 2006 Feb 8 as a NASA sounding rocket payload and successfully returned remarkable data of the solar transition region in the He II 304Å spectral line. The unique design of this spectrometer allows the study of transient phenomena in the solar atmosphere, with spatial, spectral, and temporal resolution heretofore unachievable in concert, over a wide field of view. The fundamental concepts behind the MOSES spectrometer are broadly applicable to many solar spectral lines and phenomena and the instrument thus represents a new instrumentation technology. The early fruits of this labor are here reported: the first scientific discovery with the MOSES sounding rocket instrument, our observation of a transition region explosive event, phenomena observed with slit spectrographs since at least 1975, most commonly in lines of C IV (1548Å 1550Å) and Si IV (1393Å, 1402Å). This explosive event is the first seen in He II 304Å. With our novel slitless imaging spectrograph, we are able to see the spatial structure of the event. We observe a bright core expelling two jets that are distinctly non-collinear, in directions that are not anti-parallel, in contradiction to standard models of explosive events, which give collinear jets. The jets have sky-plane velocities of order 75 km s -1 and line-of-sight velocities of +75 km s-1 (blue) and -30 km s-1 (red). The core is a region of high non-thermal doppler broadening, characteristic of explosive events, with maximal broadening 380 km s-1 FWHM. It is possible to resolve the core broadening into red and blue line-of-sight components of maximum doppler

  1. High resolution ultraviolet imaging spectrometer for latent image analysis.

    Science.gov (United States)

    Lyu, Hang; Liao, Ningfang; Li, Hongsong; Wu, Wenmin

    2016-03-21

    In this work, we present a close-range ultraviolet imaging spectrometer with high spatial resolution, and reasonably high spectral resolution. As the transmissive optical components cause chromatic aberration in the ultraviolet (UV) spectral range, an all-reflective imaging scheme is introduced to promote the image quality. The proposed instrument consists of an oscillating mirror, a Cassegrain objective, a Michelson structure, an Offner relay, and a UV enhanced CCD. The finished spectrometer has a spatial resolution of 29.30μm on the target plane; the spectral scope covers both near and middle UV band; and can obtain approximately 100 wavelength samples over the range of 240~370nm. The control computer coordinates all the components of the instrument and enables capturing a series of images, which can be reconstructed into an interferogram datacube. The datacube can be converted into a spectrum datacube, which contains spectral information of each pixel with many wavelength samples. A spectral calibration is carried out by using a high pressure mercury discharge lamp. A test run demonstrated that this interferometric configuration can obtain high resolution spectrum datacube. The pattern recognition algorithm is introduced to analyze the datacube and distinguish the latent traces from the base materials. This design is particularly good at identifying the latent traces in the application field of forensic imaging.

  2. Alignment and Characterization of High Uniformity Imaging Spectrometers

    Science.gov (United States)

    Bender, Holly A.; Mouroulis, Pantazis; Eastwood, Michael L.; Green, Robert O.; Geier, Sven; Hochberg, Eric B.

    2011-01-01

    Imaging spectrometers require precise adjustments, in some cases at the sub-micrometer level, in order to achieve auniform response over both the spectral and spatial dimensions. We describe a set of measurement techniques and theircorresponding alignment adjustments to achieve the 95% or higher uniformity specifications required for Earthobservingimaging spectrometers. The methods are illustrated with measurements from the Next Generation Imaging Spectrometer system that has been built at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  3. Monolithic CMOS imaging x-ray spectrometers

    Science.gov (United States)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  4. Ultrafast dynamics in helium nanodroplets probed by femtosecond time-resolved EUV photoelectron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kornilov, Oleg; Wang, Chia C.; Buenermann, Oliver; Healy, Andrew T.; Leonard, Mathew; Peng, Chunte; Leone, Stephen R.; Neumark, Daniel M.; Gessner, Oliver

    2010-07-09

    The dynamics of electronically excited helium nanodroplets are studied by femtosecond time-resolved photoelectron imaging. EUV excitation into a broad absorption band centered around 23.8 eV leads to an indirect photoemission process that generates ultraslow photoelectrons. A 1.58 eV probe pulse transiently depletes the indirect photoemission signal for pump-probe time delays <200 fs and enhances the signal beyond this delay. The depletion is due to suppression of the indirect ionization process by the probe photon, which generates a broad, isotropically emitted photoelectron band. Similar time scales in the decay of the high energy photoelectron signal and the enhancement of the indirect photoemission signal suggest an internal relaxation process that populates states in the range of a lower energy droplet absorption band located just below the droplet ionization potential (IP {approx} 23.0 eV). A nearly 70% enhancement of the ultraslow photoelectron signal indicates that interband relaxation plays a more dominant role for the droplet de-excitation mechanism than photoemission.

  5. Method of fabricating an imaging X-ray spectrometer

    Science.gov (United States)

    Alcorn, G. E.; Burgess, A. S.

    1986-10-01

    A process for fabricating an X-ray spectrometer having imaging and energy resolution of X-ray sources is discussed. The spectrometer has an array of adjoinging rectangularly shaped detector cells formed in a silicon body. The walls of the cells are created by laser drilling holes completely through the silicon body and diffusing n(+) phosphorous doping material therethrough. A thermally migrated aluminum electrode is formed centrally through each of the cells.

  6. Imaging transmission grating spectrometer for magnetic fusion experiments

    Science.gov (United States)

    Blagojević, B.; Stutman, D.; Finkenthal, M.; Moos, H. W.; Kaita, R.; Majeski, R.

    2003-03-01

    The Johns Hopkins Plasma Spectroscopy Group is developing a transmission grating based imaging spectrometer for the ultrasoft x-ray [(USXR), 10-300 Å] range. The spectrometer will be integrated into an impurity diagnostic package for magnetic fusion experiments, which provides time and space resolved information about radiation losses, Zeff profiles, and particle transport. The spectrometer has a simple layout, consisting of collimating and space resolving slits, a transmission grating, and a two-dimensional imaging USXR detector. We tested two types of detectors, a CsI coated multichannel plate and a phosphor P45 coated fiber optic plate, both with intensified charge-coupled-device image readout. The performance of the 5000 1/mm, 3:1 bar to open area ratio transmission grating has been evaluated in the laboratory using Kα lines from a Manson source and the emission from a Penning discharge. A prototype spectrometer equiped with the first type detector and optimized for 6 Å spectral resolution has been tested successfully on the CDX-U tokamak at the Princeton Plasma Physics Laboratory. A spectrometer using the second detector version has been developed for the NSTX spherical torus at Princeton. Spatially resolved spectra have been recorded with 25-250 ms time integration with both spectrometers. In both experiments, spectra are dominated by low-Z impurities, C, N, and O.

  7. Pencil-like imaging spectrometer for bio-samples sensing.

    Science.gov (United States)

    Cai, Fuhong; Wang, Dan; Zhu, Min; He, Sailing

    2017-12-01

    Spectrally-resolved imaging techniques are becoming central to the investigation of bio-samples. In this paper, we demonstrate the use of a WIFI-camera as a detection module to assemble a pencil-like imaging spectrometer, which weighs only 140 g and has a size of 3.1 cm in diameter and 15.5 cm in length. The spectrometer is standalone, and works wirelessly. A smartphone or network computer can serve as the data receiver and processor. The wavelength resolution of the spectrometer is about 17 nm, providing repeatable measurements of spatial two-dimensional images at various wavelengths for various bio-samples, including bananas, meat, and human hands. The detected spectral range is 400 nm - 675 nm and a white LED array lamp is selected as the light source. Based on the detected spectra, we can monitor the impacts of chlorophyll, myoglobin, and hemoglobin on bananas, pork, and human hands, respectively. For human hand scanning, a 3D spectral image data cube, which exhibits excellent signal to background noise ratio, can be obtained within 16 sec. We envisage that the adaptation of imaging spectrometer devices to the widely-accepted smartphone technology will help to carry out on-site studies in various applications. Besides, our pencil-like imaging spectrometer is cost-effective (<$300) and easy to assemble. This portable imaging spectrometer can facilitate the collection of large amounts of spectral image data. With the help of machine learning, we can realize object recognition based on spectral classification in the future.

  8. Gas identification field test based on FTIR imaging spectrometer

    Science.gov (United States)

    Wang, Chensheng; Liu, Xingchao; Zhang, Zhijie; Yu, Hui

    2017-10-01

    Gas detection and identification is based on the spectral absorption peak feature, which is acquired by the spectrometer. FTIR imaging spectrometer has the advantages of high spectral resolution and good sensitivity, which are both suitable for the unknown or mixture gas identification applications, such as plume pollution monitoring, chemical agents detection and leakage detection. According to the application requirement, a dual band FTIR imaging spectrometer has been developed and verified. This FTIR imaging spectrometer combines the infrared thermal imaging sensor and Michelson interferometer to form the three dimensional data cube. Based on this instrument, the theoretical analysis and algorithm is introduced, and the numerical method is explained to illuminate the basic idea in gas identification based on spectral features. After that, the field verification test is setup and completed. Firstly, the FTIR imaging spectrometer is used to detect SF6, NH3 and the mixture gas, while the gas is exhausted out from the storage vase with a specific speed. Secondly, the instrument is delivered to the industrial area to monitor the plume emission, and analyze the components in plume. Finally, the instrument is utilized to monitoring the oil spill in ocean, and the practical maritime trial is realized. Further, the gas concentration evaluation method is discussed. Quantitative issue in gas identification is an important topic. The test results show that, based on the gas identification method introduced in this paper, FTIR imaging spectrometer can be utilized to identify the unknown gas or mixture gas in real time. The instrument will play a key role in environmental emergency and monitoring application.

  9. A New Class of Imaging Spectrometer for Planetary Science

    Science.gov (United States)

    Sellar, R.; Boreman, G. D.; Kirkland, L. E.; Arabatti, A.

    2002-12-01

    A NASA-funded Planetary Instrument Definition and Development Project (PIDDP) has led to the development of a new class of imaging spectrometer that combines the principal advantages of two traditional techniques used for imaging spectrometry: the signal collection advantage offered by the interferometric or Fourier Transform Spectrometer (FTS) class, and the no-moving-parts advantage offered by the dispersive and filter-array classes. This new class of imaging spectrometer, referred to as windowing interferometric, has no filters, no slit, and no moving parts. The advantage of having no moving parts provides high reliability, low cost, and allows the interferometer to be monolithic and therefore extremely rugged. The high signal collection ability of this instrument allows it to be miniaturized for use from a rover or small orbiter while still obtaining a high signal-to-noise ratio. The high signal collection ability also makes this approach ideal for missions to the outer planets. In order to put these advantages in perspective we have developed a comprehensive classification of imaging spectrometers, and a novel graphical technique for describing the principal of operation and relative signal collection abilities of the classes of imaging spectrometers. We divide imaging spectrometers into a matrix of classes based on their method of obtaining spatial information and their method of obtaining spectral information. Methods of acquiring spatial information include whiskbroom, pushbroom, staring, and a new class we refer to as windowing. We use the term windowing to describe the new class of instruments that employ a two-dimensional FOV which moves across the object in the along-track direction during each acquisition. The classifications by spectral approach include the familiar filtering, dispersive, and interferometric techniques. A novel graphical technique for comparing the classes of imaging spectrometers is to plot the transmittance as a function of the

  10. An Imaging Fourier Transform Spectrometer for NGST

    OpenAIRE

    Graham, James R.

    1999-01-01

    Due to its simultaneous deep imaging and integral field spectroscopic capability, an Imaging Fourier Transform Spectrograph (IFTS) is ideally suited to the Next Generation Space Telescope (NGST) mission, and offers opportunities for tremendous scientific return in many fields of astrophysical inquiry. We describe the operation and quantify the advantages of an IFTS for space applications. The conceptual design of the Integral Field Infrared Spectrograph (IFIRS) is a wide field (5'.3 x 5'.3) f...

  11. Portable Remote Imaging Spectrometer (PRISM): laboratory and field calibration

    Science.gov (United States)

    Mouroulis, Pantazis; Van Gorp, Byron; Green, Robert O.; Eastwood, Michael; Boardman, Joseph; Richardson, Brandon S.; Rodriguez, Jose I.; Urquiza, Eugenio; Franklin, Brian D.; Gao, Bo-Cai

    2012-09-01

    We report the characteristics of the Portable Remote Imaging Spectrometer, an airborne sensor specifically designed for the challenges of coastal ocean research. PRISM has high signal to noise ratio and uniformity, as well as low polarization sensitivity. Acquisition of high quality data has been demonstrated with the first engineering flight.

  12. Compact Refractive Imaging Spectrometer Designs Utilizing Immersed Gratings

    Science.gov (United States)

    Lerner, Scott A.; Bennett, Charles L.; Bixler, Jay V.; Kuzmenko, Paul J.; Lewis, Isabella T.

    2005-07-26

    A compact imaging spectrometer comprising an entrance slit for directing light, a first means for receiving the light and focusing the light, an immersed diffraction grating that receives the light from the first means and defracts the light, a second means for receiving the light from the immersed diffraction grating and focusing the light, and an image plane that receives the light from the second means

  13. Mars Thermospheric Temperature Sensitivity to Solar EUV Forcing from the MAVEN EUV Monitor

    Science.gov (United States)

    Thiemann, Ed; Eparvier, Francis; Andersson, Laila; Pilinski, Marcin; Chamberlin, Phillip; Fowler, Christopher; MAVEN Extreme Ultraviolet Monitor Team, MAVEN Langmuir Probe and Waves Team

    2017-10-01

    Solar extreme ultraviolet (EUV) radiation is the primary heat source for the Mars thermosphere, and the primary source of long-term temperature variability. The Mars obliquity, dust cycle, tides and waves also drive thermospheric temperature variability; and it is important to quantify the role of each in order to understand processes in the upper atmosphere today and, ultimately, the evolution of Mars climate over time. Although EUV radiation is the dominant heating mechanism, accurately measuring the thermospheric temperature sensitivity to EUV forcing has remained elusive, in part, because Mars thermospheric temperature varies dramatically with latitude and local time (LT), ranging from 150K on the nightside to 300K on the dayside. It follows that studies of thermospheric variability must control for location.Instruments onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter have begun to characterize thermospheric temperature sensitivity to EUV forcing. Bougher et al. [2017] used measurements from the Imaging Ultraviolet Spectrograph (IUVS) and the Neutral Gas and Ion Mass Spectrometer (NGIMS) to characterize solar activity trends in the thermosphere with some success. However, aside from restricting measurements to solar zenith angles (SZAs) below 75 degrees, they were unable to control for latitude and LT because repeat-track observations from either instrument were limited or unavailable.The MAVEN EUV Monitor (EUVM) has recently demonstrated the capability to measure thermospheric density from 100 to 200 km with solar occultations of its 17-22 nm channel. These new density measurements are ideal for tracking the long-term thermospheric temperature variability because they are inherently constrained to either 06:00 or 18:00 LT, and the orbit has precessed to include a range of ecliptic latitudes, a number of which have been revisited multiple times over 2.5 years. In this study we present, for the first-time, measurements of thermospheric

  14. SETA-Hyperspectral Imaging Spectrometer for Marco Polo mission.

    Science.gov (United States)

    de Sanctis, M. Cristina; Filacchione, Gianrico; Capaccioni, Fabrizio; Piccioni, Giuseppe; Ammannito, Eleonora; Capria, M. Teresa; Coradini, Angioletta; Migliorini, Alessandra; Battistelli, Enrico; Preti, Giampaolo

    2010-05-01

    The Marco Polo NEO sample return M-class mission has been selected for assessment study within the ESA Cosmic Vision 2015-2025 program. The Marco Polo mission proposes to do a sample return mission to Near Earth Asteroid. With this mission we have the opportunity to return for study in Earth-based laboratories a direct sample of the earliest record of how our solar system formed. The landing site and sample selection will be the most important scientific decision to make during the course of the entire mission. The imaging spectrometer is a key instrument being capable to characterize the mineralogical composition of the entire asteroid and to analyze the of the landing site and the returned sample in its own native environment. SETA is a Hyperspectral Imaging Spectrometer able to perform imaging spectroscopy in the spectral range 400-3300 nm for a complete mapping of the target in order to characterize the mineral properties of the surface. The spectral sampling is of at least 20 nm and the spatial resolution of the order of meter. SETA shall be able to return a detailed determination of the mineralogical composition for the different geologic units as well as the overall surface mineralogy with a spatial resolution of the order of few meters. These compositional characterizations involve the analysis of spectral parameters that are diagnostic of the presence and composition of various mineral species and materials that may be present on the target body. Most of the interesting minerals have electronic and vibrational absorption features in their VIS-NIR reflectance spectra. The SETA design is based on a pushbroom imaging spectrometer operating in the 400-3300 nm range, using a 2D array HgCdTe detector. This kind of instrument allows a simultaneous measurement of a full spectrum taken across the field of view defined by the slit's axis (samples). The second direction (lines) of the hyperspectral image shall be obtained by using the relative motion of the orbiter

  15. Rapid Acquisition Imaging Spectrograph (RAISE) Renewal Proposal Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The optical design of RAISE is based on a new class of UV/EUV imaging spectrometers that use  only two reflections to provide quasi-stigmatic performance...

  16. Transmission Grating Imaging Spectrometer for Magnetically Confined Fusion Plasmas

    Science.gov (United States)

    Blagojevic, B.; Stutman, D.; Vero, R.; Finkenthal, M.; Moos, H. W.

    2001-10-01

    The Johns Hopkins Plasma Spectroscopy Group is developing a transmission grating (TG) based imaging spectrometer for the soft and ultrasoft X-ray (USXR) ranges. The spectrometer will be integrated into a multi-purpose impurity diagnostic package for Magnetically Confined Fusion experiments, which will provide time and space resolved information about radiation losses, Zeff profiles and particle transport. The package will also include 2-D filtered USXR diode arrays and atomic physics and impurity transport computational capability. The spectrometer has a very simple layout, consisting of two collimating and space resolving slits, a TG and a 2-D imaging detector. As detector we are developing phosphor (P45) coated fiber optic plates with CCD and intensified CCD image readout. The performance of a test 5000 l/mm, 2:1 bar to open area ratio TG has been evaluated in the laboratory using a K-alpha Manson source and the emission from a Penning Discharge. The incident and diffracted photon flux was recorded in the 10-300 Å range with a gas flow proportional counter. The measurements show that spectral resolution and efficiency agree well with the predicted values. A device optimized for spectral resolution and higher order suppression will be tested on the CDX-U and NSTX tokamak at Princeton Plasma Physics Laboratory. Work supported by DoE grant No. DE-FG02-86ER52314ATDoE

  17. DOE in DOIS: a diffractive optic image spectrometer

    Science.gov (United States)

    Lyons, Denise M.; Whitcomb, Kevin J.

    1996-05-01

    One limitation of diffractive optical elements (DOEs) or zone plate lenses is abundant chromatic aberration. A previous report described a novel system that exploits this typically unwanted effect to create an Image Spectrometer [Lyons 1995]. A DOE performs the imaging and provides the dispersion necessary to separate a multispectral target into separate spectral images. A CCD is stepped or scanned along the optical axis recording a series of these spectral images. This paper reports on the DOE that was fabricated, simulated and implemented in a visible DOIS prototype. The data from this prototype can be interpolated to predict the performance of fieldable DOIS systems that can be designed to operate at ultraviolet, visible or infrared [Hinnrichs 1995] wavelengths for multispectral and hyperspectral imaging in medicine, forensics, industrial and environmental monitoring, as well as military applications.

  18. Thermal Infrared Imaging Spectrometer - An advanced optics technology instrument

    Science.gov (United States)

    Mahoney, Colin; Labaw, Clayton; Sobel, Harold; Kahle, Anne

    1990-01-01

    Through the use of a special optical filter, the Thermal Infrared Imaging Spectrometer, an airborne multispectral IR imaging instrument operating in the thermal emission region (7.5-14 microns), will achieve signal-to-noise ratios greater than 600 with ambient temperature optics. This instrument will be used to do compositional surface mapping of the terrain, and will refine the ability to categorize rock families and types by providing much higher spectral resolution in the emission region than was previously available. Details of the optical system, the detector, the cooler system, and the support electronics are described.

  19. spectrometer

    Directory of Open Access Journals (Sweden)

    J. K. Hedelius

    2016-08-01

    Full Text Available Bruker™ EM27/SUN instruments are commercial mobile solar-viewing near-IR spectrometers. They show promise for expanding the global density of atmospheric column measurements of greenhouse gases and are being marketed for such applications. They have been shown to measure the same variations of atmospheric gases within a day as the high-resolution spectrometers of the Total Carbon Column Observing Network (TCCON. However, there is little known about the long-term precision and uncertainty budgets of EM27/SUN measurements. In this study, which includes a comparison of 186 measurement days spanning 11 months, we note that atmospheric variations of Xgas within a single day are well captured by these low-resolution instruments, but over several months, the measurements drift noticeably. We present comparisons between EM27/SUN instruments and the TCCON using GGG as the retrieval algorithm. In addition, we perform several tests to evaluate the robustness of the performance and determine the largest sources of errors from these spectrometers. We include comparisons of XCO2, XCH4, XCO, and XN2O. Specifically we note EM27/SUN biases for January 2015 of 0.03, 0.75, –0.12, and 2.43 % for XCO2, XCH4, XCO, and XN2O respectively, with 1σ running precisions of 0.08 and 0.06 % for XCO2 and XCH4 from measurements in Pasadena. We also identify significant error caused by nonlinear sensitivity when using an extended spectral range detector used to measure CO and N2O.

  20. EXPERIMENTAL STUDIES IN THE FOURIER TRANSFORM-IMAGING SPECTROMETERS IN THE VISIBLE AND NEAR-IR

    Directory of Open Access Journals (Sweden)

    N. K. Artiukhina

    2014-01-01

    Full Text Available The paper considers basic model parameters of a static imaging Fourier spectrometer for Earth remote sensing from space. Design of the imaging spectrometer model has been developed and images have been obtained in the paper. The images have made it possible to determine such parameters as ratio of signal/ noise, frequency/contrast characteristic and spectral coincidence of reconstructed images.

  1. Instrument concept of the imaging Fourier transform spectrometer GLORIA

    Directory of Open Access Journals (Sweden)

    F. Friedl-Vallon

    2014-10-01

    Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA is an imaging limb emission sounder operating in the thermal infrared region. It is designed to provide measurements of the upper troposphere/lower stratosphere with high spatial and high spectral resolution. The instrument consists of an imaging Fourier transform spectrometer integrated into a gimbal. The assembly can be mounted in the belly pod of the German High Altitude and Long Range research aircraft (HALO and in instrument bays of the Russian M55 Geophysica. Measurements are made in two distinct modes: the chemistry mode emphasises chemical analysis with high spectral resolution, and the dynamics mode focuses on dynamical processes of the atmosphere with very high spatial resolution. In addition, the instrument allows tomographic analyses of air volumes. The first measurement campaigns have shown compliance with key performance and operational requirements.

  2. Two wide-angle imaging neutral-atom spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    McComas, D.J.

    1997-12-31

    The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission provides a new capability for stereoscopically imaging the magnetosphere. By imaging the charge exchange neutral atoms over a broad energy range (1 < E , {approximately} 100 keV) using two identical instruments on two widely-spaced high-altitude, high-inclination spacecraft, TWINS will enable the 3-dimensional visualization and the resolution of large scale structures and dynamics within the magnetosphere for the first time. These observations will provide a leap ahead in the understanding of the global aspects of the terrestrial magnetosphere and directly address a number of critical issues in the ``Sun-Earth Connections`` science theme of the NASA Office of Space Science.

  3. Application of snapshot imaging spectrometer in environmental detection

    Science.gov (United States)

    Sun, Kai; Qin, Xiaolei; Zhang, Yu; Wang, Jinqiang

    2017-10-01

    This study aimed at the application of snapshot imaging spectrometer in environmental detection. The simulated sewage and dyeing wastewater were prepared and the optimal experimental conditions were determined. The white LED array was used as the detection light source and the image of the sample was collected by the imaging spectrometer developed in the laboratory to obtain the spectral information of the sample in the range of 400-800 nm. The standard curve between the absorbance and the concentration of the samples was established. The linear range of a single component of Rhoda mine B was 1-50 mg/L, the linear correlation coefficient was more than 0.99, the recovery was 93%-113% and the relative standard deviations (RSD) was 7.5%. The linear range of chemical oxygen demand (COD) standard solution was 50-900mg/L, the linear correlation coefficient was 0.981, the recovery was 91% -106% and the relative standard deviation (RSD) was 6.7%. The rapid, accurate and precise method for detecting dyes showed an excellent promise for on-site and emergency detection in environment. At the request of the proceedings editor, an updated version of this article was published on 17 October 2017. The original version of this article was replaced due to an accidental inversion of Figure 2 and Figure 3. The Figures have been corrected in the updated and republished version.

  4. SVD vs PCA: Comparison of Performance in an Imaging Spectrometer

    Directory of Open Access Journals (Sweden)

    Wilma Oblefias

    2004-12-01

    Full Text Available The calculation of basis spectra from a spectral library is an important prerequisite of any compact imaging spectrometer. In this paper, we compare the basis spectra computed by singular-value decomposition (SVD and principal component analysis (PCA in terms of estimation performance with respect to resolution, presence of noise, intensity variation, and quantization error. Results show that SVD is robust in intensity variation while PCA is not. However, PCA performs better with signals of low signal-to-noise ratio. No significant difference is seen between SVD and PCA in terms of resolution and quantization error.

  5. [Spectral line shift property of prism dispersive imaging spectrometer].

    Science.gov (United States)

    Zhang, Jun-qiang; Yan, Chang-xiang; Zheng, Yu-quan; Wu, Qing wen

    2011-12-01

    In order to study the spectral line shift property of prism-dispersive imaging spectrometer, the influencing factors and mechanisms of spectral line shift were presented, and the mathematical model based on linear optics model was established to describe the spectral line shift property. Code V API functions was used, in Matlab environment, to verify the validity of mathematical model, and the sensitivity coefficient of spectral line shift was analyzed. Results indicate that rigid body motion of optical mirror surface generated by environmental variation is the key causation of spectral line shift. When the decenter of mirror surface is no more than 0.2 mm and the tilt is less than 0.02 degrees, the value of spectral line shift of different wavelengths at different fields is equivalent, and the error is less than 0.1 pixel. Spectral line shift due to mirror rigid body motion is linear and independent, and the total shift of the spectral line is the algebraic sum of values produced by the single freedom of motion (DOF) of single mirror surface. The mathematical model based on linear optics model can be used to study the spectral line shift property of the prism-dispersive imaging spectrometer. It will provide some guidance for spectral calibration and spectral property analysis under complex work condition.

  6. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gamboa, E.J. [University of Michigan; Huntington, C.M. [University of Michigan; Trantham, M.R. [University of Michigan; Keiter, P.A [University of Michigan; Drake, R.P. [University of Michigan; Montgomery, David [Los Alamos National Laboratory; Benage, John F. [Los Alamos National Laboratory; Letzring, Samuel A. [Los Alamos National Laboratory

    2012-05-04

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  7. Fundamentals of EUV resist-inorganic hardmask interactions

    Science.gov (United States)

    Goldfarb, Dario L.; Glodde, Martin; De Silva, Anuja; Sheshadri, Indira; Felix, Nelson M.; Lionti, Krystelle; Magbitang, Teddie

    2017-03-01

    High resolution Extreme Ultraviolet (EUV) patterning is currently limited by EUV resist thickness and pattern collapse, thus impacting the faithful image transfer into the underlying stack. Such limitation requires the investigation of improved hardmasks (HMs) as etch transfer layers for EUV patterning. Ultrathin (lessons learned in this work can be directly applied to the engineering of EUV resist materials and processes specifically designed to work on such novel HMs.

  8. Spatial image modulation to improve performance of computed tomography imaging spectrometer

    Science.gov (United States)

    Bearman, Gregory H. (Inventor); Wilson, Daniel W. (Inventor); Johnson, William R. (Inventor)

    2010-01-01

    Computed tomography imaging spectrometers ("CTIS"s) having patterns for imposing spatial structure are provided. The pattern may be imposed either directly on the object scene being imaged or at the field stop aperture. The use of the pattern improves the accuracy of the captured spatial and spectral information.

  9. Developing an imaging bi-spectrometer for fluorescent materials

    Science.gov (United States)

    Mohammadi, Mahnaz

    Fluorescent effects have been observed for thousands of years. Stokes, in 1852, began the science of fluorescence culminating in his law of fluorescence, which explained that fluorescence emission occurs at longer wavelengths than the excitation wavelength. This phenomenon is observed extensively in the art world. Daylight fluorescent colors known as Day-GloRTM have become an artistic medium since the 1960s. Modern artists exploit these saturated and brilliant colors to glitter their painting. Multipsectral imaging as a noninvasive technique has been used for archiving by museums and cultural-heritage institutions for about a decade. The complex fluorescence phenomenon has been often ignored in the multispectral projects. The ignored fluorescence results in errors in digital imaging of artwork containing fluorescent colors. The illuminant-dependency of the fluorescence radiance makes the fluorescence colorimetry and consequently spectral imaging more complex. In this dissertation an abridged imaging bi-spectrometer for artwork containing both fluorescent and non-fluorescent colors was developed. The method developed included two stages of reconstruction of the spectral reflected radiance factor and prediction of the fluorescent radiance factor. The estimation of the reflected radiance factor as a light source independent component was achieved by imaging with a series of short-wavelength cutoff filters placed in the illumination path. The fluorescent radiance factor, a light source dependent component, was estimated based on a proposed model, the abridged two-monochromator method. The abridged two-monochromator method was developed for reconstructing the bi-spectral matrix of a fluorescent color based on a calibrated UV-fluorescence imaging. In this way, one could predict the fluorescence radiance factor under any desired illuminant and consequently a better color evaluation and rendering could be obtained. Furthermore, this method easily fitted in a general system

  10. The Asteroid Thermal Mapping Spectrometer: An Imaging Mid-IR Spectrometer for the Marco Polo NEO Sample Return Cosmic Vision Candidate Mission

    Science.gov (United States)

    Bowles, N. E.; Calcutt, S.; Reininger, F.; Green, S. F.; Mortimer, H.

    2009-03-01

    We describe the Asteroid Thermal Mapping Spectrometer (ATMS) instrument, a compact imaging mid-IR Fourier transform spectrometer currently being developed at the University of Oxford for NEO remote sensing applications.

  11. High Resolution Imaging Spectrometer (HIRIS): Science and Instrument

    Science.gov (United States)

    Goetz, Alexander F. H.; Davis, Curtiss O.

    1991-01-01

    The High Resolution Imaging Spectrometer (HIRIS) is a facility instrument slated for flight on the second of the EOS-A series of platforms. HIRIS is designed to acquire 24-km wide, 30-m pixel images in 192 spectral bands simultaneously in the 0.4-2.45-micrometer wavelength region. With pointing mirrors it can sample any place on Earth, except the poles, every two days. HIRIS operates at the intermediate scale between the human and the global and therefore links studies of Earth surface processes to global monitoring carried out by lower-resolution instruments. So far, over 50 science data products from HIRIS images have been identified in the fields of atmospheric gases, clouds, snow and ice, water, vegetation, and rocks and soils. The key attribute of imaging spectrometry that makes it possible to derive quantitative information from the data is the large number of contiguous spectral bands. Therefore spectrum matching techniques can be applied. Such techniques are not possible with present-day, multispectral scanner data.

  12. Reconnaissance Imaging Spectrometer for Mars CRISM Data Analysis

    Science.gov (United States)

    Frink, K.; Hayden, D.; Lecompte, D.

    2009-05-01

    The Compact Reconnaissance Imaging Spectrometer for Mars CRISM (CRISM) carried aboard the Mars Reconnaissance Orbiter (MRO), is the first visible-infrared spectrometer to fly on a NASA Mars mission. CRISM scientists are using the instrument to look for the residue of minerals that form in the presence of water: the 'fingerprints' left by evaporated hot springs, thermal vents, lakes or ponds. With unprecedented clarity, CRISM is mapping regions on the Martian surface at scales as small as 60 feet (about 18 meters) across, when the spacecraft is 186 miles (300 kilometers) above the planet. CRISM is reading 544 'colors' in reflected sunlight to detect certain minerals on the surface, including signature traces of past water. CRISM alone will generate more than 10 terabytes of data, enough to fill more than 15,000 compact discs. Given that quantity of data being returned by MRO-CRISM, this project partners with Johns Hopkins University (JHU) Applied Physics Laboratory (APL) scientists of the CRISM team to assist in the data analysis process. The CRISM operations team has prototyped and will provide the necessary software analysis tools. In addition, the CRISM operations team will provide reduced data volume representations of the data as PNG files, accessible via a web interface without recourse to specialized user tools. The web interface allows me to recommend repeating certain of the CRISM observations as survey results indicate, and to enter notes on the features present in the images. After analysis of a small percentage of CRISM observations, APL scientists concluded that their efforts would be greatly facilitated by adding a preliminary survey to evaluate the overall characteristics and quality of the CRISM data. The first-look should increase the efficiency and speed of their data analysis efforts. This project provides first-look assessments of the data quality while noting features of interest likely to need further study or additional CRISM observations. The

  13. Detailed characterization of the LLNL imaging proton spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rasmus, A. M., E-mail: rasmus@lanl.gov, E-mail: arasmus@umich.edu [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); University of Michigan, Ann Arbor, Michigan 48109 (United States); Hazi, A. U.; Pollock, B. B.; Park, J.; Williams, G. J.; Chen, H. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Manuel, M. J.-E.; Kuranz, C. C.; Klein, S. R.; Belancourt, P. X.; Fein, J. R.; Drake, R. P. [University of Michigan, Ann Arbor, Michigan 48109 (United States); MacDonald, M. J. [University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-11-15

    Ultra-intense short pulse lasers incident on solid targets (e.g., thin Au foils) produce well collimated, broad-spectrum proton beams. These proton beams can be used to characterize magnetic fields, electric fields, and density gradients in high energy-density systems. The LLNL-Imaging Proton Spectrometer (L-IPS) was designed and built [H. Chen et al., Rev. Sci. Instrum. 81, 10D314 (2010)] for use with such laser produced proton beams. The L-IPS has an energy range of 50 keV-40 MeV with a resolving power (E/dE) of about 275 at 1 MeV and 21 at 20 MeV, as well as a single spatial imaging axis. In order to better characterize the dispersion and imaging capability of this diagnostic, a 3D finite element analysis solver is used to calculate the magnetic field of the L-IPS. Particle trajectories are then obtained via numerical integration to determine the dispersion relation of the L-IPS in both energy and angular space.

  14. Worldwide Status of EUV Astronomy

    Science.gov (United States)

    Kowalski, Michael P.; Wood, K. S.; Barstow, M. A.

    2013-01-01

    The bulk of radiation from million-degree plasmas is emitted at EUV wavelengths, which include critical spectral features containing diagnostic information often not available at other wavelengths (e.g., He II Ly series 228-304 Å). Thus, EUV astrophysics (Barstow & Holberg 2003) presents opportunities for intriguing results obtainable with sensitive high-resolution spectroscopy and particularly applicable to hot plasmas in stellar coronae, white dwarfs and the interstellar medium. The US-built J-PEX spectrometer has flown twice on sounding rockets, observing and publishing results on two white dwarf targets (Cruddace et al. 2002, Barstow et al. 2005, Kowalski et al. 2011). Using multilayer-grating technology, J-PEX delivers both high effective area and the world's highest resolution in EUV, greater than Chandra at adjacent energies, but in a waveband Chandra cannot reach. However, the US program has been stalled by inability to obtain further NASA sounding rocket flights. A high level of technology readiness, plus important questions answerable solely with that technology, does not seem sufficient to win support. Nor is the substantial amount of resources invested into technology development over two decades, supported by NASA, DoD, and European partners. Proposals to turn the instrument or its technology into small satellite-based surveys have been made (results to be described) in the US and Europe, but the overall situation is precarious. The entire EUV astrophysics field is losing out on an opportunity, and is at risk of fading away, with forced discard of established assets. Only mobilization of the international EUV community -- unifying European, US, and perhaps others -- can reverse this situation. Our poster summarizes science quests within reach of proven technology, gives a current snapshot of that technology, and provides a summary of worldwide efforts to obtain necessary space access in NASA, ESA, and elsewhere. A process for building and maintaining

  15. EUV optics in photoionization experiments

    Science.gov (United States)

    Bartnik, Andrzej; Wachulak, Przemysław; Fiedorowicz, Henryk; Fok, Tomasz; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Anna; Szczurek, Mirosław; Pina, Ladislav; Sveda, Libor

    2013-05-01

    In this work photoionized plasmas were created by irradiation of He, Ne and Ar gases with a focused EUV beam from one of two laser-plasma sources employing Nd:YAG laser systems of different parameters. First of them was a 10-Hz laser-plasma EUV source, based on a double-stream gas-puff target, irradiated with the 3-ns/0.8J laser pulse. EUV radiation in this case was focused using a gold-plated grazing incidence ellipsoidal collector in the wavelength range λ = 9÷70 nm. The most intense emission was in the relatively narrow spectral region centred at λ = 11 +/- 1 nm. The second source was based on a 10 ns/10 J/10 Hz laser system. In this case EUV radiation was focused using a gold-plated grazing incidence multifoil collector or a Mo-coated ellipsoidal collector. The most intense emission in this case was in the 5 ÷ 15 nm spectral region. Radiation fluence ranged from 60 mJ/cm2 to 400 mJ/cm2. Different gases were injected into the interaction region, perpendicularly to an optical axis of the irradiation system, using an auxiliary gas puff valve. Irradiation of the gases resulted in ionization and excitation of atoms and ions. Spectra in EUV range were measured using a grazing incidence, flat-field spectrometer (McPherson Model 251), equipped with a 450 lines/mm toroidal grating. In all cases the most intense emission lines were assigned to singly charged ions. The other emission lines belong to atoms or doubly charged ions. The spectra were excited in low density gases of the order of 1 ÷ 10% atmospheric density.

  16. Adaptive imaging spectrometer in a time-domain filtering architecturedaptive Imaging Spectrometer in a Time-Domain Filtering Architecture

    Science.gov (United States)

    Jiao, Yang; Bhalotra, Sameer R.; Kung, Helen L.; Miller, David A. B.

    2003-08-01

    We demonstrate an imaging spectrometer with 30nm resolution that utilizes a novel time-domain filtering architecture. The architecture is based on a pixel by pixel integration of the interferogram signal mixed with reference waveforms. The system can be adapted in real time to discriminate between LED sources of different wavelengths, perform signal processing on the spectra, as well as discriminate between highly overlapping, broadband spectral features in a scene illuminated by a tungsten lamp. Unlike a conventional spectral signature discrimination system, which needs a dedicated computation subsystem running a discrimination algorithm, the time-domain filtering architecture embeds much of the computation in the filtering, which will aid the design of integrated miniaturized spectral signature discrimination systems.

  17. Carbon contamination topography analysis of EUV masks

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Y.-J.; Yankulin, L.; Thomas, P.; Mbanaso, C.; Antohe, A.; Garg, R.; Wang, Y.; Murray, T.; Wuest, A.; Goodwin, F.; Huh, S.; Cordes, A.; Naulleau, P.; Goldberg, K. A.; Mochi, I.; Gullikson, E.; Denbeaux, G.

    2010-03-12

    The impact of carbon contamination on extreme ultraviolet (EUV) masks is significant due to throughput loss and potential effects on imaging performance. Current carbon contamination research primarily focuses on the lifetime of the multilayer surfaces, determined by reflectivity loss and reduced throughput in EUV exposure tools. However, contamination on patterned EUV masks can cause additional effects on absorbing features and the printed images, as well as impacting the efficiency of cleaning process. In this work, several different techniques were used to determine possible contamination topography. Lithographic simulations were also performed and the results compared with the experimental data.

  18. Color camera computed tomography imaging spectrometer for improved spatial-spectral image accuracy

    Science.gov (United States)

    Wilson, Daniel W. (Inventor); Bearman, Gregory H. (Inventor); Johnson, William R. (Inventor)

    2011-01-01

    Computed tomography imaging spectrometers ("CTIS"s) having color focal plane array detectors are provided. The color FPA detector may comprise a digital color camera including a digital image sensor, such as a Foveon X3.RTM. digital image sensor or a Bayer color filter mosaic. In another embodiment, the CTIS includes a pattern imposed either directly on the object scene being imaged or at the field stop aperture. The use of a color FPA detector and the pattern improves the accuracy of the captured spatial and spectral information.

  19. The SAFARI imaging spectrometer for the SPICA space observatory

    Science.gov (United States)

    Roelfsema, Peter; Giard, Martin; Najarro, Francisco; Wafelbakker, Kees; Jellema, Willem; Jackson, Brian; Swinyard, Bruce; Audard, Marc; Doi, Yasuo; Griffin, Matt; Helmich, Frank; Kerschbaum, Franz; Meyer, Michael; Naylor, David; Nielsen, Hans; Olofsson, Göran; Poglitsch, Albrecht; Spinoglio, Luigi; Vandenbussche, Bart; Isaak, Kate; Goicoechea, Javier R.

    2012-09-01

    The Japanese SPace Infrared telescope for Cosmology and Astrophysics, SPICA, will provide astronomers with a long awaited new window on the universe. Having a large cold telescope cooled to only 6K above absolute zero, SPICA will provide a unique environment where instruments are limited only by the cosmic background itself. A consortium of European and Canadian institutes has been established to design and implement the SpicA FAR infrared Instrument SAFARI, an imaging spectrometer designed to fully exploit this extremely low far infrared background environment provided by the SPICA observatory. SAFARI’s large instantaneous field of view combined with the extremely sensitive Transition Edge Sensing detectors will allow astronomers to very efficiently map large areas of the sky in the far infrared - in a square degree survey of a 1000 hours many thousands of faint sources will be detected, and a very large fraction of these sources will be fully spectroscopically characterised by the instrument. Efficiently obtaining such a large number of complete spectra is essential to address several fundamental questions in current astrophysics: how do galaxies form and evolve over cosmic time?, what is the true nature of our own Milky Way?, and why and where do planets like those in our own solar system come into being?

  20. Wavelength calibration of an imaging spectrometer based on Savart interferometer

    Science.gov (United States)

    Li, Qiwei; Zhang, Chunmin; Yan, Tingyu; Quan, Naicheng; Wei, Yutong; Tong, Cuncun

    2017-09-01

    The basic principle of Fourier-transform imaging spectrometer (FTIS) based on Savart interferometer is outlined. The un-identical distribution of the optical path difference which leads to the wavelength drift of each row of the interferogram is analyzed. Two typical methods for wavelength calibration of the presented system are described. The first method unifies different spectral intervals and maximum spectral frequencies of each row by a reference monochromatic light with known wavelength, and the dispersion compensation of Savart interferometer is also involved. The second approach is based on the least square fitting which builds the functional relation between recovered wavelength, row number and calibrated wavelength by concise equations. The effectiveness of the two methods is experimentally demonstrated with monochromatic lights and mixed light source across the detecting band of the system, and the results indicate that the first method has higher precision and the mean root-mean-square error of the recovered wavelengths is significantly reduced from 19.896 nm to 1.353 nm, while the second method is more convenient to implement and also has good precision of 2.709 nm.

  1. Compact advanced extreme-ultraviolet imaging spectrometer for spatiotemporally varying tungsten spectra from fusion plasmas

    Science.gov (United States)

    Song, Inwoo; Seon, C. R.; Hong, Joohwan; An, Y. H.; Barnsley, R.; Guirlet, R.; Choe, Wonho

    2017-09-01

    A compact advanced extreme-ultraviolet (EUV) spectrometer operating in the EUV wavelength range of a few nanometers to measure spatially resolved line emissions from tungsten (W) was developed for studying W transport in fusion plasmas. This system consists of two perpendicularly crossed slits—an entrance aperture and a space-resolved slit—inside a chamber operating as a pinhole, which enables the system to obtain a spatial distribution of line emissions. Moreover, a so-called v-shaped slit was devised to manage the aperture size for measuring the spatial resolution of the system caused by the finite width of the pinhole. A back-illuminated charge-coupled device was used as a detector with 2048 × 512 active pixels, each with dimensions of 13.5 × 13.5 μm2. After the alignment and installation on Korea superconducting tokamak advanced research, the preliminary results were obtained during the 2016 campaign. Several well-known carbon atomic lines in the 2-7 nm range originating from intrinsic carbon impurities were observed and used for wavelength calibration. Further, the time behavior of their spatial distributions is presented.

  2. The CORONAS-Photon/TESIS experiment on EUV imaging spectroscopy of the Sun

    Science.gov (United States)

    Kuzin, S.; Zhitnik, I.; Bogachev, S.; Bugaenko, O.; Ignat'ev, A.; Mitrofanov, A.; Perzov, A.; Shestov, S.; Slemzin, V.; Suhodrev, N.

    The new experiment TESIS is developent for russian CORONAS-Photon mission launch is planned on the end of 2007 The experiment is aimed on the study of activity of the Sun in the phases of minimum rise and maximum of 24 th cycle of Solar activity by the method of XUV imaging spectroscopy The method is based on the registration full-Sun monochromatic images with high spatial and temporal resolution The scientific tasks of the experiment are i Investigation dynamic processes in corona flares CME etc with high spatial up to 1 and temporal up to 1 second resolution ii determination of the main plasma parameters like plasma electron and ion density and temperature differential emission measure etc iii study of the processes of appearance and development large scale long-life magnetic structures in the solar corona study of the fluency of this structures on the global activity of the corona iv study of the mechanisms of energy accumulation and release in the solar flares and mechanisms of transformation of this energy into the heating of the plasma and kinematics energy To get the information for this studies the TESIS will register full-Sun images in narrow spectral intervals and the monochromatic lines of HeII SiXI FeXXI-FeXXIII MgXII ions The instrument includes 5 independent channels 2 telescopes for 304 and 132 A wide-field 2 5 degrees coronograph 280-330A and 8 42 A spectroheliographs The detailed description of the TESIS experiment and the instrument is presented

  3. The EUV-observatory TESIS on board Coronas-Photon: scientific goals and initial plan of observations

    Science.gov (United States)

    Bogachev, Sergey

    The TESIS a EUV-observatory for solar research from space will be launched in 2008 September on board the satellite Coronas-Photon from cosmodrome Plesetsk. TESIS is a project of Lebedev Physical Institute of Russian Academy of Science with contribution from Space Research Center of Polish Academy of Science (the spectrometer SphinX). The experiment will focus on quasi-monochromatic imaging of the Sun and XUV spectroscopy of solar plasma. The scientific payload of TESIS contains five instruments: (1) Bragg crystal spectroheliometer for Sun monochromatic imaging in the line MgXII 8.42 A, (2) the normal-incidence Herschelian EUV telescopes with a resolution of 1.7 arc sec operated in lines FeXXII 133 A, FeIX 171 A and HeII 304 A, (3) the EUV imaging spectrometer, (4) the wide-field Ritchey-Chretien coronograph and (5) the X-ray spectrometer SphinX. The TESIS will focus on coordinated study of solar activity from the transition region to the outer corona up to 4 solar radii in wide temperature range from 5*104 to 2*107 K. We describe the scientific goals of the TESIS and its initial plan of observations.

  4. Secondary Electrons in EUV Lithography

    Energy Technology Data Exchange (ETDEWEB)

    Torok, Justin; Re, Ryan Del; Herbol, Henry; Das, Sanjana; Bocharova, Irina; Paolucci, Angela; Ocola, Leonidas E.; Ventrice Jr., Carl; Lifshin, Eric; Denbeaux, Greg; Brainard, Robert L.

    2013-01-01

    Secondary electrons play critical roles in several imaging technologies, including extreme ultraviolet (EUV) lithography. At longer wavelengths of light (e.g. 193 and 248 nm), the photons are directly involved in the photochemistry occurring during photolysis. EUV light (13.5 nm, 92 eV), however, first creates a photoelectron, and this electron, or its subsequent daughter electrons create most of the chemical changes that occur during exposure. Despite the importance of these electrons, the details surrounding the chemical events leading to acid production remain poorly understood. Previously reported experimental results using high PAG-loaded resists have demonstrated that up to five or six photoacids can be generated per incident photon. Until recently, only electron recombination events were thought to play a role in acid generation, requiring that at least as many secondary electrons are produced to yield a given number of acid molecules. However, the initial results we have obtained using a Monte Carlo-based modeling program, LESiS, demonstrate that only two to three secondary electrons are made per absorbed EUV photon. A more comprehensive understanding of EUV-induced acid generation is therefore needed for the development of higher performance resists

  5. FLEX: an imaging spectrometer for measurement of vegetation fluorescence

    Science.gov (United States)

    Smorenburg, Kees; Visser, Huib; Court, Andrew; Stoll, Marc Ph.

    2017-11-01

    Detection of vegetation fluorescence gives information about plant functioning, stress and vitality. During the past decades several ground based laser fluorosensors have been developed to investigate these processes and to demonstrate the value of this technique. FLEX (= FLuorescense EXplorer) is a space mission to measure the fluorescence of vegetation on earth over large areas from space. Such a mission would greatly improve the understanding and enhance the capability to quantify e.g. the role of terrestrial vegetation in global carbon sequestration. Because the fluorescence signal, which is excited by solar irradiation is low with respect to the reflected sunlight the signal from a satellite is proposed to be measured in the solar Fraunhofer lines, where the reflection signal is much reduced. The heart of FLEX is a high resolution imaging spectrometer with 2 channels: channel 1 around the Fraunhofer lines at ‡ = 397 nm, ‡= 423 nm and/or ‡ = 434 nm and channel 2 around the Fraunhofer line at ‡ = 656 nm. The required spectral resolution will depend on the linewidth (0.02-0.3 nm). A first definition of the field of view is 8.4 degrees, leading from an 800 km satellite altitude to a swath of about 120 km. For detection a 1024x1024 pixel frame transfer CCD detector is proposed, with a pixel dimension of 13 x 13 ‡ mm2. The maximum footprint is about 500x500m2. The optical configuration contains a scan mirror for solar calibration, for pointing the FOV in swath direction and for freezing the observed ground scene up to a few seconds to increase the signal to noise performance. At this moment the concept of FLEX is elaborated in a feasibility study. Both the scientific and instrument requirements are updated and the concept is studied in detail. Besides a development plan for FLEX is made. In this paper the idea and the headlines of FLEX are described.

  6. The Compton Spectrometer and Imager (COSI) Superpressure Balloon Payload

    Science.gov (United States)

    Boggs, Steven E.

    2014-08-01

    The Compton Spectrometer and Image (COSI) is a ULDB-borne soft gamma-ray telescope (0.2-5 MeV) designed to probe the origins of Galactic positrons, uncover sites of nucleosynthesis in the Galaxy, and perform pioneering studies of gamma-ray polarization in a number of source classes. COSI uses a compact Compton telescope design, resulting from a decade of development under NASA’s ROSES program - a modern take on techniques successfully pioneered by COMPTEL on CGRO. COSI performs groundbreaking science by combining improvements in sensitivity, spectral resolution, and sky coverage. The COSI instrument and flight systems have been designed for flight on NASA’s 18 MCF superpressure balloon (SPB). We are now beginning a series science flights to fulfill the COSI science goals: a SPB in 2014 from Antarctica, followed by two 100-day ULDB flights from New Zealand.COSI is a wide-field survey telescope designed to perform imaging, spectroscopy, and polarization measurements. It employs a novel Compton telescope design utilizing a compact array of cross-strip germanium detectors (GeDs) to resolve individual gamma-ray interactions with high spectral and spatial resolution. The COSI array is housed in a common vacuum cryostat cooled by a mechanical cryocooler. An active CsI Shield encloses the cryostat on the sides and bottom. The FoV of the instrument covers 25% of the full sky at a given moment.The COSI instrument builds upon considerable heritage from the previous Nuclear Compton Telescope (NCT) balloon instrument that underwent a successful technology demonstration flight in June 2005 from Fort Sumner, NM, a successful “first light” science flight from Fort Sumner in May 2009, and a launch campaign from Alice Springs, Australia in June 2010, where it unfortunately suffered a launch mishap. COSI has been upgraded from the previous NCT instrument by conversion to a detector configuration optimized for polarization sensitivity and addition of a cryocooler to remove

  7. COSI: The Compton Spectrometer and Imager Science Program

    Science.gov (United States)

    Tomsick, John; Jean, Pierre; Chang, Hsiang-Kuang; Boggs, Steven; Zoglauer, A.; Von Ballmoos, Peter; Amman, Mark; Chiu, Jeng-Lun; Chang, Yuan-Hann.; Chou, Yi; Kierans, Carolyn; Lin, Chih-Hsun.; Lowell, Alex; Shang, Jie-Rou.; Tseng, Chao-Hsiung; Yang, Chien-Ying

    The Compton Spectrometer and Imager (COSI), which was formerly known as the Nuclear Compton Telescope (NCT), is a balloon-borne soft gamma-ray telescope (0.2-5 MeV) designed to probe the origins of Galactic positrons, uncover sites of nucleosynthesis in the Galaxy, and perform pioneering studies of gamma-ray polarization in a number of source classes. COSI uses a compact Compton telescope design, resulting from a decade of development under NASA's ROSES program - a modern take on techniques successfully pioneered by COMPTEL on CGRO. We have rebuilt the COSI instrument and flight systems, upgraded for balloon flights and improved polarization sensitivity. We will present the redesign of COSI and the overall goals of the 5-year science program. Three science flights are planned to fulfill the COSI science goals: an LDB in 2014 from Antarctica on a superpressure balloon (SuperCOSI), followed by two 100-day ULDB flights from New Zealand. COSI is a wide-field survey telescope designed to perform imaging, spectroscopy, and polarization measurements. It employs a novel Compton telescope design utilizing a compact array of cross-strip germanium detectors (GeDs) to resolve individual gamma-ray interactions with high spectral and spatial resolution. The COSI array is housed in a common vacuum cryostat cooled by a mechanical cryocooler. An active CsI shield encloses the cryostat on the sides and bottom. The FoV of the instrument covers 25% of the full sky at a given moment. The COSI instrument is mature, building upon considerable heritage from the previous NCT balloon instrument that underwent a successful technology demonstration flight in June 2005 from Fort Sumner, NM, a successful "first light" science flight from Fort Sumner in May 2009, and quickly turned around and delivered on time for a launch campaign from Alice Springs, Australia in June 2010, where it unfortunately suffered a launch mishap. The NCT instrument and Flight System are being rebuilt under the NASA

  8. High-Density Diffraction Imaging and Non-Imaging Grating Elements for EUV and X-ray Spectroscopy Fabricated by DUV Reduction Photolithography Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a need for lightweight high-density (4000+ lines/mm) novel diffraction grating elements in modern telescopes to advance EUV and X-ray astrophysics. Current...

  9. Push-broom imaging spectrometer based on planar lightwave circuit MZI array

    Science.gov (United States)

    Yang, Minyue; Li, Mingyu; He, Jian-Jun

    2017-05-01

    We propose a large aperture static imaging spectrometer (LASIS) based on planar lightwave circuit (PLC) MZI array. The imaging spectrometer works in the push-broom mode with the spectrum performed by interferometry. While the satellite/aircraft is orbiting, the same source, seen from the satellite/aircraft, moves across the aperture and enters different MZIs, while adjacent sources enter adjacent MZIs at the same time. The on-chip spectrometer consists of 256 input mode converters, followed by 256 MZIs with linearly increasing optical path delays and a detector array. Multiple chips are stick together to form the 2D image surface and receive light from the imaging lens. Two MZI arrays are proposed, one works in wavelength ranging from 500nm to 900nm with SiON(refractive index 1.6) waveguides and another ranging from 1100nm to 1700nm with SOI platform. To meet the requirements of imaging spectrometer applications, we choose large cross-section ridge waveguide to achieve polarization insensitive, maintain single mode propagation in broad spectrum and increase production tolerance. The SiON on-chip spectrometer has a spectral resolution of 80cm-1 with a footprint of 17×15mm2 and the SOI based on-chip spectrometer has a resolution of 38cm-1 with a size of 22×19mm2. The spectral and space resolution of the imaging spectrometer can be further improved by simply adding more MZIs. The on-chip waveguide MZI array based Fourier transform imaging spectrometer can provide a highly compact solution for remote sensing on unmanned aerial vehicles or satellites with advantages of small size, light weight, no moving parts and large input aperture.

  10. A Bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters.

    Science.gov (United States)

    Chen, C D; King, J A; Key, M H; Akli, K U; Beg, F N; Chen, H; Freeman, R R; Link, A; Mackinnon, A J; MacPhee, A G; Patel, P K; Porkolab, M; Stephens, R B; Van Woerkom, L D

    2008-10-01

    A Bremsstrahlung spectrometer using k-edge and differential filtering has been used with image plate dosimeters to measure the x-ray fluence from short-pulse laser/target interactions. An electron spectrometer in front of the Bremsstrahlung spectrometer deflects electrons from the x-ray line of sight and simultaneously measures the electron spectrum. The response functions were modeled with the Monte Carlo code INTEGRATED TIGER SERIES 3.0 and the dosimeters calibrated with radioactive sources. An electron distribution with a slope temperature of 1.3 MeV is inferred from the Bremsstrahlung spectra.

  11. A Bremsstrahlung Spectrometer using k-edge and Differential Filters with Image plate dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C; Mackinnon, A; Beg, F; Chen, H; Key, M; King, J A; Link, A; MacPhee, A; Patel, P; Porkolab, M; Stephens, R; VanWoerkom, L; Akli, K; Freeman, R

    2008-05-02

    A Bremsstrahlung spectrometer using k-edge and differential filtering has been used with Image Plate dosimeters to measure the x-ray fluence from short-pulse laser/target interactions. An electron spectrometer in front of the Bremsstrahlung spectrometer deflects electrons from the x-ray line of sight and simultaneously measures the electron spectrum. The response functions were modeled with the Monte Carlo code Integrated Tiger Series 3.0 and the dosimeters calibrated with radioactive sources. Electron distributions with slope temperatures in the MeV range are inferred from the Bremsstrahlung spectra.

  12. Transmission grating based extreme ultraviolet imaging spectrometer for time and space resolved impurity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Deepak; Stutman, Dan; Tritz, Kevin; Finkenthal, Michael [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218 (United States); Tarrio, Charles; Grantham, Steven [Physics Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2010-10-15

    A free standing transmission grating based imaging spectrometer in the extreme ultraviolet range has been developed for the National Spherical Torus Experiment (NSTX). The spectrometer operates in a survey mode covering the approximate spectral range from 30 to 700 A and has a resolving capability of {delta}{lambda}/{lambda} on the order of 3%. Initial results from space resolved impurity measurements from NSTX are described in this paper.

  13. Imaging Grating Spectrometer (I-GRASP) for Solar Soft X-Ray Spectral Measurements in Critically Under-Observed 0.5 - 7 nm Spectral Range

    Science.gov (United States)

    Didkovsky, L. V.; Wieman, S. R.; Chao, W.; Woods, T. N.; Jones, A. R.; Thiemann, E.; Mason, J. P.

    2016-12-01

    We discuss science and technology advantages of the Imaging Grating Spectrometer (I-GRASP) based on a novel transmission diffracting grating (TDG) made possible by technology for fabricating Fresnel zone plates (ZPs) developed at the Lawrence Berkeley National Laboratory (LBNL). Older version TDGs with 200 nm period available in the 1990s became a proven technology for providing 21 years of regular measurements of solar EUV irradiance. I-GRASP incorporates an advanced TDG with a grating period of 50 nm providing four times better diffraction dispersion than the 200 nm period gratings used in the SOHO/CELIAS/SEM, the SDO/EVE/ESP flight spectrophotometers, and the EVE/SAM sounding rocket channel. Such new technology for the TDG combined with a back-illuminated 2000 x 1504 CMOS image sensor with 7 micron pixels, will provide spatially-and-spectrally resolved images and spectra from individual Active Regions (ARs) and solar flares with high (0.15 nm) spectral resolution. Such measurements are not available in the spectral band from about 2 to 6 nm from existing or planned spectrographs and will be significantly important to study ARs and solar flare temperatures and dynamics, to improve existing spectral models, e.g. CHIANTI, and to better understand processes in the Earth's atmosphere processes. To test this novel technology, we have proposed to the NASA LCAS program an I-GRASP version for a sounding rocket flight to increase the TDG TRL to a level appropriate for future CubeSat projects.

  14. Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamaka)

    Science.gov (United States)

    Lu, B.; Wang, F.; Shi, Y.; Bitter, M.; Hill, K. W.; Lee, S. G.; Fu, J.; Li, Y.; Wan, B.

    2012-10-01

    Two imaging x-ray crystal spectrometers, the so-called "poloidal" and "tangential" spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (Ti), electron temperature (Te) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

  15. Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamak.

    Science.gov (United States)

    Lu, B; Wang, F; Shi, Y; Bitter, M; Hill, K W; Lee, S G; Fu, J; Li, Y; Wan, B

    2012-10-01

    Two imaging x-ray crystal spectrometers, the so-called "poloidal" and "tangential" spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (T(i)), electron temperature (T(e)) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

  16. Development of the Imaging Spectrometer for Shuttle and space platform applications

    Science.gov (United States)

    Herring, Mark; Page, Norman A.

    1986-01-01

    The concept of the Imaging Spectrometer is becoming established as a major new thrust in remote sensing of the earth. A future step will be the Shuttle Imaging Spectrometer (SISEX) currently planned for a 1990 flight. This paper describes the current state of development of SISEX, including the development of a modular concept which will allow major elements of SISEX to be used on NASA's Space platform, the Earth Observing System. This modular approach is expected to result in a substantial overall cost saving.

  17. Quality control of EUVE databases

    Science.gov (United States)

    John, L. M.; Drake, J.

    1992-01-01

    The publicly accessible databases for the Extreme Ultraviolet Explorer include: the EUVE Archive mailserver; the CEA ftp site; the EUVE Guest Observer Mailserver; and the Astronomical Data System node. The EUVE Performance Assurance team is responsible for verifying that these public EUVE databases are working properly, and that the public availability of EUVE data contained therein does not infringe any data rights which may have been assigned. In this poster, we describe the Quality Assurance (QA) procedures we have developed from the approach of QA as a service organization, thus reflecting the overall EUVE philosophy of Quality Assurance integrated into normal operating procedures, rather than imposed as an external, post facto, control mechanism.

  18. Depth resolved hyperspectral imaging spectrometer based on structured light illumination and Fourier transform interferometry

    Science.gov (United States)

    Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T.; So, Peter T.C.

    2014-01-01

    A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively. PMID:25360367

  19. Development and characterization of a multiple-coincidence ion-momentum imaging spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Laksman, J.; Céolin, D.; Månsson, E. P.; Sorensen, S. L.; Gisselbrecht, M. [Department of Synchrotron Radiation Research, Lund University, Box 118, S-221 00 Lund (Sweden)

    2013-12-15

    The design and performance of a high-resolution momentum-imaging spectrometer for ions which is optimized for experiments using synchrotron radiation is presented. High collection efficiency is achieved by a focusing electrostatic lens; a long drift tube improves mass resolution and a position-sensitive detector enables measurement of the transverse momentum of ions. The optimisation of the lens for particle momentum measurement at the highest resolution is described. We discuss the overall performance of the spectrometer and present examples demonstrating the momentum resolution for both kinetics and for angular measurements in molecular fragmentation for carbon monoxide and fullerenes. Examples are presented that confirm that complete space-time focussing is possible for a two-field three-dimensional imaging spectrometer.

  20. An imaging proton spectrometer for short-pulse laser plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Hazi, A; van Maren, R; Chen, S; Fuchs, J; Gauthier, M; Pape, S L; Rygg, J R; Shepherd, R

    2010-05-11

    Ultra intense short pulse laser pulses incident on solid targets can generate energetic protons. In additions to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel, spatially imaging proton spectrometer that will not only measure proton energy distribution with high resolution, but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and non-imaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  1. High-resolution two-grating spectrometer for dual wavelength spectral imaging.

    Science.gov (United States)

    Gornushkin, I B; Omenetto, N; Smith, B W; Winefordner, J D

    2004-11-01

    A two-grating high-resolution spectrometer for dual wavelength imaging is demonstrated based on the standard Czerny-Turner mounting with an auxiliary grating and a mirror. A two-dimensional charge-coupled device (CCD) detector in the spectrometer focal plane allows simultaneous detection of two spectral intervals. Each spectrometer grating is driven by a high-precision stepper motor interfaced to a computer via home-made software. The software allows fast tuning of the gratings to a desirable spectral interval anywhere between 200 nm and 800 nm. The spectral interval widths are 2-3 nm for a ''high-resolution'' (2400 grooves/mm) grating and 4-5 nm for a ''low-resolution'' (1200 grooves/mm) grating. The resolution varies between 0.01 nm and 0.02 nm depending on the grating used. The performance of the spectrometer is demonstrated by detecting spectrally resolved images from a back-illuminated template and from a laser-induced plasma. The spectrometer can be useful for two-line spectroscopic diagnostics or can be expanded for multi-element spectral analysis.

  2. [Manufacture tolerance analysis of solid Mach-Zehnder interferometer in large aperture static imaging spectrometer (LASIS)].

    Science.gov (United States)

    Liu, Qing; Zhou, Jin-Song; Nie, Yun-Feng; Lü, Qun-Bo

    2014-07-01

    The principle and instrumental structure of large aperture static imaging spectrometer (LASIS) were briefly described in the present paper, the principle of the Mach-Zehnder imaging spectrometer was introduced, and the Mach-Zehnder interferometers' working way in the imaging spectrometer was illustrated. The structure of solid Mach-Zehnder interferometer was analyzed, and discussion was made based on the requirements of field of view (FOV) in image space and single sided interferogram with a small portion around zero path difference (ZPD). The additional optical path difference (OPD) created by manufacturing and matching tolerance of two asymmetrical pentagonal prisms will lead to the displacement of shearing and OPD nonlinearity. It was showed that the additional OPD from non-common optical path structure of solid Mach-Zehnder spectrometer implies more requirements on the manufacture of this element, compared with Sagnac interferometer, for the matching tolerance of two asymmetrical pentagonal prisms to br lower than 0.02 mm. The recovery spectrum error caused by the OPD nonlinearity is lower than 0.2% and can be ignored.

  3. Oxidation and metal contamination of EUV optics

    NARCIS (Netherlands)

    Sturm, Jacobus Marinus; Liu, Feng; Pachecka, Malgorzata; Lee, Christopher James; Bijkerk, Frederik

    2013-01-01

    The next generation photolithography will use 13.5 nm Extreme Ultraviolet (EUV) for printing smaller features on chips. One of the hallenges is to optimally control the contamination of the multilayer mirrors used in the imaging system. The aim of this project is generating fundamental understanding

  4. SETA: An Imaging Spectrometer for Marco Polo Mission

    Science.gov (United States)

    de Sanctis, M. C.; Filacchione, G.; Capaccioni, F.; Piccioni, G.; Ammannito, E.; Capria, M. T.; Coradini, A.; Migliorini, A.; Battistelli, E.; Preti, G.

    2010-03-01

    The aim of the SETA experiment is to perform imaging spectroscopy in the spectral range 400-3300 nm for a complete mapping of the Marco Polo target with a spectral sampling of at least 20 nm and a spatial resolution on the order of meters.

  5. Use of Imaging Spectrometer Data and Multispectral Imagery for Improved Earthquake Response

    OpenAIRE

    Kruse, Fred A.; Clasen, Chris C.; Kim, Angela M.; Carlisle, Sarah C.

    2012-01-01

    Imaging and Applied Optics Technical Digest, 2012 Multispectral imagery and imaging spectrometer data are used to develop prototype map products for improved earthquake response. A tiered approach keyed to post-event communications infrastructure is directed at providing critical information to emergency services personnel. This research is supported by the Science and Technology (S&T) Directorate, Department of Homeland Security (DHS). We gratefully acknowledge the participation ...

  6. Ultra-Compact Imaging Spectrometer (UCIS) for In-Situ Planetary Mineralogy: Laboratory and Field Calibration

    Science.gov (United States)

    Van Gorp, Byron; Mouroulis, Pantazis; Green, Robert O.; Rodriguez, Jose I.; Blaney, Diana; Wilson, Daniel W.; Sellar, R. Glenn; Richardson, Brandon S.

    2012-01-01

    The Ultra-Compact Imaging Spectrometer (UCIS) is a miniature telescope and spectrometer system intended for mapping terrain mineralogy over distances from 1.5 m to infinity with spatial sampling of 1.35 mrad over a 33 deg field, and spectral sampling of 10 nm in the 600-2500 nm range. The core of the system has been designed for operation in a Martian environment, but can also be used in a terrestrial environment when placed inside a vacuum vessel. We report the laboratory and field calibration data that include spatial and spectral calibration, and demonstrate the use of the system.

  7. Characterization of Forest Ecosystems by combined Radiative Transfer Modeling for Imaging Spectrometer and LiDAR

    Science.gov (United States)

    Koetz, B.; Sun, G.; Morsdorf, F.; Rubio, J.; Kimes, D.; Ranson, J.

    2009-04-01

    This research was motivated by the increased information dimensionality provided by current Earth Observation systems measuring the complex and dynamic medium of the vegetated surface of the Earth. Advanced and reliable algorithms that fully exploit this enhanced Earth Observation information are needed to deliver consistent data sets of the Earth vegetation condition describing its spatial distribution and change over time. Spectral observation provided by imaging spectrometers and the waveform from large-footprint LiDAR are now available from space for forest ecosystem studies. The imaging spectrometer data contains information about the biochemical composition of the canopy foliage, and is widely used to estimate biophysical canopy parameters such as LAI and fractional cover. LiDAR responds to the vertical distribution of scatters and permits inferences about the plant structures required to supply water and mechanical support to those surfaces. Various canopy height indices derived from LiDAR waveform have been successfully used to infer forest above-ground biomass and the characterization of canopy structure. The structure parameters derived from LiDAR data can improve the accuracy and robustness of canopy parameter retrieval from imaging spectrometer by reducing uncertainties related to the canopy structure. The specific information content, inherent to the observations of imaging spectrometry and LIDAR, assesses thus different but complementary characteristics of the complex vegetation canopy. The combination of these two information dimensions offers a unique and reliable canopy characterization including information relevant to different aspects of the biochemical and biophysical properties and thus understanding of processes within forest ecosystems. A comprehensive canopy characterization of a forest ecosystem is derived from the combined remote sensing signal of imaging spectrometry and large footprint LIDAR. The inversion of two linked physically based

  8. Study on spectral calibration of an ultraviolet Fourier transform imaging spectrometer with high precision

    Science.gov (United States)

    Yang, Wenming; Liao, Ningfang; Cheng, Haobo; Li, Yasheng; Bai, Xueqiong; Deng, Chengyang

    2018-01-01

    In this paper, we reported the laboratory spectral calibration of an ultraviolet (UV) Fourier transform imaging spectrometer (FTIS). A short overview of the designed UV-FTIS, which feature with a Cassegrain objective, an Offner relay optics system and a spatial-and-temporal modulation Michelson structure, is given. The experimental setup of spectral calibration is described, including details of the light source and integrating sphere. A high pressure mercury lamp was used to acquire reference spectrum. We calculated the all optical path difference (OPD) to achieve spectral response of every wavelength sample and divided the position of reference peak to subpixel to increase the precision of spectral calibration. The spectrum of spectral calibration show two weakly responded peaks, which was validated by reference spectrum of fiber optic spectrometer. The deviation of wavelength calibration is low to establish a best spectrometer resolution. The results of spectral calibration can meet the requirements of the UV-FTIS application.

  9. Novel EUV mask black border suppressing EUV and DUV OoB light reflection

    Science.gov (United States)

    Ito, Shin; Kodera, Yutaka; Fukugami, Norihito; Komizo, Toru; Maruyama, Shingo; Watanabe, Genta; Yoshida, Itaru; Kotani, Jun; Konishi, Toshio; Haraguchi, Takashi

    2016-05-01

    EUV lithography is the most promising technology for semiconductor device manufacturing of the 10nm node and beyond. The image border is a pattern free dark area around the die on the photomask serving as transition area between the parts of the mask that is shielded from the exposure light by the Reticle Masking (REMA) blades and the die. When printing a die at dense spacing on an EUV scanner, the reflection from the image border overlaps edges of neighboring dies, affecting CD and contrast in this area. This is related to the fact that EUV absorber stack reflects 1-3% of actinic EUV light. To reduce this effect several types of image border with reduced EUV reflectance (HBB) has been developed to eliminate EUV and DUV OOB light reflection by applying optical design technique and special micro-fabrication technique. A new test mask with HBB is fabricated without any degradation of mask quality according to the result of CD performance in the main pattern, defectivity and cleaning durability. The imaging performance for N10 imaging structures is demonstrated on NXE:3300B in collaboration with ASML. This result is compared to the imaging results obtained for a mask with the earlier developed BB, and HBB has achieved ~3x improvement; less than 0.2 nm CD changes are observed in the corners of the die. A CD uniformity budget including impact of OOB light in the die edge area is evaluated which shows that the OOB impact from HBB becomes comparable with other CDU contributors in this area. Finally, we state that HBB is a promising technology allowing for CD control at die edges.

  10. The VTTVIS line imaging spectrometer - principles, error sources, and calibration

    DEFF Research Database (Denmark)

    Jørgensen, R.N.

    2002-01-01

    work describing the basic principles, potential error sources, and/or adjustment and calibration procedures. This report fulfils the need for such documentationwith special focus on the system at KVL. The PGP based system has several severe error sources, which should be removed prior any analysis....... Most of the random noise sources can be minimised by carefully selecting high-grade components especially withconcern to the camera. Systematic error sources like CCD fixed pattern noise (FPN), CCD photoresponse nonuniformity (PRNU), CCD charge transfer efficiency (CTE), slit width variations, changes...... in off-axis transmission efficiencies, diffractionefficiencies, and image distortion have a significant impact on the instrument performance. Procedures removing or minimising these systematic error sources are developed and described for the system build at KVL but can be generalised to other PGP...

  11. AOTF-based near-infrared imaging spectrometer for rapid identification of camouflaged target

    Science.gov (United States)

    Gao, Zhifan; Zeng, Libo; Wu, Qiongshui

    2014-11-01

    Acousto-optic tunable filter (AOTF) is a novel device for spectrometer. The electronic tunability qualifies it with the most compelling advantages of higher wavelength scan rate over the conventional spectrometers that are mechanically tuned, and the feature of large angular aperture makes the AOTF particularly suitable in imaging applications. In this research, an AOTF-based near-infrared imaging spectrometer was developed. The spectrometer consists of a TeO2 AOTF module, a near-infrared imaging lens assembly, an AOTF controller, an InGaAs array detector, an image acquisition card, and a PC. A precisely designed optical wedge is placed at the emergent surface of the AOTF to deal with the inherent dispersion of the TeO2 that may degrade the spatial resolution. The direct digital synthesizer (DDS) techniques and the phase locked loop (PLL) techniques are combined for radio frequency (RF) signal synthesis. The PLL is driven by the DDS to take advantage of both their merits of high frequency resolution, high frequency scan rate and strong spurious signals resistance capability. All the functions relating to wavelength scan, image acquisition, processing, storge and display are controlled by the PC. Calibration results indicate that the spectral range is 898~1670 nm, the spectral resolution is 6.8 nm(@1064 nm), the wavelength separation between frames in the spectral image assembly is 1.0 nm, and the processing time of a single image is less than 1 ms if a TV camera with 640×512 detector is incorporated. A prototype device was assembled to test the capability of differentiating samples with similar appearances, and satisfactory results were achieved. By this device, the chemical compositions and the distribution information can be obtained simultaneously. This system has the most advantages of no moving parts, fast wavelength scan and strong vibration resistance. The proposed imaging spectrometer has a significant application prospect in the area of identification of

  12. A digital magnetic resonance imaging spectrometer using digital signal processor and field programmable gate array.

    Science.gov (United States)

    Liang, Xiao; Binghe, Sun; Yueping, Ma; Ruyan, Zhao

    2013-05-01

    A digital spectrometer for low-field magnetic resonance imaging is described. A digital signal processor (DSP) is utilized as the pulse programmer on which a pulse sequence is executed as a subroutine. Field programmable gate array (FPGA) devices that are logically mapped into the external addressing space of the DSP work as auxiliary controllers of gradient control, radio frequency (rf) generation, and rf receiving separately. The pulse programmer triggers an event by setting the 32-bit control register of the corresponding FPGA, and then the FPGA automatically carries out the event function according to preset configurations in cooperation with other devices; accordingly, event control of the spectrometer is flexible and efficient. Digital techniques are in widespread use: gradient control is implemented in real-time by a FPGA; rf source is constructed using direct digital synthesis technique, and rf receiver is constructed using digital quadrature detection technique. Well-designed performance is achieved, including 1 μs time resolution of the gradient waveform, 1 μs time resolution of the soft pulse, and 2 MHz signal receiving bandwidth. Both rf synthesis and rf digitalization operate at the same 60 MHz clock, therefore, the frequency range of transmitting and receiving is from DC to ~27 MHz. A majority of pulse sequences have been developed, and the imaging performance of the spectrometer has been validated through a large number of experiments. Furthermore, the spectrometer is also suitable for relaxation measurement in nuclear magnetic resonance field.

  13. Imaging with spherically bent crystals or reflectors

    Science.gov (United States)

    Bitter, M.; Delgado Aparicio, L. F.; Hill, K. W.; Scott, S.; Ince-Cushman, A.; Reinke, M.; Podpaly, Y.; Rice, J. E.; Beiersdorfer, P.; Wang, E.

    2010-07-01

    This paper consists of two parts: part I describes the working principle of a recently developed x-ray imaging crystal spectrometer, where the astigmatism of spherically bent crystals is being used with advantage to record spatially resolved spectra of highly charged ions for Doppler measurements of the ion-temperature and toroidal plasma-rotation-velocity profiles in tokamak plasmas. This type of spectrometer was thoroughly tested on NSTX and Alcator C-Mod, and its concept was recently adopted for the design of the ITER crystal spectrometers. Part II describes imaging schemes, where the astigmatism has been eliminated by the use of matched pairs of spherically bent crystals or reflectors. These imaging schemes are applicable over a wide range of the electromagnetic radiation, which includes microwaves, visible light, EUV radiation and x-rays. Potential applications with EUV radiation and x-rays are the diagnosis of laser-produced plasmas, imaging of biological samples with synchrotron radiation and lithography.

  14. Improvements in the imaging performance of a high volume manufacturing EUV scanner with a special emphasis on the added value of the new illuminator for increased pupil flexibility

    Science.gov (United States)

    Bilski, Bartosz; Wang, Ziyang; Wittebrood, Friso; McNamara, John; Oorschot, Dorothe; van de Kerkhof, Mark; Fliervoet, Timon

    2017-06-01

    With the introduction of the NXE:3400B EUV scanner, ASML brings to the market the next generation NXE system. In this paper we present the results of a subset of a larger investigation that aimed at assessing the imaging performance of the NXE:3400B in various scenarios. The use cases we chose for the presentation here are contact holes, which are typical building blocks for logic and memory applications. In this paper we evaluate typical lithographic metrics. Starting from the exposure latitude, we show that contact holes of already 17nm half-pitch can be printed. Next, we show that the full wafer CD uniformity improvement is mainly driven by a high reticle CD uniformity. After that, we explore the capabilities of the new NXE:3400B illuminator and investigate an improved illumination setting for relaxed staggered contact holes of half pitch >21nm, and show a 20% local CD uniformity improvement (from 4.6 to 3.6nm) for regular contact holes of 18nm half-pitch, without throughput loss.

  15. The EXIST optical and infra-red telescope (IRT) and imager-spectrometer

    Science.gov (United States)

    Kutyrev, A. S.; Moseley, S. H.; Golisano, C.; Gong, Q.; Allen, B. T.; Gehrels, N.; Grindlay, J. E.; Hong, J. S.; Woodgate, B. E.

    2009-08-01

    The EXIST (Energetic X-ray Imaging Survey Telescope) mission includes the 1.1 m optical Infra-Red Telescope (IRT) which provides the capability to locate, identify, and obtain spectra of transient events, in particular GRB afterglows at redshifts up to epoch of reionization. The instrument includes a high spatial resolution imager, low spectral resolution spectrometer (R~ 30) and high resolution slit spectrometer (R~ 3000). This instrument, with the observatory's rapid reaction response will quickly identify the GRB afterglow, measure its brightness curves, redshift, measure spectral characteristics of the afterglows and measure absorption spectra of the intervening intergalactic medium. With this instrument, high redshift GRBs become important tools for studying the growth of structure, observing the processes through which the universe is reionized.

  16. A rapid method for creating qualitative images indicative of thick oil emulsion on the ocean's surface from imaging spectrometer data

    Science.gov (United States)

    Kokaly, Raymond F.; Hoefen, Todd M.; Livo, K. Eric; Swayze, Gregg A.; Leifer, Ira; McCubbin, Ian B.; Eastwood, Michael L.; Green, Robert O.; Lundeen, Sarah R.; Sarture, Charles M.; Steele, Denis; Ryan, Thomas; Bradley, Eliza S.; Roberts, Dar A.; ,

    2010-01-01

    This report describes a method to create color-composite images indicative of thick oil:water emulsions on the surface of clear, deep ocean water by using normalized difference ratios derived from remotely sensed data collected by an imaging spectrometer. The spectral bands used in the normalized difference ratios are located in wavelength regions where the spectra of thick oil:water emulsions on the ocean's surface have a distinct shape compared to clear water and clouds. In contrast to quantitative analyses, which require rigorous conversion to reflectance, the method described is easily computed and can be applied rapidly to radiance data or data that have been atmospherically corrected or ground-calibrated to reflectance. Examples are shown of the method applied to Airborne Visible/Infrared Imaging Spectrometer data collected May 17 and May 19, 2010, over the oil spill from the Deepwater Horizon offshore oil drilling platform in the Gulf of Mexico.

  17. Mrk421: EUVE observations from 1994 to 1997

    OpenAIRE

    Cagnoni, Ilaria; Fruscione, Antonella; Papadakis, Iossif E.

    1998-01-01

    We present spectral and timing analysis of all the data collected by the Extreme Ultraviolet Explorer for the BL Lac object Mrk 421 from 1994 to 1997. During these years Mrk 421 has been observed by EUVE 4 times with the DS/Spectrograph and 2 times with the imaging telescopes for a total of ~1.4 millions seconds. The total EUVE light curve seems to be smoothly varying on the long time-scale while on a shorter time-scale there is evidence of an EUVE flare correlated to the 1995 TeV flare. We a...

  18. Thorough characterization of an EUV mask

    Science.gov (United States)

    Mizuno, Hiroyuki; McIntyre, Gregory; Koay, Chiew-seng; Burkhardt, Martin; He, Long; Hartley, John; Johnson, Corbet; Raghunathan, Sudharshanan; Goldberg, Kenneth; Mochi, Iacopo; La Fontaine, Bruno; Wood, Obert

    2009-04-01

    We reported that we were successful in our 45nm technology node device demonstration in February 2008 and 22nm node technology node device patterning in February 2009 using ASML's Alpha Demo Tool (ADT).1, 2, 3 In order to insert extreme ultraviolet (EUV) lithography at the 15nm technology node and beyond, we have thoroughly characterized one EUV mask, a so-called NOVACD mask. In this paper, we report on three topics. The first topic is an analysis of line edge roughness (LER) using a mask Scanning Electron Microscope (SEM), an Atomic Force Microscope (AFM) and the Actinic Inspection Tool (AIT) to compare resist images printed with the ASML ADT. The results of the analysis show a good correlation between the mask AFM and the mask SEM measurements. However, the resist printing results for the isolated space patterns are slightly different. The cause of this discrepancy may be resist blur, image log slope and SEM image quality and so on. The second topic is an analysis of mask topography using an AFM and relative reflectivity of mirror and absorber surface using the AIT. The AFM data show 6 and 7 angstrom rms roughness for mirror and absorber, respectively. The reflectivity measurements show that the mirror reflects EUV light about 20 times higher than absorber. The last topic is an analysis of a 32nm technology node SRAM cell which includes a comparison of mask SEM image, AIT image, resist image and simulation results. The ADT images of the SRAM pattern were of high quality even though the mask patters were not corrected for OPC or any EUV-specific effects. Image simulation results were in good agreement with the printing results.

  19. The spectrometer/telescope for imaging X-rays on board the ESA Solar Orbiter spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Krucker, S. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Sciences Laboratory, UC Berkeley (United States); Benz, A.O. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Hurford, G.J. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Sciences Laboratory, UC Berkeley (United States); Arnold, N.G. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Orleański, P. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Research Center of Polish Academy of Sciences (Poland); Gröbelbauer, H.-P.; Casadei, D.; Kobler, S.; Iseli, L.; Wiehl, H.J.; Csillaghy, A.; Etesi, L.; Hochmuth, N.; Battaglia, M. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Bednarzik, M.; Resanovic, R. [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, Villigen (Switzerland); Grimm, O., E-mail: oliver.grimm@phys.ethz.ch [ETH Zürich (Switzerland); Viertel, G.; Commichau, V.; Howard, A. [ETH Zürich (Switzerland); and others

    2013-12-21

    Solar Orbiter is a Sun-observing mission led by the European Space Agency, addressing the interaction between the Sun and the heliosphere. It will carry ten instruments, among them the X-ray imaging spectrometer STIX. STIX will determine the intensity, spectrum, timing, and location of thermal and accelerated electrons near the Sun through their bremsstrahlung X-ray emission. This report gives a brief overview of the STIX scientific goals and covers in more detail the instrument design and challenges.

  20. A mini-photofragment translational spectrometer with ion velocity map imaging using low voltage acceleration

    Science.gov (United States)

    Qi, Wenke; Jiang, Pan; Lin, Dan; Chi, Xiaoping; Cheng, Min; Du, Yikui; Zhu, Qihe

    2018-01-01

    A mini time-sliced ion velocity map imaging photofragment translational spectrometer using low voltage acceleration has been constructed. The innovation of this apparatus adopts a relative low voltage (30-150 V) to substitute the traditional high voltage (650-4000 V) to accelerate and focus the fragment ions. The overall length of the flight path is merely 12 cm. There are many advantages for this instrument, such as compact structure, less interference, and easy to operate and control. Low voltage acceleration gives a longer turn-around time to the photofragment ions forming a thicker Newton sphere, which provides sufficient time for slicing. Ion trajectory simulation has been performed for determining the structure dimensions and the operating voltages. The photodissociation and multiphoton ionization of O2 at 224.999 nm is used to calibrate the ion images and examine the overall performance of the new spectrometer. The velocity resolution (Δν/ν) of this spectrometer from O2 photodissociation is about 0.8%, which is better than most previous results using high acceleration voltage. For the case of CF3I dissociation at 277.38 nm, many CF3 vibrational states have been resolved, and the anisotropy parameter has been measured. The application of low voltage acceleration has shown its advantages on the ion velocity map imaging (VMI) apparatus. The miniaturization of the VMI instruments can be realized on the premise of high resolution.

  1. Imaging of Gamma-ray Scatter from a Polymethyl-methacrylate Phantom Using a Compton Imaging Spectrometer.

    Science.gov (United States)

    Frank, Samuel J; Kearfott, Kimberlee J

    2017-08-01

    Commercially available gamma-ray imaging spectrometers have been introduced recently and are currently undergoing investigations for various applications in nuclear power plants, environmental management, and medical environments. A Compton imaging gamma-ray spectrometer uses an array of detectors or a single position-sensitive crystal to create planar images of radionuclide distributions. The typical software included with these devices creates images of specific radionuclides using only the counts under their known gamma emission photopeaks. This approach prevents the direct imaging of scattered radiation, which is of interest for many radiation protection applications. In this paper, a technique for imaging radiation scatter or portions of the scatter spectrum is implemented. This involves the creation of a virtual radionuclide in software with peaks placed throughout the backscatter continuum of interest and then imaging that virtual radionuclide in the post-processing software. This technique is used to image the Compton scatter successfully from a polymethyl-methacrylate (PMMA) phantom placed in a Cs irradiator beam. Measured scatter energies were found to be within 15% of the expected values, sufficient to predict scatter behavior and individually measure separate sources of scatter at different angles.

  2. Compact Micro-Imaging Spectrometer (CMIS): Investigation of Imaging Spectroscopy and Its Application to Mars Geology and Astrobiology

    Science.gov (United States)

    Staten, Paul W.

    2005-01-01

    Future missions to Mars will attempt to answer questions about Mars' geological and biological history. The goal of the CMIS project is to design, construct, and test a capable, multi-spectral micro-imaging spectrometer use in such missions. A breadboard instrument has been constructed with a micro-imaging camera and Several multi-wavelength LED illumination rings. Test samples have been chosen for their interest to spectroscopists, geologists and astrobiologists. Preliminary analysis has demonstrated the advantages of isotropic illumination and micro-imaging spectroscopy over spot spectroscopy.

  3. Smoke, Clouds and Radiation Brazil NASA ER-2 Moderate Resolution Imaging Spectrometer (MODIS) Airborne Simulator (MAS) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — SCARB_ER2_MAS data are Smoke, Clouds and Radiation Brazil (SCARB) NASA ER2 Moderate Resolution Imaging Spectrometer (MODIS) Airborne Simulator (MAS)...

  4. Surface mineral maps of Afghanistan derived from HyMap imaging spectrometer data, version 2

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.

    2013-01-01

    This report presents a new version of surface mineral maps derived from HyMap imaging spectrometer data collected over Afghanistan in the fall of 2007. This report also describes the processing steps applied to the imaging spectrometer data. The 218 individual flight lines composing the Afghanistan dataset, covering more than 438,000 square kilometers, were georeferenced to a mosaic of orthorectified Landsat images. The HyMap data were converted from radiance to reflectance using a radiative transfer program in combination with ground-calibration sites and a network of cross-cutting calibration flight lines. The U.S. Geological Survey Material Identification and Characterization Algorithm (MICA) was used to generate two thematic maps of surface minerals: a map of iron-bearing minerals and other materials, which have their primary absorption features at the shorter wavelengths of the reflected solar wavelength range, and a map of carbonates, phyllosilicates, sulfates, altered minerals, and other materials, which have their primary absorption features at the longer wavelengths of the reflected solar wavelength range. In contrast to the original version, version 2 of these maps is provided at full resolution of 23-meter pixel size. The thematic maps, MICA summary images, and the material fit and depth images are distributed in digital files linked to this report, in a format readable by remote sensing software and Geographic Information Systems (GIS). The digital files can be downloaded from http://pubs.usgs.gov/ds/787/downloads/.

  5. JIRAM, the image spectrometer in the near infrared on board the Juno mission to Jupiter.

    Science.gov (United States)

    Adriani, Alberto; Coradini, Angioletta; Filacchione, Gianrico; Lunine, Jonathan I; Bini, Alessandro; Pasqui, Claudio; Calamai, Luciano; Colosimo, Fedele; Dinelli, Bianca M; Grassi, Davide; Magni, Gianfranco; Moriconi, Maria L; Orosei, Roberto

    2008-06-01

    The Jovian InfraRed Auroral Mapper (JIRAM) has been accepted by NASA for inclusion in the New Frontiers mission "Juno," which will launch in August 2011. JIRAM will explore the dynamics and the chemistry of Jupiter's auroral regions by high-contrast imaging and spectroscopy. It will also analyze jovian hot spots to determine their vertical structure and infer possible mechanisms for their formation. JIRAM will sound the jovian meteorological layer to map moist convection and determine water abundance and other constituents at depths that correspond to several bars pressure. JIRAM is equipped with a single telescope that accommodates both an infrared camera and a spectrometer to facilitate a large observational flexibility in obtaining simultaneous images in the L and M bands with the spectral radiance over the central zone of the images. Moreover, JIRAM will be able to perform spectral imaging of the planet in the 2.0-5.0 microm interval of wavelengths with a spectral resolution better than 10 nm. Instrument design, modes, and observation strategy will be optimized for operations onboard a spinning satellite in polar orbit around Jupiter. The JIRAM heritage comes from Italian-made, visual-infrared imaging spectrometers dedicated to planetary exploration, such as VIMS-V on Cassini, VIRTIS on Rosetta and Venus Express, and VIR-MS on the Dawn mission.

  6. Image Evaluation of the High Resolution VUV Spectrometer at SURF II by Ray Tracing.

    Science.gov (United States)

    Das, N C; Madden, R P; Seyoum, H M

    1998-01-01

    A high resolution VUV spectroscopic facility has been in use for several years at SURF II, the Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology in Gaithersburg, Maryland. At this facility, a combination of three cylindrical mirrors is utilized to focus the light originating in the storage ring onto the horizontal entrance slit of the spectrometer. The spectrometer uses a 6.65 m concave grating having a groove density of 4800 lines/mm in the off-plane Eagle mounting. In preparation for the installation of an array detector in the exit image plane, a ray tracing program has been formulated and spot diagrams have been constructed by plotting the coordinates of the points of intersection of the diffracted rays with the image plane, which is tangent to the Rowland circle. In creating the spot diagrams, we have considered both parallel and tilted configurations of the entrance slit with respect to the grating grooves. It is shown that the line widths of the spectral images can be reduced when the entrance slit is properly tilted. Finally, we have estimated the spectral widths of the images when they are recorded on an array detector placed tangent to the Rowland circle. We conclude that an image spectral width of 0.41 pm to 0.88 pm in first order can be achieved over the wavelength region of 40 nm to 120 nm.

  7. Compact snapshot birefringent imaging Fourier transform spectrometer for remote sensing and endoscopy

    Science.gov (United States)

    Kudenov, Michael W.; Banerjee, Bhaskar; Chan, Victoria C.; Dereniak, Eustace L.

    2012-09-01

    The design and implementation of a compact multiple-image Fourier transform spectrometer (FTS) is presented. Based on the multiple-image FTS originally developed by A. Hirai, the presented device offers significant advantages over his original implementation. Namely, its birefringent nature results in a common-path interferometer which makes the spectrometer insensitive to vibration. Furthermore, it enables the potential of making the instrument ultra-compact, thereby improving the portability of the sensor. The theory of the birefringent FTS is provided, followed by details of its specific embodiment. A laboratory proof of concept of the sensor, designed and developed at the Optical Detection Lab, is also presented. Spectral measurements of laboratory sources are provided, including measurements of light-emitting diodes and gas-discharge lamps. These spectra are verified against a calibrated Ocean Optics USB2000 spectrometer. Other data were collected outdoors and of a rat esophagus, demonstrating the sensor's ability to resolve spectral signatures in both standard outdoor lighting and environmental conditions, as well as in fluorescence spectroscopy.

  8. The Mid-Infrared Imager/Spectrometer/Coronagraph Instrument (MISC) for the Origins Space Telescope

    Science.gov (United States)

    Roellig, Thomas; Sakon, Itsuki; Ennico, Kimberly; MISC Instrument Study Team, Origins Space Telescope Study Team

    2018-01-01

    The Origins Space Telescope (OST) is one of four potential flagship missions that have been funded by NASA for study for consideration in the upcoming Astrophysics Decadal Review expected in 2020. The OST telescope will be up to 9.3 meters in diameter, cooled to ~4K, and the mission will be optimized for efficient mid and far-infrared astronomical observations. An initial suite of five focal plane instruments are being baselined for this observatory. The Mid-infrared Imager Spectrometer Coronagraph (MISC) instrument will observe at the shortest wavelengths of any of these instruments, ranging from 5 to 38 microns, and consists of three separate optical modules providing imaging, spectroscopy, and coronagraph capabilities. The imaging camera covers a 3 arcmin x 3 arcmin field with filters and grisms from 6-38 microns. The spectrometers have spectral resolving powers R~1,000 from 9-38 microns (with a goal of 5-38 microns) and R~25,000 for 12-18 and 25-36 microns. The coronagraph covers 6-38 microns. There is a special densified pupil spectrometer channel that provides R~100-300 exoplanet transit and emission spectroscopy from 6-26 microns with very high spectro-photometric stability. As the shortest wavelength focal plane imager the MISC instrument will also be used for focal plane guiding as needed for the other OST science instruments. The science that MISC enables on OST includes: studying episodic accretion in protostellar envelopes, tracing the rise in metallacity and dust over cosmic time (when combined with far-infrared measurements), measuring dust in galactic outflows, assessing feedback from supernovae and AGN on the multi-phase ISM in galaxies, characterizing the AGN and starburst power in normal and massive galaxies, detecting exoplanet atmospheric biosignatures, and direct imaging of Jovian planets orbiting older stars at separations of 5-20 AU.

  9. The Moon Mineralogy (M3) Imaging Spectrometer: Early Assessment of the Spectral, Radiometric, Spatial and Uniformity Properties

    Science.gov (United States)

    Green, Robert O.; Pieters, C. M.; Boardman, J.; Barr, D.; Bruce, C.; Bousman, J.; Chatterjee, A.; Eastwood, M.; Essandoh, V.; Geier, S.; hide

    2009-01-01

    The Moon Mineralogy Mapper's (M3) is a high uniformity and high signal-to-noise ratio NASA imaging spectrometer that is a guest instrument on the Indian Chandrayaan-1 Mission to the Moon. The laboratory measured spectral, radiometric, spatial, and uniformity characteristics of the M3 instrument are given. The M3 imaging spectrometer takes advantage of a suite of critical enabling capabilities to achieve its measurement requirement with a mass of 8 kg, power usage of 15 W, and volume of 25X18X12 cm. The M3 detector and spectrometer are cooled by a multi-stage passive cooler. This paper presents early M3 performance assessment results.

  10. X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

    1999-05-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

  11. Argon impurity transport studies at Wendelstein 7-X using x-ray imaging spectrometer measurements

    Science.gov (United States)

    Langenberg, A.; Pablant, N. A.; Marchuk, O.; Zhang, D.; Alonso, J. A.; Burhenn, R.; Svensson, J.; Valson, P.; Gates, D.; Beurskens, M.; Wolf, R. C.; the W7-X Team

    2017-08-01

    In the first operational phase of the stellarator Wendelstein 7-X (W7-X), the x-ray imaging crystal spectrometer (XICS) system has been commissioned for measuring radial profiles of ion and electron temperature, T i and T e, plasma rotation velocities, v P, and selected impurity densities, n Z . This paper shows the first measurements of the spectrometer and gives an initial calculation of impurity transport parameters derived from an Ar impurity transport study. Using Bayesian analysis, the temporal evolution of Ar impurity density profiles after an Ar gas puff could be observed with a time resolution of up to 5 ms, yielding a maximum value for the diffusion coefficient of D  =  1.5 m2 s-1 at ρ ~ 0.5 and small pinch velocities in the inner plasma region.

  12. Free-electron laser emission architecture impact on EUV lithography

    Science.gov (United States)

    Hosler, Erik R.; Wood, Obert R.; Barletta, William A.

    2017-03-01

    Laser-produced plasma (LPP) EUV sources have demonstrated approximately 125 W at customer sites, establishing confidence in EUV lithography as a viable manufacturing technology. However, beyond the 7 nm technology node existing scanner/source technology must enable higher-NA imaging systems (requiring increased resist dose and providing half-field exposures) and/or EUV multi-patterning (requiring increased wafer throughput proportional to the number of exposure passes. Both development paths will require a substantial increase in EUV source power to maintain the economic viability of the technology, creating an opportunity for free-electron laser (FEL) EUV sources. FEL-based EUV sources offer an economic, high-power/single-source alternative to LPP EUV sources. Should free-electron lasers become the preferred next generation EUV source, the choice of FEL emission architecture will greatly affect its operational stability and overall capability. A near-term industrialized FEL is expected to utilize one of the following three existing emission architectures: (1) selfamplified spontaneous emission (SASE), (2) regenerative amplification (RAFEL), or (3) self-seeding (SS-FEL). Model accelerator parameters are put forward to evaluate the impact of emission architecture on FEL output. Then, variations in the parameter space are applied to assess the potential impact to lithography operations, thereby establishing component sensitivity. The operating range of various accelerator components is discussed based on current accelerator performance demonstrated at various scientific user facilities. Finally, comparison of the performance between the model accelerator parameters and the variation in parameter space provides a means to evaluate the potential emission architectures. A scorecard is presented to facilitate this evaluation and provide a framework for future FEL design and enablement for EUV lithography applications.

  13. EUV Cross-Calibration Strategies for the GOES-R SUVI

    Science.gov (United States)

    Darnel, Jonathan; Seaton, Daniel

    2016-10-01

    The challenges of maintaining calibration for solar EUV instrumentation is well-known. The lack of standard calibration sources and the fact that most solar EUV telescopes are incapable of utilizing bright astronomical EUV sources for calibration make knowledge of instrument performance quite difficult. In the recent past, calibration rocket underflights have helped establish a calibration baseline. The EVE instrument on SDO for a time provided well-calibrated, high spectral resolution solar spectra for a broad range of the EUV, but has suffered a loss of coverage at the shorter wavelengths. NOAA's Solar UltraViolet Imager (SUVI), a solar EUV imager with similarities to SDO/AIA, will provide solar imagery over nearly an entire solar cycle. In order to maintain the scientific value of the SUVI's dataset, novel approaches to calibration are necessary. Here we demonstrate a suite of methods to cross-calibrate SUVI against other solar EUV instruments through the use of proxy solar spectra.

  14. [Design and study of a high resolution vacuum ultraviolet imaging spectrometer carried by satellite].

    Science.gov (United States)

    Yu, Lei; Lin, Guan-yu; Qu, Yi; Wang, Shu-rong; Wang, Long-qi

    2011-12-01

    A high resolution vacuum ultraviolet imaging spectrometer prototype carried by satellite applied to the atmosphere detection of particles distribution in 115-300 nm was developed for remote sensing. First, based on the analysis of advanced loads, the optical system including an off-axis parabolic mirror as the telescope and Czerny-Turner structure as the imaging spectrometer was chosen Secondly, the 2-D photon counting detector with MCP was adopted for the characteristic that the radiation is weak in vacuum ultraviolet waveband. Then the geometric method and 1st order differential calculation were introduced to improve the disadvantages that aberrations in the traditional structure can not be corrected homogeneously to achieve perfect broadband imaging based on the aberration theory. At last, an advanced example was designed. The simulation and calculation of results demonstrate that the modulation transfer function (MTF) of total field of view is more than 0.6 in the broadband, and the spectral resolution is 1.23 nm. The structure is convenient and predominant. It proves that the design is feasible.

  15. The Airborne Visible / Infrared Imaging Spectrometer AVIS: Design, Characterization and Calibration

    Directory of Open Access Journals (Sweden)

    Wolfram Mauser

    2007-09-01

    Full Text Available The Airborne Visible / Infrared imaging Spectrometer AVIS is a hyperspectralimager designed for environmental monitoring purposes. The sensor, which wasconstructed entirely from commercially available components, has been successfullydeployed during several experiments between 1999 and 2007. We describe the instrumentdesign and present the results of laboratory characterization and calibration of the system’ssecond generation, AVIS-2, which is currently being operated. The processing of the datais described and examples of remote sensing reflectance data are presented.

  16. Radiometric and spectral calibrations of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) using principle component analysis

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-10-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw GIFTS interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. The radiometric calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. The absolute radiometric performance of the instrument is affected by several factors including the FPA off-axis effect, detector/readout electronics induced nonlinearity distortions, and fore-optics offsets. The GIFTS-EDU, being the very first imaging spectrometer to use ultra-high speed electronics to readout its large area format focal plane array detectors, operating at wavelengths as large as 15 microns, possessed non-linearity's not easily removable in the initial calibration process. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts remaining after the initial radiometric calibration process, thus, further enhance the absolute calibration accuracy. This method is

  17. Experimental results from an X-ray imaging crystal spectrometer utilizing multi-wire proportional counter for KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. G., E-mail: sglee@nfri.re.kr; Kim, Y. S. [National Fusion Research Institute, Daejeon (Korea, Republic of); Yoo, J. W. [Korea University of Science and Technology, Daejeon (Korea, Republic of); Nam, U. W. [Korea Astronomy and Space Science Institute, Daejeon (Korea, Republic of); Moon, M. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-11-15

    The inconsistency of the first experimental results from the X-ray imaging crystal spectrometer for the Korea Superconducting Tokamak Advanced Research device utilizing a multi-wire proportional counter (MWPC) is clarified after improving the photon-count rate of the data acquisition system for the MWPC and ground loop isolator for the whole spectrometer system. The improved MWPC is successfully applied to pure Ohmic plasmas as well as plasmas with high confinement modes.

  18. Experimental results from an X-ray imaging crystal spectrometer utilizing multi-wire proportional counter for KSTAR

    Science.gov (United States)

    Lee, S. G.; Yoo, J. W.; Kim, Y. S.; Nam, U. W.; Moon, M. K.

    2016-11-01

    The inconsistency of the first experimental results from the X-ray imaging crystal spectrometer for the Korea Superconducting Tokamak Advanced Research device utilizing a multi-wire proportional counter (MWPC) is clarified after improving the photon-count rate of the data acquisition system for the MWPC and ground loop isolator for the whole spectrometer system. The improved MWPC is successfully applied to pure Ohmic plasmas as well as plasmas with high confinement modes.

  19. Implementation of an imaging spectrometer for localization and identification of radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, H., E-mail: hermine.lemaire@cea.fr [CEA, LIST, Gif-sur-Yvette, F-91191 (France); Khalil, R. Abou; Amgarou, K. [CANBERRA, 1 rue des hérons, Saint-Quentin-en-Yvelines, F-78182 (France); Angélique, J.-C. [LPC, 6 boulevard du Maréchal Juin, Caen Cedex F-14050 (France); Bonnet, F. [CANBERRA, 10 route de Vauzelles, Loches, F-37600 (France); De Toro, D. [CANBERRA, 1 rue des hérons, Saint-Quentin-en-Yvelines, F-78182 (France); Carrel, F. [CEA, LIST, Gif-sur-Yvette, F-91191 (France); Giarmana, O. [CANBERRA, 10 route de Vauzelles, Loches, F-37600 (France); Gmar, M. [CEA, LIST, Gif-sur-Yvette, F-91191 (France); Menaa, N. [CANBERRA, 1 rue des hérons, Saint-Quentin-en-Yvelines, F-78182 (France); Menesguen, Y.; Normand, S. [CEA, LIST, Gif-sur-Yvette, F-91191 (France); Patoz, A. [CANBERRA, 10 route de Vauzelles, Loches, F-37600 (France); Schoepff, V. [CEA, LIST, Gif-sur-Yvette, F-91191 (France); Talent, P. [CANBERRA, 10 route de Vauzelles, Loches, F-37600 (France); Timi, T. [CANBERRA, 1 rue des hérons, Saint-Quentin-en-Yvelines, F-78182 (France)

    2014-11-01

    Spatial localization of radioactive sources is currently a main issue interesting nuclear industry as well as homeland security applications and can be achieved using gamma cameras. For several years, CEA LIST has been designing a new system, called GAMPIX, with improved sensitivity, portability and ease of use. The main remaining limitation of this system is the lack of spectrometric information, preventing the identification of radioactive materials. This article describes the development of an imaging spectrometer based on the GAMPIX technology. Experimental tests have been carried out according to both spectrometric methods enabled by the pixelated Timepix chip used in the GAMPIX gamma camera. The first method is based on the size of the impacts produced by a gamma-ray energy deposition in the detection matrix. The second one uses the Time over Threshold (ToT) mode of the Timepix chip and deals with time spent by pulses generated by charge preamplifiers over a user-specified threshold. Both energy resolution and sensitivity studies demonstrated the superiority of the ToT approach which will consequently be further explored. Energy calibration, tests of different pixel sizes for the Timepix chip and use of the Medipix3 chip are future milestones to improve performances of the newly implemented imaging spectrometer.

  20. Determining the Critcial Size of EUV Mask Substrate Defects

    Energy Technology Data Exchange (ETDEWEB)

    Mccall, Monnikue M; Han, Hakseung; Cho, Wonil; Goldberg, Kenneth; Gullikson, Eric; Jeon, Chan-Uk; Wurm, Stefan

    2008-02-28

    Determining the printability of substrate defects beneath the extreme ultraviolet (EUV) reflecting multilayer stack is an important issue in EUVL lithography. Several simulation studies have been performed in the past to determine the tolerable defect size on EUV mask blank substrates but the industry still has no exact specification based on real printability tests. Therefore, it is imperative to experimentally determine the printability of small defects on a mask blanks that are caused by substrate defects using direct printing of programmed substrate defect in an EUV exposure tool. SEMATECH fabricated bump type program defect masks using standard electron beam lithography and performed printing tests with the masks using an EUV exposure tool. Defect images were also captured using SEMATECH's Berkeley Actinic Imaging Tool in order to compare aerial defect images with secondary electron microscope images from exposed wafers. In this paper, a comprehensive understanding of substrate defect printability will be presented and printability specifications of EUV mask substrate defects will be discussed.

  1. Determining the critical size of EUV mask substrate defects

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Gullikson, Eric M.; Han, Hakseung; Cho, Wonil; Jeon, Chan-Uk; Wurm, Stefan

    2008-05-26

    Determining the printability of substrate defects beneath the extreme ultraviolet (EUV) reflecting multilayer stack is an important issue in EUVL lithography. Several simulation studies have been performed in the past to determine the tolerable defect size on EUV mask blank substrates but the industry still has no exact specification based on real printability tests. Therefore, it is imperative to experimentally determine the printability of small defects on a mask blanks that are caused by substrate defects using direct printing of programmed substrate defect in an EUV exposure tools. SEMATECH fabricated bump type program defect masks using standard electron beam lithography and performed printing tests with the masks using an EUV exposure tool. Defect images were also captured using SEMATECH's Berkeley Actinic Imaging Tool in order to compare aerial defect images with secondary electron microscope images from exposed wafers. In this paper, a comprehensive understanding of substrate defect printability will be presented and printability specifications of EUV mask substrate defects will be discussed.

  2. Mineralogical Mapping of Asteroid Itokawa using Calibrated Hayabusa AMICA images and NIRS Spectrometer Data

    Science.gov (United States)

    Le Corre, Lucille; Becker, Kris J.; Reddy, Vishnu; Li, Jian-Yang; Bhatt, Megha

    2016-10-01

    The goal of our work is to restore data from the Hayabusa spacecraft that is available in the Planetary Data System (PDS) Small Bodies Node. More specifically, our objectives are to radiometrically calibrate and photometrically correct AMICA (Asteroid Multi-Band Imaging Camera) images of Itokawa. The existing images archived in the PDS are not in reflectance and not corrected from the effect of viewing geometry. AMICA images are processed with the Integrated Software for Imagers and Spectrometers (ISIS) system from USGS, widely used for planetary image analysis. The processing consists in the ingestion of the images in ISIS (amica2isis), updates to AMICA start time (sumspice), radiometric calibration (amicacal) including smear correction, applying SPICE ephemeris, adjusting control using Gaskell SUMFILEs (sumspice), projecting individual images (cam2map) and creating global or local mosaics. The application amicacal has also an option to remove pixels corresponding to the polarizing filters on the left side of the image frame. The amicacal application will include a correction for the Point Spread Function. The last version of the PSF published by Ishiguro et al. in 2014 includes correction for the effect of scattered light. This effect is important to correct because it can add 10% level in error and is affecting mostly the longer wavelength filters such as zs and p. The Hayabusa team decided to use the color data for six of the filters for scientific analysis after correcting for the scattered light. We will present calibrated data in I/F for all seven AMICA color filters. All newly implemented ISIS applications and map projections from this work have been or will be distributed to the community via ISIS public releases. We also processed the NIRS spectrometer data, and we will perform photometric modeling, then apply photometric corrections, and finally extract mineralogical parameters. The end results will be the creation of pyroxene chemistry and olivine

  3. EUVE Observations of Nonmagnetic Cataclysmic Variables

    Energy Technology Data Exchange (ETDEWEB)

    Mauche, C W

    2001-09-05

    The authors summarize EUVE's contribution to the study of the boundary layer emission of high accretion-rate nonmagnetic cataclysmic variables, especially the dwarf novae SS Cyg, U Gem, VW Hyi, and OY Car in outburst. They discuss the optical and EUV light curves of dwarf nova outbursts, the quasi-coherent oscillations of the EUV flux of SS Cyg, the EUV spectra of dwarf novae, and the future of EUV observations of cataclysmic variables.

  4. Radiometry for the EUV lithography; Radiometrie fuer die EUV-Lithographie

    Energy Technology Data Exchange (ETDEWEB)

    Scholze, Frank [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany). Arbeitsgruppe ' EUV-Radiometrie' ; Laubis, Christian; Barboutis, Annett; Buchholz, Christian; Fischer, Andreas; Puls, Jana; Stadelhoff, Christian

    2014-12-15

    The EUV reflectrometry at the PTB storage BESSY I and BESSY II is described. Results on the reflectivities of some EUV mirrors are presented. Finally the spectral sensitivities of different photodiodes used as EUV detectors are presented. (HSI)

  5. Development of Real-Time Image Stabilization for an Airborne Infrared Spectrometer

    Science.gov (United States)

    Fedeler, Samuel; Samra, Jenna; Guth, Giora

    2017-01-01

    The total solar eclipse of August 21, 2017 offers a unique opportunity for study of the infrared solar corona. The Airborne Infrared Spectrometer (AIR-Spec), currently under development, is an infrared telescope and spectrometer that will search for several magnetically sensitive coronal emission lines between 1.4 and 4 micrometers. This instrument will be the first to observe several of these lines, and the measurement campaign will determine whether any lines may be useful for future direct observations of the coronal magnetic field. AIR-Spec will be mounted on an NSF/NCAR Gulfstream V jet and will observe the eclipse from an altitude greater than 14.9 km, above the bulk of IR-absorbing atmospheric water vapor.To ensure that the images taken for analysis have adequate spatial resolution, the AIR-Spec line-of-sight must be stabilized to 1.9 arc-seconds RMS over a 1 second exposure time. Image stabilization is achieved by using a fiber-optic gyroscope to measure aircraft rotation and a fast-steering mirror to adjust the line-of-sight accordingly. The stabilization algorithm runs in a programmable automation controller, which interfaces with the gyroscope and mirror. Software was developed to implement the stabilization algorithm in the controller and to integrate the controller with a user interface, allowing for data display and logging, user guided attitude calibration, and manual control of the fast-steering mirror. The current system stabilizes images to 1.9 arc-seconds in 60 percent of 1 second camera exposures under laboratory conditions. This software will be operational during test flights in Fall 2016 and Spring 2017, and will be optimized for the eclipse flight in Summer 2017.

  6. EUV lithography: NXE platform performance overview

    Science.gov (United States)

    Peeters, Rudy; Lok, Sjoerd; Mallman, Joerg; van Noordenburg, Martijn; Harned, Noreen; Kuerz, Peter; Lowisch, Martin; van Setten, Eelco; Schiffelers, Guido; Pirati, Alberto; Stoeldraijer, Judon; Brandt, David; Farrar, Nigel; Fomenkov, Igor; Boom, Herman; Meiling, Hans; Kool, Ron

    2014-04-01

    The first NXE3300B systems have been qualified and shipped to customers. The NXE:3300B is ASML's third generation EUV system and has an NA of 0.33. It succeeds the NXE:3100 system (NA of 0.25), which has allowed customers to gain valuable EUV experience. Good overlay and imaging performance has been shown on the NXE:3300B system in line with 22nm device requirements. Full wafer CDU performance of Manufacturing. With the development of the MOPA+prepulse operation of the source, steps in power have been made, and with automated control the sources have been prepared to be used in a preproduction fab environment. Flexible pupil formation is under development for the NXE:3300B which will extend the usage of the system in HVM, and the resolution for the full system performance can be extended to 16nm. Further improvements in defectivity performance have been made, while in parallel full-scale pellicles are being developed. In this paper we will discuss the current NXE:3300B performance, its future enhancements and the recent progress in EUV source performance.

  7. Studies of Solar EUV Irradiance from SOHO

    Science.gov (United States)

    Floyd, Linton

    2002-01-01

    The Extreme Ultraviolet (EUV) irradiance central and first order channel time series (COC and FOC) from the Solar EUV Monitor aboard the Solar and Heliospheric observatory (SOHO) issued in early 2002 covering the time period 1/1/96-31/1201 were analyzed in terms of other solar measurements and indices. A significant solar proton effect in the first order irradiance was found and characterized. When this effect is removed, the two irradiance time series are almost perfectly correlated. Earlier studies have shown good correlation between the FOC and the Hall core-to-wing ratio and likewise, it was the strongest component of the COC. Analysis of the FOC showed dependence on the F10.7 radio flux. Analysis of the CDC signals showed additional dependences on F10.7 and the GOES x-ray fluxes. The SEM FOC was also well correlated with thein 30.4 nm channel of the SOHO EUV Imaging Telescope (EIT). The irradiance derived from all four EIT channels (30.4 nm, 17.1 nm, 28.4 nm, and 19.5 nm) showed better correlation with MgII than F10.7.

  8. High resolution spectrometer concepts for high temperature EXAFS measurements and 1D imaging of ignition capsules on NIF

    Science.gov (United States)

    Hill, K. W.; Bitter, M.; Gao, L.; Kraus, B.; Efthimion, P. C.; Schneider, M. B.; Thorn, D. B.; Coppari, F.; Ping, Y.; Killebrew, K. L.; Macphee, A. G.; Kauffman, R. L.; Beiersdorfer, P.

    2017-10-01

    X-ray spectrometer concepts for two applications on NIF are being studied. An Extended X-ray Absorption Fine Structure (EXAFS) spectrometer will determine temperature at high pressure of dynamically compressed materials, by measuring K and L3 absorption edges at energies from 7112 to 18000 eV. A Johann geometry with spherically or toroidally bent crystals will avoid source-size broadening for spectral resolving power (E/ ΔE) of 6000. Energy-range selection is by crystal choice. The second is a 1D imaging spectrometer to measure the spatial distribution of plasma parameters to study stagnation of ignition capsules, based on either spherical or conical crystals with large spatial magnification. The desired spatial resolution is 5 μm. Predicted performance and prototype spectrometer measurements will be presented.

  9. Physical processes in EUV sources for microlithography

    Energy Technology Data Exchange (ETDEWEB)

    Banine, V Y; Swinkels, G H P M [ASML Netherlands B.V., De Run 6501, 5504DR Veldhoven (Netherlands); Koshelev, K N [Institute of Spectroscopy RAS (ISAN), Fizicheskaya 5, Troitsk 142190 (Russian Federation)

    2011-06-29

    The source is an integral part of an extreme ultraviolet lithography (EUVL) tool. Such a source, as well as the EUVL tool, has to fulfil very high demands both technical and cost oriented. The EUVL tool operates at a wavelength of 13.5 nm, which requires the following new developments. - The light production mechanism changes from conventional lamps and lasers to relatively high-temperature emitting plasmas. - The light transport, mainly refractive for deep ultraviolet (DUV), should be reflective for EUV. - The source specifications as derived from the customer requirements on wafer throughput mean that the output EUV source power has to be hundreds of watts. This in its turn means that tens to hundreds of kilowatts of dissipated power has to be managed in a relatively small volume. - In order to keep lithography costs as low as possible, the lifetime of the components should be as long as possible and at least of the order of thousands of hours. This poses a challenge for the sources, namely how to design and manufacture components robust enough to withstand the intense environment of high heat dissipation, flows of several keV ions as well as the atomic and particular debris within the source vessel. - As with all lithography tools, the imaging requirements demand a narrow illumination bandwidth. Absorption of materials at EUV wavelengths is extreme with extinguishing lengths of the order of tens of nanometres, so the balance between high transmission and spectral purity requires careful engineering. All together, EUV lithography sources present technological challenges in various fields of physics such as plasma, optics and material science. These challenges are being tackled by the source manufacturers and investigated extensively in the research facilities around the world. An overview of the published results on the topic as well as the analyses of the physical processes behind the proposed solutions will be presented in this paper. (topical review)

  10. HIRIS, the instrument and its science. [High Resolution Imaging Spectrometer for EOS platforms

    Science.gov (United States)

    Goetz, Alexander F. H.; Davis, Curtiss O.

    1992-01-01

    The High Resolution Imaging Spectrometer (HIRIS) is a facility instrument slated for flight on the second EOS series AM platforms. HIRIS is designed to acquire 24 km wide, 30 m pixel images in 192 spectral bands simultaneously in the 0.4-2.45 micron wavelength region. With pointing mirrors it can sample any place on Earth, except the poles, every 2 days. HIRIS operates at the intermediate scale between the human and the global and therefore links studies of Earth surface processes to global monitoring carried out by lower resolution instruments. So far, over 50 science data products from HIRIS images have been identified in the fields of atmospheric gases, clouds, snow and ice, water, vegetation, and rocks and soils. The key attribute of imaging spectrometry that makes it possible to derive quantitative information from the data is the large number of contiguous, spectral bands. Therefore, spectrum-matching techniques can be applied. Such techniques are not possible with present-day, multispectral scanner data.

  11. Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling

    Science.gov (United States)

    Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen

    2010-04-01

    OPTRA has developed an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill. In this paper, we summarize the design and build and detail system characterization and test of a prototype I-OP-FTIR instrument. System characterization includes radiometric performance and spectral resolution. Results from a series of tomographic reconstructions of sulfur hexafluoride plumes in a laboratory setting are also presented.

  12. Lithographic performance evaluation of a contaminated EUV mask after cleaning

    Energy Technology Data Exchange (ETDEWEB)

    George, Simi; Naulleau, Patrick; Okoroanyanwu, Uzodinma; Dittmar, Kornelia; Holfeld, Christian; Wuest, Andrea

    2009-11-16

    The effect of surface contamination and subsequent mask surface cleaning on the lithographic performance of a EUV mask is investigated. SEMATECH's Berkeley micro-field exposure tool (MET) printed 40 nm and 50 nm line and space (L/S) patterns are evaluated to compare the performance of a contaminated and cleaned mask to an uncontaminated mask. Since the two EUV masks have distinct absorber architectures, optical imaging models and aerial image calculations were completed to determine any expected differences in performance. Measured and calculated Bossung curves, process windows, and exposure latitudes for the two sets of L/S patterns are compared to determine how the contamination and cleaning impacts the lithographic performance of EUV masks. The observed differences in mask performance are shown to be insignificant, indicating that the cleaning process did not appreciably affect mask performance.

  13. The Compton Spectrometer and Imager: Results from the 2016 Super-Pressure Balloon Campaign

    Science.gov (United States)

    Lowell, Alexander; Boggs, Steven; Chiu, Jeng-Lun; Kierans, Carolyn; Sleator, Clio; Tomsick, John; Zoglauer, Andreas; Amman, Mark; Chang, Hsiang-Kuang; Tseng, Chao-Hsiung; Yang, Chien-Ying; Lin, Chih H.; Jean, Pierre; von Ballmoos, Peter

    2017-08-01

    The Compton Spectrometer and Imager is a 0.2-5 MeV Compton telescope capable of imaging, spectroscopy and polarimetry of astrophysical sources. Such capabilities are made possible by COSI's twelve germanium cross-strip detectors, which provide for high efficiency, high resolution spectroscopy, and precise 3D positioning of photon interactions. In May 2016, COSI took flight from Wanaka, New Zealand on a NASA super-pressure balloon. For 46 days, COSI floated at a nominal altitude of 33.5 km, continually telemetering science data in real-time. The payload made a safe landing in Peru, and the hard drives containing the full raw data set were recovered. Analysis efforts have resulted in detections of various sources such as the Crab Nebula, Cyg X-1, Cen A, Galactic Center e+e- annihilation, and the long duration gamma-ray burst GRB 160530A. In this presentation, I will provide an overview of our main results, which include measuring the polarization of GRB 160530A, and our image of the Galactic Center at 511 keV. Additionally, I will summarize results pertaining to our detections of the Crab Nebula, Cyg X-1, and Cen A.

  14. Fast Imaging Detector Readout Circuits with In-Pixel ADCs for Fourier Transform Imaging Spectrometers

    Science.gov (United States)

    Rider, D.; Blavier, J-F.; Cunningham, T.; Hancock, B.; Key, R.; Pannell, Z.; Sander, S.; Seshadri, S.; Sun, C.; Wrigley, C.

    2011-01-01

    Focal plane arrays (FPAs) with high frame rates and many pixels benefit several upcoming Earth science missions including GEO-CAPE, GACM, and ACE by enabling broader spatial coverage and higher spectral resolution. FPAs for the PanFTS, a high spatial resolution Fourier transform spectrometer and a candidate instrument for the GEO-CAPE mission are the focus of the developments reported here, but this FPA technology has the potential to enable a variety of future measurements and instruments. The ESTO ACT Program funded the developed of a fast readout integrated circuit (ROIC) based on an innovative in-pixel analog-to-digital converter (ADC). The 128 X 128 pixel ROIC features 60 ?m pixels, a 14-bit ADC in each pixel and operates at a continuous frame rate of 14 kHz consuming only 1.1 W of power. The ROIC outputs digitized data completely eliminating the bulky, power consuming signal chains needed by conventional FPAs. The 128 X 128 pixel ROIC has been fabricated in CMOS and tested at the Jet Propulsion Laboratory. The current version is designed to be hybridized with PIN photodiode arrays via indium bump bonding for light detection in the visible and ultraviolet spectral regions. However, the ROIC design incorporates a small photodiode in each cell to permit detailed characterization of the ROICperformance without the need for hybridization. We will describe the essential features of the ROIC design and present results of ROIC performance measurements.

  15. Sensitivity of the NEON Imaging Spectrometer Data Products to Cloud Conditions and Solar Illumination Geometry

    Science.gov (United States)

    Leisso, N.

    2016-12-01

    The National Ecological Observatory Network is a continental-scale ecological observatory funded by the NSF to collect and disseminate ecological data. NEON consists of standardized terrestrial, instrumental, and aquatic observation systems in addition to an airborne remote sensing component. The Airborne Observation Platform (AOP) group operates a payload of sensors including a waveform LiDAR, imaging spectrometer (NIS) and an RGB camera. To support the NEON project, three payloads are intended to annually acquire data over sites distributed throughout the United States in 20 individual eco-climatic regions during periods of vegetative peak greenness. The NIS is a push-broom visible to shortwave infrared (VSWIR) spectrometer (380 to 2500 nm) designed by NASA JPL for ecological applications. The NIS collects data at 5 nm spectral intervals with approximately 600 spatial pixels covering a 34-degree Field-of View. At the nominal operational flight altitude of 1000 m, the 1 mRad IFOV allows development of surface reflectance and higher-level data products at 1 m spatial resolution. Two of the primary operational constraints prohibiting accurate surface reflectance retrievals from the NIS, are 1) sufficiently clear cloud conditions and 2) sufficiently high solar zenith angles. To understand the limitations of the NIS and the quality of the derived data products under these constraints, a sensitivity analysis was undertaken which consisted of repeated NIS acquisitions with North-South and East-West flight lines over a consistent vegetated target area at Table Mountain, Colorado. Several flights were conducted as solar zenith angles varied from 20° to 70° and during clear and varying cloud conditions. During the acquisition, validation data in the form of field spectrometer measurements were acquired over two tarps of nominal 3% and 48% spectral reflectance, as well as of vegetation and gravel roadways within the target collection area. Results from the analysis showed

  16. A Panchromatic Imaging Fourier Transform Spectrometer for the NASA Geostationary Coastal and Air Pollution Events Mission

    Science.gov (United States)

    Wu, Yen-Hung; Key, Richard; Sander, Stanley; Blavier, Jean-Francois; Rider, David

    2011-01-01

    This paper summarizes the design and development of the Panchromatic Imaging Fourier Transform Spectrometer (PanFTS) for the NASA Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission. The PanFTS instrument will advance the understanding of the global climate and atmospheric chemistry by measuring spectrally resolved outgoing thermal and reflected solar radiation. With continuous spectral coverage from the near-ultraviolet through the thermal infrared, this instrument is designed to measure pollutants, greenhouse gases, and aerosols as called for by the U.S. National Research Council Decadal Survey; Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond1. The PanFTS instrument is a hybrid instrument based on spectrometers like the Tropospheric Emissions Spectrometer (TES) that measures thermal emission, and those like the Orbiting Carbon Observatory (OCO), and the Ozone Monitoring Instrument (OMI) that measure scattered solar radiation. Simultaneous measurements over the broad spectral range from IR to UV is accomplished by a two sided interferometer with separate optical trains and detectors for the ultraviolet-visible and infrared spectral domains. This allows each side of the instrument to be independently optimized for its respective spectral domain. The overall interferometer design is compact because the two sides share a single high precision cryogenic optical path difference mechanism (OPDM) and metrology laser as well as a number of other instrument systems including the line-of-sight pointing mirror, the data management system, thermal control system, electrical system, and the mechanical structure. The PanFTS breadboard instrument has been tested in the laboratory and demonstrated the basic functionality for simultaneous measurements in the visible and infrared. It is set to begin operations in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson

  17. High sensitivity chemically amplified EUV resists through enhanced EUV absorption

    Science.gov (United States)

    Ongayi, Owendi; Christianson, Matthew; Meyer, Matthew; Coley, Suzanne; Valeri, David; Kwok, Amy; Wagner, Mike; Cameron, Jim; Thackeray, Jim

    2012-03-01

    Resolution, line edge roughness, sensitivity and low outgassing are the key focus points for extreme ultraviolet (EUV) resist materials. Sensitivity has become increasingly important so as to address throughput concerns in device manufacturing and compensate for the low power of EUV sources. Recent studies have shown that increasing the polymer linear absorption absorption coefficient in EUV resists translates to higher acid generation efficiency and good pattern formation. In this study, novel high absorbing polymer platforms are evaluated. The contributing effect of the novel absorbing chromophore to the resultant chemically amplified photoresist is evaluated and compared with a standard methacrylate PAG Bound Polymer (PBP) platform. We report that by increasing EUV absorption, we cleanly resolved 17 nm 1:1 line space can be achieved at a sensitivity of 14.5 mJ/cm2, which is consistent with dose requirements dictated by the ITRS roadmap. We also probe the effect of fluorinated small molecule additives on acid yield generation (Dil C) at EUV of a PBP platform.

  18. Future Development Trajectories for Imaging X-rays Spectrometers Based on Microcalorimeters

    Science.gov (United States)

    Kilbourne, Caroline A.; Bandler, Simon R.

    2013-01-01

    Future development trajectories for imaging x-ray spectrometers based on microcalorimeters. Since their invention 30 years ago, the capability of X-ray microcalorimeters has increased steadily, with continual improvements in energy resolution, speed, and array size. Arrays of up to 1024 pixels have been produced, and resolution better than 1 eV at 1.5 keV has been achieved. These detectors can be optimized for the highest priority science, such as designing for the highest resolving power at low energies at the expense of dynamic range, or the greatest focal-plane coverage at the expense of speed. Three types of X-ray microcalorimeters presently dominate the field, each characterized by the thermometer technology. The first two types use temperature-sensitive resistors: semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a magnetically coupled thermometer, and is at an earlier stage of development than the other two. The Soft X-ray Spectrometer (SXS) on Astro-H, expected to launch in 2015, will use an array of silicon thermistors with HgTe X-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays. Kilopixel arrays of the superconducting calorimeters are being produced, and much larger arrays may require the non-dissipative advantage of magnetically coupled thermometers. I will project the development trajectories of these detectors and their read-out technologies and assess what their capabilities and limitations will be 10 - 20 years from now.

  19. [Design of a dual-channel Mach-Zehnder lateral shearing interferometer for the large aperture static imaging spectrometer].

    Science.gov (United States)

    Fu, Qiang; Xiangli, Bin; Lü, Qun-bo; Jing, Juan-juan

    2012-02-01

    Large aperture static imaging spectrometry (LASIS) is a kind of joint temporally and spatially modulated Fourier transform imaging spectrometry. In such instruments, lateral shearing interferometer is a key element, the most frequently used type of which is the Sagnac interferometer. In this configuration, one half of the light entering the interferometer backtracks and causes a great decrease in energy efficiency. The present paper proposes a modified Mach-Zehnder lateral shearing interferometer structure to tackle this problem. With the ability to produce the same lateral shear, it features the advantage of dual channel output. We present a ray tracing procedure to induce the general expression of the lateral shear as well as analyze the contributions of error sources to the shear accuracy. The results serve as a new idea for the design of large aperture static imaging spectrometers and can be used to instruct the design and optimization of this kind of imaging spectrometer.

  20. A swirling flare-related EUV jet

    Science.gov (United States)

    Zhang, Q. M.; Ji, H. S.

    2014-01-01

    Aims: We report our observations of a swirling flare-related extreme-ultraviolet (EUV) jet on 2011 October 15 at the edge of NOAA active region 11314. Methods: We used the multiwavelength observations in the EUV passbands from the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO). We extracted a wide slit along the jet axis and 12 thin slits across its axis to investigate the longitudinal motion and transverse rotation. We also used data from the Extreme-Ultraviolet Imager (EUVI) aboard the Solar TErrestrial RElations Observatory (STEREO) spacecraft to investigate the three-dimensional (3D) structure of the jet. Ground-based Hα images from the El Teide Observatory, a member of the Global Oscillation Network Group (GONG), provide a good opportunity to explore the relationship between the cool surge and the hot jet. Line-of-sight magnetograms from the Helioseismic and Magnetic Imager (HMI) aboard SDO enable us to study the magnetic evolution of the flare/jet event. We carried out potential-field extrapolation to calculate the magnetic configuration associated with the jet. Results: The onset of jet eruption coincided with the start time of the C1.6 flare impulsive phase. The initial velocity and acceleration of the longitudinal motion were 254 ± 10 km s-1 and -97 ± 5 m s-2, respectively. The jet presented helical structure and transverse swirling motion at the beginning of its eruption. The counter-clockwise rotation slowed down from an average velocity of ~122 km s-1 to ~80 km s-1. The interwinding thick threads of the jet untwisted into multiple thin threads during the rotation that lasted for one cycle with a period of ~7 min and an amplitude that increases from ~3.2 Mm at the bottom to ~11 Mm at the upper part. Afterwards, the curtain-like leading edge of the jet continued rising without rotation, leaving a dimming region behind, before falling back to the solar surface. The appearance/disappearance of dimming corresponded to the

  1. Normal incidence spectrophotometer using high density transmission grating technology and highly efficiency silicon photodiodes for absolute solar EUV irradiance measurements

    Science.gov (United States)

    Ogawa, H. S.; Mcmullin, D.; Judge, D. L.; Korde, R.

    1992-01-01

    New developments in transmission grating and photodiode technology now make it possible to realize spectrometers in the extreme ultraviolet (EUV) spectral region (wavelengths less than 1000 A) which are expected to be virtually constant in their diffraction and detector properties. Time dependent effects associated with reflection gratings are eliminated through the use of free standing transmission gratings. These gratings together with recently developed and highly stable EUV photodiodes have been utilized to construct a highly stable normal incidence spectrophotometer to monitor the variability and absolute intensity of the solar 304 A line. Owing to its low weight and compactness, such a spectrometer will be a valuable tool for providing absolute solar irradiance throughout the EUV. This novel instrument will also be useful for cross-calibrating other EUV flight instruments and will be flown on a series of Hitchhiker Shuttle Flights and on SOHO. A preliminary version of this instrument has been fabricated and characterized, and the results are described.

  2. Experimental research for relative radiometric calibration of imaging spectrometer based on Savart plates

    Science.gov (United States)

    Li, Qiwei; Zhang, Chunmin; Yan, Tingyu

    2017-02-01

    The basic principle of tempo-spatially mixed modulated Fourier transform imaging spectrometer (FTIS) based on savart plates is outlined. A calibration method of pixel response non-uniformity of charge-coupled device (CCD) camera in such type of instrument is presented. The method which uses column-flat-fields can avoid the influence of interference fringes. The use of polychromatic calibration source can solve the problem of the slant of the fringes in large optical path difference areas. The procedure of calibration experiment and the algorithm of data processing are detailed described. Two groups of relative radiometric calibration coefficient are obtained through the method of least-square. The original images are corrected by using the coefficients to validate its calibration effect. The results indicated that the method can obviously improve the uniformity of pixels and the vignetting artifacts and defect of the instrument can be well corrected. This study provides a theoretical guidance for study, design, modulation, experiment and engineering of FTIS.

  3. Effect of Spatial Resolution for Characterizing Soil Properties from Imaging Spectrometer Data

    Science.gov (United States)

    Dutta, D.; Kumar, P.; Greenberg, J. A.

    2015-12-01

    The feasibility of quantifying soil constituents over large areas using airborne hyperspectral data [0.35 - 2.5 μm] in an ensemble bootstrapping lasso algorithmic framework has been demonstrated previously [1]. However the effects of coarsening the spatial resolution of hyperspectral data on the quantification of soil constituents are unknown. We use Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data collected at 7.6m resolution over Birds Point New Madrid (BPNM) floodway for up-scaling and generating multiple coarser resolution datasets including the 60m Hyperspectral Infrared Imager (HyspIRI) like data. HyspIRI is a proposed visible shortwave/thermal infrared mission, which will provide global data over a spectral range of 0.35 - 2.5μm at a spatial resolution of 60m. Our results show that the lasso method, which is based on point scale observational data, is scalable. We found consistent good model performance (R2) values (0.79 10.1109/TGRS.2015.2417547.

  4. Objectives and Layout of a High-Resolution X-ray Imaging Crystal Spectrometer for the Large Helical Device (LHD)

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, M; Gates, D; Monticello, D; Neilson, H; Reiman, A; Roquemore, A L; Morita, S; Goto, M; Yamada, H

    2010-07-29

    A high-resolution X-ray imaging crystal spectrometer, whose concept was tested on NSTX and Alcator C-Mod, is being designed for LHD. This instrument will record spatially resolved spectra of helium-like Ar16+ and provide ion temperature profiles with spatial and temporal resolutions of < 2 cm and ≥ 10 ms. The stellarator equilibrium reconstruction codes, STELLOPT and PIES, will be used for the tomographic inversion of the spectral data. The spectrometer layout and instrumental features are largely determined by the magnetic field structure of LHD.

  5. Objectives and layout of a high-resolution x-ray imaging crystal spectrometer for the large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, M.; Hill, K.; Gates, D.; Monticello, D.; Neilson, H.; Reiman, A.; Roquemore, A. L. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Morita, S.; Goto, M.; Yamada, H. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Rice, J. E. [Plasma Fusion Center, MIT, Cambridge, Massachusetts 02139-4307 (United States)

    2010-10-15

    A high-resolution x-ray imaging crystal spectrometer, whose concept was tested on NSTX and Alcator C-Mod, is being designed for the large helical device (LHD). This instrument will record spatially resolved spectra of helium-like Ar{sup 16+} and will provide ion temperature profiles with spatial and temporal resolutions of <2 cm and {>=}10 ms, respectively. The spectrometer layout and instrumental features are largely determined by the magnetic field structure of LHD. The stellarator equilibrium reconstruction codes, STELLOPT and PIES, will be used for the tomographic inversion of the spectral data.

  6. LPP EUV source readiness for NXE 3300B

    Science.gov (United States)

    Brandt, David C.; Fomenkov, Igor V.; Farrar, Nigel R.; La Fontaine, Bruno; Myers, David W.; Brown, Daniel J.; Ershov, Alex I.; Böwering, Norbert R.; Riggs, Daniel J.; Rafac, Robert J.; De Dea, Silvia; Peeters, Rudy; Meiling, Hans; Harned, Noreen; Smith, Daniel; Pirati, Alberto; Kazinczi, Robert

    2014-03-01

    Laser produced plasma (LPP) light sources have been developed as the primary approach for EUV scanner imaging of circuit features in sub-20nm devices in high volume manufacturing (HVM). This paper provides a review of development progress and readiness status for the LPP extreme-ultra-violet (EUV) source. We present the latest performance results from second generation sources, including Prepulse operation for high power, collector protection for long lifetime and low cost of ownership, and dose stability for high yield. Increased EUV power is provided by a more powerful drive laser and the use of Prepulse operation for higher conversion efficiciency. Advanced automation and controls have been developed to provide the power and energy stability performance required during production fab operation. We will also discuss lifetesting of the collector in Prepulse mode and show the ability of the debris mitigation systems to keep the collector multi-layer coating free from damage and maintain high reflectivity.

  7. Impact of EUV SRAF on Bossung tilt

    Science.gov (United States)

    Wang, Yow-Gwo; Hsu, Stephen; Socha, Robert; Neureuther, Andy; Naulleau, Patrick

    2017-03-01

    Mask 3D (M3D) effects remain a significant challenge affecting EUV lithography (EUVL) imaging performance due to the comparable sizes of the mask and the EUV wavelength. Pre-compensation with the insertion of sub-resolution assist features (SRAFs) has been proposed as a solution to compensate M3D effects and improve the process window for advanced technology nodes. In this paper, we discuss the possible positive impact of SRAFs on Bossung tilt, and provide physical insight into the optical mechanisms at play enabling M3D effect mitigation. In particular, we consider an example isolated 2-bar (CD = 16 nm) pattern imaged under delta function dipole illumination. We compare the scattered order distribution and Bossung tilt with and without SRAFs. The results show that SRAFs actually introduce stronger effective single pole aberrations in the imaging process. However, the opposite impacts on Bossung tilt from each pole results in an overall improvement for dipole illumination. Reduced Bossung tilt and a 21% improvement of the overlapping process window are achieved by the insertion of asymmetric SRAFs into the 2-bar mask design.

  8. Benchmarking EUV mask inspection beyond 0.25 NA

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Mochi, Iacopo; Anderson, Erik H.; Rekawa, Seno B.; Kemp, Charles D.; Huh, S.; Han, H.-S.; Naulleau, P.; Gunion, R.F.

    2008-09-18

    The SEMATECH Berkeley Actinic Inspection Tool (AIT) is an EUV-wavelength mask inspection microscope designed for direct aerial image measurements, and pre-commercial EUV mask research. Operating on a synchrotron bending magnet beamline, the AIT uses an off-axis Fresnel zoneplate lens to project a high-magnification EUV image directly onto a CCD camera. We present the results of recent system upgrades that have improved the imaging resolution, illumination uniformity, and partial coherence. Benchmarking tests show image contrast above 75% for 100-nm mask features, and significant improvements and across the full range of measured sizes. The zoneplate lens has been replaced by an array of user-selectable zoneplates with higher magnification and NA values up to 0.0875, emulating the spatial resolution of a 0.35-NA 4 x EUV stepper. Illumination uniformity is above 90% for mask areas 2-{micro}m-wide and smaller. An angle-scanning mirror reduces the high coherence of the synchrotron beamline light source giving measured {sigma} values of approximately 0.125 at 0.0875 NA.

  9. Actinic EUV mask inspection beyond 0.25 NA

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Mochi, Iacopo; Anderson, Erik H.; Rekawa, Seno. B.; Kemp, Charles D.; Huh, S.; Han, H.-S.; Naulleau, P.; Huh, S.

    2008-03-24

    The SEMATECH Berkeley Actinic Inspection Tool (AIT) is an EUV-wavelength mask inspection microscope designed for direct aerial image measurements, and pre-commercial EUV mask research. Operating on a synchrotron bending magnet beamline, the AIT uses an off-axis Fresnel zoneplate lens to project a high-magnification EUV image directly onto a CCD camera. We present the results of recent system upgrades that have improved the imaging resolution, illumination uniformity, and partial coherence. Benchmarking tests show image contrast above 75% for 100-nm mask features, and significant improvements and across the full range of measured sizes. The zoneplate lens has been replaced by an array of user-selectable zoneplates with higher magnification and NA values up to 0.0875, emulating the spatial resolution of a 0.35-NA 4x EUV stepper. Illumination uniformity is above 90% for mask areas 2-{micro}m-wide and smaller. An angle-scanning mirror reduces the high coherence of the synchrotron beamline light source giving measured {sigma} values of approximately 0.125 at 0.0875 NA.

  10. Bi-dimensional empirical mode decomposition based fringe-like pattern suppression in polarization interference imaging spectrometer

    Science.gov (United States)

    Ren, Wenyi; Cao, Qizhi; Wu, Dan; Jiang, Jiangang; Yang, Guoan; Xie, Yingge; Wang, Guodong; Zhang, Sheqi

    2018-01-01

    Many observers using interference imaging spectrometer were plagued by the fringe-like pattern(FP) that occurs for optical wavelengths in red and near-infrared region. It brings us more difficulties in the data processing such as the spectrum calibration, information retrieval, and so on. An adaptive method based on the bi-dimensional empirical mode decomposition was developed to suppress the nonlinear FP in polarization interference imaging spectrometer. The FP and corrected interferogram were separated effectively. Meanwhile, the stripes introduced by CCD mosaic was suppressed. The nonlinear interferogram background removal and the spectrum distortion correction were implemented as well. It provides us an alternative method to adaptively suppress the nonlinear FP without prior experimental data and knowledge. This approach potentially is a powerful tool in the fields of Fourier transform spectroscopy, holographic imaging, optical measurement based on moire fringe, etc.

  11. Moderate Resolution Imaging Spectrometer (MODIS) design evolution and associated development and verification of data product efforts

    Science.gov (United States)

    Salomonson, Vincent V.

    1991-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) is a key observing facility to be flown on the Earth Observing System (EOS). The facility is composed of two instruments called MODIS-N (nadir) and MODIS-T (tilt). The MODIS-N is being built under contract to NASA by the Santa Barbara Research Center. The MODIS-T is being fabricated by the Engineering Directorate at the Goddard Space Flight Center. The MODIS Science Team has defined nearly 40 biogeophysical data products for studies of the ocean and land surface and properties of the atmosphere including clouds that can be expected to be produced from the MODIS instruments shortly after the launch of EOS. The ocean, land, atmosphere, and calibration groups of the MODIS Science Team are now proceeding to plan and implement the operations and facilities involving the analysis of data from existing spaceborne, airborne, and in-situ sensors required to develop and validate the algorithms that will produce the geophysical data products. These algorithm development and validation efforts will be accomplished wherever possible within the context of existing or planned national and international experiments or programs such as those in the World Climate Research Program.

  12. Advancing the technology of monolithic CMOS detectors for use as x-ray imaging spectrometers

    Science.gov (United States)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Amato, Stephen

    2017-08-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff has been engaged in a multi year effort to advance the technology of monolithic back-thinned CMOS detectors for use as X-ray imaging spectrometers. The long term goal of this campaign is to produce X-ray Active Pixel Sensor (APS) detectors with Fano limited performance over the 0.1-10keV band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Such devices would be ideal for candidate post 2020 decadal missions such as LYNX and for smaller more immediate applications such as CubeX. Devices from a recent fabrication have been back-thinned, packaged and tested for soft X-ray response. These devices have 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels with ˜135μV/electron sensitivity and a highly parallel signal chain. These new detectors are fabricated on 10μm epitaxial silicon and have a 1k by 1k format. We present details of our camera design and device performance with particular emphasis on those aspects of interest to single photon counting X-ray astronomy. These features include read noise, X-ray spectral response and quantum efficiency.

  13. Spectral analysis of the Crab Nebula and GRB 160530A with the Compton Spectrometer and Imager

    Science.gov (United States)

    Sleator, Clio; Boggs, Steven E.; Chiu, Jeng-Lun; Kierans, Carolyn; Lowell, Alexander; Tomsick, John; Zoglauer, Andreas; Amman, Mark; Chang, Hsiang-Kuang; Tseng, Chao-Hsiung; Yang, Chien-Ying; Lin, Chih H.; Jean, Pierre; von Ballmoos, Peter

    2017-08-01

    The Compton Spectrometer and Imager (COSI) is a balloon-borne soft gamma-ray (0.2-5 MeV) telescope designed to study astrophysical sources including gamma-ray bursts and compact objects. As a compact Compton telescope, COSI has inherent sensitivity to polarization. COSI utilizes 12 germanium detectors to provide excellent spectral resolution. On May 17, 2016, COSI was launched from Wanaka, New Zealand and completed a successful 46-day flight on NASA’s new Superpressure balloon. To perform spectral analysis with COSI, we have developed an accurate instrument model as required for the response matrix. With carefully chosen background regions, we are able to fit the background-subtracted spectra in XSPEC. We have developed a model of the atmosphere above COSI based on the NRLMSISE-00 Atmosphere Model to include in our spectral fits. The Crab and GRB 160530A are among the sources detected during the 2016 flight. We present spectral analysis of these two point sources. Our GRB 160530A results are consistent with those from other instruments, confirming COSI’s spectral abilities. Furthermore, we discuss prospects for measuring the Crab polarization with COSI.

  14. MERTIS: the thermal infrared imaging spectrometer onboard of the Mercury Planetary Orbiter

    Science.gov (United States)

    Zeh, T.; Peter, G.; Walter, I.; Kopp, E.; Knollenberg, J.; Helbert, J.; Gebhardt, A.; Weber, I.; Hiesinger, Harry

    2017-11-01

    The MERTIS instrument is a thermal infrared imaging spectrometer onboard of ESA's cornerstone mission BepiColombo to Mercury. MERTIS has four goals: the study of Mercury's surface composition, identification of rock-forming minerals, mapping of the surface mineralogy, and the study of the surface temperature variations and thermal inertia. MERTIS will provide detailed information about the mineralogical composition of Mercury's surface layer by measuring the spectral emittance in the spectral range from 7-14 μm at high spatial and spectral resolution. Furthermore MERTIS will obtain radiometric measurements in the spectral range from 7-40 μm to study the thermo-physical properties of the surface material. The MERTIS detector is based on an uncooled micro-bolometer array providing spectral separation and spatial resolution according to its 2-dimensional shape. The operation principle is characterized by intermediate scanning of the planet surface and three different calibration targets - free space view and two on-board black body sources. In the current project phase, the MERTIS Qualification Model (QM) is under a rigorous testing program. Besides a general overview of the instrument principles, the papers addresses major aspects of the instrument design, manufacturing and verification.

  15. Compact Reconnaissance Imaging Spectrometer Observations of Water Vapor and Carbon Monoxide

    Science.gov (United States)

    Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd; Murchie, Scott L.

    2009-01-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft began taking observations in September 2006 and has now collected more than a full Martian year of data. Retrievals performed using the near-infrared spectra obtained by CRISM are used to characterize the seasonal and spatial variation of the column abundance of water vapor and the column-averaged mixing ratio of carbon monoxide. CRISM retrievals show nominal behavior in water vapor during northern hemisphere spring and summer with maximum abundance reaching 50 precipitable micrometers. Water vapor abundance during the southern hemisphere spring and summer appears significantly reduced compared to observations by other instruments taken during previous years. The CRISM retrievals show the seasonally and globally averaged carbon monoxide mixing ratio to be 700 ppm, but with strong seasonal variations at high latitudes. The summertime near-polar carbon monoxide mixing ratio falls to 200 ppm in the south and 400 ppm in the north as carbon dioxide sublimates from the seasonal polar ice caps and dilutes noncondensable species including carbon monoxide. At low latitudes, the carbon monoxide mixing ratio varies in response to the mean seasonal cycle of surface pressure.

  16. Advancing the Technology of Monolithic CMOS detectors for their use as X-ray Imaging Spectrometers

    Science.gov (United States)

    Kenter, Almus

    The Smithsonian Astrophysical Observatory (SAO) proposes a two year program to further advance the scientific capabilities of monolithic CMOS detectors for use as x-ray imaging spectrometers. This proposal will build upon the progress achieved with funding from a previous APRA proposal that ended in 2013. As part of that previous proposal, x- ray optimized, highly versatile, monolithic CMOS imaging detectors and technology were developed and tested. The performance and capabilities of these devices were then demonstrated, with an emphasis on the performance advantages these devices have over CCDs and other technologies. The developed SAO/SRI-Sarnoff CMOS devices incorporate: Low noise, high sensitivity ("gain") pixels; Highly parallel on-chip signal chains; Standard and very high resistivity (30,000Ohm-cm) Si; Back-Side thinning and passivation. SAO demonstrated the performance benefits of each of these features in these devices. This new proposal high-lights the performance of this previous generation of devices, and segues into new technology and capability. The high sensitivity ( 135uV/e) 6 Transistor (6T) Pinned Photo Diode (PPD) pixels provided a large charge to voltage conversion gain to the detect and resolve even small numbers of photo electrons produced by x-rays. The on-chip, parallel signal chain processed an entire row of pixels in the same time that a CCD requires to processes a single pixel. The resulting high speed operation ( 1000 times faster than CCD) provide temporal resolution while mitigating dark current and allowed room temperature operation. The high resistivity Si provided full (over) depletion for thicker devices which increased QE for higher energy x-rays. In this proposal, SAO will investigate existing NMOS and existing PMOS devices as xray imaging spectrometers. Conventional CMOS imagers are NMOS. NMOS devices collect and measure photo-electrons. In contrast, PMOS devices collect and measure photo-holes. PMOS devices have various

  17. SAFARI new and improved: extending the capabilities of SPICA's imaging spectrometer

    Science.gov (United States)

    Roelfsema, Peter; Giard, Martin; Najarro, Francisco; Wafelbakker, Kees; Jellema, Willem; Jackson, Brian; Sibthorpe, Bruce; Audard, Marc; Doi, Yasuo; di Giorgio, Anna; Griffin, Matthew; Helmich, Frank; Kamp, Inga; Kerschbaum, Franz; Meyer, Michael; Naylor, David; Onaka, Takashi; Poglitch, Albrecht; Spinoglio, Luigi; van der Tak, Floris; Vandenbussche, Bart

    2014-08-01

    The Japanese SPace Infrared telescope for Cosmology and Astrophysics, SPICA, aims to provide astronomers with a truly new window on the universe. With a large -3 meter class- cold -6K- telescope, the mission provides a unique low background environment optimally suited for highly sensitive instruments limited only by the cosmic background itself. SAFARI, the SpicA FAR infrared Instrument SAFARI, is a Fourier Transform imaging spectrometer designed to fully exploit this extremely low far infrared background environment. The SAFARI consortium, comprised of European and Canadian institutes, has established an instrument reference design based on a Mach-Zehnder interferometer stage with outputs directed to three extremely sensitive Transition Edge Sensor arrays covering the 35 to 210 μm domain. The baseline instrument provides R > 1000 spectroscopic imaging capabilities over a 2' by 2' field of view. A number of modifications to the instrument to extend its capabilities are under investigation. With the reference design SAFARI's sensitivity for many objects is limited not only by the detector NEP but also by the level of broad band background radiation - the zodiacal light for the shorter wavelengths and satellite baffle structures for the longer wavelengths. Options to reduce this background are dedicated masks or dispersive elements which can be inserted in the optics as required. The resulting increase in sensitivity can directly enhance the prime science goals of SAFARI; with the expected enhanced sensitivity astronomers would be in a better position to study thousands of galaxies out to redshift 3 and even many hundreds out to redshifts of 5 or 6. Possibilities to increase the wavelength resolution, at least for the shorter wavelength bands, are investigated as this would significantly enhance SAFARI's capabilities to study star and planet formation in our own galaxy.

  18. Mapping of methane from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY)

    Science.gov (United States)

    Tan, K. C.; Lim, H. S.; MatJafri, M. Z.

    2012-11-01

    Among all the greenhouse gases, methane is the most dynamic and abundant greenhouse gas in the atmosphere. The global concentrations of atmospheric methane has increased more than doubled since pre-industrial times, with a current globally-averaged mixing ratio of ~ 1750 ppbv. Due to its high growth rate, methane brings significant effects on climate and atmospheric chemistry. There has a significant gap for variables between anthropogenic and natural sources and sinks of methane. Satellite observation of methane has been identified that it can provide the precise and accurate data globally, which sensitive to the small regional biases. We present measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) included on the European environmental satellite ENVISAT, launched on 1st of March 2002. Main objective of this study is to examine the methane distribution over Peninsular Malaysia using SCIAMACHY level-3 data. They are derived from the near-infrared nadir observations of the SCIAMACHY at the University of Bremen through scientific WFM-DOAS retrieval algorithm version 2.0.2.Maps of time averaged (yearly, tri-monthly) methane was generated and analyzed over Peninsular Malaysia for the year 2003 using PCI Geomatica 10.3 image processing software. The maps show dry-air column averaged mixing ratios of methane (denoted XCH4). It was retrieved using the interpolation technique. The concentration changes within boundary layer at all altitude levels are equally sensitive through the SCIAMACHY near-infrared nadir observations. Hence, we can make observation of methane at surface source region. The results successfully identify the area with highest and lowest concentration of methane at Peninsular Malaysia using SCIAMACHY data. Therefore, the study is suitable to examine the distribution of methane at tropical region.

  19. Preliminary analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) for mineralogic mapping at sites in Nevada and Colorado

    Science.gov (United States)

    Kruse, Fred A.; Taranik, Dan L.; Kierein-Young, Kathryn S.

    1988-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data for sites in Nevada and Colorado were evaluated to determine their utility for mineralogical mapping in support of geologic investigations. Equal energy normalization is commonly used with imaging spectrometer data to reduce albedo effects. Spectra, profiles, and stacked, color-coded spectra were extracted from the AVIRIS data using an interactive analysis program (QLook) and these derivative data were compared to Airborne Imaging Spectrometer (AIS) results, field and laboratory spectra, and geologic maps. A feature extraction algorithm was used to extract and characterize absorption features from AVIRIS and laboratory spectra, allowing direct comparison of the position and shape of absorption features. Both muscovite and carbonate spectra were identified in the Nevada AVIRIS data by comparison with laboratory and AIS spectra, and an image was made that showed the distribution of these minerals for the entire site. Additional, distinctive spectra were located for an unknown mineral. For the two Colorado sites, the signal-to-noise problem was significantly worse and attempts to extract meaningful spectra were unsuccessful. Problems with the Colorado AVIRIS data were accentuated by the IAR reflectance technique because of moderate vegetation cover. Improved signal-to-noise and alternative calibration procedures will be required to produce satisfactory reflectance spectra from these data. Although the AVIRIS data were useful for mapping strong mineral absorption features and producing mineral maps at the Nevada site, it is clear that significant improvements to the instrument performance are required before AVIRIS will be an operational instrument.

  20. The CubeSat Imaging X-ray Solar Spectrometer (CubIXSS) Mission Concept

    Science.gov (United States)

    Caspi, Amir; Shih, Albert Y.; Warren, Harry; DeForest, Craig; Laurent, Glenn Thomas; Schwartz, Richard A.; Woods, Thomas N.; Mason, James; Palo, Scott; Steslicki, Marek; Sylwester, Janusz; Gburek, Szymon; Mrozek, Tomasz; Kowalinski, Miroslaw; Torre, Gabriele; Crowley, Geoffrey; Schattenburg, Mark

    2017-08-01

    Solar soft X-ray (SXR) observations provide important diagnostics of plasma heating, during solar flares and quiescent times. Spectrally- and temporally-resolved measurements are crucial for understanding the dynamics, origins, and evolution of these energetic processes, providing probes both into the temperature distributions and elemental compositions of hot plasmas; spatially-resolved measurements are critical for understanding energy transport and mass flow. A better understanding of the thermal plasma improves our understanding of the relationships between particle acceleration, plasma heating, and the underlying release of magnetic energy during reconnection. We introduce a new proposed small satellite mission, the CubeSat Imaging X-ray Solar Spectrometer (CubIXSS), to measure spectrally- and spatially-resolved SXRs from the quiescent and flaring Sun from a 6U CubeSat platform in low-Earth orbit during a nominal 1-year mission. CubIXSS includes the Amptek X123-FastSDD silicon drift detector, a low-noise, commercial off-the-shelf (COTS) instrument enabling solar SXR spectroscopy from ~0.5 to ~30 keV with ~0.15 keV FWHM spectral resolution with low power, mass, and volume requirements. Multiple detectors and tailored apertures provide sensitivity to a wide range of solar conditions, optimized for a launch during solar minimum. The precise spectra from these instruments will provide detailed measurements of the coronal temperature distribution and elemental abundances from the quiet Sun to active regions and flares. CubIXSS also includes a novel spectro-spatial imager -- the first ever solar imager on a CubeSat -- utilizing a custom pinhole camera and Chandra-heritage X-ray transmission diffraction grating to provide spatially- resolved, full-Sun imaging spectroscopy from ~0.1 to ~10 keV, with ~25 arcsec and ~0.1 Å FWHM spatial and spectral resolutions, respectively. MOXSI’s unique capabilities enable SXR spectroscopy and temperature diagnostics of individual

  1. Metrology qualification of EUV resists

    Science.gov (United States)

    Gershtein, Liraz; Peltinov, Ram; Ventola, Stefano; Masia, Claudio; Xing, Chanjuan

    2010-03-01

    The ASML extreme ultraviolet lithography (EUV) alpha demo tool is a 0.25NA fully functional lithography tool with a field size of 26×33 mm2, enabling process development for sub-40-nm technology. Two exposure tools are installed in two research centers. The main topic of this paper is the examination of the measured pattern roughness LER contributed by measurement (SEM), exposure (EUV exposure tool) and the resists itself. The authors also examined suspected metrology SEM challenges on different EUV resist types exposed by one of the EUV demo tools. Standard CD SEM tests, such as precision and shrinkage were performed in order to get best working conditions. As part of the research, special attention was given to expected electron - material interactions, such as resist's slimming, low contrast and contamination build up on both lines. LER was analyzed in order to determine separately the contribution effect of the exposure tool and the different resists. Additional comparison was performed on different CDs with different orientations and densities.

  2. SDO-EVE multiple EUV grating spectrograph (MEGS) optical design

    Science.gov (United States)

    Crotser, David A.; Woods, Thomas N.; Eparvier, Francis G.; Ucker, Greg; Kohnert, Richard A.; Berthiaume, Gregory D.; Weitz, David M.

    2004-10-01

    The NASA Solar Dynamics Observatory (SDO), scheduled for launch in 2008, incorporates a suite of instruments including the EUV Variability Experiment (EVE). The EVE instrument package contains grating spectrographs used to measure the solar extreme ultraviolet (EUV) irradiance from 0.1 to 105 nm. The Multiple EUV Grating Spectrograph (MEGS) channels use concave reflection gratings to image solar spectra onto CCDs that are operated at -100°C. MEGS provides 0.1nm spectral resolution between 5-105nm every 10 seconds with an absolute accuracy of better than 25% over the SDO 5-year mission. MEGS-A utilizes a unique grazing-incidence, off-Rowland circle (RC) design to minimize angle of incidence at the detector while meeting high resolution requirements. MEGS-B utilizes a double-pass, cross-dispersed double-Rowland circle design. MEGS-P, a Ly-α monitor, will provide a proxy model calibration in the 60-105 nm range. Finally, the Solar Aspect Monitor (SAM) channel will provide continual pointing information for EVE as well as low-resolution X-ray images of the sun. In-flight calibrations for MEGS will be provided by the on-board EUV Spectrophotometer (ESP) in the 0.1-7nm and 17-37nm ranges, as well as from annual under-flight rocket experiments. We present the methodology used to develop the MEGS optical design.

  3. Spatially Resolved Spectra from a new X-ray Imaging Crystal Spectrometer for Measurements of Ion and Electron Temperature Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, M; Stratton, B; Roquemore, A; Mastrovito, D; Lee, S; Bak, J; Moon, M; Nam, U; Smith, G; Rice, J; Beiersdorfer, P; Fraenkel, B

    2004-08-10

    A new type of high-resolution X-ray imaging crystal spectrometer is being developed to measure ion and electron temperature profiles in tokamak plasmas. The instrument is particularly valuable for diagnosing plasmas with purely Ohmic heating and rf heating, since it does not require the injection of a neutral beam - although it can also be used for the diagnosis of neutral-beam heated plasmas. The spectrometer consists of a spherically bent quartz crystal and a two-dimensional position-sensitive detector. It records spectra of helium-like argon (or krypton) from multiple sightlines through the plasma and projects a de-magnified image of a large plasma cross-section onto the detector. The spatial resolution in the plasma is solely determined by the height of the crystal, its radius of curvature, and the Bragg angle. This new X-ray imaging crystal spectrometer may also be of interest for the diagnosis of ion temperature profiles in future large tokamaks, such as KSTAR and ITER, where the application of the presently used charge-exchange spectroscopy will be difficult, if the neutral beams do not penetrate to the plasma center. The paper presents the results from proof-of-principle experiments performed with a prototype instrument at Alcator C-Mod.

  4. Image Evaluation of the High Resolution VUV Spectrometer at SURF II by Ray Tracing

    OpenAIRE

    Das, N. C.; Madden, R. P.; Seyoum, H. M.

    1998-01-01

    A high resolution VUV spectroscopic facility has been in use for several years at SURF II, the Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology in Gaithersburg, Maryland. At this facility, a combination of three cylindrical mirrors is utilized to focus the light originating in the storage ring onto the horizontal entrance slit of the spectrometer. The spectrometer uses a 6.65 m concave grating having a groove density of 4800 lines/mm in the off-...

  5. Cloud Detection and Cloud Top Height Determination using the Hyperspectral Imaging Spectrometer specMACS

    Science.gov (United States)

    Höppler, Lucas; Gödde, Felix; Kölling, Tobias; Zinner, Tobias; Mayer, Bernhard; Groß, Silke; Gutleben, Manuel

    2017-04-01

    Diabatic heat released by clouds sometimes causes numerical weather forecast failures. Climate model predictions depend on radiative effects of tropical clouds in the trade winds. Both climate and global weather forecast models, therefore, need to be improved with respect to a proper representation of cloud microphysical and macrophysical properties. For this purpose, parameters describing the cloud geometry such as cloud fraction, cloud size and cloud top heights are important. These parameters are also important ingredients to accurately validate the results of previous and upcoming studies with cloud resolving models. A hyperspectral imaging spectrometer (specMACS) was operated aboard the research plane HALO in the NARVAL II and NAWDEX experiments. By combining the reflected radiance of the clouds and the signal of the water vapor absorption bands in the infrared part of the solar spectrum, an effective cloud mask was developed which is prerequisite for any further analysis. The method allows detecting clouds even over the bright sunglint. As a next step, cloud top heights are determined by comparing the measured radiance within and outside of the oxygen A-band with radiative transfer model calculations. Subsequently, the calculated cloud top heights are compared to LIDAR measurements. While this method works well for plane-parallel, homogeneous clouds, 3D radiative transfer effects cause artifacts at cloud edges and in cloud free areas which can lead to strongly miscalculated cloud top heights. These effects will be assessed and also evaluated. Deriving quantities such as cloud fraction, cloud size, and cloud structure is the basis for calculating cloud heating and cooling rates in upcoming studies.

  6. EUV: induced ablation and surface modifications of solids

    Science.gov (United States)

    Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M.; Szczurek, A.; Wachulak, P.

    2011-06-01

    In this work results of investigations concerning ablation and surface modification of polymers and some other solids using a laser-plasma EUV source are presented. The plasma radiation was produced using a gas puff target and was focused with a gold-plated grazing incidence ellipsoidal collector. The ablation process was investigated using a scanning electron microscope (SEM) and a quadrupole mass spectrometer (QMS). The chemical changes were investigated by X-ray photoelectron spectroscopy (XPS). Different kinds of micro- and nanostructures created in nearsurface layers of the materials were obtained. Forms of the structures depend on a particular material and the EUV exposure. In case of some polymers even a single shot was sufficient for creation of the visible changes in surface morphology. In case of inorganic solids visible changes required usually the exposure with tens or hundreds of EUV pulses. XPS investigations revealed chemical changes in near surface layers of polymers. Significant differences were revealed in the XPS spectra acquired for irradiated and not-irradiated polymers. Significant decrease of functional groups containing oxygen was indicated. Analysis of QMS spectra indicate emission of different kinds of fragments of the polymer chains including the repeating structural units. In case of some polymers only fragments of the repeating unit were detected.

  7. TIRCIS: Hyperspectral Thermal Infrared Imaging Using a Small-Satellite Compliant Fourier-Transform Imaging Spectrometer, for Natural Hazard Applications

    Science.gov (United States)

    Wright, R.; Lucey, P. G.; Crites, S.; Garbeil, H.; Wood, M.

    2015-12-01

    Many natural hazards, including wildfires, volcanic eruptions, and, from the perspective of climate-related hazards, urban heat islands, could be better quantified via the routine availability of hyperspectral thermal infrared remote sensing data from orbit. However, no sensors are currently in operation that provide such data at high-to-moderate spatial resolution (e.g. Landsat-class resolution). In this presentation we will describe a prototype instrument, developed using funding provided by NASA's Instrument Incubator Program, that can make these important measurements. Significantly, the instrument has been designed such that its size, mass, power, and cost are consistent with its integration into small satellite platforms, or deployment as part of small satellite constellations. The instrument, TIRCIS (Thermal Infra-Red Compact Imaging Spectrometer), uses a Fabry-Perot interferometer, an uncooled microbolometer array, and push-broom scanning to acquire hyperspectral image data cubes. Radiometric calibration is provided by blackbody targets while spectral calibration is achieved using monochromatic light sources. Neither the focal plane nor the optics need to be cooled, and the instrument has a mass of <10 kg and dimensions of 53 cm × 25 cm × 22 cm. Although the prototype has four moving parts, this can easily be reduced to one. The current optical design yields a 120 m ground sample size given an orbit of 500 km. Over the wavelength interval of 7.5 to 14 microns up to 90 spectral samples are possible, by varying the physical design of the interferometer. Our performance model indicates signal-to-noise ratios of the order of about 200 to 300:1. In this presentation we will provide an overview of the instrument design, fabrication, results from our initial laboratory characterization, and some of the application areas in which small-satellite-ready instruments such as TIRCIS could make a valuable contribution to the study of natural hazards.

  8. Hard X-ray polarimetry with Caliste, a high performance CdTe based imaging spectrometer

    Science.gov (United States)

    Antier, S.; Ferrando, P.; Limousin, O.; Caroli, E.; Curado da Silva, R. M.; Blondel, C.; Chipaux, R.; Honkimaki, V.; Horeau, B.; Laurent, P.; Maia, J. M.; Meuris, A.; Del Sordo, S.; Stephen, J. B.

    2015-06-01

    Since the initial exploration of the X- and soft γ-ray sky in the 60's, high-energy celestial sources have been mainly characterized through imaging, spectroscopy and timing analysis. Despite tremendous progress in the field, the radiation mechanisms at work in sources such as neutrons stars, black holes, and Active Galactic Nuclei are still unclear. The polarization state of the radiation is an observational parameter which brings key additional information about the physical processes in these high energy sources, allowing the discrimination between competing models which may otherwise all be consistent with other types of measurement. This is why most of the projects for the next generation of space missions covering the few tens of keV to the MeV region require a polarization measurement capability. A key element enabling this capability, in this energy range, is a detector system allowing the identification and characterization of Compton interactions as they are the main process at play. The compact hard X-ray imaging spectrometer module, developed in CEA with the generic name of "Caliste" module, is such a detector. In this paper, we present experimental results for two types of Caliste-256 modules, one based on a CdTe crystal, the other one on a CdZnTe crystal, which have been exposed to linearly polarized beams at the European Synchrotron Radiation Facility (ESRF). These results, obtained at 200 and 300 keV, demonstrate the capability of these modules to detect Compton events and to give an accurate determination of the polarization parameters (polarization angle and fraction) of the incoming beam. For example, applying an optimized selection to our data set, equivalent to select 90° Compton scattered interactions in the detector plane, we find a modulation factor Q of 0.78 ± 0.06 in the 200-300 keV range. The polarization angle and fraction are derived with accuracies of approximately 1° and 5 % respectively for both CdZnTe and CdTe crystals. The

  9. Photoelectron scattering and acid release in EUV lithography: a simulation study (Conference Presentation)

    Science.gov (United States)

    Biafore, John J.

    2017-03-01

    Abstract BACKGROUND: The ionizing wavelength in extreme ultraviolet (EUV) resist exposure leads to photoelectron scattering and uncertainty in the resulting acid image, producing line-edge roughness (LER) and poor CD uniformity of the printed features. GOALS: Try to determine how photoelectron and acid exposure blur effects affect EUV lithography and how they might be better controlled. Try to determine whether or not, and if so under what conditions, high resist quantum yields are beneficial to EUV lithography. METHODS: Using a stochastic resist simulator, we study the effects of resist properties upon photoelectric scattering, the uncertainty in the acid release and the properties of the after-development photoresist image in high NA EUV lithography. Uncertainty in the release of acids is the fundamental cause of LER and the ultimate limiter of optical lithography technology.

  10. Retrieval and molecule sensitivity studies for the global ozone monitoring experiment and the scanning imaging absorption spectrometer for atmospheric chartography

    Science.gov (United States)

    Chance, Kelly V.; Burrows, John P.; Schneider, Wolfgang

    1991-01-01

    The Global Ozone Monitoring Experiment (GOME) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) are diode based spectrometers that will make atmospheric constituent and aerosol measurements from European satellite platforms beginning in the mid 1990's. GOME measures the atmosphere in the UV and visible in nadir scanning, while SCIAMACHY performs a combination of nadir, limb, and occultation measurements in the UV, visible, and infrared. A summary is presented of the sensitivity studies that were performed for SCIAMACHY measurements. As the GOME measurement capability is a subset of the SCIAMACHY measurement capability, the nadir, UV, and visible portion of the studies is shown to apply to GOME as well.

  11. X-ray/EUV optics for astronomy, microscopy, polarimetry, and projection lithography; Proceedings of the Meeting, San Diego, CA, July 9-13, 1990

    Science.gov (United States)

    Hoover, Richard B. (Editor); Walker, Arthur B. C., Jr. (Editor)

    1991-01-01

    Topics discussed in this issue include the fabrication of multilayer X-ray/EUV coatings; the design, characterization, and test of multilayer X-ray/EUV coatings; multilayer X-ray/EUV monochromators and imaging microscopes; X-ray/EUV telescopes; the test and calibration performance of X-ray/EUV instruments; XUV/soft X-ray projection lithography; X-ray/EUV space observatories and missions; X-ray/EUV telescopes for solar research; X-ray/EUV polarimetry; X-ray/EUV spectrographs; and X-ray/EUV filters and gratings. Papers are presented on the deposition-controlled uniformity of multilayer mirrors, interfaces in Mo/Si multilayers, the design and analysis of an aspherical multilayer imaging X-ray microscope, recent developments in the production of thin X-ray reflecting foils, and the ultraprecise scanning technology. Consideration is also given to an active sun telescope array, the fabrication and performance at 1.33 nm of a 0.24-micron-period multilayer grating, a cylindrical proportional counter for X-ray polarimetry, and the design and analysis of the reflection grating arrays for the X-Ray Multi-Mirror Mission.

  12. Towards a stand-alone high-throughput EUV actinic photomask inspection tool: RESCAN

    Science.gov (United States)

    Rajendran, Rajeev; Mochi, Iacopo; Helfenstein, Patrick; Mohacsi, Istvan; Redford, Sophie; Mozzanica, Aldo; Schmitt, Bernd; Yoshitake, Shushuke; Ekinci, Yasin

    2017-03-01

    With extreme ultraviolet (EUV) lithography getting ready to enter high volume manufacturing, there is an imminent need to address EUV mask metrology infrastructure. Actinic defect inspection of patterned EUV photomasks has been identified as an essential step for mask qualification, but there is no commercial tool available right now. We address this gap with the RESCAN tool, a defect inspection platform being built at Paul Scherrer Institut (PSI), co-developed in collaboration with Nuflare Inc, Japan. RESCAN uses Scanning Scattering Contrast Microscopy (SSCM) and Scanning Coherent Diffraction Imaging (SCDI) for fast defect detection and fine defect localization. The development of a stand-alone tool based on these techniques relies on the availability of (1) a bright coherent EUV source with a small footprint and (2) a high frame-rate pixel detector with extended dynamic range and high quantum efficiency for EUV. We present two in-house projects at PSI addressing the development of these components: COSAMI and JUNGFRAU. COSAMI (COmpact Source for Actinic Mask Inspection), is a high-brightness EUV source optimized for EUV photons with a relatively small footprint. JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a silicon-based hybrid pixel detector, developed in house at PSI and prototyped for EUV. With a high frame rate and dynamic range at 13.5 nm, this sensor solution is an ideal candidate for the RESCAN platform. We believe that these ongoing source and sensor programs will pave the way towards a comprehensive solution for actinic patterned mask inspection bridging the gap of actinic defect detection and identification on EUV reticles.

  13. Integrated approach to improving local CD uniformity in EUV patterning

    Science.gov (United States)

    Liang, Andrew; Hermans, Jan; Tran, Timothy; Viatkina, Katja; Liang, Chen-Wei; Ward, Brandon; Chuang, Steven; Yu, Jengyi; Harm, Greg; Vandereyken, Jelle; Rio, David; Kubis, Michael; Tan, Samantha; Dusa, Mircea; Singhal, Akhil; van Schravendijk, Bart; Dixit, Girish; Shamma, Nader

    2017-03-01

    conditions in EUV lithography were optimized to improve normalized image log slope (NILS), which is expected to reduce shot noise related effects. It can be seen that the EUV imaging contrast improvement can further reduce post-develop LCDU from 4.1 nm to 3.9 nm and from 2.8 nm to 2.6 nm. In parallel, etch processes were developed to further reduce LCDU, to control CD, and to transfer these improvements into the final target substrate. We also demonstrate that increasing post-develop CD through dose adjustment can enhance the LCDU reduction from etch. Similar trends were also observed in different pitches down to 40 nm. The solutions demonstrated here are critical to the introduction of EUV lithography in high volume manufacturing. It can be seen that through a synergistic deposition, lithography, and etch optimization, LCDU at a 40 nm pitch can be improved to 1.6 nm (3-sigma) in a target oxide layer and to 1.4 nm (3-sigma) at the photoresist layer.

  14. Doubly curved imaging Bragg crystal spectrometer for X-ray astronomy

    DEFF Research Database (Denmark)

    Byrnak, B. P.; Christensen, Finn Erland; Westergaard, Niels Jørgen Stenfeldt

    1985-01-01

    An X-ray spectrometer which is sensitive in the 0.5-7-keV energy range and is intended for use onboard astronomical satellites has been studied. The Bragg reflected rays from a doubly bent crystal positioned downstream of the focal plane of a grazing-incidence concentrator are focused along the a...

  15. Discriminating Phytoplankton Functional Types (PFTs) in the Coastal Ocean Using the Inversion Algorithm Phydotax and Airborne Imaging Spectrometer Data

    Science.gov (United States)

    Palacios, Sherry L.; Schafer, Chris; Broughton, Jennifer; Guild, Liane S.; Kudela, Raphael M.

    2013-01-01

    There is a need in the Biological Oceanography community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand energy flow through ecosystems, to track the fate of carbon in the ocean, and to detect and monitor-for harmful algal blooms (HABs). The ocean color community has responded to this demand with the development of phytoplankton functional type (PFT) discrimination algorithms. These PFT algorithms fall into one of three categories depending on the science application: size-based, biogeochemical function, and taxonomy. The new PFT algorithm Phytoplankton Detection with Optics (PHYDOTax) is an inversion algorithm that discriminates taxon-specific biomass to differentiate among six taxa found in the California Current System: diatoms, dinoflagellates, haptophytes, chlorophytes, cryptophytes, and cyanophytes. PHYDOTax was developed and validated in Monterey Bay, CA for the high resolution imaging spectrometer, Spectroscopic Aerial Mapping System with On-board Navigation (SAMSON - 3.5 nm resolution). PHYDOTax exploits the high spectral resolution of an imaging spectrometer and the improved spatial resolution that airborne data provides for coastal areas. The objective of this study was to apply PHYDOTax to a relatively lower resolution imaging spectrometer to test the algorithm's sensitivity to atmospheric correction, to evaluate capability with other sensors, and to determine if down-sampling spectral resolution would degrade its ability to discriminate among phytoplankton taxa. This study is a part of the larger Hyperspectral Infrared Imager (HyspIRI) airborne simulation campaign which is collecting Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery aboard NASA's ER-2 aircraft during three seasons in each of two years over terrestrial and marine targets in California. Our aquatic component seeks to develop and test algorithms to retrieve water quality properties (e.g. HABs and river plumes) in both marine and in

  16. Performance of the ASML EUV Alpha Demo Tool

    Science.gov (United States)

    Hermans, Jan V.; Hendrickx, Eric; Laidler, David; Jehoul, Christiane; Van Den Heuvel, Dieter; Goethals, Anne-Marie

    2010-04-01

    The 22nm technology node is the target for insertion of Extreme Ultra-Violet (EUV) lithography into pre-production. To prepare this insertion, the issues that arise with the use of an EUV lithographic scanner in a pre-production environment need to be addressed. To gain better understanding of the issues that come with an EUV lithographic scanner, the Alpha Demo Tool (ADT) from ASML was installed at IMEC and is now in use since mid of 2008. In July 2009, the source was upgraded to a 170W/2π source to allow for higher uptime and wafer output by means of the semi-automatic tin refill. Also a new advanced resist, the SEVR-59 resist was introduced after the installation of the 170W/2π source to allow printing of 32nm Lines-Spaces (LS). After these changes, the ADT has been monitored closely with respect to the imaging performance. In this paper, we report on both the CD fingerprint analysis and the exposure tool stability. For 32nm dense LS, the ADT shows a wafer CD Uniformity (CDU) of 2.5nm 3σ, without any corrections for process or reticle. As for 40nm LS, the wafer CDU is correlated to different factors that are known to influence the CD fingerprint from traditional lithography: reticle CD error, slit intensity uniformity, focal plane deviation but also EUV specific reticle shadowing. The ADT shows excellent wafer-to-wafer stability (tool (using the same etched silicon wafers as a reference). Below 32nm, the ADT shows good wafer CDU for 30nm dense LS (60nm pitch). First 27nm dense line CDU data are achieved (54nm pitch). The results indicate that the ADT can be used effectively for EUV process development before installation of the pre-production tool, the ASML NXE:3100 at IMEC.

  17. Basic issues associated with four potential EUV resist schemes

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.R. [Sandia National Labs., Albuquerque, NM (United States); Kubiak, G.; Ray-Chaudhuri, A.; Henderson, C. [Sandia National Labs., Livermore, CA (United States)

    1996-06-01

    Four of the better developed resist schemes that are outgrowths of DUV (248 and 193 nm) resist development are considered as candidates for EUV. They are as follows: trilayer, a thin imaging layer on top of a refractor masking/pattern transfer layer on top of a planarizing and processing layer (PPL); solution developed, organometallic bilayer where the imaging and masking layer have been combined into one material on top of a PPL; and finally silylated resists. They are examined in a very general form without regard to the specifics of chemistry of the variations within each group, but rather to what is common to each group and how that affects their effectiveness as candidates for a near term EUV resist. In particular they are examined with respect to sensitivity, potential resolution, optical density, etching selectivity during pattern transfer, and any issues associated with pattern fidelity such as swelling.

  18. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak.

    Science.gov (United States)

    Zhang, Ling; Morita, Shigeru; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Ohishi, Tetsutarou; Goto, Motoshi; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Dong, Chunfeng; Zhang, Hongmin; Huang, Xianli; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang

    2015-12-01

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm(2) and pixel numbers of 1024 × 255 (26 × 26 μm(2)/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ0 = 3-4 pixels, where Δλ0 is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  19. Calibration of the OHREX high-resolution imaging crystal spectrometer at the Livermore electron beam ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Bamberg 96049 (Germany); Beiersdorfer, P.; Magee, E. W.; Brown, G. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°–3° spectral range at Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument’s spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.

  20. Level 0 to 1 processing of the imaging Fourier transform spectrometer GLORIA: generation of radiometrically and spectrally calibrated spectra

    Directory of Open Access Journals (Sweden)

    A. Kleinert

    2014-12-01

    Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA is an imaging Fourier transform spectrometer that is capable of operating on various high-altitude research aircraft. It measures the atmospheric emission in the thermal infrared spectral region in limb and nadir geometry. GLORIA consists of a classical Michelson interferometer combined with an infrared camera. The infrared detector has a usable area of 128 × 128 pixels, measuring up to 16 384 interferograms simultaneously. Imaging Fourier transform spectrometers impose a number of challenges with respect to instrument calibration and algorithm development. The optical setup with extremely high optical throughput requires the development of new methods and algorithms for spectral and radiometric calibration. Due to the vast amount of data there is a high demand for scientifically intelligent optimisation of the data processing. This paper outlines the characterisation and processing steps required for the generation of radiometrically and spectrally calibrated spectra. Methods for performance optimisation of the processing algorithm are presented. The performance of the data processing and the quality of the calibrated spectra are demonstrated for measurements collected during the first deployments of GLORIA on aircraft.

  1. Geometric and radiometric preprocessing of airborne visible/infrared imaging spectrometer (AVIRIS) data in rugged terrain for quantitative data analysis

    Science.gov (United States)

    Meyer, Peter; Green, Robert O.; Staenz, Karl; Itten, Klaus I.

    1994-01-01

    A geocoding procedure for remotely sensed data of airborne systems in rugged terrain is affected by several factors: buffeting of the aircraft by turbulence, variations in ground speed, changes in altitude, attitude variations, and surface topography. The current investigation was carried out with an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene of central Switzerland (Rigi) from NASA's Multi Aircraft Campaign (MAC) in Europe (1991). The parametric approach reconstructs for every pixel the observation geometry based on the flight line, aircraft attitude, and surface topography. To utilize the data for analysis of materials on the surface, the AVIRIS data are corrected to apparent reflectance using algorithms based on MODTRAN (moderate resolution transfer code).

  2. Measurement of the electron and ion temperatures by the x-ray imaging crystal spectrometer on joint Texas experimental tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yan, W.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Huang, D. W.; Tong, R. H.; Wang, S. Y.; Wei, Y. N.; Ma, T. K.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Jin, W. [Center of Interface Dynamics for Sustainability, China Academy of Engineering Physics, Chengdu, Sichuan 610200 (China); Lee, S. G. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Shi, Y. J. [Department of Nuclear Engineering, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-11-15

    An x-ray imaging crystal spectrometer has been developed on joint Texas experimental tokamak for the measurement of electron and ion temperatures from the K{sub α} spectra of helium-like argon and its satellite lines. A two-dimensional multi-wire proportional counter has been applied to detect the spectra. The electron and ion temperatures have been obtained from the Voigt fitting with the spectra of helium-like argon ions. The profiles of electron and ion temperatures show the dependence on electron density in ohmic plasmas.

  3. Cross sections of EUV PAGs: influence of concentration, electron energy, and structure

    Science.gov (United States)

    Grzeskowiak, Steven; Narasimhan, Amrit; Wisehart, Liam; Schad, Jonathon; Neisser, Mark; Ocola, Leonidas E.; Brainard, Robert L.; Denbeaux, Greg

    2016-03-01

    Optimizing the photochemistry of extreme ultraviolet (EUV) photoresists should provide faster, more efficient resists which would lead to greater throughput in manufacturing. The fundamental reaction mechanisms in EUV resists are believed to be due to interactions with energetic electrons liberated by ionization. Identifying the likelihood (or cross section) of how these photoelectrons interact with resist components is critical to optimizing the performance of EUV resists. Chemically amplified resists utilize photoacid generators (PAGs) to improve sensitivity; measuring the cross section of electron induced decomposition of different PAGs will provide insight into developing new resist materials. To study the interactions of photoelectrons generated by EUV absorption, photoresists were exposed to electron beams at energies between 80 and 250 eV. The reactions between PAG molecules and electrons were measured using a mass spectrometer to monitor the levels of small molecules produced by PAG decomposition that outgassed from the film. Comparing the cross sections of a variety of PAG molecules can provide insight into the relationship between chemical structure and reactivity to the electrons in their environments. This research is a part of a larger SEMATECH research program to understand the fundamentals of resist exposures to help in the development of new, better performing EUV resists.

  4. The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) NASA Mission-of- Opportunity - Up and Operational

    Science.gov (United States)

    McComas*, D. J.

    2008-12-01

    *Presented on behalf of the entire TWINS Team Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is a NASA Explorer Mission-of-Opportunity to stereoscopically image the Earth's magnetosphere for the first time [McComas et al., 2008]. TWINS extends our understanding of magnetospheric structure and processes by providing simultaneous Energetic Neutral Atom (ENA) imaging from two widely separated locations. TWINS observes ENAs from 1-100 keV with high angular (~4° x 4°) and time (~1-minute) resolution. The TWINS Ly-α monitor measures the geocoronal hydrogen density to aid in ENA analysis while environmental sensors provide contemporaneous measurements of the local charged particle environments. By imaging ENAs with identical instruments from two widely spaced, high-altitude, high-inclination spacecraft, TWINS enables three-dimensional visualization of the large-scale structures and dynamics within the magnetosphere for the first time. As of the summer of 2008, both TWINS instruments are finally on orbit and operational and stereo imaging of the magnetosphere has begun. This talk briefly summarizes the TWINS mission and instruments and shows some of the 'first-light' observations. More information about TWINS and access to these data are available at http://twins.swri.edu. Reference: McComas, D.J., F. Allegrini, J. Baldonado, B. Blake, P. C. Brandt, J. Burch, J. Clemmons, W. Crain, D. Delapp, R. DeMajistre, D. Everett, H. Fahr, L. Friesen, H. Funsten, J. Goldstein, M. Gruntman, R. Harbaugh, R. Harper, H. Henkel, C. Holmlund, G. Lay, D. Mabry, D. Mitchell, U. Nass, C. Pollock, S. Pope, M. Reno, S. Ritzau, E. Roelof, E. Scime, M. Sivjee, R. Skoug, T. S. Sotirelis, M. Thomsen, C. Urdiales, P. Valek, K. Viherkanto, S. Weidner, T. Ylikorpi, M. Young, J. Zoennchen, The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) NASA Mission-of-Opportunity, Submitted to Space Science Reviews, 2008.

  5. Spherical grating spectrometers

    Science.gov (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  6. Comparison of laboratory calibrations of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) at the beginning and end of the first flight season

    Science.gov (United States)

    Vane, Gregg; Chrien, Thomas G.; Reimer, John H.; Green, Robert O.; Conel, James E.

    1988-01-01

    Spectral and radiometric calibrations of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) were performed in the laboratory in June and November, 1987, at the beginning and end of the first flight season. Those calibrations are described along with changes in instrument characteristics that occurred during the flight season as a result of factors such as detachment of the optical fibers to two of the four AVIRIS spectrometers, degradation in the optical alignment of the spectrometers due to thermally-induced and mechanical warpage, and breakage of a thermal blocking filter in one of the spectrometers. These factors caused loss of signal in three spectrometers, loss of spectral resolution in two spectrometers, and added uncertainty in the radiometry of AVIRIS. Results from in-flight assessment of the laboratory calibrations are presented. A discussion is presented of improvements made to the instrument since the end of the first flight season and plans for the future. Improvements include: (1) a new thermal control system for stabilizing spectrometer temperatures, (2) kinematic mounting of the spectrometers to the instrument rack, and (3) new epoxy for attaching the optical fibers inside their mounting tubes.

  7. Definition of a metrology servo-system for a solar imaging fourier transform spectrometer working in the far UV (IFTSUV)

    Science.gov (United States)

    Ruiz de Galarreta Fanju, C.; Philippon, A.; Bouzit, M.; Appourchaux, T.; Vial, J.-C.; Maillard, J.-P.; Lemaire, P.

    2017-11-01

    The understanding of the solar outer atmosphere requires a simultaneous combination of imaging and spectral observations concerning the far UV lines that arise from the high chromospheres up to the corona. These observations must be performed with enough spectral, spatial and temporal resolution to reveal the small atmospheric structures and to resolve the solar dynamics. An Imaging Fourier Transform Spectrometer working in the far-UV (IFTSUV, Figure 1) is an attractive instrumental solution to fulfill these requirements. However, due to the short wavelength, to preserve IFTSUV spectral precision and Signal to Noise Ratio (SNR) requires a high optical surface quality and a very accurate (linear and angular) metrology to maintain the optical path difference (OPD) during the entire scanning process by: optical path difference sampling trigger; and dynamic alignment for tip/tilt compensation (Figure 2).

  8. Study of Novel EUV Absorber : Nickel and Nickel Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Dong Gon; Kim, Jung Hwan; Kim, Jung Sik; Hong, Seongchul; Ahn, Jinho [Hanyang University, Seoul (Korea, Republic of)

    2017-03-15

    The shadowing effect is one of the most urgent issues yet to be solved in high-volume manufacturing using extreme ultraviolet lithography (EUVL). Many studies have been conducted to mitigate the unexpected results caused by shadowing effects. The simplest way to mitigate the shadowing effect is to reduce the thickness of the absorber. Since nickel has high extinction coefficients in the EUV wavelengths, it is one of more promising absorber material candidates. A Ni based absorber exhibited imaging performance comparable to a Tantalum nitride absorber. However, the Ni-based absorber showed a dramatic reduction in horizontal-vertical critical dimension (H-V CD) bias. Therefore, limitations in fabricating a EUV mask can be mitigated by using the Ni based absorber.

  9. Contamination Effects on EUV Optics

    Science.gov (United States)

    Tveekrem, J.

    1999-01-01

    During ground-based assembly and upon exposure to the space environment, optical surfaces accumulate both particles and molecular condensibles, inevitably resulting in degradation of optical instrument performance. Currently, this performance degradation (and the resulting end-of-life instrument performance) cannot be predicted with sufficient accuracy using existing software tools. Optical design codes exist to calculate instrument performance, but these codes generally assume uncontaminated optical surfaces. Contamination models exist which predict approximate end-of-life contamination levels, but the optical effects of these contamination levels can not be quantified without detailed information about the optical constants and scattering properties of the contaminant. The problem is particularly pronounced in the extreme ultraviolet (EUV, 300-1,200 A) and far (FUV, 1,200-2,000 A) regimes due to a lack of data and a lack of knowledge of the detailed physical and chemical processes involved. Yet it is in precisely these wavelength regimes that accurate predictions are most important, because EUV/FUV instruments are extremely sensitive to contamination.

  10. Aerosol optical thickness of Mt. Etna volcanic plume retrieved by means of the Airborne Multispectral Imaging Spectrometer (MIVIS

    Directory of Open Access Journals (Sweden)

    L. Merucci

    2003-06-01

    Full Text Available Within the framework of the European MVRRS project (Mitigation of Volcanic Risk by Remote Sensing Techniques, in June 1997 an airborne campaign was organised on Mt. Etna to study different characteristics of the volcanic plume emitted by the summit craters in quiescent conditions. Digital images were collected with the Airborne Multispectral Imaging Spectrometer (MIVIS, together with ground-based measurements. MIVIS images were used to calculate the aerosol optical thickness of the volcanic plume. For this purpose, an inversion algorithm was developed based on radiative transfer equations and applied to the upwelling radiance data measured by the sensor. This article presents the preliminary results from this inversion method. One image was selected following the criteria of concomitant atmospheric ground-based measurements necessary to model the atmosphere, plume centrality in the scene to analyse the largest plume area and cloudless conditions. The selected image was calibrated in radiance and geometrically corrected. The 6S (Second Simulation of the Satellite Signal in the Solar Spectrum radiative transfer model was used to invert the radiative transfer equation and derive the aerosol optical thickness. The inversion procedure takes into account both the spectral albedo of the surface under the plume and the topographic effects on the refl ected radiance, due to the surface orientation and elevation. The result of the inversion procedure is the spatial distribution of the plume optical depth. An average value of 0.1 in the wavelength range 454-474 nm was found for the selected measurement day.

  11. EUV mask process specifics and development challenges

    Science.gov (United States)

    Nesladek, Pavel

    2014-07-01

    EUV lithography is currently the favorite and most promising candidate among the next generation lithography (NGL) technologies. Decade ago the NGL was supposed to be used for 45 nm technology node. Due to introduction of immersion 193nm lithography, double/triple patterning and further techniques, the 193 nm lithography capabilities was greatly improved, so it is expected to be used successfully depending on business decision of the end user down to 10 nm logic. Subsequent technology node will require EUV or DSA alternative technology. Manufacturing and especially process development for EUV technology requires significant number of unique processes, in several cases performed at dedicated tools. Currently several of these tools as e.g. EUV AIMS or actinic reflectometer are not available on site yet. The process development is done using external services /tools with impact on the single unit process development timeline and the uncertainty of the process performance estimation, therefore compromises in process development, caused by assumption about similarities between optical and EUV mask made in experiment planning and omitting of tests are further reasons for challenges to unit process development. Increased defect risk and uncertainty in process qualification are just two examples, which can impact mask quality / process development. The aim of this paper is to identify critical aspects of the EUV mask manufacturing with respect to defects on the mask with focus on mask cleaning and defect repair and discuss the impact of the EUV specific requirements on the experiments needed.

  12. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plates for energetic protons, deuterons, and alpha particles

    Science.gov (United States)

    Freeman, Charles; Canfield, Michael; Graeper, Gavin; Lombardo, Andrew; Stillman, Collin; Fiksel, Gennady; Stoeckl, Christian; Sinenian, Nareg

    2010-11-01

    A Thomson parabola ion spectrometer (TPIS) has been designed and built to study energetic ions accelerated from the rear surface of targets irradiated by ultra-intense laser light from the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE). The device uses a permanent magnet and a pair of electrostatic deflector plates to produce parallel magnetic and electric fields, which cause ions of a given charge-to-mass ratio to be deflected onto parabolic curves on the detector plane. The position of the ion along the parabola can be used to determine its energy. Fujifilm imaging plates (IP) are placed in the rear of the device and are used to detect the incident ions. The energy dispersion of the spectrometer has been calibrated using monoenergetic ion beams from the SUNY Geneseo 1.7 MV pelletron accelerator. The IP sensitivity has been measured for protons and deuterons with energies between 0.6 MeV and 3.4 MeV, and for alpha particles with energies between 1.5 MeV and 5.1 MeV.

  13. Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN

    CERN Document Server

    Antonello, A.; Baibussinov, B.; Bilokon, H.; Boffelli, F.; Bonesini, M.; Calligarich, E.; Canci, N.; Centro, S.; Cesana, A.; Cieslik, K.; Cline, D.B.; Cocco, A.G.; Dequal, D.; Dermenev, A.; Dolfini, R.; De Gerone, M.; Dussoni, S.; Farnese, C.; Fava, A.; Ferrari, A.; Fiorillo, G.; Garvey, G.T.; Gatti, F.; Gibin, D.; Gninenko, S.; Guber, F.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Ivashkin, A.; Kirsanov, M.; Kisiel, J.; Kochanek, I.; Kurepin, A.; Lagoda, J.; Lucchini, G.; Louis, W.C.; Mania, S.; Mannocchi, G.; Marchini, S.; Matveev, V.; Menegolli, A.; Meng, G.; Mills, G.B.; Montanari, C.; Nicoletto, M.; Otwinowski, S.; Palczewki, T.J.; Passardi, G.; Perfetto, F.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Sala, P.; Scaramelli, A.; Segreto, E.; Stefan, D.; Stepaniak, J.; Sulej, R.; Suvorova, O.; Terrani, M.; Tlisov, D.; Van de Water, R.G.; Trinchero, G.; Turcato, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H.G.; Yang, X.; Zani, A.; Zaremba, K; Benettoni, M.; Bernardini, P.; Bertolin, A.; Brugnera, R.; Calabrese, M.; Cecchetti, A.; Cecchini, S.; Collazuol, G.; Creti, P.; Corso, F.Dal; Del Prete, A.; De Mitri, I.; De Robertis, G.; De Serio, M.; Esposti, L.Degli; Di Ferdinando, D.; Dore, U.; Dusini, S.; Fabbricatore, P.; Fanin, C.; Fini, R.A.; Fiore, G.; Garfagnini, A.; Giacomelli, G.; Giacomelli, R.; Guandalini, C.; Guerzoni, M.; Kose, U.; Laurenti, G.; Laveder, M.; Lippi, I.; Loddo, F.; Longhin, A.; Loverre, P.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marsella, G.; Mauri, N.; Medinaceli, E.; Mengucci, A.; Mezzetto, M.; Michinelli, R.; Muciaccia, M.T.; Orecchini, D.; Paoloni, A.; Papadia, G.; Pastore, A.; Patrizii, L.; Pozzato, M.; Rosa, G.; Sahnounm, Z.; Simone, S.; Sioli, M.; Sirri, G.; Spurio, M.; Stanco, L.; Surdo, A.; Tenti, M.; Togo, V.; Ventura, M.; Zago, M.

    2012-01-01

    A new experiment with an intense ~2 GeV neutrino beam at CERN SPS is proposed in order to definitely clarify the possible existence of additional neutrino states, as pointed out by neutrino calibration source experiments, reactor and accelerator experiments and measure the corresponding oscillation parameters. The experiment is based on two identical LAr-TPCs complemented by magnetized spectrometers detecting electron and muon neutrino events at Far and Near positions, 1600 m and 300 m from the proton target, respectively. The ICARUS T600 detector, the largest LAr-TPC ever built with a size of about 600 ton of imaging mass, now running in the LNGS underground laboratory, will be moved at the CERN Far position. An additional 1/4 of the T600 detector (T150) will be constructed and located in the Near position. Two large area spectrometers will be placed downstream of the two LAr-TPC detectors to perform charge identification and muon momentum measurements from sub-GeV to several GeV energy range, greatly comple...

  14. Satellite observations of snow and ice with an imaging passive microwave spectrometer

    Science.gov (United States)

    Fisher, A. D.; Ledsham, B. L.; Rosenkranz, P. W.; Staelin, D. H.

    1976-01-01

    The scanning microwave spectrometer (SCAMS) on the Nimbus-6 satellite continuously maps the terrestrial surface with a resolution of about 150 km at 22.235 and 31.400 GHz. SCAMS observes at six angles besides nadir, yielding brightness temperatures which are a function of the distribution and character of various types of snow and ice, including microstructure and subsurface profiles in refractive index, loss (moisture or salinity), and temperature. Spectral signatures exhibiting interesting topographical structure have been observed. To aid in the interpretation of these data, a model was developed to describe the propagation of microwave intensity in a scattering medium characterized by three-dimensional random fluctuations of refractive index in addition to nonrandom variations in permittivity, temperature, and loss. The model combines Maxwell's equations in the Born approximation with radiative-transfer theory; this approach yields the variation of intensity with polarization, direction, and position.

  15. A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E; Bentley, C; Workman, J; Peterson, B; Mussack, K; Cowan, J; Prasad, R; Richardson, M; Burns, S; Kalantar, D H; Benedetti, L R; Bell, P; Bradley, D; Hsing, W; Stevenson, M

    2012-05-01

    A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors (GXD) it records sixteen time-gated spectra between 250 and 1000eV with 100ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and VUV beamline at the National Synchrotron Light Source (NSLS), evidence a <100{micro}m spatial resolution in combination with a source-size limited spectral resolution that is <10eV at photon energies of 300eV.

  16. Phenomena of non-thermal electrons from the X-ray imaging crystal spectrometer on J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yan, W. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Chen, Z.Y., E-mail: zychen@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Jin, W. [Center of Interface Dynamics for Sustainability, China Academy of Engineering Physics, Chengdu 610200, Sichuan (China); Huang, D.W. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Lee, S.G.; Shi, Y.J. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Tong, R.H.; Wang, S.Y.; Wei, Y.N.; Ma, T.K.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2016-11-01

    Highlights: • Some lines from X-ray imaging crystal spectrometer (XICS) can be enhanced by non-thermal electrons, such as q, r satellite lines and z lines. • Analyze the non-thermal phenomena can reduce the error of electron temperature deduced from the intensity ratio of different lines of the He-like argon spectra from XICS. • XICS can be a tool to measure the non-thermal phenomena from these enhanced lines. - Abstract: A high spectra resolution X-ray imaging crystal spectrometer has been implemented on J-TEXT Tokamak for the measurements of K{sub α} spectra of helium-like argon and its satellite lines. The wavelength range of K{sub α} spectra of helium-like argon is from 3.9494 Å to 3.9944 Å that includes the resonance line w, intercombination lines x and y, forbidden line z and numerous satellite lines, referenced using standard Gabriel notation. In low-density discharge, the intensity of q, r satellite lines and z lines can be significantly enhanced by non-thermal electrons. Non-thermal electrons are produced due to the low plasma density. The high hard X-ray flux from NaI detector and significant downshift electron cyclotron emissions from energetic runaway electrons also indicated that there is a large population of runaway electrons in the low-density discharge. The non-thermal part of electrons can affect the excitation/transition equilibrium or ionization/recombination equilibrium. The q line is mainly produced by inner-shell excitation of lithium-like argon, and the r line is partially produced by inner-shell excitation of lithium-like argon and dielectronic recombination of helium-like argon.

  17. Preparations for EUV interferometry of the 0.3 NA MET optic

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Denham, Paul E.; Rekawa, Senajith B.; Jackson, Keith H.; Liddle, J. Alexander; Harteneck, Bruce; Gullikson, Eric; Anderson, Erik H.

    2003-10-30

    An at-wavelength interferometer is being created for the measurement and alignment of the 0.3 numerical aperture Micro Exposure Tool projection optic at EUV wavelengths. The prototype MET system promises to provide early learning from EUV lithographic imaging down to 20-nm feature size. The threefold increase to 0.3 NA in the image-side numerical aperture presents several challenges for the extension of ultra-high-accuracy interferometry, including pinhole fabrication and the calibration and removal of systematic error sources.

  18. New method of detection and classification of yield-impacting EUV mask defects

    Science.gov (United States)

    Graur, Ioana; Vengertsev, Dmitry; Raghunathan, Ananthan; Stobert, Ian; Rankin, Jed

    2015-10-01

    Extreme ultraviolet lithography (EUV) advances printability of small size features for both memory and logic semiconductor devices. It promises to bring relief to the semiconductor manufacturing industry, removing the need for multiple masks in rendering a single design layer on wafer. However, EUV also brings new challenges, one of which is of mask defectivity. For this purpose, much of the focus in recent years has been in finding ways to adequately detect, characterize, and reduce defects on both EUV blanks and patterned masks. In this paper we will present an efficient way to classify and disposition EUV mask defects through a new algorithm developed to classify defects located on EUV photomasks. By processing scanning electronmicroscopy images (SEM) of small regions of a photomask, we extract highdimensional local features Histograms of Oriented Gradients (HOG). Local features represent image contents compactly for detection or classification, without requiring image segmentation. Using these HOGs, a supervised classification method is applied which allows differentiating between nondefective and defective images. In the new approach we have developed a superior method of detection and classification of defects, using mask and supporting mask printed data from several metallization masks. We will demonstrate that use of the HOG method allows realtime identification of defects on EUV masks regardless of geometry or construct. The defects identified by this classifier are further divided into subclasses for mask defect disposition: foreign material, foreign material from previous step, and topological defects. The goal of disposition is to categorize on the images into subcategories and provide recommendation of prescriptive actions to avoid impact on the wafer yield.

  19. An Imaging Fourier Transform Spectrometer for the Next Generation Space Telescope

    OpenAIRE

    Graham, James R.

    1999-01-01

    Due to its simultaneous deep imaging and integral field spectroscopic capability, an Imaging Fourier Transform Spectrograph (IFTS) is ideally suited to the Next Generation Space Telescope (NGST) mission, and offers opportunities for tremendous scientific return in many fields of astrophysical inquiry. We describe the operation and quantify the advantages of an IFTS for space applications. The conceptual design of the Integral Field Infrared Spectrograph (IFIRS) is a wide field (5'.3 x 5'.3) f...

  20. Nanoplasmonic generation of ultrashort EUV pulses

    Science.gov (United States)

    Choi, Joonhee; Lee, Dong-Hyub; Han, Seunghwoi; Park, In-Yong; Kim, Seungchul; Kim, Seung-Woo

    2012-10-01

    Ultrashort extreme-ultraviolet (EUV) light pulses are an important tool for time-resolved pump-probe spectroscopy to investigate the ultrafast dynamics of electrons in atoms and molecules. Among several methods available to generate ultrashort EUV light pulses, the nonlinear frequency upconversion process of high-harmonic generation (HHG) draws attention as it is capable of producing coherent EUV pulses with precise control of burst timing with respect to the driving near-infrared (NIR) femtosecond laser. In this report, we present and discuss our recent experimental data obtained by the plasmon-driven HHG method that generate EUV radiation by means of plasmonic nano-focusing of NIR femtosecond pulses. For experiment, metallic waveguides having a tapered hole of funnel shape inside were fabricated by adopting the focused-ion-beam process on a micro-cantilever substrate. The plasmonic field formed within the funnelwaveguides being coupled with the incident femtosecond pulse permitted intensity enhancement by a factor of ~350, which creates a hot spot of sub-wavelength size with intensities strong enough for HHG. Experimental results showed that with injection of noble gases into the funnel-waveguides, EUV radiation is generated up to wavelengths of 32 nm and 29.6 nm from Ar and Ne gas atoms, respectively. Further, it was observed that lower-order EUV harmonics are cut off in the HHG spectra by the tiny exit aperture of the funnel-waveguide.

  1. Laser post-ionisation combined with a high resolving power orbitrap mass spectrometer for enhanced MALDI-MS imaging of lipids.

    Science.gov (United States)

    Ellis, S R; Soltwisch, J; Paine, M R L; Dreisewerd, K; Heeren, R M A

    2017-06-29

    Coupling laser post-ionisation with a high resolving power MALDI Orbitrap mass spectrometer has realised an up to ∼100-fold increase in the sensitivity and enhanced the chemical coverage for MALDI-MS imaging of lipids relative to conventional MALDI. This could constitute a major breakthrough for biomedical research.

  2. Demonstration of imaging Fourier Transform Spectrometer (FTS) performance for planetary and geostationary Earth observing

    Science.gov (United States)

    Revercomb, Henry E.; Sromovsky, Lawrence A.; Fry, Patrick M.; Best, Fred A.; LaPorte, Daniel D.

    2001-02-01

    The combination of massively parallel spatial sampling and accurate spectral radiometry offered by imaging FTS makes it extremely attractive for earth and planetary remote sensing. We constructed a breadboard instrument to help assess the potential for planetary applications of small imaging FTS instruments in the 1-5 micrometers range. The results also support definition of the NASA Geostationary Imaging FTS instrument that will make key meteorological and climate observations from geostationary earth orbit. The PIFTS pivoting voice- coil delay scan mechanism, and laser diode metrology system. The interferometer optical output is measured by a commercial IR camera procured from Santa Barbara Focal plane. It uses an InSb 128 by 128 detector array that covers the entire FOV of the instrument when coupled with a 25-mm focal length commercial camera lens. With appropriate lenses and cold filters the instrument can be used from the visible to 5 micrometers . The delay scan is continuos, but slow, covering the maximum range of +/- 0.4 cm in 37.56 sec at a rate of 500 image frames per second. Image exposures are timed to be centered around predicted zero crossings. The design allows for prediction algorithms that account for the most recent fringe rate so that timing jitter produced by scan speed variations can be minimized. Response to a fixed source is linear with exposure time nearly to the point of saturation. Linearity with respect to input variations was demonstrated to within 0.16 percent using a 3-point blackbody calibration. Imaging of external complex scenes was carried out at low and high spectral resolution. These require full complex calibration to remove background contributions that vary dramatically over the instrument FOV. Testing is continuing to demonstrate the precise radiometric accuracy and noise characteristics.

  3. EUV-mirror, optical system with EUV-mirror and associated operating method

    NARCIS (Netherlands)

    Dinger, U.; Bijkerk, Frederik; Bayraktar, Muharrem; Dier, O.

    2016-01-01

    An EUV mirror (1000) has a mirror element which forms a mirror surface of the mirror. The mirror element has a substrate (1020) and a multilayer arrangement (1030) applied on the substrate and having a reflective effect with respect to radiation from the extreme ultraviolet range (EUV). The

  4. Correlation spectrometer

    Science.gov (United States)

    Sinclair, Michael B [Albuquerque, NM; Pfeifer, Kent B [Los Lunas, NM; Flemming, Jeb H [Albuquerque, NM; Jones, Gary D [Tijeras, NM; Tigges, Chris P [Albuquerque, NM

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  5. Caliste 256: A CdTe imaging spectrometer for space science with a 580 {mu}m pixel pitch

    Energy Technology Data Exchange (ETDEWEB)

    Limousin, O., E-mail: olimousin@cea.fr [CEA/Saclay, DSM/Irfu/Service d' Astrophysique, F-91191 Gif-sur-Yvette (France); Lugiez, F.; Gevin, O. [CEA/Saclay, DSM/Irfu/Service d' Electronique Detecteurs et Informatique, F-91191 Gif-sur-Yvette (France); Meuris, A.; Blondel, C. [CEA/Saclay, DSM/Irfu/Service d' Astrophysique, F-91191 Gif-sur-Yvette (France); Delagnes, E. [CEA/Saclay, DSM/Irfu/Service d' Electronique Detecteurs et Informatique, F-91191 Gif-sur-Yvette (France); Donati, M.; Le Mer, I.; Martignac, J.; Pinsard, F. [CEA/Saclay, DSM/Irfu/Service d' Astrophysique, F-91191 Gif-sur-Yvette (France); Vassal, M.C.; Bocage, R.; Soufflet, F. [3D Plus, 641 rue Helene Boucher, F-78532 Buc (France)

    2011-08-11

    Caliste project aims at hybridizing 1 cm{sup 2} CdTe or CdZnTe pixel detectors with low-noise full custom front-end electronics, in a single component standing in a 1x1x2 cm{sup 3} volume. Caliste device is 4-side buttable and can be used as elementary detection unit of a large mosaic to form a hard X-ray focal plane of any size and shape. Caliste is especially designed to match astronomical space mission requirements and its design takes into account environmental constraints, radiation environment in particular. This new imaging spectrometer for hard X-rays detection offers high spectral and spatial resolution together with accurate time-tagging capability and low dead time. Caliste concept relies on a 3D hybridization technology that consists in stacking full custom ASICs perpendicular to the detection surface into a single component. This technique simultaneously permits to realize a buttable imager and to enhance performance and uniformity response. Our last prototype is called Caliste 256 and integrates 16x16 pixels array, 580 {mu}m pitch and 256 corresponding independent spectroscopy channels. This paper presents Caliste 256 design and properties. We emphasize spectral performance and demonstrate spectral resolution capabilities better than 1 keV FWHM at 60 keV.

  6. The Fourier Imaging X-ray Spectrometer (FIXS) for the Argentinian, Scout-launched satelite de Aplicaciones Cienficas-1 (SAC-1)

    Science.gov (United States)

    Dennis, Brian R.; Crannell, Carol JO; Desai, Upendra D.; Orwig, Larry E.; Kiplinger, Alan L.; Schwartz, Richard A.; Hurford, Gordon J.; Emslie, A. Gordon; Machado, Marcos; Wood, Kent

    1988-01-01

    The Fourier Imaging X-ray Spectrometer (FIXS) is one of four instruments on SAC-1, the Argentinian satellite being proposed for launch by NASA on a Scout rocket in 1992/3. The FIXS is designed to provide solar flare images at X-ray energies between 5 and 35 keV. Observations will be made on arcsecond size scales and subsecond time scales of the processes that modify the electron spectrum and the thermal distribution in flaring magnetic structures.

  7. Recent advances in airborne terrestrial remote sensing with the NASA airborne visible/infrared imaging spectrometer (AVIRIS), airborne synthetic aperture radar (SAR), and thermal infrared multispectral scanner (TIMS)

    Science.gov (United States)

    Vane, Gregg; Evans, Diane L.; Kahle, Anne B.

    1989-01-01

    Significant progress in terrestrial remote sensing from the air has been made with three NASA-developed sensors that collectively cover the solar-reflected, thermal infrared, and microwave regions of the electromagnetic spectrum. These sensors are the airborne visible/infrared imaging spectrometer (AVIRIS), the thermal infrared mapping spectrometer (TIMS) and the airborne synthetic aperture radar (SAR), respectively. AVIRIS and SAR underwent extensive in-flight engineering testing in 1987 and 1988 and are scheduled to become operational in 1989. TIMS has been in operation for several years. These sensors are described.

  8. Uncertainty analysis of in-flight spectral calibration for hyperspectral imaging spectrometers

    Science.gov (United States)

    Zhao, Huijie; Geng, Ruonan; Jia, Guorui; Wang, Daming

    2017-10-01

    Hyperspectral imaging instrument performance, especially spectral response parameters, may change when the sensors work in-flight due to vibrations, temperature and pressure changes compared with the laboratory status. In order to derive valid information from imaging data, accurate spectral calibration accompanied by uncertainty analysis to the data must be made. The purpose of this work is to present a process to estimate the uncertainties of in-flight spectral calibration parameters by analyzing the sources of uncertainty and calculating their sensitivity coefficients. In the in-flight spectral calibration method, the band-center and bandwidth determinations are made by correlating the in-flight sensor measured radiance with reference radiance. In this procedure, the uncertainty analysis is conducted separately for three factors: (a) the radiance calculated from imaging data; (b) the reference data; (c) the matching process between the above two items. To obtain the final uncertainty, contributions due to every impact factor must be propagated through this process. Analyses have been made using above process for the Hyperion data. The results show that the shift of band-center in the oxygen absorption (about 762nm), compared with the value measured in the lab, is less than 0.9nm with uncertainties ranging from 0.063nm to 0.183nm related to spatial distribution along the across-track direction of the image, the change of bandwidth is less than 1nm with uncertainties ranging from 0.066nm to 0.166nm. This results verify the validity of the in-flight spectral calibration process.

  9. Comparison of EUV spectral and ion emission features from laser-produced Sn and Li plasmas

    Science.gov (United States)

    Coons, R. W.; Campos, D.; Crank, M.; Harilal, S. S.; Hassanein, A.

    2010-04-01

    Planar slabs of pure Sn and Li were irradiated with 1064 nm, 9 ns Nd:YAG laser pulses. The resulting plasmas were evaluated with an absolutely calibrated extreme ultraviolet (EUV) power tool, a transmission grating spectrograph, a pinhole camera, and a Faraday cup. These diagnostic tools have allowed us to determine EUV conversion efficiency (CE), EUV spectral emission features, EUV-emitting plasma size, and the kinetic energies and fluxes of ions at various laser intensities for both Sn and Li plasmas. The maximum estimated CE values for Li and Sn plasmas are 1 +/- 0.1 % and 2 +/- 0.2 %, respectively. The Li2+ Lyman-α line and Sn8-13+ lines generate the in-band emissions of Li and Sn. The intensity of Li2+ lines was found to increase with laser intensity. However, the Sn unresolved transmission array (UTA) showed remarkable changes with at higher laser intensities, including the appearance of a spectral dip. EUV plasma images showed that Sn plasmas take on a conical shape, as opposed to the hemispherical shape of Li plasmas. Ion debris analysis showed the kinetic energies for Li ions are less than that of Sn ions under similar conditions. Moreover, the kinetic spread of Li ions has been found to be narrower compared to the kinetic energy distribution of the Sn ions. We also compared the ion flux emitted by Sn and Li plasmas.

  10. Smartphone Spectrometers

    Directory of Open Access Journals (Sweden)

    Andrew J.S. McGonigle

    2018-01-01

    Full Text Available Smartphones are playing an increasing role in the sciences, owing to the ubiquitous proliferation of these devices, their relatively low cost, increasing processing power and their suitability for integrated data acquisition and processing in a ‘lab in a phone’ capacity. There is furthermore the potential to deploy these units as nodes within Internet of Things architectures, enabling massive networked data capture. Hitherto, considerable attention has been focused on imaging applications of these devices. However, within just the last few years, another possibility has emerged: to use smartphones as a means of capturing spectra, mostly by coupling various classes of fore-optics to these units with data capture achieved using the smartphone camera. These highly novel approaches have the potential to become widely adopted across a broad range of scientific e.g., biomedical, chemical and agricultural application areas. In this review, we detail the exciting recent development of smartphone spectrometer hardware, in addition to covering applications to which these units have been deployed, hitherto. The paper also points forward to the potentially highly influential impacts that such units could have on the sciences in the coming decades.

  11. Wavelength-specific reflections: A decade of EUV actinic mask inspection research

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth; Mochi, Iacopo

    2010-12-31

    Mask inspection is essential for the success of any pattern-transfer lithography technology, and EUV Lithography in particular faces unique challenges. EUV masks resonant-reflective multilayer coatings have a narrow, wavelength-specific response that dramatically affects the way that defects appear, or disappear, at various illuminating wavelengths. Furthermore, the ever-shrinking size of 'critical' defects limits the potential effectiveness of DUV inspection techniques over time. Researchers pursuing numerous ways of finding and characterizing defects on EUV masks and have met with varying degrees of success. Their lessons inform the current, urgent exploration to select the most effective techniques for high-volume manufacturing. Ranging from basic research and demonstration experiments to commercial inspection tool prototypes, we survey the recent history of work in this area, including sixteen projects in Europe, Asia, and America. Solutions range from scanning beams to microscopy, dark field imaging to pattern transfer.

  12. Non-collinear upconversion of incoherent light: designing infrared spectrometers and imaging systems

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Pedersen, Christian

    2014-01-01

    for each angle of propagation. Non-collinear phase matching has been an area of limited attention for many years due to inherent incompatibility with tightly focused laser beams typically used for most second order processes in order to achieve acceptable conversion efficiency. The development....... It is, however, straightforward to increase the incoherent power by increasing the receiving aperture of the upconversion unit i.e. the diameter of the upconversion laser beam. Hence, the optimal conversion efficiency for incoherent light is not achieved by tightly focused beams. In this paper we show...... that filling the nonlinear crystal with as large a pump beam as possible yields the best conversion as this allows for upconversion of large angles of incoming incoherent light. We present results of non-collinear mixing and how it affects spectral and spatial resolution in the image and compare against...

  13. Design and fabrication of advanced EUV diffractive elements

    Energy Technology Data Exchange (ETDEWEB)

    Naulleau, Patrick P.; Liddle, J. Alexander; Salmassi, Farhad; Anderson, Erik H.; Gullikson, Eric M.

    2003-11-16

    As extreme ultraviolet (EUV) lithography approaches commercial reality, the development of EUV-compatible diffractive structures becomes increasingly important. Such devices are relevant to many aspects of EUV technology including interferometry, illumination, and spectral filtering. Moreover, the current scarcity of high power EUV sources makes the optical efficiency of these diffractive structures a paramount concern. This fact has led to a strong interest in phase-enhanced diffractive structures. Here we describe recent advancements made in the fabrication of such devices.

  14. Detection of Widespread Hydrated Materials on Vesta by the VIR Imaging Spectrometer on board the Dawn Mission

    Science.gov (United States)

    De Sanctis, M. C.; Combe, J.-Ph.; Ammannito, E.; Palomba, E.; Longobardo, A.; McCord, T. B.; Marchi, S.; Capaccioni, F.; Capria, M. T.; Mittlefehldt, D. W.; Pieters, C. M.; Sunshine, J.; Tosi, F.; Zambon, F.; Carraro, F.; Fonte, S.; Frigeri, A.; Magni, G.; Raymond, C. A.; Russell, C. T.; Turrini, D.

    2012-10-01

    Water plays a key role in the evolution of terrestrial planets, and notably in the occurrence of Earth's oceans. However, the mechanism by which water has been incorporated into these bodies—including Earth—is still extensively debated. Here we report the detection of widespread 2.8 μm OH absorption bands on the surface of the asteroid Vesta by the VIR imaging spectrometer on board Dawn. These observations are surprising as Vesta is fully differentiated with a basaltic surface. The 2.8 μm OH absorption is distributed across Vesta's surface and shows areas enriched and depleted in hydrated materials. The uneven distribution of hydrated mineral phases is unexpected and indicates ancient processes that differ from those believed to be responsible for OH on other airless bodies, like the Moon. The origin of Vestan OH provides new insight into the delivery of hydrous materials in the main belt and may offer new scenarios on the delivery of hydrous minerals in the inner solar system, suggesting processes that may have played a role in the formation of terrestrial planets.

  15. DETECTION OF WIDESPREAD HYDRATED MATERIALS ON VESTA BY THE VIR IMAGING SPECTROMETER ON BOARD THE DAWN MISSION

    Energy Technology Data Exchange (ETDEWEB)

    De Sanctis, M. C.; Ammannito, E.; Palomba, E.; Longobardo, A.; Capaccioni, F.; Capria, M. T.; Tosi, F.; Zambon, F.; Carraro, F.; Fonte, S.; Frigeri, A.; Magni, G. [Istituto di Astrofisica e Planetologia Spaziali, INAF, Rome (Italy); Combe, J.-Ph.; McCord, T. B. [Bear Fight Institute, Winthrop, WA (United States); Marchi, S. [NASA Lunar Science Institute, Boulder, CO (United States); Mittlefehldt, D. W. [NASA Johnson Space Center, Houston, TX (United States); Pieters, C. M. [Department of Geological Sciences, Brown University, Providence, RI (United States); Sunshine, J. [Department of Astronomy, University of Maryland, Maryland (United States); Raymond, C. A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States); Russell, C. T., E-mail: mariacristina.desanctis@iaps.inaf.it [Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA (United States); and others

    2012-10-20

    Water plays a key role in the evolution of terrestrial planets, and notably in the occurrence of Earth's oceans. However, the mechanism by which water has been incorporated into these bodies-including Earth-is still extensively debated. Here we report the detection of widespread 2.8 {mu}m OH absorption bands on the surface of the asteroid Vesta by the VIR imaging spectrometer on board Dawn. These observations are surprising as Vesta is fully differentiated with a basaltic surface. The 2.8 {mu}m OH absorption is distributed across Vesta's surface and shows areas enriched and depleted in hydrated materials. The uneven distribution of hydrated mineral phases is unexpected and indicates ancient processes that differ from those believed to be responsible for OH on other airless bodies, like the Moon. The origin of Vestan OH provides new insight into the delivery of hydrous materials in the main belt and may offer new scenarios on the delivery of hydrous minerals in the inner solar system, suggesting processes that may have played a role in the formation of terrestrial planets.

  16. Optimising Phenological Metrics Extraction for Different Crop Types in Germany Using the Moderate Resolution Imaging Spectrometer (MODIS

    Directory of Open Access Journals (Sweden)

    Xingmei Xu

    2017-03-01

    Full Text Available Phenological metrics extracted from satellite data (phenometrics have been increasingly used to access timely, spatially explicit information on crop phenology, but have rarely been calibrated and validated with field observations. In this study, we developed a calibration procedure to make phenometrics more comparable to ground-based phenological stages by optimising the settings of Best Index Slope Extraction (BISE and smoothing algorithms together with thresholds. We used a six-year daily Moderate Resolution Imaging Spectrometer (MODIS Normalized Difference Vegetation Index (NDVI time series and 211 ground-observation records from four major crop species (winter wheat/barley, oilseed rape, and sugar beet in central Germany. Results showed the superiority of the Savitzky–Golay algorithm in combination with BISE. The satellite-derived senescence dates matched ripeness stages of winter crops and the dates with maximum NDVI were closely related to the field-observed heading stage of winter cereals. We showed that the emergence of winter crops corresponded to the dates extracted with a threshold of 0.1, which translated into 8.89 days of root-mean-square error (RMSE improvement compared to the standard threshold of 0.5. The method with optimised settings and thresholds can be easily transferred and applied to areas with similar growing conditions. Altogether, the results improve our understanding of how satellite-derived phenometrics can explain in situ phenological observations.

  17. A high-field magnetic resonance imaging spectrometer using an oven-controlled crystal oscillator as the local oscillator of its radio frequency transceiver.

    Science.gov (United States)

    Liang, Xiao; Tang, Xin; Tang, Weinan; Gao, Jia-Hong

    2014-09-01

    A home-made high-field magnetic resonance imaging (MRI) spectrometer with multiple receiving channels is described. The radio frequency (RF) transceiver of the spectrometer consists of digital intermediate frequency (IF) circuits and corresponding mixing circuits. A direct digital synthesis device is employed to generate the IF pulse; the IF signal from a down-conversion circuit is sampled and followed by digital quadrature detection. Both the IF generation and the IF sampling use a 50 MHz clock. An oven-controlled crystal oscillator, which has outstanding spectral purity and a compact circuit, is used as the local oscillator of the RF transceiver. A digital signal processor works as the pulse programmer of the spectrometer, as a result, 32 control lines can be generated simultaneously while an event is triggered. Field programmable gate array devices are utilized as the auxiliary controllers of the IF generation, IF receiving, and gradient control. High performance, including 1 μs time resolution of the soft pulse, 1 MHz receiving bandwidth, and 1 μs time resolution of the gradient waveform, is achieved. High-quality images on a 1.5 T MRI system using the spectrometer are obtained.

  18. Mercury’s EUV Reflectance Spectrum From Mariner 10 Revisited

    Science.gov (United States)

    Vilas, Faith; Hendrix, Amanda R.; Jensen, Elizabeth A.

    2015-11-01

    Carbon, as graphite, has emerged from recent analyses of MESSENGER spectrophotometry and theoretical modeling as a possible source for the darkening component in the Low Reflectance Material (LRM), pervasive across Mercury’s surface. Murchie et al. (Icarus 254, 287, 2015) propose graphite, in amounts consistent with results from MESSENGER’s elemental experiments for the presence of C, as the most likely darkening component in LRM. Vander Kaaden and McCubbin (JGR Planets 120, 195, 2015) report that graphite would be the only buoyant phase in an early magma ocean, and any primary flotation crust would have retained C in the form of graphite. Alternatively, Gillis-Davis et al. (Abstract P1 1A-07, AGU, 2013) suggest that nanophase and microphase iron, produced by impacts into Mercury’s crust before and during the late heavy bombardment, could darken the LRM. Carbon in the forms of graphite and anthracite has distinctive far-UV spectral reflectance features. The MESSENGER MASCS UVVS spectrometer does not extend to wavelengths short enough to observe these features. The Mariner 10 EUV airglow spectrometer observed broad swaths of Mercury in 10 filters at wavelengths ranging from 304Å to 1657Å, each having 20Å passbands. We now re-analyze these data in a search for this distinctive UV signature of graphite across large areas of Mercury’s surface, and will report on the results.

  19. a Ground-Based LIDAR and Imaging Spectrometer Synchronous Experiment on Vegetation

    Science.gov (United States)

    Hong, T.; Luo, X.; Chen, H.; Hui, J.

    2017-09-01

    Extraction of vegetation canopy structure parameters is of great significance for researching global ecosystem and environment. Focused on the effective synergy between active and passive sensors, we carried out some ground-based observations about different vegetation on different terrains. In different experimental sites, a light detection and ranging (LiDAR) data and an imaging spectrum data of typical vegetation were collected from different directions and angles. Meanwhile, a variety of canopy structure parameters, including plant height, crown breadth, leaf area index, etc, were measured. The whole observed results form a comprehensive ground synchronous data set corresponding to flight data and provide data support for development and validation of synergic retrieval methods of vegetation canopy structure parameters. Our specific experimental objectives and design are introduced, including the selection of sampling plots, arrangement of observation stations, acquisition of active and passive data, and measurement of auxiliary data. The processing and practical applications of those obtained synchronous data are also discussed. Finally, our experimental experience is summarized and it is a valuable reference for remote sensing researchers.

  20. Wide field imaging spectrometer for ESA's future X-ray mission: XEUS

    CERN Document Server

    Strüder, L

    1999-01-01

    An active pixel sensor (APS) based on the DEpleted P-channel junction Field Effect Transistor (DEPFET) concept will be described as a potential wide field imager for ESA's high resolution, high throughput mission: 'X-ray Evolving Universe Spectroscopy' (XEUS). It comprises a parallel multichannel readout, low noise at high speed readout, backside illumination and a fill factor of 100% over the whole field of view. The depleted thickness will be 500 microns. These design parameters match the scientific requirements of the mission. The fabrication techniques of the DEPFET arrays are related to the high resistivity process of the X-ray pn-CCDs. Potential extensions of the already realized DEPFET structures are a non-destructive repetitive readout of the signal charges. This concept will be presented. As an alternative solution, frame store pn-CCDs are considered having the same format and pixel sizes as the proposed DEPFET arrays. Their development is a low risk, straightforward continuation of the XMM devices. ...

  1. A GROUND-BASED LIDAR AND IMAGING SPECTROMETER SYNCHRONOUS EXPERIMENT ON VEGETATION

    Directory of Open Access Journals (Sweden)

    T. Hong

    2017-09-01

    Full Text Available Extraction of vegetation canopy structure parameters is of great significance for researching global ecosystem and environment. Focused on the effective synergy between active and passive sensors, we carried out some ground-based observations about different vegetation on different terrains. In different experimental sites, a light detection and ranging (LiDAR data and an imaging spectrum data of typical vegetation were collected from different directions and angles. Meanwhile, a variety of canopy structure parameters, including plant height, crown breadth, leaf area index, etc, were measured. The whole observed results form a comprehensive ground synchronous data set corresponding to flight data and provide data support for development and validation of synergic retrieval methods of vegetation canopy structure parameters. Our specific experimental objectives and design are introduced, including the selection of sampling plots, arrangement of observation stations, acquisition of active and passive data, and measurement of auxiliary data. The processing and practical applications of those obtained synchronous data are also discussed. Finally, our experimental experience is summarized and it is a valuable reference for remote sensing researchers.

  2. Metal Oxide Nanoparticle Photoresists for EUV Patterning

    KAUST Repository

    Jiang, Jing

    2014-01-01

    © 2014SPST. Previous studies of methacrylate based nanoparticle have demonstrated the excellent pattern forming capability of these hybrid materials when used as photoresists under 13.5 nm EUV exposure. HfO2 and ZrO2 methacrylate resists have achieved high resolution (∼22 nm) at a very high EUV sensitivity (4.2 mJ/cm2). Further investigations into the patterning process suggests a ligand displacement mechanism, wherein, any combination of a metal oxide with the correct ligand could generate patterns in the presence of the suitable photoactive compound. The current investigation extends this study by developing new nanoparticle compositions with transdimethylacrylic acid and o-toluic acid ligands. This study describes their synthesis and patterning performance under 248 nm KrF laser (DUV) and also under 13.5 nm EUV exposures (dimethylacrylate nanoparticles) for the new resist compositions.

  3. EUV repair process optimization and integration

    Science.gov (United States)

    Nesládek, Pavel; Lajn, Alexander; Schedel, Thorsten; Bender, Markus

    2017-07-01

    EUV technology is according to current trend approaching the final development phase in which defect free EUV masks are of key importance for development and optimization of the lithography process. This task consists of three contributing aspects- defect free multilayer blank, mask manufacturing process with very low defect formation probability and availability of repair process for EUV mask. In comparison to optical mask, development of the repair process for EUV mask is different in several aspects. The fact, that the TaN absorber is placed on top of Mo/Si mirror is making the process very sensitive to variation of the mask material, as the etch rate of the mirror is significantly higher, than that of absorber, when no capping layer is present between the absorber and ML mirror. The presence of the Ru capping layer increases the process window due to significant selectivity improvement by one or two orders of magnitude, however, the capping layer is very sensitive to damage by preceding manufacturing processes. Its thickness and also it chemical purity - lack of modification by incorporation of impurities is crucial for successful mask repair. The repair process for optical masks is typically optimized using AIMS for both development and qualification of the process. The availability of EUV AIMS system is very limited, for what reason we have to rely on other measures during the process development and use the AIMS for process qualification only, or use correlation between e.g. CD SEM or AFM measurement and AIMS data for selection and qualification of the repair process. Also the usage of mask - exposure on the scanner is modifying the mask surface. Therefore the impact of the mask exposure needs to be investigated, when EUV gets in HVM stage. In the past, the influence of the mask cleaning process on the integrity of EUV mask was investigated, with respect to several lithography-critical parameters as actinic reflectivity, critical dimension (CD) shift, edge

  4. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers.

    Science.gov (United States)

    Cui, Yang; Hanley, Luke

    2015-06-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.

  5. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers

    Science.gov (United States)

    Cui, Yang; Hanley, Luke

    2015-01-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science. PMID:26133872

  6. Measurements and Modeling of Heliospheric EUV Spectral Irradiance and Luminosity

    Science.gov (United States)

    Floyd, L. E.; McMullin, D. R.; Auchere, F.

    2012-12-01

    For more than 15 years, The EIT and the later EUVI instruments aboard SoHO and STEREO, respectively, have provided a time series of images of the solar radiance in the HeII 30.4 nm transition region and three coronal emission lines (FeIX/X, FeXII, and FeXV) of differing temperatures. While the EIT measurements were gathered from a position very near to the Earth-Sun axis, the EUVI measurements were gathered at angles ranging up to and in excess of ±90 degrees in solar longitude from the Earth-Sun axis. Using a Differential Emission Measure (DEM) model, these measurements provide the basis for estimates of the spectral irradiance for the entire solar spectrum up to about 50 nm at any position in the heliosphere. These spectra are utilized in this work for two purposes. First, the photoionization rate of neutral He at each position is calculated. Neutral He is of interest because it traverses the heliopause relatively undisturbed and therefore provides a measure of isotopic parameters beyond the heliosphere. Second, we use these generate a time series of estimates of the solar EUV spectral luminosity extending from the recent post Solar Cycle 23 minimum into the current unusually weak rise of Solar Cycle 24. Because this EUV spectral luminosity is the sum of all solar radiation at each wavelength in every direction, their time series should not contain any systematic 27-day solar rotation periodicities as do typical solar activity indices and its presence would be an indication of time series reliability. This EUV luminosity time series is compared with other solar indices such as SSN and the F10.7 radio flux.

  7. Grazing incidence extreme ultraviolet spectrometer fielded with time resolution in a hostile z-pinch environment.

    Science.gov (United States)

    Williamson, K M; Kantsyrev, V L; Safronova, A S; Wilcox, P G; Cline, W; Batie, S; LeGalloudec, B; Nalajala, V; Astanovitsky, A

    2011-09-01

    This recently developed diagnostic was designed to allow for time-gated spectroscopic study of the EUV radiation (4 nm MCP) detector placed in an off-Rowland position. Each grating is positioned such that its diffracted radiation is cast over two of the six total independently timed frames of the MCP. The off-Rowland configuration allows for a much greater spectral density on the imaging plate but only focuses at one wavelength per grating. The focal wavelengths are chosen for their diagnostic significance. Testing was conducted at the Zebra pulsed-power generator (1 MA, 100 ns risetime) at the University of Nevada, Reno on a series of wire array z-pinch loads. Within this harsh z-pinch environment, radiation yields routinely exceed 20 kJ in the EUV and soft x-ray. There are also strong mechanical shocks, high velocity debris, sudden vacuum changes during operation, energic ion beams, and hard x-ray radiation in excess of 50 keV. The spectra obtained from the precursor plasma of an Al double planar wire array contained lines of Al IX and AlX ions indicating a temperature near 60 eV during precursor formation. Detailed results will be presented showing the fielding specifications and the techniques used to extract important plasma parameters using this spectrometer. © 2011 American Institute of Physics

  8. EUV micropatterning for biocompatibility control of PET

    Science.gov (United States)

    Reisinger, B.; Fahrner, M.; Frischauf, I.; Yakunin, S.; Svorcik, V.; Fiedorowicz, H.; Bartnik, A.; Romanin, C.; Heitz, J.

    2010-08-01

    We have investigated the influence of oriented microstructures at modified polyethylene terephthalate (PET) on the adhesion and alignment of Chinese hamster ovary (CHO) cells. For surface modification, the PET foils were exposed to the radiation of a laser-plasma extreme ultraviolet (EUV) source based on a double-stream gas-puff target. The emission of the plasma was focused onto the samples by means of a gold-plated ellipsoidal collector. The spectrum of the focused radiation covered the wavelength range from 9 to 70 nm. The PET samples were irradiated with the EUV pulses at a repetition rate of 10 Hz in a high vacuum. For control experiments, PET samples were also irradiated in air with the light of a 193 nm ArF-excimer laser. Different kinds of surface microstructures were obtained depending on the EUV or laser fluence and pulse number, including oriented wall- and ripple-type structures with lateral structure periods of a few µm. The surface morphology of polymer samples after the irradiation was investigated using a scanning electron microscope (SEM). Changes in chemical surface structure of the irradiated samples were investigated using X-ray photoelectron spectroscopy (XPS). We demonstrated that the cells show good adhesion and align along oriented wall- and ripple-type microstructures on PET surfaces produced by the EUV irradiation.

  9. Cross-Calibration of the GOES-R SUVI with On-Orbit Solar EUV Instruments

    Science.gov (United States)

    Darnel, Jonathan; Seaton, Daniel B.

    2016-05-01

    Maintaining the calibration of on-orbit instruments has always been a challenge, but one which is crucial for the accuracy of the data record. This challenge is magnified for solar Extreme UltraViolet (EUV) instruments. Absolute calibration is out of the question as stable and known sources of EUV irradiance are not practical in on-orbit environments. This leaves relative calibration against other solar EUV instruments whose calibration has been well tracked. The need for such cross-calibration efforts is especially acute for an instrument like the Solar Ultraviolet Imager (SUVI), which will fly on the GOES-R spacecraft later this year and is expected to provide two decades of solar observation between four identical instruments. Not only must calibration between the four instruments in the SUVI line be maintained, but the relative calibration between SUVI and both present day imagers like SDO/AIA and PROBA2/SWAP and future instruments yet to be developed must be established as well. We present the methodology developed using current on-orbit solar EUV instruments in order to maintain the calibration of the SUVI instruments.

  10. Investigation of alternate mask absorbers in EUV lithography

    Science.gov (United States)

    Burkhardt, Martin

    2017-03-01

    In order to succeed with such low-k1 lithography at EUV wavelength, we need to be able to print a grating at high contrast similar to ArF immersion tools, where a contrast exceeding 0.95 is achieved routinely. All 2d printing is composed of interference of x and y-directed diffraction orders and high contrast in 2d thus depends on such 1d grating contrast. Any low-k1 imaging will use either dipole or some other sort of extreme off-axis illumination such as cross-quad (cQuad). The two relevant magnitudes for any high contrast are the intrinsic contrast due to a monopole, and the spatial shift of the two images that are generated by the two monopoles making up the dipole exposure. In EUV with current absorbers, high contrast can currently only be achieved using monopole illumination, a technique that does not lend itself to process integration due to removal of wafer side telecentricity and resulting overlay problems at all but preferred pitch. For dipole illumination at low-k1 pitches, we collect only 0th order light and only one 1st diffracted order for each pole. This means that for a dipole at the resolution limit, the final image for horizontal l/s patterns consists of only four incident waves, one TE and one TM wave for each of the poles. In this paper, we screen absorber by n and k values. In the process, we introduce phasor notation in order to gain insight into the behavior of the absorber and try to understand the metrics. We investigate intrinsic contrast and image blur due to monopole image shift.

  11. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation

    Science.gov (United States)

    Green, R.O.; Pieters, C.; Mouroulis, P.; Eastwood, M.; Boardman, J.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Barr, D.; Buratti, B.; Cate, D.; Chatterjee, A.; Clark, R.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, Kenneth; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriquez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.

    2011-01-01

    The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric

  12. The EUV Emission in Comet-Solar Corona Interactions

    Science.gov (United States)

    Bryans, Paul; Pesnell, William Dean; Schrijver, Carolus J.; Brown, John C.; Battams, Karl; Saint-Hilaire, Pasal; Liu, Wei; Hudson, Hugh S.

    2011-01-01

    The Atmospheric Imaging Assembly (AlA) on the Solar Dynamics Observatory (SDO) viewed a comet as it passed through the solar corona on 2011 July 5. This was the first sighting of a comet by a EUV telescope. For 20 minutes, enhanced emission in several of the AlA wavelength bands marked the path of the comet. We explain this EUV emission by considering the evolution of the cometary atmosphere as it interacts with the ambient solar atmosphere. Water ice in the comet rapidly sublimates as it approaches the Sun. This water vapor is then photodissociated, primarily by Ly-alpha, by the solar radiation field to create atomic Hand O. Other molecules present in the comet also evaporate and dissociate to give atomic Fe and other metals. Subsequent ionization of these atoms can be achieved by a number of means, including photoionization, electron impact, and charge exchange with coronal protons and other highly-charged species. Finally, particles from the cometary atmosphere are thermalized to the background temperature of the corona. Each step could cause emission in the AlA bandpasses. We will report here on their relative contribution to the emission seen in the AlA telescopes.

  13. Influence of pressure on ion energy distribution functions in EUV-induced hydrogen plasmas

    Science.gov (United States)

    van de Ven, T. H. M.; Reefman, P.; de Meijere, C. A.; Banine, V. Y.; Beckers, J.

    2016-09-01

    Next-generation lithography tools currently use Extreme Ultraviolet (EUV) radiation to create even smaller features on computer chips. The high energy photons (92 eV) induce a plasma in the low pressure background gas by photoionization. Industries have realized that these plasmas are of significant importance with respect to machine lifetime because impacting ions affect exposed surfaces. The mass resolved ion energy distribution function (IEDF) is therefore one of the main plasma parameters of interest. In this research an ion mass spectrometer is used to investigate IEDFs of ions impacting on surfaces in EUV-induced plasmas. EUV radiation is focused into a vessel with a low pressure hydrogen environment. Here, photoionization creates free electrons with energies up to 76 eV, which further ionize the background gas. The influence of the pressure on plasma composition and IEDFs has been investigated in the range 0.1-10 Pa. In general the ion fluxes towards the surface increase with pressure. However, above 5 Pa the flux of H2+ is not affected by the increase in pressure due to the balance between the creation of H2+ and the conversion of H2+ to H3+. These results will be used to benchmark plasma scaling models and verify numerical simulations.

  14. Testing the Interstellar Wind Helium Flow Direction with Galileo Euvs Data

    Science.gov (United States)

    Pryor, W. R.; Simmons, K. E.; Ajello, J. M.; Tobiska, W. K.; Retherford, K. D.; Stern, S. A.; Feldman, P. D.; Frisch, P. C.; Bzowski, M.; Grava, C.

    2014-12-01

    Forty years of measurements of the flow of interstellar helium through the heliosphere suggest that variations of the flow direction with time are possible. We will model Galileo Extreme Ultraviolet Spectrometer (EUVS) data to determine the best-fitting flow direction and compare it to values obtained by other spacecraft. The Galileo EUVS (Hord et al., 1992) was mounted on the spinning part of the spacecraft and obtained interstellar wind hydrogen Lyman-alpha 121.6 nm and helium 58.4 nm data on great circles passing near the ecliptic poles during the interplanetary cruise phase of the mission and also during the Jupiter orbital phase of the mission. The Galileo hydrogen cruise data have been previously published (Hord et al., 1991, Pryor et al., 1992; 1996; 2001), but the helium data have not. Our model was previously used by Ajello et al., 1978, 1979 to model Mariner 10 interstellar wind helium data, and by Stern et al., 2012 and Feldman et al., 2012 to model the interplanetary helium background near the moon in Lunar Reconnaissance Orbiter (LRO) Lyman-alpha Mapping Project (LAMP) data. The model has been updated to include recent determinations of daily helium 58.4 nm solar flux variations and helium losses due to EUV photoionization and electron impact ionization.

  15. An instrument combining an electrospray ionization source and a velocity-map imaging spectrometer for studying delayed electron emission of polyanions

    Energy Technology Data Exchange (ETDEWEB)

    Concina, Bruno, E-mail: bruno.concina@univ-lyon1.fr; Papalazarou, Evangelos; Barbaire, Marc; Clavier, Christian; Maurelli, Jacques; Lépine, Franck; Bordas, Christian [Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France)

    2016-03-15

    An instrument combining an electrospray ionization source and a velocity-map imaging (VMI) spectrometer has been developed in order to study the delayed electron emission of molecular anions and especially of polyanions. It operates at a high repetition rate (kHz) in order to increase the acquisition speed. The VMI spectrometer has been upgraded for nanosecond time resolution by gating the voltages applied on the position-sensitive detector. Kinetic energy release distribution of thermionic emission (without any contribution from direct detachment) can be recorded for well-defined delays after the nanosecond laser excitation. The capability of the instrument is demonstrated by recording photodetachment spectra of the benchmark C{sub 60}{sup −} anion and C{sub 84}{sup 2−} dianion.

  16. Design Parameters and Objectives of a High-­Resolution X-­ray Imaging Crystal Spectrometer for the Large Helical Device (LHD)

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, M; Gates, D; Neilson, H; Reiman, A; Roquemore, A L; Morita, S; Goto, M; Yamada, H

    2010-05-19

    A high-resolution X-ray imaging crystal spectrometer, whose instrumental concept was thoroughly tested on NSTX and Alcator C-Mod, is presently being designed for LHD. The instrument will record spatially resolved spectra of helium-like Ar16+ and provide ion temperature profiles with spatial and temporal resolutions of 1 cm and > 10 ms which are obtained by a tomographic inversion of the spectral data, using the stellarator equilibrium reconstruction codes, STELLOPT and PIES. Since the spectrometer will be equipped with radiation hardened, high count rate, PILATUS detectors,, it is expected to be operational for all experimental conditions on LHD, which include plasmas of high density and plasmas with auxiliary RF and neutral beam heating. The special design features required by the magnetic field structure at LHD will be described.

  17. EUV mask pattern inspection with an advanced electron beam inspection system

    Science.gov (United States)

    Shimomura, Takeya; Inazuki, Yuichi; Tsukasa, Abe; Takikawa, Tadahiko; Morikawa, Yasutaka; Mohri, Hiroshi; Hayashi, Naoya; Wang, Fei; Ma, Long; Zhao, Yan; Kuan, Chiyan; Xiao, Hong; Jau, Jack

    2009-12-01

    Readiness of defect-free mask is one of the biggest challenges to insert extreme ultraviolet (EUV) lithography into semiconductor high volume manufacturing for 22nm half pitch (HP) node and beyond. According to ITRS roadmap updated in 2008, minimum size of defect needed to be removed is 25nm for 22nm HP node in 2013 [1]. It is necessary, therefore, to develop EUV mask pattern inspection tool being capable of detecting 25nm defect. Electron beam inspection (EBI) is one of promising tools which will be able to meet such a tight defect requirement. In this paper, we evaluated defect detection sensitivity of electron beam inspection (EBI) system developed by Hermes Microvision, Inc. (HMI) using 88nm half-pitch (HP) line-and-space (L/S) pattern and 128nm HP contact-hole (C/H) pattern EUV mask. We found the EBI system can detect 25nm defects. We, furthermore, fabricated 4 types of EUV mask structures: 1) w/ anti-reflective (AR) layer and w/ buffer layer, 2) w/ AR layer and w/o buffer layer, 3) w/o AR layer and w/ buffer layer, 4) w/o AR layer and w/o buffer layer. And the sensitivity and inspectability for the EBI were compared. It was observed that w/o AR layer structure introduce higher image contrast and lead to better inspectability, although there is no significant different in sensitivity.

  18. High-sensitivity, portable, tunable imaging X-ray spectrometer based on a spherical crystal and MCP

    CERN Document Server

    Monot, P; Dobosz, S; D'Oliveira, P; Hulin, S; Bougeard, M; Faenov, A Y; Pikuz, T A; Skobelev, I Y

    2002-01-01

    A portable (200x100x100 mm sup 3), high-luminosity, spherically bent crystal spectrometer was designed to measure very low emissivity X-ray spectra of different elements with spatial resolution in a wide spectral range (1.2-19.6 A). A large (50x15 mm sup 2) open aperture mica spherically bent crystal with R=150 mm was used as dispersive and focusing element. This spectrometer was associated with a large sensitive area (phi=40 mm) micro-channel plates assembly. This apparatus provides simultaneously high spectral (lambda/delta lambda approx 1800) and spatial (100-200 mu m) resolutions. Its large tunability allowed, without any adjustment of the spectrometer set-up, to record spectra in the 1.38-17.5 A wavelength range. We used the X-ray emission of femtosecond laser-produced plasmas from different materials ((CF sub 2) sub n , CaF sub 2 , Cu, Al) to test the spectrometer. Thanks to the high sensitivity (high collection efficiency) of the system, high quality space-resolved X-ray spectra of Fluorine and Aluminu...

  19. Plasma-based EUV light source

    Science.gov (United States)

    Shumlak, Uri; Golingo, Raymond; Nelson, Brian A.

    2010-11-02

    Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

  20. The Spectrometer

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2012-01-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating), and I began to realize that inside was some familiar old…

  1. Quantitative investigations of geologic surfaces utilizing airborne visible/infrared imaging spectrometer (AVIRIS) and polarimetric radar (AIRSAR) data for Death Valley, California

    Science.gov (United States)

    Kierein-Young, Kathryn S.; Kruse, Fred A.

    1991-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and polarimetric radar (AIRSAR) data were collected over Death Valley, California, USA, in September 1989. These two data sets were used to quantitatively characterize both the mineralogy and surface structure of the valley floor. Field mapping and characterization of the salt flats across the valley identified 16 separate units. The AVIRIS data were calibrated using the 'empirical line' method, and spectra extracted for the 16 units. A water vapor map was generated from the AVIRIS data and showed spatial variations in its distribution due to evaporation of surface water. Unmixing of the 16 spectral units produced maps of endmember abundance.

  2. Analytical techniques for mechanistic characterization of EUV photoresists

    Science.gov (United States)

    Grzeskowiak, Steven; Narasimhan, Amrit; Murphy, Michael; Ackerman, Christian; Kaminsky, Jake; Brainard, Robert L.; Denbeaux, Greg

    2017-03-01

    Extreme ultraviolet (EUV, 13.5 nm) lithography is the prospective technology for high volume manufacturing by the microelectronics industry. Significant strides towards achieving adequate EUV source power and availability have been made recently, but a limited rate of improvement in photoresist performance still delays the implementation of EUV. Many fundamental questions remain to be answered about the exposure mechanisms of even the relatively well understood chemically amplified EUV photoresists. Moreover, several groups around the world are developing revolutionary metal-based resists whose EUV exposure mechanisms are even less understood. Here, we describe several evaluation techniques to help elucidate mechanistic details of EUV exposure mechanisms of chemically amplified and metal-based resists. EUV absorption coefficients are determined experimentally by measuring the transmission through a resist coated on a silicon nitride membrane. Photochemistry can be evaluated by monitoring small outgassing reaction products to provide insight into photoacid generator or metal-based resist reactivity. Spectroscopic techniques such as thin-film Fourier transform infrared (FTIR) spectroscopy can measure the chemical state of a photoresist system pre- and post-EUV exposure. Additionally, electrolysis can be used to study the interaction between photoresist components and low energy electrons. Collectively, these techniques improve our current understanding of photomechanisms for several EUV photoresist systems, which is needed to develop new, better performing materials needed for high volume manufacturing.

  3. Four Years of EUVE Observations of the Bursting Gamma-Ray Emitting Blazar Markarian 421

    Science.gov (United States)

    Cagnoni, Ilaria; Fruscione, Antonella; Papadakis, Iossif

    1998-01-01

    We present spectral and timing analysis of all the data collected by the Extreme Ultraviolet Explorer Satellite (EUVE) for the bright, nearby BL Lacertae object, Markarian 421, during the four-year period 1994-1997. During these years Mrk 421 has been observed by EUVE 4 times with the Deep-Survey/Spectrograph and 2 times with the imaging telescopes for a total of approximately 1.4 7nillions seconds. From 1993 to 1996 three very bright gamma ray flares were also detected by the Whipple observatory. In 1994 Mrk 421 was observed simultaneously by EUVE (Apr 2-12) and IUE one month before the TeV flare; of the 2 EUVF, observations (Feb 4-7 and Apr 25-May 13) of 1995, the second was part of a multiwavelength campaign that mapped the evolution of the TeV flare. In 1996 we observed Mrk 421 twice simultaneously with XTE: one immediately before (Apr 17-30) and another one (May 10-11) right after the May 7 1996 TeV flare. And finally in 1997 from Feb. 7 to Feb. ll. The total light curve seems to be smoothly varying on the long time-scale while on a shorter time-scale there is evidence of an EUVE flare well correlated to the TeV energy 1995 flare. We have analysed the three spectral data set in an homogenous way using the appropriate calibration data for the off-axis observations and our analysis confirms the presence of the absorption features around approximately 70A, in the entire 1995 dataset and possibly in the 1996 data set. We also show the first power spectrum analysis of the Mrk 421 EUVE lightcurves and a comparison with the power spectra predicted by current theoretical models.

  4. A compact wide-range spectrometer with image intensifier: unexpected advantages, new functions, and a variety of applications.

    Science.gov (United States)

    Protopopov, Vladimir

    2012-05-01

    Gated intensified spectrometers are very efficient instruments not only in time-resolved applications but also in all other fields were traditional non-gated and non-intensified devices are so popular today. This paper describes the design and performance of a simple, reliable, and relatively inexpensive wide-range gated intensified spectrometer that was conceived as a prototype for volume production. With 200-900 nm spectral range, 3 ns temporal resolution, variable optical gain up to 4000, repetition rate up to 200 kHz, spectral resolution 2 nm (0.9 nm with deconvolution), and affordable price, such a device may be useful for budget research laboratories working in the fields of cell biology, laser-induced breakdown spectroscopy, molecular kinetics, plasma diagnostics, materials characterization, combustion analysis, and forensic analysis.

  5. Investigation of the thermal stability of Mg/Co periodic multilayers for EUV applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, M.H.; Le Guen, K.; Andre, J.M.; Jonnard, P. [UPMC Univ Paris 06, CNRS UMR 7614, Laboratoire Chimie Physique - Matiere Rayonnement, Paris (France); Zhou, S.K.; Li, H.C.; Zhu, J.T.; Wang, Z.S. [Tongji University, Institute of Precision Optical Engineering, Department of Physics, Shanghai (China); Meny, C. [CNRS UMR 7504, Institut de Physique et Chimie des Materiaux de Strasbourg (France); Mahne, N.; Giglia, A. [CNR-IOM Laboratorio TASC, Basovizza, Trieste (Italy); Nannarone, S. [CNR-IOM Laboratorio TASC, Basovizza, Trieste (Italy); Universita di Modenae R.E., Dipartimento Ingegneria Materiali, Modena (Italy); Esteve, I. [Univ. Paris 06 et 07, CNRS UMR 7590, Institut de Mineralogie et de Physique des Milieux Condenses, Paris (France); Walls, M. [Univ. Paris Sud, Laboratoire de Physiques des Solides, CNRS UMR 8502, Orsay (France)

    2012-03-15

    We present the results of the characterization of Mg/Co periodic multilayers and their thermal stability for the EUV range. The annealing study is performed up to a temperature of 400 {sup circle} C. Images obtained by scanning transmission electron microscopy and electron energy loss spectroscopy clearly show a good quality of the multilayer structure. The measurements of the EUV reflectivity around 25 nm ({proportional_to}49 eV) indicate that the reflectivity decreases when the annealing temperature increases above 300 {sup circle} C. X-ray emission spectroscopy is performed to determine the chemical state of the Mg atoms within the Mg/Co multilayer. Nuclear magnetic resonance used to determine the chemical state of the Co atoms and scanning electron microscopy images of cross sections of the Mg/Co multilayers reveal changes in the morphology of the stack from an annealing temperature of 305 {sup circle} C. This explains the observed reflectivity loss. (orig.)

  6. The implications of Chang'e-3 VIS/NIR Imaging Spectrometer in-situ analysis data

    Science.gov (United States)

    Yao, Meijuan; Zhang, Hongbo; Su, Yan; Liu, Bin; Zhao, Shu; Xue, Xiping

    2015-04-01

    The study of mineralogy helps in understanding the geologic evolution of the lunar mare and the resource of the basalt. The Visible and Near-infrared Imaging Spectrometer (VNIS) as a part of the Chang'e-3 mission is fixed at the front of the rover, which is the first time that VNIS has been developed for in-situ analysis on the lunar surface. According to the spectral feature analysis [1], the landing site could be enriched in olivine which is consistent with the results of Thiessen[2]. Olivine is important to understand the comppsitional and structural evolution of the lunar because it is a main material of the lunar mantle. About the origin of the olivine-rich material, there are two possible scenarios are proposed by Yamamoto et al[3]. One is that the olivine-rich exposures originated in the upper mantle, and the other is in the mafic-rich lower crust. The olivine-rich locations are mostly located along the maria boundaries [3,4]. The geology map of the CE-3 landing site shows that it is within the border of two basalt strata, and the landing site is in the Eratoshenian basalt stratum[5,6].This can be explained that each basin formation could have blasted away the upper crust, excavating and redistributing deep-seated olivine-rich matrrial to the rim[3,4]. A global survey of the lunar surface was conducted using the Spectral profiler onboard the lunar explorer SELENE/Kaguya[3]. It shows that most of the olivine-rich sites are located around impact basins. And around Imbrium, the terrace in the Sinus Iridum is one of the olivine-rich site. The rediative transfer modeling supports the concept that materials in the olvine rich sites originated in the upper mantle[3]. The space weathering could have influence on the mineral spectra, thus the method based on the spectral absorption position can only identify the freshly-exposed minerals. Although further work is required to improve the quality of the VNIS data, and the mineral quantification need to be performed, we

  7. Coefficient of thermal expansion (CTE) in EUV lithography: LER and adhesion improvement

    Science.gov (United States)

    Higgins, Craig; Settens, Charles; Wolfe, Patricia; Petrillo, Karen; Auger, Robert; Matyi, Richard; Brainard, Robert

    2011-04-01

    Spin-on underlayers are currently being employed by the lithographic industry to improve the imaging performance of EUV resists. In this work, multiple examples have shown improved line-edge roughness (LER) of an open-source resist using new open-source underlayers in comparison to a primed silicon substrate. Additionally, several experiments demonstrate better resist adhesion on underlayers that have lower coefficients of thermal expansion (CTE). Both organic and inorganic underlayers provide better resist LER when their CTE is lower.

  8. X-MIME: An Imaging X-ray Spectrometer for Detailed Study of Jupiter's Icy Moons and the Planet's X-ray Aurora

    Science.gov (United States)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Such maps would provide important constraints on formation and evolution scenarios for the surfaces of these moons. Here we describe the characteristics of X-MIME, an imaging x-ray spectrometer under going a feasibility study for the JIMO mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  9. The pre-launch characterization of SIMBIO-SYS/VIHI imaging spectrometer for the BepiColombo mission to Mercury. II. Spectral calibrations.

    Science.gov (United States)

    Altieri, F; Filacchione, G; Capaccioni, F; Carli, C; Dami, M; Tommasi, L; Aroldi, G; Borrelli, D; Barbis, A; Baroni, M; Pastorini, G; Ficai Veltroni, I; Mugnuolo, R

    2017-09-01

    The Visible and near Infrared Hyperspectral Imager (VIHI) is the VIS-IR spectrometer with imaging capabilities aboard the ESA BepiColombo mission to Mercury. In this second paper, we report the instrument spectral characterization derived by the calibration campaign carried out before spacecraft integration. Complementary measurements concerning radiometric and linearity responses, as well as geometric performances, are described in Paper I [G. Filacchione et al., Rev. Sci. Instrum. 88, 094502 (2017)]. We have verified the VIHI spectral range, spectral dispersion, spectral response function, and spectral uniformity along the whole slit. Instrumental defects and optical aberrations due to smiling and keystone effects have been evaluated, and they are lower than the design requirement (spectral dispersion is well represented by a second order curve, rather than to be constant along the spectral dimension.

  10. The pre-launch characterization of SIMBIO-SYS/VIHI imaging spectrometer for the BepiColombo mission to Mercury. II. Spectral calibrations

    Science.gov (United States)

    Altieri, F.; Filacchione, G.; Capaccioni, F.; Carli, C.; Dami, M.; Tommasi, L.; Aroldi, G.; Borrelli, D.; Barbis, A.; Baroni, M.; Pastorini, G.; Ficai Veltroni, I.; Mugnuolo, R.

    2017-09-01

    The Visible and near Infrared Hyperspectral Imager (VIHI) is the VIS-IR spectrometer with imaging capabilities aboard the ESA BepiColombo mission to Mercury. In this second paper, we report the instrument spectral characterization derived by the calibration campaign carried out before spacecraft integration. Complementary measurements concerning radiometric and linearity responses, as well as geometric performances, are described in Paper I [G. Filacchione et al., Rev. Sci. Instrum. 88, 094502 (2017)]. We have verified the VIHI spectral range, spectral dispersion, spectral response function, and spectral uniformity along the whole slit. Instrumental defects and optical aberrations due to smiling and keystone effects have been evaluated, and they are lower than the design requirement (<1/3 pixel). The instrumental response is uniform along the whole slit, while spectral dispersion is well represented by a second order curve, rather than to be constant along the spectral dimension.

  11. Surface roughness control by extreme ultraviolet (EUV) radiation

    Science.gov (United States)

    Ahad, Inam Ul; Obeidi, Muhannad Ahmed; Budner, Bogusław; Bartnik, Andrzej; Fiedorowicz, Henryk; Brabazon, Dermot

    2017-10-01

    Surface roughness control of polymeric materials is often desirable in various biomedical engineering applications related to biocompatibility control, separation science and surface wettability control. In this study, Polyethylene terephthalate (PET) polymer films were irradiated with Extreme ultraviolet (EUV) photons in nitrogen environment and investigations were performed on surface roughness modification via EUV exposure. The samples were irradiated at 3 mm and 4 mm distance from the focal spot to investigate the effect of EUV fluence on topography. The topography of the EUV treated PET samples were studied by AFM. The detailed scanning was also performed on the sample irradiated at 3 mm. It was observed that the average surface roughness of PET samples was increased from 9 nm (pristine sample) to 280 nm and 253 nm for EUV irradiated samples. Detailed AFM studies confirmed the presence of 1.8 mm wide period U-shaped channels in EUV exposed PET samples. The walls of the channels were having FWHM of about 0.4 mm. The channels were created due to translatory movements of the sample in horizontal and transverse directions during the EUV exposure. The increased surface roughness is useful for many applications. The nanoscale channels fabricated by EUV exposure could be interesting for microfluidic applications based on lab-on-a-chip (LOC) devices.

  12. Analysis of Ozone (O3 and Erythemal UV (EUV measured by TOMS in the equatorial African belt

    Directory of Open Access Journals (Sweden)

    Øyvind Frette

    2010-03-01

    Full Text Available We presented time series of total ozone column amounts (TOCAs and erythemal UV (EUV doses derived from measurements by TOMS (Total Ozone Mapping Spectrometer instruments on board the Nimbus-7 (N7 and the Earth Probe (EP satellites for three locations within the equatorial African belt for the period 1979 to 2000. The locations were Dar-es-Salaam (6.8° S, 39.26° E in Tanzania, Kampala (0.19° N, 32.34° E in Uganda, and Serrekunda (13.28° N, 16.34° W in Gambia. Equatorial Africa has high levels of UV radiation, and because ozone shields UV radiation from reaching the Earth’s surface, there is a need to monitor TOCAs and EUV doses. In this paper we investigated the trend of TOCAs and EUV doses, the effects of annual and solar cycles on TOCAs, as well as the link between lightning and ozone production in the equatorial African belt. We also compared clear-sky simulated EUV doses with the corresponding EUV doses derived from TOMS measurements. The TOCAs were found to vary in the ranges 243 DU − 289 DU, 231 DU − 286 DU, and 236 DU − 296 DU, with mean values of 266.9 DU, 260.9 DU, and 267.8 DU for Dar-es-Salaam, Kampala and Serrekunda, respectively. Daily TOCA time series indicated that Kampala had the lowest TOCA values, which we attributed to the altitude effect. There were two annual ozone peaks in Dar-es-Salaam and Kampala, and one annual ozone peak in Serrekunda. The yearly TOCA averages showed an oscillation within a five-year period. We also found that the EUV doses were stable at all three locations for the period 1979−2000, and that Kampala and Dar-es-Salaam were mostly cloudy throughout the year, whereas Serrekunda was mostly free from clouds. It was also found that clouds were among the major factors determining the level of EUV reaching the Earth´s surface. Finally, we noted that during rainy seasons, horizontal advection effects augmented by lightning activity may be responsible for enhanced ozone production in the tropics.

  13. Computer Spectrometers

    Science.gov (United States)

    Dattani, Nikesh S.

    2017-06-01

    Ideally, the cataloguing of spectroscopic linelists would not demand laborious and expensive experiments. Whatever an experiment might achieve, the same information would be attainable by running a calculation on a computer. Kolos and Wolniewicz were the first to demonstrate that calculations on a computer can outperform even the most sophisticated molecular spectroscopic experiments of the time, when their 1964 calculations of the dissociation energies of H_2 and D_{2} were found to be more than 1 cm^{-1} larger than the best experiments by Gerhard Herzberg, suggesting the experiment violated a strict variational principle. As explained in his Nobel Lecture, it took 5 more years for Herzberg to perform an experiment which caught up to the accuracy of the 1964 calculations. Today, numerical solutions to the Schrödinger equation, supplemented with relativistic and higher-order quantum electrodynamics (QED) corrections can provide ro-vibrational spectra for molecules that we strongly believe to be correct, even in the absence of experimental data. Why do we believe these calculated spectra are correct if we do not have experiments against which to test them? All evidence seen so far suggests that corrections due to gravity or other forces are not needed for a computer simulated QED spectrum of ro-vibrational energy transitions to be correct at the precision of typical spectrometers. Therefore a computer-generated spectrum can be considered to be as good as one coming from a more conventional spectrometer, and this has been shown to be true not just for the H_2 energies back in 1964, but now also for several other molecules. So are we at the stage where we can launch an array of calculations, each with just the atomic number changed in the input file, to reproduce the NIST energy level databases? Not quite. But I will show that for the 6e^- molecule Li_2, we have reproduced the vibrational spacings to within 0.001 cm^{-1} of the experimental spectrum, and I will

  14. EUV mask manufacturing readiness in the merchant mask industry

    Science.gov (United States)

    Green, Michael; Choi, Yohan; Ham, Young; Kamberian, Henry; Progler, Chris; Tseng, Shih-En; Chiou, Tsann-Bim; Miyazaki, Junji; Lammers, Ad; Chen, Alek

    2017-10-01

    As nodes progress into the 7nm and below regime, extreme ultraviolet lithography (EUVL) becomes critical for all industry participants interested in remaining at the leading edge. One key cost driver for EUV in the supply chain is the reflective EUV mask. As of today, the relatively few end users of EUV consist primarily of integrated device manufactures (IDMs) and foundries that have internal (captive) mask manufacturing capability. At the same time, strong and early participation in EUV by the merchant mask industry should bring value to these chip makers, aiding the wide-scale adoption of EUV in the future. For this, merchants need access to high quality, representative test vehicles to develop and validate their own processes. This business circumstance provides the motivation for merchants to form Joint Development Partnerships (JDPs) with IDMs, foundries, Original Equipment Manufacturers (OEMs) and other members of the EUV supplier ecosystem that leverage complementary strengths. In this paper, we will show how, through a collaborative supplier JDP model between a merchant and OEM, a novel, test chip driven strategy is applied to guide and validate mask level process development. We demonstrate how an EUV test vehicle (TV) is generated for mask process characterization in advance of receiving chip maker-specific designs. We utilize the TV to carry out mask process "stress testing" to define process boundary conditions which can be used to create Mask Rule Check (MRC) rules as well as serve as baseline conditions for future process improvement. We utilize Advanced Mask Characterization (AMC) techniques to understand process capability on designs of varying complexity that include EUV OPC models with and without sub-resolution assist features (SRAFs). Through these collaborations, we demonstrate ways to develop EUV processes and reduce implementation risks for eventual mass production. By reducing these risks, we hope to expand access to EUV mask capability for

  15. Electron beam inspection of 16nm HP node EUV masks

    Science.gov (United States)

    Shimomura, Takeya; Narukawa, Shogo; Abe, Tsukasa; Takikawa, Tadahiko; Hayashi, Naoya; Wang, Fei; Ma, Long; Lin, Chia-Wen; Zhao, Yan; Kuan, Chiyan; Jau, Jack

    2012-11-01

    EUV lithography (EUVL) is the most promising solution for 16nm HP node semiconductor device manufacturing and beyond. The fabrication of defect free EUV mask is one of the most challenging roadblocks to insert EUVL into high volume manufacturing (HVM). To fabricate and assure the defect free EUV masks, electron beam inspection (EBI) tool will be likely the necessary tool since optical mask inspection systems using 193nm and 199nm light are reaching a practical resolution limit around 16nm HP node EUV mask. For production use of EBI, several challenges and potential issues are expected. Firstly, required defect detection sensitivity is quite high. According to ITRS roadmap updated in 2011, the smallest defect size needed to detect is about 18nm for 15nm NAND Flash HP node EUV mask. Secondly, small pixel size is likely required to obtain the high sensitivity. Thus, it might damage Ru capped Mo/Si multilayer due to accumulated high density electron beam bombardments. It also has potential of elevation of nuisance defects and reduction of throughput. These challenges must be solved before inserting EBI system into EUV mask HVM line. In this paper, we share our initial inspection results for 16nm HP node EUV mask (64nm HP absorber pattern on the EUV mask) using an EBI system eXplore® 5400 developed by Hermes Microvision, Inc. (HMI). In particularly, defect detection sensitivity, inspectability and damage to EUV mask were assessed. As conclusions, we found that the EBI system has capability to capture 16nm defects on 64nm absorber pattern EUV mask, satisfying the sensitivity requirement of 15nm NAND Flash HP node EUV mask. Furthermore, we confirmed there is no significant damage to susceptible Ru capped Mo/Si multilayer. We also identified that low throughput and high nuisance defect rate are critical challenges needed to address for the 16nm HP node EUV mask inspection. The high nuisance defect rate could be generated by poor LWR and stitching errors during EB writing

  16. State-of-the-art EUV materials and processes for the 7nm node and beyond

    Science.gov (United States)

    Buitrago, Elizabeth; Meeuwissen, Marieke; Yildirim, Oktay; Custers, Rolf; Hoefnagels, Rik; Rispens, Gijsbert; Vockenhuber, Michaela; Mochi, Iacopo; Fallica, Roberto; Tasdemir, Zuhal; Ekinci, Yasin

    2017-03-01

    Extreme ultraviolet lithography (EUVL, λ = 13.5 nm) being the most likely candidate to manufacture electronic devices for future technology nodes is to be introduced in high volume manufacturing (HVM) at the 7 nm logic node, at least at critical lithography levels. With this impending introduction, it is clear that excellent resist performance at ultra-high printing resolutions (below 20 nm line/space L/S) is ever more pressing. Nonetheless, EUVL has faced many technical challenges towards this paradigm shift to a new lithography wavelength platform. Since the inception of chemically amplified resists (CARs) they have been the base upon which state-of-the art photoresist technology has been developed from. Resist performance as measured in terms of printing resolution (R), line edge roughness (LER), sensitivity (D or exposure dose) and exposure latitude (EL) needs to be improved but there are well known trade-off relationships (LRS trade-off) among these parameters for CARs that hamper their simultaneous enhancement. Here, we present some of the most promising EUVL materials tested by EUV interference lithography (EUV-IL) with the aim of resolving features down to 11 nm half-pitch (HP), while focusing on resist performance at 16 and 13 nm HP as needed for the 7 and 5 nm node, respectively. EUV-IL has enabled the characterization and development of new resist materials before commercial EUV exposure tools become available and is therefore a powerful research and development tool. With EUV-IL, highresolution periodic images can be printed by the interference of two or more spatially coherent beams through a transmission-diffraction grating mask. For this reason, our experiments have been performed by EUV-IL at Swiss Light Source (SLS) synchrotron facility located at the Paul Scherrer Institute (PSI). Having the opportunity to test hundreds of EUVL materials from vendors and research partners from all over the world, PSI is able to give a global update on some of the

  17. The GRAVITY spectrometers: optical qualification

    Science.gov (United States)

    Yazici, Senol; Straubmeier, Christian; Wiest, Michael; Wank, Imke; Fischer, Sebastian; Horrobin, Matthew; Eisenhauer, Frank; Perrin, Guy; Perraut, Karine; Brandner, Wolfgang; Amorim, Antonio; Schöller, Markus; Eckart, Andreas

    2014-07-01

    GRAVITY1 is a 2nd generation Very Large Telescope Interferometer (VLTI) operated in the astronomical K-band. In the Beam Combiner Instrument2 (BCI) four Fiber Couplers3 (FC) will feed the light coming from each telescope into two fibers, a reference channel for the fringe tracking spectrometer4 (FT) and a science channel for the science spectrometer4 (SC). The differential Optical Path Difference (dOPD) between the two channels will be corrected using a novel metrology concept.5 The metrology laser will keep control of the dOPD of the two channels. It is injected into the spectrometers and detected at the telescope level. Piezo-actuated fiber stretchers correct the dOPD accordingly. Fiber-fed Integrated Optics6 (IO) combine coherently the light of all six baselines and feed both spectrometers. Assisted by Infrared Wavefront Sensors7 (IWS) at each Unit Telescope (UT) and correcting the path difference between the channels with an accuracy of up to 5 nm, GRAVITY will push the limits of astrometrical accuracy to the order of 10 μas and provide phase-referenced interferometric imaging with a resolution of 4 mas. The University of Cologne developed, constructed and tested both spectrometers of the camera system. Both units are designed for the near infrared (1.95 - 2.45 μm) and are operated in a cryogenic environment. The Fringe Tracker is optimized for highest transmission with fixed spectral resolution (R = 22) realized by a double-prism.8 The Science spectrometer is more diverse and allows to choose from three different spectral resolutions8 (R = [22, 500, 4000]), where the lowest resolution is achieved with a prism and the higher resolutions are realized with grisms. A Wollaston prism in each spectrometer allows for polarimetric splitting of the light. The goal for the spectrometers is to concentrate at least 90% of the ux in 2 × 2 pixel (36 × 36 μm2) for the Science channel and in 1 pixel (24 × 24 μm) in the Fringe Tracking channel. In Section 1, we present

  18. EUV laser produced and induced plasmas for nanolithography

    Science.gov (United States)

    Sizyuk, Tatyana; Hassanein, Ahmed

    2017-10-01

    EUV produced plasma sources are being extensively studied for the development of new technology for computer chips production. Challenging tasks include optimization of EUV source efficiency, producing powerful source in 2 percentage bandwidth around 13.5 nm for high volume manufacture (HVM), and increasing the lifetime of collecting optics. Mass-limited targets, such as small droplet, allow to reduce contamination of chamber environment and mirror surface damage. However, reducing droplet size limits EUV power output. Our analysis showed the requirement for the target parameters and chamber conditions to achieve 500 W EUV output for HVM. The HEIGHTS package was used for the simulations of laser produced plasma evolution starting from laser interaction with solid target, development and expansion of vapor/plasma plume with accurate optical data calculation, especially in narrow EUV region. Detailed 3D modeling of mix environment including evolution and interplay of plasma produced by lasers from Sn target and plasma produced by in-band and out-of-band EUV radiation in ambient gas, used for the collecting optics protection and cleaning, allowed predicting conditions in entire LPP system. Effect of these conditions on EUV photon absorption and collection was analyzed. This work is supported by the National Science Foundation, PIRE project.

  19. Improving Atmospheric Correction for Visible/Short Wave Infrared (VSWIR) Imaging Spectrometers with Iterative Fitting of Absorption By Three Phases of Water

    Science.gov (United States)

    Pennington, E. A.; Thompson, D. R.; Green, R. O.; Gao, B. C.

    2014-12-01

    Airborne imaging spectrometers like the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) offer valuable insight into the Earth's terrestrial and ocean ecosystems, mineralogy, and land use. Estimating surface reflectance requires accounting for atmospheric absorption, which is sensitive to the local abundance of water vapor. Analysts typically estimate water vapor concentrations using the depths of absorption features, which can be inaccurate by up to 50% over surface features containing liquid water or ice. This can bias the retrieved water vapor maps and create atmospheric artifacts in reflectance spectra. A new retrieval method offers significant accuracy improvements over plant canopies or ice by estimating the path lengths of all three phases of water simultaneously, adjusting absorptions to best fit the measurement over a broader spectral interval. This paper assesses the remaining sources of error for the three-phase retrieval technique. We analyze retrievals for synthetic data when the 940 and 1140 nm wavelength features are fitted, for initial vapor path estimates ranging from 0 to ±50% accuracy. These tests indicate that most error comes from inaccuracy in the initial path estimate used to obtain vapor absorption coefficients. We evaluate a modified algorithm that uses multiple iterations to refine this estimate. Error is found to approach a constant value, demonstrating improved robustness to initialization conditions. We also assess the new iterative method using corrected AVIRIS data over various environments. The iterative method yields significantly better water vapor maps, reducing spurious correlations between vegetation canopy water and vapor estimates. The new iterative method offers accuracy improvements over traditional Visible/Short Wave Infrared (VSWIR) atmospheric correction methods, at modest computational cost.

  20. Level 2 processing for the imaging Fourier transform spectrometer GLORIA: derivation and validation of temperature and trace gas volume mixing ratios from calibrated dynamics mode spectra

    Directory of Open Access Journals (Sweden)

    J. Ungermann

    2015-06-01

    Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA is an airborne infrared limb imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 High Altitude LOng Range (HALO research aircraft during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS and Earth System Model Validation (ESMVAL campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3 volume mixing ratios from GLORIA dynamics mode spectra that are spectrally sampled every 0.625 cm−1. A total of 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line of sight. Simultaneous in situ observations by the Basic Halo Measurement and Sensor System (BAHAMAS, the Fast In-situ Stratospheric Hygrometer (FISH, an ozone detector named Fairo, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in situ trace gas data, and discrepancies can to a large extent be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.

  1. Development of a novel closed EUV pellicle for EUVL manufacturing

    Science.gov (United States)

    Ono, Yosuke; Kohmura, Kazuo; Okubo, Atsushi; Taneichi, Daiki; Ishikawa, Hisako; Biyajima, Tsuneaki

    2016-09-01

    As for the EUV pellicle, closed pellicle structure with the filters which has fundamentally no penetration path of particles is needed to keep the clean reliability level of photomask equivalent to the current photolithography. We proposed a novel closed EUV pellicle equipped with filters which has not only the particle intrusion prevention but also the ventilation performance. Full-size closed EUV pellicle was fabricated by forming the vent holes in the Si border part and putting the wide filters on the top side of Si border. As the result, we experimentally confirmed the suppression of the membrane deflection under the practical pumping down condition.

  2. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    Science.gov (United States)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  3. Development of Laser-Produced Tin Plasma-Based EUV Light Source Technology for HVM EUV Lithography

    Directory of Open Access Journals (Sweden)

    Junichi Fujimoto

    2012-01-01

    Full Text Available Since 2002, we have been developing a carbon dioxide (CO2 laser-produced tin (Sn plasma (LPP extreme ultraviolet (EUV light source, which is the most promising solution because of the 13.5 nm wavelength high power (>200 W light source for high volume manufacturing. EUV lithography is used for its high efficiency, power scalability, and spatial freedom around plasma. We believe that the LPP scheme is the most feasible candidate for the EUV light source for industrial use. We have several engineering data from our test tools, which include 93% Sn ionization rate, 98% Sn debris mitigation by a magnetic field, and 68% CO2 laser energy absorption rate. The way of dispersion of Sn by prepulse laser is key to improve conversion efficiency (CE. We focus on prepulsed laser pulsed duration. When we have optimized pulse duration from nanosecond to picosecond, we have obtained maximum 4.7% CE (CO2 laser to EUV; our previous data was 3.8% at 2 mJ EUV pulse energy. Based on these data we are developing our first light source as our product: “GL200E.” The latest data and the overview of EUV light source for the industrial EUV lithography are reviewed in this paper.

  4. Curved focal plane extreme ultraviolet detector array for a EUV camera on CHANG E lander.

    Science.gov (United States)

    Ni, Q; Song, K; Liu, S; He, L; Chen, B; Yu, W

    2015-11-30

    A novel curved focal plane extreme ultraviolet (EUV) detector array designed for a moon-based EUV camera is demonstrated. The curved focal plane detector array operating in a pulse-counting mode consists of a curved microchannel plate (MCP) stack and an induced charge wedge-strip anode (WSA). The curved MCP is fabricated by firstly thermally slumping of the MCPs, and then followed by optical polishing and core glass etching. By using this technology, curved MCPs with a length-to-diameter (L/D) ratio of 80:1 and a radius of curvature of 150 mm have been successfully achieved. The performance of the curved MCP detector is fully characterized in terms of the background noise, pulse height distribution, gain, image linearity and spatial resolution. It is measured that a spatial resolution of 7.13 lp/mm can be achieved with a background noise of less than 0.3 counts/cm2⋅s. The characterization results indicate that the curved focal plane detector can fulfill the requirements of the moon-based EUV camera.

  5. Toward Large FOV High-Resolution X-Ray Imaging Spectrometer: Microwave Multiplexed Readout of 32 TES Microcalorimeters

    Science.gov (United States)

    Yoon, Wonsik; Adams, Joseph S.; Bandler, Simon R.; Chervenak, James A.; Datesman, Aaron M.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Miniussi, Antoine R.; hide

    2017-01-01

    We performed a small-scale demonstration at GSFC of high-resolution x-ray TES microcalorimeters read out using a microwave SQUID multiplexer. This work is part of our effort to develop detector and readout technologies for future space based x-ray instruments such as the microcalorimeter spectrometer envisaged for Lynx, a large mission concept under development for the Astro 2020 Decadal Survey. In this paper we describe our experiment, including details of a recently designed, microwave-optimized low-temperature setup that is thermally anchored to the 50 mK stage of our laboratory ADR. Using a ROACH2 FPGA at room temperature, we simultaneously read out 32 pixels of a GSFC-built detector array via a NIST-built multiplexer chip with Nb coplanar waveguide resonators coupled to RF SQUIDs. The resonators are spaced 6 MHz apart (at approx. 5.9 GHz) and have quality factors of approximately 15,000. Using flux-ramp modulation frequencies of 160 kHz we have achieved spectral resolutions of 3 eV FWHM on each pixel at 6 keV. We will present the measured system-level noise and maximum slew rates, and briefly describe the implications for future detector and readout design.

  6. Assessing Changes in Potato Canopy Caused by Late Blight in Organic Production Systems Through Uav-Based Pushbroom Imaging Spectrometer

    Science.gov (United States)

    Franceschini, M. H. D.; Bartholomeus, H.; van Apeldoorn, D.; Suomalainen, J.; Kooistra, L.

    2017-08-01

    Productivity of cropping systems can be constrained simultaneously by different limiting factors and approaches allowing to indicate and identify plants under stress in field conditions can be valuable for farmers and breeders. In organic production systems, sensing solutions are not frequently studied, despite their potential for crop traits retrieval and stress assessment. In this study, spectral data in the optical domain acquired using a pushbroom spectrometer on board of a unmanned aerial vehicle is used to evaluate the potential of this information for assessment of late blight (Phytophthora infestans) incidence on potato (Solanum tuberosum) under organic cultivation. Vegetation indices formulations with two and three spectral bands were tested for the complete range of the spectral information acquired (i.e., from 450 to 900 nm, with 10 nm of spectral resolution). This evaluation concerned the discrimination between plots cultivated with only one resistant potato variety in contrast with plots with a variety mixture, with resistant and susceptible cultivars. Results indicated that indices based on three spectral bands performed better and optimal wavelengths (i.e., near 490, 530 and 670 nm) are not only related to chlorophyll content but also to other leaf pigments like carotenoids.

  7. Solar wind- and EUV-dependent models for the shapes of the Martian plasma boundaries based on Mars Express measurements

    Science.gov (United States)

    Ramstad, Robin; Barabash, Stas; Futaana, Yoshifumi; Holmström, Mats

    2017-07-01

    The long operational life (2003-present) of Mars Express (MEX) has allowed the spacecraft to make plasma measurements in the Martian environment over a wide range of upstream conditions. We have analyzed ˜7000 MEX orbits, covering three orders of magnitude in solar wind dynamic pressure, with data from the on board Analyzer of Space Plasmas and Energetic Particles (ASPERA-3) package, mapping the locations where MEX crosses the main plasma boundaries, induced magnetosphere boundary (IMB), ionosphere boundary (IB), and bow shock (BS). A coincidence scheme was employed, where data from the Ion Mass Analyzer (IMA) and the Electron Spectrometer (ELS) had to agree for a positive boundary identification, which resulted in crossings from 1083 orbit segments that were used to create dynamic two-parameter (solar wind density, nsw, and velocity vsw) dependent global dynamic models for the IMB, IB, and BS. The modeled response is found to be individual to each boundary. The IMB scales mainly dependent on solar wind dynamic pressure and EUV intensity. The BS location closely follows the location of the IMB at the subsolar point, though under extremely low nsw and vsw the BS assumes a more oblique shape. The IB closely follows the IMB on the dayside and changes its nightside morphology with different trends for nsw and vsw. We also investigate the influence of extreme ultraviolet (EUV) radiation on the IMB and BS, finding that increased EUV intensity expands both boundaries.

  8. Characterization of highly transient EUV emitting discharges

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, Joost van der; Kieft, Erik; Broks, Bart [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2006-07-15

    The method of disturbed Bilateral Relations (dBR) is used to characterize highly transient plasmas that are used for the generation of Extreme Ultra Violet (EUV), i.e. radiation with a wavelength around 13.5 nm. This dBR method relates equilibrium disturbing to equilibrium restoring processes and follows the degree of equilibrium departure from the global down to the elementary plasma-level. The study gives global values of the electron density and electron temperature. Moreover, it gives a method to construct the atomic state distribution function (ASDF). This ASDF, which is responsible for the spectrum generated by the discharge, is found to be far from equilibrium. There are two reasons for this: first, systems with high charge numbers radiate strongly, second the highly transient behaviour makes that the distribution over the various ionization stages lags behind the temperature evolution.

  9. The EUV spectrophotometer on Atmosphere Explorer.

    Science.gov (United States)

    Hinteregger, H. E.; Bedo, D. E.; Manson, J. E.

    1973-01-01

    An extreme ultraviolet (EUV) spectrophotometer for measurements of solar radiation at wavelengths ranging from 140 to 1850 A will be included in the payload of each of the three Atmosphere-Explorer (AE) missions, AE-C, -D, and -E. The instrument consists of 24 grating monochromators, 12 of which can be telecommanded either to execute 128-step scans each covering a relatively small section of the total spectrophotometer wavelength range or to maintain fixed (command-selected) wavelength positions. The remaining 12 nonscan monochromators operate at permanently fixed wavelengths and view only a small fraction of the solar disk except for one viewing the whole sun in H Lyman alpha. Ten of the 12 scan-capable monochromators also view the entire solar disk since their primary function is to measure the total fluxes independent of the distribution of sources across the solar disk.

  10. Critical challenges for EUV resist materials

    Energy Technology Data Exchange (ETDEWEB)

    Naulleau, Patrick P.; Anderson, Christopher N.; Baclea-an, Lorie-Mae; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Jones, Gideon; McClinton, Brittany; Miyakawa, Ryan; Rekawa, Seno; Smith, Nathan

    2011-02-28

    Although Extreme ultraviolet lithography (EUVL) is now well into the commercialization phase, critical challenges remain in the development of EUV resist materials. The major issue for the 22-nm half-pitch node remains simultaneously meeting resolution, line-edge roughness (LER), and sensitivity requirements. Although several materials have met the resolution requirements, LER and sensitivity remain a challenge. As we move beyond the 22-nm node, however, even resolution remains a significant challenge. Chemically amplified resists have yet to demonstrate the required resolution at any speed or LER for 16-nm half pitch and below. Going to non-chemically amplified resists, however, 16-nm resolution has been achieved with a LER of 2 nm but a sensitivity of only 70 mJ/cm{sup 2}.

  11. Evaluating the Effects of Surface Properties on Methane Detection with the Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG)

    Science.gov (United States)

    Ayasse, A.; Thorpe, A. K.; Roberts, D. A.; Aubrey, A. D.; Dennison, P. E.; Thompson, D. R.; Frankenberg, C.

    2016-12-01

    Atmospheric methane has been increasing since the industrial revolution and is thought to be responsible for about 25% of global radiative forcing (Hofman et al., 2006; Montzka et al., 2011). Given the importance of methane to global climate, it is essential that we identify methane sources to better understand the proportion of emissions coming from various sectors. Recently the Airborne Visible-Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) has proven to be a valuable instrument for mapping methane plumes (Frankenberg et al., 2016; Thorpe et al., 2016; Thompson et al., 2015). However, it is important to determine how land cover and albedo affect the ability of AVIRIS-NG to detect methane. This study aims to quantify the effect these surface properties have on detection. To do so we are using a synthetic AVIRIS-NG image that has multiple land cover types, albedos, and methane concentrations and applying the Cluster Tunes Matched Filter (CTMF) algorithm (Funk et al. 2001, Thorpe et al., 2013) to detect methane enhancements within the image. CTMF results are compared to the surface properties to characterize how different surface properties affect detection. We will also evaluate the effect of surface properties with examples of methane plumes observed from oil fields and manure ponds in the San Joaquin Valley of California, two important methane sources (Figure 1). Initial results suggest that darker surfaces, such as water absent sun glint, will make detecting the methane signal challenging, while bright surfaces such as dry soils produce a much clearer signal. Characterizing the effect of surface properties on methane detection is of increasing importance given the application of this technology will likely expand to map methane across a diverse range of emission sources. Figure 1. AVIRIS-NG image acquired Apr. 29, 2015. True color image with a superimposed methane plume from a manure pond. Bright surfaces, such as the dirt road, provide a better

  12. High resolution EUV spectroscopy of xenon ions with a compact electron beam ion trap

    Science.gov (United States)

    Ali, Safdar; Nakamura, Nobuyuki

    2017-09-01

    We performed high resolution extreme ultraviolet (EUV) spectroscopy measurements of highly charged xenon ions with a compact electron beam ion trap. The spectra were recorded with a flat-field grazing incidence spectrometer while varying the electron beam energy between 200 and 890 eV. We measured the wavelengths for several lines of Rh-like Xe9+ - Cd-like Xe6+ and Cu-like Xe25+- Se-like Xe20+ in the range of 150-200 Å with an uncertainty of 0.05 Å. Previously, most of these lines have been reported from EBITs with a wavelength uncertainty of 0.2 Å. Additionally, based on the electron beam energy dependence of the observed spectra we tentatively identified three new lines, which were reported as unidentified lines in the previous studies.

  13. AlN Based Extreme Ultraviolet (EUV) Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I project is to investigate the feasibility for achieving EUV detectors for space applications by exploiting the ultrahigh bandgap semiconductor - AlN. We...

  14. Film quantum yields of EUV& ultra-high PAG photoresists

    Energy Technology Data Exchange (ETDEWEB)

    Hassanein, Elsayed; Higgins, Craig; Naulleau, Patrick; Matyi, Richard; Gallatin, Greg; Denbeaux, Gregory; Antohe, Alin; Thackery, Jim; Spear, Kathleen; Szmanda, Charles; Anderson, Christopher N.; Niakoula, Dimitra; Malloy, Matthew; Khurshid, Anwar; Montgomery, Cecilia; Piscani, Emil C.; Rudack, Andrew; Byers, Jeff; Ma, Andy; Dean, Kim; Brainard, Robert

    2008-01-10

    Base titration methods are used to determine C-parameters for three industrial EUV photoresist platforms (EUV-2D, MET-2D, XP5496) and twenty academic EUV photoresist platforms. X-ray reflectometry is used to measure the density of these resists, and leads to the determination of absorbance and film quantum yields (FQY). Ultrahigh levels ofPAG show divergent mechanisms for production of photo acids beyond PAG concentrations of 0.35 moles/liter. The FQY of sulfonium PAGs level off, whereas resists prepared with iodonium PAG show FQY s that increase beyond PAG concentrations of 0.35 moles/liter, reaching record highs of 8-13 acids generatedlEUV photons absorbed.

  15. Design requirements for a stand alone EUV interferometer

    Science.gov (United States)

    Michallon, Ph.; Constancias, C.; Lagrange, A.; Dalzotto, B.

    2008-03-01

    EUV lithography is expected to be inserted for the 32/22 nm nodes with possible extension below. EUV resist availability remains one of the main issues to be resolved. There is an urgent need to provide suitable tools to accelerate resist development and to achieve resolution, LER and sensitivity specifications simultaneously. An interferometer lithography tool offers advantages regarding conventional EUV exposure tool. It allows the evaluation of resists, free from the deficiencies of optics and mask which are limiting the achieved resolution. Traditionally, a dedicated beam line from a synchrotron, with limited access, is used as a light source in EUV interference lithography. This paper identifies the technology locks to develop a stand alone EUV interferometer using a compact EUV source. It will describe the theoretical solutions adopted and especially look at the feasibility according to available technologies. EUV sources available on the market have been evaluated in terms of power level, source size, spatial coherency, dose uniformity, accuracy, stability and reproducibility. According to the EUV source characteristics, several optic designs were studied (simple or double gratings). For each of these solutions, the source and collimation optic specifications have been determined. To reduce the exposure time, a new grating technology will also be presented allowing to significantly increasing the transmission system efficiency. The optical grating designs were studied to allow multi-pitch resolution print on the same exposure without any focus adjustment. Finally micro mechanical system supporting the gratings was studied integrating the issues due to vacuum environment, alignment capability, motion precision, automation and metrology to ensure the needed placement control between gratings and wafer. A similar study was carried out for the collimation-optics mechanical support which depends on the source characteristics.

  16. Optical and EUV light curves of dwarf nova outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Mauche, C W; Mattei, J A; Bateson, F M

    2000-11-15

    We combine AAVSO and VSS/RASNZ optical and Extreme Ultraviolet Explorer EUV light curves of dwarf novae in outburst to place constraints on the nature of dwarf nova outbursts. From the observed optical-EUV time delays of {approx} 0.75-1.5 days, we show that the propagation velocity of the dwarf nova instability heating wave is {approx} 3 km s{sup -1}.

  17. Consequences of high-frequency operation on EUV source efficiency

    Science.gov (United States)

    Sizyuk, Tatyana

    2017-08-01

    A potential problem of future extreme ultraviolet (EUV) sources, required for high volume manufacture regimes, can be related to the contamination of the chamber environment by products of preceding laser pulse/droplet interactions. Implementation of high, 100 kHz and higher, repetition rate of EUV sources using Sn droplets ignited with laser pulses can cause high accumulation of tin in the chamber in the form of vapor, fine mist, or fragmented clusters. In this work, the effects of the residual tin accumulation in the EUV chamber in dependence on laser parameters and mitigation system efficiency were studied. The effect of various pressures of tin vapor on the CO2 and Nd:YAG laser beam propagation and on the size, the intensity, and the resulting efficiency of the EUV sources was analyzed. The HEIGHTS 3D package was used for this analysis to study the effect of residual background pressure and spatial distribution on EUV photon emission and collection. It was found that background pressure in the range of 1-5 Pa does not significantly influence the EUV source produced by CO2 lasers. A larger volume with this pressure condition, however, can reduce the efficiency of the source. However, an optimized volume of mix with proper density could increase the efficiency of the sources produced by CO2 lasers.

  18. Retrospective assessment of macrophytic communities in southern Lake Garda (Italy from in situ and MIVIS (Multispectral Infrared and Visible Imaging Spectrometer data

    Directory of Open Access Journals (Sweden)

    Claudia Giardino

    2012-01-01

    Full Text Available In situ and hyperspectral MIVIS (Multispectral Infrared and Visible Imaging Spectrometer images acquired over a period of 13 years are used to assess changes in macrophyte colonization patterns in the coastal zones of the Sirmione Peninsula in the southern part of Lake Garda (Italy. In situ data (abundance, cover density and diversity of macrophyte communities and MIVIS-derived maps of colonized substrates are analyzed by considering the variability of the main hydrological and physicochemical variables in order to indicate the main factors that explain the spatiotemporal variability of macrophyte communities. The results show a considerable modification in terms of macrophyte structural complexity and colonized areas. Almost 98% of macrophyte meadows (in particular communities with a density of over 70% are lost and subsequently replaced by moderate to extremely rare communities with density from 10% to 40%. Well-established submerged macrophytes are replaced by de-structured communities characterized by moderate to scarce density: on average lower than 30%. The study indicates that macrophyte distribution along the littoral zone of the Sirmione Peninsula is certainly linked to water transparency and water level fluctuation. The results also indicate that the worsening of eutrophication may be associated with the gradual disappearance of macrophyte meadows, but may also be accelerated by herbivorous aquatic birds grazing there. Lastly, the increasing frequency and number of catamaran tours could be considered a threat for the stability of these valuable communities.

  19. Layout And Results From The Initial Operation Of The High-resolution X-ray Imaging Crystal Spectrometer On The Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Pablant, N A [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Delgado-Apricio, L [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Goto, M [National Institute for Fusion Science, Toki 509-5292, Gifu, Japan; Hill, K W [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Lzerson, S [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Morita, S [National Institute for Fusion Science, Toki 509-5292, Gifu, Japan; Roquemore, A L [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Gates, D [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Monticello, D [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Neilson, H [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Reiman, A [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Reinke, M [Plasma Science Fusion Center, MIT, Cambridge, Massachusetts (United States); Rice, J E [Plasma Science Fusion Center, MIT, Cambridge, Massachusetts (United States)

    2012-04-05

    First results of ion and electron temperature pro le measurements from the x-ray imaging crystal spectrometer (XICS) diagnostic on the Large Helical Device (LHD) are presented. This diagnostic system has been operational since the beginning of the 2011 LHD experimental campaign and is the rst application of the XICS diagnostic technique to helical plasma geometry. The XICS diagnostic provides measurements of ion and electron temperature pro les in LHD with a spatial resolution of 2cm and a time resolution of ≥ 10ms. Ion temperature pro les from the XICS diagnostic are possible under conditions where charge exchange recombination spectroscopy (CXRS) is not possible (high density) or is perturbative to the plasma (low density or radio frequency heated plasmas). Measurements are made by using a spherically bent crystal to provide a spectrally resolved 1D image of the plasma from line integrated emission of helium-like Ar16+. The nal hardware design and con guration are detailed along with the calibration procedures. Line-integrated ion and electron temperature measurements are presented, and the measurement accuracy is discussed. Finally central temperature measurements from the XICS system are compared to measurements from the Thomson scattering and CXRS systems, showing excellent agreement.

  20. Layout and results from the initial operation of the high-resolution x-ray imaging crystal spectrometer on the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Pablant, N. A.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Lazerson, S.; Roquemore, A. L.; Gates, D.; Monticello, D.; Nielson, H.; Reiman, A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Goto, M.; Morita, S.; Yamada, H. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Reinke, M.; Rice, J. E. [Plasma Science Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States)

    2012-08-15

    First results of ion and electron temperature profile measurements from the x-ray imaging crystal spectrometer (XICS) diagnostic on the Large Helical Device (LHD) are presented. This diagnostic system has been operational since the beginning of the 2011 LHD experimental campaign and is the first application of the XICS diagnostic technique to helical plasma geometry. The XICS diagnostic provides measurements of ion and electron temperature profiles in LHD with a spatial resolution of 2 cm and a maximum time resolution of 5 ms (typically 20 ms). Ion temperature profiles from the XICS diagnostic are possible under conditions where charge exchange recombination spectroscopy (CXRS) is not possible (high density) or is perturbative to the plasma (low density or radio frequency heated plasmas). Measurements are made by using a spherically bent crystal to provide a spectrally resolved 1D image of the plasma from line integrated emission of helium-like Ar{sup 16+}. The final hardware design and configuration are detailed along with the calibration procedures. Line-integrated ion and electron temperature measurements are presented, and the measurement accuracy is discussed. Finally central temperature measurements from the XICS system are compared to measurements from the Thomson scattering and CXRS systems, showing excellent agreement.

  1. Discharge-produced plasma extreme ultraviolet (EUV) source and ultra high vacuum chamber for studying EUV-induced processes

    CERN Document Server

    Dolgov, A; Abrikosov, A; Snegirev, E; Krivtsun, V M; Lee, C J; Bijkerk, F

    2014-01-01

    An experimental setup that directly reproduces Extreme UV-lithography relevant conditions for detailed component exposure tests is described. The EUV setup includes a pulsed plasma radiation source, operating at 13.5 nm; a debris mitigation system; collection and filtering optics; and an UHV experimental chamber, equipped with optical and plasma diagnostics. The first results, identifying the physical parameters and evolution of EUV-induced plasmas are presented. Finally, the applicability and accuracy of the in situ diagnostics is briefly discussed.

  2. BREAKOUT RECONNECTION OBSERVED BY THE TESIS EUV TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Reva, A. A.; Ulyanov, A. S.; Shestov, S. V.; Kuzin, S. V., E-mail: reva.antoine@gmail.com [Lebedev Physical Institute, Russian Academy of Sciences (Russian Federation)

    2016-01-10

    We present experimental evidence of the coronal mass ejection (CME) breakout reconnection, observed by the TESIS EUV telescope. The telescope could observe solar corona up to 2 R{sub ⊙} from the Sun center in the Fe 171 Å line. Starting from 2009 April 8, TESIS observed an active region (AR) that had a quadrupolar structure with an X-point 0.5 R{sub ⊙} above photosphere. A magnetic field reconstructed from the Michelson Doppler Imager data also has a multipolar structure with an X-point above the AR. At 21:45 UT on April 9, the loops near the X-point started to move away from each other with a velocity of ≈7 km s{sup −1}. At 01:15 UT on April 10, a bright stripe appeared between the loops, and the flux in the GOES 0.5–4 Å channel increased. We interpret the loops’ sideways motion and the bright stripe as evidence of the breakout reconnection. At 01:45 UT, the loops below the X-point started to slowly move up. At 15:10 UT, the CME started to accelerate impulsively, while at the same time a flare arcade formed below the CME. After 15:50 UT, the CME moved with constant velocity. The CME evolution precisely followed the breakout model scenario.

  3. Breakout Reconnection Observed by the TESIS EUV Telescope

    Science.gov (United States)

    Reva, A. A.; Ulyanov, A. S.; Shestov, S. V.; Kuzin, S. V.

    2016-01-01

    We present experimental evidence of the coronal mass ejection (CME) breakout reconnection, observed by the TESIS EUV telescope. The telescope could observe solar corona up to 2 R⊙ from the Sun center in the Fe 171 Å line. Starting from 2009 April 8, TESIS observed an active region (AR) that had a quadrupolar structure with an X-point 0.5 R⊙ above photosphere. A magnetic field reconstructed from the Michelson Doppler Imager data also has a multipolar structure with an X-point above the AR. At 21:45 UT on April 9, the loops near the X-point started to move away from each other with a velocity of ≈7 km s-1. At 01:15 UT on April 10, a bright stripe appeared between the loops, and the flux in the GOES 0.5-4 Å channel increased. We interpret the loops’ sideways motion and the bright stripe as evidence of the breakout reconnection. At 01:45 UT, the loops below the X-point started to slowly move up. At 15:10 UT, the CME started to accelerate impulsively, while at the same time a flare arcade formed below the CME. After 15:50 UT, the CME moved with constant velocity. The CME evolution precisely followed the breakout model scenario.

  4. Applications of compact laser-driven EUV/XUV plasma sources

    Science.gov (United States)

    Barkusky, Frank; Bayer, Armin; Döring, Stefan; Flöter, Bernhard; Großmann, Peter; Peth, Christian; Reese, Michael; Mann, Klaus

    2009-05-01

    In recent years, technological developments in the area of extreme ultraviolet lithography (EUVL) have experienced great improvements. So far, intense light sources based on discharge or laser plasmas, beam steering and imaging optics as well as sensitive detectors are available. Currently, applications of EUV radiation apart from microlithography, such as metrology, high-resolution microscopy, or surface analysis come more and more into focus. In this contribution we present an overview on the EUV/XUV activities of the Laser-Laboratorium Göttingen based on table-top laser-produced plasma (LPP) sources. As target materials gaseous or liquid jets of noble gases or solid Gold are employed. Depending on the applications, the very clean but low intense gaseous targets are mainly used for metrology, whereas the targets for high brilliances (liquid, solid) are used for microscopy and direct structuring. For the determination of interaction mechanisms between EUV radiation and matter, currently the solid Gold target is used. In order to obtain a small focal spot resulting in high EUV fluence, a modified Schwarzschild objective consisting of two spherical mirrors with Mo/Si multilayer coatings is adapted to this source. By demagnified (10x) imaging of the Au plasma an EUV spot of 3 μm diameter with a maximum energy density of ~1.3 J/cm2 is generated (pulse duration 8.8 ns). First applications of this integrated source and optics system reveal its potential for high-resolution modification and direct structuring of solid surfaces. For chemical analysis of various samples a NEXAFS setup was developed. It consists of a LPP, using gaseous Krypton as a broadband emitter in the water-window range, as well as a flat field spectrograph. The laboratory system is set to the XUV spectral range around the carbon K-edge (4.4 nm). The table-top setup allows measurements with spectral accuracy comparable to synchrotron experiments. NEXAFS-experiments in transmission and reflection are

  5. Vegetation species composition and canopy architecture information expressed in leaf water absorption measured in the 1000 nm and 2200 spectral region by an imaging spectrometer

    Science.gov (United States)

    Green, Robert O.; Roberts, Dar A.

    1995-01-01

    Plant species composition and plant architectural attributes are critical parameters required for the measuring, monitoring, and modeling of terrestrial ecosystems. Remote sensing is commonly cited as an important tool for deriving vegetation properties at an appropriate scale for ecosystem studies, ranging from local to regional and even synoptic scales. Classical approaches rely on vegetation indices such as the normalized difference vegetation index (NDVI) to estimate biophysical parameters such as leaf area index or intercepted photosynthetically active radiation (IPAR). Another approach is to apply a variety of classification schemes to map vegetation and thus extrapolate fine-scale information about specific sites to larger areas of similar composition. Imaging spectrometry provides additional information that is not obtainable through broad-band sensors and that may provide improved inputs both to direct biophysical estimates as well as classification schemes. Some of this capability has been demonstrated through improved discrimination of vegetation, estimates of canopy biochemistry, and liquid water estimates from vegetation. We investigate further the potential of leaf water absorption estimated from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data as a means for discriminating vegetation types and deriving canopy architectural information. We expand our analysis to incorporate liquid water estimates from two spectral regions, the 1000-nm region and the 2200-nm region. The study was conducted in the vicinity of Jasper Ridge, California, which is located on the San Francisco peninsula to the west of the Stanford University campus. AVIRIS data were acquired over Jasper Ridge, CA, on June 2, 1992, at 19:31 UTC. Spectra from three sites in this image were analyzed. These data are from an area of healthy grass, oak woodland, and redwood forest, respectively. For these analyses, the AVIRIS-measured upwelling radiance spectra for the entire Jasper

  6. The Spectrometer/Telescope for Imaging X-rays on Solar Orbiter: Flight design, challenges and trade-offs

    Energy Technology Data Exchange (ETDEWEB)

    Krucker, S. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Sciences Laboratory, UC Berkeley (United States); Bednarzik, M. [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, Villigen (Switzerland); Grimm, O., E-mail: oliver.grimm@phys.ethz.ch [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); ETH Zürich (Switzerland); Hurford, G.J. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Sciences Laboratory, UC Berkeley (United States); Limousin, O.; Meuris, A. [CEA Saclay (France); Orleański, P. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Research Center of the Polish Academy of Sciences (CBK PAN), Warsaw (Poland); Seweryn, K.; Skup, K.R. [Space Research Center of the Polish Academy of Sciences (CBK PAN), Warsaw (Poland)

    2016-07-11

    STIX is the X-ray spectral imaging instrument on-board the Solar Orbiter space mission of the European Space Agency, and together with nine other instruments will address questions of the interaction between the Sun and the heliosphere. STIX will study the properties of thermal and accelerated electrons near the Sun through their Bremsstrahlung X-ray emission, addressing in particular the emission from flaring regions on the Sun. The design phase of STIX has been concluded. This paper reports the final flight design of the instrument, focusing on design challenges that were faced recently and how they were addressed.

  7. The effect of boreal forest canopy to reflectance of snow covered terrain based on airborne imaging spectrometer observations

    Science.gov (United States)

    Heinilä, Kirsikka; Salminen, Miia; Pulliainen, Jouni; Cohen, Juval; Metsämäki, Sari; Pellikka, Petri

    2014-04-01

    Optical remote sensing methods for mapping of the seasonal snow cover are often obstructed by the masking effect of forest canopy. Therefore, optical algorithms tend to underestimate the amount of snow cover in forested regions. In this paper, we investigate the influence of boreal forest stand characteristics on the observed scene reflectance under full dry snow cover conditions by applying an advantageous experimental setup combining airborne hyperspectral imaging and LIDAR data sets from a test region in Sodankylä, northern Finland. This is particularly useful to the understanding of the composition of the mixed satellite scene reflectance behavior and it is relation to the natural ground targets' spectral signatures.

  8. The Development of a New Model of Solar EUV Irradiance Variability

    Science.gov (United States)

    Warren, Harry; Wagner, William J. (Technical Monitor)

    2002-01-01

    The goal of this research project is the development of a new model of solar EUV (Extreme Ultraviolet) irradiance variability. The model is based on combining differential emission measure distributions derived from spatially and spectrally resolved observations of active regions, coronal holes, and the quiet Sun with full-disk solar images. An initial version of this model was developed with earlier funding from NASA. The new version of the model developed with this research grant will incorporate observations from SoHO as well as updated compilations of atomic data. These improvements will make the model calculations much more accurate.

  9. Tropospheric Emission Spectrometer and Airborne Emission Spectrometer

    Science.gov (United States)

    Glavich, T.; Beer, R.

    1996-01-01

    The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

  10. Physical state and distribution of materials at the surface of Pluto from New Horizons LEISA imaging spectrometer

    Science.gov (United States)

    Schmitt, B.; Philippe, S.; Grundy, W. M.; Reuter, D. C.; Côte, R.; Quirico, E.; Protopapa, S.; Young, L. A.; Binzel, R. P.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earle, A. M.; Ennico, K.; Howett, C. J. A.; Jennings, D. E.; Linscott, I. R.; Lunsford, A. W.; Olkin, C. B.; Parker, A. H.; Parker, J. Wm.; Singer, K. N.; Spencer, J. R.; Stansberry, J. A.; Stern, S. A.; Tsang, C. C. C.; Verbiscer, A. J.; Weaver, H. A.; New Horizons Science Team

    2017-05-01

    From Earth based observations Pluto is known to be the host of N2, CH4 and CO ices and also a dark red material. Very limited spatial distribution information is available from rotational visible and near-infrared spectral curves obtained from hemispheric measurements. In July 2015 the New Horizons spacecraft reached Pluto and its satellite system and recorded a large set of data. The LEISA spectro-imager of the RALPH instruments are dedicated to the study of the composition and physical state of the materials composing the surface. In this paper we report a study of the distribution and physical state of the ices and non-ice materials on Pluto's illuminated surface and their mode and degree of mixing. Principal Component analysis as well as various specific spectral indicators and correlation plots are used on the first set of 2 high resolution spectro-images from the LEISA instrument covering the whole illuminated face of Pluto at the time of the New Horizons encounter. Qualitative distribution maps have been obtained for the 4 main condensed molecules, N2, CH4, CO, H2O as well as for the visible-dark red material. Based on specific spectral indicators, using either the strength or the position of absorption bands, these 4 molecules are found to indicate the presence of 3 different types of ices: N2-rich:CH4:CO ices, CH4-rich(:CO:N2?) ices and H2O ice. The mixing lines between these ices and with the dark red material are studied using scatter plots between the various spectral indicators. CH4 is mixed at the molecular level with N2, most probably also with CO, thus forming a ternary molecular mixture that follows its phase diagram with low solubility limits. The occurrence of a N2-rich - CH4-rich ices mixing line associated with a progressive decrease of the CO/CH4 ratio tells us that a fractionation sublimation sequence transforms one type of ice to the other forming either a N2-rich - CH4-rich binary mixture at the surface or an upper CH4-rich ice crust that

  11. Physical State and Distribution of Materials at the Surface of Pluto from New Horizons LEISA Imaging Spectrometer

    Science.gov (United States)

    Schmitt, B.; Philippe, S.; Grundy, W. M.; Reuter, D. C.; Cote, R.; Quirico, E.; Protopappa, S.; Young, L. A.; Binzel, R. P.; Cook, J. C.; hide

    2016-01-01

    From Earth based observations Pluto is known to be the host of N2, CH4 and CO ices and also a dark red material. Very limited spatial distribution information is available from rotational visible and near-infrared spectral curves obtained from hemispheric measurements. In July 2015 the New Horizons spacecraft reached Pluto and its satellite system and recorded a large set of data. The LEISA spectro-imager of the RALPH instruments are dedicated to the study of the composition and physical state of the materials composing the surface. In this paper we report a study of the distribution and physical state of the ices and non-ice materials on Pluto's illuminated surface and their mode and degree of mixing. Principal Component analysis as well as various specific spectral indicators and correlation plots are used on the first set of 2 high resolution spectro-images from the LEISA instrument covering the whole illuminated face of Pluto at the time of the New Horizons encounter. Qualitative distribution maps have been obtained for the 4 main condensed molecules, N2, CH4, CO, H2O as well as for the visible-dark red material. Based on specific spectral indicators, using either the strength or the position of absorption bands, these 4 molecules are found to indicate the presence of 3 different types of ices: N2-rich:CH4:CO ices, CH4-rich(:CO:N2?) ices and H2O ice. The mixing lines between these ices and with the dark red material are studied using scatter plots between the various spectral indicators. CH4 is mixed at the molecular level with N2, most probably also with CO, thus forming a ternary molecular mixture that follows its phase diagram with low solubility limits. The occurrence of a N2-rich - CH4-rich ices mixing line associated with a progressive decrease of the CO/CH4 ratio tells us that a fractionation sublimation sequence transforms one type of ice to the other forming either a N2-rich - CH4-rich binary mixture at the surface or an upper CH4-rich ice crust that

  12. EUV lithography at the 22nm technology node

    Science.gov (United States)

    Wood, Obert; Koay, Chiew-Seng; Petrillo, Karen; Mizuno, Hiroyuki; Raghunathan, Sudhar; Arnold, John; Horak, Dave; Burkhardt, Martin; McIntyre, Gregory; Deng, Yunfei; La Fontaine, Bruno; Okoroanyanwu, Uzo; Wallow, Tom; Landie, Guillaume; Standaert, Theodorus; Burns, Sean; Waskiewicz, Christopher; Kawasaki, Hirohisa; Chen, James H.-C.; Colburn, Matthew; Haran, Bala; Fan, Susan S.-C.; Yin, Yunpeng; Holfeld, Christian; Techel, Jens; Peters, Jan-Hendrik; Bouten, Sander; Lee, Brian; Pierson, Bill; Kessels, Bart; Routh, Robert; Cummings, Kevin

    2010-04-01

    We are evaluating the readiness of extreme ultraviolet (EUV) lithography for insertion into production at the 15 nm technology node by integrating it into standard semiconductor process flows because we believe that device integration exercises provide the truest test of technology readiness and, at the same time, highlight the remaining critical issues. In this paper, we describe the use of EUV lithography with the 0.25 NA Alpha Demo Tool (ADT) to pattern the contact and first interconnect levels of a large (~24 mm x 32 mm) 22 nm node test chip using EUV masks with state-of-the-art defectivity (~0.3 defects/cm2). We have found that: 1) the quality of EUVL printing at the 22 nm node is considerably higher than the printing produced with 193 nm immersion lithography; 2) printing at the 22 nm node with EUV lithography results in higher yield than double exposure double-etch 193i lithography; and 3) EUV lithography with the 0.25 NA ADT is capable of supporting some early device development work at the 15 nm technology node.

  13. High-performance next-generation EUV lithography light source

    Science.gov (United States)

    Choi, Peter; Zakharov, Sergey V.; Aliaga-Rossel, Raul; Benali, Otman; Duffy, Grainne; Sarroukh, Ouassima; Wyndham, Edmund; Zakharov, Vasily S.

    2009-03-01

    EUVL solution for HVM at the 22 nm node requires a high power long-term EUV source operation with hundreds of watts at the intermediate focus output. EUV mask blank and mask defects inspections require at-wavelength tools with high brightness. Theoretical analysis with a 2-D radiation MHD code Z* has been performed to address key issues in EUV plasma sources with radiation transfer. The study shows that self-absorption defines the limiting brightness of a single EUV source, which cannot meet the requirements of the HVM tool with high efficiency and is not sufficient for critical metrology applications, given the limiting etendue of the optics. It is shown that the required irradiance can be achieved by spatial multiplexing, using multiple small sources. We present here details of the study, as well as experimental results from a novel EUV light source with an intrinsic photon collector demonstrating high brightness, the i-SoCoMo concept, where an impulse micro discharge plasma source is integrated to a photon collector based on an active plasma structure. The small physical size and low etendue properties of the i-SoCoMo unit allows a large number of such sources to be put together in one physical package and be operated in a multiplexed fashion to meet necessary power requirements.

  14. Energy deposition and charging in EUV lithography: Monte Carlo studies

    Science.gov (United States)

    Wiseheart, Liam; Narasimhan, Amrit; Grzeskowiak, Steven; Neisser, Mark; Ocola, Leonidas E.; Denbeaux, Greg; Brainard, Robert L.

    2016-03-01

    EUV photons expose photoresists by complex interactions including photoionization to create primary electrons (~80 eV), and subsequent ionization steps that create secondary electrons (10-60 eV). The mechanisms by which these electrons interact with resist components are key to optimizing the performance of EUV resists and EUV lithography as a whole. As these photoelectrons and secondary electrons are created, they deposit their energy within the resist, creating ionized atoms along the way. Because many photo- and secondary electrons can escape the resist through the surface, resists can become charged. Charging and energy deposition profiles within the resist may play a role in the sensitivity and line-edge roughness of EUV resists. In this paper, we present computational analysis of charging-influenced electron behavior in photoresists using LESiS (Low energy Electron Scattering in Solids), a software developed to understand and model electron-matter interactions. We discuss the implementation of charge and tracking and the model used to influence electron behavior. We also present the potential effects of charging on EUV and electron beam lithography by investigating secondary electron blur in charging and non-charging models.

  15. Statistical simulation of photoresists at EUV and ArF

    Science.gov (United States)

    Biafore, John J.; Smith, Mark D.; Mack, Chris A.; Thackeray, James W.; Gronheid, Roel; Robertson, Stewart A.; Graves, Trey; Blankenship, David

    2009-03-01

    Requirements of resist modeling strategies for EUV and low-k1 ArF nanolithography continue to become more stringent. Resist designers are consistently faced with the task of reducing exposure dose and line roughness while simultaneously improving exposure latitude, depth-of-focus and ultimate resolution. In this work, we briefly discuss a next-generation resist model for the prediction of statistical resist responses such as line-edge roughness, line-width roughness and CD variability, as well as base lithographic responses such as exposure latitude. The model's parameterized fit to experimental data from a state-of-the art polymer-bound PAG resist irradiated at ArF and EUV will be shown. The probabilistic computation of acid generation at ArF and EUV will be discussed. The factors influencing the hypothesized primary cause of resist roughness, acid shot noise, are discussed.

  16. Stochastic exposure kinetics of EUV photoresists: a simulation study

    Science.gov (United States)

    Mack, Chris A.; Thackeray, James W.; Biafore, John J.; Smith, Mark D.

    2011-04-01

    BACKGROUND: The stochastic nature of extreme ultraviolet (EUV) resist exposure leads to variations in the resulting acid concentration, which leads to line-edge roughness (LER) of the resulting features. METHODS: Using a stochastic resist simulator, we predicted the mean and standard deviation of the acid concentration for an open-frame exposure and fit the results to analytical expressions. RESULTS: The EUV resist exposure mechanism of the PROLTIH Stochastic Resist Simulator is first order, and an analytical expression for the exposure rate constant C allows prediction of the mean acid concentration of an open-frame exposure to about 1% accuracy over a wide range of parameter values. A second analytical expression for the standard deviation of the acid concentration also matched the output of PROLITH to within about 1%. CONCLUSIONS: Predicting the stochastic uncertainty in acid concentration for EUV resists allows optimization of resist processing and formulations, and may form the basis of a comprehensive LER model.

  17. EUV-multilayers on grating-like topographies

    Energy Technology Data Exchange (ETDEWEB)

    van Boogaard, A. J. R.; Louis, E.; Goldberg, K. A.; Mochi, I.; Bijkerk, F.

    2010-03-12

    In this study, multilayer morphology near the key anomalies in grating-like structures, namely sharp step-edges and steep walls, are examined. Different deposition schemes are employed. Based on cross section TEM analysis an explanatory model describing the morphology of the successive layers is developed. A further insight into the periodicity and the general performance of the multilayer is obtained by EUV microscopy. The main distortions in multilayer structure and hence EUV performance are found to be restricted to a region within a few hundred nanometers from the anomalies, which is very small compared to the proposed grating period (50-100 {micro}m). These multilayer coated blazed gratings can thus be considered a viable option for spectral purity enhancement of EUV light sources.

  18. EUV mask reflectivity measurements with micro-scale spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Rekawa, Senajith B.; Kemp, Charles D.; Barty, Anton; Anderson, Erik; Kearney, Patrick; Han, Hakseung

    2008-02-01

    The effort to produce defect-free mask blanks for EUV lithography relies on increasing the detection sensitivity of advanced mask inspection tools, operating at several wavelengths. They describe the unique measurement capabilities of a prototype actinic (EUV) wavelength microscope that is capable of detecting small defects and reflectivity changes that occur on the scale of microns to nanometers. The defects present in EUV masks can appear in many well-known forms: as particles that cause amplitude or phase variations in the reflected field; as surface contamination that reduces reflectivity and contrast; and as damage from inspection and use that reduces the reflectivity of the multilayer coating. This paper presents an overview of several topics where scanning actinic inspection makes a unique contribution to EUVL research. They describe the role of actinic scanning inspection in defect repair studies, observations of laser damage, actinic inspection following scanning electron microscopy, and the detection of both native and programmed defects.

  19. The Foggy EUV Corona and Coronal Heating by MHD Waves from Explosive Reconnection Events

    Science.gov (United States)

    Moore, Ron L.; Cirtain, Jonathan W.; Falconer, David A.

    2008-01-01

    In 0.5 arcsec/pixel TRACE coronal EUV images, the corona rooted in active regions that are at the limb and are not flaring is seen to consist of (1) a complex array of discrete loops and plumes embedded in (2) a diffuse ambient component that shows no fine structure and gradually fades with height. For each of two not-flaring active regions, found that the diffuse component is (1) approximately isothermal and hydrostatic and (2) emits well over half of the total EUV luminosity of the active-region corona. Here, from a TRACE Fe XII coronal image of another not-flaring active region, the large sunspot active region AR 10652 when it was at the west limb on 30 July 2004, we separate the diffuse component from the discrete loop component by spatial filtering, and find that the diffuse component has about 60% of the total luminosity. If under much higher spatial resolution than that of TRACE (e. g., the 0.1 arcsec/pixel resolution of the Hi-C sounding-rocket experiment proposed by J. W. Cirtain et al), most of the diffuse component remains diffuse rather being resolved into very narrow loops and plumes, this will raise the possibility that the EUV corona in active regions consists of two basically different but comparably luminous components: one being the set of discrete bright loops and plumes and the other being a truly diffuse component filling the space between the discrete loops and plumes. This dichotomy would imply that there are two different but comparably powerful coronal heating mechanisms operating in active regions, one for the distinct loops and plumes and another for the diffuse component. We present a scenario in which (1) each discrete bright loop or plume is a flux tube that was recently reconnected in a burst of reconnection, and (2) the diffuse component is heated by MHD waves that are generated by these reconnection events and by other fine-scale explosive reconnection events, most of which occur in and below the base of the corona where they are

  20. Energy effective dual-pulse bispectral laser for EUV lithography

    Science.gov (United States)

    Zhevlakov, A. P.; Seisyan, R. P.; Bespalov, V. G.; Elizarov, V. V.; Grishkanich, A. S.; Kascheev, S. V.; Sidorov, I. S.

    2016-03-01

    The power consumption in the two-pulse bispectral primary source could be substantially decreased by replacing the SRS converters from 1.06 μm into 10.6 μm wavelength as the preamplifier cascades in CO2 laser channel at the same efficiency radiation of EUV source. The creation of high volume manufacturing lithography facilities with the technological standard of 10-20 nm is related to the implementation of resist exposure modes with pulse repetition rate of 100 kHz. Low power consumption of the proposed scheme makes it promising for the creation of LPP EUV sources.

  1. Evaluating Printability of Buried Native EUV Mask Phase Defects through a Modeling and Simulation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, Mihir; Jindal, Vibhu; Basavalingappa, Adarsh; Herbol, Henry; Harris-Jones, Jenah; Jang, Il-Yong; Goldberg, Kenneth A.; Mochi, Iacopo; Marokkey, Sajan; Demmerle, Wolfgang; Pistor, Thomas V.; Denbeaux, Gregory

    2015-03-16

    The availability of defect-free masks is considered to be a critical issue for enabling extreme ultraviolet lithography (EUVL) as the next generation technology. Since completely defect-free masks will be hard to achieve, it is essential to have a good understanding of the printability of the native EUV mask defects. In this work, we performed a systematic study of native mask defects to understand the defect printability caused by them. The multilayer growth over native substrate mask blank defects was correlated to the multilayer growth over regular-shaped defects having similar profiles in terms of their width and height. To model the multilayer growth over the defects, a novel level-set multilayer growth model was used that took into account the tool deposition conditions of the Veeco Nexus ion beam deposition tool. The same tool was used for performing the actual deposition of the multilayer stack over the characterized native defects, thus ensuring a fair comparison between the actual multilayer growth over native defects, and modeled multilayer growth over regular-shaped defects. Further, the printability of the characterized native defects was studied with the SEMATECH-Berkeley Actinic Inspection Tool (AIT), an EUV mask-imaging microscope at Lawrence Berkeley National Laboratory (LBNL). Printability of the modeled regular-shaped defects, which were propagated up the multilayer stack using level-set growth model was studied using defect printability simulations implementing the waveguide algorithm. Good comparison was observed between AIT and the simulation results, thus demonstrating that multilayer growth over a defect is primarily a function of a defect’s width and height, irrespective of its shape. This would allow us to predict printability of the arbitrarily-shaped native EUV mask defects in a systematic and robust manner.

  2. Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Green, Tyler; Kuznetsov, Ilya; Willingham, David; Naes, Benjamin E.; Eiden, Gregory C.; Zhu, Zihua; Chao, W.; Rocca, Jorge J.; Menoni, Carmen S.; Duffin, Andrew M.

    2017-01-01

    The purpose of this research was to characterize Extreme Ultraviolet Time-of-Flight (EUV TOF) Laser Ablation Mass Spectrometry for high spatial resolution elemental and isotopic analysis. We compare EUV TOF results with Secondary Ionization Mass Spectrometry (SIMS) to orient the EUV TOF method within the overall field of analytical mass spectrometry. Using the well-characterized NIST 61x glasses, we show that the EUV ionization approach produces relatively few molecular ion interferences in comparison to TOF SIMS. We demonstrate that the ratio of element ion to element oxide ion is adjustable with EUV laser pulse energy and that the EUV TOF instrument has a sample utilization efficiency of 0.014%. The EUV TOF system also achieves a lateral resolution of 80 nm and we demonstrate this lateral resolution with isotopic imaging of closely spaced particles or uranium isotopic standard materials.

  3. EUV photoresist performance results from the VNL and the EUV LLC

    Science.gov (United States)

    Cobb, Jonathan L.; Dentinger, Paul M.; Hunter, Luke L.; O'Connell, Donna J.; Gallatin, Gregg M.; Hinsberg, William D.; Houle, Frances A.; Sanchez, Martha I.; Domke, Wolf-Dieter; Wurm, Stefan; Okoroanyanwu, Uzodinma; Lee, Sang Hun

    2002-07-01

    If EUV lithography is to be inserted at the 65-nm node of the 2001 International Technology Roadmap for Semiconductors, beta-tool resists must be ready in 2004. These resists should print 35-65 nm lines on a 130-nm pitch with LER below 4 nm 3s. For throughput considerations, the sizing dose should be below 4 mJ/cm2. The VNL and EUV LLC resist development program has measured the resolution, LER, and sizing dose of approximately 60 ESCAP photoresists with the 10X exposure tools at Sandia National Laboratories. The NA of these tools is 0.088, and every resist measured would support the beta-tool resolution requirement if the resolution scales with NA as predicted by optics. 50-nm dense lines have been printed with monopole off-axis illumination, but 35-nm resolution on a 130-nm pitch remains to be demonstrated. Only one photoresist met the LER specification, but its sizing dose of 22 mJ/cm2 is over five times too large. The power spectral density of the roughness of every resist has a Lorentzian line shape, and most of the roughness comes from frequencies within the resolution of the exposure tools. This suggests a strong contribution from mask and optics, but more work needs to be done to determine the source of the roughness. Many resists have sizing doses below the 4 mJ/cm2 target, and neither resolution nor LER degrades with decreasing sizing dose, suggesting that shot noise is not yet affecting the results. The best overall resist resolved 80-nm dense lines with 5.3 nm 3s LER on 100-nm dense lines at a sizing dose of 3.2 mJ/cm2. Thus, it comes close to, but does not quite meet, the beta-tool resist targets.

  4. Fibrillar Chromospheric Spicule-Like Counterparts to an EUV and Soft X-Ray Blowout Coronal Jet

    Science.gov (United States)

    Sterling, Alphonse C.; Harra, Louise K.; Moore, Ronald L.

    2010-01-01

    We observe an erupting jet feature in a solar polar coronal hole, using data from Hinode/SOT, EIS, and XRT, with supplemental data from STEREO/EUVI. From EUV and soft X-ray (SXR) images we identify the erupting feature as a blowout coronal jet: in SXRs it is a jet with bright base, and in EUV it appears as an eruption of relatively cool (approximately 50,000 K) material of horizontal size scale approximately 30" originating from the base of the SXR jet. In SOT Ca II H images the most pronounced analog is a pair of thin (approximately 1") ejections, at the locations of either of the two legs of the erupting EUV jet. These Ca II features eventually rise beyond 45", leaving the SOT field of view, and have an appearance similar to standard spicules except that they are much taller. They have velocities similar to that of "type II" spicules, approximately 100 kilometers per second, and they appear to have spicule-like substructures splitting off from them with horizontal velocity approximately 50 kilometers per second, similar to the velocities of splitting spicules measured by Sterling et al. (2010). Motions of splitting features and of other substructures suggest that the macroscopic EUV jet is spinning or unwinding as it is ejected. This and earlier work suggests that a sub-population of Ca II type II spicules are the Ca II manifestation of portions of larger-scale erupting magnetic jets. A different sub-population of type II spicules could be blowout jets occurring on a much smaller horizontal size scale than the event we observe here.

  5. Thermal properties of sand from Thermal Emission Spectrometer (TES) and Thermal Emission Imaging System (THEMIS): Spatial variations within the Proctor Crater dune field on Mars

    Science.gov (United States)

    Fenton, Lori K.; Mellon, Michael T.

    2006-06-01

    Thermal inertia, a parameter calculated from surface temperatures obtained from spacecraft, has long been used to quantify the amount of loose, fine-grained material on the Martian surface. With little ``ground truth'' available, studies often refer to Martian dune fields to calibrate thermal inertias. The well-understood physical properties of dune sand make it an ideal basis for comparison to more complex surfaces. However, higher-resolution data sets available from the TES (Thermal Emission Spectrometer onboard Mars Global Surveyor) and THEMIS (Thermal Emission Imaging System onboard Mars Odyssey) show spatial variations in the thermal properties within dune fields, calling into question their effectiveness as controls for thermal inertia studies. In order to explain these variations, we apply a thermal model developed for TES data to a commonly investigated dune field in Noachis Terra, that on the floor of Proctor Crater. We show that in this dune field, the thermal variations on the scale of 30 J m-2 s-0.5 K-1 are present and correlate spatially with aeolian features in the dune field. These variations correspond to three types of surfaces observed in the Mars Orbital Camera Narrow Angle (MOC NA) images: (1) dune sand, (2) interdunes exposing the surface underlying the dune field, and (3) sand-covered interdunes, or dune troughs. Both the interdunes and the dune troughs have cooler nighttime temperatures than the dune sand, corresponding to lower thermal inertia values. The dune troughs may be sand-covered areas with either minor amounts of dust accumulation or a mean sand grain size lower than that of dune sand. Because fine sand grains tend to preferentially accumulate on dune crests rather than in dune troughs, the second hypothesis is considered less likely than the first. This has implications for the recent sedimentary history of the dune field: Dust accumulation in dune troughs may imply that sand saltation is not prevalent enough to scour away all of

  6. Oxide Nanoparticle EUV (ONE) Photoresists: Current Understanding of the Unusual Patterning Mechanism

    KAUST Repository

    Jiang, Jing

    2015-01-01

    © 2015 SPST. In the past few years, industry has made significant progress to deliver a stable high power EUV scanner and a 100 W light source is now being tested on the manufacuring scale. The success of a high power EUV source demands a fast and high resolution EUV resist. However, chemcially amplied resists encounter unprecedented challenges beyond the 22 nm node due to resolution, roughness and sensitivity tradeoffs. Unless novel solutions for EUV resists are proposed and further optimzed, breakthroughs can hardly be achieved. Oxide nanoparticle EUV (ONE) resists stablized by organic ligands were originally proposed by Ober et al. Recently this work attracts more and more attention due to its extraordinanry EUV sensitivity. This new class of photoresist utilizes ligand cleavage with a ligand exchange mechanism to switch its solubilty for dual-tone patterning. Therefore, ligand selection of the nanoparticles is extremely important to its EUV performance.

  7. Extreme Ultraviolet (EUV) induced surface chemistry on Ru

    NARCIS (Netherlands)

    Liu, Feng; Sturm, Jacobus Marinus; Osorio, E.; van Kampen, M.; Lee, Christopher James; Bijkerk, Frederik

    2013-01-01

    Extreme UV, i.e. 13.5 nm, photons and photon-induced secondary electrons are the driving forces of mirror degradation in EUV lithography equipment. An understanding of the catalytic role of the mirror surface and the photochemical processes is required for controlling such mirror degradation. We

  8. Investigation of a novel discharge EUV source for microlithography

    Science.gov (United States)

    Bauer, Bruno S.; Makhin, Volodymyr; Fuelling, Stephan; Lindemuth, Irvin R.

    2006-03-01

    A plasma discharge could be an inexpensive and efficient EUV source for microlithography, if issues of brightness, lifetime, debris, repetition rate, and stability can be resolved. A novel discharge EUV source (international patent pending) is being investigated that may offer an economical solution to these issues. The novel EUV discharge seeks to efficiently assemble a hot, dense, uniform, axially stable plasma with magnetic pressure and inductive current drive, employing resonant theta-pinch-type compression of plasma confined in a magnetic mirror. This resonantly compressed mirror plasma (RCMP) source would be continuously driven by a radio frequency oscillator, to obtain an EUV conversion efficiency greater than that of sources in which the plasma is discarded after each radiation burst. An analytic calculation indicates the novel RCMP source could provide 115 W of 13.45 nm radiation in 3.3 mm2sr etendue to an intermediate focus. Numerical modeling of RCMP dynamics has been performed with MHRDR-EUVL, a magnetohydrodynamic (MHD) numerical simulation with atomic and radiation physics. The numerical simulation demonstrates the efficacy of resonant magneto-acoustic heating. An experiment is being developed to test the new concept.

  9. The EUV Spectrum of Sunspot Plumes Observed by SUMER on ...

    Indian Academy of Sciences (India)

    tribpo

    J. Astrophys. Astr. (2000) 21, .397-401. The EUV Spectrum of Sunspot Plumes Observed by SUMER on. SOHO. W. Curdt,. 1. B. N. Dwivedi. 2. & U. Feldman. 3. 1. Max-Planck-Institut für Aeronomie, D-37191, Katlenburg-Lindau, Germany. 2. Department of Applied Physics, Banaras Hindu University, Varanasi-221005, India.

  10. EUV FLICKERING OF SOLAR CORONAL LOOPS: A NEW DIAGNOSTIC OF CORONAL HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Tajfirouze, E.; Reale, F.; Peres, G. [Dipartimento di Fisica e Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 (Italy); Testa, P., E-mail: reale@astropa.unipa.it [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-02-01

    A previous work of ours found the best agreement between EUV light curves observed in an active region core (with evidence of super-hot plasma) and those predicted from a model with a random combination of many pulse-heated strands with a power-law energy distribution. We extend that work by including spatially resolved strand modeling and by studying the evolution of emission along the loops in the EUV 94 Å and 335 Å channels of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Using the best parameters of the previous work as the input of the present one, we find that the amplitude of the random fluctuations driven by the random heat pulses increases from the bottom to the top of the loop in the 94 Å channel and from the top to the bottom in the 335 Å channel. This prediction is confirmed by the observation of a set of aligned neighboring pixels along a bright arc of an active region core. Maps of pixel fluctuations may therefore provide easy diagnostics of nanoflaring regions.

  11. Land cover/use classification of Cairns, Queensland, Australia: A remote sensing study involving the conjunctive use of the airborne imaging spectrometer, the large format camera and the thematic mapper simulator

    Science.gov (United States)

    Heric, Matthew; Cox, William; Gordon, Daniel K.

    1987-01-01

    In an attempt to improve the land cover/use classification accuracy obtainable from remotely sensed multispectral imagery, Airborne Imaging Spectrometer-1 (AIS-1) images were analyzed in conjunction with Thematic Mapper Simulator (NS001) Large Format Camera color infrared photography and black and white aerial photography. Specific portions of the combined data set were registered and used for classification. Following this procedure, the resulting derived data was tested using an overall accuracy assessment method. Precise photogrammetric 2D-3D-2D geometric modeling techniques is not the basis for this study. Instead, the discussion exposes resultant spectral findings from the image-to-image registrations. Problems associated with the AIS-1 TMS integration are considered, and useful applications of the imagery combination are presented. More advanced methodologies for imagery integration are needed if multisystem data sets are to be utilized fully. Nevertheless, research, described herein, provides a formulation for future Earth Observation Station related multisensor studies.

  12. Validation of the Earth atmosphere models using the EUV solar occultation data from the CORONAS and PROBA 2 instruments

    Science.gov (United States)

    Slemzin, Vladimir; Kuzin, Sergey; Berghmans, David; Pertsov, Andrey; Dominique, Marie; Ulyanov, Artyom; Gaikovich, Konstantin

    Absorption in the atmosphere below 500 km results in attenuation of the solar EUV flux, variation of its spectra and distortion of solar images acquired by solar EUV instruments operating on LEO satellites even on solar synchronous orbits. Occultation measurements are important for planning of solar observations from these satellites, and can be used for monitoring the upper atmosphere as well as for studying its response to the solar activity. We present the results of the occultation measurements of the solar EUV radiation obtained by the CORONAS-F/SPIRIT telescope at high solar activity (2002), by the CORONAS-Photon/TESIS telescope at low activity (2009), and by the SWAP telescope and LYRA radiometer onboard the PROBA 2 satellite at moderate activity (2010). The measured attenuation profiles and the retrieved linear extinction coefficients at the heights 200-500 km are compared with simulations by the NRLMSIS-00 and DTM2013 atmospheric models. It was shown that the results of simulations by the DTM2013 model are well agreed with the data of measurements at all stages of solar activity and in presence of the geomagnetic storm, whereas the results of the NRLMSISE-00 model significantly diverge from the measurements, in particular, at high and low activity. The research leading to these results has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement “eHeroes” (project No.284461, www.eheroes.eu).

  13. CORONAL MAGNETIC FIELDS DERIVED FROM SIMULTANEOUS MICROWAVE AND EUV OBSERVATIONS AND COMPARISON WITH THE POTENTIAL FIELD MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Miyawaki, Shun; Nozawa, Satoshi [Department of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Iwai, Kazumasa; Shibasaki, Kiyoto [Nobeyama Solar Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Nagano 384-1305 (Japan); Shiota, Daikou, E-mail: shunmi089@gmail.com [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601 (Japan)

    2016-02-10

    We estimated the accuracy of coronal magnetic fields derived from radio observations by comparing them to potential field calculations and the differential emission measure measurements using EUV observations. We derived line-of-sight components of the coronal magnetic field from polarization observations of the thermal bremsstrahlung in the NOAA active region 11150, observed around 3:00 UT on 2011 February 3 using the Nobeyama Radioheliograph at 17 GHz. Because the thermal bremsstrahlung intensity at 17 GHz includes both chromospheric and coronal components, we extracted only the coronal component by measuring the coronal emission measure in EUV observations. In addition, we derived only the radio polarization component of the corona by selecting the region of coronal loops and weak magnetic field strength in the chromosphere along the line of sight. The upper limits of the coronal longitudinal magnetic fields were determined as 100–210 G. We also calculated the coronal longitudinal magnetic fields from the potential field extrapolation using the photospheric magnetic field obtained from the Helioseismic and Magnetic Imager. However, the calculated potential fields were certainly smaller than the observed coronal longitudinal magnetic field. This discrepancy between the potential and the observed magnetic field strengths can be explained consistently by two reasons: (1) the underestimation of the coronal emission measure resulting from the limitation of the temperature range of the EUV observations, and (2) the underestimation of the coronal magnetic field resulting from the potential field assumption.

  14. Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model.

    Science.gov (United States)

    Su, M G; Min, Q; Cao, S Q; Sun, D X; Hayden, P; O'Sullivan, G; Dong, C Z

    2017-03-23

    One of fundamental aims of extreme ultraviolet (EUV) lithography is to maximize brightness or conversion efficiency of laser energy to radiation at specific wavelengths from laser produced plasmas (LPPs) of specific elements for matching to available multilayer optical systems. Tin LPPs have been chosen for operation at a wavelength of 13.5 nm. For an investigation of EUV radiation of laser-produced tin plasmas, it is crucial to study the related atomic processes and their evolution so as to reliably predict the optimum plasma and experimental conditions. Here, we present a simplified radiation hydrodynamic model based on the fluid dynamic equations and the radiative transfer equation to rapidly investigate the evolution of radiation properties and dynamics in laser-produced tin plasmas. The self-absorption features of EUV spectra measured at an angle of 45° to the direction of plasma expansion have been successfully simulated and explained, and the evolution of some parameters, such as the plasma temperature, ion distribution and density, expansion size and velocity, have also been evaluated. Our results should be useful for further understanding of current research on extreme ultraviolet and soft X-ray source development for applications such as lithography, metrology and biological imaging.

  15. EUV sources for EUV lithography in alpha-, beta-, and high volume chip manufacturing: an update on GDPP and LPP technology

    Science.gov (United States)

    Stamm, U.; Kleinschmidt, J.; Gabel, K.; Hergenhan, G.; Ziener, C.; Schriever, G.; Ahmad, I.; Bolshukhin, D.; Brudermann, J.; de Bruijn, R.; Chin, T. D.; Geier, A.; Gotze, S.; Keller, A.; Korobotchko, V.; Mader, B.; Ringling, J.; Brauner, T.

    2005-05-01

    In the paper we report about the progress made at XTREME technologies in the development of EUV sources based on gas discharge produced plasma (GDPP) technologies and laser produced plasma (LPP) technologies. First prototype xenon GDPP sources of the type XTS 13-35 based on the Z-pinch principle with 35 W power in 2π sr have been integrated into micro-exposure tools from Exitech, UK. Specifications of the EUV sources and experience of integration as well as data about component and optics lifetime are presented. In the source development program for Beta exposure tools and high volume manufacturing exposure tools both tin and xenon have been investigated as fuel for the EUV sources. Development progress in porous metal cooling technology as well as pulsed power circuit design has led to GDPP sources with xenon fuel continuous operating with an output power of 200 W in 2π sr at 4500 Hz repetition rate. With tin fuel an output power of 400 W in 2π sr was obtained leaving all other conditions unaltered with respect to the xenon based source. The performance of the xenon fueled sources is sufficiently good to fulfill all requirements up to the beta tool level. For both the xenon and the tin GDPP sources detailed data about source performance are reported, including component lifetime and optics lifetime. The status of the integration of the sources with grazing incidence collector optics is discussed. Theoretical estimations of collection efficiencies are compared with experimental data to determine the loss mechanisms in the beam path. Specifically contamination issues related to tin as target material as well as debris mitigation in tin sources is addressed. As driver lasers for the LPP source research diode-pumped Nd:YAG lasers have been used to generate EUV emitting plasma. As target material xenon has been employed. Conversion efficiencies have been measured and currently the maximum conversion efficiency amounts to 1 %. The laser driver power of 1.2 kW is

  16. Comparison of Helioseismic Far-Side Active Region Detections with STEREO Far-Side EUV Observations of Solar Activity

    Science.gov (United States)

    Liewer, P. C.; Qiu, J.; Lindsey, C.

    2017-10-01

    Seismic maps of the Sun's far hemisphere, computed from Doppler data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) are now being used routinely to detect strong magnetic regions on the far side of the Sun (http://jsoc.stanford.edu/data/farside/). To test the reliability of this technique, the helioseismically inferred active region detections are compared with far-side observations of solar activity from the Solar TErrestrial RElations Observatory (STEREO), using brightness in extreme-ultraviolet light (EUV) as a proxy for magnetic fields. Two approaches are used to analyze nine months of STEREO and HMI data. In the first approach, we determine whether new large east-limb active regions are detected seismically on the far side before they appear Earth side and study how the detectability of these regions relates to their EUV intensity. We find that while there is a range of EUV intensities for which far-side regions may or may not be detected seismically, there appears to be an intensity level above which they are almost always detected and an intensity level below which they are never detected. In the second approach, we analyze concurrent extreme-ultraviolet and helioseismic far-side observations. We find that 100% (22) of the far-side seismic regions correspond to an extreme-ultraviolet plage; 95% of these either became a NOAA-designated magnetic region when reaching the east limb or were one before crossing to the far side. A low but significant correlation is found between the seismic signature strength and the EUV intensity of a far-side region.

  17. The Omicron Spectrometer

    CERN Document Server

    Allardyce, B W

    1976-01-01

    It is intended to build a spectrometer with a large solid angle and a large momentum acceptance at the reconstructed synchrocyclotron at CERN. This spectrometer will have an energy resolution of about 1 MeV for particles with momenta up to about 400 MeV/c.

  18. EUV magnetic-dipole lines from highly-charged high-Z ions with an open 3d shell

    CERN Document Server

    Osin, D; Reader, J; Ralchenko, Yu

    2012-01-01

    The electron beam ion trap (EBIT) at the National Institute of Standards and Technology was used to produce highly-charged ions of hafnium, tantalum and gold with an open 3d shell. The extreme-ultraviolet (EUV) spectra from these ions were recorded with a flat-field grazing-incidence spectrometer in the wavelength range of 4.5 nm to 25 nm. A total of 133 new spectral lines, primarily due to magnetic-dipole transitions within the ground-state $3d^n$ configurations of the Co-like to K-like ions, were identified by comparing energy-dependent experimental spectra with a detailed collisional-radiative modeling of the EBIT plasma.

  19. Anti-parallel filament flows and bright dots observed in the EUV with Hi-C

    Science.gov (United States)

    Alexander, C. E.; Regnier, S.; Walsh, R. W.; Winebarger, A. R.; Cirtain, J. W.

    2013-12-01

    The Hi-C instrument imaged the million degree corona at the highest spatial and temporal resolution to date. The instrument imaged a complicated active region which contained several interesting features. Scientists at UCLan in the UK, in collaboration with other members of the Hi-C science team, studied two of these festures: anti-parallel filament flows and bright EUV dots. Plasma flows within prominences/filaments have been observed for many years and hold valuable clues concerning the mass and energy balance within these structures. Evidence of ';counter-steaming' flows has previously been inferred from these cool plasma observations but now, for the first time, these flows have been directly imaged along fundamental filament threads within the million degree corona (at 193 Å). We present observations of an active region filament observed with Hi-C that exhibits anti-parallel flows along adjacent filament threads. The ultra-high spatial and temporal resolution of Hi-C allow the anti-parallel flow velocities to be measured (70 - 80 km/s) and gives an indication of the resolvable thickness of the individual strands (0.8' × 0.1'). The temperature distribution of the plasma flows was estimated to be log T(K) = 5.45 × 0.10 using EM loci analysis. Short-lived, small brightenings sparkling at the edge of the active region, calle EUV Bright Dots (EBDs) were also investigated. EBDs have a characteristic duration of 25 s with a characteristic length of 680 km. These brightenings are not fully resolved by the SDO/AIA instrument at the same wavelength, but can however be identified with respect to the Hi-C location of the EBDs. In addition, EBDs are seen in other chromospheric/coronal channels of SDO/AIA suggesting a temperature between 0.5 and 1.5 MK. Based on a potential field extrapolation from an SDO/HMI magnetogram, the EBDs appear at the footpoints of large-scale trans-equatorial coronal loops. The Hi-C observations provide the first evidence of small-scale EUV

  20. MALDI mass spectrometry imaging of bioactive lipids in mouse brain with a Synapt G2-S mass spectrometer operated at elevated pressure: improving the analytical sensitivity and the lateral resolution to ten micrometers.

    Science.gov (United States)

    Kettling, Hans; Vens-Cappell, Simeon; Soltwisch, Jens; Pirkl, Alexander; Haier, Jörg; Müthing, Johannes; Dreisewerd, Klaus

    2014-08-05

    Mass spectrometers from the Synapt-G1/G2 family (Waters) are widely employed for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). A lateral resolution of about 50 μm is typically achieved with these instruments, that is, however, below the often desired cellular resolution. Here, we show the first MALDI-MSI examples demonstrating a lateral resolution of about ten micrometers obtained with a Synapt G2-S HDMS mass spectrometer without oversampling. This improvement became possible by laser beam shaping using a 4:1 beam expander and a circular aperture for spatial mode filtering and by replacement of the default focusing lens. We used dithranol as an effective matrix for imaging of acidic lipids such as sulfatides, gangliosides, and phosphatidylinositols in the negative ion mode. At the same time, the matrix enables MS imaging of more basic lipids in the positive ion mode. Uniform matrix coatings with crystals having average dimensions between 0.5 and 3 μm were obtained upon spraying a chloroform/methanol matrix solution. Increasing the cooling gas pressure in the MALDI ion source after adding an additional gas line was furthermore found to increase the ion abundances of labile lipids such as gangliosides. The combined characteristics are demonstrated with the MALDI-MSI analysis of fine structures in coronal mouse brain slices.

  1. Extreme ultraviolet (EUV) surface modification of polytetrafluoroethylene (PTFE) for control of biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Ahad, Inam Ul, E-mail: inam-ul.ahad@wat.edu.pl [Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw (Poland); Advanced Processing Technology Research Centre, School of Mechanical and Manufacturing Engineering, Faculty of Engineering & Computing, Dublin City University, Dublin 9 (Ireland); Butruk, Beata [Department of Biotechnology and Bioprocess Engineering, Warsaw University of Technology, Ul. Waryńskiego 1, 00-645 Warsaw (Poland); Ayele, Mesfin; Budner, Bogusław; Bartnik, Andrzej; Fiedorowicz, Henryk [Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw (Poland); Ciach, Tomasz [Department of Biotechnology and Bioprocess Engineering, Warsaw University of Technology, Ul. Waryńskiego 1, 00-645 Warsaw (Poland); Brabazon, Dermot [Advanced Processing Technology Research Centre, School of Mechanical and Manufacturing Engineering, Faculty of Engineering & Computing, Dublin City University, Dublin 9 (Ireland)

    2015-12-01

    Extreme ultraviolet (EUV) surface modification of polytetrafluoroethylene (PTFE) was performed in order to enhance the degree of biocompatibility. Polymer samples were irradiated by different number of EUV shots using a laser–plasma based EUV source in the presence of nitrogen gas. The physical and chemical properties of EUV modified PTFE samples were studied using Atomic Force Microscopy, X-ray photoelectron spectroscopy and water contact angle (WCA) methods. Pronounced wall type micro and nano-structures appeared on the EUV treated polymer surfaces resulting in increased surface roughness and hydrophobicity. Stronger cell adhesion and good cell morphology were observed on EUV modified surfaces by in-vitro cell culture studies performed using L929 fibroblasts.

  2. Contribution of EUV mask CD variability on LCDU

    Science.gov (United States)

    Qi, Zhengqing John; Rankin, Jed; Sun, Lei; Levinson, Harry

    2017-03-01

    The shrink in feature sizes enabled by EUV lithography introduces a regime where stochastic limits to resolution can manifest in the form of line edge roughness (LER) for line/space patterns and local critical dimension uniformity (LCDU) for contact/holes. To meet increasing tolerances on edge placement error (EPE) and suppression of stochastic effects, an understanding of EUV mask contributions on lithographic patterning variability is essential. The work here explores stochastic noise originating from the mask patterning process and attempts to quantify its contributions towards on-wafer LCDU. A semiempirical approach was used to statistically decompose the mask variability component from the measured LCDU and provide a first-order understanding of the mask's impact on wafer. Taking a more direct approach, a one-to-one correlation of local CD variation between mask and wafer was also experimentally shown, presenting the possibility for predicting the contributions and impact of mask LCDU on wafer prior to exposure.

  3. Optical, UV, and EUV Oscillations of SS Cygni in Outburst

    Science.gov (United States)

    Mauche, Christopher W.

    2004-07-01

    I provide a review of observations in the optical, UV (HST), and EUV (EUVE and Chandra LETG) of the rapid periodic oscillations of nonmagnetic, disk-accreting, high mass-accretion rate cataclysmic variables (CVs), with particular emphasis on the dwarf nova SS Cyg in outburst. In addition, I drawn attention to a correlation, valid over nearly six orders of magnitude in frequency, between the frequencies of the quasi-periodic oscillations (QPOs) of white dwarf, neutron star, and black hole binaries. This correlation identifies the high frequency quasi-coherent oscillations (so-called ``dwarf nova oscillations'') of CVs with the kilohertz QPOs of low mass X-ray binaries (LMXBs), and the low frequency and low coherence QPOs of CVs with the horizontal branch oscillations (or the broad noise component identified as such) of LMXBs. Assuming that the same mechanisms produce the QPOs of white dwarf, neutron star, and black hole binaries, this correlation has important implications for QPO models.

  4. EUV mask reflectivity measurements with micron-scale spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Rekawa, S.B.; Kemp, C.D.; Barty, A.; Anderson, E.H.; Kearney, Patrick; Han, Hakseung

    2008-05-26

    The effort to produce defect-free mask blanks for EUV lithography relies on increasing the detection sensitivity of advanced mask inspection tools, operating at several wavelengths. We describe the unique measurement capabilities of a prototype actinic (EUV wavelength) microscope that is capable of detecting small defects and reflectivity changes that occur on the scale of microns to nanometers. Types of defects: (a) Buried Substrate Defects: particles & pits (causes amplitude and/or phase variations); (b) Surface Contamination (reduces reflectivity and (possibly) contrast); (c) Damage from Inspection and Use (reduces the reflectivity of the multilayer coating). This paper presents an overview of several topics where scanning actinic inspection makes a unique contribution to EUVL research. We describe the role of actinic scanning inspection in four cases: defect repair studies; observations of laser damage; after scanning electron microscopy; and native and programmed defects.

  5. The SAGE spectrometer

    Science.gov (United States)

    Pakarinen, J.; Papadakis, P.; Sorri, J.; Herzberg, R.-D.; Greenlees, P. T.; Butler, P. A.; Coleman-Smith, P. J.; Cox, D. M.; Cresswell, J. R.; Jones, P.; Julin, R.; Konki, J.; Lazarus, I. H.; Letts, S. C.; Mistry, A.; Page, R. D.; Parr, E.; Pucknell, V. F. E.; Rahkila, P.; Sampson, J.; Sandzelius, M.; Seddon, D. A.; Simpson, J.; Thornhill, J.; Wells, D.

    2014-03-01

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of -rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and -rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyväskylä and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method.

  6. The SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, J.; Papadakis, P. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Sorri, J.; Greenlees, P.T.; Jones, P.; Julin, R.; Konki, J.; Rahkila, P.; Sandzelius, M. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Herzberg, R.D.; Butler, P.A.; Cox, D.M.; Cresswell, J.R.; Mistry, A.; Page, R.D.; Parr, E.; Sampson, J.; Seddon, D.A.; Thornhill, J.; Wells, D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Coleman-Smith, P.J.; Lazarus, I.H.; Letts, S.C.; Pucknell, V.F.E.; Simpson, J. [STFC Daresbury Laboratory, Warrington (United Kingdom)

    2014-03-15

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of γ-rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and γ-rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyvaeskylae and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method. (orig.)

  7. Theoretical EUV spectrum of near Pd-like Xe

    CERN Document Server

    Sasaki, A

    2003-01-01

    The EUV spectrum of multiple charged Xe ion is theoretically investigated. The strong emission in the 11 nm band is attributed to 4d-4f transitions of Xe sup 7 sup + to Xe sup 1 sup 8 sup +. The 4d-5p transition of Xe sup 1 sup 0 sup + contributes to the emission in the 13.5 nm band from low density plasma. (author)

  8. High-Resolution EUV Spectroscopy of White Dwarfs

    Science.gov (United States)

    Kowalski, Michael P.; Wood, K. S.; Barstow, M. A.

    2014-01-01

    We compare results of high-resolution EUV spectroscopic measurements of the isolated white dwarf G191-B2B and the binary system Feige 24 obtained with the J-PEX (Joint Plasmadynamic Experiment), which was sponsored jointly by the U.S. Naval Research Laboratory and NASA. J-PEX delivers the world's highest resolution in EUV and does so at high effective area (e.g., more effective area in a sounding rocket than is available with Chandra at adjacent energies, but in a waveband Chandra cannot reach). The capability J-PEX represents is applicable to the astrophysics of hot plasmas in stellar coronae, white dwarfs and the ISM. G191-B2B and Feige 24 are quite distinct hot white dwarf systems having in common that they are bright in the portion of the EUV where He emission features and edges occur, hence they can be exploited to probe both the stellar atmosphere and the ISM, separating those components by model-fitting that sums over all relevant (He) spectral features in the band. There is evidence from these fits that atmospheric He is being detected but the result is more conservatively cast as a pair of upper limits. We discuss how longer duration satellite observations with the same instrumentation could increase exposure to detect atmospheric He in these and other nearby hot white dwarfs.

  9. The Extreme Ultraviolet (EUV) Instrument for the MAVEN Mission

    Science.gov (United States)

    Chamberlin, Phillip C.

    2012-01-01

    The Mars Atmosphere and Volatile Evolution Mission (MAVEN) will explore the variability in the planet's upper atmosphere and ionosphere that is dominated by interactions with the sun, specifically the high-energy photons in the soft X-ray and extreme ultraviolet wavelengths as well as interactions with the solar wind. Scientists will use MAVEN data to determine the current loss rate of volatile compounds from the Mars atmosphere, then extrapolate back in time in order to give historical estimations of state of the Mars atmosphere and climate, its ability to sustain liquid water, and the potential for the Martian habitability. The EUV instrument is critical in measuring the Space Weather driver of this atmospheric variability. It will directly observe a three EUV wavelength ranges and their variability due to solar flares (time scales of seconds to hours) as well as active region evolution (months), which will then act as proxies for a model to determine the entire 0.1-200 nm solar spectrum at all times during the MAVEN mission. These EUV measurements and models results will compliment the other instruments that will provide direct in-situ as well as remote sensing observations of the Martian atmospheric response to this solar driver. This presentation will be an introduction of this instrument and its science measurements and goals to the larger community, as well as a status report on its progress.

  10. Solar Tornadoes Triggered by Interaction between Filaments and EUV Jets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huadong; Zhang, Jun; Ma, Suli [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Yan, Xiaoli [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Xue, Jianchao, E-mail: hdchen@nao.cas.cn, E-mail: zjun@nao.cas.cn [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-05-20

    We investigate the formations and evolutions of two successive solar tornadoes in/near AR 12297 during 2015 March 19–20. Recurrent EUV jets close to two filaments were detected along a large-scale coronal loop prior to the appearances of the tornadoes. Under the disturbances from the activities, the filaments continually ascended and finally interacted with the loops tracked by the jets. Subsequently, the structures of the filaments and the loop were merged together, probably via magnetic reconnections, and formed tornado-like structures with a long spiral arm. Our observations suggest that solar tornadoes can be triggered by the interaction between filaments and nearby coronal jets, which has rarely been reported before. At the earlier development phase of the first tornado, about 30 small-scale sub-jets appeared in the tornado’s arm, accompanied by local EUV brightenings. They have an ejection direction approximately vertical to the axis of the arm and a typical maximum speed of ∼280 km s{sup −1}. During the ruinations of the two tornadoes, fast plasma outflows from the strong EUV brightenings inside tornadoes are observed, in company with the untangling or unwinding of the highly twisted tornado structures. These observational features indicate that self reconnections probably occurred between the tangled magnetic fields of the tornadoes and resulted in the rapid disintegrations and disappearances of the tornadoes. According to the reconnection theory, we also derive the field strength of the tornado core to be ∼8 G.

  11. Solar Tornadoes Triggered by Interaction between Filaments and EUV Jets

    Science.gov (United States)

    Chen, Huadong; Zhang, Jun; Ma, Suli; Yan, Xiaoli; Xue, Jianchao

    2017-05-01

    We investigate the formations and evolutions of two successive solar tornadoes in/near AR 12297 during 2015 March 19-20. Recurrent EUV jets close to two filaments were detected along a large-scale coronal loop prior to the appearances of the tornadoes. Under the disturbances from the activities, the filaments continually ascended and finally interacted with the loops tracked by the jets. Subsequently, the structures of the filaments and the loop were merged together, probably via magnetic reconnections, and formed tornado-like structures with a long spiral arm. Our observations suggest that solar tornadoes can be triggered by the interaction between filaments and nearby coronal jets, which has rarely been reported before. At the earlier development phase of the first tornado, about 30 small-scale sub-jets appeared in the tornado’s arm, accompanied by local EUV brightenings. They have an ejection direction approximately vertical to the axis of the arm and a typical maximum speed of ˜280 km s-1. During the ruinations of the two tornadoes, fast plasma outflows from the strong EUV brightenings inside tornadoes are observed, in company with the untangling or unwinding of the highly twisted tornado structures. These observational features indicate that self reconnections probably occurred between the tangled magnetic fields of the tornadoes and resulted in the rapid disintegrations and disappearances of the tornadoes. According to the reconnection theory, we also derive the field strength of the tornado core to be ˜8 G.

  12. Fast-mode Coronal EUV Wave Trains Associated with Solar Flares and CMEs

    Science.gov (United States)

    Liu, Wei; Ofman, Leon; Downs, Cooper; Karlicky, Marian; Chen, Bin

    2017-08-01

    As a new observational phenomenon, Quasi-periodic, Fast Propagating EUV wave trains (QFPs) are fast-mode magnetosonic waves closely related to quasi-periodic pulsations commonly detected in solar flares (traditionally with non-imaging observations). They can provide critical clues to flare energy release and serve as new tools for coronal seismology. We report recent advances in observing and modeling QFPs, including evidence of heating and cooling cycles revealed with differential emission measure (DEM) analysis that are consistent with alternating compression and rarefaction expected for magnetosonic waves. Through a statistical survey, we found a preferential association of QFPs with eruptive flares (with CMEs) rather than confined flares (without CMEs). We also identified some correlation with quasi-periodic radio bursts observed at JVLA and Ondrejov observatories. We will discuss the implications of these results and the potential roles of QFPs in coronal heating and energy transport.

  13. The High-Resolution Lightweight Telescope for the EUV (HiLiTE)

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Galarce, D S; Boerner, P; Soufli, R; De Pontieu, B; Katz, N; Title, A; Gullikson, E M; Robinson, J C; Baker, S L

    2008-06-02

    The High-resolution Lightweight Telescope for the EUV (HiLiTE) is a Cassegrain telescope that will be made entirely of Silicon Carbide (SiC), optical substrates and metering structure alike. Using multilayer coatings, this instrument will be tuned to operate at the 465 {angstrom} Ne VII emission line, formed in solar transition region plasma at {approx}500,000 K. HiLiTE will have an aperture of 30 cm, angular resolution of {approx}0.2 arc seconds and operate at a cadence of {approx}5 seconds or less, having a mass that is about 1/4 that of one of the 20 cm aperture telescopes on the Atmospheric Imaging Assembly (AIA) instrument aboard NASA's Solar Dynamics Observatory (SDO). This new instrument technology thus serves as a path finder to a post-AIA, Explorer-class missions.

  14. Double slit interferometry to measure the EUV refractive indices of solids using high harmonics.

    Science.gov (United States)

    Wilson, Lucy A; Rossall, Andrew K; Wagenaars, Erik; Cacho, Cephise M; Springate, Emma; Turcu, I C Edmond; Tallents, Greg J

    2012-04-20

    Accurate values of the extreme ultraviolet (EUV) optical properties of materials are required to make EUV optics such as filters and multilayer mirrors. The optical properties of aluminum studied in this report are required, in particular, as aluminum is used as an EUV filter material. The complex refractive index of solid aluminum and the imaginary part of the refractive index of solid iron between 17 eV and 39 eV have been measured using EUV harmonics produced from an 800 nm laser focused to 10(14) Wcm(2) in an argon gas jet impinging on a double slit interferometer.

  15. Fourier Transform Spectrometer System

    Science.gov (United States)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  16. [Design of Dual-Beam Spectrometer in Spectrophotometer for Colorimetry].

    Science.gov (United States)

    Liu, Yi-xuan; Yan, Chang-xiang

    2015-07-01

    Spectrophotometers for colorimetry are usually composed of two independent and identical spectrometers. In order to reduce the volume of spectrophotometer for colorimetry, a design method of double-beam spectrometer is put forward. A traditional spectrometer is modified so that a new spectrometer can realize the function of double spectrometers, which is especially suitable for portable instruments. One slit is replaced by the double-slit, than two beams of spectrum can be detected. The working principle and design requirement of double-beam spectrometer are described. A spectrometer of portable spectrophotometer is designed by this method. A toroidal imaging mirror is used for the Czerny-Turner double-beam spectrometer in this paper, which can better correct astigmatism, and prevent the dual-beam spectral crosstalk. The results demonstrate that the double-beam spectrometer designed by this method meets the design specifications, with the spectral resolution less than 10 nm, the spectral length of 9.12 mm, and the volume of 57 mm x 54 mm x 23 mm, and without the dual-beam spectral overlap in the detector either. Comparing with a traditional spectrophotometer, the modified spectrophotometer uses a set of double-beam spectrometer instead of two sets of spectrometers, which can greatly reduce the volume. This design method can be specially applied in portable spectrophotometers, also can be widely applied in other double-beam spectrophotometers, which offers a new idea for the design of dual-beam spectrophotometers.

  17. Segmentation of photospheric magnetic elements corresponding to coronal features to understand the EUV and UV irradiance variability

    Science.gov (United States)

    Zender, J. J.; Kariyappa, R.; Giono, G.; Bergmann, M.; Delouille, V.; Damé, L.; Hochedez, J.-F.; Kumara, S. T.

    2017-09-01

    Context. The magnetic field plays a dominant role in the solar irradiance variability. Determining the contribution of various magnetic features to this variability is important in the context of heliospheric studies and Sun-Earth connection. Aims: We studied the solar irradiance variability and its association with the underlying magnetic field for a period of five years (January 2011-January 2016). We used observations from the Large Yield Radiometer (LYRA), the Sun Watcher with Active Pixel System detector and Image Processing (SWAP) on board PROBA2, the Atmospheric Imaging Assembly (AIA), and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Methods: The Spatial Possibilistic Clustering Algorithm (SPoCA) is applied to the extreme ultraviolet (EUV) observations obtained from the AIA to segregate coronal features by creating segmentation maps of active regions (ARs), coronal holes (CHs) and the quiet sun (QS). Further, these maps are applied to the full-disk SWAP intensity images and the full-disk (FD) HMI line-of-sight (LOS) magnetograms to isolate the SWAP coronal features and photospheric magnetic counterparts, respectively. We then computed full-disk and feature-wise averages of EUV intensity and line of sight (LOS) magnetic flux density over ARs/CHs/QS/FD. The variability in these quantities is compared with that of LYRA irradiance values. Results: Variations in the quantities resulting from the segmentation, namely the integrated intensity and the total magnetic flux density of ARs/CHs/QS/FD regions, are compared with the LYRA irradiance variations. We find that the EUV intensity over ARs/CHs/QS/FD is well correlated with the underlying magnetic field. In addition, variations in the full-disk integrated intensity and magnetic flux density values are correlated with the LYRA irradiance variations. Conclusions: Using the segmented coronal features observed in the EUV wavelengths as proxies to isolate the underlying

  18. A compact multichannel spectrometer for Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R. [Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2012-10-15

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T{sub e} < 100 eV are achieved by a 2971 l/mm VPH grating and measurements T{sub e} > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated ({approx}2 ns) ICCD camera for detection. A Gen III image intensifier provides {approx}45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  19. A compact multichannel spectrometer for Thomson scattering.

    Science.gov (United States)

    Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  20. A compact multichannel spectrometer for Thomson scatteringa)

    Science.gov (United States)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of Te VPH grating and measurements Te > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (˜2 ns) ICCD camera for detection. A Gen III image intensifier provides ˜45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  1. Rising from the Dead: the Revival of the EUVE E/PO

    Science.gov (United States)

    Cullison, J. L.; Craig, N.; Stroozas, B. A.; Malina, R. F.

    2000-05-01

    NASA's Extreme Ultraviolet Explorer (EUVE) is dedicated to gathering data on our sky via instrumentation sensitive to the region of light between 76 and 760 angstroms. Since the all-sky survey was completed in 1993, astronomers have made studies of selected objects with EUVE to determine their physical properties and chemical compositions. Also, they have learned about the conditions that prevail and the processes at work in stars, planets, and other sources of EUV radiation. In its pre-launch and early prime mission, EUVE had a thriving education and public outreach (E/PO) program formed expressly to spread the word on recent EUVE findings, but due to budgetary restraints in its extended mission, the project has been unable in recent years to support extensive E/PO efforts. Now in it's eighth year of operation, the EUVE Project has revived its E/PO efforts without significantly impacting its shoe-string budget. Web sites are being reconstructed, including sophisticated interactive learning environments where elementary through college level students, teachers, and the general public can select from lesson plans including, for example, an introductory astronomical module on the relationship between spectra and object classification, download three-dimensional cutouts of the EUVE skymap, view a slide show on the history and instrumentation of the satellite, take a virtual tour of the EUVE observatory, find where EUVE is in its orbit, and catch up on EUVE's most recent news and events. EUVE's revived internet E/PO presence is supplemented with staff and technical support (up to 10% of each staff person's time) of hands-on elementary and community projects coordinated by the UC Berkeley Center for Science Education (the now independent offshoot of the original EUVE E/PO). All elements of the EUVE E/PO are supported without impacting the efficient and highly productive science goals of the small-staffed mission. Additional EUVE E/PO efforts in the works include

  2. Off-limb EUV observations of the solar corona and transients with the CORONAS-F/SPIRIT telescope-coronagraph

    Directory of Open Access Journals (Sweden)

    V. Slemzin

    2008-10-01

    Full Text Available The SPIRIT telescope aboard the CORONAS-F satellite (in orbit from 26 July 2001 to 5 December 2005, observed the off-limb solar corona in the 175 Å (Fe IX, X and XI lines and 304 Å (He II and Si XI lines bands. In the coronagraphic mode the mirror was tilted to image the corona at the distance of 1.1...5 Rsun from the solar center, the outer occulter blocked the disk radiation and the detector sensitivity was enhanced. This intermediate region between the fields of view of ordinary extreme-ultraviolet (EUV telescopes and most of the white-light (WL coronagraphs is responsible for forming the streamer belt, acceleration of ejected matter and emergence of slow and fast solar wind. We present here the results of continuous coronagraphic EUV observations of the solar corona carried out during two weeks in June and December 2002. The images showed a "diffuse" (unresolved component of the corona seen in both bands, and non-radial, ray-like structures seen only in the 175 Å band, which can be associated with a streamer base. The correlations between latitudinal distributions of the EUV brightness in the corona and at the limb were found to be high in 304 Å at all distances and in 175 Å only below 1.5 Rsun. The temporal correlation of the coronal brightness along the west radial line, with the brightness at the underlying limb region was significant in both bands, independent of the distance. On 2 February 2003 SPIRIT observed an expansion of a transient associated with a prominence eruption seen only in the 304 Å band. The SPIRIT data have been compared with the corresponding data of the SOHO LASCO, EIT and UVCS instruments.

  3. Off-limb EUV observations of the solar corona and transients with the CORONAS-F/SPIRIT telescope-coronagraph

    Directory of Open Access Journals (Sweden)

    V. Slemzin

    2008-10-01

    Full Text Available The SPIRIT telescope aboard the CORONAS-F satellite (in orbit from 26 July 2001 to 5 December 2005, observed the off-limb solar corona in the 175 Å (Fe IX, X and XI lines and 304 Å (He II and Si XI lines bands. In the coronagraphic mode the mirror was tilted to image the corona at the distance of 1.1...5 Rsun from the solar center, the outer occulter blocked the disk radiation and the detector sensitivity was enhanced. This intermediate region between the fields of view of ordinary extreme-ultraviolet (EUV telescopes and most of the white-light (WL coronagraphs is responsible for forming the streamer belt, acceleration of ejected matter and emergence of slow and fast solar wind. We present here the results of continuous coronagraphic EUV observations of the solar corona carried out during two weeks in June and December 2002. The images showed a "diffuse" (unresolved component of the corona seen in both bands, and non-radial, ray-like structures seen only in the 175 Å band, which can be associated with a streamer base. The correlations between latitudinal distributions of the EUV brightness in the corona and at the limb were found to be high in 304 Å at all distances and in 175 Å only below 1.5 Rsun. The temporal correlation of the coronal brightness along the west radial line, with the brightness at the underlying limb region was significant in both bands, independent of the distance. On 2 February 2003 SPIRIT observed an expansion of a transient associated with a prominence eruption seen only in the 304 Å band. The SPIRIT data have been compared with the corresponding data of the SOHO LASCO, EIT and UVCS instruments.

  4. TIMED solar EUV experiment: preflight calibration results for the XUV photometer system

    Science.gov (United States)

    Woods, Thomas N.; Rodgers, Erica M.; Bailey, Scott M.; Eparvier, Francis G.; Ucker, Gregory J.

    1999-10-01

    The Solar EUV Experiment (SEE) on the NASA Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics (TIMED) mission will measure the solar vacuum ultraviolet (VUV) spectral irradiance from 0.1 to 200 nm. To cover this wide spectral range two different types of instruments are used: a grating spectrograph for spectra between 25 and 200 nm with a spectral resolution of 0.4 nm and a set of silicon soft x-ray (XUV) photodiodes with thin film filters as broadband photometers between 0.1 and 35 nm with individual bandpasses of about 5 nm. The grating spectrograph is called the EUV Grating Spectrograph (EGS), and it consists of a normal- incidence, concave diffraction grating used in a Rowland spectrograph configuration with a 64 X 1024 array CODACON detector. The primary calibrations for the EGS are done using the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF-III) in Gaithersburg, Maryland. In addition, detector sensitivity and image quality, the grating scattered light, the grating higher order contributions, and the sun sensor field of view are characterized in the LASP calibration laboratory. The XUV photodiodes are called the XUV Photometer System (XPS), and the XPS includes 12 photodiodes with thin film filters deposited directly on the silicon photodiodes' top surface. The sensitivities of the XUV photodiodes are calibrated at both the NIST SURF-III and the Physikalisch-Technische Bundesanstalt (PTB) electron storage ring called BESSY. The other XPS calibrations, namely the electronics linearity and field of view maps, are performed in the LASP calibration laboratory. The XPS and solar sensor pre-flight calibration results are primarily discussed as the EGS calibrations at SURF-III have not yet been performed.

  5. Carbon induced extreme ultraviolet (EUV) reflectance loss characterized using visible-light ellipsometry

    NARCIS (Netherlands)

    Chen, Juequan; Chen, Juequan; Louis, Eric; Louis, Eric; Wormeester, Herbert; Harmsen, Rob; van de Kruijs, Robbert Wilhelmus Elisabeth; Lee, Christopher James; van Schaik, Willem; Bijkerk, Frederik

    2011-01-01

    Carbon deposition on extreme ultraviolet (EUV) optics was observed due to photon-induced dissociation of hydrocarbons in a EUV lithography environment. The reflectance loss of the multilayer mirror is determined by the carbon layer thickness and density. To study the influence of various forms of

  6. EUV multilayer mirror, optical system including a multilayer mirror and method of manufacturing a multilayer mirror

    NARCIS (Netherlands)

    Huang, Qiushi; Louis, Eric; Bijkerk, Frederik; de Boer, Meint J.; von Blanckenhagen, G.

    2016-01-01

    A multilayer mirror (M) reflecting extreme ultraviolet (EUV) radiation from a first wave-length range in a EUV spectral region comprises a substrate (SUB) and a stack of layers (SL) on the substrate, the stack of layers comprising layers comprising a low index material and a high index material, the

  7. Mirror contamination and secondary electron effects during EUV reflectivity analysis

    Science.gov (United States)

    Catalfano, M.; Kanjilal, A.; Al-Ajlony, A.; Harilal, S. S.; Hassanein, A.; Rice, B.

    2012-03-01

    We investigated Ru mirror contamination and subsequent EUV reflectivity loss using the IMPACT facility at Purdue University. Because Ru can either be used as a grazing mirror or as a capping layer for multilayer normal mirror, we examined the angular dependency of XPS peak area intensity at the O 1s and Ru 3d regions as well as the effects of sputtering. Although no change in intensity has been observed at lower take-off angles from the target surface, the peak area intensity starts changing with increasing θ (i.e., emission observation angle, representing the angle between the target surface plane and detector entrance). Among different components, the effect of water and oxidized carbon are found to be most notable when viewed at lower θ, and primarily responsible for degrading the reflectivity of the Ru layer. On the other hand, the effect of OH becomes dominant with increasing observation angle θ, and thus plays a key role to suppress optical transmission. Moreover, atomic carbon effect is found to peak when observed at 30°, and most likely plays an important role in degrading both reflectivity and transmission. This is also because of the total photon path length in the Ru film at different angles. During the contamination process, the EUV reflectivity of the Ru film is found to significantly degrade in the presence of additional secondary electrons from the focusing Ru mirror of the EUV setup. This effect could be explained in the light of a competition between oxidation and carbonization processes on Ru surface.

  8. EUV lithography for 22nm half pitch and beyond: exploring resolution, LWR, and sensitivity tradeoffs

    Science.gov (United States)

    Putna, E. Steve; Younkin, Todd R.; Leeson, Michael; Caudillo, Roman; Bacuita, Terence; Shah, Uday; Chandhok, Manish

    2011-04-01

    The International Technology Roadmap for Semiconductors (ITRS) denotes Extreme Ultraviolet (EUV) lithography as a leading technology option for realizing the 22nm half pitch node and beyond. According to recent assessments made at the 2010 EUVL Symposium, the readiness of EUV materials remains one of the top risk items for EUV adoption. The main development issue regarding EUV resists has been how to simultaneously achieve high resolution, high sensitivity, and low line width roughness (LWR). This paper describes our strategy, the current status of EUV materials, and the integrated post-development LWR reduction efforts made at Intel Corporation. Data collected utilizing Intel's Micro- Exposure Tool (MET) is presented in order to examine the feasibility of establishing a resist process that simultaneously exhibits <=22nm half-pitch (HP) L/S resolution at <=11.3mJ/cm2 with <=3nm LWR.

  9. Surface modification by EUV laser beam based on capillary discharge

    Czech Academy of Sciences Publication Activity Database

    Frolov, Oleksandr; Koláček, Karel; Schmidt, Jiří; Štraus, Jaroslav; Prukner, Václav; Shukurov, A.

    -, č. 58 (2011), s. 484-487 ISSN 2010-376X. [International Conference on Fusion and Plasma Physics. Bali, Indonésie, 26.10.2011-28.10.2011] R&D Projects: GA AV ČR KAN300100702; GA MŠk LA08024; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508 Keywords : soft x-ray * EUV * laser * radiation * source * capillary * discharge * plasma * ablation * surface modification Subject RIV: BL - Plasma and Gas Discharge Physics http://www.waset.org/journals/waset/v58/v58-99.pdf

  10. Divertor extreme ultraviolet (EUV) survey spectroscopy in DIII-D

    Science.gov (United States)

    McLean, Adam; Allen, Steve; Ellis, Ron; Jarvinen, Aaro; Soukhanovskii, Vlad; Boivin, Rejean; Gonzales, Eduardo; Holmes, Ian; Kulchar, James; Leonard, Anthony; Williams, Bob; Taussig, Doug; Thomas, Dan; Marcy, Grant

    2017-10-01

    An extreme ultraviolet spectrograph measuring resonant emissions of D and C in the lower divertor has been added to DIII-D to help resolve an 2X discrepancy between bolometrically measured radiated power and that predicted by boundary codes for DIII-D, JET and ASDEX-U. With 290 and 450 gr/mm gratings, the DivSPRED spectrometer, an 0.3 m flat-field McPherson model 251, measures ground state transitions for D (the Lyman series) and C (e.g., C IV, 155 nm) which account for >75% of radiated power in the divertor. Combined with Thomson scattering and imaging in the DIII-D divertor, measurements of position, temperature and fractional power emission from plasma components are made and compared to UEDGE/SOLPS-ITER. Mechanical, optical, electrical, vacuum, and shielding aspects of DivSPRED are presented. Work supported under USDOE Cooperative Agreement DE-FC02-04ER54698 and DE-AC52-07NA27344, and by the LLNL Laboratory Directed R&D Program, project #17-ERD-020.

  11. Spatial Heterodyne Spectrometer for Aviation Hazard Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc (PSI) proposes the development of a longwave infrared (LWIR) imaging spatial heterodyne spectrometer (I-SHS) for standoff detection of clear...

  12. The Omega spectrometer

    CERN Multimedia

    1972-01-01

    The Omega spectrometer which came into action during the year. An array of optical spark chambers can be seen withdrawn from the magnet aperture. In the 'igloo' above the magnet is located the Plumbicon camera system which collects information from the spark chambers.

  13. Metrology tools for EUV-source characterization and optimization

    Science.gov (United States)

    Missalla, Thomas; Schuermann, Max C.; Lebert, Rainer; Wies, Christian; Juschkin, Larissa; Klein, Roman M.; Scholze, Frank; Ulm, Gerhard; Egbert, Andre; Tkachenko, Boris; Chichkov, Boris N.

    2004-05-01

    The development of suitable radiation sources for extreme ultraviolet lithography (EUVL) is a major challenge. For the optimization of these sources and for the determination of the parameters needed for the system design and the system integration these sources have to be characterized in terms of the absolute in-band power, the spectral distribution in the EUV spectral region and the out-of-band spectral regions, the spatial distribution of the emitting volume and the angular distribution of the emission. For improving the lifetime of such sources, generally accepted as one key risk with EUVL, another task, the debris emitted from sources under development has to be investigated. Therefore, JENOPTIK Mikrotechnik GmbH is co-operating with the Laser Laboratorium Goettingen, the Physikalisch-Technische Bundesanstalt (PTB) and the AIXUV GmbH in developing ready-for-use metrology tools for EUVL source characterization and optimization. The set of the tools employed for EUV-source characterization is presented in detail as well as concepts for calibration and measurement procedures.

  14. Optical, UV, and EUV Oscillations of SS Cygni in Outburst

    Energy Technology Data Exchange (ETDEWEB)

    Mauche, C W

    2003-12-19

    I provide a review of observations in the optical, UV (HST), and EUV (EUVE and Chandra LETG) of the rapid periodic oscillations of nonmagnetic, disk-accreting, high mass-accretion rate cataclysmic variables (CVs), with particular emphasis on the dwarf nova SS Cyg in outburst. In addition, I drawn attention to a correlation, valid over nearly six orders of magnitude in frequency, between the frequencies of the quasi-periodic oscillations (QPOs) of white dwarf, neutron star, and black hole binaries. This correlation identifies the high frequency quasi-coherent oscillations (so-called ''dwarf nova oscillations'') of CVs with the kilohertz QPOs of low mass X-ray binaries (LMXBs), and the low frequency and low coherence QPOs of CVs with the horizontal branch oscillations (or the broad noise component identified as such) of LMXBs. Assuming that the same mechanisms produce the QPOs of white dwarf, neutron star, and black hole binaries, this correlation has important implications for QPO models.

  15. Static and dynamic photoresist shrinkage effects in EUV photoresists

    Science.gov (United States)

    Bunday, Benjamin; Montgomery, Cecilia; Montgomery, Warren; Cordes, Aaron

    2012-03-01

    Photoresist shrinkage (a.k.a. line slimming) is an important systematic uncertainty source in critical dimension-scanning electron microscope (CD-SEM) metrology of lithographic features [1][2][3][4][5]. In terms of metrology gauge metrics, it influences both the precision and the accuracy of CD-SEM measurements, while locally damaging the sample. Minimization or elimination of shrinkage is desirable, yet elusive. This error source will furthermore be a factor in CDSEM metrology on such polymer materials into the era of EUV lithography, such that learning to work around this issue will continue to be necessary. Recent work has demonstrated improved understanding of the trends in the shrinkage response depending on electron beam and target parameters in the static measurement case [2][3][4][5][6]. Another recent work has highlighted a second mode of shrinkage that is apparent over time and progresses as a function of time between consecutive measurements, a form of "dynamic shrinkage" that appears to be activated by electron beam, in which the activated feature perpetually and logarithmically shrinks [7][8]. In this work, we will explore both the static and dynamic shrinkage behaviors of various EUV photoresists. The static shrinkage behaviors will be tested for compliance with the SEMATECH shrinkage model [5][6], and further studies will confirm whether or not the dynamic effects are observable. Knowledge of secondary trends in dynamic shrinkage will also be further explored, including how these vary with electron beam energy, activation dose, feature size, and other parameters.

  16. Overcoming etch challenges related to EUV based patterning (Conference Presentation)

    Science.gov (United States)

    Metz, Andrew W.; Cottle, Hongyun; Honda, Masanobu; Morikita, Shinya; Kumar, Kaushik A.; Biolsi, Peter

    2017-04-01

    Research and development activities related to Extreme Ultra Violet [EUV] defined patterning continue to grow for plasma etch trade-offs related to traditional approaches of PR smoothing, descum implementation and maintaining 2D aspect ratios of short lines or elliptical contacts concurrent with ultra-high photo resist [PR] selectivity. In this paper we will discuss sources of LER/LWR, impact of material choice, integration, and innovative plasma process techniques and describe how TELTM VigusTM CCP Etchers can enhance PR selectivity, reduce LER/LWR, and maintain 2D aspect ratio of incoming patterns. Beyond traditional process approaches this paper will show the utility of: [1] DC Superposition in enhancing EUV resist hardening and selectivity, increasing resistance to stress induced PR line wiggle caused by CFx passivation, and mitigating organic planarizer wiggle; [2] Quasi Atomic Layer Etch [Q-ALE] for ARC open eliminating the tradeoffs between selectivity, CD, and shrink ratio control; and [3] ALD+Etch FUSION technology for feature independent CD shrink and LER reduction. Applicability of these concepts back transferred to 193i based lithography is also confirmed.

  17. Reflective optics for effective collection of x-ray and EUV radiation: use for creation of photoionized plasmas and detection of weak signals

    Science.gov (United States)

    Bartnik, A.; Skrzeczanowski, W.; Wachulak, P.; Saber, I.; Fiedorowicz, H.; Fok, T.; Wegrzyński, Ł.

    2017-05-01

    In this work different kinds of reflective optical systems were used for creation and investigation of low temperature, photoionized plasmas. The plasmas were created in gases, irradiated with a focused beam of extreme ultraviolet (EUV) or soft X-ray (SXR) radiation, from laser-plasma sources employing 10 Hz Nd:YAG laser systems (0.8 J/ 4 ns and 10 J/ 1-10 ns). In both cases, the EUV radiation was focused using a gold-plated grazing incidence ellipsoidal collector in the wavelength range λ = 9÷70 nm or a gold-plated grazing incidence multifoil collector in the wavelength range λ = 5 ÷ 70 nm. Additionally, in case of the 10 J Nd:YAG laser with the pulse duration 1 ns, a paraboloidal collector optimized for the wavelength range λ >= 1 nm was employed. Different gases were injected into the vacuum chamber, perpendicularly to an optical axis of the irradiation system at the focal region, using an auxillary gas puff valve. Irradiation of the gases resulted in ionization and excitation of atoms/molecules. Spectra in SXR/EUV range were measured using a grazing incidence, flat-field spectrometer (McPherson Model 251), equipped with a 450 lines/mm toroidal grating or a home-made spectrograph based on the 5000 l/mm transmission grating. Optical spectra were recorded using the Echelle Spectra Analyzer ESA 4000. In all cases the most intense emission lines were assigned to singly charged ions, however, lines corresponding to ions with higher charge were also recorded. Based on spectral lines originating from ions electron temperature was estimated.

  18. Responses of polymers to laser plasma EUV light beyond ablation threshold and micromachining

    Science.gov (United States)

    Makimura, Tetsuya; Torii, Shuichi; Okazaki, Kota; Nakamura, Daisuke; Takahashi, Akihiko; Niino, Hiroyuki; Okada, Tatsuo; Murakami, Kouichi

    2011-06-01

    We have investigated responses of PDMS, PMMA and acrylic block copolymers (BCP) to EUV light from laserproduced plasma beyond ablation thresholds and micromachining. We generated wide band EUV light around 100 eV by irradiation of Ta targets with Nd:YAG laser light. In addition, narrow band EUV light at 11 and 13 nm were generated by irradiation of solid Xe and Sn targets, respectively, with pulsed CO2 laser light. The generated EUV light was condensed onto samples, using an ellipsoidal mirror. The EUV light was incident through windows of contact masks on the samples. We found that through-holes with a diameter of 1 μm can be fabricated in PDMS sheets with thicknesses of 10 μm. PDMS sheets are ablated if they are irradiated with EUV light beyond a threshold power density, while PDMS surfaces were modified by irradiation with the narrow band EUV light at lower power densities. Effective ablation of PMMA sheets can be applied to a LIGA-like process for fabricating micro-structures of metals using the practical apparatus. Furthermore, BCP sheets were ablated to have micro-structures. Thus, we have developed a practical technique for microma chining of PMMA, PDMS and BCP sheets in a micrometer scale.

  19. Physical and chemical modifications of PET surface using a laser-plasma EUV source

    Science.gov (United States)

    Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M.; Biliński, A.; Chernyayeva, O.; Sobczak, J. W.

    2010-06-01

    Extreme ultraviolet (EUV) radiation is the electromagnetic radiation ranging from vacuum ultraviolet to soft X-rays. A single EUV photon carries enough energy to ionize any atom or molecule. The penetration depth of the radiation in any material is very short, ranging from tens to hundreds nanometers. Intense EUV pulses can remove material from the surface or modify its morphology or/and chemical structure. In this work, the radiation from a laser-plasma EUV source based on a double-stream gas-puff target was used for surface modification of polyethylene terephthalate (PET). The PET samples were irradiated with the EUV pulses emitted from krypton plasma and focused with a gold-plated ellipsoidal collector. The spectrum of the focused radiation covered the wavelength range from 9 to 70 nm. The PET samples were irradiated for 1 s-2 min at a 10-Hz repetition rate. Surface morphology of polymer samples after irradiation was investigated using a scanning electron microscope. Changes in chemical surface structure of the irradiated samples were investigated using an X-ray photoelectron spectroscopy. Different kinds of surface microstructures were obtained depending on the EUV fluence in a single pulse and the total EUV fluence. XPS measurements also revealed a modification of the chemical structure.

  20. Effects of plasma spatial profile on conversion efficiency of laser produced plasma sources for EUV lithography

    Science.gov (United States)

    Hassanein, A.; Sizyuk, V.; Sizyuk, T.; Harilal, S.

    2009-03-01

    Extreme ultraviolet (EUV) lithography devices that use laser produced plasma (LPP), discharge produced plasma (DPP), and hybrid devices need to be optimized to achieve sufficient brightness with minimum debris generation to support the throughput requirements of High-Volume Manufacturing (HVM) lithography exposure tools with long lifetime. Source performance, debris mitigation, and reflector system are all critical to efficient EUV collection and component lifetime. Enhanced integrated models are continued to be developed using HEIGHTS computer package to simulate EUV emission at high power and debris generation and transport in multiple and colliding LPP. A new center for materials under extreme environments (CMUXE) is established to benchmark HEIGHTS models for various EUV related issues. The models being developed and enhanced include, for example, new ideas and parameters of multiple laser beams in different geometrical configurations and with different pre-pulses to maximize EUV production. Recent experimental and theoretical work show large influence of the hydrodynamic processes on EUV generation. The effect of plasma hydrodynamics evolution on the EUV radiation generation was analyzed for planar and spherical geometry of a tin target in LPP devices. The higher efficiency of planar target in comparison to the spherical geometry was explained with better hydrodynamic containment of the heated plasma. This is not the case if the plasma is slightly overheated. Recent experimental results of the conversion efficiency (CE) of LPP are in good agreement with HEIGHTS simulation.

  1. Simulation of the SAGE spectrometer

    Science.gov (United States)

    Cox, D. M.; Konki, J.; Greenlees, P. T.; Hauschild, K.; Herzberg, R.-D.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J.

    2015-06-01

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations.

  2. Smartphone spectrometer for colorimetric biosensing.

    Science.gov (United States)

    Wang, Yi; Liu, Xiaohu; Chen, Peng; Tran, Nhung Thi; Zhang, Jinling; Chia, Wei Sheng; Boujday, Souhir; Liedberg, Bo

    2016-05-23

    We report on a smartphone spectrometer for colorimetric biosensing applications. The spectrometer relies on a sample cell with an integrated grating substrate, and the smartphone's built-in light-emitting diode flash and camera. The feasibility of the smartphone spectrometer is demonstrated for detection of glucose and human cardiac troponin I, the latter in conjunction with peptide-functionalized gold nanoparticles.

  3. A Compact Extreme Ultraviolet Imager (C-EUVI) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to evaluate the Intevac Photonics NightVista® M711 Low Light Level Camera as the baseline detector of a new Compact EUV imager (C–EUVI). ...

  4. Surface Plasmon Based Spectrometer

    Science.gov (United States)

    Wig, Andrew; Passian, Ali; Boudreaux, Philip; Ferrell, Tom

    2008-03-01

    A spectrometer that uses surface plasmon excitation in thin metal films to separate light into its component wavelengths is described. The use of surface plasmons as a dispersive medium sets this spectrometer apart from prism, grating, and interference based variants and allows for the miniaturization of this device. Theoretical and experimental results are presented for two different operation models. In the first case surface plasmon tunneling in the near field is used to provide transmission spectra of different broad band-pass, glass filters across the visible wavelength range with high stray-light rejection at low resolution as well as absorption spectra of chlorophyll extracted from a spinach leaf. The second model looks at the far field components of surface plasmon scattering.

  5. Miniaturized Ion Mobility Spectrometer

    Science.gov (United States)

    Kaye, William J (Inventor); Stimac, Robert M. (Inventor)

    2017-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer (IMS) achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250 degrees Centigrade, and is uniquely sensitive, particularly to explosive chemicals.

  6. Optical performance of grazing incidence X-ray/EUV telescopes for space science applications

    Science.gov (United States)

    Thompson, Patrick Louis

    In order to improve and expand the field of X-ray astronomy, and imaging in general, we find that these days a comprehensive systems engineering approach to X-ray image formation must be undertaken. While some industrial interests have taken steps in this direction, any academic approach is lacking from within the archival literature to date, and there are virtually no established university courses. Indeed, it would seem that top level, optical-systems-engineering is exclusively reserved for those seasoned professionals who have accumulated (though somewhat artistically) the ``know-how'' to efficiently conceive and implement excellent optical designs. Such expert knowledge is not and should not be mysterious. To this end, we attempt to formulate a highly comprehensive approach to X-ray optical systems engineering and implement it within the context of the Wolter Type-I and Type-II (grazing incidence) telescopes currently utilized for practical X-ray/EUV astronomy. In addition, we will transform the classical paraboloid- hyperboloid designs into `aplanatic' and `isoplanatic', hyperboloid-hyperboloid systems, where certain coma conditions are minimized. As will be shown, one gains little improvement in performance when choosing a quasi-aplanatic mirror design over a classical one, owing to scatter and other image degradation effects. Next we will show that a generalized hyperboloid-hyperboloid design can be comprehensively optimized for any imaging requirement, where the operational field-of-view is weighted according to spatial information content. Our H-H design has been optimized for the GOES Solar X-ray Imager mission and adopted by NASA and NOAA. It is currently undergoing fabrication by Raytheon Optical Systems Inc. who is under subcontract to the Lockheed-Martin Solar and Astrophysics Laboratory. Our design is expected to result in an 80% increase in optical system performance over the original SXI baseline design.

  7. Etch bias inversion during EUV mask ARC etch

    Science.gov (United States)

    Lajn, Alexander; Rolff, Haiko; Wistrom, Richard

    2017-07-01

    The introduction of EUV lithography to high volume manufacturing is now within reach for 7nm technology node and beyond (1), at least for some steps. The scheduling is in transition from long to mid-term. Thus, all contributors need to focus their efforts on the production requirements. For the photo mask industry, these requirements include the control of defectivity, CD performance and lifetime of their masks. The mask CD performance including CD uniformity, CD targeting, and CD linearity/ resolution, is predominantly determined by the photo resist performance and by the litho and etch processes. State-of-the-art chemically amplified resists exhibit an asymmetric resolution for directly and indirectly written features, which usually results in a similarly asymmetric resolution performance on the mask. This resolution gap may reach as high as multiple tens of nanometers on the mask level in dependence of the chosen processes. Depending on the printing requirements of the wafer process, a reduction or even an increase of this gap may be required. A potential way of tuning via the etch process, is to control the lateral CD contribution during etch. Aside from process tuning knobs like pressure, RF powers and gases, which usually also affect CD linearity and CD uniformity, the simplest knob is the etch time itself. An increased over etch time results in an increased CD contribution in the normal case. , We found that the etch CD contribution of ARC layer etch on EUV photo masks is reduced by longer over etch times. Moreover, this effect can be demonstrated to be present for different etch chambers and photo resists.

  8. EUV lithography for 30nm half pitch and beyond: exploring resolution, sensitivity, and LWR tradeoffs

    Science.gov (United States)

    Putna, E. Steve; Younkin, Todd R.; Chandhok, Manish; Frasure, Kent

    2009-03-01

    The International Technology Roadmap for Semiconductors (ITRS) denotes Extreme Ultraviolet (EUV) lithography as a leading technology option for realizing the 32nm half-pitch node and beyond. Readiness of EUV materials is currently one high risk area according to assessments made at the 2008 EUVL Symposium. The main development issue regarding EUV resist has been how to simultaneously achieve high sensitivity, high resolution, and low line width roughness (LWR). This paper describes the strategy and current status of EUV resist development at Intel Corporation. Data is presented utilizing Intel's Micro-Exposure Tool (MET) examining the feasibility of establishing a resist process that simultaneously exhibits <=30nm half-pitch (HP) L/S resolution at <=10mJ/cm2 with <=4nm LWR.

  9. The Variability and Spectrum of NGC 4051 from Deep, Simultaneous EUVE and XTE Observations

    Science.gov (United States)

    Fruscione, Antonella; Cagnoni, Ilaria; Papadakis, Iossif; McHardy, Ian

    1998-01-01

    We present timing and spectral analysis of the data collected by the Extreme Ultraviolet Explorer Satellite (EUVE) for the Seyfert 1 galaxy NGC 4051 during 1996. NGC 4051 was observed twice in May 1996 and again in December 1996 for a total of more than 200 ksec. The observations were always simultaneous with hard X-ray observations conducted with the X-Ray Timing Explorer (XTE). The EUVE light curves are extremely variable during each observation, with the maximum variability during May 1996 when we registered changes by a factor of 21 over 8 hours and more than a factor of 24 variations from peak to minimum. We detected signal in the EUVE spectrograph in the 75-100 Arange which is well fitted by absorbed power law models. We will illustrate the results of our spectral and detailed power spectrum analysis for the simultaneous EUVE and XTE spectra and light curves and discuss the consequences on possible emission mechanisms.

  10. PVO VENUS ELECT TMP PROBE RESAMP SOLAR EUV 24 HR AVG VER 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Solar EUV Daily Values File. This file gives the magnitude of the photoemission current from the radial probe, Ipe, (in units of 10-9 amps). Ipe dominates the...

  11. Hemispherical Nature of EUV Shocks Revealed by SOHO, STEREO, and SDO Observations

    Science.gov (United States)

    Gopalswamy, Natchimuthuk; Nitta, N.; Akiyama, S.; Makela, P.; Yashiro, S.

    2011-01-01

    EUV wave transients associated with type II radio bursts are manifestation of CME-driven shocks in the solar corona. We use recent EUV wave observations from SOHO, STEREO, and SDO for a set of CMEs to show that the EUV transients have a spherical shape in the inner corona. We demonstrate this by showing that the radius of the EUV transient on the disk observed by one instrument is approximately equal to the height of the wave above the solar surface in an orthogonal view provided by another instrument. The study also shows that the CME-driven shocks often form very low in the corona at a heliocentric distance of 1.2 Rs, even smaller than the previous estimates from STEREO/CORl data (Gopalswamy et aI., 2009, Solar Phys. 259, 227). These results have important implications for the acceleration of solar energetic particles by CMEs

  12. Focal Plane Array Concept and Technologies for the X-Ray Microcalorimeter Spectrometer on the Advanced X-ray Spectroscopic Imaging Observatory (AXSIO)

    Science.gov (United States)

    Bandler, Simon; Adams, J. D.; Busch, S. E.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Kilbourne, C.; Lee, S.; Porter, F. S.; Porst, J.; Sadleir, J. E.; Smith, S. J.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Irwin, K.; Reintsema, C. D.; Ullom, J. N.

    2013-04-01

    We are developing large-format arrays of x-ray microcalorimeters to enable high-resolution, imaging X-ray imaging spectroscopy that meet the needs of the AXSIO mission. This mission requires microcalorimeter focal plane with an overall field of view of of 4x4 arcmin and an energy resolution of better then 3 eV (or, a spectral resolving power of > 2000 at 6 keV) over part of the array. To achieve this, we are developing technologies to implement an overall array that consists of three components: a small, central inner array with very small pixels to purposely over-sample the x-ray beam to provide high spectral resolution (strategy to use these technologies to design the microcalorimeter instrument for AXSIO with optimal performance and engineering margin.

  13. The Geostationary Fourier Transform Spectrometer

    Science.gov (United States)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  14. Nanoparticle Photoresists: Ligand Exchange as a New, Sensitive EUV Patterning Mechanism

    KAUST Repository

    Kryask, Marie

    2013-01-01

    Hybrid nanoparticle photoresists and their patterning using DUV, EUV, 193 nm lithography and e-beam lithography has been investigated and reported earlier. The nanoparticles have demonstrated very high EUV sensitivity and significant etch resistance compared to other standard photoresists. The current study aims at investigating and establishing the underlying mechanism for dual tone patterning of these nanoparticle photoresist systems. Infrared spectroscopy and UV absorbance studies supported by mass loss and dissolution studies support the current model. © 2013SPST.

  15. Wavelength dependence of prepulse laser beams on EUV emission from CO2 reheated Sn plasma

    Science.gov (United States)

    Freeman, J. R.; Harilal, S. S.; Sizyuk, T.; Hassanein, A.; Rice, B.

    2012-03-01

    Extreme ultraviolet (EUV) emission from laser-produced plasmas (LPP) centered at 13.5 nm is considered a leading candidate for the light source in future lithography systems. Tin is currently the best material for generating this EUV emission since it emits strongly within the 13.5 nm region due to its various ionic states (Sn8+-Sn14+). Highly efficient and low-debris LPPs are a pre-requisite for their use as light sources for EUV lithography. Tin plasmas generate debris that can damage collection optics over time. Techniques to mitigate debris are needed to extend the lifetime of these components and the system. Optimization of plasma conditions is necessary for increasing EUV emission and enhancing conversion efficiency (CE). Improving the source CE is necessary in order to reduce the cost of ownership and hence, develop a commercially viable lithography system for the semiconductor industry. One method to accomplish this is to reheat pre-formed plasma with a laser pulse to enhance EUV emission. This enhancement is achieved by controlling those plasma conditions necessary for optimizing EUV emission. We investigated the role of prepulse laser wavelength on prepulse plume formation and EUV in-band signal enhancement. A 6 ns Nd:YAG laser operating at 1064 nm and 266 nm was used for generating the prepulse plume. The expanding plume was then reheated by a 35 ns CO2 laser operating at 10.6 μm. The role of prepulse wavelength and energy on EUV conversion efficiency is discussed.

  16. Numerical simulations based on probe measurements in EUV-induced hydrogen plasma

    Science.gov (United States)

    Abrikosov, Alex; Reshetnyak, Viktor; Astakhov, Dmitry; Dolgov, Alexandr; Yakushev, Oleg; Lopaev, Dmitry; Krivtsun, Vladimir

    2017-04-01

    We use the two-dimensional particle-in-cell model with Monte Carlo collisions to study the plasma induced in hydrogen by short pulses of extreme ultraviolet (EUV) radiation at wavelengths in the range 10-20 nm with a pulse duration of about 40 ns (FWHM). This plasma is formed via both photoionization by the high-energy EUV photons and by the secondary photoelectrons emitted from the hydrogen molecules and the irradiated surface. The latter process can be enhanced by the external electric field that accelerates the electrons. In order to establish a base for our model so as to obtain accurate results, we record a temporally-resolved series of current-voltage characteristics for a small probing electrode inserted into EUV-induced hydrogen plasma. We then resort to simulating this plasma in the same geometry with the probe in our model which we validate by matching its results to the experimentally measured dynamics of the probe current-voltage curves. Having validated the model this way, we use this model as an independent instrument capable of obtaining the spatiotemporal picture of EUV-induced plasma evolution. We use this instrument to study the plasma formation during the EUV pulse and point out the processes that take part in forming this plasma, such as impact ionization and direct ionization by EUV photons.

  17. The SPEDE electron spectrometer

    CERN Document Server

    O'Neill, George

    This thesis presents SPEDE (SPectrometer for Electron DEtection) and documents its construction, testing and performance during commissioning at Jyvaskyla, Finland, before deployment at the HIE-ISOLDE facility at CERN coupled with the MINIBALL array to perform in-beam electron-gamma spectroscopy using post-accelerated radioactive ion beams. Commissioning experiments took place in two two-day stints during spring 2015, coupled with several JUROGAMII gamma-detectors. This spectrometer will help aid in fully understanding exotic regions of the nuclear chart such as regions with a high degree of octupole deformation, and in those nuclei exhibiting shape coexistence. For the rst time, electron spectroscopy has been performed at the target position from states populated in accelerated nuclei via Coulomb excitation. The FWHM of SPEDE is approximately 7 keV at 320 keV, and Doppler correction was possible to improve Doppler broadened peaks. The results are intended to give the reader a full understanding of the dete...

  18. The LEP Energy Spectrometer

    CERN Document Server

    Prochnow, J

    2000-01-01

    The energy of the circulating particles in the LEP storage ring is predicted by a model based on nuclear magnetic resonance (NMR) probes measuring the bending magnetic field. This model is calibrated by the method of resonant depolarisation. Since the latter technique is limited in energy range an independent method to confirm the NMR based model is applied. The spectrometer has been installed to determine the beam energy with a relative accuracy of 1 ×10 -4 . It consists of a precisely calibrated bending magnet flanked by six beam position monitors. The beam energy is determined by measuring the deflection angle of the particles and the integrated bending field. In the 1999 LEP operation period the spectrometer was commissioned and the first energy measure-ments in the regime of 90 GeV were performed. A relative scatter of 1 .5 ×10 -4 was observed with no systematic deviation from the energy model. The scatter is expected to be reduced in the 2000 LEP run by minimising several systematic effects of the mea...

  19. Image Dis-Integration for Improved Plasmasphere Visualization

    Science.gov (United States)

    Newman, Timothy S.

    2002-01-01

    Traditionally, study of the plasmasphere has involved terrestrial observation of local characteristics. Global modeling of the plasmasphere in such an observation regime made use of an ensemble of (sparse) local measurements. Recently, sensors aboard the IMAGE (Imager for Magnetopause-to-Aurora Global Exploration) satellite (in particular, the EUV (Extreme Ultra Violet) Imager) have created the potential for truly global study of the plasmasphere. IMAGE was launched in spring of 2000 in an orbit with apogee altitude 7.2 RE(Earth radii) and perigee altitude 1000 km. IMAGE's EUV sensor allows an external view of the distribution of cold plasma in the plasmasphere to be acquired. EUV is designed to image light emission at 30.4 nanometers, which is the emission wavelength of the He+ ion in the presence of solar radiation. He+ makes up approximately 15-20% of the plasma in the plasmasphere, thus imaging of He+ enables determination of plasma distribution. The EUV instrument provides a 90 deg by 84 deg field of view which is imaged as an equally spaced 150x140 pixel array on a spherical imaging surface. The EUV produces an image approximately every 10 minutes when the sensor is operating. Since EUV images contain line-of-sight integrations of plasma distributions, they do not directly express equatorial plane density (which would enable comparison of observed plasma distributions with predictions from models). Furthermore, the plasma density at any point in three-space is not known. The goal of our work was development of a technique that can enable plasma density to be determined throughout three-space. Our approach to creation of a three-space representation of the plasma distribution involves disintegrating the EUV lines of sight to form a volumetric map of plasma densities.

  20. Simulation of the SAGE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.M.; Herzberg, R.D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Konki, J.; Greenlees, P.T.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Hauschild, K. [Universite Paris-Sud, CSNSM-IN2P3-CNRS, Orsay (France)

    2015-06-15

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations. (orig.)

  1. Advances in miniature spectrometer and sensor development

    Science.gov (United States)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  2. BNL multiparticle spectrometer software

    Energy Technology Data Exchange (ETDEWEB)

    Saulys, A.C.

    1984-01-01

    This paper discusses some solutions to problems common to the design, management and maintenance of a large high energy physics spectrometer software system. The experience of dealing with a large, complex program and the necessity of having the program controlled by various people at different levels of computer experience has led us to design a program control structure of mnemonic and self-explanatory nature. The use of this control language in both on-line and off-line operation of the program will be discussed. The solution of structuring a large program for modularity so that substantial changes to the program can be made easily for a wide variety of high energy physics experiments is discussed. Specialized tools for this type of large program management are also discussed.

  3. The GREAT spectrometer

    CERN Document Server

    Page, R D; Appelbe, D E; Butler, P A; Freeman, S J; Greenlees, P T; Herzberg, R D; Jenkins, D G; Jones, G D; Jones, P; Joss, D T; Julin, R; Kettunen, H; Leino, M; Rahkila, P; Regan, P H; Simpson, J; Uusitalo, J; Vincent, S M; Wadsworth, R

    2003-01-01

    The GREAT spectrometer is designed to measure the decay properties of reaction products transported to the focal plane of a recoil separator. GREAT comprises a system of silicon, germanium and gas detectors optimised for detecting the arrival of the reaction products and correlating with any subsequent radioactive decay involving the emission of protons, alpha particles, beta particles, gamma rays, X-rays or conversion electrons. GREAT can either be employed as a sensitive stand-alone device for decay measurements at the focal plane, or used to provide a selective tag for prompt conversion electrons or gamma rays measured with arrays of detectors deployed at the target position. A new concept of triggerless data acquisition (total data readout) has also been developed as part of the GREAT project, which circumvents the problems and limitations of common dead time in conventional data acquisition systems.

  4. Optical fiber smartphone spectrometer.

    Science.gov (United States)

    Hossain, Md Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2016-05-15

    An optical fiber-based smartphone spectrometer incorporating an endoscopic fiber bundle is demonstrated. The endoscope allows transmission of the smartphone camera LED light to a sample, removing complications from varying background illumination. The reflected spectra collected from a surface or interface is dispersed onto the camera CMOS using a reflecting diffraction grating. A spectral resolution as low as δλ∼2.0  nm over a bandwidth of Δλ∼250  nm is obtained using a slit width, ωslit=0.7  mm. The instrument has vast potential in a number of industrial applications including agricultural produce analysis. Spectral analysis of apples shows straightforward measurement of the pigments anthocyanins, carotenoid, and chlorophyll, all of which decrease with increasing storage time.

  5. Responses of organic and inorganic materials to intense EUV radiation from laser-produced plasmas

    Science.gov (United States)

    Makimura, Tetsuya; Torii, Shuichi; Nakamura, Daisuke; Takahashi, Akihiko; Okada, Tatsuo; Niino, Hiroyuki; Murakami, Kouichi

    2013-05-01

    We have investigated responses of polymers to EUV radiation from laser-produced plasmas beyond ablation thresholds and micromachining. We concentrated on fabricate precise 3D micro-structures of PDMS, PMMA, acrylic block copolymers (BCP), and silica. The micromachining technique can be applied to three-dimensional micro-fluidic and bio-medical devices. The EUV processing is a promising to realize a practical micromachining technique. In the present work, we used two EUV radiation sources; (a) Wide band EUV light in a range of 10{300 eV was generated by irradiation of Ta targets with Nd:YAG laser light at 500 mJ/pulse. (b) Narrow band EUV light at 11 and 13 nm was generated by irradiation of solid Xe and Sn targets, respectively, with pulsed TEA CO2 laser light. The generated EUV light was condensed onto the materials at high power density beyond the ablation thresholds, using ellipsoidal mirrors. We found that through-holes with a diameter of one micrometer an be fabricated in PMMA and PDMS sheets with thicknesses of 4-10 micrometers, at 250 and 230 nm/shot, respectively. The effective ablation of PMMA sheets can be applied to a LIGA-like process for fabricating micro-structures of metals for micro- and nano-molds. PDMS sheets are ablated if it is irradiated with EUV light beyond a distinct threshold power density, while PDMS surfaces were modified at lower power densities. Furthermore, BCP sheets were ablated to have 1-micrometer structures. Thus, we have developed a practical technique for micromachining of PMMA, PDMS and BCP sheets in a micrometer scale.

  6. Native pattern defect inspection of EUV mask using advanced electron beam inspection system

    Science.gov (United States)

    Shimomura, Takeya; Inazuki, Yuichi; Abe, Tsukasa; Takikawa, Tadahiko; Mohri, Hiroshi; Hayashi, Naoya; Wang, Fei; Ma, Long; Zhao, Yan; Kuan, Chiyan; Xiao, Hong; Jau, Jack

    2010-09-01

    Fabrication of defect free EUV mask is one of the most critical roadblocks for implementing EUV lithography into semiconductor high volume manufacturing for 22nm half-pitch (HP) node and beyond. At the same time, development of quality assurance process for the defect free EUV mask is also another critical challenge we need to address before the mass production. Inspection tools act important role in quality assurance process to ensure the defect free EUV mask. We are currently evaluating two types of inspection system: optical inspection (OPI) system and electron beam inspection (EBI) system [1, 2]. While OPI system is sophisticated technology and has an advantage in throughput, EBI system is superior in sensitivity and extendability to even small pattern. We evaluated sensitivity of EBI system and found it could detect 25 nm defects on 88nm L/S pattern which is as small as target defect size for 23 nm Flash HP pattern in 2013 in 2009 ITRS lithography roadmap [2, 3]. EBI system is effective inspection tool even at this moment to detect such small defects on 88nm HP pattern, though there are still some challenges such as the slow throughput and the reliability. Therefore, EBI system can be used as bridge tool to compensate insufficient sensitivity of current inspection tools and improve EUV mask fabrication process to achieve the defect free EUV mask. In this paper, we will present the results of native pattern defects founded on large field 88nm HP pattern using advance EBI system. We will also classify those defects and propose some ideas to mitigate them and realize the defect free EUV mask, demonstrating the capability of EBI as bridge tool.

  7. Solar Spectral Proxy Irradiance from GOES (SSPRING): a model for solar EUV irradiance

    Science.gov (United States)

    Suess, Katherine; Snow, Martin; Viereck, Rodney; Machol, Janet

    2016-02-01

    Several currently operating instruments are able to measure the full EUV spectrum at sufficient wavelength resolution for use in upper-atmosphere modeling, the effects of space weather, and modeling satellite drag. However, no missions are planned at present to succeed the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) and Solar Dynamics Observatory (SDO) missions, which currently provide these data sources. To develop a suitable replacement for these measurements, we use two broadband EUV channels on the NOAA GOES satellites, the magnesium core-to-wing ratio (Mg II index) from the SOlar Radiation and Climate Experiment (SORCE) as well as EUV and Mg II time averages to model the EUV spectrum from 0.1 to 105 nm at 5-nm spectral resolution and daily time resolution. A Levenberg-Marquardt least squares fitting algorithm is used to determine a coefficient matrix that best reproduces a reference data set when multiplied by input data. The coefficient matrix is then applied to model data outside of the fitting interval. Three different fitting intervals are tested, with a variable fitting interval utilizing all days of data before the prediction date producing the best results. The correlation between the model results and the observed spectrum is found to be above 95% for the 0.1-50 nm range, and between 74% and 95% for the 50-105 nm range. We also find a favorable comparison between our results and the Flare Irradiance Spectral Model (FISM). These results provide a promising potential source for an empirical EUV spectral model after direct EUV measurements are no longer available, and utilize a similar EUV modeling technique as the upcoming GOES-R satellites.

  8. Solar Spectral Proxy Irradiance from GOES (SSPRING: a model for solar EUV irradiance

    Directory of Open Access Journals (Sweden)

    Suess Katherine

    2016-01-01

    Full Text Available Several currently operating instruments are able to measure the full EUV spectrum at sufficient wavelength resolution for use in upper-atmosphere modeling, the effects of space weather, and modeling satellite drag. However, no missions are planned at present to succeed the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED and Solar Dynamics Observatory (SDO missions, which currently provide these data sources. To develop a suitable replacement for these measurements, we use two broadband EUV channels on the NOAA GOES satellites, the magnesium core-to-wing ratio (Mg II index from the SOlar Radiation and Climate Experiment (SORCE as well as EUV and Mg II time averages to model the EUV spectrum from 0.1 to 105 nm at 5-nm spectral resolution and daily time resolution. A Levenberg-Marquardt least squares fitting algorithm is used to determine a coefficient matrix that best reproduces a reference data set when multiplied by input data. The coefficient matrix is then applied to model data outside of the fitting interval. Three different fitting intervals are tested, with a variable fitting interval utilizing all days of data before the prediction date producing the best results. The correlation between the model results and the observed spectrum is found to be above 95% for the 0.1–50 nm range, and between 74% and 95% for the 50–105 nm range. We also find a favorable comparison between our results and the Flare Irradiance Spectral Model (FISM. These results provide a promising potential source for an empirical EUV spectral model after direct EUV measurements are no longer available, and utilize a similar EUV modeling technique as the upcoming GOES-R satellites.

  9. Responsivity calibration of the extreme ultraviolet spectrometer in the range of 175-435 Å

    Directory of Open Access Journals (Sweden)

    B. Tu

    2017-04-01

    Full Text Available We reported the relative responsivity calibration of the grazing-incidence flat-field EUV spectrometer between 175 and 435 Å by means of two methods. The first method is implemented by measuring the diffraction efficiency of the grating with synchrotron radiation light source. Considering the transmission efficiency and quantum efficiency of the other optical components in the spectrometer, the total responsivity was then obtained. The second one was carried out by measuring line emissions from C3+, N4+ and O3+ ions at Shanghai high temperature super conductor electron beam ion trap (SH-HtscEBIT. The EUV spectra were also simulated theoretically via a collisional radiative model. In the calculation, the second-order relativistic many-body perturbation theory approach based on the flexible atomic code was used to calculate the energy levels and transition rates; the close-coupling R-matrix approach and relativistic distorted wave method were utilized to calculate the collision strength of electron impact excitation. In comparison with the spectroscopic measurements at EBIT device, the differences between the measured and simulated relative line intensities were obtained. The responsivity calibration for the spectrometer was then achieved by a 3rd degree polynomial function fitting. Our measurement shows that the responsivity between 175 and 435 Å varies by factor of ∼ 46. The two results of calibration demonstrated a consistency within an average deviation of 24%. In addition, an evaluation of our calculations on C iv, N v and O iv line emissions in this wavelength region was given.

  10. EUV nanosecond laser ablation of silicon carbide, tungsten and molybdenum

    Science.gov (United States)

    Frolov, Oleksandr; Kolacek, Karel; Schmidt, Jiri; Straus, Jaroslav; Choukourov, Andrei; Kasuya, Koichi

    2015-09-01

    In this paper we present results of study interaction of nanosecond EUV laser pulses at wavelength of 46.9 nm with silicon carbide (SiC), tungsten (W) and molybdenum (Mo). As a source of laser radiation was used discharge-plasma driver CAPEX (CAPillary EXperiment) based on high current capillary discharge in argon. The laser beam is focused with a spherical Si/Sc multilayer-coated mirror on samples. Experimental study has been performed with 1, 5, 10, 20 and 50 laser pulses ablation of SiC, W and Mo at various fluence values. Firstly, sample surface modification in the nanosecond time scale have been registered by optical microscope. And the secondly, laser beam footprints on the samples have been analyzed by atomic-force microscope (AFM). This work supported by the Czech Science Foundation under Contract GA14-29772S and by the Grant Agency of the Ministry of Education, Youth and Sports of the Czech Republic under Contract LG13029.

  11. Microbolometer spectrometer opens hoist of new applications

    Science.gov (United States)

    Leijtens, J.; Smorenburg, C.; Escudero, I.; Boslooper, E.; Visser, H.; Helden, W. v.; Breussin, F.

    2017-11-01

    Current Thermal infra red ( 7..14μm) multispectral imager instruments use cryogenically cooled Mercury Cadmium Telluride (MCT or HgCdTe) detectors. This causes the instruments to be bulky, power hungry and expensive. For systems that have medium NETD (Noise Equivalent Temperature Difference) requirements and can operate with high speed optics (small thermal imagers, microbolometer based detectors are almost exclusively available in 2D format, and performance is still increasing. Building a spectrometer for the 7 to 12 μm wavelength region using microbolometers has been discarded until now, based on the expected NETD performance. By optimising the throughput of the optical system, and using the latest improvements in detector performance, TNO TPD has been able to design a spectrometer that is able to provide co-registered measurements in the 7 to 12 μm wavelength region yielding acceptable NETD performance. Apart from the usual multispectral imaging, the concept can be used for several other applications, among which imaging in both the 3 to 5 and 7 to 12 μm atmospheric windows at the same time (forest fire detection and military recognisance) or wideband flame analysis (Nox detection in industrial ovens).

  12. Investigation of EUV tapeout flow issues, requirements, and options for volume manufacturing

    Science.gov (United States)

    Cobb, Jonathan; Jang, Sunghoon; Ser, Junghoon; Kim, Insung; Yeap, Johnny; Lucas, Kevin; Do, Munhoe; Kim, Young-Chang

    2011-04-01

    Although technical issues remain to be resolved, EUV lithography is now a serious contender for critical layer patterning of upcoming 2X node memory and 14nm Logic technologies in manufacturing. If improvements continue in defectivity, throughput and resolution, then EUV lithography appears that it will be the most extendable and the cost-effective manufacturing lithography solution for sub-78nm pitch complex patterns. EUV lithography will be able to provide a significant relaxation in lithographic K1 factor (and a corresponding simplification of process complexity) vs. existing 193nm lithography. The increased K1 factor will result in some complexity reduction for mask synthesis flow elements (including illumination source shape optimization, design pre-processing, RET, OPC and OPC verification). However, EUV does add well known additional complexities and issues to mask synthesis flows such as across-lens shadowing variation, across reticle flare variation, new proximity effects to be modeled, significant increase in pre-OPC and fracture file size, etc. In this paper, we investigate the expected EUV-specific issues and new requirements for a production tapeout mask synthesis flow. The production EUV issues and new requirements are in the categories of additional physical effects to be corrected for; additional automation or flow steps needed; and increase in file size at different parts in the flow. For example, OASIS file sizes after OPC of 250GigaBytes (GB) and files sizes after mask data prep of greater than three TeraBytes (TB) are expected to be common. These huge file sizes will place significant stress on post-processing methods, OPC verification, mask data fracture, file read-in/read-out, data transfer between sites (e.g., to the maskshop), etc. With current methods and procedures, it is clear that the hours/days needed to complete EUV mask synthesis mask data flows would significantly increase if steps are not taken to make efficiency improvements

  13. On a Small-scale EUV Wave: The Driving Mechanism and the Associated Oscillating Filament

    Science.gov (United States)

    Shen, Yuandeng; Liu, Yu; Tian, Zhanjun; Qu, Zhining

    2017-12-01

    We present observations of a small-scale extreme-ultraviolet (EUV) wave that was associated with a mini-filament eruption and a GOES B1.9 micro-flare in the quiet-Sun region. The initiation of the event was due to the photospheric magnetic emergence and cancellation in the eruption source region, which first caused the ejection of a small plasma ejecta, then the ejecta impacted a nearby mini-filament and thereby led to the filament’s eruption and the associated flare. During the filament eruption, an EUV wave at a speed of 182{--}317 {km} {{{s}}}-1 was formed ahead of an expanding coronal loop, which propagated faster than the expanding loop and showed obvious deceleration and reflection during the propagation. In addition, the EUV wave further resulted in the transverse oscillation of a remote filament whose period and damping time are 15 and 60 minutes, respectively. Based on the observational results, we propose that the small-scale EUV wave should be a fast-mode magnetosonic wave that was driven by the expanding coronal loop. Moreover, with the application of filament seismology, it is estimated that the radial magnetic field strength is about 7 Gauss. The observations also suggest that small-scale EUV waves associated with miniature solar eruptions share similar driving mechanisms and observational characteristics with their large-scale counterparts.

  14. Laser-plasma EUV source dedicated for surface processing of polymers

    Science.gov (United States)

    Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M.; Wachulak, P. W.

    2011-08-01

    In this work, a 10 Hz laser-plasma extreme ultraviolet (EUV) source built for surface processing of polymers is presented. The source is based on a double-stream gas puff target created in a vacuum chamber synchronously with the pumping laser pulse. The target is formed by pulsed injection of Kr, Xe or a KrXe gas mixture into a hollow stream of helium. The EUV radiation is focused using a grazing incidence gold-plated ellipsoidal collector. Spectrum of the reflected radiation consists of a narrow feature with intensity maximum at 10-11 nm wavelength and a long-wavelength spectral tail up to 70 nm. The exact spectral distribution depends on a gas applied for plasma creation. To avoid strong absorption of the EUV radiation in a residual gas present in the chamber during the source operation a two step differential pumping system was employed. The system allows for polymer processing under relatively high vacuum conditions (10 -5 mbar) or in a reactive gas atmosphere. Polymer samples can be irradiated in a focal plane of the EUV collector or at some distance downstream the focal plane. This way fluence of the EUV beam at the polymer surface can be regulated.

  15. Correlation of experimentally measured atomic scale properties of EUV photoresist to modeling performance: an exploration

    Science.gov (United States)

    Kandel, Yudhishthir; Chandonait, Jonathan; Melvin, Lawrence S.; Marokkey, Sajan; Yan, Qiliang; Grzeskowiak, Steven; Painter, Benjamin; Denbeaux, Gregory

    2017-03-01

    Extreme ultraviolet (EUV) lithography at 13.5 nm stands at the crossroads of next generation patterning technology for high volume manufacturing of integrated circuits. Photo resist models that form the part of overall pattern transform model for lithography play a vital role in supporting this effort. The physics and chemistry of these resists must be understood to enable the construction of accurate models for EUV Optical Proximity Correction (OPC). In this study, we explore the possibility of improving EUV photo-resist models by directly correlating the parameters obtained from experimentally measured atomic scale physical properties; namely, the effect of interaction of EUV photons with photo acid generators in standard chemically amplified EUV photoresist, and associated electron energy loss events. Atomic scale physical properties will be inferred from the measurements carried out in Electron Resist Interaction Chamber (ERIC). This study will use measured physical parameters to establish a relationship with lithographically important properties, such as line edge roughness and CD variation. The data gathered from these measurements is used to construct OPC models of the resist.

  16. Aerosol mobility size spectrometer

    Science.gov (United States)

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  17. EUV blank defect and particle inspection with high throughput immersion AFM with 1nm 3D resolution

    NARCIS (Netherlands)

    Es, M.H. van; Sadeghian Marnani, H.

    2016-01-01

    Inspection of EUV mask substrates and blanks is demanding. We envision this is a good target application for massively parallel Atomic Force Microscopy (AFM). We envision to do a full surface characterization of EUV masks with AFM enabling 1nm true 3D resolution over the entire surface. The limiting

  18. Modeling of EUV emission and conversion efficiency from laser-produced tin plasmas for nanolithography

    Science.gov (United States)

    Harilal, S. S.; MacFarlane, J. J.; Golovkin, I. E.; Woodruff, P. R.; Wang, P.

    2008-03-01

    Extreme ultraviolet lithography (EUVL) is a leading candidate for use in next-generation high volume manufacturing of semiconductor chips that require feature sizes less than 32 nm. The essential requirement for enabling this technology is to have a reliable, clean and powerful EUV source which efficiently emits light at a wavelength of 13.5 nm. Laser-produced plasma EUV sources are strong candidates for use in EUVL light source systems. The development and optimization of high-efficiency EUV sources requires not only well-diagnosed experiments, but also a good understanding of the physical processes affecting the emitting plasma, which can be achieved with the help of accurate numerical simulation tools. Here, we investigate the radiative properties of tin and tin-doped foam plasmas heated by 1.06 μm laser beams with 10 ns pulse widths. Results from simulations are compared with experimental conversion efficiencies and emission spectra.

  19. Time resolved EUV pump-probe microscopy of fs-LASER induced nanostructure formation

    Science.gov (United States)

    Freiberger, R.; Hauck, J.; Reininghaus, M.; Wortmann, D.; Juschkin, L.

    2011-05-01

    We report on our efforts in design and construction of a compact Extreme Ultraviolet (EUV)-pump-probe microscope. The goal is the observation of formation of nanostructures, induced by a femtosecond (fs)-laser pulse. The unique interaction processes of fs-laser radiation with matter open up new markets in laser material processing and, therefore, are actively investigated in the last decade. The resulting "sub 100 nm"-structures offer vast potential benefits in photonics, biotechnology, tribological surface design, plasmonic applications and production of nanoparticles. Focused fs-laser radiation causes a local modification resulting in nanostructures of high precision and reproducibility. However the formation dynamics is not well understood. Research in this field requires high temporal and spatial resolution. A combination of fs-laser and EUV-microscope provides a tool for "in situ"-observation of the formation dynamics. As exemplary structures to be investigated, we use nanojets on thin gold films and periodic surface structures (ripples) on dielectrics. In the future, the EUV-pump-probe microscope can become a versatile tool to observe physical or biological processes. Microscopy using EUV-light is capable of detecting structures on a scale down to several tens of nanometers. For detailed investigations a compact EUV-microscope has been realized utilizing OVI Balmer-alpha radiation at 17.3 nm coming from a discharge produced oxygen plasma. As optical elements a grazing incidence elliptical collector and a zone plate with a width of outermost zone of 50 nm and a spectral filter to avoid chromatic aberrations are used. The detector is a fast gated microchannel plate with a pore size of 2 microns contacted by a low impedance transmission line. The expected spatial resolution of the setup is better than 100 nm and the time resolution is better than 1 ns. The newly developed EUV-microscope is a powerful tool for a wide field of investigations that need high time

  20. An antimatter spectrometer in space

    Energy Technology Data Exchange (ETDEWEB)

    Ahlen, S. (Boston University, Boston, MA 02215 (United States)); Balebanov, V.M. (Space Research Institute, Russian Academy of Sciences, Moscow (Russian Federation)); Battiston, R. (Perugia University and INFN Sezione di Bologna, 06100 Perugia (Italy)); Becker, U. (Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)); Burger, J. (Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)); Capell, M. (Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)); Chen, H.F. (Chinese University of Science and Technology, Hefei, Anhui, 230029 (China)); Chen, H.S. (Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100039 (China)); Chen, M. (Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)); Chernoplekov, N. (Kurchatov Atomic Institute, Moscow, 123182 (Russian Federation)); Clare, R. (Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)); Dai, T.S. (Massachu; Antimatter Study Group

    1994-10-15

    We discuss a simple magnetic spectrometer to be installed on a satellite or space station. The purpose of this spectrometer is to search for primordial antimatter to the level of antimatter/matter [approx]10[sup -9], improving the existing limits obtained with balloon flights by a factor of 10[sup 4] to 10[sup 5]. The design of the spectrometer is based on an iron-free, Nd-Fe-B permanent magnet, scintillation counters, drift tubes, and silicon or time projection chambers. Different design options are discussed. Typically, the spectrometer has a weight of about 2 tons and an acceptance of about 1.0 m[sup 2] sr. The availability of the new Nd-Fe-B material makes it possible for the first time to put a magnet into space economically and reliably. ((orig.))

  1. Automated Nuclear Quadruple Resonance Spectrometer

    Directory of Open Access Journals (Sweden)

    IVANCHUK, M.

    2008-06-01

    Full Text Available Improvement of an autodyne Nuclear quadruple resonance spectrometer is offered. The change of frequency of oscillatory LC circuit of the spectrometer is carried out in two ways: by varicap and variable capacitor. A processor module for the capacitor and varicap control is developed. The unit allows to scan and measure the level and frequency of the NQR-signal. The unit is controlled by the personal computer.

  2. Numerical and experimental studies of the carbon etching in EUV-induced plasma

    CERN Document Server

    Astakhov, D I; Lee, C J; Ivanov, V V; Krivtsun, V M; Yakushev, O; Koshelev, K N; Lopaev, D V; Bijkerk, F

    2015-01-01

    We have used a combination of numerical modeling and experiments to study carbon etching in the presence of a hydrogen plasma. We model the evolution of a low density EUV-induced plasma during and after the EUV pulse to obtain the energy resolved ion fluxes from the plasma to the surface. By relating the computed ion fluxes to the experimentally observed etching rate at various pressures and ion energies, we show that at low pressure and energy, carbon etching is due to chemical sputtering, while at high pressure and energy a reactive ion etching process is likely to dominate.

  3. Monte Carlo sensitivity analysis of EUV mask reflectivity and its impact on OPC accuracy

    Science.gov (United States)

    Chen, Yulu; Wood, Obert; Rankin, Jed; Gullikson, Eric; Meyer-Ilse, Julia; Sun, Lei; Qi, Zhengqing John; Goodwin, Francis; Kye, Jongwook

    2017-03-01

    Unlike optical masks which are transmissive optical elements, use of extreme ultraviolet (EUV) radiation requires a reflective mask structure - a multi-layer coating consisting of alternating layers of high-Z (wave impedance) and low-Z materials that provide enhanced reflectivity over a narrow wavelength band peaked at the Bragg wavelength.1 Absorber side wall angle, corner rounding,2 surface roughness,3 and defects4 affect mask performance, but even seemingly simple parameters like bulk reflectivity on mirror and absorber surfaces can have a profound influence on imaging. For instance, using inaccurate reflectivity values at small and large incident angles would diminish the benefits of source mask co-optimization (SMO) and result in larger than expected pattern shifts. The goal of our work is to calculate the variation in mask reflectivity due to various sources of inaccuracies using Monte Carlo simulations. Such calculation is necessary as small changes in the thickness and optical properties of the high-Z and low-Z materials can cause substantial variations in reflectivity. This is further complicated by undesirable intermixing between the two materials used to create the reflector.5 One of the key contributors to mask reflectivity fluctuation is identified to be the intermixing layer thickness. We also investigate the impacts on OPC when the wrong mask information is provided, and evaluate the deterioration of overlapping process window. For a hypothetical N7 via layer, the lack of accurate mask information costs 25% of the depth of focus at 5% exposure latitude. Our work would allow the determination of major contributors to mask reflectivity variation, drive experimental efforts of measuring such contributors, provide strategies to optimize mask reflectivity, and quantize the OPC errors due to imperfect mask modeling.

  4. Associated Particle Tagging (APT) in Magnetic Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the

  5. Actinic imaging of native and programmed defects on a full-field mask

    Energy Technology Data Exchange (ETDEWEB)

    Mochi, I.; Goldberg, K. A.; Fontaine, B. La; Tchikoulaeva, A.; Holfeld, C.

    2010-03-12

    We describe the imaging and characterization of native defects on a full field extreme ultraviolet (EUV) mask, using several reticle and wafer inspection modes. Mask defect images recorded with the SEMA TECH Berkeley Actinic Inspection Tool (AIT), an EUV-wavelength (13.4 nm) actinic microscope, are compared with mask and printed-wafer images collected with scanning electron microscopy (SEM) and deep ultraviolet (DUV) inspection tools. We observed that defects that appear to be opaque in the SEM can be highly transparent to EUV light, and inversely, defects that are mostly transparent to the SEM can be highly opaque to EUV. The nature and composition of these defects, whether they appear on the top surface, within the multilayer coating, or on the substrate as buried bumps or pits, influences both their significance when printed, and their detectability with the available techniques. Actinic inspection quantitatively predicts the characteristics of printed defect images in ways that may not be possible with non-EUV techniques. As a quantitative example, we investigate the main structural characteristics of a buried pit defect based on EUV through-focus imaging.

  6. CHIRON – A new high resolution spectrometer for CTIO

    Directory of Open Access Journals (Sweden)

    Marcy G.W.

    2011-07-01

    Full Text Available Small telescopes can play an important role in the search for exoplanets because they offer an opportunity for high cadence observations that are not possible with large aperture telescopes. However, there is a shortage of high resolution spectrometers for precision Doppler planet searches. We report on an innovative design for CHIRON, an inexpensive spectrometer that we are building for the 1.5-m telescope at CTIO in Chile. The resolution will be R >80.000, the spectral format spanning 410 to 880 nm. The total throughput of the telescope and spectrometer will be better than 12%, comparable with the efficiency of state-of-the-art spectrometers. The design is driven by the requirements for precision Doppler searches for exoplanets using an iodine cell. The optical layout is a classical echelle with 140 mm beam size. The bench-mounted spectrometer will be fibre-fed followed by an image slicer. An apochromatic refractor is used as the camera. Image quality and throughput of the design are excellent over the full spectral range. Extensive use of commercially available components and avoidance of complicated custom optics are key for quick and resource-efficient implementation.

  7. Realizing the full potential of a RITA spectrometer

    DEFF Research Database (Denmark)

    Lefmann, K.; Niedermayer, C.; Abrahamsen, A.B.

    2006-01-01

    The “re-invented triple-axis spectrometer (RITA) concept has existed for a decade. Recent developments at RITA-2 at PSI, have revealed more of the potential of this instrument class. We demonstrate the performance of the multi-blade imaging mode, which has been applied e.g. to studies of dispersion...

  8. The μmRIXS spectrometer at BESSY II

    Directory of Open Access Journals (Sweden)

    Annette Pietzsch

    2016-03-01

    Full Text Available The μmRIXS confocal plane grating spectrometer offers high resolution resonant inelastic x-ray scattering (RIXS spectroscopy in the soft x-ray range between 50 eV and 1000 eV. The small focus of its dedicated beamline allows for spectroscopical imaging at selected sample sites with a spatial resolution of 1 micrometer.

  9. Progress in resolution, sensitivity, and critical dimensional uniformity of EUV chemically amplified resists

    Science.gov (United States)

    Thackeray, James; Cameron, James; Jain, Vipul; LaBeaume, Paul; Coley, Suzanne; Ongayi, Owendi; Wagner, Mike; Rachford, Aaron; Biafore, John

    2013-03-01

    This paper will discuss further progress obtained at Dow for the improvement of the Resolution, Contact critical dimension uniformity(CDU), and Sensitivity of EUV chemically amplified resists. For resolution, we have employed the use of polymer-bound photoacid generator (PBP) concept to reduce the intrinsic acid diffusion that limits the ultimate resolving capability of CA resists. For CDU, we have focused on intrinsic dissolution contrast and have found that the photo-decomposable base (PDB) concept can be successfully employed. With the use of a PDB, we can reduce CDU variation at a lower exposure energy. For sensitivity, we have focused on more efficient EUV photon capture through increased EUV absorption, as well as more highly efficient PAGs for greater acid generating efficiency. The formulation concepts will be confirmed using Prolith stochastic resist modeling. For the 26nm hp contact holes, we get excellent overall process window with over 280nm depth of focus for a 10% exposure latitude Process window. The 1sigma Critical dimension uniformity [CDU] is 1.1 nm. We also obtain 20nm hp contact resolution in one of our new EUV resists.

  10. RapidNano: towards 20nm Particle Detection on EUV Mask Blanks

    NARCIS (Netherlands)

    Donck, J.C.J. van der; Bussink, P.G.W.; Fritz, E.C.; Walle, P. van der

    2016-01-01

    Cleanliness is a prerequisite for obtaining economically feasible yield levels in the semiconductor industry. For the next generation of lithographic equipment, EUV lithography, the size of yield-loss inducing particles for the masks will be smaller than 20 nm. Consequently, equipment for handling

  11. Investigating the intrinsic cleanliness of automated handling designed for EUV mask Pod-in-Pod systems

    NARCIS (Netherlands)

    Brux, O.; Walle, P. van der; Donck, J.C.J. van der; Dress, P.

    2011-01-01

    Extreme Ultraviolet Lithography (EUVL) is the most promising solution for technology nodes 16nm (hp) and below. However, several unique EUV mask challenges must be resolved for a successful launch of the technology into the market. Uncontrolled introduction of particles and/or contamination into the

  12. The EUV Spectrum of Sunspot Plumes Observed by SUMER on SOHO

    Indian Academy of Sciences (India)

    In sunspot plumes the EUV spectrum differs from the quiet Sun; continua are observed with different slopes and intensities; emission lines from molecular hydrogen and many unidentified species indicate unique plasma conditions above sunspots. Sunspot plumes are sites of systematic downflow. We also discuss the ...

  13. Sub-hundred Watt operation demonstration of HVM LPP-EUV source

    Science.gov (United States)

    Mizoguchi, Hakaru; Nakarai, Hiroaki; Abe, Tamotsu; Ohta, Takeshi; Nowak, Krzysztof M.; Kawasuji, Yasufumi; Tanaka, Hiroshi; Watanabe, Yukio; Hori, Tsukasa; Kodama, Takeshi; Shiraishi, Yutaka; Yanagida, Tatsuya; Yamada, Tsuyoshi; Yamazaki, Taku; Okazaki, Shinji; Saitou, Takashi

    2014-04-01

    Since 2002, we have been developing a CO2-Sn-LPP EUV light source, the most promising solution as the 13.5 nm high power (>200 W) light source for HVM EUV lithography. Because of its high efficiency, power scalability and spatial freedom around plasma. Our group has proposed several unique original technologies; 1) CO2 laser driven Sn plasma generation, 2) Double laser pulse shooting for higher Sn ionization rate and higher CE. 3) Sn debris mitigation with a magnetic field, 4) Hybrid CO2 laser system that is scalable with a combination of a short pulse oscillator and commercial cw-CO2 amplifiers. 5) High efficient out of band light reduction with grating structured C1 mirror. In past paper we demonstrated in small size (2Hz) experimental device, this experiment shoed the advantage of combining a laser beam at a wavelength of the CO2 laser system with Sn plasma to achieve high CE>4.7% (in maximum) from driver laser pulse energy to EUV in-band energy 1). In this paper we report the further updated results from last paper. (1) 20um droplets at 100kHz operation was successfully ejected by downsized nozzle and demonstrated dramatical improvement of debris on the collector mirror. We have been developing extension of high CE operation condition at 20kHz range, We have reported component technology progress of EUV light source system. (2)New generation collector mirror with IR reduction technology is equipped in mirror maker. (3)20kW CO2 laser amplifier system is demonstrated cooperate with Mitsubishi electric. (4) We develop new Proto #2 EUV LPP source system and demonstrated 200W EUV plasma power (43W EUV clean power at I/F ) at 100kHz operation was confirmed. (5) High conversion efficiency (CE) of 3.9% at 20kHz operation was confirmed in using pico-second pre-pulse laser. (6)Improvement of CO2 laser power from 8kW to 12kW is now on going by installation of new pre-amplifier. (7)Power-up scenario of HVM source is reported, target shipment of first customer beta LPP

  14. Innovative CEA Information Server: Helping K--12 Teachers and Students Navigate the EUVE Mission Archive

    Science.gov (United States)

    Kronberg, F.; Hawkins, I.; Levandovsky, N.; Wong, L.; Arellano, V.; Ford, P.; Nguyen, K.; Malina, R. F.

    1995-12-01

    Internet access to the Extreme Ultraviolet Explorer (EUVE) mission archive for participants in the Science Online and Science Information Infrastructure programs will be facilitated by an innovative, World Wide Web--based data server being developed at the UC Berkeley Center for EUV Astrophysics (CEA). The Innovative CEA Information Server, being developed for the Science Education Program, will allow the user to easily select and access material from the EUVE mission archive. The entire archive, as part of an overarching CEA project, the EUVE Knowledge Base, will be logically structured into knowledge units. Each knowledge unit is defined as ``all of the information available at CEA about a given subject encapsulated into a self-contained, single, multimedia object.'' The user will be able to specify parameters that indicate the desired levels of complexity, breadth or scope, and format (e.g., text or graphics) of the requested knowledge units. The K--12 education materials for this Server are being developed at CEA via a ``Partners in Science'' teacher internship program funded by Research Corporation. Dr. Nelli Levandovsky, a physics teacher from San Francisco Unified School District's Galileo high school, created the following two tutorial plans this past summer: ``Be an Engineer---Learn How to Operate a Satellite'' and ``Be a Scientist---Learn How to Become a Space Researcher.'' Current development efforts are concentrated in two areas: (1) reviewing types of EUVE archival data and mission information and how these knowledge units can be packaged and presented; and (2) investigating how issues of breadth (e.g., scope or extent) and depth (e.g., complexity) of the knowledge units can be better presented in the construction of the Server. This work is supported by NASA contract NAS5-29298.

  15. A wavefront analyzer for terahertz time-domain spectrometers

    DEFF Research Database (Denmark)

    Abraham, E.; Brossard, M.; Fauche, P.

    2017-01-01

    We report on the development of a terahertz wavefront sensor able to determine the optical aberrations of a terahertz time-domain spectrometer. The system measures point-by-point the amplitude and phase of the terahertz electric field in a given plane. From this measurement, we reconstruct...... the terahertz wavefront and calculate its Zernike coefficients. In particular, we especially show that the focus spot of the spectrometer suffers from optical aberrations such as remaining defocus, first and second order astigmatisms, as well as spherical aberration. This opens a route to wavefront correction...... for improved terahertz imaging and spectroscopy....

  16. Current Sheet Structures Observed by the TESIS EUV Telescope during a Flux Rope Eruption on the Sun

    Science.gov (United States)

    Reva, A. A.; Ulyanov, A. S.; Kuzin, S. V.

    2016-11-01

    We use the TESIS EUV telescope to study the current sheet signatures observed during flux rope eruption. The special feature of the TESIS telescope was its ability to image the solar corona up to a distance of 2 {R}⊙ from the Sun’s center in the Fe 171 Å line. The Fe 171 Å line emission illuminates the magnetic field lines, and the TESIS images reveal the coronal magnetic structure at high altitudes. The analyzed coronal mass ejection (CME) had a core with a spiral—flux rope—structure. The spiral shape indicates that the flux rope radius varied along its length. The flux rope had a complex temperature structure: cold legs (70,000 K, observed in He 304 Å line) and a hotter core (0.7 MK, observed in Fe 171 Å line). Such a structure contradicts the common assumption that the CME core is a cold prominence. When the CME impulsively accelerated, a dark double Y-structure appeared below the flux rope. The Y-structure timing, location, and morphology agree with the previously performed MHD simulations of the current sheet. We interpreted the Y-structure as a hot envelope of the current sheet and hot reconnection outflows. The Y-structure had a thickness of 6.0 Mm. Its length increased over time from 79 Mm to more than 411 Mm.

  17. CUVE — Cubesat UV Experiment: Unveil Venus' UV Absorber with Cubesat UV Mapping Spectrometer

    Science.gov (United States)

    Cottini, V.; Aslam, S.; Gorius, N.; Hewagama, T.; Glaze, L.; Ignatiev, N.; Piccioni, G.; D'Aversa, E.

    2017-11-01

    The Cubesat UV Experiment (CUVE) will investigate Venus’ atmosphere at its absorbers at the cloud tops in the UV, with two on-board science payloads (i) a high spectral resolution UV spectrometer and (ii) a multispectral UV imager.

  18. Inside the ETH spectrometer magnet

    CERN Multimedia

    1974-01-01

    The ETH spectrometer magnet being prepared for experiment S134, which uses a frozen spin polarized target to study the associated production of a kaon and a lambda by negative pions interacting with protons (CERN-ETH, Zurich-Helsinki-Imperial College, London-Southampton Collaboration). (See Photo Archive 7406316)

  19. Combined Raman/LIBS spectrometer elegant breadboard: built and tested - and flight model spectrometer unit

    Science.gov (United States)

    Ahlers, B.; Hutchinson, I.; Ingley, R.

    2017-11-01

    A spectrometer for combined Raman and Laser Induced Breakdown Spectroscopy (LIBS) is amongst the different instruments that have been pre-selected for the Pasteur payload of the ExoMars rover. It is regarded as a fundamental, next-generation instrument for organic, mineralogical and elemental characterisation of Martian soil, rock samples and organic molecules. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities [1]. The combined Raman / LIBS instrument has been recommended as the highest priority mineralogy instrument to be included in the rover's analytical laboratory for the following tasks: Analyse surface and sub-surface soil and rocks on Mars, identify organics in the search for life and determine soil origin & toxicity. The synergy of the system is evident: the Raman spectrometer is dedicated to molecular analysis of organics and minerals; the LIBS provides information on the sample's elemental composition. An international team, under ESA contract and with the leadership of TNO Science and Industry, has built and tested an Elegant Bread Board (EBB) of the combined Raman / LIBS instrument. The EBB comprises a specifically designed, extremely compact, spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. The EBB also includes lasers, illumination and imaging optics as well as fibre optics for light transfer. A summary of the functional and environmental requirements together with a description of the optical design and its expected performance are described in [2]. The EBB was developed and constructed to verify the instruments' end-to-end functional performance with natural samples. The combined Raman / LIBS EBB realisation and test results of natural samples will be presented. For the Flight Model (FM) instrument, currently in the design phase, the Netherlands will be responsible for the design, development and verification of the

  20. A wide field of view plasma spectrometer

    Science.gov (United States)

    Skoug, R. M.; Funsten, H. O.; Möbius, E.; Harper, R. W.; Kihara, K. H.; Bower, J. S.

    2016-07-01

    We present a fundamentally new type of space plasma spectrometer, the wide field of view plasma spectrometer, whose field of view is > 1.25π ster using fewer resources than traditional methods. The enabling component is analogous to a pinhole camera with an electrostatic energy-angle filter at the image plane. Particle energy-per-charge is selected with a tunable bias voltage applied to the filter plate relative to the pinhole aperture plate. For a given bias voltage, charged particles from different directions are focused by different angles to different locations. Particles with appropriate locations and angles can transit the filter plate and are measured using a microchannel plate detector with a position-sensitive anode. Full energy and angle coverage are obtained using a single high-voltage power supply, resulting in considerable resource savings and allowing measurements at fast timescales. We present laboratory prototype measurements and simulations demonstrating the instrument concept and discuss optimizations of the instrument design for application to space measurements.

  1. Exploration of the Transition Region-Corona Interface With the Multi-Order Solar EUV Spectrograph Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to observe the solar upper transition region and lower corona in Ne VII 46.5 nm with the Multi-Order Solar EUV Spectrograph (MOSES) rocket payload. The...

  2. Uncooled Radiation Hard Large Area SiC X-ray and EUV Detectors and 2D Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to design, fabricate, characterize and commercialize large area, uncooled and radiative hard 4H-SiC EUV ? soft X-ray detectors capable of ultra...

  3. High Quality, Low-Scatter SiC Optics Suitable for Space-based UV & EUV Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SSG Precision Optronics proposes the development and demonstration of a new optical fabrication process for the production of EUV quality Silicon Carbide (SiC)...

  4. Debris and radiation-induced damage effects on EUV nanolithography source collector mirror optics performance.

    Energy Technology Data Exchange (ETDEWEB)

    Allain, J. P.; Nieto, M.; Hendricks, M.; Harilal, S. S.; Hassanein, A.; Mathematics and Computer Science

    2007-01-01

    Exposure of collector mirrors facing the hot, dense pinch plasma in plasma-based EUV light sources to debris (fast ions, neutrals, off-band radiation, droplets) remains one of the highest critical issues of source component lifetime and commercial feasibility of nanolithography at 13.5-nm. Typical radiators used at 13.5-nm include Xe and Sn. Fast particles emerging from the pinch region of the lamp are known to induce serious damage to nearby collector mirrors. Candidate collector configurations include either multi-layer mirrors (MLM) or single-layer mirrors (SLM) used at grazing incidence. Studies at Argonne have focused on understanding the underlying mechanisms that hinder collector mirror performance at 13.5-nm under fast Sn or Xe exposure. This is possible by a new state-of-the-art in-situ EUV reflectometry system that measures real time relative EUV reflectivity (15-degree incidence and 13.5-nm) variation during fast particle exposure. Intense EUV light and off-band radiation is also known to contribute to mirror damage. For example offband radiation can couple to the mirror and induce heating affecting the mirror's surface properties. In addition, intense EUV light can partially photo-ionize background gas (e.g., Ar or He) used for mitigation in the source device. This can lead to local weakly ionized plasma creating a sheath and accelerating charged gas particles to the mirror surface and inducing sputtering. In this paper we study several aspects of debris and radiation-induced damage to candidate EUVL source collector optics materials. The first study concerns the use of IMD simulations to study the effect of surface roughness on EUV reflectivity. The second studies the effect of fast particles on MLM reflectivity at 13.5-nm. And lastly the third studies the effect of multiple energetic sources with thermal Sn on 13.5-nm reflectivity. These studies focus on conditions that simulate the EUVL source environment in a controlled way.

  5. Debris- and radiation-induced damage effects on EUV nanolithography source collector mirror optics performance

    Science.gov (United States)

    Allain, J. P.; Nieto, M.; Hendricks, M.; Harilal, S. S.; Hassanein, A.

    2007-05-01

    Exposure of collector mirrors facing the hot, dense pinch plasma in plasma-based EUV light sources to debris (fast ions, neutrals, off-band radiation, droplets) remains one of the highest critical issues of source component lifetime and commercial feasibility of nanolithography at 13.5-nm. Typical radiators used at 13.5-nm include Xe and Sn. Fast particles emerging from the pinch region of the lamp are known to induce serious damage to nearby collector mirrors. Candidate collector configurations include either multi-layer mirrors (MLM) or single-layer mirrors (SLM) used at grazing incidence. Studies at Argonne have focused on understanding the underlying mechanisms that hinder collector mirror performance at 13.5-nm under fast Sn or Xe exposure. This is possible by a new state-of-the-art in-situ EUV reflectometry system that measures real time relative EUV reflectivity (15-degree incidence and 13.5-nm) variation during fast particle exposure. Intense EUV light and off-band radiation is also known to contribute to mirror damage. For example offband radiation can couple to the mirror and induce heating affecting the mirror's surface properties. In addition, intense EUV light can partially photo-ionize background gas (e.g., Ar or He) used for mitigation in the source device. This can lead to local weakly ionized plasma creating a sheath and accelerating charged gas particles to the mirror surface and inducing sputtering. In this paper we study several aspects of debris and radiation-induced damage to candidate EUVL source collector optics materials. The first study concerns the use of IMD simulations to study the effect of surface roughness on EUV reflectivity. The second studies the effect of fast particles on MLM reflectivity at 13.5-nm. And lastly the third studies the effect of multiple energetic sources with thermal Sn on 13.5-nm reflectivity. These studies focus on conditions that simulate the EUVL source environment in a controlled way.

  6. Search for “anomalies” from neutrino and anti-neutrino oscillations at $\\Delta_m^{2} ≈ 1eV^{2}$ with muon spectrometers and large LAr–TPC imaging detectors

    CERN Document Server

    Antonello, M; Baibussinov, B; Bilokon, H; Boffelli, F; Bonesini, M; Calligarich, E; Canci, N; Centro, S; Cesana, A; Cieslik, K; Cline, D B; Cocco, A G; Dequal, D; Dermenev, A; Dolfini, R; De Gerone, M; Dussoni, S; Farnese, C; Fava, A; Ferrari, A; Fiorillo, G; Garvey, G T; Gatti, F; Gibin, D; Gninenko, S; Guber, F; Guglielmi, A; Haranczyk, M; Holeczek, J; Ivashkin, A; Kirsanov, M; Kisiel, J; Kochanek, I; Kurepin, A; Łagoda, J; Lucchini, G; Louis, W C; Mania, S; Mannocchi, G; Marchini, S; Matveev, V; Menegolli, A; Meng, G; Mills, G B; Montanari, C; Nicoletto, M; Otwinowski, S; Palczewski, T J; Passardi, G; Perfetto, F; Picchi, P; Pietropaolo, F; Płonski, P; Rappoldi, A; Raselli, G L; Rossella, M; Rubbia, C; Sala, P; Scaramelli, A; Segreto, E; Stefan, D; Stepaniak, J; Sulej, R; Suvorova, O; Terrani, M; Tlisov, D; Van de Water, R G; Trinchero, G; Turcato, M; Varanini, F; Ventura, S; Vignoli, C; Wang, H G; Yang, X; Zani, A; Zaremba, K; Benettoni, M; Bernardini, P; Bertolin, A; Bozza, C; Brugnera, R; Cecchetti, A; Cecchini, S; Collazuol, G; Creti, P; Dal Corso, F; De Mitri, I; De Robertis, G; De Serio, M; Degli Esposti, L; Di Ferdinando, D; Dore, U; Dusini, S; Fabbricatore, P; Fanin, C; Fini, R A; Fiore, G; Garfagnini, A; Giacomelli, G; Giacomelli, R; Grella, G; Guandalini, C; Guerzoni, M; Kose, U; Laurenti, G; Laveder, M; Lippi, I; Loddo, F; Longhin, A; Loverre, P; Mancarella, G; Mandrioli, G; Margiotta, A; Marsella, G; Mauri, N; Medinaceli, E; Mengucci, A; Mezzetto, M; Michinelli, R; Muciaccia, M T; Orecchini, D; Paoloni, A; Pastore, A; Patrizii, L; Pozzato, M; Rescigno, R; Rosa, G; Simone, S; Sioli, M; Sirri, G; Spurio, M; Stanco, L; Stellacci, S; Surdo, A; Tenti, M; Togo, V; Ventura, M; Zago, M

    2012-01-01

    This proposal describes an experimental search for sterile neutrinos beyond the Standard Model with a new CERN-SPS neutrino beam. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at 1600 and 300 m from the proton target. This project will exploit the ICARUS T600, moved from LNGS to the CERN "Far" position. An additional 1/4 of the T600 detector will be constructed and located in the "Near" position. Two spectrometers will be placed downstream of the two LAr-TPC detectors to greatly complement the physics capabilities. Spectrometers will exploit a classical dipole magnetic field with iron slabs, and a new concept air-magnet, to perform charge identification and muon momentum measurements in a wide energy range over a large transverse area. In the two positions, the radial and energy spectra of the nu_e beam are practically identical. Comparing the two detectors, in absence of oscillations, all cross sections and experimenta...

  7. High power and high repetition solid state laser for EUV lithography

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H.; Mitra, A.; Wang, T. and the others [Osaka Univ., Osaka (Japan)

    2004-07-01

    We have been developing a high repetition (5 kHz) and high power (5kW) Nd:YAG laser system for EUV lithography. Key subjects are (1) reliable front-end, (2) uniform and high density pumping of main amplifier rods, and (3) compensation of thermal effects. A stable and reliable front-end based on fiber lasers has been developed. As a cw oscillator using Yb-doped silica fiber operates single longitudinal mode at 1030 nm to 1080nm, various laser materials (Yb:YAG, Nd:YLF, Nd:YAG, Nd:YAP, etc) can be used as main laser medium. A fast LN EO modulator switches out arbitrary pulse shape with response time of 100 ps. Laser pulses from the modulator are amplified by 3 stage fiber amplifiers up to 1 J. We will focus our efforts to attain 1 mJ output from the fiber front-end. Output pulses from the front-end are amplified to 100 mJ level by two 4-mm rod amplifiers (Nd:YAG) and two 6-mm rod amplifiers. Main amplifier chain consists of eight 12-mm rod amplifiers pumped by cw laser diodes. Total output power of the laser diodes is 28.8 kW. Double pass geometry is required to get enough gain and to compensate thermal effects. Spatial filters are installed to adjust thermal lens in the amplifiers and to send an image into just the center of the amplifiers. Ninty degree rotators and faraday rotators are installed in order to compensate thermal birefringence. A test amplifier module was made for investigation on uniform pumping, thermal effects, gain properties, and so on. Six laser diode modules with 4.5 kW total output power are installed in symmetric configuration. Active medium is Nd:YAG rod with 0.6% doping. Diameter and length of the rod are 12 mm and 150 mm, respectively. Peak gain of 1.67 was obtained at 4.2 kW pumping power and 200s pumping duration. Pumping uniformity was measured by both gain distribution and spontaneous emission from the laser rod. Fairly good uniformity was achieved by adjusting pumping geometry. Detail system analysis suggests that 8 amplifier modules

  8. Arc-shaped slit effect of EUV lithography with anamorphic high-NA system in terms of critical dimension variation

    Science.gov (United States)

    Kim, In-Seon; Kim, Guk-Jin; Yeung, Michael; Barouch, Eytan; Oh, Hye-Keun

    2017-03-01

    EUV lithography is one of the promising technologies for 1X nm patterning. EUV lithography has high resolution capability because of short wavelength of source but it has some particular patterning problems which are not appeared a t optical lithography. Owing to reflective optics, EUV light incidents obliquely in mask and oblique incidence of EUV lithography leads shadow effect and arc-shaped exposure slit. The study of these particular optical problems are required for optical proximity correction (OPC). Arc-shaped exposure slit leads azimuthal angle variation, incident angle variation , and variation of shadow width. With these variations along exposure slit, patterning result is varied along the exposure slit. With understanding of these particular optical problems, lots of EUV OPC studies have been presented with 0.33 conventional NA system. However, suggested anamorphic high NA system has not only elliptical shaped mask NA and also different angle distribution. The incident angle variation as a function of azimuthal angle is different between isomorphic and anamorphic NA systems. In case of anamorphic NA system, incident angle distribution is decreased on horizontal direction but it is larger on vertical direction compared with case of isomorphic NA system. These differences make different arc-shaped slit effect. CD variation as a function of azimuthal angle is different between isomorphic and a namorphic NA systems. The study of CD variation along the exposure slit is very helpful for OPC in EUV lithography.

  9. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  10. Lessons learned with the SAGE spectrometer

    Science.gov (United States)

    Sorri, J.; Papadakis, P.; Cox, D. M.; Greenlees, P. T.; Herzberg, R. D.; Jones, P.; Julin, R.; Konki, J.; Pakarinen, J.; Rahkila, P.; Sandzelius, M.; Uusitalo, J.

    2012-05-01

    The SAGE spectrometer combines a high-efficiency γ-ray detection system with an electron spectrometer. Some of the design features have been known to be problematic and surprises have come up during the early implementation of the spectrometer. Tests related to bismuth germanate Compton-suppression shields, electron detection efficiency and an improved cooling system are discussed in the paper.

  11. Acquisition of HPLC-Mass Spectrometer

    Science.gov (United States)

    2015-08-18

    31-Jan-2015 Approved for Public Release; Distribution Unlimited Final Report: Acquisition of HPLC -Mass Spectrometer The views, opinions and/or findings...published in peer-reviewed journals: Final Report: Acquisition of HPLC -Mass Spectrometer Report Title The acquisition of the mass spectrometer has been a

  12. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  13. Overcoming EUV mask blank defects: what we can, and what we should

    Science.gov (United States)

    Jonckheere, Rik

    2017-07-01

    This invited paper reviews progress over the past ten years of contributed effort to the understanding and the mitigation of multilayer defects on the EUV mask blank. These defects are an EUV-specific type of mask defects. Whereas the only true solution is to totally avoid the presence of such ML-defects during blank manufacturing, some level of capability of printability mitigation has been demonstrated, both by absorber compensation repair and by pattern shift. In both cases, it is essential that one can build on a full-proof blank inspection capability, that detects all printable blank defects, at a very low false detection rate, such as by using actinic blank inspection. This capability, together with providing accurate defect location information, establishes an essential prerequisite for their mitigation or avoidance. On the latter, the proposal is made to extend pattern shift to intentional pattern deformation.

  14. Systematic study of ligand structures of metal oxide EUV nanoparticle photoresists

    KAUST Repository

    Jiang, Jing

    2015-03-19

    Ligand stabilized metal oxide nanoparticle resists are promising candidates for EUV lithography due to their high sensitivity for high-resolution patterning and high etching resistance. As ligand exchange is responsible for the patterning mechanism, we systematically studied the influence of ligand structures of metal oxide EUV nanoparticles on their sensitivity and dissolution behavior. ZrO2 nanoparticles were protected with various aromatic ligands with electron withdrawing and electron donating groups. These nanoparticles have lower sensitivity compared to those with aliphatic ligands suggesting the structures of these ligands is more important than their pka on resist sensitivity. The influence of ligand structure was further studied by comparing the nanoparticles’ solubility for a single type ligand to mixtures of ligands. The mixture of nanoparticles showed improved pattern quality. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  15. Deposition and sputtering yields on EUV collector mirror from Laser Plasma Extreme Ultraviolet Sources

    Energy Technology Data Exchange (ETDEWEB)

    Wu Tao [Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Rao Zhiming [Depart of Computer Science, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi (China); Wang Shifang, E-mail: flatime@163.com [School of Physics and Electric Information, Hubei University of Education 1 Nanhuan Road, Wuhan East High-Tech. Zone, Wuhan 430205, Hubei (China)

    2011-02-01

    Based on the self-similar solution of gas dynamic equations, spherical expansion of the highly ionized plasma with limited mass into a vacuum is investigated for the droplet target laser-produced plasma extreme ultraviolet (LPP-EUV) sources. Using partially numerical and partially analytical technology, the velocity, the temperature and the density profiles in the plume versus ionization degree, adiabatic index and initial conditions are presented. Furthermore, the spatial thickness variations of the deposited substrate witness and ion sputtering yields for Ru, Mo, and Si under Sn ion bombardment are theoretically calculated, which can be useful to enable LPP-EUV sources suppliers to estimate collector lifetime and improve debris mitigation systems.

  16. EUV stimulated emission from MgO pumped by FEL pulses

    Directory of Open Access Journals (Sweden)

    Philippe Jonnard

    2017-09-01

    Full Text Available Stimulated emission is a fundamental process in nature that deserves to be investigated and understood in the extreme ultra-violet (EUV and x-ray regimes. Today, this is definitely possible through high energy density free electron laser (FEL beams. In this context, we give evidence for soft-x-ray stimulated emission from a magnesium oxide solid target pumped by EUV FEL pulses formed in the regime of travelling-wave amplified spontaneous emission in backward geometry. Our results combine two effects separately reported in previous works: emission in a privileged direction and existence of a material-dependent threshold for the stimulated emission. We develop a novel theoretical framework, based on coupled rate and transport equations taking into account the solid-density plasma state of the target. Our model accounts for both observed mechanisms that are the privileged direction for the stimulated emission of the Mg L2,3 characteristic emission and the pumping threshold.

  17. EUV actinic defect inspection and defect printability at the sub-32 nm half pitch

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Sungmin; Kearney, Patrick; Wurm, Stefan; Goodwin, Frank; Han, Hakseung; Goldberg, Kenneth; Mochi, Iacopp; Gullikson, Eric M.

    2009-08-01

    Extreme ultraviolet (EUV) mask blanks with embedded phase defects were inspected with a reticle actinic inspection tool (AIT) and the Lasertec M7360. The Lasertec M7360, operated at SEMA TECH's Mask Blank Development Center (MBDC) in Albany, NY, has a sensitivity to multilayer defects down to 40-45 nm, which is not likely sufficient for mask blank development below the 32 nm half-pitch node. Phase defect printability was simulated to calculate the required defect sensitivity for a next generation blank inspection tool to support reticle development for the sub-32 nm half-pitch technology node. Defect mitigation technology is proposed to take advantage of mask blanks with some defects. This technology will reduce the cost of ownership of EUV mask blanks. This paper will also discuss the kind of infrastructure that will be required for the development and mass production stages.

  18. Embedded top-coat for reducing the effect out of band radiation in EUV lithography

    Science.gov (United States)

    Du, Ke; Siauw, Meiliana; Valade, David; Jasieniak, Marek; Voelcker, Nico; Trefonas, Peter; Thackeray, Jim; Blakey, Idriss; Whittaker, Andrew

    2017-03-01

    Out of band (OOB) radiation from the EUV source has significant implications for the performance of EUVL photoresists. Here we introduce a surface-active polymer additive, capable of partitioning to the top of the resist film during casting and annealing, to protect the underlying photoresist from OOB radiation. Copolymers were prepared using reversible addition-fragmentation chain transfer (RAFT) polymerization, and rendered surface active by chain extension with a block of fluoro-monomer. Films were prepared from the EUV resist with added surface-active Embedded Barrier Layer (EBL), and characterized using measurements of contact angles and spectroscopic ellipsometry. Finally, the lithographic performance of the resist containing the EBL was evaluated using Electron Beam Lithography exposure

  19. Optical observations of post-discharge phenomena of laser-triggered discharge produced plasma for EUV lithography

    Science.gov (United States)

    Lim, Soowon; Kitajima, Seiya; Lu, Peng; Sakugawa, Takashi; Akiyama, Hidenori; Katsuki, Sunao; Teramoto, Yusuke

    2015-01-01

    This paper reports the dynamic post-discharge phenomena of laser-triggered discharge-produced plasmas (LTDPP) for extreme ultraviolet lithography (EUVL) sources. A pulsed laser was focused on the high-voltage tin cathode surface to form tin vapor jet across a 5 mm long anode-cathode gap, which leads to the electrical breakdown. The post-discharge phenomena were observed using both of the Schlieren method and high-speed camera. Schlieren images show the dynamic evolution of the discharge plasma and the development of tin droplets. Visible emission from the plasma lasted for more than 1 µs after the current stopped. The droplets emerged from the cathode approximately 100 µs after discharge and spread throughout the electrodes gap. Various sizes of droplets stagnate in the gap for milliseconds. The subsequent laser pulse and voltage application show an interaction between the droplets and the subsequent discharge. The subsequent laser pulse evaporates not only the cathode surface but also the droplets, which influence the tin vapor distribution in the gap. This uncertain vapor distribution affects the formation process of microplasmas that emit EUV.

  20. A novel X-ray spectrometer for plasma hot spot diagnosis

    Science.gov (United States)

    Shi, Jun; Guo, Yongchao; Xiao, Shali; Yang, Zuhua; Qian, Feng; Cao, LeiFeng; Gu, Yuqiu

    2017-09-01

    A novel X-ray spectrometer is designed to diagnose the different conditions in plasmas. It can provide both X-ray spectroscopy and plasma image information simultaneously. Two pairs of elliptical crystal analyzers are used to measure the X-ray spectroscopy in the range of 2-20 keV. The pinhole imaging system coupled with gated micro-channel plate(MCP) detectors are developed, which allows 20 images to be collected in a single individual experiment. The experiments of measuring spectra were conducted at "Shenguang-II upgraded laser" in China Academy of Engineering Physics to demonstrate the utility of the spectrometer. The X-ray spectroscopy information was obtained by the image plate(IP). The hot spot imaging experiments were carried out at "Shenguang-III prototype facility". We have obtained the hot sport images with the spectrometer, and the signal to noise ratio of 30 ∼ 40 is observed.

  1. Oxide nanoparticle EUV resists: toward understanding the mechanism of positive and negative tone patterning

    KAUST Repository

    Chakrabarty, Souvik

    2013-04-01

    DUV, EUV and e-beam patterning of hybrid nanoparticle photoresists have been reported previously by Ober and coworkers. The present work explores the underlying mechanism that is responsible for the dual tone patterning capability of these photoresist materials. Spectroscopic results correlated with mass loss and dissolution studies suggest a ligand exchange mechanism responsible for altering the solubility between the exposed and unexposed regions. © 2013 SPIE.

  2. Robust design of broadband EUV multilayer beam splitters based on particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hui, E-mail: jianghui@sinap.ac.cn [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Zhangheng Road 239, Pudong District, Shanghai 201204 (China); King' s College London, Department of Physics, Strand, London WC2R 2LS (United Kingdom); Michette, Alan G. [King' s College London, Department of Physics, Strand, London WC2R 2LS (United Kingdom)

    2013-03-01

    A robust design idea for broadband EUV multilayer beam splitters is introduced that achieves the aim of decreasing the influence of layer thickness errors on optical performances. Such beam splitters can be used in interferometry to determine the quality of EUVL masks by comparing with a reference multilayer. In the optimization, particle swarm techniques were used for the first time in such designs. Compared to conventional genetic algorithms, particle swarm optimization has stronger ergodicity, simpler processing and faster convergence.

  3. Stellar and Laboratory XUV/EUV Line Ratios in Fe XVIII and Fe XIX

    Science.gov (United States)

    Träbert, Elmar; Beiersdorfer, P.; Clementson, J.

    2011-09-01

    A so-called XUV excess has been suspected with the relative fluxes of Fe XVIII and Fe XIX lines in XUV and EUV spectra of the star Capella as observed by the Chandra spacecraft [1] when comparing the observations with simulations of stellar spectra based on APEC or FAC. We have addressed this problem by laboratory studies using the Livermore electron beam ion trap (EBIT). Our understanding of the EBIT spectrum is founded on work by Brown et al. [2]. The electron density of the electron beam in an EBIT is compatible to the density in energetic stellar flares. In our experiments, the relative detection efficiencies of two flat-field grating spectrographs operating in the EUV (near 100 Å) and XUV (near 16 Å) ranges have been determined using the calculated branching ratio of 1-3 and 2-3 transition in the H-like spectrum O VIII. FAC calculations assuming several electron beam energies and electron densities serve to correct the EBIT observations for the Maxwellian excitation in a natural plasma. In the EUV, the line intensity pattern predicted by FAC agrees reasonably well with the laboratory and Capella observations. In the XUV wavelength range, agreement of laboratory and astrophysical line intensities is patchy. The spectral simulation results from FAC are much closer to stellar and laboratory observation than those obtained by APEC. Instead of claiming an XUV excess, the XUV/EUV line intensities can be explained by a somewhat higher temperature of Capella than the previously assumed T=6 MK. This work was performed under the auspices of the USDoE by LLNL under Contract DE-AC52-07NA27344 and was supported by the NASA under work order NNH07AF81I issued by the APRA Program. E.T. acknowledges support by DFG Germany. 1. P. Desai et al., ApJ 625, L59 (2005). 2. G. V. Brown et al., ApJS 140, 589 (2002).

  4. Unraveling the role of secondary electrons upon their interaction with photoresist during EUV exposure

    Science.gov (United States)

    Pollentier, Ivan; Vesters, Yannick; Jiang, Jing; Vanelderen, Pieter; de Simone, Danilo

    2017-10-01

    The interaction of 91.6eV EUV photons with photoresist is very different to that of optical lithography at DUV wavelength. The latter is understood quite well and it is known that photons interact with the resist in a molecular way through the photoacid generator (PAG) of the chemically amplified resist (CAR). In EUV however, the high energy photons interact with the matter on atomic scale, resulting in the generation of secondary electrons. It is believed that these secondary electrons in their turn are responsible in chemical modification and lead to switching reactions that enable resist local dissolution. However, details of the interaction are still unclear, e.g. which reaction an electron with a given energy can initiate. In this work we have introduced a method to measure the chemical interaction of the secondary electrons with the EUV resist. The method is based on electron gun exposures of low energy electrons (range 1eV to 80eV) in the photoresist. The chemical interaction is then measured by Residual Gas Analysis (RGA), which can analyze out of the outgassing which and how much reaction products are generated. In this way a `chemical yield' can be quantified as function of electron energy. This method has been successfully applied to understand the interaction of secondary electrons on the traditional CAR materials. The understanding was facilitated by testing different compositions of an advanced EUV CAR, where resp. polymer only, polymer+PAG, and polymer+PAG+quencher are tested with the electron gun. It was found that low energy electrons down to 3-4eV can activate PAG dissociation, which can lead to polymer deprotection. However it was observed too that energy electrons of 12eV and higher can do direct deprotection even in absence of the PAG. In addition, testing suggests that electrons can generate also other chemical changes on the polymer chain that could lead to cross-linking.

  5. Laser-plasma SXR/EUV sources: adjustment of radiation parameters for specific applications

    Science.gov (United States)

    Bartnik, A.; Fiedorowicz, H.; Fok, T.; Jarocki, R.; Kostecki, J.; Szczurek, A.; Szczurek, M.; Wachulak, P.; Wegrzyński, Ł.

    2014-12-01

    In this work soft X-ray (SXR) and extreme ultraviolet (EUV) laser-produced plasma (LPP) sources employing Nd:YAG laser systems of different parameters are presented. First of them is a 10-Hz EUV source, based on a double-stream gaspuff target, irradiated with the 3-ns/0.8J laser pulse. In the second one a 10 ns/10 J/10 Hz laser system is employed and the third one utilizes the laser system with the pulse shorten to approximately 1 ns. Using various gases in the gas puff targets it is possible to obtain intense radiation in different wavelength ranges. This way intense continuous radiation in a wide spectral range as well as quasi-monochromatic radiation was produced. To obtain high EUV or SXR fluence the radiation was focused using three types of grazing incidence collectors and a multilayer Mo/Si collector. First of them is a multfoil gold plated collector consisted of two orthogonal stacks of ellipsoidal mirrors forming a double-focusing device. The second one is the ellipsoidal collector being part of the axisymmetrical ellipsoidal surface. Third of the collectors is composed of two aligned axisymmetrical paraboloidal mirrors optimized for focusing of SXR radiation. The last collector is an off-axis ellipsoidal multilayer Mo/Si mirror allowing for efficient focusing of the radiation in the spectral region centered at λ = 13.5 ± 0.5 nm. In this paper spectra of unaltered EUV or SXR radiation produced in different LPP source configurations together with spectra and fluence values of focused radiation are presented. Specific configurations of the sources were assigned to various applications.

  6. Photoresist shrinkage effects in 16 nm node extreme ultraviolet (EUV) photoresist targets

    Science.gov (United States)

    Bunday, Benjamin; Montgomery, Cecilia; Montgomery, Warren; Cepler, Aron

    2013-04-01

    Photoresist shrinkage (i.e., line slimming) is an important systematic uncertainty source in critical dimension-scanning electron microscope (CD-SEM) metrology of lithographic features [1] [2] [3] [4] [5]. It influences both the precision and the accuracy of CD-SEM measurements, while locally damaging the sample. Minimization or elimination of shrinkage is desirable, yet elusive. This error source will be a factor in CD-SEM metrology on polymer materials in EUV lithography. Recent work has demonstrated improved understanding of the trends in the shrinkage response depending on electron beam and target parameters in static measurements [2] [3] [4] [5] [6]. Some research has highlighted a second mode of shrinkage that is apparent over time and progresses as a function of time between consecutive measurements, a form of "dynamic shrinkage" that appears to be activated by electron beam, in which the activated feature perpetually and logarithmically shrinks [7] [8]. Another work has demonstrated that as pitches continue to get smaller with resulting reductions in spaces between lines, charging may emerge as an additional, competing, unpredictable error source for CD-SEM metrology on dense photoresist features, an issue that is predicted to become more common as these spaces become more confined [9]. In this work, we explore the static shrinkage behaviors of various EUV photoresists into the 16 nm half-pitch node, with samples generated using the advanced EUV lithography capable of generating such tight pitches [10]. Dynamic shrinkage behavior was explored on these materials last year [15]. The static shrinkage behaviors will be validated to show compliance with the SEMATECH shrinkage model [5] [6] on small EUV resist features. Using the results of the model fits, a simulation study will predict the shrinkage trends at future nodes. Further studies will confirm whether or not charging phenomena are observable, and the beginning of a charging simulation study will be

  7. Modeling and optimization of mass-limited targets for EUV lithography

    Science.gov (United States)

    Sizyuk, T.; Hassanein, A.

    2012-03-01

    Current challenges in the development of efficient laser produced plasma (LPP) sources for EUV lithography are increasing EUV power at IF and maximizing lifetime and therefore, reducing cost of devices. Mass-limited targets such as small tin droplets are considered among the best choices for cleaner operation of the optical system because of lower mass of atomic debris produced by the laser beam. The small diameter of droplets, however, decreases the conversion efficiency (CE) of EUV photons emission, especially in the case of CO2 laser, where laser wavelength has high reflectivity from the tin surface. We investigated ways of improving CE in mass-limited targets. We considered in our modeling various possible target phases and lasers configurations: from solid/liquid droplets subjected to laser beam energy with different intensities and laser wavelength to dual-beam lasers, i.e., a pre-pulse followed by a main pulse with adjusted delay time in between. We studied the dependence of vapor expansion rate, which can be produced as a result of droplet heating by pre-pulse laser energy, on target configuration, size, and laser beam parameters. As consequence, we studied the influence of these conditions and parameters on the CE and debris mass accumulation. For better understanding and more accurate modeling of all physical processes occurred during various phases of laser beam/target interactions, plasma plume formation and evolution, EUV photons emission and collection, we have implemented in our HEIGHTS package state-of-the art models and methods, verified, and benchmarked against laboratory experiments in our CMUXE center as well as various worldwide experimental results.

  8. The importance of inner-shell electronic structure for enhancing the EUV absorption of photoresist materials.

    Science.gov (United States)

    Closser, Kristina D; Ogletree, D Frank; Naulleau, Patrick; Prendergast, David

    2017-04-28

    In order to increase computation power and efficiency, the semiconductor industry continually strives to reduce the size of features written using lithographic techniques. The planned switch to a shorter wavelength extreme ultraviolet (EUV) source presents a challenge for the associated photoresists, which in their current manifestation show much poorer photoabsorption cross sections for the same dose. Here we consider the critical role that an inner-shell electronic structure might play in enhancing photoabsorption cross sections, which one can control by the choice of substituent elements in the photoresist. In order to increase the EUV sensitivity of current photoresists, it is critical to consider the inner-shell atomic structure of the elements that compose the materials. We validate this hypothesis using a series of halogenated organic molecules, which all have similar valence structures, but differ in the character of their semi-core and deep valence levels. Using various implementations of time-dependent density functional theory, the absorption cross sections are computed for the model systems of CH3X, X = H, OH, F, Cl, Br, I, as well as a representative polymer fragment: 2-methyl-phenol and its halogenated analogues. Iodine has a particularly high cross section in the EUV range, which is due to delayed absorption by its 4d electrons. The computational results are compared to standard database values and experimental data when available. Generally we find that the states that dominate the EUV oscillator strength are generated by excitations of deep valence or semi-core electrons, which are primarily atomic-like and relatively insensitive to the specific molecular structure.

  9. EMC3-eIRENE simulation of impurity transport in comparison with EUV emission measurements in the stochastic layer of LHD: effects of force balance and transport coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Dai, S. [National Institute for Fusion Science, Toki (Japan); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian (China); Kobayashi, M.; Morita, S.; Oishi, T.; Suzuki, Y. [National Institute for Fusion Science, Toki (Japan); Department of Fusion Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Toki (Japan); Kawamura, G. [National Institute for Fusion Science, Toki (Japan); Zhang, H.M.; Huang, X.L. [Department of Fusion Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Toki (Japan); Feng, Y. [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Wang, D.Z. [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian (China); Collaboration: The LHD experiment group

    2016-08-15

    The transport properties and line emissions of the intrinsic carbon in the stochastic layer of the Large Helical Device have been investigated with the three-dimensional edge transport code EMC3-EIRENE. The simulations of impurity transport and emissivity have been performed to study the dedicated experiment in which the carbon emission distributions are measured by a space-resolved EUV spectrometer system. A discrepancy of the CIV impurity emission between the measurement and simulation is obtained, which is studied with the variation of the ion thermal force, friction force and the perpendicular diffusivity in the impurity transport model. An enhanced ion thermal force or a reduced friction force in the modelling can increase the CIV impurity emission at the inboard X-point region. Furthermore, the impact of the perpendicular diffusivity Dimp is studied which shows that the CIV impurity emission pattern is very sensitive to Dimp. It is found that the simulation results with the increased Dimp tend to be closer to the experimental observation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. EUV mask blank defect inspection strategies for 32-nm half-pitch and beyond

    Science.gov (United States)

    Wurm, Stefan; Han, Hakseung; Kearney, Patrick; Cho, Wonil; Jeon, Chan-Uk; Gullikson, Eric

    2007-05-01

    The availability of defect-free masks remains one of the key challenges for inserting extreme ultraviolet lithography (EUVL) into manufacturing. Evidently, the success of the industry's mask blank defect reduction effort will critically depend on the timely availability of defect inspection tools that can find ever smaller defects. The first generation of defect inspection tools enabled SEMATECH's Mask Blank Development Center (MBDC) to reduce mask blank defects to a level sufficient for use in EUV alpha tools. The second tool generation is currently enabling the MBDC to meet EUV pilot line requirements by the end of 2007. However, to meet high volume manufacturing (HVM) mask blank defect requirements for 32 nm half-pitch (hp) patterning, the industry needs a third generation of defect inspection tools. This next EUV inspection tool generation must be able to find defects of tools will also need to support extendibility assessments of low defect deposition technologies and the associated infrastructure towards meeting 22 nm half-pitch defect specifications. While visible light inspection is likely to support defect inspection needs for mask substrates over several technology nodes, the industry must explore other options for mask blanks and patterned masks. Evaluating the use of inexpensive printing tools and wafer-based inspection to search for repeating defects must be part of an overall strategy to address mask blank and patterned mask defect inspection.

  11. EUV emission stimulated by use of dual laser pulses from continus liquid microjet targets

    Science.gov (United States)

    Higashiguchi, Takeshi; Rajyaguru, Chirag; Sasaki, Wataru; Kubodera, Shoichi

    2004-11-01

    A continuous water-jet or water-jet mixed with LiF with several tens μm diameter was formed in a vacuum chamber through a small capillary nozzle. Usage of two laser pulses is an efficient way to produce EUV emission, since a density and temperature of a plasma formed by the first laser pulse are regulated by the second laser pulse. By adjusting the delay of the second pulse, one could maximize the EUV emission. A subpicosecond Ti:Sapphire laser at a wavelength of 800 nm produced a maximum energy around 30 mJ. The beam was divided by a Michelson interferometer, which produced two laser pulses with energies of 5 mJ. The pulse duration was adjusted around 300 fs (FWHM). Both beams were focused on a micro-jet using a lens with a focal length of 15 cm. The delay time between the two pulses was varied from 100 to 800 ps by use of an optical delay line. Clear enhancement of the EUV emission yield was observed when the delay between the two pulses was around 500 ps. The experimentally observed delay agrees reasonably well with that of a plasma to expand to its critical density of 10^21 cm-3.

  12. Background pressure effects on EUV source efficiency and produced debris characteristics

    Science.gov (United States)

    Sizyuk, Tatyana

    2017-03-01

    The cost of future computer chips, among other things, will depend on the performance of EUV sources and on the duration of the efficient operation and lifetime of nanolithography devices. While the efficiency of the sources is continuously being improved, their operational cycle is still highly restricted due to optical mirrors degradation as well as necessity of cleaning chamber environment and components. One of the potential problems of EUV sources for high volume manufacture (HVM) regimes can be related to the contamination of chamber environment by products of preceding laser pulse/droplet interactions. Implementation of high, 100 kHz and higher, repetition rate of devices for Sn droplets and laser pulses generation can cause high accumulation of tin in the chamber in the form of vapor/clusters. Possible tin accumulation in the chamber in dependence on laser parameters and mitigation system efficiency was evaluated. Then, the effects of various pressures of tin vapor on the CO2 and Nd:YAG laser beams propagation and on the size, the intensity, and the efficiency of EUV sources produced were studied.

  13. 4-D modeling of CME expansion and EUV dimming observed with STEREO/EUVI

    Directory of Open Access Journals (Sweden)

    M. J. Aschwanden

    2009-08-01

    Full Text Available This is the first attempt to model the kinematics of a CME launch and the resulting EUV dimming quantitatively with a self-consistent model. Our 4-D-model assumes self-similar expansion of a spherical CME geometry that consists of a CME front with density compression and a cavity with density rarefaction, satisfying mass conservation of the total CME and swept-up corona. The model contains 14 free parameters and is fitted to the 25 March 2008 CME event observed with STEREO/A and B. Our model is able to reproduce the observed CME expansion and related EUV dimming during the initial phase from 18:30 UT to 19:00 UT. The CME kinematics can be characterized by a constant acceleration (i.e., a constant magnetic driving force. While the observations of EUVI/A are consistent with a spherical bubble geometry, we detect significant asymmetries and density inhomogeneities with EUVI/B. This new forward-modeling method demonstrates how the observed EUV dimming can be used to model physical parameters of the CME source region, the CME geometry, and CME kinematics.

  14. Performance assessment of the TDRSS Onboard Navigation System (TONS) experiment on EP/EUVE

    Science.gov (United States)

    Gramling, C. J.; Hart, R. C.; Teles, Jerome; Long, A. C.; Maher, M. J.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing an operational Tracking and Data Relay Satellite (TDRS) System (TDRSS) Onboard Navigation System (TONS) to provide onboard knowledge of high-accuracy navigation products autonomously to users of TDRSS and its successor, TDRS-2. A TONS experiment has been implemented on the Explorer Platform/Extreme Ultraviolet Explorer (EP/EUVE) spacecraft, launched June 7, 1992, to flight qualify the TONS operational system using TDRSS forward-link communications services. This paper assesses the performance of the TONS flight hardware, an ultrastable oscillator (USO) and Doppler extractor (DE) card in one of the TDRSS user transponders, and the protoype flight software, based on the TONS experiment results. An overview of onboard navigation via TDRSS is also presented for both the EP/EUVE experiment and for future users of TONS. USO and DE short-term and long-term stability performance has been excellent. TONS Flight Software analysis indicates that position accuracies of better than 25 meters root-mean-square are achievable with tracking every one to two orbits, for the EP/EUVE 525-kilometer altitudes, 28.5-degree inclination orbit. The success of the TONS experiment demonstrates the flight readiness of TONS, which is scheduled to provide autonomous navigation for the Earth Observing System (EOS)-AM mission.

  15. EUV and Coronagraphic Observations of Coronal Mass Ejections

    Indian Academy of Sciences (India)

    The Large Angle Spectrometric Coronagraph (LASCO) and Extreme-ultraviolet Imaging Telescope (EIT) onboard Solar and Heliospheric Observatory (SOHO) provide us with unprecedented multi-wavelength observations helping us to understand different dynamic phenomena on the Sun and in the corona. In this paper ...

  16. Matched Spectral Filter Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — OPTRA proposes the development of an imaging spectrometer for greenhouse gas and volcanic gas imaging based on matched spectral filtering and compressive imaging....

  17. Ion mobility spectrometer / mass spectrometer (IMS-MS).

    Energy Technology Data Exchange (ETDEWEB)

    Hunka Deborah Elaine; Austin, Daniel E.

    2005-07-01

    The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.

  18. Ion Mobility Spectrometer / Mass Spectrometer (IMS-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Hunka, Deborah E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Austin, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2005-10-01

    The use of Ion Mobility Spectrometry (IMS)in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400).

  19. Analysis and System Design Framework for Infrared Spatial Heterodyne Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, B.J.; Smith, B.W.; Laubscher, B.E.; Villeneuve, P.V.; Briles, S.D.

    1999-04-05

    The authors present a preliminary analysis and design framework developed for the evaluation and optimization of infrared, Imaging Spatial Heterodyne Spectrometer (SHS) electro-optic systems. Commensurate with conventional interferometric spectrometers, SHS modeling requires an integrated analysis environment for rigorous evaluation of system error propagation due to detection process, detection noise, system motion, retrieval algorithm and calibration algorithm. The analysis tools provide for optimization of critical system parameters and components including : (1) optical aperture, f-number, and spectral transmission, (2) SHS interferometer grating and Littrow parameters, and (3) image plane requirements as well as cold shield, optical filtering, and focal-plane dimensions, pixel dimensions and quantum efficiency, (4) SHS spatial and temporal sampling parameters, and (5) retrieval and calibration algorithm issues.

  20. The Alpha Magnetic Spectrometer (AMS)

    CERN Document Server

    Alcaraz, J; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Babucci, E; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Bene, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Bizzaglia, S; Blasko, S; Bölla, G; Boschini, M; Bourquin, Maurice; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Casadei, D; Casaus, J; Castellini, G; Cecchi, C; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Chuang, Y L; Cindolo, F; Commichau, V; Contin, A; Crespo, P; Cristinziani, M; Cunha, J P D; Dai, T S; Deus, J D; Dinu, N; Djambazov, L; Dantone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, P; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Huang, M A; Hungerford, W; Ionica, M; Ionica, R; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kenny, J; Kim, W; Klimentov, A; Kossakowski, R; Koutsenko, V F; Kraeber, M; Laborie, G; Laitinen, T; Lamanna, G; Laurenti, G; Lebedev, A; Lee, S C; Levi, G; Levchenko, P M; Liu, C L; Liu, H T; Lopes, I; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Mourao, A; Mujunen, A; Palmonari, F; Papi, A; Park, I H; Pauluzzi, M; Pauss, Felicitas; Perrin, E; Pesci, A; Pevsner, A; Pimenta, M; Plyaskin, V; Pozhidaev, V; Postolache, V; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Röser, U; Roissin, C; Sagdeev, R; Sartorelli, G; Schwering, G; Scolieri, G; Seo, E S; Shoutko, V; Shoumilov, E; Siedling, R; Son, D; Song, T; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Ulbricht, J; Urpo, S; Usoskin, I; Valtonen, E; Vandenhirtz, J; Velcea, F; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, Gert M; Vitè, Davide F; Gunten, H V; Wallraff, W; Wang, B C; Wang, J Z; Wang, Y H; Wiik, K; Williams, C; Wu, S X; Xia, P C; Yan, J L; Yan, L G; Yang, C G; Yang, M; Ye, S W; Yeh, P; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B

    2002-01-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m sup 2) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS.

  1. The Alpha Magnetic Spectrometer (AMS)

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Bene, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bizzaglia, S.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Brocco, L.; Bruni, G.; Buenerd, M.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Camps, C.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cecchi, C.; Chang, Y.H.; Chen, H.F.; Chen, H.S.; Chen, Z.G.; Chernoplekov, N.A.; Chiueh, T.H.; Chuang, Y.L.; Cindolo, F.; Commichau, V.; Contin, A. E-mail: contin@bo.infn.it; Crespo, P.; Cristinziani, M.; Cunha, J.P. da; Dai, T.S.; Deus, J.D.; Dinu, N.; Djambazov, L.; DAntone, I.; Dong, Z.R.; Emonet, P.; Engelberg, J.; Eppling, F.J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P.H.; Fluegge, G.; Fouque, N.; Galaktionov, Yu.; Gervasi, M.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W.Q.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Huang, M.A.; Hungerford, W.; Ionica, M.; Ionica, R.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kenny, J.; Kim, W.; Klimentov, A.; Kossakowski, R.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lee, S.C.; Levi, G.; Levtchenko, P.; Liu, C.L.; Liu, H.T.; Lopes, I.; Lu, G.; Lu, Y.S.; Luebelsmeyer, K.; Luckey, D.; Lustermann, W.; Mana, C.; Margotti, A.; Mayet, F.; McNeil, R.R.; Meillon, B.; Menichelli, M.; Mihul, A.; Mourao, A.; Mujunen, A.; Palmonari, F.; Papi, A.; Park, I.H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Postolache, V.; Produit, N.; Rancoita, P.G.; Rapin, D.; Raupach, F.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J.P.; Riihonen, E.; Ritakari, J.; Roeser, U.; Roissin, C.; Sagdeev, R.; Sartorelli, G.; Schultz von Dratzig, A.; Schwering, G.; Scolieri, G.; Seo, E.S.; Shoutko, V.

    2002-02-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m{sup 2}) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS.

  2. Ion Mobility Spectrometer Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nicholas [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; McLain, Derek [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Steeb, Jennifer [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-12-20

    The Morpho Saffran Itemizer 4DX Ion Mobility Spectrometer previously used to detect uranium signatures in FY16 was used at the former New Brunswick Facility, a past uranium facility located on site at Argonne National Laboratory. This facility was chosen in an attempt to detect safeguards relevant signatures and has a history of processing uranium at various enrichments, chemical forms, and purities; various chemicals such as nitric acid, uranium fluorides, phosphates and metals are present at various levels. Several laboratories were sampled for signatures of nuclear activities around the laboratory. All of the surfaces that were surveyed were below background levels of the radioanalytical instrumentation and determined to be radiologically clean.

  3. A comparison of exposure meter systems for three exoplanet-hunting spectrometers: Hamilton, HIRES and APF

    Science.gov (United States)

    Kibrick, R. I.; Clarke, D. A.; Deich, W. T. S.; Tucker, D.

    2006-06-01

    The majority of extra-solar planets discovered to date have been found using Doppler-shift measurements obtained with the Hamilton Spectrometer at Lick Observatory and the High Resolution Echelle Spectrometer (HIRES) at Keck Observatory. Each of these spectrometers employs an integral exposure meter which enables observers to optimize exposure times so as to achieve the required signal-to-noise and to determine the photon-weighted midpoint of each science exposure (which is needed to correct the Doppler shift to the Solar System barycenter). In both of these systems, a propeller mirror located behind the spectrometer slit picks off a few percent of the light and directs it to a photo-multiplier tube (PMT) used to measure the exposure level versus time. In late 2006, the new Automated Planet Finder (APF) Telescope and APF Spectrometer are scheduled to begin operations at Lick Observatory; both will be dedicated exclusively to the search for extra-solar planets. Like the Hamilton and HIRES Spectrometers, the APF Spectrometer will employ an integral exposure meter, but one with a significantly different design. The APF exposure meter will employ a stationary pellicle located ahead of the slit to pick off 4% of the light and direct it to the guide camera. That camera will produce images typically at a 1 Hz rate, and those images will be used both for autoguiding and for computing the exposure level delivered to the spectrometer. In each guide camera image obtained during a science exposure, the time-tagged signal from the pixels that correspond to the spectrometer slit will be integrated in software to determine the current exposure level and the photon-weighted midpoint of that science exposure. We compare these two different design approaches, and describe the significant hardware and software features of each of these systems.

  4. Demonstration of defect free EUV mask for 22nm NAND flash contact layer using electron beam inspection system

    Science.gov (United States)

    Shimomura, Takeya; Kawashima, Satoshi; Inazuki, Yuichi; Abe, Tsukasa; Takikawa, Tadahiko; Mohri, Hiroshi; Hayashi, Naoya; Wang, Fei; Ma, Long Eric; Zhao, Yan; Kuan, Chiyan; Xiao, Hong; Jau, Jack

    2011-04-01

    Fabrication of defect free EUV masks including their inspection is the most critical challenge for implementing EUV lithography into semiconductor high volume manufacturing (HVM) beyond 22nm half-pitch (HP) node. The contact to bit-line (CB) layers of NAND flash devices are the most likely the first lithography layers that EUV will be employed for manufacturing due to the aggressive scaling and the difficulty for making the pattern with the current ArF lithography. To assure the defect free EUV mask, we have evaluated electron beam inspection (EBI) system eXplore™ 5200 developed by Hermes Microvision, Inc. (HMI) [1]. As one knows, the main issue of EBI system is the low throughput. To solve this challenge, a function called Lightning Scan™ mode has been recently developed and installed in the system, which allows the system to only inspect the pattern areas while ignoring blanket areas, thus dramatically reduced the overhead time and enable us to inspect CB layers of NAND Flash device with much higher throughput. In this present work, we compared the Lightning scan mode with Normal scan mode on sensitivity and throughput. We found out the Lightning scan mode can improve throughput by a factor of 10 without any sacrifices of sensitivity. Furthermore, using the Lightning scan mode, we demonstrated the possibility to fabricate the defect free EUV masks with moderate inspection time.

  5. Images

    Data.gov (United States)

    National Aeronautics and Space Administration — Images for the website main pages and all configurations. The upload and access points for the other images are: Website Template RSW images BSCW Images HIRENASD...

  6. THz spectrometer calibration at FELIX

    Energy Technology Data Exchange (ETDEWEB)

    Koevener, Toke; Wunderlich, Steffen; Peier, Peter; Hass, Eugen; Schmidt, Bernhard [Deutsches Elektronen-Synchrotron, Hamburg (Germany)

    2016-07-01

    Coherent radiation spectroscopy is a suitable method for longitudinal electron bunch diagnostics at femtosecond bunch lengths. The absolute value of the longitudinal form factor, that is connected to the longitudinal profile, can be retrieved by measuring the intensity spectrum of a coherent transition radiation source at FLASH. The response function of the used spectrometer has to be well known in absolute values in order to perform accurate measurements. Until now, the response was predicted by calculations. As the free-electron lasers at the FELIX facility in Nijmegen (NL) provide quasi-monochromatic beams that can be tuned in a wide spectral range at micrometer wavelengths, a calibration campaign for two THz spectrometers was performed at this facility with the goal to deduce their response function. Here we present the setup at FELIX that was used for the calibration scans, the achieved scan ranges and the collected data. Furthermore, the analysis of the measured data is discussed. The results are then compared to the previous calculations of the response functions.

  7. The SPEDE spectrometer arXiv

    CERN Document Server

    Papadakis, P.; O'Neill, G.G.; Borge, M.J.G.; Butler, P.A.; Gaffney, L.P.; Greenlees, P.T.; Herzberg, R.-D.; Illana, A.; Joss, D.T.; Konki, J.; Kröll, T.; Ojala, J.; Page, R.D.; Rahkila, P.; Ranttila, K.; Thornhill, J.; Tuunanen, J.; Van Duppen, P.; Warr, N.; Pakarinen, J.

    The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of {\\gamma} rays and conversion electrons in Coulomb-excitation experiments using radioactive ion beams.

  8. Digital Spectrometers for Interplanetary Science Missions

    Science.gov (United States)

    Jarnot, Robert F.; Padmanabhan, Sharmila; Raffanti, Richard; Richards, Brian; Stek, Paul; Werthimer, Dan; Nikolic, Borivoje

    2010-01-01

    A fully digital polyphase spectrometer recently developed by the University of California Berkeley Wireless Research Center in conjunction with the Jet Propulsion Laboratory provides a low mass, power, and cost implementation of a spectrum channelizer for submillimeter spectrometers for future missions to the Inner and Outer Solar System. The digital polyphase filter bank spectrometer (PFB) offers broad bandwidth with high spectral resolution, minimal channel-to-channel overlap, and high out-of-band rejection.

  9. Synergistic effect of EUV from the laser-sustained detonation plasma in a ground-based atomic oxygen simulation on fluorinated polymers

    Science.gov (United States)

    Tagawa, Masahito; Abe, Shingo; Kishida, Kazuhiro; Yokota, Kumiko; Okamoto, Akio

    2009-01-01

    The contribution of extreme ultraviolet (EUV) from a laser-sustained plasma on the mass loss phenomenon of fluorinated polymer in a ground-based laser-detonation atomic oxygen beam source was evaluated. The atomic oxygen beam and EUV from the oxygen plasma were separated by the high-speed chopper wheel installed in the beam source. The mass changes of the fluorinated polymer and polyimide were measured from the frequency shift of the quartz crystal microbalance during the beam exposures. It has been made clear that the fluorinated polymer erodes by EUV exposure alone. In contrast, no erosion was detected for polyimide by EUV alone. The atomic oxygen-induced erosion was measured for both materials even without EUV exposure. However, no strong synergistic effect was observed for a fluorinated polymer even under the simultaneous exposure condition of atomic oxygen and EUV. Similar results were observed even in simultaneous exposure of atomic oxygen (without EUV) and 172 nm vacuum ultraviolet (VUV) from an excimer lamp. These experiments suggest that the primary origin of the accelerated erosion of fluorinated polymer observed in a laser detonation atomic oxygen source is not the EUV from the laser-sustained plasma.

  10. Uncovering New Thermal and Elastic Properties of Nanostructured Materials Using Coherent EUV Light

    Science.gov (United States)

    Hernandez Charpak, Jorge Nicolas

    Advances in nanofabrication have pushed the characteristic dimensions of nanosystems well below 100nm, where physical properties are often significantly different from their bulk counterparts, and accurate models are lacking. Critical technologies such as thermoelectrics for energy harvesting, nanoparticle-mediated thermal therapy, nano-enhanced photovoltaics, and efficient thermal management in integrated circuits depend on our increased understanding of the nanoscale. However, traditional microscopic characterization tools face fundamental limits at the nanoscale. Theoretical efforts to build a fundamental picture of nanoscale thermal dynamics lack experimental validation and still struggle to account for newly reported behaviors. Moreover, precise characterization of the elastic behavior of nanostructured systems is needed for understanding the unique physics that become apparent in small-scale systems, such as thickness-dependent or fabrication-dependent elastic properties. In essence, our ability to fabricate nanosystems has outstripped our ability to understand and characterize them. In my PhD thesis, I present the development and refinement of coherent extreme ultraviolet (EUV) nanometrology, a novel tool used to probe material properties at the intrinsic time- and length-scales of nanoscale dynamics. By extending ultrafast photoacoustic and thermal metrology techniques to very short probing wavelengths using tabletop coherent EUV beams from high-harmonic upconversion (HHG) of femtosecond lasers, coherent EUV nanometrology allows for a new window into nanoscale physics, previously unavailable with traditional techniques. Using this technique, I was able to probe both thermal and acoustic dynamics in nanostructured systems with characteristic dimensions below 50nm with high temporal (sub-ps) and spatial (work is needed for a full theoretical quantitative picture of the experimental results. In other work, I used coherent EUV nanometrology to simultaneously

  11. Analysis and implementation of a space resolving spherical crystal spectrometer for x-ray Thomson scattering experiments.

    Science.gov (United States)

    Harding, E C; Ao, T; Bailey, J E; Loisel, G; Sinars, D B; Geissel, M; Rochau, G A; Smith, I C

    2015-04-01

    The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-rays with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.

  12. EUV radiation from pinching discharges of magnetoplasma compressor type and its dependence on the dynamics of compression zone formation

    Science.gov (United States)

    Garkusha, I. E.; Cherednychenko, T. N.; Ladygina, M. S.; Makhlay, V. A.; Petrov, Yu V.; Solyakov, D. G.; Staltsov, V. V.; Yelisyeyev, D. V.; Hassanein, A.

    2014-05-01

    This paper is devoted to the investigation of plasma stream parameters and the intensity of extreme ultraviolet (EUV) radiation from the compression zone in various modes of operation of a magnetoplasma compressor (MPC). Two gases of different masses, either helium or argon, were used for the ignition of MPC discharge under the residual pressure. The plasma stream density along the axis and the EUV radiation energy were measured. It was shown that the compression zone position depends on the initial density of the residual gas. The EUV radiation energy was measured with a calibrated AXUV in the wavelength range of 12.2-15.8 nm. It was revealed that the radiation energy increased by 30-50% with decreasing initial gas pressure.

  13. Mask process correction (MPC) modeling and its application to EUV mask for electron beam mask writer EBM-7000

    Science.gov (United States)

    Kamikubo, Takashi; Ohnishi, Takayuki; Hara, Shigehiro; Anze, Hirohito; Hattori, Yoshiaki; Tamamushi, Shuichi; Bai, Shufeng; Wang, Jen-Shiang; Howell, Rafael; Chen, George; Li, Jiangwei; Tao, Jun; Wiley, Jim; Kurosawa, Terunobu; Saito, Yasuko; Takigawa, Tadahiro

    2010-09-01

    In electron beam writing on EUV mask, it has been reported that CD linearity does not show simple signatures as observed with conventional COG (Cr on Glass) masks because they are caused by scattered electrons form EUV mask itself which comprises stacked heavy metals and thick multi-layers. To resolve this issue, Mask Process Correction (MPC) will be ideally applicable. Every pattern is reshaped in MPC. Therefore, the number of shots would not increase and writing time will be kept within reasonable range. In this paper, MPC is extended to modeling for correction of CD linearity errors on EUV mask. And its effectiveness is verified with simulations and experiments through actual writing test.

  14. Dawn-dusk difference of periodic oxygen EUV dayglow variations at Venus observed by Hisaki

    Science.gov (United States)

    Masunaga, Kei; Seki, Kanako; Terada, Naoki; Tsuchiya, Fuminori; Kimura, Tomoki; Yoshioka, Kazuo; Murakami, Go; Yamazaki, Atsushi; Tao, Chihiro; Leblanc, François; Yoshikawa, Ichiro

    2017-08-01

    We report a dawn-dusk difference of periodic variations of oxygen EUV dayglow (OII 83.4 nm, OI 130.4 nm and OI 135.6 nm) in the upper atmosphere of Venus observed by the Hisaki spacecraft in 2015. Observations show that the periodic dayglow variations are mainly controlled by the solar EUV flux. Additionally, we observed characteristic ∼1 day and ∼4 day periodicities in the OI 135.6 nm brightness. The ∼1 day periodicity was dominant on the duskside while the ∼4 day periodicity was dominant on the dawnside. Although the driver of the ∼1 day periodicity is still uncertain, we suggest that the ∼4 day periodicity is caused by gravity waves that propagate from the middle atmosphere. The thermospheric subsolar-antisolar flow and the gravity waves dominantly enhance eddy diffusion on the dawnside, and the eddy diffusion coefficient changes every ∼4 days due to large periodic modulations of wind velocity of the super-rotating atmosphere. Since the ∼4 day modulations on the dawnside are not continuously observed, it is possible that there is an intermittent coupling between the thermosphere and middle atmosphere due to variations of wave source altitudes. Moreover, if there are variations of the wind velocity in the mesosphere or lower thermosphere, it is possible that gravity waves occasionally propagate to the thermosphere even on the duskside due to periodic disappearance of the critical level and the ∼4 day periodic O atomic modulations occur. Thus, our observations imply that the ∼4 day periodicity of the EUV dayglow may reflect the dynamics of the middle atmosphere of Venus. We also examined the effects of the solar wind on the dayglow variations by shifting the solar wind measurements from earth to Venus. We did not find clear correlations between them. However, since there are no local measurements of the solar wind at Venus, the effect of the solar wind on the dayglow is still uncertain.

  15. Development of the negative-tone molecular resists for EB/EUVL having high EUV absorption capacity and molecular design method

    Science.gov (United States)

    Sato, Takashi; Takigawa, Tomoaki; Togashi, Yuta; Toida, Takumi; Echigo, Masatoshi; Harada, Tetsuo; Watanabe, Takeo; Kudo, Hiroto

    2017-10-01

    In this paper, we designed the synthesis of negative-type molecular resist materials for EB and EUVL exposure tools, and their properties were examined. The resist materials for EUVL have been required showing higher sensitivity for high throughput in the lithographic process, and expecting lower shot noise to improve a roughness. In EUVL process, the resist materials must be ionized by absorbing EUV to emit more secondary electrons. The EUV absorption of the synthesized resist materials was measured using their thin films on the silicon wafer, and it was observed that the ratio of EUV absorption of the synthesized resist was higher than in the comparison of that of PHS as a reference., i.e., 2.4 times higher absorption was shown. Furthermore, we examined the relationship between the ratios of EUV absorptions and functional groups of the resist materials. As the result, the sensitivity of resist materials under EUV exposure tool was consistent with their structures.

  16. The mechanical and thermal setup of the GLORIA spectrometer

    Science.gov (United States)

    Piesch, C.; Sartorius, C.; Friedl-Vallon, F.; Gulde, T.; Heger, S.; Kretschmer, E.; Maucher, G.; Nordmeyer, H.; Barthel, J.; Ebersoldt, A.; Graf, F.; Hase, F.; Kleinert, A.; Neubert, T.; Schillings, H. J.

    2015-04-01

    The novel airborne Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) measures infrared emission of atmospheric trace constituents. GLORIA comprises a cooled imaging Fourier transform spectrometer, which is operated in unpressurized aircraft compartments at ambient temperature. The whole spectrometer is pointed by the gimbal towards the atmospheric target. In order to reach the required sensitivity for atmospheric emission measurements, the spectrometer optics needs to operate at a temperature below 220 K. A lightweight and compact design is mandatory due to limited space and high agility requirements. The cooled optical system needs to withstand high pressure and temperature gradients, humidity, and vibrations. A new cooling system based on carbon dioxide and liquid nitrogen combined with high-performance insulation has been developed to meet the mechanical, thermal, and logistical demands. The challenging mechanical and spatial requirements lead to the development of a novel rigid linear slide design in order to achieve the large optical path difference for high spectral resolution. This paper describes the mechanical and thermal setup of GLORIA and presents the performance results on two different research aircrafts.

  17. A quantitative mode-resolved frequency comb spectrometer.

    Science.gov (United States)

    Hébert, Nicolas Bourbeau; Scholten, Sarah K; White, Richard T; Genest, Jérôme; Luiten, Andre N; Anstie, James D

    2015-06-01

    We have developed a frequency-comb spectrometer that records 35-nm (4 THz) spectra with 2-pm (250 MHz) spectral sampling and an absolute frequency accuracy of 2 kHz. We achieve a signal-to-noise ratio of ~400 in a measurement time of 8.2 s. The spectrometer is based on a commercial frequency comb decimated by a variable-length, low-finesse Fabry Pérot filter cavity to fully resolve the comb modes as imaged by a virtually imaged phased array (VIPA), diffraction grating and near-IR camera. By tuning the cavity length, spectra derived from all unique decimated combs are acquired and then interleaved to achieve frequency sampling at the comb repetition rate of 250 MHz. We have validated the performance of the spectrometer by comparison with a previous high-precision absorption measurement of H13C14N near 1543 nm. We find excellent agreement, with deviations from the expected line centers and widths of, at most, 1 pm (125 MHz) and 3 pm (360 MHz), respectively.

  18. ROSAT EUV and soft X-ray studies of atmospheric composition and structure in G191-B2B

    Science.gov (United States)

    Barstow, M. A.; Fleming, T. A.; Finley, D. S.; Koester, D.; Diamond, C. J.

    1993-01-01

    Previous studies of the hot DA white dwarf GI91-B2B have been unable to determine whether the observed soft X-ray and EUV opacity arises from a stratified hydrogen and helium atmosphere or from the presence of trace metals in the photosphere. New EUV and soft X-ray photometry of this star, made with the ROSAT observatory, when analyzed in conjunction with the earlier data, shows that the stratified models cannot account for the observed fluxes. Consequently, we conclude that trace metals must be a substantial source of opacity in the photosphere of G191-B2B.

  19. Improving Flare Irradiance Models with the Low Pass Filter Relation Between EUV Flare Emissions with Differing Formation Temperatures

    Science.gov (United States)

    Thiemann, Edward M. B.; Eparvier, Francis G.

    2016-10-01

    Solar flares are the result of magnetic reconnection in the solar corona which converts magnetic energy into kinetic energy resulting in the rapid heating of solar plasma. As this plasma cools, extreme ultraviolet (EUV) line emission intensities evolve as the plasma temperature passes through line formation temperatures, resulting in emission lines with cooler formation temperatures peaking after those with hotter formation temperatures. At the 2016 American Astronomical Society Solar Physics Division Meeting in Boulder (SPD2016), we showed that Fe XVIII solar flare light curves are highly correlated with Fe XXIII light curves that have been subjected to the single-pole Low Pass Filter Equation (LPFE) with a time constant equal to the time difference between the peak emissions. The single-pole (or equivalently, RC) LPFE appears frequently in analyses of systems which both store and dissipate heat, and the flare LPFE effect is believed to be related to the underlying cooling processes. Because the LPFE is constrained by a single parameter, this effect has implications for both operational